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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-00822010v2


 

THÈSE 
Pour obtenir le grade de 

DOCTEUR DE L�UNIVERSITÉ DE GRENOBLE 
Spécialité : Automatique-Productique 

Arrêté ministériel : 7 août 2006 

 
 
 
Présentée par 

Anh Lam DO 
 
 
Thèse dirigée par Olivier SENAME et Luc DUGARD 
 
préparée au sein du GIPSA-Lab dans l�école doctorale EEATS 
 
Approche LPV pour la commande 
robuste de la dynamique des 
véhicules : amélioration conjointe 
du confort et de la sécurité. 
 
 
Thèse soutenue publiquement le 14 octobre 2011, 
devant le jury composé de :  

M. Michel BASSET 
Professeur, Université de Haute-Alsace, Président 

M. Germain GARCIA 
Professeur, INSA Toulouse, Rapporteur 

M. Peter GASPAR 
Professeur, Université de Budapest, Rapporteur 

M. Sergio SAVARESI 
Professeur, Politecnico di Milano, Membre 

M. Olivier SENAME 
Professeur, Grenoble INP, Directeur de thèse 

M. Luc DUGARD 
Directeur de recherche, CNRS Grenoble, Directeur de thèse 





Table of contents

Acknowlegdement 7

Abstract 9

Résumé des contributions (in French) 11

Thesis framework and contribution 41

1 Introduction 47

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.1.1 General introduction to vehicle dynamic control . . . . . . . . . . 47
1.1.2 Suspension system . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.2 Quarter vehicle model and performance criteria for suspension control . . 50
1.2.1 Quarter vehicle model for suspension system control . . . . . . . . 50
1.2.2 Performance criteria . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.3 Semi-active suspensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.3.1 Classification and characteristics . . . . . . . . . . . . . . . . . . . 56
1.3.2 Modeling methods . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.3.3 Control problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2 Background on control theory and optimization 63

2.1 Convex optimization and Linear Matrix Inequality . . . . . . . . . . . . . 63
2.1.1 Convex optimization . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.1.2 Linear matrix inequality - LMI . . . . . . . . . . . . . . . . . . . 66

2.2 LPV control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.2.1 Representation of LPV Systems . . . . . . . . . . . . . . . . . . . 71
2.2.2 Stability of LPV systems . . . . . . . . . . . . . . . . . . . . . . . 73
2.2.3 LPV synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.3 Multi-objective optimization by genetic algorithms . . . . . . . . . . . . 76
2.3.1 Multi-objective optimization . . . . . . . . . . . . . . . . . . . . . 76
2.3.2 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3



2.3.3 Elitist multi-objective evolutionary algorithms (MOEAs) . . . . . 80
2.4 Input saturation control . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.4.2 Saturation modeling . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.4.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.4.4 Controller design . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3 Suspension systems with nonlinear Magneto-Rheological dampers 95

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.2 Semi-active suspension modelling for MR dampers . . . . . . . . . . . . . 97
3.3 The quarter vehicle model . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.4 LPV model for semi-active suspension control . . . . . . . . . . . . . . . 101
3.5 Optimizing H∞/LPV controller for semi-active suspensions . . . . . . . . 105

3.5.1 Control scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.5.2 Controller optimization using Genetic Algorithms . . . . . . . . . 109

3.6 Numerical analysis and results . . . . . . . . . . . . . . . . . . . . . . . . 112
3.6.1 The based-lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.6.2 Frequency domain analysis . . . . . . . . . . . . . . . . . . . . . . 115
3.6.3 Time domain analysis . . . . . . . . . . . . . . . . . . . . . . . . 117
3.6.4 Robustness evaluation . . . . . . . . . . . . . . . . . . . . . . . . 120

3.7 Reducing the conservatism in the synthesis . . . . . . . . . . . . . . . . . 124
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4 Suspension systems with linear hydraulic dampers 129

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.1.1 Quarter car model equipped with a linear semi-active damper . . 130
4.1.2 Performance objectives . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2 Strong stabilization approach . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2.2 Strong stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.2.3 Strong stabilization - Approach 1 . . . . . . . . . . . . . . . . . . 134
4.2.4 Strong stabilization - Approach 2 . . . . . . . . . . . . . . . . . . 136
4.2.5 Strong stabilization approach in semi-active suspension control . . 137

4.3 Numerical analysis and results . . . . . . . . . . . . . . . . . . . . . . . . 141
4.3.1 Based-Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.3.2 Preliminary design and analysis . . . . . . . . . . . . . . . . . . . 142
4.3.3 Frequency domain analysis . . . . . . . . . . . . . . . . . . . . . . 148
4.3.4 Time domain analysis . . . . . . . . . . . . . . . . . . . . . . . . 151
4.3.5 Robustness evaluation . . . . . . . . . . . . . . . . . . . . . . . . 154

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



5 Comfort and suspension deflection improvement 159

5.1 Problem introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.1.1 Dual-stage suspension system & equivalent one-stage suspension

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.1.2 Parameters identification for OSS model . . . . . . . . . . . . . . 161
5.1.3 The End-stop Phenomenon . . . . . . . . . . . . . . . . . . . . . 163
5.1.4 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.2 Controller design for DSS system . . . . . . . . . . . . . . . . . . . . . . 165
5.2.1 State-space representation . . . . . . . . . . . . . . . . . . . . . . 165
5.2.2 Controller optimization . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3 Test scenario and performance criterion for evaluation . . . . . . . . . . . 167
5.3.1 Road Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.3.2 Performance Index . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.4.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.4.2 Frequency domain analysis . . . . . . . . . . . . . . . . . . . . . . 169
5.4.3 Time domain analysis . . . . . . . . . . . . . . . . . . . . . . . . 172

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6 LPV control design with input saturation and state constraints 177

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.2.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.2.2 LPV controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.2.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.3.1 Practical validity region . . . . . . . . . . . . . . . . . . . . . . . 182
6.3.2 Saturation model validity region . . . . . . . . . . . . . . . . . . . 182
6.3.3 W-invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.5 Application to semi-active suspension control . . . . . . . . . . . . . . . . 189

6.5.1 Quarter car model . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.5.2 State-space representation and control objective . . . . . . . . . . 190
6.5.3 Numerical analysis and results . . . . . . . . . . . . . . . . . . . . 191

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7 Conclusions and Future works 195

A Proof of Sky-hook and ADD for MR damper 201

A.1 Extended Skyhook for MR damper . . . . . . . . . . . . . . . . . . . . . 201
A.2 Extended ADD for MR damper . . . . . . . . . . . . . . . . . . . . . . . 202
A.3 Extended Mixed Skyhook-ADD (SH-ADD) for MR dampers . . . . . . . 206



B Nonlinear Frequency Response - (Pseudo-Bode) 207

C Paper CDC-2010 209

D Controllers for DSS and OSS systems 217

Bibliography 220



Acknowlegdement

I would like to thank my advisors, Professors Olivier Sename and Luc Dugard, for their
scientific understanding and for their precious support during my PhD studies. I have
been so lucky to work with them, who were always available and gave me the best research
conditions and professional opportunities. I look forward to further collaboration in the
future.

I would like to thank Professor Michel Basset for being the president of my doctoral
committee; Professor Germain Garcia and Professor Peter Gaspar for their time to review
my PhD thesis.

I would like also to thank Professor Sergio Savaresi (Politecnico di Milano, Milan) for
participating in my doctoral committee and, specially, accepting me to join his MOVE
team for six months. There, under his supervision, I had the chance to exchange my
scientific knowledge with Cristiano Spelta, Diego Delveccio and Mara Tanelli. Besides,
thank you very much, Cristiano and Diego, for your kindness in helping me with the
lodging in Milan.

My gratitude goes to Professor Joao M. Gomes da Silva Jr. for being available and
patient to answer very clearly all my questions on input saturation control. I hope we
will continue to work together on this interesting topic.

I will not forget to thank Jorge Lozoya-Santos, my dear Mexican friend, for the collab-
oration in MR damper modeling and control and Charles Poussot-Vassal for his advice
in suspension control and the matlab routines which were really helpful to me.

I have spent happy and unforgettable moments with my dear friends in GIPSA-Lab:
Antoine, Irfan, Simona, Joumana, Lizeth, Andra, Amine, Jennifer, Caroline, Valentina,
Marouane, Soheib, Sébastien, Gabriel, Felipe, Maria, Haiyang, Emilie, Federico, Bous-
saad... Without you, my three years of PhD must have been so boring and difficult.

My sincere thanks go to Hieu, Nhung, Thang and Van (in Grenoble); and Thuan, Hung,
Cuong, Duc Anh, Hoang...(in other cities) for always being beside me and sharing with
me the joy and difficulties as well in France; to my interesting friends Trung, Duong,
Thanh, Long, Trinh, Dinh, Ha, Xuan, Hoa, Trang, Thanh, Duy... for letting me to

7



be among you during my six months in Milan; and to my childhood friends Hai, Hien,
Trang, Duong, Tuan, Phung, Hung, Xuyen for always supporting me from Vietnam.

Finally, I am also grateful to Marie-Thérèse, Marielle, Virginie, Houria, Patricia, Olivier
Chabert... and all members of the staff of GIPSA-Lab. Without them, my work might
have not run smoothly.

Anh-Lam Do
Grenoble, France

November 2011

8



Abstract

Abstract (in english) This work is concerned by the development of advanced con-
trol methods for automotive suspensions to improve passenger comfort and road holding,
while meeting technological constraints related to the suspension actuators (passivity
constraint, non-linearities, structural limits).
In the first part, we propose two control schemes, polytopic LPV (Linear Parameter-
Varying) and Strong Stabilization, with genetic algorithm optimization to solve the con-
flicts comfort/road holding and comfort/suspension travel (Chapters 3, 4 and 5).
In the second part, to solve the full control problem of semi-active suspensions, we first
develop a generic strategy for general LPV systems subject to actuator saturation and
state constraints. The problem is studied in terms of linear matrix inequalities (LMIs)
that can synthesize an LPV controller with an anti-windup gain guaranteeing the sta-
bility and the performance of the closed loop system. Then, this strategy is applied to
the case of semi-active suspension control (Chapter 6).
All the proposed methods are validated by simulations on a non-linear quarter-vehicle
model.

Keywords: Semi-active suspensions, robust control, LPV modeling and control, input
saturation control, anti-windup, genetic algorithms.

Résumé (en français) Ce travail concerne le développement de méthodes de com-
mandes avancées pour les suspensions automobiles afin d’améliorer la tenue de route des
véhicules et le confort des passagers, tout en respectant les contraintes technologiques
liées aux actionneurs de suspension (passivité, non-linéarités, limites structurelles).
Dans la 1ère partie, nous proposons deux schémas de commande par approche LPV
polytopique (Linéaire à Paramètre Variant) et Stabilisation Forte (Strong Stabilization)
avec optimisation par algorithme génétique pour résoudre les conflits confort/tenue de
route et confort/débattement de suspension (Chapitres 3, 4 et 5).
Dans la 2ème partie, pour résoudre le problème complet de commande de suspensions
semi-actives, nous développons d’abord une stratégie générique pour les systèmes LPV
généraux soumis à la saturation des actionneurs et à des contraintes d’état. Le problème
est étudié sous la forme de résolution d’inégalités linéaires matricielles (LMI) qui permet-
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tent de synthétiser un contrôleur LPV et un gain anti wind-up garantissant la stabilité
et la performance du système en boucle fermée. Ensuite, cette stratégie est appliquée au
cas de la commande des suspensions semi-actives (Chapitre 6).
Les méthodes proposées sont validées par une évaluation basée sur un critère industriel
et des simulations effectuées sur un modèle non-linéaire de quart de véhicule
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l’équipe SLR (Systèmes Linéaires et Robustesse), département Automatique, GIPSA-
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Motivation et objectifs

Aujourd’hui, de nouvelles technologies sophistiquées de nombreux domaines tels que la
mécanique, l’électronique, la communication, l’automatique peuvent être trouvées dans
un véhicule moderne. Par exemple, l’utilisation de moteurs hybrides électriques permet
de minimiser le bruit, la consommation de carburant et les émissions de polluants; les
technologies à base de caméra pour détecter les alentours dans un véhicule fournissent des
informations visuelles et d’avertissement au conducteur; la communication sans fil avec
le monde extérieur (avec d’autres véhicules ou des centres de communication) augmente
la sécurité et améliore l’expérience de conduite. Bien que ces technologies apportent de
plus en plus de plaisir aux utilisateurs, le facteur fondamental qui détermine la perfor-
mance d’un véhicule est sans doute sa dynamique. En fait, la dynamique du véhicule
est un sujet intéressant dans la recherche industrielle et académique. La conception et
la commande des principaux actionneurs essentiels à la dynamique du véhicule ont été
intensivement étudiés. Dans ce cadre, les systèmes de suspension, ainsi que les systèmes
de freinage et de direction, jouent un rôle clé. Il a été prouvé par de nombreuses études,
théoriques et pratiques, que les systèmes de suspension améliorent considérablement le
confort et la sécurité des véhicules. Récemment, l’invention de nouvelles technologies
(amortisseurs électro-rhéologiques, magnéto-rhéologiques...) a ouvert une nouvelle ten-
dance dans l’étude et l’application de tels actionneurs à l’automobile.

Les systèmes de suspension de véhicules utilisant des amortisseurs semi-actifs sont
les objets de recherche de cette thèse. Outre la coopération possible avec les systèmes de
direction et de freinage pour un meilleur comportement dynamique du véhicule, ils ont
une contribution distinctive au confort et à la tenue de route (deux critères principaux
pour un véhicule). De nombreuses approches ont été consacrées à optimiser séparément
le confort ou la tenue de route. D’autres ont proposé des méthodes générales pour faire
face à leur compromis, mais les résultats optimaux (au sens de Pareto optimal) n’ont
jamais été discutés pour montrer l’efficacité de ces méthodes. Par ailleurs, il peut être
vu, à partir des études existantes sur la commande de la suspension semi-active, que la
difficulté commune est la contrainte de passivité. En effet, c’est le principal problème
à gérer. Aussi pour une conception plus réaliste, les non-linéarités et les limitations
mécaniques d’un système de suspension doivent être prises en compte aussi.

Pour résumer, les problèmes suivants sont intéressants et stimulants pour la com-
mande de la suspension semi-active.

• Problèmes d’optimisation multi-objectif.

• Non-linéarité de systèmes de suspension semi-active.

• Contraintes de commande (contrainte de passivité et de limites mécaniques).
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Le rôle important des systèmes de suspension dans des véhicules, en général, et les
problèmes théoriques intéressants dans la conception de contrôleur pour ces systèmes,
en particulier, ont motivé notre étude. L’objectif de cette thèse est de proposer une
méthodologie générique pour obtenir un bon compromis entre confort et tenue de route
tout en tenant compte des caractéristiques importantes et des contraintes (non-linéarités,
contrainte de passivité et contraintes mécaniques).

Le modèle de quart de véhicule et les critères de perfor-

mance

Le modèle de quart de véhicule La dynamique verticale, concernant le comfort
et la tenue de route, est étudiée dans cette thèse. Par conséquent, le modèle de quart
de véhicule (voir Fig. 1) est utilisé. Ce modèle est simple et adapté à une conception
préliminaire. Dans ce modèle, le châssis du véhicule est représenté par la masse suspendue
(ms) et la roue par la masse non suspendue (mus). Elles sont reliées par un ressort de
coefficient de raideur ks et par un amortisseur semi-actif. Le pneu est modélisé par un
ressort de coefficient de raideur kt. Comme vu dans la figure 1, zs (respectivement zus)
est le déplacement vertical autour du point d’équilibre de ms (respectivement mus) et zr
est la variation du profil de la route. Il est supposé que le contact roue-route est assuré.

❥

zs

zus

zr

ms

mus

ks Semi-active
damper

kt

Figure 1: Modèle de quart de véhicule avec suspension semi-active.

En appliquant la deuxième loi de Newton, les équations dynamiques d’un quart de
véhicule sont donnés par

{

msz̈s = −Fspring − Fdamper

musz̈us = Fspring + Fdamper − Ftire
(0.0.1)

où Fspring est la force dynamique du ressort ks, Ftire est la force dynamique du pneu
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et Fdamper est la force de l’amortisseur. Notons zdef = zs − zus le débattement de
l’amortisseur et żdef = żs − żus la vitesse de débattement.

Les forces dynamiques du ressort et du pneu sont données par

Fspring = kszdef (0.0.2)

Ftire = kt(zus − zr) (0.0.3)

Les caractéristiques de l’amortisseur sont habituellement représentées par une relation
force-débattement-vitesse de débattement:

Fdamper = Fdamper (zdef , żdef ) (0.0.4)

Dans cette thèse, nous utilisons le modèle de quart de véhicule de la Renault Mégane
Coupé (1/4 RMC) du modèle de la voiture d’essai disponible au Laboratoire MIPS
(Mulhouse, France) (voir [Zin, 2005]).

Critères d’évaluation des performances de suspension Dans la suite, les critères
pour évaluer la performance des systèmes de suspension semi-active sont donnés. Prenons
le cas du modèle de quart de véhicule (voir Fig. 1). Par abus de langage, dénotons z̈s/zr
(respectivement (zus− zr)/zr)) la réponse “fréquentielle” de la fonction de transfert liant
la perturbation de route zr à l’accélération du corps du véhicule z̈s (respectivement la
déflexion dynamique du pneu zus − zr), c.à.d le gain de la fonction de transfert pour
les systèmes LTI ou le gain calculé en utilisant l’algorithme de “Variance Gain” dans
l’annexe B pour les systèmes non-linéaires.

En général, l’accélération de l’habitacle des véhicules entre 0 à 20 Hz doit être filtrée
pour garantir un bon confort de conduite, bien qu’il soit intéressant de noter également
que le cops humain est le plus sensible à l’accélération verticale autour de 4-8 Hz (ISO
2631). De l’autre côté, pour maintenir le contact route-roues, il est nécessaire que la force
dynamique du pneumatique soit plus petite que g(ms+mus) (où g est la gravité). Ainsi,
pour l’amélioration de la tenue de route, la force dynamique du pneumatique kt(zus−zr),
en d’autres termes la déflexion dynamique du pneu zus − zr, devrait être faible dans la
gamme de fréquences de 0 à 30 Hz. Notons également que la tenue de route est améliorée
en limitant le rebond de roue zus dans les fréquences autour de sa résonance, ie. 10-20
Hz.

En résumé, avec les remarques précédentes, les critères de performance dans le
domaine fréquentiel sont décrits explicitement comme suit

• Confort

JCF = min

∫ 20

0

z̈s/zr(f)df (0.0.5)
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• Tenue de route

JRH = min

∫ 30

0

(zus − zr)/zr(f)df (0.0.6)

Les objectifs de la conception du contrôleur sont de minimiser les deux critères. Il
est à noter que les deux critères (0.0.5) et (0.0.6 sont compatibles avec ceux donnés dans
[Sammier et al., 2003] et [Savaresi et al., 2010].

Le modèle et les critères de performance pour les systèmes de suspension ont été
présentés. Dans la prochaine section, nous allons présenter les résultats obtenus.
D’abord, on discute des nouvelles méthodes de commande de deux types particuliers
de suspensions semi-actives: amortisseur magnéto-rhéologique nonlinéaire et amortis-
seur hydraulique linéaire. L’objectif est de résoudre les conflits confort/tenue de route
ou confort/débattement de suspension. Enfin, une méthode générique pour la commande
des système LPV soumis à la saturation d’actionneur et aux contraintes d’état est pro-
posée et appliquée au cas de la commande des suspensions semi-actives, sachant que
la contrainte de passivité peut être tranformée en contrainte de saturation tandis que
la limite mécanique et la tenue de route peuvent être représentées par des contraintes
d’état.

Contribution 1: Commande de l’amortisseur magnéto-

rhéologique

Récemment, les amortisseurs magnéto-rhéologiques (MR) sont apparus comme l’un des
dispositifs les plus étudiés dans les travaux de recherche industrielles et académiques.
Ils utilisent des fluides MR dont les caractéristiques peuvent être modifiées quand ils
sont exposés à un champ magnétique. Comparés à d’autres types d’amortisseurs semi-
actifs (comme électro-rhéologique, amortisseurs à friction...), ils ont de grands avantages
tels que le temps de réponse rapide ainsi que le comportement hystérétique stable sur
une large gamme de température et la basse consommation d’énergie. Ils représentent
une nouvelle génération d’amortisseurs semi-actifs qui sont utilisés dans de nombreuses
applications comme les amortisseurs et les dispositifs d’amortissement, les pauses em-
brayages, des actionneurs ou des articulations artificielles, des amortisseurs sismiques
opérationnels visant à réduire le mouvement dans les bâtiments et bien sûr dans les
systèmes automobiles. La Fig. 2 montre un schéma d’amortisseur MR.

Pour la commande des amortisseurs MR, dans notre article en collaboration avec
S. Savaresi, C. Spelta, D. Delvecchio (voir [Do, Sename, Dugard, Savaresi, Spelta &
Delvecchio, 2010]), les versions étendues du “Skyhook” ([Karnopp et al., 1974]) et du
“mixed Skyhook-ADD” [Savaresi & Spelta, 2007] ont été proposées.
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Figure 2: Schéma de principe d’un amortisseur MR.

Ici on présente l’intérêt de cette méthodologie pour la modélisation et la commande
LPV de suspension semi-active. Dans cette étude, les développements récents dans nos
publications [Do, Sename, Dugard, Aubouet & Ramirez-Mendoza, 2010], [Do, Sename
& Dugard, 2010], [Do, Sename, Dugard & Soualmi, 2011] sont présentés pour:

• d’abord, développer un modèle LPV pour un système de suspension automobile à
partir d’un modèle non-linéaire d’amortissement semi-actif,

• puis, en utilisant une représentation LPV originale de la dissipativité de
l’amortisseur semi-actif, développer un contrôleur H∞/LPV ad-hoc.

• enfin, proposer une procédure d’optimisation du contrôleur en utilisant des algo-
rithmes génétiques.

L’ensemble du modèle LPV est utilisé pour concevoir un contrôleur polytopique H∞

pour un système de suspension automobile équipé d’un amortisseur magnéto-rhéologique
semi-actif. Ce contrôleur vise à améliorer le confort et/ou la tenue de route, selon les
spécifications requises.

Modèle orienté pour la commande Dans [Lozoya-Santos, Ruiz-Cabrera, Morales-
Menéndez, Ramírez-Mendoza & Diaz-Salas, 2009], les auteurs ont montré que si chaque
coefficient dans le modèle de [Guo et al., 2006] est défini comme une fonction polynomiale
du courant électrique, le modèle obtenu approchera mieux les données réelles. Cepen-
dant pour l’objectif de commande, un modèle simple orienté pour la commande où un
seul paramètre dépendant du signal d’entrée (le courant) a été proposé et étudié la pre-
mière fois dans [Do, Sename & Dugard, 2010], [Do, Spelta, Savaresi, Sename, Dugard &
Delvecchio, 2010]. Selon les auteurs, le modèle suivant est approprié pour la commande:

Fmr = c0ẋmr + k0xmr + fI tanh (c1ẋmr + k1xmr) (0.0.7)
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où Fmr est la force de l’amortisseur, c0, c1, k0 et k1 sont des paramètres constants et fI
est le coefficient de force contrôlable et qui varie selon le courant électrique I dans la
bobine (0 ≤ fImin < fI ≤ fImax).

En comparaison avec le modèle original dans [Guo et al., 2006] dont les caractéris-
tiques sont statiques et non commandables, le modèle (0.0.7) reflète le comportement
réaliste d’un amortisseur MR. Ce modèle permet de satisfaire la contrainte de passivité
de l’amortisseur semi-actif et présente une entrée de commande fI . La limitation du
modèle réside dans la supposition que l’hystérésis de l’amortisseur MR est invariante par
rapport au courant I. La Fig. 3 présente la dépendance de la force d’amortissement au
courant I. La modification du courant dans la bobine d’un amortisseur MR modifie ses
caractéristiques. Ici, la bi-viscosité et l’hystérésis peuvent être clairement observées.
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Figure 3: Caractéristiques des amortisseurs MR avec différentes valeurs de courant I:
Force vs Débattement (gauche) et Force vs Vitesse (droite)

Les paramètres du modèle utilisé (voir Fig.3) sont les suivants: c0 = 810, 78[Ns/m],
k0 = 620, 79[N/m], c1 = 13, 76[s/m], k1 = 10, 54[1/m]. Ces paramètres expérimentaux
ont été identifiés par Jorge de Jesus Lozoya-Santos (voir [Lozoya-Santos et al., 2010] et
[Lozoya-Santos, Morales-Menendez, Ramirez-Mendoza & Nino-Juarez, 2009]) sur le banc
d’essai au Metalsa 1.

Modèle orienté pour la commande de l’amortisseur semi-actif nonlinéaire

En utilisant le modèle de l’amortisseur (0.0.7) et avec quelques manipulations mathéma-

1
www.metalsa.com.mx
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tiques, on arrive à formuler le modèle de quart de véhicule sous forme LPV.















ẋ = A (ρ1, ρ2) x+Bu+B1w

z = Cz (ρ1, ρ2) x

y = Cx

(0.0.8)

• x : variables du modèle 1/4 véhicule + variable du filtre

• w: profil de route

• u : commande

• ρ1 contient la caractéristique de l’amortisseur et la contrainte de passivité.

• ρ2 apparaît à cause des transformations mathématiques.

Notons aussi que ρ1 et ρ2 ne sont pas indépendants. Comme vu dans la Fig. 4,
l’ensemble de (ρ1, ρ2) représenté par la zone ombrée n’est pas un polytope. Dans la
section suivante, une approche polytopique sera appliquée pour le système LPV (0.0.8)
en considérant un polytope qui inclut toutes les trajectoires possibles des paramètres
variants de (ρ1, ρ2) considérés comme indépendants.

�1 �0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

ρ
1

ρ
2

Figure 4: Paramètres variants (ρ1, ρ2) (zone ombrée).

En effet, le but est de trouver un contrôleur LPV qui garantit la stabilité et la
performance H∞ pour le système (0.0.8). Il est bien connu que la qualité de ce contrôleur
dépend du choix de certaines fonctions de pondération. Par la suite, une procédure
générale pour l’optimisation des fonctions de pondération sera proposée puis appliquée
à la commande de suspension semi-active.
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Figure 5: Optimisation du régulateur pour la commande de la suspension semi-active à
l’aide d’algorithmes génétiques.

Méthode proposée pour optimiser la commande LPV de suspension semi-

active

• Etape 1: Initialiser la première génération avec des valeurs positives aléatoires des
paramètres des fonctions de pondération et de la borne supérieure de la norme L2

du système en boucle fermée.

• Etape 2: Résoudre les LMIs (voir dans [Scherer et al., 1997]) pour obtenir un
contrôleur LPV Kc(ρ). Calculer la fonction d’objectif J en utilisant 0.0.9 (notons
que JD = ∞ quand les constrôleurs Kc(ρ) sont instables).

• Etape 3: Utiliser l’algorithme SPEA2 [Zitzler et al., 2001] pour sélectionner les
meilleurs individus qui peuvent entrer dans la prochaine génération.

• Etape 4: Si le nombre de génération est inférieur à une valeur maximale, revenir
à l’étape 2 avec la nouvelle génération obtenue dans l’étape 3. Sinon, arrêter le
programme et sauve-garder les individus de la dernière génération. Ces individus
seront étudiés a posteriori pour choisir les meilleures solutions (orientés pour le
confort ou la tenue de route).

JD =

[

JDComfort

JDRoadHolding

]

(0.0.9)

JD
Comfort

=
4
∑

i=1

∫ 12

0

(z̈s/zr(f)i)df
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JDRoadHolding =
4
∑

i=1

∫ 20

10

(zus/zr(f)i)df

Contribution 2: Commande de l’amortisseur linéaire

hydraulique

Bien que la non-linéarité dans le modèle de l’amortisseur doive être prise en compte
dans la conception de contrôleur, de nombreuses études ont été basées sur des modèles
de système de suspension simple avec amortisseurs hydrauliques linéaires. La raison pour
laquelle les amortisseurs linéaires ont été plus intensivement étudiés est que les modèles
de véhicules avec ces amortisseurs permettent, a priori, de faire face à des problèmes
plus généraux et complexes et de tester l’efficacité des méthodes de conception dans le
cas idéal (en omettant la non-linéarité). Dans ce chapitre, nous revisitons le problème
de commande de l’amortisseur linéaire. Une nouvelle approche, basée sur la stabilisation
forte, est proposée.

