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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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A Direct Algorithm for

1D Total Variation Denoising
Laurent Condat

Abstract—A very fast noniterative algorithm is proposed for
denoising or smoothing one-dimensional discrete signals, by
solving the total variation regularized least-squares problem or
the related fused lasso problem. A C code implementation is
available on the web page of the author.

Index Terms—Total variation, denoising, nonlinear smooth-
ing, fused lasso, regularized least-squares, nonparametric re-
gression, convex nonsmooth optimization, taut string

I. INTRODUCTION

The problem of smoothing a signal, to remove or at least

attenuate the noise it contains, has numerous applications

in communications, control, machine learning, and many

other fields of engineering and science [1]. In this paper, we

focus on the numerical implementation of total variation

(TV) denoising for one-dimensional (1D) discrete signals;

that is, we are given a (noisy) signal y = (y[1], . . . , y[N ]) ∈
R

N of size N ≥ 1, and we want to efficiently compute the

denoised signal x⋆ ∈ R
N , defined implicitly as the solution

to the minimization problem

minimize
x∈RN

1

2

N
∑

k=1

∣

∣y[k]− x[k]
∣

∣

2 +λ
N−1
∑

k=1

∣

∣x[k +1]− x[k]
∣

∣, (1)

for some regularization parameter λ ≥ 0 (whose choice is

a difficult problem by itself [2]). We recall that, as the

functional to minimize is strongly convex, the solution x⋆

to the problem exists and is unique, whatever the data y .

The TV denoising problem has received large attention in

the communities of signal and image processing, inverse

problems, sparse sampling, statistical regression analysis,

optimization theory, among others. It is not the purpose

of this paper to review the properties of the nonlinear TV

denoising filter, since numerous papers can be found on

this vast topic; see, e.g., [3]–[6] for various insights.

A more general problem, which encompasses TV de-

noising as a particular case, is the fused lasso signal ap-

proximator, introduced in [7], which yields a solution that

has sparsity in both the coefficients and their successive

differences. It consists in solving the problem

minimize
z∈RN

1

2

N
∑

k=1

∣

∣z[k]−y[k]
∣

∣

2+λ
N−1
∑

k=1

∣

∣z[k+1]−z[k]
∣

∣+µ
N
∑

k=1

∣

∣z[k]
∣

∣,

(2)

for some λ ≥ 0 and µ ≥ 0. The fused lasso has many

applications, e.g. in bioinformatics [8]–[10]. As shown in

[9], the complexity of the fused lasso is the same as TV
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Fig. 1. Total variation denoising can be interpreted as pulling the discrete
primitive r of the signal y taut in a tube around it. The taut string (blue
polyline) interpolates the sequence s⋆ solution to (4) (blue dots), which
after discrete differentiation yields the denoised sequence x⋆ solution to
(1). The proposed algorithm is not based on this interpretation.

denoising, since the solution z⋆ can be obtained by simple

soft-thresholding from the solution x⋆ of (1):

z⋆[k] =
{

x⋆[k]−µ.sign(x⋆[k]) if |x⋆[k]| >µ

0 otherwise
. (3)

It is straightforward to add soft-thresholding steps to the

proposed algorithm, for essentially the same computation

time. So, for simplicity of the exposition, we focus on the

TV denoising problem (1) in the sequel.

To solve the convex nonsmooth optimization problem

(1), we mostly find in the literature iterative fixed-point

methods [11]. Until not so long ago, such methods applied

to TV regularization had rather high computational com-

plexity [12]–[16], but the growing interest for related ℓ1-

norm problems in compressed sensing or sparse recovery

[17], [18] has yielded advances in the field. Recent iterative

methods based on operator splitting, which exploit both

the primal and dual formulations of the problems and use

variable stepsize strategies or Nesterov-style accelerations,

are quite efficient when applied to TV-based problems [19]–

[21]. Graph cuts methods can also be used to solve (1) or

its extension on graphs [22]; they actually solve a quantized

version of (1): the minimizer x⋆ is not searched in R
N but

in εZN , for some ε> 0, with complexity O(log2(1/ε)N ). If ε

is small enough, the exact solution in R
N can be obtained

from the quantized one, as shown by Hochbaum [23], [24].

