
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Facilitating Deep Learning for Edge Computing: A
Case Study on Data Classification

Abdullah Alsalemi
Institute of Artificial Intelligence

De Montfort University
Leicester, United Kingdom

P2621877@my365.dmu.ac.uk

Abbes Amira
College of Computing and Informatics

University of Sharjah
Sharjah, United Arab Emirates

aamira@sharjah.ac.ae

Kegong Diao
Institute Of Energy And Sustainable

Development
De Montfort University

Leicester, United Kingdom
kegong.diao@dmu.ac.uk

Hossein Malekmohamadi
Institute of Artificial Intelligence

De Montfort University
Leicester, United Kingdom

h.malekmohamadi@dmu.ac.uk

Abstract—Deep Learning (DL) is empowering technology in
a plethora of ways, especially when big data processing is a core
requirements. Many challenges, however, arise when solely
depending on cloud computing for Artificial Intelligence (AI),
such as data privacy, communication latency, and power
consumption. Despite increasing popularity of edge computing,
the overarching issue in this scope is lack of a comprehensive
documentation on how to setup a given edge computing device
to run DL algorithms. Due to its specialized nature, installing
the full version of TensorFlow DL library on an edge device is a
complicated procedure that is seldom successful, due to the
many dependent software libraries needed to be compatible
with varying architectures of edge computing devices.
Henceforth, in this paper, we present a novel guide on how to
setup the TensorFlow Lite software library and outline a
complete workflow of model training, validation, and testing on
the ODROID-XU4. Results are presented for a case study on
energy data classification using the outlined model show almost
7 times higher computational performance compared to cloud-
based ML.

Keywords—Edge computing, artificial intelligence, deep
learning, data classification, computational offloading.

I. INTRODUCTION
Deep Learning (DL) is empowering technology in a

plethora of ways, especially when big data analytics is a core
process [1]. For instance, cloud computing servers are
considered as powerful computational platforms that can
perform cost-efficient and scalable Machine Learning (ML)
and DL algorithms [2], [3]. Many challenges, however, arise
when solely depending on cloud computing for Artificial

Intelligence (AI), such as data privacy, communication
latency, and power consumption [4]–[6]. Therefore, Edge AI
has emerged as a solution in which ML algorithms are run at
high performance by securely leveraging local computational
resources.

As an example, low power consumption and compact form
factor are features of which the Single-Board Computing
(SBC) platform ODROID-XU4 is popularly known for. It
supports a composite of ARM Cortex-A15, Cortex-A7
big.LITTLE Central Processing Unit (CPU), and ARM Mali-
T628 GPU, in addition to several open-source operating
systems, such as Linux and Android versions [7].

On the other hand, a well-known AI accelerator, called
Jetson Nano, was developed by Nvidia supporting Graphics
Processing Unit (GPU) cores of 128 Maxwell. It is used in a
variety of edge AI applications with a 5 to 10 watts electric
board consumption. For instance, 4 ARM cores and 256
CUDA Maxwell cores are supported by the edge AI
accelerator NVIDIA Jetson-TX1, whereas 6 ARM cores and
256 CUDA Pascal cores are supported by the edge AI
accelerator Jetson-TX2 [8].

Despite increasing popularity, the overarching issue in this
scope is lack of a comprehensive guide on how to setup a
given edge computing device to run DL algorithms. Due to
its specialized nature, installing the full version of
TensorFlow deep learning library on an edge device is a
complicated procedure that is seldom successful, due to the
many dependent software libraries needed to be compatible
with varying architectures of edge computing devices.

Fig. 1. Edge ML Data Workflow and Challenge Levels.

Henceforth, in this practice paper, a novel guide on how to
setup the TensorFlow Lite software library and outline a
complete workflow of model training, validation, and testing
on the ODROID-XU4. This is the first updated guide for the
2021-2022 software versions of the ODROID-XU4,
TensorFlow Lite and accompanying libraries to outline
specific steps for enabling DL application using Python.
Potential applications include the following:

1. Energy consumption data analysis;
2. Image recognition;
3. Natural language processing;
4. Transfer learning applications; and
5. Condition monitoring and fault detection, among

others.
The remainder of this paper is outlined as follows: Section

II explores recent related work to edge computational
offloading. Section III describes the methods of implementing
edge ML on the ODROID-XU4. Section IV showcase a case
study on using edge ML on a data classification problem.
Section V concludes the paper.

II. RELATED WORK
In this section, we will outline recent research on the area

of offloading computation to the edge and its importance on
reducing the burden on traditional computational units such
as ML cloud computing servers.