Approche par la stabilisation forte pour la commande des amortisseurs semi-

actifs linéaires Considérons le modèle de véhicule représenté dans la Fig. 1 équipée
d’un amortisseur linéaire caractérisée par l’équation suivante:

Fdamper = cżdef (0.0.10)

Tout d’abord, décomposons la force de l’amortisseur comme Fdamper = c0żdef + u

où c0 = (cmin + cmax)/2 et considérons une représentation d’état du modèle quart de
véhicule comme suit:

ẋs = Asxs +Bs1w +Bs2u (0.0.11)

y = Csxs

où xs = (zs, żs, zus, żus)
T , w = zr, y = żs − żus = żdef .

As =















0 1 0 0

−ks
ms

−c0
ms

ks
ms

c0
ms

0 0 0 1

ks
mus

c0
mus

−ks+kt
mus

− c0
mus















, Bs1 =
[

0 0 0 kt
mus

]T

,

Bs2 =
[

0 −1
ms

0 1
mus

]T

, Cs =
[

0 1 0 −1
]

.

21



Remark 0.0.1. En fait, u est la force compensée ajoutée à un amortisseur nominal dont
le coefficient d’amortissement est égal à c0. Pour satisfaire la contrainte de passivité d’un
amortisseur semi-actif, l’entrée de commande u doit être limitée par

|u(t)| ≤
cmax − cmin

2
|żdef (t)| ∀t ≥ 0 (0.0.12)

Notons U(s), Żdef (s) les transformées de Laplace de u et żdef . Considérons la condi-
tion suivante

|U(jω)| ≤
cmax − cmin

2
|Żdef (jω)| , ∀ω (0.0.13)

On peut voir que la contrainte (0.0.13) n’implique pas (0.0.12). Cependant, si nous
supprimons certains dépassements à court terme dans les réponses de u (ce qui peut
violer la contrainte de passivité, à court terme), (0.0.13) est une bonne approximation
de (0.0.12) et plus facile à manipuler.

Remark 0.0.2. Comme vu dans (0.0.11), la vitesse de déflection żdef est une mesure de
sortie du système. Ce choix est fait pour la raison suivante. Remarquons que s’il existe
un contrôleur stabilisant LTI K pour le système (0.0.11) et que

‖K‖∞ =
‖u‖2

‖żdef‖2
≤
cmax − cmin

2
pour tout żdef t.q 0 < ‖żdef‖2 <∞ (0.0.14)

alors K satisfait (0.0.13).

Remark 0.0.3. Si un contrôleur stable est utilisé avec un système stable, nous évitons
l’instabilité du système en boucle fermée (précisément l’instabilité du contrôleur, car le
système en boucle ouverte est déjà stable) en raison de la non-linéarité entre le système
en boucle ouverte et le contrôleur, comme la saturation d’entrée.

Avec les remarques ci-dessus, les contrôleurs stables avec un gain limité semblent
être un choix raisonnable pour les systèmes de suspension semi-active, ce qui motive
l’utilisation de la stabilisation forte présentée dans le chapitre 4.

Comme la commande H∞ conventionnelle, dans cette approche, nous utilisons égale-
ment certaines fonctions de pondération pour atteindre les performances souhaitées
(0.0.5) - (0.0.6). Le schéma bloc de commande est représenté dans la Fig. 6 où les
fonctions de pondération sont choisies comme

Wzr = 3× 10−2 (0.0.15)

Wz̈s = kz̈s
s2 + 2ξ11Ω11s+ Ω11

2

s2 + 2ξ12Ω12s+ Ω12
2 (0.0.16)

Wzus = kzus
s2 + 2ξ21Ω21s+ Ω21

2

s2 + 2ξ22Ω22s+ Ω22
2 (0.0.17)
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Figure 6: Schéma bloc pour l’approche par stabilisation forte

����������	A�B��C�D

�EAF���������B���

��A�����������F�

��������F���F����

�C���C�����������D�D

�����������AD���

����C���D�F�����F��C�

���������C��A�F��C��C	�

��CD����CC�����	C��F�B��
 �C�	C���F���!CF��"C������

�FD���C�����AD���F��B������F�	C��

DAD���D�C��DD����D#

��$������F��C�����

%�����B�&��C�����D
����������� ��'&(#

%����F��������F��

Figure 7: Optimisation du contrôleur de suspension semi-active par algorithmes géné-
tiques.

Encore une fois, la procédure d’optimisation des fonctions de pondération présentée
dans la partie de commande d’amortisseur MR est utilisée. L’objectif est de trouver des
contrôleurs stables et à gain limité (voir [Gümüssoy & Özbay, 2005] et [Cheng et al.,
2007]) tels que la fonction d’objectif suivante soit minimisée:

min
{ν}∈R10

+

JD (ν) =

[

JDComfort (ν)

JDRoadHolding (ν)

]

(0.0.18)

où

JD
Comfort

= α1

∫ 1.5

0
(z̈s/zr −R1)

2df + α2

∫ 10

3
(z̈s/zr −R2)

2df + α3
‖K‖∞
γ

(0.0.19)

JDRoadHolding = β1

∫ 20

10
(zus/zr −R3)

2df + β2
‖K‖∞
γ

(0.0.20)
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où R1 (respectivement R2) est la réponse fréquentielle de z̈s/zr de l’amortisseur passif
“Hard” (respectivement “Soft”) et R3 est la réponse fréquentielle de zus/zr de l’amortisseur
passif “Hard”; αi > 0 avec i = 1 : 3 et βj > 0 avec j = 1 : 2 sont des coefficients de
pondération.

Contribution 3: L’effet de butée sur le confort

Il est bien évident que le compromis confort/tenue de route a été étudié dans de nom-
breuses approches au cours des dernières décennies. La question sur l’amélioration du
débattement de la suspension n’a pas été toujours considéré. Atteindre les limites struc-
turelles, lorsque la perturbation routière est particulièrement importante, dégrade con-
sidérablement le confort des passagers (l’effet de butée) et diminue la durée de vie des
composants du véhicule.

Dans cette thèse, le compromis entre le confort des passagers et le débattement de
suspension est étudié. Les résultats présentés dans ce chapitre ont été obtenus lors de
mon séjour de 6 mois au Dipartimento di Elettronica Informazione ed, Politecnico di
Milano avec Sergio Savaresi, Cristiano Spelta et Diego Delvecchio.

Le premier résultat a été présenté à la conférence CDC-2010 (voir l’annexe C). Dans
ce papier, une méthode hybride basée sur la commutation ADD (Acceleration Driven
Damper) et la commande LPV (voir chapitre 3) a été développé pour un modèle de
véhicule non-linéaire équipé d’amortisseurs MR non linéaires afin d’améliorer le confort
et débattement de suspension.

Dans le chapitre 6, nous présentons un autre résultat obtenu récemment pour les sys-
tèmes “dual-stage suspension system” (représentant les sièges du conducteur sur les poids
lourds) en utilisant des amortisseurs hydrauliques linéaires. L’objectif de commande est
également d’améliorer le confort du conducteur tout en tenant compte du débattement
de suspension (la tenue de route n’est plus considérée). Pour y parvenir, nous utilisons
l’approche de stabilisation forte pour la commande de suspension semi-active proposée
dans le chapitre 4.

Contribution 4: Commande des système LPV soumis à

la saturation des entrées et à la contrainte d’états

Motivation La problème complet de commande de suspension semi-active est de
réaliser le meilleur compromis entre:
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• Le confort en termes d’accélération verticale de la voiture z̈s.

• La tenue de route en termes de la déflection dynamique du pneu zus − zr.

• La déflection en termes de débattement de l’amortisseur zs − zus.

ainsi que de garantir la contrainte de passivité.

Dans presque toutes les approches trouvées dans la littérature, le problème à résoudre
consiste à optimiser un critère multi-objectif:

minimiser [‖z̈s‖, ‖zuz − zr‖, ‖zs − zus‖]
T (0.0.21)

sous les contraintes de passivité (0.0.22)

Il est important de noter que le débattement de l’amortisseur est une contrainte
physique (plutôt qu’un objectif de performance)

|zs − zus| < ∆s = const (0.0.23)

où ∆s est la course de la suspension, et que la condition de tenue de route peut être
représentée de façon simplifiée par la contrainte suivante

zus − zr <
g(ms +mus)

kt
= const (0.0.24)

Pour la commande de suspension, les contraintes (0.0.23)-(0.0.24) peuvent être
représentées par des contraintes d’états. Le problème d’optimisation multi-objectif
0.0.25-0.0.27 devient un problème d’optimisation avec un seul objectif.

minimiser ‖z̈s‖ (0.0.25)

sous la contrainte de passivité (0.0.26)

et les contraintes (0.0.23) et (0.0.24) (0.0.27)

Toutes les remarques ci-dessus motivent l’étude du problème général qui est de garan-
tir la stabilité et la performance des systèmes LPV soumis à la saturation d’entrée et à
des contraintes sur l’état.

Définition du problème L’objectif est de synthétiser un contrôleur LPV composant
un terme anti-windup statique pour le système LPV avec saturation d’entrée de façon à
ce que les conditions suivantes soient remplies:
(i) En l’absence de perturbations, ou si les perturbations disparaissent, le contrôleur
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garantit la stabilité régionale asymptotique de l’origine pour un paramètre variant
arbitraire θ. En présence de perturbations bornées en amplitude, le contrôleur garantit
que les trajectoires du système en boucle fermée sont bornées.
(ii) Le contrôleur garantit les contraintes sur les états du système en boucle fermée.
(iii) Lorsque la saturation n’est pas active, le contrôleur garantit une borne supérieure de
γ sur la norme L2 du transfert entre l’entrée des perturbations et la sortie à commander.

Remark 0.0.4. Considérant la même performance L2 lorsque le système fonctionne de
manière linéaire et en mode de saturation peut conduire à des résultats très conservatifs.
Nous considérons donc que les performances L2 devraient être satisfaites uniquement
pour le système sans saturation, ce qui correspond à un problème H∞ classique. D’autre
part, si le contrôleur sature, il faut s’assurer que les trajectoires restent bornées et ne
violent pas les contraintes d’état.

Considerons le système LPV suivant

ẋ = A(θ)x+Bw(θ)w +Buu (0.0.28)

z = Cz(θ)x+Dzw(θ)w +Dzuu

y = Cyx+Dyww

et le contrôleur composant un terme anti-windup statique

ẋc = Ac(θ)xc +Bc(θ)uc + Ec(θ)(sat(yc)− yc) (0.0.29)

yc = Cc(θ)xc +Dc(θ)uc

Les hypothèses suivantes sont considérées:

• Hypothèse 1: Les matrices Bu, Dzu, Cy et Dyz sont supposées indépendantes
de paramètres variants (pour satisfaire les hypothèses de conception pour les
systèmes LPV polytopique).

• Hypothèse 2: La perturbation d’entrée est limitée en amplitude, c.à.d ∀t >

0, w(t) ∈ W avec

W = {w ∈ R
q : wTw < δ} (0.0.30)

• Hypothèse 3: Les paramètres variants dépendent des états du système θ = θ(x, t)

(ie quasi-LPV) et sont bornés dans

Θ = {θ : θi 6 θi 6 θi, i = 1, ..., k} (0.0.31)
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• Hypothèse 4: Les entrées de commande sont bornées en amplitude:

−ui 6 ui(t) 6 ui, i = 1, ...,m (0.0.32)

La solution pour la commande des système LPV 0.0.28 soumis à la saturation des entrées
et à la contrainte d’états est donné par le théorème suivant.

Theorem 0.0.1. Si, pour les scalaires donnés β1 > 0 et γ > 0, il existe des matrices
symétriques définies positives X, Y ∈ R

n×n, un scalaire positif β2, des matrices diagonales
défini-positives S ∈ R

m×m, les matrices Â(θ) inRn×n, B̂(θ) inRn×p, Ĉ(θ), Ẑ1(θ), Ẑ2(θ) ∈

Rm×n, D̂(θ) ∈ Rm×p, Q̂(θ) ∈ Rn×m tels que les inégalités matricielles (0.0.34) - (0.0.38)
sont vérifiées, alors le contrôleur LPV anti-windup (0.0.29) avec des matrices















































Ec (θ) = N−1Q̂ (θ)S−1 −N−1Y Bu

Dc (θ) = D̂ (θ)

Cc (θ) = [Ĉ (θ)−Dc (θ)CyX]M−T

Bc (θ) = N−1[B̂ (θ)− Y BuDc (θ)]

Ac (θ) = N−1[Â (θ)−NBc (θ)CyX − Y BuCc (θ)M
T

−Y (A (θ) + BuDc (θ)Cy)X]M−T

(0.0.33)

où M et N vérifient MNT = I −XY , résoud le problème défini ci-dessus.











L11(θ) L12(θ) L13(θ) L14(θ)

∗ L22(θ) L23(θ) L24(θ)

∗ ∗ L33(θ) L34(θ)

∗ ∗ ∗ L44(θ)











≺ 0 (0.0.34)











O11 (θ) O12 (θ) O13 (θ) O14 (θ)

∗ O22 (θ) O23 (θ) O24 (θ)

∗ ∗ O33(θ) O34 (θ)

∗ ∗ ∗ O44(θ)











≺ 0 (0.0.35)







X ∗ ∗

I Y ∗

Ĉi (θ)− Ẑ1i (θ) (D̂ (θ)Cy)i − Ẑ2i (θ) ū2i






� 0

for i = 1 : m

(0.0.36)





X ∗ ∗

I Y ∗

H1iX H1i h20i



 � 0

for i = 1 : s

(0.0.37)
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β2δ − β1 ≺ 0 (0.0.38)

où
L11(θ) = A(θ)X +XA(θ)T +BuĈ(θ) + Ĉ(θ)TBT

u + β1X

L12(θ) = A(θ) + Â(θ)
T
+BuD̂(θ)Cy + β1In

L13(θ) = −BuS + Ẑ1(θ)
T

L14(θ) = BuD̂(θ)Dyw +Bw(θ)

L22(θ) = Y A(θ) +A(θ)TY + B̂(θ)Cy + CTy B̂(θ)T + β1Y

L23(θ) = −Q̂(θ) + Ẑ2(θ)
T

L24(θ) = B̂(θ)Dyw + Y Bw(θ)

L33(θ) = −2S

L34(θ) = D̂(θ)Dyw

L44(θ) = −β2I

O11(θ) = A(θ)X +XA(θ)T +BuĈ(θ) + Ĉ(θ)TBT
u

O12(θ) = Â(θ)T +A(θ) +BuD̂(θ)Cy

O13(θ) = Bw(θ) +BuD̂(θ)Dyw

O14(θ) = XCz(θ)
T + Ĉ(θ)TDT

zu

O22(θ) = Y A(θ) +A(θ)TY + B̂(θ)Cy + CTy B̂(θ)T

O23(θ) = Y Bw(θ) + B̂(θ)Dyw

O24(θ) = Cz(θ)
T + CTy D̂(θ)TDT

zu

O33(θ) = −γIm

O34(θ) = Dzw(θ)
T +DT

ywD̂(θ)TDT
zu

O44(θ) = −γIp

(0.0.39)

Le théorème ci-dessus est ensuite appliqué au cas de la commande de la suspension
semi-active (voir chapitre 6).

Conclusions et perspectives

Conclusions

Cette thèse a été consacrée au problème de l’amélioration de la dynamique du véhicule en
termes de confort et de tenue de route. Ceci est principalement réalisé par les systèmes
de commande de suspension. En ce qui nous concerne, nous avons plus particulièrement
étudié le contrôle de la suspension semi-active qui, en outre, est un problème intéressant
pour les aspects à la fois académiques et industriels. Les résultats sur ce sujet ont été
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présentés dans les chapitres 3, 4, 5 et 6. En résumé, les principales contributions de la
thèse sont les suivantes:

En termes de modélisation:

• Un modèle pour la commande LPV de suspensions semi-actives avec des amortis-
seurs magnéto-rhéologiques (où les caractéristiques de la bi-viscosité et l’hystérésis
sont prises en compte) (chapitre 3).

• Un nouveau modèle pour la commande LPV des amortisseurs linéaires où la vitesse
de l’amortisseur est considérée comme un paramètre variant (chapitre 6).

En termes de méthodologie de commande:

• La conception LPV pour la commande des amortisseurs MR non linéaires (chapitre
3).

• Une version étendue du Skyhook-ADD pour la commande des amortisseurs MR
non linéaires (annexe A).

• La conception d’une nouvelle loi de commande optimale “clipped” pour les amortis-
seurs hydrauliques semi-actifs linéaires basée sur l’approche par stabilisation forte
(chapitres 4 et 5).

• La conception d’une loi de commande générique LPV avec des contraintes de sat-
uration et d’état. Les résultats obtenus peuvent être éventuellement appliqués à la
fois pour les amortisseurs non-linéaires et linéaires (chapitre 6).

• Une procédure d’optimisation multi-objectif à l’aide d’algorithmes génétiques pour
le problème de commande de suspensions semi-actives. L’intérêt de la méthodologie
se trouve dans le fait qu’il peut fournir un ensemble de contrôleurs qui peuvent
approcher les meilleures solutions pour le problème de commande de suspensions
semi-actives.

En termes d’application:

• Modèle de quart de véhicule (pour l’amélioration du confort, la tenue de route et
le débattement de suspension).

• Modèle de chaise (pour l’amélioration du confort et du débattement de suspension).

Enfin, du point de vue de la mise en oeuvre en pratique, les méthodes proposées sont
intéressantes dans les points suivants:
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• Simple et facile à mettre en oeuvre: un capteur de déplacement unique sert à
mesurer le débattement de suspension (la vitesse de débattement peut être déduite
numériquement à partir du débattement de suspension) et les contrôleurs sont
stables.

• Robuste face au transfert de charge et à l’incertitude de la masse suspendue (fac-
teurs inévitables qui apparaissent sur un véhicule quand il se déplace).

Perspectives

Bien que certains résultats ont été obtenus, le travail peut être poursuivi avec les quelques
orientations suivantes.
Perspectives à court terme

• Pour les amortisseurs MR, l’utilisation de l’approche par stabilisation forte pour
des systèmes LPV est un point clé pour réduire le conservatisme. Dans le chapitre
3, les contrôleurs LPV stables n’ont pas été synthétisés. Nous avons juste utilisé
une “astuce” (algorithme 1, page 82) pour enlever les contrôleurs instables lors de
l’optimisation par algorithmes génétiques. Par ailleurs, l’application des résultats
au chapitre 6 (commande des systèmes LPV soumis à des contraintes de saturation
et d’état) pour des amortisseurs MR seront testés et comparés avec les méthodes
proposées (LPV conventionnelle, le Skyhook-ADD étendu).

• Améliorer les résultats de simulation dans le chapitre 6 est nécessaire. Par ailleurs,
les comparaisons avec les autres méthodes de contrôle doivent être faites pour
démontrer l’efficacité de la méthode proposée (sous réserve de commande LPV
avec les contraintes de saturation et d’état).

• A partir des résultats obtenus dans le chapitre 5, l’étude sur les systèmes “Dual-
Stage Suspension” sera étendue à la commande des systèmes de suspension avec
l’amortissement et la rigidité variables.

• Un test des méthodes proposées sur une plate-forme réelle sera réalisé.

Perspectives à long terme

• Les recherches sur le commande de commutation d’une loi à une autre sont égale-
ment à développer. Dans [Geromel & Colaneri, 2006], [Geromel & Colaneri, 2010],
les auteurs ont proposé une méthode basée sur les inégalités de Lyapunov-Metzler
pour déterminer la loi de commutation de façon à ce que la stabilité et la min-
imisation d’une fonction de coût soient garanties en même temps. Ce sont des
bonnes références initiales pour la poursuite des recherches dans le domaine de la
commutation.
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• Lorsque l’on travaille avec les systèmes LPV de suspension, il serait préférable de
les séparer en des petits sous-systèmes LPV et puis commuter entre eux de façon
à ce que la stabilité du système en boucle fermée reste vérifiée et les performances
sont optimisées. L’idée est liée à la commande de commutation hybride LPV (voir
[Lim & Chan, 2003], [Lu & Wu, 2004] et les références citées.

• Tout au long de la thèse, la procédure commune pour résoudre le problème
d’optimisation multi-objectif de commande de suspensions semi-actives a été
d’utiliser les algorithmes génétiques. Les fonctions de pondération des paramètres
sont le vecteur de décision. Il est également intéressant de considérer la même
procédure d’optimisation (algorithme génétique) mais en considérant cette fois ci
les paramètres du contrôleur comme un vecteur de décision. Par ailleurs, l’essai
avec plusieurs sorties de mesure différentes peuvent être réalisées pour obtenir la
meilleure solution.

• Jusqu’à présent, les systèmes de suspension, de direction et de freinage ont été
étudiés séparément. La bonne coopération entre ces sous-systèmes n’est pas une
tâche triviale. Comme l’a dit Maurice Olley “The engineers had made all parts
function excellently, but when put together the whole was seldom satisfactory”.
Ceci nous motive donc pour étudier et déveloper une commande globale de châssis.
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Thesis framework and contribution

Thesis framework

This thesis presents the three-years work (from October 2008 to September 2011), per-
formed in the SLR (Systèmes Linéaires et Robustesse) team from the Control Systems
department of GIPSA-Lab, on the "LPV Approach for Robust control of vehicle dynam-
ics: Joint improvement of comfort and road holding", under the supervision of Olivier
Sename (Professor, Grenoble INP) and Luc Dugard (Research Director, CNRS). This
work has been supported by a Minister of Research (MESR) grant and it is also part
of the INOVE (INtegrated approach for Observation and control of VEhicle dynamics)
ANR project 2010-2014.

The thesis is the continuity of previous works made in the SLR research team by

• Ricardo Ramirez-Mendoza (see [Ramirez-Mendoza, 1997]), "Sur la modélisation et
la commande de véhicules automobiles", which was the first study in the automo-
tive framework. The work was focused on the description and modeling of vehicles,
as well as first attempts on control methodologies for active cruise control.

• Damien Sammier (see [Sammier, 2001]), "Sur la modélisation et la commande de
suspension de véhicules automobiles" presented the modeling and control design of
an active suspension (using H∞ control for LTI system). The semi-active suspen-
sion modeling and control were also studied for a PSA Peugeot-Citroën semi-active
damper.

• Alessandro Zin (see [Zin, 2005]), "Sur la commande robuste de suspensions auto-
mobiles en vue du contrôle global de châssis", which extended the previous works
with a strong attention on H∞/LPV control of an active suspension in order to
improve robustness properties. A sketch of global chassis control through the use
of the four suspensions was also derived using an anti-roll distribution.

• Charles Poussot-Vassal (see [Poussot-Vassal, 2008]) "Robust Multivariable Linear
Parameter Varying Control of Automotive Chassis" provided tools and control
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design methodologies in order to improve comfort and safety in automotive vehicles.
Two main contributions are the semi-active suspension control (using an LPV
approach to improve the passenger comfort and road holding) and the Global
Chassis Control (involving the control of the braking and steering actuators for
vehicle active safety improvement).

• Sébastien Aubouet (see [Aubouet, 2010]) presented an observer design methodology
allowing the suspension designer to build and adjust an appropriate observer, esti-
mating the non-measured variables. Then, the previous results of Charles Poussot-
Vassal, for semi-active suspension control, were extended to the full vertical car,
and completed with both a pole placement method, a scheduling strategy based
on a damper model and a local damper control.

During three years, the Rhônes-Alpes Region offered me an ExploraDoc scholarship
to spend six months in a foreign institute. Therefore, I had chance to work with Sergio

Saveresi, Cristiano Spelta, Diego Delvecchio and Mara Tanelli (in Dipartimento
di Elettronica ed Informazione, Politecnico di Milano, Italia) on semi-active suspension
control. The collaboration resulted in two conference papers “An extension of Mixed Sky-
hook and ADD to Magneto-Rheological dampers” [Do, Spelta, Savaresi, Sename, Dugard
& Delvecchio, 2010] and “An LPV control approach for comfort and suspension travel
improvements of semiactive suspension systems” [Do, Sename, Dugard, Savaresi, Spelta
& Delvecchio, 2010] and a potential paper (in preparation) on the control of variable
damping and stiffness suspension systems. I had also the chance to work with Joao

M. Gomes da Silva Jr. when he was at GIPSA-Lab for a two-month research stay.
The discussions on the input saturation control gave rise to a conference paper “Control
design for LPV systems with input saturation and state constraints: an application to a
semi-active suspension” [Do, Gomes da Silva Jr., Sename & Dugard, 2011]. And last, I
have had a collaboration with Jorge Lozoya-Santos (a mexican PhD student involved
in the PCP project 2007-2010 MCOS between the Tecnologico de Monterrey and GIPSA-
Lab). So far, we have discussed mainly on control of Magneto-Rheological Dampers. The
paper on “Modélisation et commande LPV d’un amortisseur Magnéto-Rhéologique” [Do,
Lozoya-Santos, Sename, Dugard, Ramirez-Mendoza & Morales-Menendez, 2010] is one
of the initial results for the control of nonlinear Magneto-Rheological dampers.

Motivation and objectives

Today, almost new and sophisticated technologies of numerous domains such as me-
chanics, electronics, communication, automatics can be found in a modern vehicle. Let
us take for example, the use of hybrid electric engines which are expected to minimize
the noise, fuel consumption and pollutants emissions; the camera-based technologies to
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sense the surroundings in a vehicle which provide visual information and active warning
to driver; wireless communication with the outside world (with other vehicles or commu-
nication centers) which increases safety, or enhances the driving experience. Although
these technologies provide more and more convenience and pleasure to users, the basic
factor that decides the vehicle performance is its dynamics. In fact, the vehicle dynamics
have been an attractive subject in both industrial and academic research for a long time.
The design and control of main actuators which are essential to vehicle dynamics have
been intensively investigated. In this framework, the suspension systems, along with
the braking and steering systems, play a key role. It has been proven by many stud-
ies, in both automatic control theory and practice, that the suspension systems improve
considerably the vehicle comfort, safety and handling. Recently, the invention of new
technologies (Electro-Rheological, Magneto-Rheological Dampers...) has opened a new
trend in study and application of such actuators to the automobile.

The vehicle suspension systems using semi-active dampers (a particular type of sus-
pension systems in between passive and active ones) are the research objects of this
thesis. Besides the possible cooperation with steering and braking elements in an inte-
grated control scheme for a better dynamics improvement, they have a distinguishing
contribution to comfort and road holding (two main and basic criteria for a vehicle).
Many approaches were devoted to a comfort oriented or road holding oriented enhance-
ment. Others proposed general methods to deal with both of them, but the optimal
results (in the sense of Pareto optimal) were never discussed to show their effectiveness.
Moreover, it can be seen from the existing studies on semi-active suspension control
that the common difficulty is the passivity constraint. Indeed, this is the main problem
to handle. Furthermore, for a more realistic design, the nonlinearities and the restric-
tive travel (due to the mechanical limitation) of a semi-suspension system should be
taken into account as well. To summarize, the following problems are interesting and
challenging for semi-active suspension control, and part of the dissertation content.

• Multi-objective optimization control problems.

• Nonlinearity of semi-active suspension systems.

• Constrained control (passivity constraint and mechanical limits).

The important role of the suspension systems in vehicles, in general, and the inter-
esting theoretical problems in controller design of semi-active suspension, in particular,
motivated our study. The objective of this thesis is to propose a generic method to
obtain a good compromise between comfort and road holding while taking into account
the important characteristics and constraints (nonlinearities, passivity constraint and
mechanical constraint).
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Structure of the thesis

• Chapter 1 introduces the general framework of semi-active suspension control. First
a brief overview on vehicle dynamic control is made and the suspension system is
discussed in terms of performance objectives and mathematical models for control.
Finally, the semi-active suspension is emphasized by the classification, character-
istics, modeling and existing control methods in the literature.

• Chapter 2 gives some backgrounds on control theory and optimization which are
useful for the development of new semi-active suspension controllers in the thesis.
For this purpose, some well-known definitions, lemmas and theorems on convex
optimization, Linear Matrix Inequaliy (LMI), Linear Parameter Varying (LPV)
control, saturation control and multi-objective optimization by genetic algorithms
are presented.

• Chapter 3 presents the control of semi-active suspension systems using nonlin-
ear Magneto-Rheological dampers. The extended versions of existing methods for
Magneto-Rheological dampers and the new LPV one to improve comfort and road
holding are discussed.

• Chapter 4 revisits the classical semi-active suspension control problem based on
a linear damper model. A new “clipped method” based on strong stabilization
approaches is presented. Like in chapter 3, comfort and road holding are design
objectives.

• Chapter 5 studies the effect of suspension travel in passenger/driver comfort. In
this chapter, we make use of the results obtained in Chapters 3 and 4 to solve the
comfort and suspension deflection trade-off of the quarter car model with nonlinear
Magneto-Rheological dampers and Dual-Stage Suspension model (chair model)
with linear semi-active dampers. These results have been obtained during my
6-months visiting research in Politecnico di Milano.