In this paper, we present a novel and very fast algorithm to

compute the denoised signal x⋆ solution to (1), exactly, in a
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1D TV Denoising Algorithm

Input: integer size N ≥ 1, real sequence (y[1], . . . , y[N ]), real parameter λ > 0. Output: real sequence (x⋆[1], . . . , x⋆[N ])

solution to (1).
Ì
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Ì

Ê

1. Set k = k0 = k− = k+ ← 1, vmin ← y[1]−λ, vmax ← y[1]+λ, umin ←λ, umax ←−λ.

2. If k = N , set x⋆[N ]← vmin +umin and terminate.

3. If y[k +1]+umin < vmin −λ, set x⋆[k0] = ·· · = x⋆[k−]← vmin, k = k0 = k− = k+ ← k−+1, vmin ← y[k],
⌊

vmax ← y[k]+2λ, umin ←λ, umax ←−λ .

4. Else, if y[k +1]+umax > vmax +λ, set x⋆[k0] = ·· · = x⋆[k+]← vmax, k = k0 = k− = k+ ← k++1, vmin ← y[k]−2λ,
⌊

vmax ← y[k], umin ←λ, umax ←−λ .

5. Else, set k ← k +1, umin ← umin + y[k]− vmin and umax ←umax + y[k]− vmax.

6.

⌊

If umin ≥λ, set vmin ← vmin + (umin −λ)/(k −k0 +1), umin ←λ, k− ← k.

If umax ≤−λ, set vmax ← vmax + (umax +λ)/(k −k0 +1), umax ←−λ, k+ ← k.

7. If k < N , go to 3.

8. If umin < 0, set x⋆[k0]= ·· · = x⋆[k−]← vmin, k = k0 = k− ← k−+1, vmin ← y[k], umin ←λ, umax ← y[k]+λ− vmax.
⌊

Then go to 2 .

9. Else, if umax > 0, set x⋆[k0] = ·· · = x⋆[k+]← vmax, k = k0 = k+ ← k++1, vmax ← y[k], umax ←−λ,
⌊

umin ← y[k]−λ− vmin. Then go to 2.

10. Else, set x⋆[k0] = ·· · = x⋆[N ]← vmin +umin/(k −k0 +1) and terminate.

direct, noniterative, way, possibly in-place. It is appropriate

for real-time processing of an incoming stream of data, as

it locates the jumps in x⋆ one after the other by forward

scans, almost online. The possibility of such an algorithm

sheds light on the relatively local nature of the TV denoising

filter [25].

After this work was completed, the author found that

there already exists a direct, linear time, method for 1D

TV denoising, called the taut string algorithm [26], see

also [27]–[31]. Although known by some statisticians, this

method seems to be largely ignored, at least in the signal

processing community. Evidence of this is that iterative

methods are regularly proposed for 1D TV denoising [32]–

[34]. To understand the principle of the taut string method,

define the sequence of running sums r by r [k] =
∑k

i=1 y[i ]

for 1 ≤ k ≤ N , and consider the problem:

minimize
s∈RN+1

N
∑

k=1

√

1+
∣

∣s[k]− s[k −1]
∣

∣

2
subject to

s[0] = 0, s[N ] = r [N ], and max
1≤k≤N

∣

∣s[k]− r [k]
∣

∣ ≤λ. (4)

Then, the problems (1) and (4) are equivalent, in the sense

that their respective solutions x⋆ and s⋆ are related by

x⋆[k] = s⋆[k]−s⋆[k−1], for 1≤ k ≤ N [26]. Thus, the formu-

lation (4) allows to express the TV solution x⋆ as the discrete

derivative of a string threaded through a tube around the

discrete primitive of the data, and pulled taut such that

its length is minimized. This principle is illustrated in Fig.

1. The taut string algorithm [26] is directly based on this

formulation; it consists in alternating between the compu-

tation of the greatest convex minorant and least concave

majorant of the upper and lower strings r +λ and r −λ.