According to [9], despite its importance, there is no
systemic, exhaustive, or thorough survey of computation
offloading processes in the MEC context. In the review in [9],
a study of ML-based computation offloading processes is
presented in the MEC setting in the context of a classical
taxonomy in order to define contemporary frameworks on
this critical subject and to raise open concerns. The suggested
taxonomy is divided into three major categories: mechanisms
focused on reinforcement learning, regulated learning
mechanisms, and unsupervised learning models. Following
that, these groups are contrasted to one another depending on
key features, such as success measurements, case studies,
methods used, and assessment tools, as well as their
advantages and disadvantages.

In that direction, a DL system for IoT edge devices with
a novel offloading scheme is presented in order to optimize
ML performance for the resource-constrained nature of edge
nodes. The performance of running DL programs on an edge
device are tested with experimental results indicate that the
suggested methodology improves upon alternative
optimization models.

A reoccurring theme in edge AI is the problem of
constrained computational power, as well as limited storage
capacities compared to cloud alternatives. This is achieved by
using the MEC network and using the vast data scattered
through a wide range of edge computers. Modeling upon
distributed data and communication between the edge nodes
are two crucial elements of such systems. The authors call for
the needs of novel architectures for wireless connectivity in
edge AI. Examples are given to illustrate the feasibility of the
suggested criteria of such new architectures, and specific
testing metrics are described.

On a similar note, despite the strong contributions found

1 https://colab.research.google.com

in the field of edge computing, the contributions related to
how to actually implement the algorithm are left
unintentionally obfuscated and vague, especially when
considering boards such as the ODROID-XU4, which creates
a gap and an opportunity for prospective research efforts and
guidance.

III. METHODS

A. Overview and Model Training
The overall data workflow is illustrated in Fig. 1.

Assuming the first two steps are fulfilled, i.e., data is collected
and pre-processing as per the desired application, we can
proceed to model training and validation. Also, the figure
highlights different challenge levels at each stage of the
process. In this paper, we will propose a method for the last
step of the workflow, i.e., executing pre-trained machine
learning models on an edge computing device using
TensorFlow Lite on ODROID-XU4.

In order to train a DL model, a suitable DL software library
must be chosen and installed. In this case study, TensorFlow
is employed using Python on the publicly available Google
Colab platform1. In this implementation TensorFlow V2.7.0 is
installed. It is important to note that the mentioned software
packages are required based on the prerequisites of the
commonly used

Due to the specific scope of this paper, model training and
validation are not covered. Depending on the chosen
application, we assume a suitable DL model is implemented,
training and validated on existing data.

B. Exporting TensorFlow Models to TensorFlow Lite
In order to run the model on an ODROID-XU4 edge

computing device, a lightweight version of the TensorFlow
model needs to be exported as shown in the Appendix.

This will result in a generating a .tflite file, which is an
edge optimized version of the original model.

C. Install TensorFlow Lite on the ODROID-XU4
After a TensorFlow Lite model is exported, the required

libraries are installed on the ODROID-XU4 as follows. Given
an ODROID-XU4 is setup to have the latest Ubuntu Mate
operating system (V21.04 or later) as well as Python V3.8,
you can install the needed libraires using the Terminal
program as shown in the Appendix.

Following, the TensorFlow Lite model can be run using a
specialized Python program that computes the model on a
testing sub-dataset. An example created by the authors2.

Using the workflow described, any compatible DL model
can be run on edge computing devices, the ODROID-XU4 in
this case study, enabling numerous advantages such as higher
performance, lower power consumption, higher data privacy,
and minimal application complexity using lightweight
models.

IV. RESULTS: CASE STUDY ON ENERGY DATA CLASSIFICATION
In this section, to illustrate the outcomes of this work, an

implementation of edge-based ML classifier of energy
consumption data is described on the UK Domestic
Appliance-Level Electricity (UK-DALE) dataset is employed

2 https://github.com/Abdol/edge-test

due to its large size and multi-year duration [10], [11]. The
UK-DALE dataset keeps record of the power consumption
data from five houses in the UK, where in each household,
aggregated power consumption is collected along with
appliance-level data every six seconds. In our
implementation, we have used aggregated power
consumption data from one house.

Following training and validation on the Google Colab,
the model is exported, downloaded, imported, and tested on
the ODROID-XU4 following the method described in
Section III. It also noteworthy to mention that the TensorFlow
Lite model is tested on the cloud for accuracy and
computation performance benchmarking purposes. Table 1
compares the model testing performance between the edge
ODROID-XU4 running the TensorFlow Lite model, Google
Colab running the TF model, and the TensorFlow Lite cloud
implementation. In terms of computational speed, the cloud
implementation excels given its high performance GPU.
However, the performance of the ODROID-XU4 is
considerably high with 28.5 sec, which is approximately 6.9
times faster the cloud TensorFlow Lite implementation. In
terms of accuracy, the model scores evenly with an average
of 89.4%. To provide more perspective, the ODROID-XU4
can classify a GAF image that represents around 42 thousand
data points in less than 17.5 msec, which is very close to real-
time performance.