• Chapter 6 is devoted to a new control method for LPV systems with input satura-
tion and state constraints. Although, the study has not exhaustively investigated
yet, the preliminary results seem to be suitable to semi-active suspension control
to solve a complete problem in semi-active suspension control (multi-objective op-
timization, nonlinearity, passivity constraint and mechanical constraint). This is
also the first result of our collaboration with Joao M. Gomes da Silva Jr.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 General introduction to vehicle dynamic control

In the last decades, the vehicle dynamic control has been intensively studied. The prob-
lems are numerous but in general they can be classified into two main issues: comfort and
safety. For safety oriented problems, efforts are made on stabilizing the vehicle in critical
situations through the well-known devices like ABS (Anti-lock Braking System), EPS
(Electronic Stability Program)... On the other hand, the use of controllable suspension
systems has allowed to improve the passenger comfort. It can be seen from these studies
that the knowledge of the forces and moments is essential to understand the vehicle
dynamics and to design the controllers. These forces, caused by the engines, gravity,
aerodynamics and specially by road disturbances, influence the acceleration, braking,
steering and ride performances. Under the view point of system control, to improve the
vehicle performance, they must be handled by appropriate control rules.

In a vehicle, besides the engines and the power train system, the other essential actu-
ators can be the braking, steering and suspension subsystems. The problems concerning
these three subsystems are very interesting in both vehicle dynamics and automatic
control. As in [Gillespie, 1992], braking performance defines the vehicle safety and is de-
termined by the braking coefficient, deriving from adhesive and hysteretic friction. This
coefficient depends on the road condition and the wheel-slip (caused by the difference
between the tire rotational speed and the forward velocity of the wheel). For a good
braking performance, this coefficient must be high. For example, the function of an ABS
is based on the principle that the braking coefficient is always kept around the highest
value. On the other side, the steering performance is related to the handling (lateral,
yaw and roll modes). The important factor for the analysis of steering performance is
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the sideslip angle defined by the angle between the actual direction of travel of a rolling
wheel and the direction towards which it is pointing. At low-speed, the sideslip angle
is negligible, the cornering objective is easy to achieve. However, the high speed steer-
ing case, the sideslip angle and the lateral force at each wheel appear. This makes the
steering no longer a simple task (in some situations, under-steering or over-steering can
happen)...

On the one hand, it can be seen that, in both cases of braking and steering, their
performances are related to the tire. Actually, the tire dynamics play a key role in vehicle
performance. In many books about vehicle dynamics, the tire is always strongly empha-
sized [Gillespie, 1992], [Kiencke & Nielsen, 2000], [Pacejka, 2005], [Rajamani, 2006]. On
the other hand, the suspension systems turn out to be very important for the vehicle
dynamics because they link the tires to the vehicle chassis. Although the suspensions
influence only the vertical tire force (or the tire load), it can be seen that the lateral
and longitudinal tire forces are indirectly concerned with the suspensions because both
forces are related to the vertical one [Gillespie, 1992], [Pacejka, 2005].

When a daily vehicle travels, it is excited by a broad spectrum of vibrations. Without
efficient suspension systems, the vehicles can hardly travel safely and provide pleasure
to passengers, even on good roads. In fact, not only the vertical dynamics but also
the pitch and roll dynamics can be improved by a good suspension system. Moreover,
as mentioned previously, because the braking and steering performances are influenced
by the tire forces which can be modulated by suspension systems, it can be concluded
that these performances can also be improved through the control of the suspension
system. For example, in [Hac, 2002], the author proved that in steering mode, the rollover
stability would be improved by taking into account the effect of suspension in the design;
in [Lu et al., 2011], braking safety and lateral stability can be effectively improved and
the occurrence of an unstable situation can be reduced by a global integrated control of
suspension, braking and steering systems; in [Alleyne, 1997], for instance, the integration
of active suspension components with ABS (Anti-lock Braking System) mechanisms can
reduce the stopping distance over just anti-lock brakes; in [Gaspar et al., 2007] and
[Poussot-Vassal, Sename, Dugard, Gáspár, Szabó & Bokor, 2010], integrated control
structures using active suspensions and an active brake were proposed to improve the
safety. So what is exactly a suspension system?

1.1.2 Suspension system

A suspension system is made up of an elastic element and a damping element connected
in parallel (see Fig. 1.1). This simple system has about one hundred years of develop-
ment, from the appearance of passive dampers in Roll Royce (in 1913) to sophisticated
controllable Magneto-Rheological (MR) dampers in the most recent cars such as Audi
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TT, Audi R8, Ferrari 599 GTB... Today, it plays an important role in the automotive
industry because, besides the vibration insulation capacity, they can further improve the
safety and the handling of the vehicle. Some more detailed historical facts on suspen-
sion systems are presented in [Aubouet, 2010]. In general, suspensions are classified into
three types according to their controllability (see e.g. [Isermann, 2003] for a detailed
classification):

• Passive suspensions, generally found in most of the vehicles, consist of a spring
connected in parallel with a passive damper. They can only dissipate the energy
and their characteristics are time-invariant.

• Semi-active suspensions, available on a certain number of mid-range and expensive
passenger vehicles and on some military vehicles, consist of a spring and a semi-
active damper. Like passive suspensions, they can only dissipate the energy but
their property (the damping coefficient) can be changed by external control signals.

• Active suspensions, found in a small number in mid-range and expensive passenger
vehicles, use a spring and an active damper. For such types of suspensions, external
actuators are required to supply energy to the systems. Hence, they can both
dissipate and generate the energy.

���������	
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Figure 1.1: An example of suspension system.

In the next section, we discuss about the control oriented quarter vehicle model as
well as the performance criteria for suspension control.
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1.2 Quarter vehicle model and performance criteria for

suspension control

1.2.1 Quarter vehicle model for suspension system control

As mentioned previously, understanding vehicle dynamics is important for the design
and development of controllers. This can be achieved by two methods: empirical or
analytical. While the empirical understanding, derived from experiments (trial and error
to understand which factors influence the vehicle performance in which condition...) often
leads to failure, the analytical one, concerned by models built on the laws of physics,
is preferred. The main difficulty for studying the performance based on an analytical
model is in the computation of a mathematical solution. The complexity in the vehicle
dynamics (the large number of components and systems, the nonlinearities...) results in
a very complex problem which may be impossible to solve analytically. Today, this task
can be much simplified by using powerful computers. Many numerical softwares allow
realistic simulations which are useful for the vehicle performance analysis and evaluation
before the implementation.

Back to the particular case of suspensions, the following models are of interest:

• A full model of suspension systems with 7 degrees of freedoms is shown in Fig.
1.2. The seven degrees of freedom of the full car model are the heave z, pitch φ

and roll θ and the road profile inputs at the four wheels that excite the system
represented by zrfl , zrfr , zrrl and zrrr . This model allows to study vertical, roll and
pitch dynamics [Poussot-Vassal, 2008].

• A half vehicle model (or bicycle model) with four degrees of freedom is shown in
Fig. 1.3. The four variables are the pitch φ and heave z motions of the vehicle
body and the road profile inputs at the front and rear wheels zrf and zrf . This
model is used for vertical and pitch control [Sammier, 2001], [Poussot-Vassal, 2008]
A similar model (with of two front or two rear wheels) can be used for vertical/roll
dynamics.

• Quarter vehicle model : a quarter car model with two degrees of freedom is shown
on Fig. 1.4. The two variables are the heave and the road profile input at a single
wheel. Only the study of vertical dynamics can be performed with this model.

The quarter vehicle model will be investigated in this thesis because comfort and road
holding are concerned with the vertical dynamics. The model is simple and suitable for
a preliminary design. It represents a single corner of a vehicle. In this model, the
quarter vehicle body is represented by the sprung mass (ms) and the wheel and tire
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Figure 1.2: Full vehicle model for suspension control.

Figure 1.3: Half vehicle model for suspension control.

are represented by the unsprung mass (mus). They are connected by a spring with
the stiffness coefficient ks and a semi-active damper. The tire is modeled by a spring
with the stiffness coefficient kt. As seen in the figure, zs (respectively zus) is the vertical
displacement around the equilibrium point ofms (respectivelymus) and zr is the variation
of the road profile. It is assumed that the wheel-road contact is ensured.

By applying the second law of Newton, the dynamical equations of a quarter vehicle
are given by

{

msz̈s = −Fspring − Fdamper

musz̈us = Fspring + Fdamper − Ftire
(1.2.1)

where Fspring is the dynamical spring force, Ftire is the dynamical tire force and
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Figure 1.4: Model of quarter vehicle with a semi-active damper.

Fdamper is the damper force. Let us denote zdef = zs − zus the damper deflection,
żdef = żs − żus the damper deflection velocity.

The dynamical spring force and tire force are given by

Fspring = ks(zdef ) (1.2.2)

Ftire = kt(zus − zr) (1.2.3)

The damper’s characteristics are usually represented by a Force-Deflection-Deflection
Velocity relation

Fdamper = Fdamper (zdef , żdef ) (1.2.4)

where Fdamper can be a linear or nonlinear function. For example, with a linear semi-
active damper, this force is given by

Fdamper = cżdef

where c > 0 is a variable parameter (damping coefficient) (if c is fixed, the damper is
passive). For a nonlinear semi-active damper, we will see that the damper force can be
of the form:

Fdamper = c0żdef + k0zdef + fI tanh (c1żdef + k1zdef )

where c0, k0, c1, k1 and fI are positive constant or positive variable parameters.

In this thesis, we will use the 1/4 Renault Mégane Coupé (1/4 RMC) model from
the test car available in MIPS Laboratory (Mulhouse, France) (see in [Zin, 2005]. The
model parameters are given in Tab. 1.1. It is important to notice that two spring models
will be used in this thesis:

• For linear design, the spring force is given by

Fspring = kszdef (1.2.5)

• For simulation, the spring has a nonlinear characteristic (see Fig. 1.5).
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Figure 1.5: Nonlinear RMC Spring.

Table 1.1: Parameter values of the Renault Mégane Coupé quarter car model

Parameter ms [kg] mus [kg] kt [N/m] ks [N/m]

V alue 315 37.5 29500 210000

1.2.2 Performance criteria

In semi-active suspension control, the two main objectives are ride comfort and road
holding. Ride comfort concerns the pleasure of passenger and driver, road holding in-
fluences the driving safety. While road holding can be directly related to the dynamic
tire force, for ride comfort it is however more difficult to evaluate since it is a subjective
matter. The human sensitivity to vibration is frequency-dependent. Furthermore, at the
same frequencies, the different parts of the human body feel the vibration in different
ways. To answer the question on which is the good measure to evaluate ride comfort,
let us recall some criteria existing in the literature (see [Guglielmino et al., 2008]).

Denote X the maximum allowed displacement amplitude, ω the angular frequency, f
the frequency and t the time. The Janeway’s comfort criterion (1965) relates the comfort
to the vertical vehicle body displacement. At low frequencies, the criterion states that

Xω3 = 12.6 (1.2.6)

and at high frequencies, in the range 6−20 Hz, the vehicle body acceleration peak value
should not exceed 0.33 m/s2, whilst between 20 and 60 Hz the maximum velocity should
stay below 2.7 mm/s.
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Steffens (1966) proposed to evaluate the comfort using the following criterion

X[cm] = 7.62× 10−3(1 +
125

f 2
) (1.2.7)

Another criterion is the vibration dose (VD) value proposed by Griffin (1984) which
provides an indication based on the integral of the fourth power of the frequency weighted
acceleration a

V D =

∫ t

0

a4dt (1.2.8)

The most general criterion is the standard ISO 2631 (1978) which is applicable not
only to vehicles but also to all vibrating environments. It defines the exposure limits for
body vibration in the range 1−80 Hz, defining limits for reduced comfort, for decreased
proficiency and for preservation of health. According to this criterion, the human being
is more sensible to the vertical acceleration in the range of 4 − 8 Hz. The ISO 2631
filter applied on the sprung mass acceleration is approximated by the following transfer
function (see [Zuo & Nayfeh, 2007]), see Fig. 1.6

WISO−2631 =
81.89s3 + 796.6s2 + 1937s+ 0.1446

s4 + 80.00s3 + 2264s2 + 7172s+ 21196
(1.2.9)
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Figure 1.6: ISO 2631 frequency weighting curve (circles) and the fourth-order filter
approximation (solid line).

Criteria for suspension performance evaluation In the following, the criteria to
evaluate the performance of the semi-active suspension systems are given. Let us consider
the case of the quarter vehicle model (see Fig. 1.4). By abuse of language, let denote
z̈s/zr (respectively zdeft/zr)) the “frequency response" from the road disturbance zr to
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the vehicle body acceleration z̈s (respectively the dynamic tire deflection zus − zr), i.e.
the gain of the transfer function for LTI systems or the gain computed using “variance
gain” algorithm in Appendix B for nonlinear systems.

In general, the vehicle body acceleration between 0-20 Hz should be filtered to guar-
antee a good ride comfort, although it is worth noting again that the human is the
most sensible to vertical acceleration around 4-8 Hz (ISO 2631). On the other side, to
maintain the road-wheel contact, it is necessary that the dynamic tire force is smaller
than g(ms+mus) (where g is the gravity). Hence, for the road holding improvement, the
dynamic tire force kt(zus−zr), in other words the dynamic tire deflection zus−zr, should
be small in the frequency range 0-30 Hz. Note also that the road holding is improved by
limiting the up and down bouncing of the wheel zus around its resonance 10-20 Hz.

In summary, with the previous remarks, the performance criteria in the frequency
domain are described explicitly as follows

• Comfort

JCF = min

∫ 20

0

z̈s/zr(f)df (1.2.10)

• Road holding

JRH = min

∫ 30

0

(zus − zr)/zr(f)df (1.2.11)

The objectives of the control design is to minimize the two criteria. It is worth noting
that the two criteria (1.2.10) and (1.2.11) are consistent with the ones given in [Sammier
et al., 2003] and [Savaresi et al., 2010].

It is important to keep in mind that, all the provided analysis in the frequency domain
will be based on the criteria (1.2.10) and (1.2.11). However, during the controller design
step, if different criteria are used, they will be explicitly explained.

The model and the performance criteria for general suspension systems have been
presented. In the next section, we shall discuss about the particular type of suspension
systems, which is the object of the thesis: the semi-active one.

1.3 Semi-active suspensions

Among the three types of suspension, the passive suspensions have inherent limitations
due to the choice of the spring rate and of the damping characteristics to achieve an
acceptable compromise between comfort and road holding for a whole range of working
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frequencies. The semi-active and active suspensions can improve the performance objec-
tives with appropriate control methods. This is the reason why the latter suspensions
have been studied more intensively in recent years. However, up to now, only the semi-
active suspensions are used widely in automotive industry because, compared with fully
active suspensions, the semi-active ones provide a better compromise between the cost
and the performances. Semi-active suspensions can potentially achieve the majority of
the performance objectives (see [Ivers & Miller, 1989], [Patten et al., 1994]) while they
are smaller in weight and volume, cheaper in price, more reliable in work (the robust-
ness due to their dissipative property) and less energy consuming (see also [Fialho &
Balas, 2002], [Gillespie, 1992], [Hrovat, 1997], [Kiencke & Nielsen, 2000]).

1.3.1 Classification and characteristics

Many semi-active devices utilize forces generated by surface friction or viscous fluids
to dissipate vibratory energy in a structural system. These devices are applied in civil
engineering [Patten et al., 1994], [Constantinou & Symans, 1994]. Recently, another class
of semi-active dampers using Electro-Rheological and Magneto-Rheological technologies
has been considered although the controllable ER and MR fluids was invented long time
ago (by [W. M. Winslow, 1947] and [Rabinow, 1948], respectively). A distinguishing
characteristics of these fluids is that they can be changed rapidly from a free-flowing,
linear viscous state to a semi-solid state when being exposed to an electric or magnetic
field. There are also many applications of these semi-active dampers in civil engineering
[Zhu et al., 2004], [Gavin et al., 1994], automotive [Savaresi et al., 2010] (and references
therein).
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Figure 1.7: Force-velocity characteristic of ideal Passive (continuous line), Semi-Active
(dotted region) and Active (shaded region) dampers.

The (ideal) damper characteristics are usually described by the Force-Velocity rela-
tion. The characteristics of semi-active dampers, along with passive and active ones, are
presented in Section 1.1.2 are shown in Fig. 1.7. In the passive case, this characteristic
is invariant due to the uncontrollable property of a passive damper while with an active

56



Chapter 1. Introduction

damper, this characteristic may span all the space and there is no constraint between
the active damper force and its deflection velocity. Unlike these two dampers, the semi-
active one has a special property called passivity constraint. The passivity constraint of a
semi-active damper is characterized by the fact that the damper force and the deflection
velocity always have the same sign i.e. as shown in Fig. 1.7, the damper force is limited
in the first and third quadrants. The passivity constraint of an ideal semi-active damper
is represented mathematically as follows

Damper Force × Damper Velocity ≥ 0 (1.3.1)

1.3.2 Modeling methods

The modeling of semi-active dampers is a challenging problem because of a high non-
linear behavior such as the bi-viscosity, the temperature dependency and specially the
hysteresis. Many modeling methods have been proposed and generally they can be clas-
sified into two kinds: static model and dynamic model (see [Savaresi et al., 2010]). Let
us denote Fd the damper force, x the damper deflection and ẋ the damper deflection
velocity. In the following, we introduce briefly some well-known modeling methods.

• Static model with Coulomb friction:

Fd = c(I)ẋ− csym(I)|ẋ|+ cnl(I)
√

|ẋ|sgn(ẋ) (1.3.2)

where c, csym and cnl are parameters depending on the damping command I. This
model describes the presence of the static friction as a constant term, function of
the deflection speed sign.

• Dynamic Bouc-Wen model [Bouc, 1967], [Wen, 1976]
{

Fd = c0(I)ẋ+ k0(I)(x− x0) + γ(I)z

ż = −β(I)|ẋ|z|z|n−1 − δ(I)ẋ|z|n + A(I)ẋ
(1.3.3)

where c0, k0, A, γ, β, δ, n are model parameters (dependent on command input I),
x0 is the critical deflection and z is the internal state that introduces some dynamic
in the model and models the hysteresis phenomenon.

• Static Guo model [Guo et al., 2006]

The behavior of the semi-active damper is represented by the following nonlinear
equation:

Fd = a2

(

ẋ+
v0
x0
x

)

+ a1 tanh

(

a3

(

ẋ+
v0
x0
x

))

(1.3.4)

where a1 is the dynamic yield force of the MR fluid, a2 and a3 are related to the
post-yield and pre-yield viscous damping coefficients, v0 and x0 denote the absolute
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value of hysteretic critical velocity ẋ0 and hysteretic critical deflection x0 where ẋ0
and x0 are defined as the velocity and deflection when the MR damper force is
zero.

• Non-linear black-box model (static or dynamic) [Savaresi, Bittanti & Montiglio,
2005]:

This kind of description is not based on physical description of the device, but aims
at representing the non-linear input-output dynamical relationship. An example
of black box model for an electronic shock absorber is the following:

Fd = f(x(t); ẋ(t); ẍ(t); ...; x(k)(t); I(t); İ(t); Ï(t); ...; I(k)(t)) (1.3.5)

where, in accordance to the notation used so far x is the damper deflection and
x(k) is the kth derivative of x, I is the external damping command and I(i) is the
ith derivative of I.

1.3.3 Control problem

So far, the control problem for semi-active suspensions has been tackled with many
approaches during the last three decades. One of the first comfort-oriented control
methods, successfully applied in commercial vehicles, is the Skyhook control proposed
by Karnopp et al. [Karnopp et al., 1974]. In this control design, the damping coefficient
is adjusted continuously or switched between a maximum and a minimum value. Then
[Yi & Song, 1999] proposed an improved version of the Skyhook. This new adaptive
Skyhook control law, in fact a combination of the sprung mass and unsprung mass
velocity feedbacks with time varying gains, showed a performance enhancement in ride
comfort and road holding. Recently, [Liu et al., 2005] have studied the vibration isolation
characteristics of four established semi-active damping control strategies, which are based
on Skyhook control and balance control. By using the principle contrary to the Skyhook,
the Groundhook control was proposed by [Valasek et al., 1997] to reduce the dynamic
tire force. The reduction of the dynamic tire force is a good way for road holding
improvement, this challenging problem was also intensively studied in [Cole & Cebon,
1996].

Then numerous approaches have been also developed for comfort and/or road hold-
ing enhancement such as optimal control [Giua et al., 2004], [Savaresi, Silani & Bit-
tanti, 2005], clipped optimal control [Lu & DePoyster, 2002], [Tseng & Hedrick, 1994],
[Giorgetti et al., 2006]; H∞ control [Rossi & Lucente, 2004], [Sammier et al., 2003]; LPV
control [Poussot-Vassal et al., 2008] or Model Predictive Control [Canale et al., 2006],
[Poussot-Vassal, Savaresi, Spelta, Sename & Dugard, 2010]. Recently, the mixed Sky-
hook and ADD (SH-ADD) algorithm proposed by [Savaresi & Spelta, 2007] has been
known to be one of the most efficient comfort-oriented controllers.

58



Chapter 1. Introduction

However, the suspension deflection problem is less mentioned in semi-active suspen-
sion controller design. Few studies are concerned with this issue, e.g. [Hac & Youn, 1991],
[Du et al., 2005]. In the recent paper by [Spelta et al., 2011], the passenger comfort was
proved to be dramatically degraded when the suspension deflection exceeds the structural
limit.

To summarize, the interesting challenges of the semi-active suspension control prob-
lem are:

• A realistic design where the nonlinear behavior (hysteresis and bi-viscosity) of
semi-active dampers must be taken into consideration.

• Multi-objectives control (comfort, road holding and suspension deflection) and ef-
fective formulation of control objectives for optimization.

• Constrained control due to the passivity constraint of semi-active dampers and
structural limits of suspension systems (end-stops).

Besides, concerning the practical point of view, the following requirements, when design-
ing the control strategy, are important as well:

• Flexibility in term of performance to satisfy the customers’ need (sport, city cars,
heavy vehicles...).

• Adaptiveness to various damper technologies.

• A limited number of available sensors.

• The capability of using low-cost micro-controllers for implementation.

In the following, we present three control methods which will be considered and
used as references for the comparison of the proposed methods in the thesis. These
methods are well-known in semi-active suspension control because of their simplicity
and effectiveness. Another important reason is that they can be implemented directly
for different quarter car models; moreover no complex tuning procedure (i.e. the selection
of design parameters) is needed.

• The Skyhook by [Karnopp et al., 1974] provides a good insulation at low frequencies
[1 − 3] Hz. Along with Groundhook, it has been used widely in commercial cars
up to now.

• The Groundhook by [Valasek et al., 1997] improves road holding by reducing the
wheel acceleration in the range [10− 15] Hz.

59



Chapter 1. Introduction

• The Mixed Skyhook-ADD by [Savaresi & Spelta, 2007] is almost optimal for pas-
senger comfort.

All these three methods are designed for the quarter vehicle model (6.5.1) equipped
with a linear semi-active damper characterized by

Fdamper = cżdef where c > 0 and c ∈ [cmin, cmax]

Two-states Skyhook The main idea of the Skyhook for a linear suspension system is
that the damper exerts a force that reduces the velocity of the body mass żs. It is given
as follows

c =

{

cmax if żsżdef > 0

cmin if żsżdef ≤ 0
(1.3.6)

Groundhook The road-holding oriented control method Groundhook aims at reducing
the dynamic tyre force and is given as follows

c =

{

cmax if żusżdef < 0

cmin if żusżdef ≥ 0
(1.3.7)

The Mixed Skyhook-ADD (SH-ADD) It is well-known that the Skyhook provides
the best ride comfort at low frequencies while the ADD (Acceleration Driven Damper) by
[Savaresi, Silani & Bittanti, 2005] improves considerably ride comfort at high frequencies.
The Mixed SH-ADD control developed by [Savaresi & Spelta, 2007] guarantees the best
behavior of both Skyhook and ADD and is given as follows

c =



























cmax if (z̈2s − αż2s ≤ 0 ∧ żsżdef > 0)∨

(z̈2s − αż2s > 0 ∧ z̈sżdef > 0)

cmin if (z̈2s − αż2s ≤ 0 ∧ żsżdef ≤ 0)∨

(z̈2s − αż2s > 0 ∧ z̈sżdef ≤ 0)

(1.3.8)

The amount (z̈2s −αż2s) is the frequency-range selector where α is the SH-ADD crossover
frequency (see [Savaresi & Spelta, 2007]).

1.4 Conclusions

From this brief overview about vehicle dynamics, the role of a suspension systems in
a vehicle has been confirmed. This motivated many studies to achieve the optimal
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performances for suspension systems. Among three type of suspension systems, the
semi-active ones are the most studied. The interests and the challenges in semi-active
suspension control has been presented through some historical facts on some existing
modeling and control methods.

In the next chapter, we will present some backgrounds on control theory and optimiza-
tion which are necessary for the synthesis of new controllers for semi-active suspension
systems.
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Chapter 2

Background on control theory and

optimization

This chapter presents some theoretical backgrounds on the control theory and optimiza-
tion. First, the recall of some basic definitions on convex optimization and LMI (Linear
Matrix Inequality) facilitate the reading of the rest of the thesis. The LPV approach
is introduced with sufficient information (definition, stabilization and H∞ performance)
because, in this thesis, it is the main strategy to solve semi-active suspension control
problem. Input saturation control is always a very interesting problem for all real appli-
cations. As seen in Chapter 3 and 6, the passivity constraint of a semi-active suspension
can be recast to the input saturation one. The overview on this control problem is hence
necessary. Finally, the Genetic Algorithms is introduced. This is a very efficient tool for
optimizing the controllers of the proposed semi-active suspension control methods in the
next chapters.

2.1 Convex optimization and Linear Matrix Inequality

2.1.1 Convex optimization

Convex optimization is a special class of mathematical optimization problems which has
been studied for a century. The relevance of this mathematic branch has been recognized
by its applications in many fields such as data analysis, statistics, finance, communica-
tions and networks, signal processing. It has been proven, in automatic control, that
many control problems can be recast into convex optimization problem for e.g. ro-
bust control, LPV control, constrained control... An important reason for the interest
of convex optimization problems relies in the practical point of view that they can be
solved numerically by efficient methods (interior-point and ellipsoid methods). Before
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Figure 2.1: Convex set (left) and non-convex set (right).
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Figure 2.2: An example for the 2-dimensional space: The hyperplane (continuous line)
defines 2 half-spaces (left) and a polytope defined by the intersection of 5 half-spaces
(right).

introducing the convex optimization problem, let us recall some basic definitions [Boyd
et al., 1994], [Scherer & Weiland, 2005].

Definition 2.1.1. Affine Set

The set S in the vector space X is affine if the line through any two points in S lies in
S, i.e.

λx1 + (1− λ)x2 ∈ S, ∀x1, x2 ∈ S and λ ∈ R (2.1.1)

Definition 2.1.2. Convex Set

The set S in the vector space X is convex if the line segment between any two points in
S lies in S (see Fig. 2.1), i.e.

λx1 + (1− λ)x2 ∈ S, ∀x1, x2 ∈ S and 0 ≤ λ ≤ 1 (2.1.2)

• The intersection of any family of convex sets is convex.

• The hyperplane defined as {x ∈ Rn : aTx = b} where a ∈ Rn, a 6= 0, b ∈ R is affine
and the half-space defined as {x ∈ Rn : aTx ≤ b} where a ∈ Rn, a 6= 0, b ∈ R} is
convex.

• The intersection of finitely many hyperplanes and half-spaces results in a polyhe-
dron. A compact polyhedron is said to be a polytope (see Fig. 2.2).
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Figure 2.3: The convex hull of set S consists of all convex combinations of all elements
of S. As illustrated in this figure Co{S} = S ∪ S ′.

Definition 2.1.3. The convex hull of a set S, denoted Co{S}, is the set of all convex
combinations of points in S (see Fig. 2.3):

Co{S} = {λ1x1 + λ2x2 + ...+ λnxn|xi ∈ S, λi ≥ 0, i = 1 : n,
n
∑

i=1

λi = 1} (2.1.3)

With the definitions above, the general optimization problem can be described as
follows

min f0(x) (2.1.4)

subject to fi(x) < bi, i=1,2,...,m

where x = (x1, x2, ..., xn) is the decision vector, and f0 : Rn 7→ R is the objective function,
fi : R

n 7→ R with i = 1, 2, ...,m are the constraint functions, bi ∈ R are the bounds of
the constraint functions. A vector x∗ is the solution of the problem (2.1.4) if for all z
such that fi(z) < bi, i = 1, 2, ...,m then f0(z) ≥ f0(x

∗).