By contrast, the proposed algorithm does not manipulate

any running sum, does not require any auxiliary memory

buffer, and only performs forward scans. We describe it and

discuss its performances in the next section.

II. PROPOSED METHOD

We first introduce the (Fenchel-Moreau-Rockafellar) dual

problem to the primal problem (1) [11]:

minimize
u∈RN+1

N
∑

k=1

∣

∣y[k]−u[k]+u[k −1]
∣

∣

2
s.t.

|u[k]| ≤ λ, ∀k = 1, . . . , N −1, and u[0] = u[N ]= 0. (5)

Once the solution u⋆ to the dual problem is found, one

recovers the primal solution x⋆ by

x⋆[k] = y[k]−u⋆[k]+u⋆[k −1], ∀k = 1, . . . , N . (6)

Actually, the method of [14] and its accelerated version [19]

solve (5) iteratively, using forward-backward splitting [11].

The Karush-Kuhn-Tucker conditions characterize the

unique solutions x⋆ and u⋆ [11]. They yield, in addition

to (6),

u⋆[0] = u⋆[N ]= 0 and ∀k = 1, . . . , N −1,






u⋆[k] ∈ [−λ,λ] if x⋆[k] = x⋆[k +1],

u⋆[k] =−λ if x⋆[k] < x⋆[k +1],

u⋆[k] =λ if x⋆[k] > x⋆[k +1].

(7)

Hence, the proposed algorithm consists in running for-

wardly through the samples y[k]; at location k, it tries to

prolongate the current segment of x⋆ by x⋆[k +1] = x⋆[k].

If this is not possible without violating (6) and (7), it goes

back to the last location where a jump can be introduced

in x⋆, validates the current segment until this location,

starts a new segment, and continues. In more details, the

proposed algorithm, given at the top of the page, works as

follows. The variables are initialized at Step 1. At Step 2.,

we are at some location k and we are building a segment

starting at k0, with value v = x⋆[k0] = ·· · = x⋆[k]. v is

unknown but we know the values vmin and vmax such that

v ∈ [vmin, vmax]. The auxiliary values umin and umax are

the values of u⋆[k] in the hypothetic cases v = vmin and

v = vmax, respectively. Now, we are trying to prolongate the
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segment with x⋆[k +1] = v , by updating the four variables

vmin, vmax, umin, umax, for the location k+1. There are three

possible cases, corresponding to Steps 3., 4., 5. If the test at

Step 3. is satisfied, we cannot update umin without violating

(6) and (7), because vmin is too high. This means that the

assumption x⋆[k0] = ·· · = x⋆[k +1] was wrong, so that the

segment must be broken, and the negative jump necessarily

takes place at the last location k− where umin was equal to

λ. By the same reasoning, if the test at Step 4. is satisfied,

a positive jump must be introduced at the last location k+
where umax was equal to −λ. Else, at Step 5., no jump is

necessary yet and we can continue. It may be necessary

to update the bounds vmin and vmax; this is done at Step

6. Once the end of the signal is reached, with k = N , we

must test if the hypothesis of a segment x⋆[k0]= ·· · = x⋆[N ]

does not violate the condition u⋆[N ]= 0. The three possible

cases correspond to Steps 8., 9., 10. If the test at Step 8. is

satisfied, vmin is too high and a negative jump is necessary.

Similarly, if the test at Step 9. is satisfied, vmax is too low and

a positive jump is necessary. Else, a segment is constructed

until the end of the signal and the algorithm terminates,

either at Step 2. or at Step 10.

We note that the dual solution u⋆ is not computed. We

can still recover it recursively from x⋆ using (6).

In Fig. 2, we illustrate the behavior of the algorithm

by means of the taut string analogy. The main difference

between the taut string algorithm [26] and the proposed

algorithm, is that the former computes and maintains in

memory a convex and a concave sequences bounding the

string segment under construction, while the majorant and

minorant are affine in our case and only represented by

their slopes vmin and vmax.

