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Abstract—Deep Learning (DL) is empowering technology in 
a plethora of ways, especially when big data processing is a core 
requirements. Many challenges, however, arise when solely 
depending on cloud computing for Artificial Intelligence (AI), 
such as data privacy, communication latency, and power 
consumption. Despite increasing popularity of edge computing, 
the overarching issue in this scope is lack of a comprehensive 
documentation on how to setup a given edge computing device 
to run DL algorithms. Due to its specialized nature, installing 
the full version of TensorFlow DL library on an edge device is a 
complicated procedure that is seldom successful, due to the 
many dependent software libraries needed to be compatible 
with varying architectures of edge computing devices. 
Henceforth, in this paper, we present a novel guide on how to 
setup the TensorFlow Lite software library and outline a 
complete workflow of model training, validation, and testing on 
the ODROID-XU4. Results are presented for a case study on 
energy data classification using the outlined model show almost 
7 times higher computational performance compared to cloud-
based ML.  

Keywords—Edge computing, artificial intelligence, deep 
learning, data classification, computational offloading. 

I. INTRODUCTION 
Deep Learning (DL) is empowering technology in a 

plethora of ways, especially when big data analytics is a core 
process [1]. For instance, cloud computing servers are 
considered as powerful computational platforms that can 
perform cost-efficient and scalable Machine Learning (ML) 
and DL algorithms [2], [3]. Many challenges, however, arise 
when solely depending on cloud computing for Artificial 

Intelligence (AI), such as data privacy, communication 
latency, and power consumption [4]–[6]. Therefore, Edge AI 
has emerged as a solution in which ML algorithms are run at 
high performance by securely leveraging local computational 
resources.  

As an example, low power consumption and compact form 
factor are features of which the Single-Board Computing 
(SBC) platform ODROID-XU4 is popularly known for. It 
supports a composite of ARM Cortex-A15, Cortex-A7 
big.LITTLE Central Processing Unit (CPU), and ARM Mali-
T628 GPU, in addition to several open-source operating 
systems, such as Linux and Android versions [7]. 

On the other hand, a well-known AI accelerator, called 
Jetson Nano, was developed by Nvidia supporting Graphics 
Processing Unit (GPU) cores of 128 Maxwell. It is used in a 
variety of edge AI applications with a 5 to 10 watts electric  
board consumption. For instance, 4 ARM cores and 256 
CUDA Maxwell cores are supported by the edge AI 
accelerator NVIDIA Jetson-TX1, whereas 6 ARM cores and 
256 CUDA Pascal cores are supported by the edge AI 
accelerator Jetson-TX2 [8]. 

Despite increasing popularity, the overarching issue in this 
scope is lack of a comprehensive guide on how to setup a 
given edge computing device to run DL algorithms. Due to 
its specialized nature, installing the full version of 
TensorFlow deep learning library on an edge device is a 
complicated procedure that is seldom successful, due to the 
many dependent software libraries needed to be compatible 
with varying architectures of edge computing devices.  

Fig. 1. Edge ML Data Workflow and Challenge Levels. 



Henceforth, in this practice paper, a novel guide on how to 
setup the TensorFlow Lite software library and outline a 
complete workflow of model training, validation, and testing 
on the ODROID-XU4. This is the first updated guide for the 
2021-2022 software versions of the ODROID-XU4, 
TensorFlow Lite and accompanying libraries to outline 
specific steps for enabling DL application using Python. 
Potential applications include the following:   

1. Energy consumption data analysis; 
2. Image recognition; 
3. Natural language processing; 
4. Transfer learning applications; and 
5. Condition monitoring and fault detection, among 

others.  
The remainder of this paper is outlined as follows: Section 

II explores recent related work to edge computational 
offloading. Section III describes the methods of implementing 
edge ML on the ODROID-XU4. Section IV showcase a case 
study on using edge ML on a data classification problem. 
Section V concludes the paper. 

II. RELATED WORK 
In this section, we will outline recent research on the area 

of offloading computation to the edge and its importance on 
reducing the burden on traditional computational units such 
as ML cloud computing servers.  

According to [9], despite its importance, there is no 
systemic, exhaustive, or thorough survey of computation 
offloading processes in the MEC context. In the review in [9], 
a study of ML-based computation offloading processes is 
presented in the MEC setting in the context of a classical 
taxonomy in order to define contemporary frameworks on 
this critical subject and to raise open concerns. The suggested 
taxonomy is divided into three major categories: mechanisms 
focused on reinforcement learning, regulated learning 
mechanisms, and unsupervised learning models. Following 
that, these groups are contrasted to one another depending on 
key features, such as success measurements, case studies, 
methods used, and assessment tools, as well as their 
advantages and disadvantages. 

In that direction,  a DL system for IoT edge devices with 
a novel offloading scheme is presented in order to optimize 
ML performance for the resource-constrained nature of edge 
nodes. The performance of running DL programs on an edge 
device are tested with experimental results indicate that the 
suggested methodology improves upon alternative 
optimization models. 

A reoccurring theme in edge AI is the problem of 
constrained computational power, as well as limited storage 
capacities compared to cloud alternatives. This is achieved by 
using the MEC network and using the vast data scattered 
through a wide range of edge computers. Modeling upon 
distributed data and communication between the edge nodes 
are two crucial elements of such systems. The authors call for 
the needs of novel architectures for wireless connectivity in 
edge AI. Examples are given to illustrate the feasibility of the 
suggested criteria of such new architectures, and specific 
testing metrics are described.  