The problem (2.1.4) is referred to as a convex optimization problem if f0, f1..., fm are
convex functions, i.e. for all x, y ∈ Rn and all α, β ∈ R, α + β = 1, α ≥ 0, β ≥ 0:

fi(αx+ βy) ≤ αfi(x) + βfi(y) (2.1.5)

It can be seen that the set of decision vector satisfying the constraint fi(x) < bi,
i = 1, 2, ...,m is a convex set (knowing that the sub-level {x : fi(x) < bi} of a convex
function fi is a convex set and the interconnection of infinitely many convex sets
is a convex set). Henceforth, in other words, a convex optimization problem is the
optimization of a convex function over a convex set.

What is the interest of convex optimization?
The first reason to study the convex optimization is that locally optimal solutions are
globally optimal. The second reason is stated in the following proposition:

Proposition 2.1.1. Let f : S 7→ R be a convex function where S = Co{S0}. Then
f(x) < γ for all x ∈ S if and only if f(x) < γ for all x ∈ S0
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Figure 2.4: An example of a convex function: the line segment between any two points
on the graph lies above the graph.

The proposition above is interesting in that if S0 has a finite number of elements, it
is only necessary to check a finite number of inequalities to conclude about f(x) < γ or
not. This has a great interest in LPV control, since if the set of scheduling parameters
belongs to a polytope, then only a finite number of LMI problems needs to be solved to
construct a global LPV controller (as seen later).
Finally, as mentioned previously, the interest is also in the practical point of view that
convex optimization problems is tractable, i.e. they can be solved numerically by efficient
methods (interior-points and ellipsoid methods).

2.1.2 Linear matrix inequality - LMI

It is well known that the linear matrix inequality (LMI) is a very efficient tool for
many convex optimization problems in automatic control including the stability and
performance analysis of linear systems (LTI, LPV and switching systems). The history
of the LMIs began one hundred years ago from the solution of Lyapunov (1890) for the
stability problem of the autonomous system

dx(t)

dt
= Ax(t) (2.1.6)

where t is the time instant, x(t) ∈ R
n, A ∈ R

n×n is a real matrix.

In his study, Lyapunov showed that the system (2.1.6) is stable if and only if there exist
a positive-definite matrix P such that the following inequality holds

ATP + PA ≺ 0 (2.1.7)

The condition {P ≻ 0, ATP +PA ≺ 0} is an example of linear matrix inequality (LMI).
Here, ≻ (respectively ≺) stands for “positive-definite" (respectively “negative-definite”)
notion, i.e

P = P T ≻ 0 (resp. ≺ 0) ⇔ λmin(P ) > 0 (resp. λmax(P ) < 0) (2.1.8)
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Similarly, � (respectively �) stands for “positive semi-definite" (respectively “negative
semi-definite”) property, i.e

P = P T � 0 (resp. � 0) ⇔ λmin(P ) ≥ 0 (resp. λmax(P ) ≤ 0) (2.1.9)

Until 1940s, Lur’e was the first to apply Lyapunov’s methods to practical control
engineering problems. The LMIs were solved analytically (for small order systems).
After that, many results on control theory have been interpreted using LMI tool. In the
1960s, the role of LMI is emphasized through the work of Kalman, Yakubovich, Popov
and Willems. During the last decades, the LMIs tool has received an intensive attention
from practical point of view. With the development of efficient interior-point methods
from 1980s, it is allowed to solve numerically the optimal problems instead of finding an
analytic solution, which is indeed much more difficult or impossible to be found.

Generally, a linear matrix inequality can be described by the following

F (x) = F0 + x1F1 + x2F2 + ...+ xnFn ≺ 0 (2.1.10)

where x = (x1, x2..., xn) is a vector of n real numbers and called decision vector,
F0, F1..., Fn are real symmetric matrices. Because F (x) is affine, (2.1.10) is a convex
constraint on x, i.e. {x : F (x) ≺ 0} is a convex set.

The LMI problems are numerous but in general they can be classified into two par-
ticular cases: the feasibility problem and the optimization one.

Definition 2.1.4. Feasibility Problem

The feasibility problems concern finding elements x ∈ X such that F (x) ≺ 0. The LMI
F (x) ≺ 0 is called feasible if such elements x exist, otherwise it is said to be infeasible.

Definition 2.1.5. Optimization Problem

Define an objective function f : X 7→ R where X = {x : F (x) ≺ 0}. The following
problem

min f(x) (2.1.11)

subject to F (x) ≺ 0 (2.1.12)

is called an optimization problem with LMI constraint. If f is a convex function, this is
a convex optimization problem and the convex programming algorithms can be applied to
solve numerically this problem.

The LMI optimization usually concerns the two eigenvalue problems:

• The eigenvalue problem: Minimizing a linear objective function under the LMI
constraints i.e.

min CTx (2.1.13)
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subject to F (x) ≺ 0 (2.1.14)

where C is a vector of the same dimension as x.

• The generalized eigenvalue problem: This problem is described as follows

min λ (2.1.15)

subject to P1(x) ≺ λP2(x) (2.1.16)

P2(x) ≻ 0 (2.1.17)

F (x) ≺ 0 (2.1.18)

where λ is a positive scalar, P1 and P2 are matrices with appropriate dimensions.

Some useful tools for the LMI reformulation Usually some following methods
are useful to convert a nonlinear optimization problem (for stability or controller design)
into a convex linear one.

Lemma 2.1.2. Schur’s lemma

The LMI
(

Q(x) S(x)

S(x)T R(x)

)

≺ 0 (2.1.19)

is equivalent to

{

Q(x) ≺ 0

R(x)− S(x)TQ(x)−1S(x) ≺ 0
(2.1.20)

and equivalent to
{

R(x) ≺ 0

Q(x)− S(x)R(x)−1S(x)T ≺ 0
(2.1.21)

It can be seen from the Schur’s lemma that the nonlinear inequality (2.1.20)-(2.1.21)
can be transformed into a linear inequality (2.1.19).

Lemma 2.1.3. Projection lemma [Doyle et al., 1989]
For given matrices W = W T , M and N , of appropriate size, there exists a real matrix
K = KT such that,

W +MKNT +NKTMT ≺ 0 (2.1.22)

if and only if there exist matrices U and V such that,

W +MU + UTMT ≺ 0 (2.1.23)

W +NV + V TNT ≺ 0 (2.1.24)
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or, equivalently, if and only if there exists a scalar ǫ > 0 such that,

W ≺ ǫMMT (2.1.25)

W ≺ ǫNNT (2.1.26)

or, equivalently, if and only if,

MT
⊥WM⊥ ≺ 0 (2.1.27)

NT
⊥WN⊥ ≺ 0 (2.1.28)

where M⊥ and N⊥ are the orthogonal complements of M , N respectively (i.e. MT
⊥M =

0).

S- Procedure The S-procedure is a method which allows to formulate a problem de-
scribed by a quadratic constraint verified under other quadratic constraints. It was first
introduced by Lur’e and Postnikov [Lur’e & Postnikov, 1944] without any theoretical jus-
tification. Then, theoretical foundations of S-procedure were presented by Yakubovich
[Yakubovich, 1971]. Although the main drawback of the S-procedure is in the fact that it
usually leads to a more conservative formulation than the original problem, it is a useful
tool in control theory and robust optimization analysis. We usually find the S-procedure
in LMI reformulations and analysis of quadratic programming.

Definition 2.1.6. S-Procedure for quadratic function and nonstrict inequalities

Let F0, F1, ...Fp be quadratic functions of the variable x ∈ Rn:

Fi(x) = xTTix+ 2uTi x+ vi, i = 0, ..., p (2.1.29)

where Ti = T Ti , ui and vi are known vectors with appropriate dimensions. Now
considering the following conditions
(C1) F0 � 0 for all x such that Fi(x) � 0, i=1,...,p.
(C2) ∃τ1, τ2..., τp ∈ R+ such that for all x F0(x)−

∑p

i=1 τiFi(x) � 0

• In general cases ∀p 6= 1, C2 ⇒ C1.

• When p = 1, C2 ⇔ C1 provided that there exists some x0 such that F1(x0) ≻ 0.

Definition 2.1.7. S-Procedure for quadratic function and strict inequalities

Let T0, T1, ..., Tp be symmetric matrices in R
n×n. Considering the following conditions

(C3) xTT0x > 0 for all x 6= 0 such that xTTix ≥ 0, i=1,...,p.
(C4) ∃τ1 ≥ 0, τ2 ≥ 0..., τp ≥ 0 such that T0 −

∑p

i=1 τiTi > 0
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• In general cases ∀p 6= 1, C4 ⇒ C3.

• When p = 1, C3 ⇔ C4 provided that there exists some x0 such that xT0 T1x0 > 0.

2.2 LPV control

The linear parameter varying (LPV) approach is a very efficient method in modeling
and control of numerous classes of systems: from linear time-varying systems, switch-
ing systems to time-delay and nonlinear systems... The study of LPV control has
been motivated by the gain-scheduling control [Shamma & Athans, 1990], [Rugh, 1991],
[Shamma & Athans, 1992]. Then many studies have been focused on this topic [Gahinet
et al., 1996], [Scherer, 2004]. Compared to classical gain-scheduled control, the theory of
LPV systems offers great advantages in term of robust stability and performance. Indeed,
the gain-scheduling technique is only efficient for systems with slow varying parameters
while in LPV design, more information on scheduling parameters (i.e. the parameter
bounds and rate bounds if any) [Wu, 2001], [Apkarian & Adams, 1998] can be taken into
account. Moreover the resulting LPV controllers are automatically gain-scheduled and
do not require any ad hoc methods of gain-scheduling as in the classical methodology.

Let consider a nonlinear system

ẋ = f(x, u) (2.2.1)

and an LPV system

ẋ = A(ρ)x+B(ρ)u, ρ ∈ P (2.2.2)

where f(x, u) is a nonlinear function, x is the state, u is the control input, the matrices
A(ρ) and B(ρ) depend linearly on the scheduling parameter ρ and have appropriate
dimensions and ρ is a scheduling parameter varying in a bounded set P defined by

P = {ρ : [ρ1, ρ2, ..., ρk]
T ∈ R

k} (2.2.3)

The main interest of the LPV approach is to formulate an exact LPV description
(2.2.2) for the nonlinear system (2.2.1). This formulation offers more advantage in con-
troller design than the original nonlinear one.

As mentioned in [Bruzelius et al., 2004], the LPV description is a bridge between
the nonlinear and LDI (Linear Differential Inclusion). To keep the coincidence between
the nonlinear system (2.2.1) and the LPV description (2.2.2), both following property is
needed:
There exists a relation ρ = ρ(x) such that

A(ρ(x))x+B(ρ(x))u = f(x, u) (2.2.4)
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This property ensures that all the trajectories of the nonlinear system is contained in
that of the LPV system.
Moreover, for the purpose of nonlinear controller reconstruction from LPV controller,
ρ(x) must be measurable.

Indeed, there are possibly many LPV descriptions (depending on the choice of ρ(x))
for a nonlinear system. Although they are all describing exactly the original nonlinear
system, there exists one LPV system which is better suited for the controller synthesis
than others. The reason is that in LPV controller synthesis, ρ can be considered as a free
parameter, only the bounds on ρ and ρ̇ are considered. The controller synthesis for LPV
descriptions is the same as for LDI cases. This obviously results in some conservatism
in terms of closed-loop performance. Despite this difficulty, the LPV approach has been
still intensively studied and applied in many fields: aero-dynamics, robotics, automotive
control...

2.2.1 Representation of LPV Systems

LPV systems are represented by

ẋ = A(ρ(t))x+B(ρ(t))u

y = C(ρ(t))x+D(ρ(t))u
(2.2.5)

x ∈ R
n, u ∈ R

m and y ∈ R
p are the state, the input and the measured output, re-

spectively. ρ(t) ∈ R
k is a vector of scheduling parameters and is assumed to be known

(measured or estimated) and bounded in P . From now on, ρ(t) is simply denoted as ρ.
For simplicity the state-space representation (2.2.5) is sometimes represented by:

S (ρ) =





A (ρ) B (ρ)

C (ρ) D (ρ)



 (2.2.6)

Remark 2.2.1. If ρ(x) depends on the state variables, the system is said to be quasi-
LPV (q-LPV).

Based on the dependence of the system matrices on the scheduling parameters, the
LPV systems are classified into two types: affine and polytopic systems.
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Affine systems In this case, all matrices A,B,C,D are affine in the scheduling pa-
rameter ρ or S(ρ) is an affine function of ρ, i.e.

A(ρ) = A0 +
∑N

i=1Aiρi

B(ρ) = B0 +
∑N

i=1Biρi

C(ρ) = C0 +
∑N

i=1Ciρi

D(ρ) = D0 +
∑N

i=1Diρi

(2.2.7)

ρi is the ith element of ρ and Ai are constant matrices.

Polytopic systems The system matrices are represented by

A(ρ) =
∑N

i=1 ρiAi

B(ρ) =
∑N

i=1 ρiBi

C(ρ) =
∑N

i=1 ρiCi

D(ρ) =
∑N

i=1 ρiDi

(2.2.8)

where
∑N

i=1 ρi = 1 and ρi ≥ 0. The polytopic systems offer a great interest in controller
design and implementation. As, in this case, the LPV system is a convex hull of a finite
number of LTI systems, it allows to solve a finite number of LMI problems (see [Gahinet
et al., 1996], [Scherer, 2004]) to find a global LPV controller (which is also a convex hull
of a finite number of local LTI controllers).

From LPV system to polytopic system When all scheduling parameters ρi of the
LPV system are independent and bounded in [ρ̄i, ρi], i.e. the set P is a hypercube of
2p vertices ω1, ω2,...,ω2p , the LPV system can be represented by an equivalent polytopic
one:

S (ρ) =





A (ρ) B (ρ)

C (ρ) D (ρ)



 =
N
∑

i=1

αi (ρ)





A (ωi) B (ωi)

C (ωi) D (ωi)





where

αi(ρ) =

∏p

i=1 |ρi − Compl(ωi)|
∏p

i=1(ρ̄i − ρ
i
)

(2.2.9)

and Compl(ωi)k is the kth component of the vector Compl(ωi) defined as

Compl(ωi)k := {ρk : ρk = ρ̄k if (ωi)k = ρ
k

or ρk = ρ
k

otherwise} (2.2.10)
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2.2.2 Stability of LPV systems

Definition 2.2.1. Quadratic stability

System (2.2.5) is said to be quadratically stable if there exists a quadratic Lyapunov
function V (x(t)) = x(t)TPx(t) > 0 for every x 6= 0 and V (0) = 0 such that

V̇ (t) = x(t)T (A(ρ)TP + PA(ρ))x(t) < 0 (2.2.11)

for every x 6= 0 and V (0) = 0, for all ρ ∈ P.

Definition 2.2.2. Robust stability

System (2.2.5) is said to be robustly stable if there exists a parameter-dependent Lyapunov
function V (x(t)) = x(t)TP (ρ)x(t) > 0 for every x 6= 0 and V (0) = 0 such that

V̇ (t) = x(t)T (A(ρ)TP (ρ) + P (ρ)A(ρ) + ρ̇
∂P

∂ρ
)x(t) < 0 (2.2.12)

for every x 6= 0 and V (0) = 0 for all ρ ∈ P.

It should be noticed that (2.2.11) and (2.2.12) are infinite dimensional problems since
ρ can take any value in P .

2.2.3 LPV synthesis

Consider a general LPV system

ẋ = A(ρ(t))x+B1(ρ(t))w +B2(ρ(t))u

z = C1(ρ(t))x+D11(ρ(t))w +D12(ρ(t))u

y = C2(ρ(t))x+D21(ρ(t))w

(2.2.13)

where x ∈ R
n, u ∈ R

m, w ∈ R
q, z ∈ R

r and y ∈ R
p are the state, the input, the

disturbance vectors, the controlled output and the measured output, respectively.
ρ(t) ∈ R

k is a vector of scheduling parameters and is assumed to be known (measured
or estimated) and bounded in ρ(t) ∈ P . From now on, ρ(t) is simply denoted as ρ.

The LPV controller associated to the LPV system (2.2.13) is defined as follows

K(ρ) :

(

ẋc

u

)

=

(

Ac(ρ) Bc(ρ)

Cc(ρ) Dc(ρ)

)(

xc

y

)

(2.2.14)

where xc, y and u are the state, the input and output of the controller, respectively, of
the controller associated to the system (3.5.1). Ac ∈ R

n×n, Bc ∈ R
n×ny , Cc ∈ R

nu×n and
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Dc ∈ R
nu×ny .

The LPV synthesis concerns the design of a global LPV controller that guarantees
both stability and performance for all scheduling parameters defined in the predefined set
P . There are two approaches based on Quadratic and Parameter-Dependent Lyapunov
Functions. In the quadratic approach, only the bounds on the scheduling parameter
are taken into consideration (i.e. the parameter can vary as fast as possible) while in
the parameter-dependent approach, further information on parameter rate is used in the
synthesis. Henceforth, the latter approach is less conservative. In the LPV approaches for
semi-active suspension control presented in the next chapters, the systems are sometimes
q-LPV and unfortunately the rates of scheduling parameters are unknown. As the result,
we recall here only the quadratic approach for LPV control.

Stabilization problem

As in [Scherer et al., 1997] et [Apkarian & Gahinet, 1995], if there exist matrices Â, B̂,
Ĉ D̂, and positive definite matrices X, Y satisfying the following LMIs

[

M11(ρi) M12(ρi)

MT
12(ρi) M22(ρi)

]

≺ 0 (2.2.15)

for i = 1 : N

where
M11(ρi) = A(ρi)X +XA(ρi)

T +B2Ĉ(ρi) + Ĉ(ρi)
TBT

2

M12(ρi) = Â(ρi) + A(ρi)
T + C2

T D̂(ρi)
TBT

2

M22(ρi) = Y A(ρi) + A(ρi)
TY + B̂(ρi)C2 + C2

T B̂(ρi)
T

then the LPV controller (2.2.14) which stabilizes the system (2.2.13) is given by

Kc(ρ) = Co{

(

Ac(ρi) Bc(ρi)

Cc(ρi) Dc(ρi)

)

} (2.2.16)

where

Dc(ρi) = D̂(ρi)

Cc(ρi) =
(

Ĉ(ρi)−Dc(ρi)C2X
)

M−T

Bc(ρi) = N−1
(

B̂(ρi)− Y B2Dc(ρi)
)

Ac(ρi) = N−1
(

Â(ρi)− Y A(ρi)X − Y B2Dc(ρi)C2X
)

M−T

−Bc(ρi)C2XM
−T −N−1Y B2Cc(ρi)

(2.2.17)
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where M , N are defined such that MNT = In − XY which can be solved through a
singular value decomposition and a Cholesky factorization.

H∞ performance

H∞ problem for LPV systems - The objective of the synthesis is to find an LPV controller
K(ρ) of the form (2.2.14) such that the closed-loop system is quadratically stable and
that, for a given positive real γ, the induced-L2 norm of the operator mapping w into z
is bounded by γ i.e

sup
ρ∈P

sup
w 6=0,w∈L2

‖z‖2
‖w‖2

≤ γ (2.2.18)

Solution: polytopic approach with quadratic Lyapunov function
It is assumed that the LPV system has a polytopic formulation, i.e. ρ ∈ conv{ρ1, ...ρk}
and that the matrices B2, D12, C2, D21 are parameter independent and D22 = 0. For
a pre-defined real positive scalar γ, the sufficient condition that solves the H∞/LPV
problem is given by Eq. (2.2.19)-(2.2.20) (see the details of the solution in [Scherer
et al., 1997]).











M11 (ρi) ∗ ∗ ∗

M21 (ρi) M22 (ρi) ∗ ∗

M31 (ρi) M32 (ρi) −γIm ∗

M41 (ρi) M42 (ρi) M43 (ρi) −γIp











≺ 0 (2.2.19)

[

X I

I Y

]

≻ 0 (2.2.20)

for i = 1 : 4

where

M11(ρi) = A(ρi)X +XA(ρi)
T +B2Ĉ(ρi) + Ĉ(ρi)

TBT
2

M21(ρi) = Â(ρi) +A(ρi)
T + CT2 D̂(ρi)

TBT
2

M22(ρi) = Y A(ρi) +A(ρi)
TY + B̂(ρi)C2 + CT2 B̂(ρi)

T

M31(ρi) = B1(ρi)
T +DT

21D̂(ρi)
TBT

2

M32(ρi) = B1(ρi)
TY +DT

21B̂(ρi)
T

M41(ρi) = C1(ρi)X +D12Ĉ(ρi)

M42(ρi) = C1(ρi) +D12D̂(ρi)C2

M43(ρi) = D11(ρi) +D12D̂(ρi)D21
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The controller Kci at vertex i is then reconstructed as

Dc(ρi) = D̂(ρi)

Cc(ρi) =
(

Ĉ(ρi)−Dc(ρi)C2X
)

M−T

Bc(ρi) = N−1
(

B̂(ρi)− Y B2Dc(ρi)
)

Ac(ρi) = N−1
(

Â(ρi)− Y A(ρi)X − Y B2Dc(ρi)C2X
)

M−T

−Bc(ρi)C2XM
−T −N−1Y B2Cc(ρi)

(2.2.21)

where M , N are defined such that MNT = In − XY which can be solved through
a singular value decomposition and a Cholesky factorization. The global H∞/LPV

controller is then the convex combination of these local controllers.

2.3 Multi-objective optimization by genetic algo-

rithms

In this thesis, the semi-active suspension control problem will be linked to different
objectives such as passenger comfort, road holding and suspension deflection. Hence the
multi-objective framework is an important issue.

2.3.1 Multi-objective optimization

The multi-objective optimization is a very popular problem in practice and can be de-
scribed as follows

min
x∈C

F (x) =















f1 (x)

f2 (x)
...

fnobj
(x)















, nobj > 2, (2.3.1)

where x is called the decision vector, C the set of possible decision vectors (or the
searching space), and F (x) the objective vector.
Finding an ideal solution x∗ that can minimize simultaneously all objective functions f1,
f2... fnobj

is in fact rarely feasible. Hence, in this case, the concept of Pareto-optimal is
usually used to describe the solution of multi-objective optimization problem and it is
defined as follows.

Definition 2.3.1. Pareto-Ranking Consider two decision vectors a, b ∈ C. Vector a
dominates b if and only if:

{

∀i ∈ {1, 2, ..., nobj} : fi (a) 6 fi (b)

∃j ∈ {1, 2, ..., nobj} : fj (a) < fj (b)
(2.3.2)
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All decision vectors which are not dominated by any other decision vector are called
non-dominated or Pareto-optimal. The family of non-dominated vectors is denoted as
Pareto-front. In the Pareto-front, one cannot improve any objective without degrading
at least one other objective.

There are many formulations to solve the problem (2.3.1). First, there are the aggre-
gated methods like weighted min-max method, weighted global criterion method, goal
programming methods... see [Marler & Arora, 2004] and references therein. One of
the most popular and simple approaches is the weighted sum method which converts
the multi-objective problem into a single objective problem. A particular case of the
weighted sum method, where the multi-objective function F is replaced by the convex
combination of different objectives, is described as follows

min J =

nobj
∑

i=1

αifi (x), s.t x ∈ C (2.3.3)

where
nobj
∑

i=1

αi = 1.

The vector α = (α1, α2, ...αnobj
) represents the gradient of function J (see Fig. 2.5).

By using various sets of α, one can generate several points in the Pareto set. It is
worth noting that the solution of (2.3.3) provides a sufficient condition for (2.3.1), i.e.,
the minimum of (2.3.3) is also Pareto optimal point for (2.3.1), see [Zadeh, 1963] and
[Geoffrion, 1968].

Drawback of (2.3.3):

• Need to repeat the single objective optimization procedure many times (with dif-
ferent values of α).

• Although there has been many methods for selecting weights, none guarantees
that the final will be acceptable.

• If the Pareto curve is not convex, there does not exist any α to obtain points which
lies in the nonconvex part [Das & Dennis, 1997], [Messac et al., 2000] and [Marler
& Arora, 2004].

• Even if the Pareto curve is convex, an even spread of weights does not produce an
even distribution of points on the Pareto curve.

Other methods based on Pareto-ranking and evolutionary algorithms are indeed more
preferable although it is shown in [Purshouse, 2003] that all multi-objective optimization
algorithms that use Pareto-ranking as a fundamental selection method will degrade the

77



Chapter 2. Background on control theory and optimization

Figure 2.5: Illustration of weighted sum method.

performances with increasing number of objectives (from 4 objectives). Instead of search-
ing one best solution as aggregated methods, the Pareto-ranking based methods allow
to obtain many Pareto-optimal points with a single run. Fig. 2.6 presents an example
for minimization problem. The best solution (in sense of Pareto) is not unique. Based
on Pareto-ranking, the best solutions are {1, 2, 3} which are solutions not dominated by
others.

In the next section, the multi-optimization using Pareto-ranking and genetic algo-
rithms will be presented.

Figure 2.6: Illustration of Pareto-Ranking method. In this example, the minimal solu-
tions are desired and the non-dominated set is {1, 2, 3}.
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2.3.2 Genetic algorithms

The genetic algorithms, the most popular types of evolutionary algorithms, have now
grown strongly from the first study of [Holland, 1975], a popular theory-oriented book of
[Goldberg, 1989] and an application-oriented book of [Davis, 1991]. The algorithms are
based on the mechanism of the natural selection and have been proven to be very effective
in optimization with many real applications such as in finance and investment strategies,
robotics, engineering design, telecommunications... They are likely global optimization
techniques (despite the high computational expense) (see [Marler & Arora, 2004]) using
probabilistic, multi-points search, random combination (crossover, mutation) and infor-
mation of previous iteration to evaluate and improve the population. A great advantage
of GAs compared with other searching methods (for example gradient methods) is that
they search regardless of the nature of the objective functions and constraints.

The principle of GAs is presented in Fig. 2.7. At the beginning, GAs initializes
with a random population. Through the genetic operation: selection, crossover and
mutation, new population will be obtained. By using a selection process, the fittest
individuals based on their fitness values will be chosen; crossover and mutation will
be then applied to create the new population. The genetic operation on individuals of
population continues until the optimization criterion is satisfied or a certain number of
generations is reached.

Figure 2.7: Principle of genetic algorithms.

Fitness function - The fitness of an individual is useful for choosing between “good"
and “bad" individuals. An individual with a high fitness value will have a great chance
to be selected.
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Selection - This step is to sort and copy individuals by order of satisfaction of the
fitness function. The higher the value of the fitness, associated to an individual, the
greater the individual’s chances to be selected to participate in the next generation.
“Proportionate selection" (see [Holland, 1975]) and “tournament selection" (see [Miller
& Goldberg, 1995]) are the two most popular selection methods.

Crossover - This is the main operation acting on the population of parents. It consists
of an exchange of parts of chains between two selected individuals (parents) to form two
new individuals (children). This exchange may be due either to a single point or to
multiple points. The Fig. 2.8 is an example for a binary coding crossover.

Mutation - Mutation operates on a single individual by changing randomly a part
of it. In the case of binary coding, this is done by reversing one or more bits in a
chromosome (Fig. 2.8). Other methods can be used as determined by subtracting the
mutation on a gene or replacing it with a random value chosen from a subset of values.

Figure 2.8: Crossover and mutation operation.

As mentioned in [Zitzler et al., 2000], two major problems must be addressed when
an evolutionary algorithm in general and a genetic algorithm in particular is applied to
multi-objective optimization (see also Fig. 2.9):

• How to accomplish fitness assignment and selection, respectively, in order to guide
the search towards the Pareto-optimal set?

• How to maintain a diverse population in order to prevent premature convergence
and achieve a well distributed trade-off front?

The question on which algorithms can handle these two important objectives is an-
swered in the next section.

2.3.3 Elitist multi-objective evolutionary algorithms (MOEAs)

In general, genetic algorithms can be classified as elitist and non-elitist strategies. For
non elitist strategies like MOGA [Fonseca & Fleming, 1993], NSGA [Srinivas & Deb,
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Figure 2.9: Two goals of an evolutionary algorithm: to guide the search towards the
Pareto-optimal set and to achieve a well distributed trade-off front.

1995], [Horn et al., 1994]..., the non-dominated individuals are not conserved in the
population i.e from old population, a new one will be created randomly (using crossover,
mutation and selection). This leads to the loss of good individuals in the old population.
Moreover, the diversity on the Pareto front is difficult to maintain and the convergence
toward the Pareto front is slow. In contrary, for elitist strategies like PAES [Knowles
& Corne, 1999], SPEA2 [Zitzler et al., 2001], NSGA-II [Deb et al., 2002]... they always
keep the best individuals by saving them in an external archive (called elitist set) whose
size is considerable compared with the population. These elitist individuals are then
reinserted in the population. The procedure to update the elitist set and reinsert the
elitist individuals in the population are different.

Recent results in [Zitzler et al., 2000] show clearly that elitism can significantly speed
up the performance of the GA. The elitist MOEAs like SPEA2, NSGA-II... outperform
other non-elitist MOEAs for both the distance to the optimal front and the spread
distribution of non-dominated solution.