A. Performance Analysis

The worst case complexity of the algorithm is O(N +(N −
1)+·· ·+1) = O(N 2). Indeed, every added segment has size

at least one, but the algorithm may have to scan all the

remaining samples to validate it in one of the steps 3., 4.,

8., 9. However, this worst case scenario is encountered only

when x⋆ is a ramp with very small slope of order N−2,

except at the boundaries; for instance, consider that λ = 1

and y[1] =−2, y[k] =α(k−2) for 2 ≤ k ≤ N −1, y[N ]=α(N −
3)+2, where α= 4/((N −2)(N −3)). The solution x⋆ is such

that x⋆[1] = y[1]+1, x⋆[k] = y[k] for 2 ≤ k ≤ N −1, x⋆[N ] =
y[N ]−1. Actually, such a pathological case, for which there

is no interest in applying TV denoising, is only a curiosity;

the complexity is O(N ) in all practical situations, because

the segments of x⋆ are validated with a delay which does

not depend on N .

The algorithm was implemented in C and run on a Apple

laptop with a 2.3 GHz Intel Core i7 processor. The compu-

tation time was around 25ms with N = 106, for various test

signals and noise levels. Importantly, the computation time

is insensitive to the value of λ. The taut string algorithm

was implemented in C as well, by adapting Matlab code

written by Lutz Dümbgen and available online1. In the

1http://www.imsv.unibe.ch/content/staff/personalhomepages/

duembgen/software/multiscale_densities/index_eng.html

same conditions, the computation time was around 55ms.

Thus, the taut string algorithm is efficient, but the proposed

algorithm outperforms it by a constant factor consistently.

We also implemented the popular iterative method FISTA

[19] to solve the dual problem (5). The C code was quite

optimized, with only one loop of size N per iteration. As

a result, on the same machine, the computation time was

around 10−8N seconds per iteration. Thus, we can consider

that the proposed algorithm takes roughly the same time

as three iterations of FISTA. We should keep in mind that

an iterative method like FISTA may need several thousands

of iterations to converge within reasonable precision, espe-

cially for large values of N and λ.

For illustration purpose, we consider the example of a

noisy Lévy process [6]: y[k] = x0[k]+ e[k] for 1 ≤ k ≤ N =
1000, where e ∼N (0,IN ) and the ground truth x0 has a fixed

value x0[1] and i.i.d. random increments d[k] = x0[k]−x0[k−
1] for 2≤ k ≤ N . We chose a sparse Bernoulli-Gaussian law

for the increments, since TV denoising is close to optimality

for such signals [5], [6]; that is, the probability density

function of d[k] is p δ(t)+ 1−p

σ
p

2π
exp

(

− t 2

2σ2

)

, ∀t ∈ R, where

p = 0.95, σ= 4 and δ(t) is the Dirac distribution. We found

empirically that the mean squared error ‖x0 − x⋆‖2
2/N is

minimized for λ= 2. The computation time of x⋆, averaged

over several runs and realizations, was 25 microseconds.

One realization of the experiment is depicted in Fig. 3.

For this example, FISTA needs 10,000 iterations to converge

within machine precision.

III. CONCLUSION

In this article, we proposed a direct and very fast algo-

rithm for denoising 1D signals by total variation (TV) mini-

mization or fused lasso approximation. Since the algorithm

computes the proximity operator [11] of the 1D TV semi-

norm, it can be used as a basic unit within iterative splitting

methods, to solve inverse problems in signal processing and

imaging. This approach will be developed in a forthcoming

paper.

It would be worth investigating the possibility of extend-

ing the algorithm to complex-valued or multi-valued signals

[10] and to data of higher dimensions, like 2D images or

graphs [29]. Besides, path-following, a.k.a. homotopy, algo-

rithms have been proposed for ℓ1-penalized problems; they

can find the smallest value of λ and the associated x⋆ in

(1), such that x⋆ has at most m segments, with complexity

O(mN ) [9], [18], [27], [35]–[37]. Their relationship to the

approach in [38] and to the proposed algorithm should be

studied. This is left for future work.
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