Table 1. Data classification performance comparison between

edge and cloud implementations.

ODROID-XU4
(Edge, TFLite)

Cloud
(Google

Colab, TF)

Cloud
(Google
Colab,

TFLite)
Model performance
on test dataset (sec)

28.51 19.10 196.62

Model accuracy 89.57% 89.65% 89.08%

V. CONCLUSIONS
In this paper, the methods of implementing edge-level

ML has been described on a case study board with exemplary
computational performance that signifies the benefits of
computational offloading for data analytics applications.
With emphasis on the ODROID-XU4 board for computation
offloading purposes, this work tackles one of the most
common challenges that research face when working on edge
ML, preparing the required software on the desired edge
platforms. As the results of energy data classification case
study is depicted, the presented workflow is validated and has
shown that specific steps can be taken to enable running
complex algorithms on the edge computing devices, opening
new doors toward broader data analytics applications that are
both energy efficient and privacy preserving.

REFERENCES
[1] C. Fan, Y. Sun, Y. Zhao, M. Song, and J. Wang, “Deep

learning-based feature engineering methods for
improved building energy prediction,” Applied Energy,
vol. 240, pp. 35–45, 2019.

[2] M. S. Badar, S. Shamsi, M. M. U. Haque, and A. S.
Aldalbahi, “Applications of AI and ML in IoT,” in
Integration of WSNs into Internet of Things, CRC Press,
2021.

[3] M. Antonini, T. H. Vu, C. Min, A. Montanari, A.
Mathur, and F. Kawsar, “Resource Characterisation of
Personal-Scale Sensing Models on Edge Accelerators,”
in Proceedings of the First International Workshop on
Challenges in Artificial Intelligence and Machine
Learning for Internet of Things, New York, NY, USA,
Nov. 2019, pp. 49–55. doi: 10.1145/3363347.3363363.

[4] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A.
Dehghantanha, and G. Srivastava, “A survey on security
and privacy of federated learning,” Future Generation
Computer Systems, vol. 115, pp. 619–640, Feb. 2021,
doi: 10.1016/j.future.2020.10.007.

[5] H. Li, J. Yu, H. Zhang, M. Yang, and H. Wang,
“Privacy-Preserving and Distributed Algorithms for
Modular Exponentiation in IoT With Edge Computing
Assistance,” IEEE Internet of Things Journal, vol. 7, no.
9, pp. 8769–8779, Sep. 2020, doi:
10.1109/JIOT.2020.2995677.

[6] J. Chi et al., “Privacy Partition: A Privacy-Preserving
Framework for Deep Neural Networks in Edge
Networks,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC), Oct. 2018, pp. 378–380. doi:
10.1109/SEC.2018.00049.

[7] M. Merenda, C. Porcaro, and D. Iero, “Edge Machine
Learning for AI-Enabled IoT Devices: A Review,”
Sensors, vol. 20, no. 9, Art. no. 9, Jan. 2020, doi:
10.3390/s20092533.

[8] S. M. Sánchez et al., “Edge Computing Driven Smart
Personal Protective System Deployed on NVIDIA
Jetson and Integrated with ROS,” in Highlights in
Practical Applications of Agents, Multi-Agent Systems,
and Trust-worthiness. The PAAMS Collection, Cham,
2020, pp. 385–393. doi: 10.1007/978-3-030-51999-
5_32.

[9] A. Shakarami, M. Ghobaei-Arani, and A. Shahidinejad,
“A survey on the computation offloading approaches in
mobile edge computing: A machine learning-based
perspective,” Computer Networks, vol. 182, p. 107496,
Dec. 2020, doi: 10.1016/j.comnet.2020.107496.

[10] J. Kelly and W. Knottenbelt, “The UK-DALE dataset,
domestic appliance-level electricity demand and whole-
house demand from five UK homes,” Scientific Data,
vol. 2, p. 150007, Mar. 2015, doi: 10.1038/sdata.2015.7.

[11] A. Alsalemi, A. Amira, H. Malekmohamadi, K. Diao,
and F. Bensaali, Elevating Energy Data Analysis with
M2GAF: Micro-Moment Driven Gramian Angular Field
Visualizations. International Conference on Applied
Energy, 2021. Accessed: Dec. 27, 2021. [Online].
Available: https://dora.dmu.ac.uk/handle/2086/21303

APPENDIX: ODROID-XU4 TENSORFLOW INSTALLATION
COMMANDS

model.export(export_dir=’model.tflite’)
sudo apt-get update

sudo apt-get install python-pip python-
numpy swig python-dev

sudo pip3 install tflite-runtime cython
h5py numpy pandas

sudo pip3 install numpy

sudo python3 your-tflite-script.py