In the following, the main loop of the elitist MOEAs named SPEA2 will be presented
because the two important objectives (good approach to the Pareto-front and good
diverse population) are well satisfied for multi-objective optimization problems which
have no more than four objective functions. This algorithm will be also applied to
the semi-active controller optimization in the next chapters. For further details of the
algorithm, it is recommended to read [Zitzler et al., 2001].

Strength Pareto Evolutionary Algorithm 2 (SPEA2) The main loop is as follows

• Step 1: Generate the initial population P and set P̄ = ∅.

• Step 2: Set P ′ = P +P̄ and perform fitness assignment on the extended population
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P ′ of size N + N̄ .

• Step 3: Update external population by copying all non-dominated members of P
to P̄ and afterwards by removing double or dominated individuals from P̄ .

• Step 4: If size of P is larger than N , then calculate reduced non-dominated set Pr
of size N by clustering and set P = Pr.

• Step 5: Select N individuals out of the N ′ individuals in P ′ and perform crossover
and mutation to create the next population P ′′.

• Step 6: Substitute P by P ′′ and go to Step 2 if the maximum number of generations
is not reached.

In SPEA2, the fitness of each solution is defined by strength value (based on Pareto-
dominance relation) and density estimation (function of the distance to k-th nearest data
point, where k ∈ N is a predefined number). The information about density estimation
is added into the fitness value to improve the diversity of the Pareto-front and prevent
the premature convergence.

2.4 Input saturation control

Input saturation control is an interesting problem in terms of practical implementa-
tion. In semi-active suspension control, we will see that the passivity constraint can be
transformed into that of input saturation and can be handed in different ways. In this
section, we present briefly some interesting problems of the input saturation control.
The solutions of these problems are not given here but can be accessed through the cited
references.

2.4.1 Introduction

In the last years, many studies have focused on the control of saturated (in states, control
inputs...) systems which are present in almost all real applications. For a system with
input saturation, there is usually an inconsistency between the states of the plant and
those of the controller because of the saturated actuator between the system control input
and the controller output. This effect, usually called windup, degrades dramatically the
closed-loop performances or even worse may cause the system instability. To preserve
the consistency, the input to controller needs to be changed by an appropriate signal,
which is provided by a compensator called anti-windup. Usually the problems on how
to guarantee the (global or local) stabilization of the saturated system in the presence of
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disturbance and to ensure some closed-loop performances are the most interesting ones.
There are two methods to solve these problems: the two-step and one-step design. The
traditional two-step method first designs a linear controller without considering the input
saturation effect and then add an anti-windup compensator to minimize the adverse
effects of control input saturation on closed-loop performance [Kothare et al., 1994],
[Grimm et al., 2003], [Wu & Lu, 2004]. While for the later, the controller and an anti-
windup compensator (static in general) are simultaneously computed [Gomes da Silva
Jr. et al., 2008], [Mulder et al., 2009]. It can be seen that the control design with
input saturation is a nonlinear problem. Many solutions have been proposed to model
the saturation effect in such a way that the problem can be treated within a linear
framework, for example: the polytopic differential inclusion model [Gomes da Silva Jr.
& Tarbouriech, 2001], [Wu et al., 2000], [Hu et al., 2002a] and the use of sector conditions
[Gomes da Silva Jr. & Tarbouriech, 2005], [Wu & Lu, 2004], [Mulder et al., 2009]. Up
to now, numerous results have been obtained for LTI systems. This section will present
a brief overview about the control problem with input saturation for the class of LTI
systems.

Let consider the following system

ẋ = Ax+B1w +B2u and − umin ≤ u ≤ umax (2.4.1)

where x is the state, w is the disturbance and u is the control input, umin, umax ∈ R+.
The main interest for the study of such systems concerns the influence of input saturation
effect on the stability and performance of the closed-loop system. It has been proven by
many studies, only in the case where the open-loop system is already exponentially stable
that the global stability can be assured by a controller. In other cases, the stability (and
performance) is guaranteed in a local region of stability. If this region is small, the closed-
loop system may be unstable depending on the initial states and disturbance input. For
example, consider the system below

ẋ =

[

0 1

1 0

]

x+

[

0

−1

]

u, −5 ≤ u ≤ 5 (2.4.2)

Note that the system (2.4.2) is unstable (its poles are ±1) and it can be stabilized by a
state-feedback controller

K(x) =
[

13 7
]

x (2.4.3)

The result presented in Figure 2.10-2.11 shows that the effect of input saturation depends
on initial state of the system. In Fig. 2.10, when x0 = [−1; 4], both the saturated
and unsaturated closed-loop systems are stable, but when x0 = [−3; 3] (Fig. 2.11) the
stability of the saturated one is not preserved. We can conclude that the region of
stability offered by the controller (2.4.3) is not sufficiently large to assure that under
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saturation effect −5 ≤ u ≤ 5, the system still converges to the origin when it starts from
the initial point x0 = [−3; 3].
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Figure 2.10: Effect of input saturation: x0 = [−1; 4]. Unsaturated system (Left) and
Saturated system (Right)
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Figure 2.11: Effect of input saturation: x0 = [−3;−3]. Unsaturated system (Left) and
Saturated system (Right)

The following definition is useful for the analysis of the input saturation control
problem.

Definition 2.4.1. Region of stability (attraction)

The region of stability of the equilibrium xe is defined as

RA(xe) = {x(0) ∈ R
n; x(t) → xe when t→ ∞} (2.4.4)
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The system is globally asymptotically stable if RA = R
n. However, as mentioned

above for the systems subject to input saturation, in general RA 6= R
n. In these cases, the

local (or regional) stability is analyzed. Both following problems are usually encountered:

• Analysis problem: Find a set D0 ∈ RA, as large as possible, such that: for any
x(0) ∈ D0, x(t) → xe when t→ ∞. In this case, D0 is called the estimate of RA.

• Synthesis problems:
- (1) For a given set D0, find K such that for all x(0) ∈ D0, x(t) → xe when t→ ∞,
or,
- (2) Find a controller K in order to maximize the estimate D0 of RA or
- (3) For a given set D0, find K such that for all x(0) ∈ D0, x(t) → xe when t→ ∞

and minimize some performance criteria...

It can be seen that saturation is a nonlinear effect; to take it into account in the
linear analysis and design, the saturation can be modeled by different methods. In the
following, three methods are presented. For simplicity and clarity, only the case of state-
feedback controller, i.e. u = Kx, is considered. Note that Xi stands for the ith element
of X.

2.4.2 Saturation modeling

Regions of saturation

Define ξ ∈ R
m:

• if ui = umaxi then ξi = 1

• if ui = Kix then ξi = 0

• if ui = −umini
then ξi = −1

The system (2.4.1) with is now rewritten as

ẋ = (A+Bdiag(Im − |ξj|)K)x+Bu(ξj) j = 1 : m (2.4.5)

or equivalent to following linear system with an addictive disturbance

ẋ = Ājx+ pj (2.4.6)

See more details in [Gomes da Silva Jr. & Tarbouriech, 1999].
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Polytopic

Approach 1: see [Gomes da Silva Jr. et al., 2003]

sat(Kx) = Γ(α(x))Kx (2.4.7)

where Γ(α(x)) is a diagonal matrix whose diagonal elements are defined for i = 1 : m as

αi(x) =















umaxi

Kix
if Kix > umaxi

1 if − umini
≤ Kix ≤ umaxi

−umaxi

Kix
if Kix < −umini

(2.4.8)

ẋ = (A+BΓ(α(x))K)x (2.4.9)

Define

S(K, uαmin, u
α
max) = {x ∈ R

n;
−umin
αli

≤ Kix ≤
umax
αli

, ∀i = 1 : m} (2.4.10)

where 0 < αli < 1 with i = 1 : m. For any x ∈ S(K, uαmin, u
α
max), one gets

0 < αli ≤ αi(x) ≤ 1, ∀i = 1 : m (2.4.11)

Γ(α(x)) ∈ Co{Γ1(αl),Γ2(αl),Γ2m(αl)} (2.4.12)

where Γj(αl) are diagonal matrices whose elements take the value 1 or αli

Lemma 2.4.1. If x ∈ S(K, uαmin, u
α
max) then

ẋ =
2m
∑

j=1

λj(A+BΓj(αl)K)x (2.4.13)

with
∑2m

j=1 λj = 1, λj ≥ 0.

In this approach, αl represents the degree of saturation and must be known. As the
result, the approach presents some conservatism.

Approach 2: see [Hu et al., 2002b]
Define:

•

S(H, umin, umax) = {x ∈ R
n;−umini

≤ Hix ≤ umaxi , i = 1 : m} (2.4.14)
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• Γ+
j : diagonal matrices whose diagonal elements take the value 1 or 0, j = 1 : 2m

• Γ−
j = Im − Γ+

j

Lemma 2.4.2. If x ∈ S(H, umin, umax) then

sat(Kx) ∈ Co{Γ+
j Kx+ Γ−

j Hx} (2.4.15)

This approach is less conservative than the approach 1 because H is a design matrix.
Note that if H = Γ(αl)K, this approach is equivalent to approach 1.

Sector nonlinearity

The closed-loop system can be re-written as

ẋ = Ax+Bsat(Kx) (2.4.16)

= (A+BK)x− Bψ(Kx) (2.4.17)

with ψ(Kx) is the decentralized dead-zone nonlinearity and is defined by

ψ(Kx) = Kx− sat(Kx) (2.4.18)

The sector condition is one of the most interesting methods to model the saturation
effect. Thanks to the two following lemmas, the saturation effect can be taken into
consideration in linear design.

Approach 1: Classical sector condition

Lemma 2.4.3. Let S(K, uλ0) is a polyhedral set defined as follows:

S(K, uλ0) = {x ∈ R
n;−

u0i
1− Λ(i,i)

≤ Kix ≤
u0i

1− Λ(i,i)

, i = 1 : m} (2.4.19)

then the following holds:

ψ(Kx)TT [ψ(Kx)− ΛKx] ≤ 0, ∀x ∈ S(K, uλ0), ∀T > 0 (2.4.20)

This approach has been used in many studies [Tyan & Bernstein, 1997], [Kiyama &
Iwasaki, 2000]. However, it can be seen that the lemma applies for all nonlinearities lying
in the sector and not only for deadzone nonlinearities. This is the source of conservatism.
The modified version of this lemma is presented as follows.

Approach 2: [Gomes da Silva Jr. & Tarbouriech, 2005]
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Lemma 2.4.4. Let S(K −G, u0) be a polyhedral set defined as follows:

S(K −G, u0) = {x ∈ R
n;−u0i ≤ (Ki −Gi)x ≤ u0i , i = 1 : m} (2.4.21)

then the following holds:

ψ(Kx)TT [ψ(Kx)−Gx] ≤ 0, ∀x ∈ S(K −G, u0), ∀T > 0 (2.4.22)

• If G = ΛK, equivalent to Approach 1

• The lemma applies only to the deadzone nonlinearities. Compared to approach 1,
this reduces the conservatism.

2.4.3 Stability Analysis

The stability analysis problem is stated as follows: with a given stabilizing controller K,
determine the regions of the state space in which the convergence of the trajectories of
the closed-loop system towards the origin is guaranteed.
Solution: The basic idea to the problem is to use ellipsoidal or polyhedral contractive set
E associated to the Lyapunov candidate function V (x) and establish an inclusion con-
straint which ensures the contractive set contained in the validity region of the saturation
modeling S (see Fig. 2.12).

���

���

�

Figure 2.12: Invariant set approach for stability: S validity region of saturation, E

contractive set

It turns out that the stability problem corresponds to the estimation of the region of
attraction. In this context, a convex function f(E) associated to the geometry/size of
the contractive set E is usually chosen. The stability analysis concerns the maximization
of this set (i.e. maximization of volume, maximization of the minor axis or maximization
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in some directions).

In summary, the stability analysis can be done through the following optimization
problem

minf(E)

subject to stability condition (2.4.23)

2.4.4 Controller design

Consider the following saturated system

ẋ = Ax+B1w +B2u

z = C1x+D11w +D12u (2.4.24)

y = C2x

where x ∈ R
n, u ∈ R

m, w ∈ R
q, z ∈ R

r and y ∈ R
p are the state, the input, the

disturbance vectors, the control output and the measured output, respectively.
Consider also an LTI controller of the form

ẋc = Acxc +Bcuc + v (2.4.25)

yc = Ccxc +Dcuc

where xc ∈ R
nc , uc ∈ R

p, yc ∈ R
m, v is an additional input used for anti-windup

compensation.

The unconstrained closed-loop system of the plant (see Fig. 2.13), and the controller,
is defined by the following interconnections

u = yc, uc = y, v = 0 (2.4.26)

In case of input saturation control, we consider the following dynamic LTI controller
with a static anti-windup action

ẋc = Acxc +Bcuc + Ec(sat(yc)− yc) (2.4.27)

yc = Ccxc +Dcuc

where xc ∈ R
nc , uc ∈ R

p, yc ∈ R
m and Ec is a static anti-windup term. The intercon-

nections between the plant and the controller (see Fig. 2.14) are given by

u = sat(yc), uc = y, v = Ec(sat(yc)− yc) (2.4.28)
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Figure 2.13: Unconstrained closed-loop plant.

where the saturated function sat(.) is defined by

sat(yci) =















umaxi if yci > umaxi

yci if − umini
≤ yci ≤ umaxi

−umini
if yci < −umini

(2.4.29)

Figure 2.14: Control structure for system with input saturation

Stabilization problem

Asymptotic stabilization In the case of asymptotic stabilization, the saturated sys-
tem (2.4.24) without disturbance is considered

ẋ = Ax+B2u (2.4.30)

y = C2x (2.4.31)

where −umin ≤ u ≤ umax.

The asymptotic stabilization problem can be one of the two following cases:

Definition 2.4.2. Problem 1 Given a set of admissible initial states D0. Find a con-
troller K of the form 2.4.27 such that all the trajectories of the closed-loop system initi-
ated in D0, asymptotically converge towards the origin.
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Definition 2.4.3. Problem 2 Find a controller K such that the asymptotic closed-loop
system is ensured in a region as large as possible. This problem concerns the optimization
of a contractive set.

External stabilization In this case, the stabilization of the closed-loop system in the
presence of disturbance is studied. Let consider the following system

ẋ = Ax+B1w +B2u (2.4.32)

y = C2x (2.4.33)

where −umin ≤ u ≤ umax. In general, the stability of the closed-loop system is not
guaranteed for any bounded disturbance input. Usually, one of the following hypotheses
are considered in the controller design.

• Amplitude bounds
W = {w ∈ R

q, wTw ≤ δ} (2.4.34)

• Energy bounds

W = {w ∈ R
q,

∫ t

0

wTwdτ ≤ δ} (2.4.35)

Concerning the stabilization of a saturated system with the presence of disturbance, two
interesting optimization problems are

• Find a controller K that maximizes the admissible disturbance bound δ.

• For a given bound δ on the admissible disturbance, find a controller K ensuring
that the trajectories of the closed-loop system are bounded for any w ∈ W , and
that the contractive set is maximized.

Local (regional) design for stability and performance

It is showed in [Grimm et al., 2003], [Hu, 2008] that, in the presence of input saturation
constraint, for the systems which are not globally exponentially stable, the globally ex-
ponential stabilization is never achievable even with a nonlinear controller. The global
stabilization can be only achieved with a system which is already globally stable. Other-
wise, the local and regional results are always achievable with non-exponentially unsta-
ble plants. Due to this fact, a regional analysis is usually performed. Even, for globally
stable systems, the region analysis is also useful to reduce the conservatism when the
systems operate with a bounded region (bounded disturbance input, bounded states due
to physical constraints...).
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In the following, three properties and three associated problems for the regional
analysis are presented. The solution for these problems are found in [Dai et al., 2006],
[Dai et al., 2009] and [Hu, 2008].

Let us define E the domain of attraction of the plant (2.4.24), Ec the domain of
attraction of the controller (2.4.25).

Property 1: Given a set E ⊂ R
n, the plant (2.4.24) is Ep-regional exponentially

stabilized by controller (2.4.27) if the origin of the closed-loop system is exponentially
stable with the domain of attraction including E × Ec (where Ec ⊂ R

nc is a suitable set
including the origin).

Property 2: Given a set Rp ⊂ R
n and a number s > 0, the controller (2.4.27)

guarantees (s, Rp)-reachability for the plant (2.4.24) if the response (x(t), xc(t)), t ≥ 0

of the closed-loop system starting from the equilibrium point (x(0), xc(0)) = (0, 0) and
with ‖w‖2 < s, satisfies x(t) ∈ Rp for all t ≥ 0.

Property 3: Given two numbers s, γ > 0, the controller (2.4.27) guarantees (s, γ)-
regional finite L2 gain for the plant (2.4.24) if the performance output response z(t),
t ≥ 0 of the closed-loop system starting from the equilibrium point (x(0), xc(0) = (0, 0))

and with ‖w‖2 < s, satisfies ‖z‖2 < γ‖w‖2

Definition 2.4.4. Problem 1: Exponential stability

Consider the linear plant (2.4.24), a bound δ on the input disturbance w (bound on
amplitude or energy), a desired reachability region Rp and a bound γ on the desired
regional L2 gain. Design a feedback controller K of the form (2.4.27) guaranteeing (δ, Rp)

reachability, (δ, γ)- regional finite L2 gain and which maximizes the exponential stability
region E of the closed-loop system.

Definition 2.4.5. Problem 2: Reachable region

Consider the linear plant (2.4.24), a bound s on w, a desired stability region E and a
bound γ on the desired regional L2 gain. Design a feedback controller K of the form
(2.4.27) guaranteeing E regional exponential stability, (s, γ)-regional finite L2 gain and
which minimizes the (s, Rp) reachability region of the closed-loop system.

Definition 2.4.6. Problem 3: Global L2 gain

Consider the linear plant (2.4.24), a bound s on w, a desired stability region E and
a desired reachability region Rp. Design a feedback controller K of the form (2.4.27)
guaranteeing E regional exponential stability, (s, Rp) reachability and which minimizes
the (s, γ)-regional finite L2 gain of the closed-loop system.
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2.5 Conclusions

In this chapter, we have presented some definitions, lemmas and theorems concerning
the

• Optimization methods by LMIs, Genetic Algorithms

• LPV control and input saturation control

that will be useful for semi-active suspension control in the next chapters.
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Chapter 3

Suspension systems with nonlinear

Magneto-Rheological dampers

Recently, the Magneto-Rheological (MR) dampers have appeared to be one of the most
investigated devices in both industrial and academic studies on semi-active suspension
control. They use MR fluids whose characteristics can be changed through the applica-
tion of a magnetic field. Compared with other kinds of semi-active dampers (like ER,
friction dampers), they have great advantages like fast time response as well as stable
hysteretic behavior over a broad range of temperature, low battery voltages consump-
tion. They represent a new generation of semi-active dampers and are applied in many
applications like shock absorbers and damping devices, clutches breaks, actuators or
artificial joints, operational earthquake dampers to reduce motion in buildings and of
course in automotive systems... Fig. 3.1 shows a schematic layout of an MR damper

Figure 3.1: Schematic layout of an MR damper.

For the control of MR dampers, in our paper in collaboration with S. Savaresi, C.
Spelta, D. Delvecchio (see [Do, Sename, Dugard, Savaresi, Spelta & Delvecchio, 2010]),
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the extended versions of well-known Skyhook ([Karnopp et al., 1974]) and Mixed
Skyhook-ADD [Savaresi & Spelta, 2007] have been proposed.

The aim of this chapter is to emphasize the interest of the LPV methodology for
suspension modelling and control. In this study, recent developments in our publications
[Do, Sename, Dugard, Aubouet & Ramirez-Mendoza, 2010], [Do, Sename & Dugard,
2010], [Do, Sename, Dugard & Soualmi, 2011] are presented to:

• first, develop an LPV model for an automotive suspension system starting from a
non linear semi-active damper model,

• second, using an original LPV representation of the dissipativity of the semi-active
damper, develop an ad-hoc H∞/LPV controller.

• finally, a controller optimization procedure using genetic algorithms.

The whole LPV model is used to design a polytopic H∞ controller for an automotive
suspension system equipped with a Magneto-Rheological semi-active damper. This con-
troller aims at improving ride comfort and/or road holding, depending on the required
specifications.

3.1 Introduction

As mentioned in Chapter 1, the control design problem for semi-active suspensions has
been tackled with many approaches during the last three decades such as the Skyhook
control [Karnopp et al., 1974], the Groundhook control [Valasek et al., 1997], optimal
control [Savaresi, Silani & Bittanti, 2005], [Canale et al., 2006], [Giorgetti et al., 2006],
or H∞ control ([Rossi & Lucente, 2004], [Sammier et al., 2003]), LPV control [Poussot-
Vassal et al., 2008]... In these studies, the nonlinear characteristics (the bi-viscous and
the hysteretic behaviors of semi-active dampers, see Fig. 3.2) are not taken into account
in the controller design. This may result in bad performance when these controllers
are implemented and applied to real suspension systems. The main contribution of this
chapter is to propose a new control design method for nonlinear semi-active suspensions
using the LPV approach. The methodology is based on a nonlinear static model of
the semi-active damper where the bi-viscous and hysteretic behaviors of the damper
are taken into consideration. The nonlinear system associated with the quarter vehicle
model is reformulated in the LPV framework. The dissipativity problem is brought into
that of input saturation, using a simple change of variable. To improve ride comfort
and road holding, the H∞ controller for LPV system (see [Apkarian & Gahinet, 1995]
and [Scherer et al., 1997]) is used. Finally, an optimization of the weighting function
selection for multi-objective H∞ design using Genetic Algorithms is proposed. The
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results in [Do, Sename & Dugard, 2011], [Do, Sename, Dugard & Soualmi, 2011] show
that this procedure is quite efficient for the particular problem of semi-active suspension
control and it is general enough for other multi-objective optimization designs for LPV
systems.

Figure 3.2: Realistic MR damper force with bi-viscosity (pre-yield and post-yield viscous
damping) and hysteresis.

3.2 Semi-active suspension modelling for MR dampers

Many models have been proposed for semi-active suspension modelling. For example,
the Bingham model is a phenomenological model that describes the behavior of an
Electro-Rheological (ER) damper [Stanway et al., 1987]. The model consists of a viscous
damper in parallel with a Coulomb friction element. Another well-known method is the
semi-phenomenological Bouc-Wen model. It was first introduced by Bouc [Bouc, 1967]
and then modified by Wen [Wen, 1976]. This model has been used widely to describe
hysteretic systems. For the modelling of MR dampers, in [Spencer Jr et al., 1997]
Spencer proposed a modified version the Bouc-Wen model or in [Savaresi, Bittanti &
Montiglio, 2005], the authors presented a black box model. [Guo et al., 2006] proposed
a semi-phenomenological model. Besides the accuracy, this model has an interesting
structure which can be extended for LPV control synthesis.

Shuqi Guo model for MR damper In [Guo et al., 2006], the behavior of the semi-
active damper is represented using the following nonlinear equation:

Fshuqi−guo = a2

(

ẋmr +
v0
x0
xmr

)

+ a1 tanh

(

a3

(

ẋmr +
v0
x0
xmr

))

(3.2.1)

where Fshuqi−guo is the damper force, xmr is the suspension deflection, a1 is the dynamic
yield force of the MR fluid, a2 and a3 are related to the post-yield and pre-yield viscous
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damping coefficients, v0 and x0 denote the absolute value of hysteretic critical velocity
ẋ0 and hysteretic critical deflection x0 where ẋ0 and x0 are defined as the velocity and
deflection when the MR damper force is zero.

The model is of semi-phenomenological type and based on a tangent hyperbolic func-
tion to model the hysteresis and bi-viscous characteristic of a damper. This model has a
simple and elegant formulation, but the control input signal (current, for MR dampers)
is not present. Obviously it cannot be used in that form for the controller synthesis.

Control-oriented MR damper model In [Lozoya-Santos, Ruiz-Cabrera, Morales-
Menéndez, Ramírez-Mendoza & Diaz-Salas, 2009], the authors have shown that if each
coefficient in (3.2.1) is defined as a polynomial function of electric current, the obtained
model will better approach the real data. However for control purpose, a simpler control-
oriented model where only one parameter depends on the input signal was proposed and
first studied in [Do, Sename & Dugard, 2010], [Do, Spelta, Savaresi, Sename, Dugard
& Delvecchio, 2010]. According to the authors, a control-oriented model for semi-active
damper can be given by

Fmr = c0ẋmr + k0xmr + fI tanh (c1ẋmr + k1xmr) (3.2.2)

where Fmr is the damper force, c0, c1, k0 and k1 are constant parameters and fI is the
controllable force coefficient which is varying according to the electrical current I in coil
(0 ≤ fImin < fI ≤ fImax).

Compared with the model (3.2.1) whose characteristics are static and uncontrollable,
the model (3.2.2) reflects the realistic behavior of an MR damper. This model allows
fulfilling the passivity constraint of the semi-active damper and introduces a control
input fI . The limitation of the model lies in the assumption that the MR dampers’
hysteresis is invariant with respect to the current I. Fig. 3.3 presents the dependency
of the damper force to the input current. Changing the current in the coil of an MR
damper changes its characteristics. Here, the bi-viscous and the hysteresis can be clearly
observed.

The model parameters used in Fig. 3.3 are the following: c0 = 810.78[Ns/m], k0 =

620.79[N/m], c1 = 13.76[s/m], k1 = 10.54[1/m]. These experimental parameters were
identified by Jorge de Jesus Lozoya-Santos (see [Lozoya-Santos et al., 2010] and [Lozoya-
Santos, Morales-Menendez, Ramirez-Mendoza & Nino-Juarez, 2009]) on the test-rig at
Metalsa 1 (see Fig. 3.4).

Remark 3.2.1. The experimental test-bench consists of three key blocks: an actuator
FlexTest GT MTS TM , an electric current controller and an acquisition system. The
man-machine interface interacts with the control system and the acquisition system.

1
www.metalsa.com.mx
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Figure 3.3: MR damper characteristics with different current values I: Force v.s Deflec-
tion (Left) and Force v.s Velocity (Right)

The specifications of the actuator are from 25 psi to 3000 psi and a stroke of 150 mm.
A sensor is used for measuring the displacement. Electrical current is measured by a
resistor connected in series with the coil of the MR damper. An Instron TM load cell
measures the generated forces.

The model identification makes use of a sinusoidal displacement (about 4 Hz) which is
randomly modulated in amplitude, and a random signal of electric current. The Fig. 3.5
presents the experimental data in the interval [30-33] [s]. As seen in Fig. 3.6, the model
tracks well the real data. The average ESR (Error-to-Signal-Ratio) is around 7%, and the
maximum ESR is about 20% (in high frequencies where the MR force changes rapidly).
More details on the experimental results may be found in [Lozoya-Santos et al., 2010]
and [Lozoya-Santos, Morales-Menendez, Ramirez-Mendoza & Nino-Juarez, 2009].

Let us return to the model (3.2.2), which has an interesting characteristic that can
be exploited for LPV design. Note that the function tanh (c1ẋmr + k1xmr) is bounded in
[-1;1] for any value of ẋmr and xmr. Moreover the function value is known because the
damper deflection xmr and velocity ẋmr can be measured and computed using a unique
displacement sensor. It is hence naturally a scheduling parameter in the LPV design.

3.3 The quarter vehicle model

In this study, the damper force Fmr is given as in (3.2.2) and satisfies the passivity
constraint, in terms of constraints on fI

0 < fImin < fI ≤ fImax (3.3.1)
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Figure 3.4: Experimental test-rig for MR damper parameter identification
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Figure 3.5: Experimental data

The dynamical equations are rewritten as follows


























msz̈s = −ks (zs − zus)− c0 (żs − żus)− k0 (zs − zus)

−fI tanh (c1 (żs − żus) + k1 (zs − zus))

musz̈us = ks (zs − zus) + c0 (żs − żus) + k0 (zs − zus)

+fI tanh (c1 (żs − żus) + k1 (zs − zus))− kt (zus − zr)

(3.3.2)
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Figure 3.6: Model’s force v.s real data

❥

zs

zus

zr

ms

mus

ks Semi-active
damper

kt

Figure 3.7: Model of quarter vehicle with a semi-active damper.

It is worth noting that (3.3.2) is a nonlinear differential equation system. In this chapter,
the 1/4 Renault Mégane Coupé (1/4 RMC) (see Tab. 1.1 in Chapter 1) equipped with
an MR damper presented in section 3.2 is studied. The MR damper model parameters
are given in Tab. 3.1.