On a similar note, despite the strong contributions found 

 
1 https://colab.research.google.com 

in the field of edge computing, the contributions related to 
how to actually implement the algorithm are left 
unintentionally obfuscated and vague, especially when 
considering boards such as the ODROID-XU4, which creates 
a gap and an opportunity for prospective research efforts and 
guidance. 

III. METHODS 

A. Overview and Model Training 
The overall data workflow is illustrated in Fig. 1. 

Assuming the first two steps are fulfilled, i.e., data is collected 
and pre-processing as per the desired application, we can 
proceed to model training and validation. Also, the figure 
highlights different challenge levels at each stage of the 
process. In this paper, we will propose a method for the last 
step of the workflow, i.e., executing pre-trained machine 
learning models on an edge computing device using 
TensorFlow Lite on ODROID-XU4. 

In order to train a DL model, a suitable DL software library 
must be chosen and installed. In this case study, TensorFlow 
is employed using Python on the publicly available Google 
Colab platform1. In this implementation TensorFlow V2.7.0 is 
installed. It is important to note that the mentioned software 
packages are required based on the prerequisites of the 
commonly used  

Due to the specific scope of this paper, model training and 
validation are not covered. Depending on the chosen 
application, we assume a suitable DL model is implemented, 
training and validated on existing data. 

B. Exporting TensorFlow Models to TensorFlow Lite 
In order to run the model on an ODROID-XU4 edge 

computing device, a lightweight version of the TensorFlow 
model needs to be exported as shown in the Appendix.  

This will result in a generating a .tflite file, which is an 
edge optimized version of the original model.  

C. Install TensorFlow Lite on the ODROID-XU4 
After a TensorFlow Lite model is exported, the required 

libraries are installed on the ODROID-XU4 as follows. Given 
an ODROID-XU4 is setup to have the latest Ubuntu Mate 
operating system (V21.04 or later) as well as Python V3.8, 
you can install the needed libraires using the Terminal 
program as shown in the Appendix. 

Following, the TensorFlow Lite model can be run using a 
specialized Python program that computes the model on a 
testing sub-dataset. An example created by the authors2.  

Using the workflow described, any compatible DL model 
can be run on edge computing devices, the ODROID-XU4 in 
this case study, enabling numerous advantages such as higher 
performance, lower power consumption, higher data privacy, 
and minimal application complexity using lightweight 
models.   

IV. RESULTS: CASE STUDY ON ENERGY DATA CLASSIFICATION 
In this section, to illustrate the outcomes of this work, an 

implementation of edge-based ML classifier of energy 
consumption data is described on the UK Domestic 
Appliance-Level Electricity (UK-DALE) dataset is employed 

2 https://github.com/Abdol/edge-test 



due to its large size and multi-year duration [10], [11]. The 
UK-DALE dataset keeps record of the power consumption 
data from five houses in the UK, where in each household, 
aggregated power consumption is collected along with 
appliance-level data every six seconds. In our 
implementation, we have used aggregated power 
consumption data from one house.  

Following training and validation on the Google Colab, 
the model is exported, downloaded, imported, and tested on 
the ODROID-XU4 following the method described in 
Section III. It also noteworthy to mention that the TensorFlow 
Lite model is tested on the cloud for accuracy and 
computation performance benchmarking purposes. Table 1 
compares the model testing performance between the edge 
ODROID-XU4 running the TensorFlow Lite model, Google 
Colab running the TF model, and the TensorFlow Lite cloud 
implementation. In terms of computational speed, the cloud 
implementation excels given its high performance GPU. 
However, the performance of the ODROID-XU4 is 
considerably high with 28.5 sec, which is approximately 6.9 
times faster the cloud TensorFlow Lite implementation. In 
terms of accuracy, the model scores evenly with an average 
of 89.4%. To provide more perspective, the ODROID-XU4 
can classify a GAF image that represents around 42 thousand 
data points in less than 17.5 msec, which is very close to real-
time performance.  

 
Table 1. Data classification performance comparison between 

edge and cloud implementations. 
 

ODROID-XU4 
(Edge, TFLite) 

Cloud 
(Google 

Colab, TF) 

Cloud 
(Google 
Colab, 

TFLite) 
Model performance 
on test dataset (sec) 

28.51 19.10 196.62 

Model accuracy 89.57% 89.65% 89.08% 

 

V. CONCLUSIONS 
In this paper, the methods of implementing edge-level 

ML has been described on a case study board with exemplary 
computational performance that signifies the benefits of 
computational offloading for data analytics applications. 
With emphasis on the ODROID-XU4 board for computation 
offloading purposes, this work tackles one of the most 
common challenges that research face when working on edge 
ML, preparing the required software on the desired edge 
platforms. As the results of energy data classification case 
study is depicted, the presented workflow is validated and has 
shown that specific steps can be taken to enable running 
complex algorithms on the edge computing devices, opening 
new doors toward broader data analytics applications that are 
both energy efficient and privacy preserving. 
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APPENDIX: ODROID-XU4 TENSORFLOW INSTALLATION 
COMMANDS 

model.export(export_dir=’model.tflite’) 
sudo apt-get update 

sudo apt-get install python-pip python-
numpy swig python-dev 

sudo pip3 install tflite-runtime cython 
h5py numpy pandas 

sudo pip3 install numpy 

sudo python3 your-tflite-script.py 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