3.4 LPV model for semi-active suspension control

With the defined system and the performance objectives in the previous section, in the
following, an LPV model for controller synthesis is formulated for further analysis and
control. Denote:
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Table 3.1: Parameter values of the quarter car model equipped with an MR damper

Parameter Value Unit
c0 810.78 [Ns/m]

k0 620.79 [N/m]

fmin 0 [N ]

fmax 800 [N ]

c1 13.76 [s/m]

k1 10.54 [1/m]

• cp = c0

• kp = ks + k0

• zdef = zs − zus

• żdef = żs − żus

• ρ̂ = tanh (c0 (żs − żus) + k0 (zs − zus))

From (3.3.2), the state-space representation of the quarter vehicle model can be deduced
as follows:















ẋs = Asxs +Bsρ̂fI +Bsww

z = Cszxs +Dszρ̂fI

y = Csxs

(3.4.1)

where xs=(zs, żs, zus, żus)
T , w=zr, y = (zs − zus, żs − żus)

T , z = (z̈s zus)
T .

As =















0 1 0 0

− kp
ms

− cp
ms

kp
ms

cp
ms

0 0 0 1
kp
mus

cp
mus

−kp+kt
mus

− cp
mus















, Bs =















0

− 1
ms

0

1
mus















, Bsw =















0

0

0

kt
mus















,

Cs =

(

1 0 −1 0

0 1 0 −1

)T

Csz =

(

−kp
ms

−cp
ms

kp
ms

cp
ms

0 0 1 0

)

, Dsz=

(

−1
ms

0

)

Remark 3.4.1. The considered measurement outputs are the suspension deflection and
suspension deflection velocity, which allows to state that ρ̂ can be known in real-time.

Remark 3.4.2. As mentioned in the previous section, the performance objectives are
ride comfort and road holding. Ride comfort is clearly related to the vehicle body
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acceleration z̈s. Road holding, beside being quantified by the dynamic tire deflection
zus− zr, is related to the bouncing of the wheel zus. Consequently, the controlled output
vector may be chosen as z = (z̈s zus)

T .

As explained above, to guarantee the dissipativity of an MR damper, the control
signal fI must satisfy the constraint (3.3.1). By defining

uI = fI − f0 (3.4.2)

where f0 = (fImin + fImax)/2, the dissipativity constraint on fI is recast as a saturation
constraint on uI , i.e.

−ū ≤ uI ≤ ū (3.4.3)

where ū = (fImax − fImin)/2.

With this modification, the state-space representation of the quarter vehicle is given
as follows:

P :















ẋs = (As +Bs1
ρ̂

Cs1xs
Cs1)xs +Bsρ̂uI +Bsww

z = (Csz +Ds1
ρ̂

Cs1xs
Cs1)xs +Dszρ̂uI

y = Csxs

(3.4.4)

where Bs1 =
(

0 − f0
ms

0 f0
mus

)T

, Cs1 =
(

k1 c1 −k1 −c1

)

, Ds1=
(

−f0
ms

0
)

In this study, the LPV model (3.4.4) can be used to design an LPV controller. How-
ever, such a controller may not ensure the closed-loop stability and performances since
the saturation constraint (i.e the dissipativity constraint) is not accounted for in the
design. Some solutions for this problem have been proposed. For example, in [Poussot-
Vassal et al., 2008], a scheduling parameter is indeed defined as the difference between the
real controlled damper force and the required one given by the controller. However the
dissipativity constraint is not theoretically fulfilled. Another possible method is to add,
in the closed-loop system, an AWBT (Anti Wind-up Bumpless Transfer) compensation
to minimize the adverse effects of the control input saturation on the closed-loop per-
formance [Gomes da Silva Jr. et al., 2008], [Grimm et al., 2003], [Kothare et al., 1994],
[Mulder et al., 2009]. In the next section, a simple method is presented to solve the
problem by considering the input saturation as a scheduling parameter. This approach
is related to [Wu et al., 2000].

Define the saturation function sat() as follows

sat(uI) =















ū if uI > ū

uI if − ū ≤ uI ≤ ū

−ū if uI < −ū

(3.4.5)
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The state-space representation of the system (3.4.4) subject to the input saturation
constraint (3.4.3) is rewritten as

P :















ẋs = (As +Bs1
ρ̂

Cs1xs
Cs1)xs +Bsρ̂

sat(uI)
uI

uI +Bsww

z = (Csz +Ds1
ρ̂

Cs1xs
Cs1)xs +Dszρ̂

sat(uI)
uI

uI

y = Csxs

(3.4.6)

Denote ρ1 = ρ̂ sat(uI)
uI

and ρ2 = ρ̂

Cs1xs
. From (3.4.6), the following LPV system is now

obtained

P :















ẋs = (As +Bs1Cs1ρ2)xs +Bsρ1uI +Bsww

z = (Csz +Ds1Cs1ρ2)xs +Dszρ1uI

y = Csxs

(3.4.7)

In (3.4.7) the control input matrix Bsρ1 is parameter dependent, which is not consistent
with the solution of the H∞ design problem for polytopic systems [Apkarian & Gahinet,
1995]. This problem can be overcome by adding the following filter into (3.4.7) to make
the control input matrix independent from the scheduling parameter:

Wf :

(

ẋf

uI

)

=

(

Af Bf

Cf 0

)(

xf

u

)

(3.4.8)

with
‖Wf‖∞ ≤ 1 (3.4.9)

where Af , Bf , Cf are constant matrices.

Remark 3.4.3. The condition (3.4.9) ensures that the saturation constraint on uI is
kept for the new control input u. It means that the following implies (3.4.3)

−ū ≤ u ≤ ū (3.4.10)

From Eq. (3.4.7) and Eq. (3.4.8), the control oriented model is now represented by
an LPV system with two scheduling parameters ρ1 and ρ2:















ẋ = A (ρ1, ρ2) x+Bu+B1w

z = Cz (ρ1, ρ2) x

y = Cx

(3.4.11)

where

x =
(

xs
T xf

T

)T
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A (ρ1, ρ2) =

(

As + ρ2Bs1Cs1 ρ1BsCf

0 Af

)

, B =

(

0

Bf

)

, B1 =

(

Bs1

0

)

,

C =

(

Cs

0

)T

, Cz (ρ1, ρ2) =
(

Csz + ρ2Ds1Cs1 ρ1DszCf

)

ρ1 = tanh(Cs1xs)
sat(cfxf )

cfxf
, ρ2 =

tanh(Cs1xs)
Cs1xs

Notice also that ρ1 and ρ2 are not independent. As seen in Fig. 3.8, the set of (ρ1, ρ2)
is represented by the shaded area and this set is not a polytope. In the following section,
a polytopic approach will be applied for LPV system (3.4.11) by considering a polytope
that includes all possible scheduling parameter trajectories of (ρ1, ρ2).

 1  0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

ρ
1

ρ
2

Figure 3.8: Set of scheduling parameters (ρ1, ρ2) (shaded area).

Indeed, the aim is to find an LPV controller that guarantees the stability and the
H∞ performance for the system (3.4.11). It is well-known that the quality of this con-
troller depends on the choice of some weighting functions. In the next section, a general
procedure for the optimization of the weighting functions selection will be proposed and
then applied to the semi-active suspension control.

3.5 OptimizingH∞/LPV controller for semi-active sus-

pensions

The H∞ control design approach is an efficient way to improve the performances of a
closed-loop system in pre-defined frequency ranges. The key step of the H∞ control de-
sign relies on the selection of the weighting functions which depend on the engineer skill
and experience. In many real applications, it is very difficult to choose the weighting
functions because the performance specifications are not accurately defined, i.e., it is
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simply to achieve the best possible performances (optimal design) or to achieve an opti-
mally joint improvement of more than one objective (multi-objective design). Therefore
it appears interesting to optimize the selection of the weighting functions to get the
desired closed-loop performances. As studied in [Beaven et al., 1996], [Hu et al., 2000],
it has been proposed to consider a system, no matter how complex it is, as a combina-
tion of sub-systems of the first and second orders, for which it is easy to find the good
weighting functions to be used in the H∞ control methodology. However, there is no
explicit method to find these functions in the general case. The usual way is to proceed
by trial-and-error. Recently, as in [Alfaro-Cid et al., 2008], the use of nonlinear opti-
mization tools, such as the Genetic Algorithms, has been proved to be interesting since
the parameter design is here related to nonlinear cost functions. Below, the problem
formulation of the H∞/LPV control design for polytopic systems is presented according
to the considered application.

In the particular case of semi-active suspension control, ride comfort and road-holding
are two essential but conflicting control objectives. It is shown that, for example, it is
impossible to improve ride comfort without degrading road holding and vice-versa around
the wheel resonance 10-15 Hz. In this section, the aim is to use Genetic Algorithms
(GAs) to obtain the best controllers (for ride comfort and/or road holding) through
optimizing the selection of the weighting functions for the H∞/LPV control of semi-
active suspensions.

3.5.1 Control scheme

The control configuration for semi-active suspensions is given in Fig. 3.9. The controlled
outputs are the vehicle body acceleration z̈s (for the ride comfort improvement) and the
wheel displacement zus (for the road holding improvement, see the performance criteria
in section 1.2.2, in Chapter 1). The measurement outputs are the suspension deflection
zdef and suspension deflection velocity żdef (needed for computing the scheduling pa-
rameters as well). To obtain the desired closed-loop performances (see the performance
criteria 1.2.2 in Chapter 1), the weighting functions on controlled outputs {Wz̈s ,Wzus}

and disturbance input Wzr are used.

Notice that, due to the self-dependence between ρ1 and ρ2, the set of all ρ̄ = (ρ1, ρ2)
is not a polytope, as seen in Fig. 3.8. In this study, a polytopic approach is developed
for the LPV control design (which leads to some conservatism). As a consequence, ρ1
and ρ2 are considered as independent parameters and ρ̄ belongs to a polytope Θ whose
vertices are ρ̄1 = (−1, 0), ρ̄2 = (1, 0), ρ̄3 = (1, 1), ρ̄4 = (−1, 1).
Consider the augmented system (corresponding to Fig. 3.9) made of the plant (3.4.11)
and the weighting functions, represented by

ξ̇ = Aν(ρ̄)ξ + Bν1(ρ̄)w̄ + Bν2u
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z̈s

zus

Wz̈s

Wzus

zr

sat(uI)

zdef

żdef

ρ1, ρ2

K(ρ1, ρ2)

P

Wf

z̄1

z̄2

Wzrw̄

uI

u

✲

✲

✛

✛

✲

✲

✢

✛

✛

✛

Figure 3.9: Block diagram for semi-active suspension control.

z̄ = Cν1 (ρ̄)ξ +Dν
11(ρ̄)w̄ +Dν

12u (3.5.1)

y = C2ξ +D21w̄

where ξ =
(

xT xw
T

)T

, xw being the state vector of the weighting functions, ρ̄ =

(ρ1, ρ2) the vector of scheduling parameters. Note that ν represents the vector of all
weighting function parameters. The LPV controller is defined as follows

K(ρ̄) :

(

ẋc

u

)

=

(

Aνc (ρ̄) Bν
c (ρ̄)

Cν
c (ρ̄) Dν

c (ρ̄)

)(

xc

y

)

(3.5.2)

where xc, y and u are respectively the state, the input and output of the controller
associated with the system (3.5.1). All matrices have appropriate dimensions.

Remark 3.5.1. Since ν represents the vector of the weighting function parameters,
it is used as an exponent in the notation of equations (3.5.1)-(3.5.2) to emphasize the
dependence of the generalized plant, and then of the controller, on the parameters of the
weighting functions.

H∞/LPV problem - The objective of the synthesis is to find an LPV controller K(ρ)

of the form (3.5.2) such that the closed-loop system is quadratically stable and that,
for a given positive real γ, the L2-induced norm of the operator mapping w̄ into z̄ is
bounded by γ i.e

∀ρ̄ ∈ Θ,
‖zw‖2
‖w‖2

≤ γ (3.5.3)

Here the polytopic approach with a quadratic Lyapunov function is employed. It is
stated that for known weighting functions and a suitable pre-defined real positive scalar γ,
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the sufficient condition that solves the H∞/LPV problem is given by Eq. (3.5.4)-(3.5.5)
where the decision variables are X, Y , Â, B̂, Ĉ and D̂ (see the detail of the solution in
[Scherer et al., 1997]). It is worth noting that the weighting function parameter set ν is
present in the LMIs problem to cope with optimization purpose of the controller (which
is presented in section 3.5.2).











Mν
11 (ρ̄i) ∗ ∗ ∗

Mν
21 (ρ̄i) Mν

22 (ρ̄i) ∗ ∗

Mν
31 (ρ̄i) Mν

32 (ρ̄i) −γIm ∗

Mν
41 (ρ̄i) Mν

42 (ρ̄i) Mν
43 (ρ̄i) −γIp











≺ 0 (3.5.4)

[

X I

I Y

]

≻ 0 (3.5.5)

for i = 1 : 4

where

Mν
11(ρ̄i) = Aν(ρ̄i)X +XAν(ρ̄i)

T + B2Ĉ(ρ̄i) + Ĉ(ρ̄i)
TBT2

Mν
21(ρ̄i) = Â(ρ̄i) +Aν(ρ̄i)

T + CT2 D̂(ρ̄i)
TBT2

Mν
22(ρ̄i) = YAν(ρ̄i) +Aν(ρ̄i)

TY + B̂(ρ̄i)C2 + CT2 B̂(ρ̄i)
T

Mν
31(ρ̄i) = Bν1 (ρ̄i)

T +DT
21D̂(ρ̄i)

TBT2

Mν
32(ρ̄i) = Bν1 (ρ̄i)

TY +DT
21B̂(ρ̄i)

T

Mν
41(ρ̄i) = Cν1 (ρ̄i)X +D12Ĉ(ρ̄i)

Mν
42(ρ̄i) = Cν1 (ρ̄i) +D12D̂(ρ̄i)C2

Mν
43(ρ̄i) = Dν

11(ρ̄i) +D12D̂(ρ̄i)D21

The controller Kci at vertex i is then reconstructed as

Dν
c (ρ̄i) = D̂(ρ̄i)

Cνc (ρ̄i) =
(

Ĉ(ρ̄i)−Dν
c (ρ̄i)C2X

)

M−T

Bν
c (ρ̄i) = N−1

(

B̂(ρ̄i)− Y B2D
ν
c (ρ̄i)

)

Aνc (ρ̄i) = N−1
(

Â(ρ̄i)− Y A(ρ̄i)X − Y B2D
ν
c (ρ̄i)C2X

)

M−T

−Bν
c (ρ̄i)C2XM

−T −N−1Y B2C
ν
c (ρ̄i)

(3.5.6)

where M , N are defined such that MNT = In − XY which can be solved through
a singular value decomposition and a Cholesky factorization. The global H∞/LPV

controller is then the convex combination of these local controllers.

Kc(ρ) = α1Kc1 + α2Kc2 + α3Kc3 + α4Kc4 (3.5.7)

where the coefficients α1, α2, α3, α4 are defined as in (2.2.9) in Chapter 2 for the case
where the considered polytope is a hypercube

α1 =
(1−ρ1)(1−ρ2)

2
α2 =

(ρ1+1)(1−ρ2)
2

α3 =
(ρ1+1)ρ2

2
α4 =

(1−ρ1)ρ2
2

(3.5.8)
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3.5.2 Controller optimization using Genetic Algorithms

According to the prescribed objectives in section 1.2.2, the following weighting functions
are used for the H∞/LPV synthesis

Wzr = 3× 10−2 (3.5.9)

Wf =
Ωf

s+ Ωf

(3.5.10)

Wz̈s = kz̈s
s2 + 2ξ11Ω11s+ Ω11

2

s2 + 2ξ12Ω12s+ Ω12
2 (3.5.11)

Wzus = kzus
s2 + 2ξ21Ω21s+ Ω21

2

s2 + 2ξ22Ω22s+ Ω22
2 (3.5.12)

Define the set of parameters

ν = [ Ωf Ω11 Ω12 ξ11 ξ12 kz̈s Ω21 Ω22 ξ21 ξ22 kzus ]T (3.5.13)

that, in the context of GAs, is a part of the decision vector. By experience, γ was chosen
as a decision parameter in order to add more degrees of freedom, and then a sub-optimal
H∞ control problem was solved.

In a usual H∞/LPV problem, the attenuation level γ is to be minimized to satisfy
the H∞ performance objectives. Thanks to the Genetic Algorithms optimization, the
provided methodology will rather allow here to minimize a cost function representing
the true performance objectives. Therefore the optimization problem of interest relies
on the minimization of this cost function and not on the minimization of γ.

Let us define the optimization problem for semi-active suspension control

min
{ν,γ}∈R12

+

JD (ν, γ) =

[

JDComfort (ν, γ)

JDRoadHolding (ν, γ)

]

(3.5.14)

Remark 3.5.2. The dimension of the searching space is 12× 1 because there are eleven
parameters for the weighting functions ν and one for the attenuation level scalar γ.
This space can be made smaller than R12

+ . Effectively we can define the bounds of each
parameter, basing on the frequency range of interest at which the weighting functions act.
This is also an explanation for the question of why we use weighting function parameters
optimization instead of controller parameters optimization, specially when the controller
order is high.

Based on the remarks on the comfort and road holding performances in section 1.2.2
in Chapter 1, the two objectives are defined so that the vehicle body acceleration at low
and middle frequencies and the wheel displacement at high frequencies will be minimized
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for each vertex of the considered polytope. Hence, in the optimization problem (3.5.14),
the following frequency-based objective functions are considered

JD
Comfort

=
4
∑

i=1

∫ 12

0

z̈s/zr(f)idf (3.5.15)

JDRoadHolding =
4
∑

i=1

∫ 20

10

(zus/zr(f)i) (3.5.16)

Note that, in the equations above, “D” is used to differentiate these design objective
functions with the ones in Section 1.2.2 in Chapter 1 and the index “i” stands for the
ith vertex of the polytope Θ (see Fig. 3.8). The number of elements in each sum is four,
however in this particular case, the polytope is symmetric in ρ1, only computations at
two vertices {1, 4} or {2, 3} are needed.

Remark 3.5.3. The feasibility of the LMIs (3.5.4)-(3.5.5) may be violated by the “bad"
decision vectors generated by GAs. The problem can be overcome by repeating the
crossover or mutation until the feasible solution is obtained. However, a simpler way is
to assign a large objective value (for instant JD = ∞) to these infeasible solutions and
then, they will be eliminated by the selection procedure after some generations.

Remark 3.5.4. In many cases, to preserve the performance of the closed-loop system
with input saturation, a stable stabilizing controller is required. Other advantages for the
use of stable controllers concern the practical aspects. The stable controllers are easier
to be implemented than the unstable ones and the closed-loop system (provided that
the open-loop system is already stable, e.g open-loop semi-active suspension systems)
remains stable even when the feedback sensors fail. For LTI systems, this problem
(usually called strong stabilization problem) has been studied by some authors such as
[Campos-Delgado & Zhou, 2001], [Cao & Lam, 2000],... Similarly, for the H∞/LPV

control of LPV systems, to obtain a stable LPV controller, it suffices to ensure that all
local controllers at each vertex of the polytope are stable. In this study, the theoretical
solution for the existence of a stable LPV controller is not given. However, a stable
LPV controller can be obtained by eliminating the “unstable solutions" corresponding
to at least, one unstable local controller during the synthesis. It can be accomplished
with GAs by simply choosing JD = ∞ for “unstable solutions". Due to the “survival of
the fittest" property, these “unstable solutions" will disappear after some generations.

The strong stabilization problem will be handled in more details in Chapter 4.
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To sum up, the objective function used in GAs is chosen as follows.

Algorithm 1: Objective value assignment

if (3.5.4)-(3.5.5) is feasible and all Kci in (3.5.6) are stable then

Calculate JD using (3.5.15)-(3.5.16)
else

JD = ∞

end.

Proposed weighting function optimization procedure for H∞/LPV synthesis

• Step 1: Initiate with random positive weighting functions ν = ν0 and a random
positive real γga = γ0ga.

• Step 2: Solve the minimization problem of γ subject to the LMIs (3.5.4)-(3.5.5)
to compute the minimal real scalar γmin. Solve again the LMIs (3.5.4)-(3.5.5) with
the couple (ν, γ) where γ = γmin + γga. At the end of this step, compute the
objective function JD(ν, γ) using Algorithm 1.

• Step 3: Select the individuals.

• Step 4: Apply crossover and mutation to get a new generation: ν = νnew and
γga = γnewga .

• Step 5: Evaluate the new generation: If the criteria of interest (for example,
reaching the limit number of generation) are not satisfied, go to Step 2 with ν =

νnew and γga = γnewga ; Else, stop and save the best individual νopt = νnew and
γopt = γnewga .

The genetic operations presented in step 3 and 4 can be done using efficient multi-
objective optimization algorithms like SPEA2 [Zitzler et al., 2001], NSGA-II [Deb et al.,
2002].

Remark 3.5.5. In step 2, to avoid the infeasibility of the LMIs (3.5.4)-(3.5.5) resulting
from the bad (i.e too small) value of γ generated by GAs, γ will be decomposed into
two positive real elements γmin and γga where γmin is the minimal γ satisfying the LMIs
(3.5.4)-(3.5.5), and γga is tuned by GAs. Due to the convexity of the LMIs problem, the
existence of γmin will ensure the feasibility of LMIs (3.5.4)-(3.5.5) with γ = γmin + γga
for all positive real γga. The minimal value γmin can be found by using LMIs toolbox
like Yalmip & Sedumi.

The procedure of the proposed method is illustrated in Fig. 3.10.
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Figure 3.10: Controller optimization for semi-active suspension control using Genetic
Optimization.

3.6 Numerical analysis and results

For simulation analysis, we use the nonlinear quarter car Renault Mégane Coupé (RMC)
model. It is worth noting that the spring used in this simulation has a nonlinear char-
acteristic i.e. the spring stiffness ks is not a constant coefficient (see Fig. 1.5 in Chapter
1) and the MR damper force is given by (3.2.2). The implementation scheme is depicted
in Fig. 3.11.
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Figure 3.11: Implementation scheme.

With the proposed method, the solution of the multi-objective problem (3.5.14) is
given by a Pareto set as in Fig. 3.12. Now the conflicting relation between comfort and
road holding criteria can be observed clearly from the figure. Among the solutions in
the Pareto set, two LPV controllers are chosen. One is comfort oriented (belonging to
Set 1) and the other is road holding oriented (belonging to Set 2, because the solutions
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in Set 3 (corresponding to minimal JDRoadHolding defined in [10− 20] Hz) improve in fact
the road holding capability only in high frequencies). The parameters for the synthesis
of these two controllers are found in Tab. 3.2 and Tab. 3.3.
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Figure 3.12: Pareto set obtained by proposed method (criteria computed for linear mod-
els).

Controllers Filter Wz̈s
Wzus

Ωf Ω11 Ω12 ξ11 ξ12 kz̈s Ω21 Ω22 ξ21 ξ22 kzus
LPV-Comfort 90 48.2 7.1 99 8.48 159 99.9 1.3 5.4 99 90.6
LPV-Road Holding 1.4 60.8 12.9 99.7 29.7 436 83.6 0.29 96 89 145

Table 3.2: Weighting function parameters for H∞/LPV semi-active suspension design
(obtained by Genetic Optimization).

Controllers scalar

γmin − γga (×105)

LPV-Comfort 0.2− 1.66

LPV-Road Holding 3.7− 3.16

Table 3.3: Attenuatation scalars for H∞/LPV semi-active suspension design (obtained
by Genetic Optimization).
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Remark 3.6.1. As seen in 3.3, the optimal solutions for H∞/LPV semi-active suspen-
sion design is not associated with a smallest disturbance attenuation γmin but with a
greater value γ = γmin + γga.

In the following, two different closed-loop control strategies as well as passive open-
loop ones for MR dampers are presented and considered as referenced methods to eval-
uate the efficiency of the proposed LPV controllers.

3.6.1 The based-lines

The well-known Skyhook [Karnopp et al., 1974] proposed by Karnopp and the Mixed
Skyhook-ADD by [Savaresi & Spelta, 2007] (see Chapter 1) are remarkable control meth-
ods. However, these two control strategies have been originally designed for linear
dampers where the nonlinear characteristics (i.e the bi-viscous and the hysteretic be-
haviors) have not been taken into account. In [Do, Sename, Dugard, Savaresi, Spelta &
Delvecchio, 2010], the extended versions of the Skyhook and Mixed Skyhook-ADD were
proposed for MR dampers. We recall here these control methods.

Extended Skyhook for MR dampers [Do, Sename, Dugard, Savaresi, Spelta &
Delvecchio, 2010]
The main idea of the Skyhook for linear suspension system is that the damper exerts
a force that reduces the velocity of the body mass żs. By using the same principle,
the modified Skyhook for MR damper will be as follows (see Appendix A for more
explanations)

fI =

{

fmax if żsρ̂ > 0

fmin if żsρ̂ ≤ 0
(3.6.1)

where ρ̂ = tanh(c1żdef + k1zdef ).

Extended Mixed Skyhook-ADD (Skyhook-ADD) for MR dampers [Do,
Sename, Dugard, Savaresi, Spelta & Delvecchio, 2010]
It is well-known that the Skyhook provides the best ride comfort at low frequencies while
the ADD improves considerably ride comfort at high frequencies. The Extended Mixed
Skyhook-ADD algorithm guarantees the best behavior of both Skyhook and ADD and
is given as follows (see Appendix A)

fI =



























fmax if (z̈2s − αż2s ≤ 0 ∧ żsρ̂ > 0)∨

(z̈2s − αż2s > 0 ∧ z̈sρ̂ > 0)

fmin if (z̈2s − αż2s ≤ 0 ∧ żsρ̂ ≤ 0)∨

(z̈2s − αż2s > 0 ∧ z̈sρ̂ ≤ 0)

(3.6.2)
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where ρ̂ = tanh(c1żdef + k1zdef ). The amount (z̈2s − αż2s) is the frequency-range selector
and the Skyhook-ADD crossover frequency α = 2πfSHADD rad/s where fSHADD = 2 Hz

(see [Savaresi & Spelta, 2007]).

Passive MR dampers

Beside the three controlled methods presented above, the three following passive open-
loop cases are also useful for the analysis

• Soft MR damper (“Soft MRD”) where the controllable input fI = fmin

• Hard MR damper (“Hard MRD”) where the controllable inputfI = fmax

• Nominal MR damper (“Nominal MRD”) where the controllable input fI = (fmin+

fmax)/2 (i.e. when control input u = 0)

3.6.2 Frequency domain analysis

In this section, the evaluation in the frequency domain of referenced and proposed meth-
ods is performed via the nonlinear frequency responses which are computed by the “Vari-
ance Gain" algorithm [Savaresi, Bittanti & Montiglio, 2005]. This algorithm is simple
and provides a good approximation to frequency response.

Some general remarks can be done from the Fig. 3.13 and 3.14:

• Between 0-2 Hz, the Hard MRD is the best strategy for both ride comfort and road
holding.

• Between 2-12 Hz, the Soft MRD is the best strategy for both ride comfort and
road holding.

• Between 12-30 Hz, the trade-off between ride comfort and road holding is unavoid-
able. The best for ride comfort is the Soft MRD, the best for road holding is the
Hard MRD.

With the remarks above, the optimal solutions for ride comfort and road holding can be
roughly defined and once again, the conflict between two objectives, at high frequency
(12-30 Hz) can be seen from Tab. 3.4.

Some remarks can be made for the five strategies, in the frequency range of interest
0-30 Hz.
The Nominal MRD and the Extended Skyhook provide medium performances for
both ride comfort and road holding.
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Controllers 0-2 Hz 2-12 Hz 12-30 Hz
Comfort-Oriented fI = fImax fI = fImin fI = fImin
Road Holding-Oriented fI = fImax fI = fImin fI = fImax

Table 3.4: Optimal controllers.

The Extended Mixed Skyhook-ADD is the best one for ride comfort. It approaches
the optimal solution of the comfort-oriented controller. As a consequence, this controller
does not guarantee a good road holding around the wheel resonance which is more
important than in other frequency ranges.
The LPV - Road Holding is the best one for road holding.
The LPV - Comfort approaches very well the Extended Mixed Skyhook-ADD from
3-30 Hz. At low frequencies 1-4 Hz, it is not so good but this is not really important
because, as mentioned before in section 1.2.2 in Chapter 1, the human being is more
sensible to vehicle acceleration in the frequencies around 4-8 Hz.

The remarks above are summarized by Fig. 3.15. The performance criteria (1.2.10)
and (1.2.11) in section 1.2.2 in Chapter 1 are calculated for each strategy; then they are
normalized by the performance values of the nominal MR damper and compared with
the soft and hard MR dampers.
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Figure 3.13: Frequency Responses z̈s/zr.
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Figure 3.15: Performances comparison (in frequency domain).

3.6.3 Time domain analysis

The road profile could be viewed as a random signal, because it is not predicted by the
vehicle. However, in practice, its band-width is limited. In this test, a road profile is
represented by an integrated white noise, band-limited within the frequency range [0-
30] Hz (see Fig. 3.16). To evaluate the performances of the strategies, the spectrum
of vehicle acceleration and dynamic tire deflection are depicted in Fig. 3.18-3.19. The
results obtained are coherent with the frequency domain analysis: the Extended Mixed
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Figure 3.16: Road profile zr.

Skyhook-ADD and LPV-Comfort are the best strategies for ride comfort, the LPV-Road
Holding and Hard MRD are the most suitable for the road holding improvement.
Furthermore, the comfort in time domain can be evaluated, using the following criterion

RMSComfort =

√

∫ T

0
z̈
2

s(t)dt

T
(3.6.3)

where z̈s(t) is the filtered vehicle body acceleration (by the approximated ISO 2631 filter
(1.2.9)) [m/s2] and T is the simulation time [s]. In Fig. 3.17, the RMSComfort values of
different strategies, normalized by that value for the nominal damper, are depicted. The
results mentioned previously have been proved again. The LPV-Comfort approaches the
Extended Mixed Skyhook-ADD.
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3.6.4 Robustness evaluation

Vehicles in general and specially public vehicles (like bus) can be considered as systems
with large uncertainties. It can be seen immediately, that their mass changes dramati-
cally, depending on working conditions (free or overcharged) and the load transfer (when
a vehicle goes around a corner, it transfers load from the inside tires to the outside tires).
In this section, we will test the proposed controllers considering a change in the sprung
mass (see Fig. 3.20).

❥

zs

zus

zr

ms +∆m

mus

ks Semi-active
damper

kt

Figure 3.20: Model of a quarter vehicle with sprung mass uncertainty.

Overcharged working condition

For testing the robustness of the proposed controllers in overcharged state, we consider
a constant (time-invariant) uncertainty. We take ∆m = 0.75ms (i.e the sprung mass
changes 75 % w.r.t the design value).

Load transfer

For load transfer analysis, we consider a time-varying uncertainty ∆m(t). we take for
example ∆(t) varying from −25% to +25% of the sprung mass (see Fig. 3.23).

As seen in Fig. 3.21-3.22 (for the overcharged case) and 3.24-3.25 (for the load
transfer case), the effectiveness of the proposed controllers is still preserved.

We now consider the RMS value of the sprung mass acceleration (filtered by ISO-
2631) for each strategy in three working conditions: nominal design, overcharged and load
transfer. The results are given in Fig. 3.26. In this figure, the values in percent represent
either the improvement (with “+”) or the degradation (with “-”) of the corresponding
strategies in load transfer and overcharged mode w.r.t that when working in nominal
working condition design.

In terms of comfort analysis, we have the following remarks. The two comfort oriented
controllers LPV-comfort and Extended Skyhook-ADD seem to be more sensible to load
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transfer mode than other strategies. However, these two controllers are always the best
ones for comfort (in all working conditions).
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Figure 3.21: Spectrum of z̈s (test with an increase of 75% in sprung mass).
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Figure 3.22: Spectrum of zus − zr (test with an increase of 75% in sprung mass).
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Figure 3.23: Load transfer.
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Figure 3.24: Spectrum of z̈s (test with a load transfer condition).
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Figure 3.25: Spectrum of zus − zr (test with a load transfer condition).
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Figure 3.27: Reduced-polytope with 6 vertices

3.7 Reducing the conservatism in the synthesis

As mentioned in the preliminary study in Sec. 3.5.1, the polytope with 4 vertices ρ̄1 =
(−1, 0), ρ̄2 = (1, 0), ρ̄3 = (1, 1), ρ̄4 = (−1, 1) is used for the synthesis of an LPV
controller. In this section, a smaller polytope with 6 vertices containing the trajectories
of the scheduling parameter {ρ1, ρ2} will be considered.
As seen in Fig. 3.27, the two lower vertices of the old polytope (in Sec 3.5.1) remain,

i.e. ρ̄∗1 ≡ ρ̄1, ρ̄∗2 ≡ ρ̄2. The four new ones ρ̄∗3, ρ̄
∗
4, ρ̄

∗
5 and ρ̄∗6 of the new polytope are

determined in such a way that the new polytope contains the set defined by all possible
trajectories of {ρ1, ρ2} and that its area is minimized.

The area minimization problem of the new polytope is equivalent to the area maxi-
mization of the triangles S1 and S2. By solving this optimization problem the four new
vertices are found

ρ̄∗3 = (1, 0.6) ρ̄∗4 = (0.45, 1)

ρ̄∗5 = (−0.45, 1) ρ̄∗6 = (−1, 0.6)
(3.7.1)

The new LPV controller is defined as

K∗
c (ρ) =

6
∑

i=1

αiKci (3.7.2)

where
∑6

i=1 αi = 1 and αi ≥ 0, i = 1 : 6.

It is worth noting that in this case the considered polytope is not a hypercube,
henceforth the coefficients αi are not explicitly given as in (2.2.9) in Chapter 2. One way
to overcome this problem is to use the following optimization procedure which is given
in [Scherer & Weiland, 2005]

minimize
∑

α2
i (3.7.3)
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subject to
6
∑

i=1

αi = 1, αi ≥ 0 i = 1 : 6 (3.7.4)

6
∑

i=1

αiρ̄
∗
1 = (ρ1, ρ2) (3.7.5)

The sum of squares (3.7.3) is used to ensure a unique solution of αi because this
is a convex optimization problem (both the objective function and the constraints are
convex). The constraints (3.7.4) and (3.7.5) guarantee the equivalence between the
original LPV system and its polytopic representation. Notice that ρ1 and ρ2 are time-
varying parameters, the optimization (3.7.3) must be solved numerically online. At the
instant tk, the coefficients αi(tk) with i = 1 : 6 are exactly updated as follows

minimize
∑

α2
i (tk)

subject to
∑

αi(tk) = 1, αi(tk) ≥ 0 i = 1 : 6

−α1(tk) + α2(tk) + α3(tk) + 0.45α4(tk)− 0.45α5(tk)− α6(tk) = ρ1(tk)

0.6α3(tk) + α4(tk) + α5(tk) + 0.6α6(tk) = ρ2(tk)

(3.7.6)

With the new reduced polytope, we use the same procedure for the synthesis and
controller optimization by GAs proposed in previous section. Two new controllers are
obtained: LPV-Comfort Improved and LPV-Road Holding Improved. As seen in
Fig. 3.29-3.28, slight improvements are obtained when using the reduced polytope for the
controller synthesis. However, the price paid for these performance improvements relies
in the time-consumption in simulation. Due to the online optimization computation
(3.7.6), the closed-loop system with the new controllers has slow dynamics.
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Figure 3.28: Frequency Responses (zus − zr)/zr.
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3.8 Conclusion

In this chapter, the control of semi-active suspensions using Magneto-Rheological
dampers has been presented. The contributions of the chapter are two folds: the ex-
tended version of Mixed Skyhook-ADD (see Appendix A) and the LPV control method.

For the LPV approach, the obtained results can be summarized as follows:

• An LPV control-oriented model of MR dampers is proposed where the bi-viscous
and hysteresis characteristics are taken into account. This model was validated by
experimental tests. It can be seen that the model provides a good approximation
of a real MR damper.

• The quarter vehicle model equipped with the proposed MR damper model is writ-
ten in an LPV framework which can be used for LPV design (H∞, H2 or mixed
H∞/H2...).

• A multi-objective optimization procedure using genetic algorithms that achieves
the desired suspension performances is also introduced. It leads to a generic
methodology to find a controller satisfying the required performance whatever the
criteria are.

• From the practical point of view, as seen in Fig. 3.9, the proposed control method
is simple and easy to implement: a single relative displacement sensor to measure
the suspension deflection (the deflection velocity can be deduced numerically from
the deflection) is needed and the LPV controller is stable.

• An improvement of the controllers based on polytopic reduction is also obtained.

The simulations on the nonlinear quarter vehicle model equipped with a validated MR
damper (in the frequency and time domains) have been analyzed. The results have
shown the interest of the proposed method: the obtained comfort-oriented and road
holding-oriented LPV controller can then be used with a switching rule which can be
adapted to different road conditions (in cities and suburbs).
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Chapter 4

Suspension systems with linear

hydraulic dampers

Though the nonlinearity in the damper model needs to be taken into account in the
controller design, many studies have been based on suspension system models with linear
hydraulic dampers. The schematic layout of a hydraulic damper is depicted in Fig. 4.1.
Hydraulic dampers consist of a pressure tube (body), a piston rod with a special piston
system, and the damping medium oil. In principle, the damping coefficient of the damper
can be changed using an external actor (e.g. solenoid valve) (see [Aubouet, 2010]).

The reason for which the linear dampers have been more intensively studied is that
the vehicle models with these dampers allow, a priori, to deal with more general and
complex problems and to test the effectiveness of the design methods in the ideal case
(by omitting the nonlinearities). In this chapter we revisit the linear suspension control
problem. A new approach, based on Strong Stabilization, is proposed.

Figure 4.1: Schematic layout of a hydraulic damper.
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4.1 Introduction

4.1.1 Quarter car model equipped with a linear semi-active

damper

❥

zs

zus

zr

ms

mus

ks Semi-active
damper

kt

Figure 4.2: Model of a quarter vehicle with a linear damper.

Consider the quarter vehicle model depicted in Fig. 4.2 equipped with a linear damper
characterized by the following equation:

Fdamper = cżdef (4.1.1)

As previously stated in Chapter 1, the dynamical equations of a quarter vehicle will be
given by

{

msz̈s = −kszdef − cżdef

musz̈us = kszdef + cżdef − kt (zus − zr)
(4.1.2)

where zdef = zs − zus is the damper deflection [m], żdef = żs − żus is the deflection ve-
locity [m/s]

The passivity constraint of a semi-active damper is characterized by:

0 6 cmin 6 c 6 cmax (4.1.3)

or equivalently

cminżdef ≤ Fdamper ≤ cmaxżdef if żdef > 0 (4.1.4)

cmaxżdef ≤ Fdamper ≤ cminżdef if żdef ≤ 0

In this chapter, we use cmin = 700 [Ns/m] and cmax = 5000 [Ns/m].
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Figure 4.3: Semi-active damper: Force vs Velocity.

4.1.2 Performance objectives

As mentioned in section 1.2.2 in Chapter 1, we recall here the frequency-based perfor-
mance criteria domain calculated for the quarter vehicle model 4.1.2:

• Comfort

JCF =

∫ 20

0

z̈s/zr(f)df (4.1.5)

• Road holding

JRH =

∫ 30

0

(zus − zr)/zr(f)df (4.1.6)

The objective of the control design is to minimize these two performance criteria.

4.2 Strong stabilization approach

In this section, we present a new approach for the control of the linear semi-active
suspension system (4.1.2). As in Chapter 4, the aim is to obtain a good Pareto front of
two conflicting performances: comfort and road holding. Let us motivate the use of the
strong stabilization approach for semi-active suspension control.

4.2.1 Motivation

First, decompose the total semi-active damper force as Fdamper = c0żdef + u where
c0 = (cmin + cmax)/2 and consider a state-space representation of the quarter car model
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given as follows

ẋs = Asxs +Bs1w +Bs2u (4.2.1)

y = Csxs

where xs = (zs, żs, zus, żus)
T , w = zr, y = żs − żus = żdef .

As =















0 1 0 0

−ks
ms

−c0
ms

ks
ms

c0
ms

0 0 0 1

ks
mus

c0
mus

−ks+kt
mus

− c0
mus















, Bs1 =
[

0 0 0 kt
mus

]T

,

Bs2 =
[

0 −1
ms

0 1
mus

]T

, Cs =
[

0 1 0 −1
]

.

The model (4.2.1) is usually used in many control strategies for both semi-active and
active suspension systems, e.g. optimal control, H∞ and H2 control, MPC control... In
this section, we present a new approach for semi-active suspension control based on this
model. Let us consider the following remarks.

Remark 4.2.1. In fact, u is the compensated force added to a nominal damper whose
damping coefficient equals c0. To satisfy the passivity constraint (4.1.4) of a semi-active
damper (see also Fig. 4.4), the control input u must be constrained by

|u(t)| ≤
cmax − cmin

2
|żdef (t)| ∀t ≥ 0 (4.2.2)

Denote U(s), Żdef (s) the Laplace transforms of u and żdef . Let us consider the
following condition

|U(jω)| ≤
cmax − cmin

2
|Żdef (jω)| , ∀ω (4.2.3)

It can be seen that the constraint (4.2.3) does not imply (4.2.2). However, if we
discard some short term over-shots in the time responses of u (which can violate the
passivity constraint, in short term), (4.2.3) is a good approximation of (4.2.2) and easier
to handle.

Remark 4.2.2. As seen in (4.2.1), the deflection velocity żdef is a measurement output
of the system. This is an intentional choice because of the following reason. Remark
that if there exists a stabilizing LTI controller K for the plant (4.2.1) and that

‖K‖∞ =
‖u‖2

‖żdef‖2
≤
cmax − cmin

2
for all 0 < ‖żdef‖2 <∞ (4.2.4)

then K is a controller satisfying (4.2.3).
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Remark 4.2.3. If a stable controller is used with a stable plant we can avoid the
instability of the closed-loop system (precisely the instability of the controller because
the plant is already stable) due to the nonlinearities between the plant and the controller,
such as the input saturation.
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Figure 4.4: Illustration of semi-active control: The control input u must be bounded by
±|żdef |(cmax − cmin)/2.

With the remarks above, the stable controllers with bounded gain seem to be a
reasonable choice for semi-active suspension systems. This motivates the investigation
of the strong stabilization approach presented in the next section.

4.2.2 Strong stabilization

The strong stabilization consists in finding a stable feedback controller which stabilizes
a given plant. The advantages for the use of stable controllers concern the practical
aspect. If a stable controller is used for a stable plant, the closed-loop system is always
stable under sensors failure or input saturation effect. Moreover, the stable controllers
are easier to implement than the unstable ones [Cao & Lam, 2000], [Campos-Delgado
& Zhou, 2001]. On the other hand, stabilization using an unstable compensator always
introduces additional right half plane zeros into the closed-loop transfer function matrix
beyond those of the original plant. As it is known that the right half plane zeros of
a system affect its ability to track reference signals and/or to reject disturbances, it is
preferable to use a stable stabilizing compensator. In addition, several other problems
in reliable stabilization are related to strong stabilizability, such as the simultaneous
stabilization problem. It is proven that the simultaneous stabilization of n ≥ 2 plants
with a common compensator is equivalent to the stabilization of n − 1 plants with a
common stable compensator [Vidyasagar, 1985].
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In fact, this problem was first addressed and solved for SISO systems by [Youla
et al., 1974]. In this study, a tractable condition, known as the parity interlacing property
(PIP) was proposed to check whether a given plant is strongly stabilizable or not. It
was stated that a necessary and sufficient condition for the existence of stable stabilizing
controllers is that the number of unstable real poles (counted according to their McMillan
degree) of a real-rational plant between every pair of its right-half-plane real blocking
zeros, is even. The PIP was then generalized to MIMO systems by [Vidyasagar, 1985].
Although the PIP is an elegant result, it does not indicate how to find such a stable
controller if it exists. In [Zeren & Özbay, 2000], [Choi & Chung, 2001], based on the
ARE (Algebraic Riccati Equation) methods, a sufficient condition to determine a stable
H∞ controller is given. Recently, some new results for this problem were obtained with
LMI solutions [Yang et al., 2002], [Chou et al., 2007].

For the application of the strong stabilization approach in semi-active suspension
control, two interesting problems are the strong γcl−H∞ and strong γk−γcl H∞ problems
(see [Cheng et al., 2007]), defined as follows.

Definition 4.2.1. Strong γcl −H∞ problem
Given a system G(s) and H∞ performance levels γcl and G(s) is said to be strongly
stabilizable with an H∞-norm bound γcl or strongly γcl − H∞ stabilizable if there exists
a stable controller K(s) ∈ RH∞ satisfying ‖K‖∞ < γcl such that the closed-loop system
Tzw is internally stable with ‖Tzw‖∞ < γcl.

Definition 4.2.2. Strong γk − γcl H∞ problem
Given a system G(s) and an H∞ performance level γk, γcl, G(s) is said to be strongly
γk−γcl H∞ stabilizable if there exists a stable controller K(s) ∈ RH∞ satisfying ‖K‖∞ <

γk such that the closed-loop system Tzw is internally stable with ‖Tzw‖∞ < γcl.

Remark 4.2.4. If γk = γcl, Definition 2 reduces to Definition 1.

In this chapter, two solutions proposed by [Cheng et al., 2007] and [Gümüssoy &
Özbay, 2005] for the above strong H∞ problems will be introduced.

4.2.3 Strong stabilization - Approach 1

Before presenting the results, let us define some notations.

• A state-space representation of a transfer function, N(s) = C(sI −A)−1B +D, is
given by

N(s) =





A B

C D
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• The lower Linear Fractional Representation ‖Fl(N ;K)‖ is given as N11+N12K(I−

N22K)−1N21 where N is partitioned as

N =

[

N11 N12

N21 N22

]

• We define Γ(M,N) := MN + NTMT where M , N are matrices with compatible
dimensions.

The standard H∞ problem for a certain plant P is to find a stabilizing controller M such
that the lower Linear Fractional Representation ‖Fl(P ;M)‖∞ < γcl where γcl > 0 is the
closed-loop performance level. As stated in [Doyle et al., 1989] and [Zhou et al., 1995], if
two AREs have unique positive semi-definite solutions and the spectral radius condition
is satisfied, then the standard H∞ problem is solvable. All suboptimal H∞ controllers
can be parameterized as M = Fl(MC ;MQ) where MC is the central controller given in
the form

MC (s) =









Ac Bc1 Bc

Cc1 Dc11 Dc12

Cc Dc21 0









(4.2.5)

and MQ is a free parameter satisfying MQ ∈ RH∞ and ‖MQ‖∞ < γcl. The calculation
of MC is given in [Doyle et al., 1989] and [Zhou et al., 1995]. For the determination of
MQ, let us consider first the following lemma.

Lemma 4.2.1. [Gümüssoy & Özbay, 2005].
Given a generalized plant

G (s) =







A B1 B2

C1 D11 D12

C2 D21 0






(4.2.6)

where the matrices A, B1, B2, C1, C2, D11, D12 and D21 have compatible dimensions
and satisfy the standard assumptions (see [Gümüssoy & Özbay, 2005]), there exists a
stable stabilizing control, K ∈ RH∞ if there exist Xk = XT

k > 0 and Z for some γ > 0

satisfying the LMIs

Γ (Xk, A) + Γ (Z,C2) ≺ 0




Γ (Xk, AX) + Γ (Z,C2) −Z −XB2

∗ −γI 0

∗ ∗ −γI



 ≺ 0
(4.2.7)

where AX = A− B2B
T
2 X and X > 0 is the solution of the ARE (note that X 6= Xk)

ATX +XA−XB2B
T
2 X = 0 (4.2.8)
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Then the controller K is represented by

K(s) =

[

Ak Bk

Ck Dk

]

=

[

AX +X−1
k ZC2 −X−1

k Z

−BT
2 X 0

]

(4.2.9)

and

‖K(s)‖∞ < γ (4.2.10)

Back to the standard H∞ problem, if we consider the G = MC and γ = γcl, then the
Lemma 4.2.1 allows to find the free parameter MQ = K.

4.2.4 Strong stabilization - Approach 2

Theorem 4.2.2. [Cheng et al., 2007]
Given a standard system G(s) as in 4.2.6, it is strongly γk − γcl H∞ stabilizable if there
exist X ≻ 0, Y ≻ 0 satisfying the following conditions:

ATX +XA+X(γ−2
cl B1B

T
1 − B2B

T
2 )X + C1C

T
1 = 0 (4.2.11)

AY + Y AT + Y (γ−2
cl C

T
1 C1 − C2C

T
2 )Y +B1B

T
1 � 0 (4.2.12)

Aγcl,XY Z
T + ZY ATγcl,X + γ−2

k ZY XB2B
T
2 XY Z − ZY CT

2 C2Y Z
T � 0 (4.2.13)

ρ(XY ) < γ2cl (4.2.14)

where

Aγcl,X = A+ γ−2
cl B1B

T
1 X − B2B

T
2 X (4.2.15)

Z = (I − γ−2
cl Y X)−1 (4.2.16)

Then a strong γk − γcl H∞ controller can be constructed as

K (s) =

[

Ak Bk

Ck Dk

]

=

[

Aγcl,X − ZY CT
2 C2 ZY CT

2

−BT
2 X 0

]

(4.2.17)

By defining S = γclY
−1, αk = γ2k, ΓS = γ−1

cl S − γ−2
cl X and using Schur’s lemma, the

inequalities (4.2.12), (4.2.13) and (4.2.14) can be respectively replaced by the following
LMIs









ATS + SA− γclC
T
2 C2 SB1 CT

1

BT
1 S −γclI 0

C1 0 −γclI









� 0 (4.2.18)
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[

ATγcl,XΓS + ΓSAγcl,X − CT
2 C2 −XB2

−BT
2 X −αk

]

� 0 (4.2.19)

[

γclX
−1 I

I S

]

� 0 (4.2.20)

For a given γk, the following Bisection Algorithm can be used to minimize the closed-loop
H∞-norm bound γcl.

• Step 1: Select γl = 0, γcl = γu = γ0 which sures that the equation (4.2.11) is
solvable, i.e. there exists X = X0 ≻ 0, and the LMIs (4.2.18)-(4.2.20) are feasible.

• Step 2: If |γu − γl| ≤ δ which is a specified level, stop and the optimal γcl = γu.
Otherwise go to Step 3.

• Step 3: Set γcl = (γu + γl)/2.

• Step 4: If (4.2.11) has a solution X = X0 ≻ 0, go to Step 5, else go to Step 6.

• Step 5: If the LMIs (4.2.18)-(4.2.18) are feasible, set γu = γcl and go to Step 2,
otherwise go to Step 6.

• Step 6: Set γl = γcl and go to Step 2.

4.2.5 Strong stabilization approach in semi-active suspension

control

The Lemma 4.2.1 and the Theorem 4.2.2 are used for the synthesis of stable controllers
with a bounded H∞-norm. With the remark that żdef is used as an input, we make use
of these results to find a stable controller which satisfies ‖K‖∞ ≤ cmax−cmin

2
(see remark

4.2.2).

Like conventional H∞ control, in this approach, we make use of some weighting
functions to achieve the desired performances (4.1.5)-(4.1.6). The control block diagram
is depicted in Fig. 4.5 where the weighting functions are chosen as

Wzr = 3× 10−2 (4.2.21)

Wz̈s = kz̈s
s2 + 2ξ11Ω11s+ Ω11

2

s2 + 2ξ12Ω12s+ Ω12
2 (4.2.22)

Wzus = kzus
s2 + 2ξ21Ω21s+ Ω21

2

s2 + 2ξ22Ω22s+ Ω22
2 (4.2.23)
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z̈s

zus

Wz̈s

Wzus

zr

u żdef

K

P

z1

z2

✲

✲

✲

Wzr
✲w1

✛

Figure 4.5: Control Block Diagram for Strong Stabilization Approach

In the following, the optimization of the stable controllers obtained by the two strong
stabilization approaches presented previously will be discussed. The optimization pro-
cedure is similar to the one for H∞/LPV controller optimization proposed in Chapter
3. It is worth noting that the Lemma 4.2.1 and the Theorem 4.2.2 must be used for the
generalized plant composed of the plant and the (stable) weighting functions.

For the purpose of GA optimization, let us define the set of parameters

ν = [ Ω11 Ω11 ξ11 ξ12 kz̈s Ω21 Ω22 ξ21 ξ22 kzus ]T (4.2.24)

that, in the context of GAs, is a part of the decision vector.

Controller optimization procedure for Approach 1

Remark 4.2.5. The original problem in [Gümüssoy & Özbay, 2005] concerns the syn-
thesis of a stable H∞ controller (the strong γcl − H∞ problem) where the system G(s)

in (4.2.6) represents the central controller (not the open-loop system). Here we aim at
using this lemma for the synthesis of a stable controller, whose H∞-norm is bounded,
for semi-active suspension system. In our case, it is important to notice that the system
G(s) represents the generalized plant (the plant (4.2.1) + the weighting functions). This
generalized plant is stable because both the plant and the weighting function are stable.
As the result, by solving the ARE (4.2.8), a trivial solution X = 0 ( i.e. a zero controller)
is obtained.

In fact, the ARE in (4.2.8) is a carefully chosen Riccati equation. The reason to choose
such an equation is as follows (see more details in [Gümüssoy, 2004]). The dynamic
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matrix of the closed-loop system (4.2.6)+(4.2.9) is

ACL =

[

A B2Ck

BkC2 Ak

]

(4.2.25)

If we multiply this matrix from left by

[

I −I

0 I

]

and from right by

[

I I

0 I

]

, we obtain

the following matrix
[

A− BkC2 A+B2Ck − BkC2 − Ak

BkC2 Ak +BkC2

]

(4.2.26)

Set Ak = A+ B2Ck − BkC2, then by using similarity transformation, we can show that
ACL is stable if Ak +BkC2 and A−BkC2 are stable; and the controller is stable if Ak is
stable, i.e. A+B2Ck − BkC2 is stable.

If we choose Ck = −BT
2 X, where X is the solution of the Riccati equation (4.2.8) then

A+B2Ck is stable. Henceforth, we need to stabilize only the following matrices A−BkC2

and AX −BkC2 (where AX = A−B2B
T
2 X) which can be achieved by the LMIs (4.2.7).

To conclude, the Riccati equation (4.2.8) is given as one of the conditions to find
the solution for the strong stabilization problem. Since the Riccati equation is chosen
to satisfy certain conditions (the special structure of the controller) of the considered
problem, the full ARE equation (ATX+XA−XB2R

−1BT
2 X+Q = 0) is not applicable.

The structure of R = I is required, however the case of Q ≻ 0 can be used. Note that
(4.2.8) gives the critical solution X and contains any solution with Q ≻ 0. As a result,
we propose to modify (4.2.8) by the following ARE

ATX +XA−XB2B
T
2 X +Q = 0 (4.2.27)

where Q ≻ 0, to apply this lemma to stable plants.

Remark 4.2.6. The influence of Q in the final results is not analyzed in this study. In
section 4.3, we simply choose Q = I.

Define the following objective function which contains two criteria concerning the
passenger comfort and road holding capability (like the ones used in Chapter 4):

min
ν∈R10

+

JD (ν) =

[

JDComfort (ν)

JDRoadHolding (ν)

]

(4.2.28)

where

JD
Comfort

=

∫ 12

0

(z̈s/zr(f))df (4.2.29)
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JDRoadHolding =

∫ 20

10

(zus/zr(f))df (4.2.30)

where ν is the decision vector and given in (4.2.24).

The optimization procedure using the strong stabilization Approach 1 for semi-active
suspension control is defined as follows.

• Step 0: In the LMI (4.2.7), choose γ = (cmax − cmin)/2 to constrain ‖K‖∞ ≤

(cmax − cmin)/2.

• Step 1: Initiate with random positive weighting functions parameters ν = ν0.

• Step 2: Solve the ARE (4.2.27) and the LMI problem (4.2.7) to obtain a stable
controller K(s) (4.2.9). Then compute the objective function (closed-loop perfor-
mance) JD(ν) defined in (4.2.28)-(4.2.30).

• Step 3: Calculate the fitness value and select the best ν (associated with the
smallest objective function).

• Step 4: Apply the genetic operation (crossover and mutation) to get a new gen-
eration: ν = νnew.

• Step 5: Evaluate the new generation: If the criteria of interest (for example, reach-
ing the limit number of generation) are not satisfied, go to Step 2 with ν = νnew;
Else, stop and save the best individual νopt = νnew and the associated controller.

Controller optimization procedure in Approach 2 Define the following objective
function which is the same as the one used for approach 1:

min
{ν,γcl}∈R

11
+

JD (ν) =

[

JDComfort (ν)

JDRoadHolding (ν)

]

(4.2.31)

where JDComfort (ν) and JDRoadHolding (ν) are defined exactly the same as for Approach 1.

In this case, γk is fixed and γcl, along with ν, is a part of the decision vector for
Genetic optimization (see also section 3.5.2 in Chapter 3 for the explanation of this
choice of decision vector). The optimization procedure using the strong stabilization
approach 2 for semi-active suspension control is defined as follows.

• Step 0: Choose γk = (cmax − cmin)/2 to constrain ‖K‖∞ ≤ (cmax − cmin)/2

• Step 1: Initiate with random positive weighting functions ν = ν0 and random
positive real γga = γ0ga.
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• Step 2: Solve the minimization problem of γcl using the Bisection Algorithm
presented in Section 4.2.4 to compute the minimal real scalar γmin. Solve again
the ARE (4.2.11) and the LMIs (4.2.18)-(4.2.20) with the couple (ν, γcl) where
γcl = γmin + γga to construct a stable controller K(s) (4.2.17). With the obtained
controller, compute the objective function JD(ν, γcl) defined in (4.2.31).

• Step 3: Calculate the fitness value and select the best ν (associated with the
smallest objective function).

• Step 4: Apply crossover and mutation to get a new generation: ν = νnew and
γga = γnewga .

• Step 5: Evaluate the new generation: If the criteria of interest (for example,
reaching the limit number of generation) are not satisfied, go to Step 2 with ν =

νnew and γga = γnewga ; Else, stop and save the best individual νopt = νnew and
γopt = γnewga .

4.3 Numerical analysis and results

Some discussions on numerical analysis will be provided here following the same strategy
in Chapter 3. It is important to keep in mind the following points:

• All the nonlinear simulations are performed with the nonlinear quarter car Renault
Mégane Coupé (RMC) (se Fig. 4.6).

• For the time domain analysis, the road profile with banwidth limited in [0 − 30]

Hz as depicted in Fig. 3.16 in Chapter 3) is used.

• To compute the (nonlinear) frequency responses of nonlinear systems, we use the
“Variance Gain” algorithm (see Appendix B).

• It is important to note that the controllers obtained by the proposed Approach 1
and 2 are not semi-active. As a result, in simulation, a “clipped” behavior needs to
be performed on the controller output to guarantee the passivity constraint (4.2.2).
The controllers obtained after the design procedures (by Approach 1 and 2) are
called “Active” and when they are used in nonlinear simulation, they are called
“Clipped” ones.

4.3.1 Based-Lines

To evaluate the efficiency of the proposed method, the following referenced methods are
used.
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Figure 4.6: Implementation scheme.

• Soft Damper (“Soft”) where c = cmin.

• Hard Damper (“Hard”) where c = cmax.

• Nominal Damper (“Nominal”) where c = (cmax + cmin)/2.

• Skyhook, Groundhook and Skyhook-ADD (where the design parameter α = 2π2

rad/s) are presented in 1.3.3 in Chapter 1.

4.3.2 Preliminary design and analysis

Figure 4.7 shows the trade-off between comfort and road holding performances. In the
figure, J∗

CF (respectively J∗
RH) is JCF in (4.1.5) (respectively JRH in 4.1.6) computed

for different strategies applied for a nonlinear RMC model and then normalized by the
one obtained with the Nominal Damper. The smaller these criteria are, the better the
performances of the corresponding strategies are.

It is worth noting that the “Passive” curve is obtained by computing the normalized
criteria J∗

CF and J∗
RH for the passive dampers with a constant damping coefficient in

the range [cmin, cmax] (i.e. for each value of damping coefficient in the range, we obtain
one point in the “Passive” curve). Besides, the proposed methods using Approach 1 and
Approach 2 are obtained under the same synthesis condition for Genetic Algorithms
optimization.

From the figure, we can see that the Skyhook-ADD is the best strategy for comfort and
the Groundhook is the best one for road holding. The Skyhook is known to improve very
well the comfort in low frequencies and as a result is not a good one when a wide range
of frequencies is considered. The proposed Approach 1 and Approach 2 seem to slightly
improve the road holding and the middle trade-off (the trade-off near the middle part
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Figure 4.7: Comfort and road holding trade-off of different strategies.

of the passive curve) only. Why did the proposed methods not approach the optimal
bounds of comfort and road holding? We may have the answer to the raised question by
considering the following remark.

Remark 4.3.1. “The optimal control law of a semiactive suspension with comfort ob-
jective without preview (road profile prediction) is a genuine on - off strategy” [Savaresi,
Silani & Bittanti, 2005].

The Skyhook-ADD, known to be optimal for comfort, is a good example to support the
remark. In this control law, the damping coefficient switches between cmin and cmax
by an external control signal. Although the remark is done only for comfort oriented
controllers, it is true for road holding oriented controllers as well. The proof is not given
here but the idea is to mimic the proof of the comfort oriented controller by replacing
the comfort objective

∫

z̈s by the road holding one
∫

(zus − zr).

How can we conclude from the remark for our case?

The remark means that, to obtain an optimal controller, the condition (4.2.2) should
be replaced by

|u| =
cmax − cmin

2
|żdef | (4.3.1)

As a result, in the ideal case, it is necessary that the controller gain must equal to
(cmax − cmin)/2 for all frequency ranges. Let us return to the case of our proposed
controllers. Because the obtained controllers by Approach 1 and Approach 2 have the
same characteristics: they are stable and gain-limited by (cmax− cmin)/2, we can choose
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to consider the following one (corresponding to the encircled point in Fig. 4.7))

K(s) =
−3858204(s+ 67851)(s+ 245.8)(s+ 96.54)(s+ 1.779)(s+ 0.2384)(s2 + 6.338s+ 39.58)

(s+ 67850)(s+ 1578)(s+ 499.1)(s+ 43.81)(s+ 12.47)(s+ 4.079)(s+ 1.779)(s+ 0.2405)
(4.3.2)

The gain of the controller is depicted in Fig. (4.8) and the performances of the linear
closed-loop system are depicted in Fig. 4.9-4.10.
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Figure 4.8: Controller gain u/żdef .
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Figure 4.9: Bode diagram z̈s/zr.
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Figure 4.10: Bode diagram (zus − zr)/zr .

It is worth noting that the condition ‖K‖∞ < (cmax − cmin)/2 presented in (4.3.2) is
satisfied in this case. To show that this condition is a good approximation to the passivity
constraint (4.2.2), we present here the time domain result. The damper force obtained
with the nonlinear closed-loop system using the clipped controller will be compared with
the active controller. Figures (4.11)-(4.12) show that there are differences between the
design force (given by active controller) and the real force (given by clipped force), but
in fact these differences appeared during short time and are considerably large at very
small damper velocities where the performances of the closed-loop system (in terms of
comfort and road holding) are almost invariant w.r.t control methods.

In fact this condition (4.3.2) is very conservative because, as mentioned in (4.3.1),
the necessary condition to obtain an optimal solution is that the controller gain equals
(cmax − cmin)/2 for all frequencies. This is the reason why the optimal performance was
not achieved with the controller (4.3.2). A possible solution to this problem is to relax
the bound on the controller gain, for example, by modifying γ (or γk) in Approach 1 (or
in Approach 2, respectively) to

γ(or γk) = τ
cmax − cmin

2
where τ ∈ R+ and τ > 1 (4.3.3)

and then adding the following function in each criterion (comfort and road holding) of
the objective vector (4.2.28) and (4.2.31)

∫ ∞

0

(|K(j2πf)| −
cmax − cmin

2
)2df (4.3.4)

In the following, we present only the result obtained using Approach 1 (Approach 2
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Figure 4.12: Comparison between design (with proposed controller) and real (clipped by
Semi-active constraint) damper forces

seems to be less effective in both final results (as seen in Fig. 4.7) and time-consumption
due to the BMI + one ARE formulation of the solution, compared with the LMI + one
ARE of the Approach 1). The more complete analysis and comparison between both
approaches will be an interesting future work.
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As we know that the optimal method for comfort in low frequencies is using the hard
damper (c = cmax) and in high frequencies is using the soft damper (c = cmin), we will
use the following objective functions for the optimization procedure:

min
{ν}∈R10

+

JD (ν) =

[

JDComfort (ν)

JDRoadHolding (ν)

]

(4.3.5)

where

JD
Comfort

= α1

∫ 1.5

0
(z̈s/zr −R1)

2df + α2

∫ 10

3
(z̈s/zr −R2)

2df + α3
‖K‖∞
γ

(4.3.6)

JDRoadHolding = β1

∫ 20

10
(zus/zr −R3)

2df + β2
‖K‖∞
γ

(4.3.7)

where R1 (respectively R2) is the frequency response z̈s/zr of the hard damper (respec-
tively the soft damper) and R3 is the frequency response zus/zr of the hard damper; αi
with i = 1 : 3 and βj with j = 1 : 2 are weighting parameters.

In the optimization procedure for Approach 1, γ = 150 cmax−cmin

2
.

Figure 4.13 presents the trade-off in performance objectives of the nonlinear closed-
loop system. Compared with the results presented previously in Fig. 4.7, the new ones
are much better.
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Figure 4.13: Comfort and road holding trade-off of different strategies.

In Fig. 4.13, we choose in the set of proposed controllers the two following ones: one
is oriented for comfort (marked by a circle) and the other is oriented for road holding
(marked by a square).
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• The “Approach 1 - Comfort oriented controller” is denoted as KCF and given as
follows

KCF (s) =
−4015191.4923(s+ 5222)(s+ 821.6)(s+ 126.3)(s+ 5.406)(s+ 1.06)(s2 + 7.565s+ 81.02)

(s+ 3484)(s+ 5222.1)(s+ 414.1)(s+ 118.7)(s+ 1.06)(s+ 0.09755)(s2 + 10.11s+ 41.39)
(4.3.8)

• The “Approach 1 - Road holding oriented controller” is denoted as KRH and given
as follows

KRH(s) =
257399.483(s+ 5805)(s+ 22.28)(s+ 5.982)(s+ 1.375)(s+ 0.09611)(s2 + 54.73s+ 4426)

(s+ 6456)(s+ 141.8)(s+ 1.375)(s+ 0.0961)(s2 + 9.045s+ 74.52)(s2 + 52.59s+ 6026)
(4.3.9)

Notice also that the two controllers are stable.

4.3.3 Frequency domain analysis

Linear design analysis

The “Approach 1 - Comfort oriented controller”
Figure 4.14 shows that the gain of KCF (s) is almost equal to (cmax−cmin)/2 in the range
[1− 30] Hz. The gain is very high in low frequencies for which we can predict a loss of
performance in the same frequencies. Figures 4.15-4.16 depict the frequency responses
of the linear closed-loop systems (Bode diagrams). It can be seen that KCF (s) improves
considerably the passenger comfort while the road holding capacity is not preserved.

The “Approach 1 - Road holding oriented controller”
For this controller, although the H∞-norm of the controller is not high, its gain is not
close to (cmax − cmin)/2 either. We cannot expect an optimal performance from this
controller. However as shown in the later analysis, it is a good controller for road
holding (see also Fig. 4.18-4.19).

Nonlinear design analysis The nonlinear frequency responses (Pseudo-Bode) using
“Variance Gain” Algorithm (see Appendix B) are obtained on a nonlinear RMC model
with the above KCF and KRH clipped controllers and other strategies (passive, Skyhook,
Groundhook, Skyhook-ADD).

In Fig. 4.20, the comfort oriented controller KCF offers a very good result and is
comparable with the Skyhook-ADD (optimal for comfort). There is a small loss of
performance in [1− 2] Hz which was predicted because of the large gain of KCF in low
frequencies.

In Fig. 4.21, the road holding oriented controller KRH improves considerably the
road holding around [10− 20] Hz. This controller is comparable with the Groundhook
in terms of road holding improvement.
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Figure 4.14: Bode diagram: controller
gain u/żdef (Comfort controller KCF ).
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Figure 4.15: Bode diagram: vehicle
body acceleration z̈s/zr (Comfort con-
troller KCF ).
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Figure 4.16: Bode diagram: dynamic
tire deflection (zus − zr)/zr (Comfort
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10
�1

10
0

10
1

10
2

10
3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
4

Frequency [Hz]

G
a
in

(c
max

�c
min

)/2

Proposed K
RH

 (Active)

Figure 4.17: Bode diagram: Controller
gain u/żdef (Road Holding Controller
KRH).
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Figure 4.18: Bode diagram: vehicle
body acceleration z̈s/zr (Road Holding
Controller KRH).
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Figure 4.20: Nonlinear frequency responses z̈s/zr (nonlinear simulation).
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Figure 4.21: Nonlinear frequency responses zus − zr/zr (nonlinear simulation).
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4.3.4 Time domain analysis

For the time domain analysis, we use the same random road profile as that presented
in Fig. 3.16 in Chapter 3. The road profile is represented by an integrated white noise,
band-limited within the frequency range [0-30] Hz.

The spectrum of the vehicle acceleration and the dynamic tire deflection are depicted
in Fig. 4.23-4.24. The results are coherent with the frequency analysis. The Skyhook-
ADD and the “Approach 1 - Comfort” are the best for comfort. The Groundhook and
“Approach 1 - Road Holding” are the most suitable for road holding.

Furthermore, as in Chapter 3, the comfort in time domain can be evaluated, using
the following criterion

RMSComfort =

√

∫ T

0
z̈
2

s(t)dt

T

where z̈s(t) is the filtered vehicle body acceleration (by the approximated ISO 2631 filter
(1.2.9)) [m/s2] and T = 50 is the simulation time [s]. In Fig. 4.22, the RMSComfort values
of different strategies, normalized by that value for the nominal damper, are depicted.
The “Approach 1 - Comfort” is slightly better than the Extended Mixed SH-ADD for
the considered road profile.
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Figure 4.23: Spectrum of z̈s (nonlinear simulation).
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Figure 4.24: Spectrum of zus − zr (nonlinear simulation).
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In the following, we comment a little further on the behavior of the controlled sus-
pension systems with comfort and road holding controllers. As seen in Fig. 4.25, the
Skyhook-ADD and the “Approach 1 - Comfort” KCF controller have similar behaviors,
the total damper forces are distributed more in the lower bound (cmin) in high veloci-
ties (or high frequencies) to improve comfort. In the contrary, for the Groundhook and
“Approach 1 - Road Holding” KRH , these forces lie mostly in the upper bound (cmax) in
high frequencies to enhance road holding.

Another remark concerning the controller gain based on the results presented in Fig.
4.11 and 4.25. Among the three corresponding controllers, the “Approach 1 - Comfort”
KCF resulted in a large difference between design forces (all forces, in blue and green) and
real force (clipped one, in blue), while controller (4.3.2) resulted in a smallest difference.
This can be explained, when looking at the gain of these controllers in Fig. 4.8, 4.14 and
4.17. We can conclude from the remark that the higher the gain of the controller is, the
more the passivity constraint is violated.
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4.3.5 Robustness evaluation

As in Chapter 3, we will evaluate the robustness of the proposed controllers by the two
following tests.

• Overcharged working condition: We consider a constant (time-invariant) uncer-
tainty in sprung mass, ∆m = 0.75ms (i.e the sprung mass changes 75 % w.r.t the
design value).

As seen in Fig. 4.26-4.27, the effectiveness of the proposed controllers is still pre-
served. However, compared to the road holding controller KRH , the comfort ori-
ented oneKCF seems to have a better improvement (in terms of relative comparison
with other strategies). Precisely, the nonlinear frequency response of closed-loop
system using KRH is very close to those of the Hard Damper and the Groundhook
controller. The improvement of the KCF over the Skyhook-ADD in this case is
even better than in the nominal case (∆m = 0) (see also Fig. 4.30). The reason
can be given as follows.

With a fixed spring ks, the change in sprung mass will change the sprung mass
natural frequency

√

ms/ks (around [1.5− 2.5] Hz for performance (race) cars and
[1 − 1.5] Hz for other cars) at which there is usually a peak in the sprung mass
acceleration. In our case, there is an increase in the sprung mass, the natural
frequency decreases. As seen in Fig. 4.20, the comfort oriented controller KCF is
better than Skyhook-ADD in high frequencies but worse in low frequencies, the
decrease of the natural frequency will also decrease the contribution of responses
in low frequencies in the total performance (here the RMS value). As a result, in
this case (increase of 75 % in sprung mass), the comfort oriented controller KCF

improves the RMS value of sprung mass acceleration better than the Skyhook-ADD
(see also Fig. 4.30).

• Load transfer: We consider a time-varying uncertainty ∆m(t). we take for example
∆(t) varying from −25% to +25% of the sprung mass (see Fig. 3.23 in Chapter
3).

As seen in Fig. 4.28-4.29, the performances of the proposed controllers (i.e. the
comfort improvement offered by KCF and the road holding improvement offered
by KRH) are quite robust w.r.t load transfer.

In terms of comfort analysis, when looking at the Fig. 4.30, the two comfort oriented
controllers KCF and the Skyhook-ADD seem to be more sensible to load transfer than
other strategies (degradation of 8.2 % and -9.4 % w.r.t the nominal design condition
(∆m = 0)). However, these two controllers are always the best ones for comfort (for all
working conditions).
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Figure 4.26: Spectrum of z̈s (test with an increase of 75% in sprung mass).
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Figure 4.27: Spectrum of zus − zr (test with an increase of 75% in sprung mass).
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Figure 4.28: Spectrum of z̈s (test with a load transfer condition).
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Figure 4.29: Spectrum of zus − zr (test with a load transfer condition).
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Figure 4.30: Absolute RMS value of filtered z̈s in different working conditions.

4.4 Conclusions

In conclusion, let us recall the interesting question raised in the optimal control of semi-
active suspensions: “Is the clipped-optimal still optimal?”.

Concerning the question, it has been proved in many approaches that using clipped
active controller for semi-active suspensions resulted in the loss of the closed-loop perfor-
mance and, even worse, of the stability (see [Sammier et al., 2003], [Giorgetti et al., 2006],
[Canale et al., 2006]). The idea for the investigation of the strong stabilization approach
in this chapter is based on the particular properties of semi-active suspension: the open-
loop is stable and the optimal solution (for comfort and road holding oriented objectives)
can be achieved with a switching law. Precisely, because the designed controller is sta-
ble, the stability of the closed-loop semi-active suspension system is always stable under
the clipped behaviors. Moreover, if the designed controller is optimal and its gain is
small enough, the loss of performance (compared with optimal solution for semi-active
suspensions) may be reduced.

The results, both in frequency and time domains have shown that the clipped optimal
stable small-gained controllers can be a very promising solution to the above question:
The obtained comfort and road holding oriented controllers can be comparable to the
optimal comfort and the road holding controller Skyhook-ADD and Groundhook, respec-
tively. Moreover, these controllers are very robust in terms of stability and performance.
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Certainly, a more complete analysis (both in theoretical and practical aspects) needs to
be performed to prove completely the effectiveness of the proposed method.

In the next chapter, we will present the application of the proposed approach to
improve comfort and suspension deflection of a driver’s seat.
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Comfort and suspension deflection

improvement

It is quite obvious, while the comfort/handling trade-off has been studied in many ap-
proaches during the past decades, that the suspension travel issue has not been always
considered. Hitting the structural limits when road disturbance is particularly tough,
degrades dramatically the passenger comfort (the so-called end-stop effect) and decreases
the lifetime of vehicle components.

In this chapter, the trade-off between passenger comfort and suspension deflection is
investigated. The results presented in this chapter were obtained during my 6 month
stay in Dipartimento di Elettronica ed Informazione, Politecnico di Milano with Sergio
Savaresi, Cristiano Spelta and Diego Delvecchio.

The first result was presented in the CDC-2010 paper (see Appendix C). In this
paper, a hybrid method based on switching ADD (Acceleration Driven Damper) and LPV
control (see Chapter 3) was developed for a nonlinear quarter vehicle model equipped
with nonlinear MR dampers to improve both comfort and suspension deflection.

In this chapter, we present another result recently obtained for Dual Stage Suspension
systems (representing driver’s seats on heavy vehicles) using linear hydraulic dampers.
The control objective is also to improve the driver comfort while taking into account
the suspension deflection (since the system represents a driver sear, road holding is no
longer considered) To achieve this, we make use of the strong stabilization approach for
semi-active suspension control proposed in Chapter 4.
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5.1 Problem introduction

5.1.1 Dual-Stage Suspension System (DSS) and Equivalent One-

Stage Suspension (OSS) System

❦ zr

m

M

c1k1

k2
c2

z2

z1

❦ zr

z

kos cos

Mos

Figure 5.1: DSS model and equivalent OSS model

The left hand-side of Fig. 5.1 represents the Dual-Stage Suspension DSS model. In
this model, M is the seat mass connected with the vehicle chassis by two spring-damper
subsystems (k1, c1) and (k2, c2); m represents the mass of the link between these two
suspension subsystems (m ≪ M). As seen in the figure, z1 (respectively z2) is the
vertical displacement around the equilibrium point of M (respectively m) and zr is the
variation of the vehicle chassis. It is worth noticing that the two dampers are semi-active
ones where:

c1 ∈ [c1min, c1max] (5.1.1)

c2 ∈ [c2min, c2max] (5.1.2)

Let us denote ∆1,2 the strokes of these two dampers. When the suspension deflections
exceed these values, the End-stop phenomenon occurs (see in the next section 5.1.3)
leading to the deterioration of the passenger comfort.

By applying the second law of Newton, the dynamical equations of the DSS model
are given by

Mz̈1 = −k1(z1 − z2)− c1(ż1 − ż2) (5.1.3)

mz̈2 = k1(z1 − z2) + c1(ż1 − ż2)− k2(z2 − zr)− c2(ż2 − żr)
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It can be seen in the literature that almost all suspension control methods are
designed for single spring-damper systems. In this study, we will find such a system
model (see the right model in Fig. 5.1) which has similar dynamics to that of the DSS
one. The model is called equivalent OSS system. The equivalent OSS system controlled
by conventional strategies (like Skyhook, Skyhook-ADD...) can be used as references to
evaluate the efficiency of the proposed method presented in Section 5.2.

In the OSS model, Mos is the sprung mass and connected to the vehicle chassis by a
spring with stiffness kos and a semi-active damper with damping coefficient cos where

cos ∈ [cosmin
, cosmax

] (5.1.4)

Let us denote also z the vertical displacement around the equilibrium point of Mos and
∆os the stroke of the OSS model.

The dynamical equation of the One-Stage Suspension (OSS) model is given by

Mosz̈ = −kos(z − zr)− cos(ż − żr) (5.1.5)

5.1.2 Parameters identification for OSS model

It is worth noting that the OSS sprung mass is equal to the DSS seat mass and the OSS
spring is the series of the two springs of the DSS model (so that the static behavior of
both models are the same), i.e.

Mos = M (5.1.6)

kos =
k1k2
k1 + k2

(5.1.7)

The bounds on the damping coefficient of the OSS model cosmin
and cosmax

are identi-
fied by matching the frequency responses (of the accelerations and suspension deflections)
in extreme modes (lowest and highest damping rates) with those of the DSS model.

z̈1
zr

≈
z̈

zr
(5.1.8)

z1 − zr
zr

≈
z − zr
zr

(5.1.9)

Here in this chapter, we make use of Genetic Algorithms for the identification. The
frequency responses of the extreme modes (i.e. c1 = c1min, c2 = c2min (lowest damping
rate) and c1 = c1max, c2 = c2max (highest damping rate) for DSS model; and cos = cosmin

,
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Figure 5.2: Frequency responses of DSS (in blue) and equivalent OSS (in red).

cos = cosmax
for OSS model) are depicted in Fig. 5.2. It can be seen that these two

models are (almost) equivalent in terms of sprung mass acceleration and total suspension
deflection performances (in extreme cases).

Moreover, to guarantee a fair comparison, we suppose that both systems have the
same total strokes:

∆1 +∆2 = ∆os (5.1.10)

Finally, the parameters of these two models are given as in Tab. 5.1. With the
model parameters, we depict all the frequency responses obtained by varying the
damping coefficients of the dampers in their ranges (for both DSS and OSS systems) in
Fig. 5.3. As seen in this figure, the equivalent passive OSS system can achieve almost
the same performance as the passive DSS system, except for a small different in the
sprung mass acceleration response; however this difference is not important because
it does not contain the lower bound of the DSS system (the best achievable performance).

With the comparison performed in Fig. 5.2 and Fig. 5.3, we may conclude that the two
considered linear models are “equivalent”.
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Figure 5.3: All frequency responses of DSS system for all c1 ∈ [c1min, c1max], c2 ∈

[c2min, c2max] (in blue region) and all frequency responses of equivalent OSS system for
all cos ∈ [cosmin

, cosmax
](region limited by two dash lines).

DSS Model Value OSS Model Value Unit
M 60 Mos 60 [kg]

m 0.5 [kg]

k1 37670 kos 9959 [N/m]

k2 13538 [N/m]

kendstop 750000 kendstop 750000 [N/m]

c1 {900, 4000} cos {527, 2033} [Ns/m]

c2 {900, 4000} [Ns/m]

∆1 0.02 ∆os 0.04 [m]

∆2 0.02 − − [m]

Table 5.1: Model Parameters.

5.1.3 The End-stop Phenomenon

The End-stop effect happens when the piston hits the rubber bushings because of the
tough road disturbance. This effect generates a shock that makes passengers feel un-
comfortable. In this chapter, the end-stop effect is simply modeled as follows:

Fspring =

{

kszdef if |zdef | < ∆

keszdef if |zdef | ≥ ∆
(5.1.11)
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where ∆ is the suspension stroke and kes ≫ ks (typically represents the stiffness of rubber
bushings).

An illustration of the end-stop effect is shown in Fig. 5.4. It is obvious that hitting the
structural limits deteriorates dramatically the car body acceleration (i.e the passenger
comfort).
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Figure 5.4: Time history of the suspension deflection (top) and the body acceleration
(bottom), with and without the end-stops.

The End-stop model is taken into account during simulation to evaluate the efficiency
of different strategies.

5.1.4 Problem definition

The aim is to design a controller for the DSS system that handles the trade-off between
the comfort (represented by the seat acceleration) and the suspension deflections.

As mentioned previously, in this chapter, the equivalent OSS system controlled by
the Skyhook-ADD will be used as a references to evaluate the efficiency of the proposed
method for DSS systems.
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5.2 Controller design for DSS system

In this chapter, we will apply the strong stabilization Approach 1 (presented in Chap-
ter 4) for the DSS control. Let us begin the controller synthesis with a state-space
representation of the DSS system.

5.2.1 State-space representation

From equation (5.1.3), the control system for DSS model can be described as follows















Mz̈1 = −k1(z1 − z2)− c10(ż1 − ż2)− u1

mz̈2 = k1(z1 − z2) + c10(ż1 − ż2) + u1

−k2(z2 − zr)− c20(ż2 − żr)− u2

(5.2.1)

where c10 = (c1min + c1max)/2, c20 = (c2min + c2max)/2, u1 and u2 are control inputs.

From (5.2.1), a state-space representation for DSS model (5.1.3) is obtained

{

ẋs = Asxs +Bsww +Bsuu

y = Csxs
(5.2.2)

where xs =















z1 − z2

ż1

z2 − zr

ż2















, As =
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, u =

[

u1

u2

]

, w = żr

Cs (or the measurement output y) will be defined and discussed later in section 5.4.

5.2.2 Controller optimization

The control block diagram for DSS systems is presented in Fig. 5.5. With the defined
control problem (see 5.1.4), the controlled outputs will be the seat acceleration z̈1 and
the suspension deflections of two dampers zdef1 and zdef2 .
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Figure 5.5: Control block diagram for DSS systems

The weighting functions for the synthesis are 2nd order transfer functions:

Wz̈s = kz̈s
s2 + 2ξ11Ω11s+ Ω11

2

s2 + 2ξ12Ω12s+ Ω12
2 (5.2.3)

Wzdef1 = kzdef1
s2 + 2ξ21Ω21s+ Ω21

2

s2 + 2ξ22Ω22s+ Ω22
2 (5.2.4)

Wzdef1 = kzdef2
s2 + 2ξ31Ω31s+ Ω31

2

s2 + 2ξ22Ω32s+ Ω32
2 (5.2.5)

The optimization procedure is similar to the one using the Strong Stabilization Ap-
proach 1 presented in 4.2.5 in Chapter 4. The objective function is the following:

min
{ν,γcl}∈R

10
+

JD (ν) =

[

JDComfort (ν)

JDStroke (ν)

]

(5.2.6)

where

JD
Comfort

= α1

∫ 2

0
(z̈1/żr −R1)

2df + α2

∫ 20

3.5
(z̈1/żr −R2)

2df + α3
‖K‖∞
γk

(5.2.7)

JDStroke = α4

∫ 5

1
(zdef1/żr −R3)

2df + α5

∫ 5

1
(zdef1/żr −R4)

2df + α6
‖K‖∞
γk

(5.2.8)

where R1 (respectively R2) is the linear frequency response z̈1/żr of the hard dampers
(respectively the soft dampers) and R3 (respectively R4) is the linear frequency response
zdef1/żr (zdef2/żr) of the hard dampers; αi with i = 1 : 6 are weighting parameters.
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Remark 5.2.1. The similar procedure is applied for the OSS system.

5.3 Test scenario and performance criterion for evalu-

ation

In the following, we present the test scenario and the performance index which is useful
for the evaluation of the proposed methods.

5.3.1 Road Profile

The road profiles used for the simulation is in fact a road profile standard z̄r scaled by a
factor β. The higher the value of β, the rougher the road. For this class of road profile
it is supposed that the vehicle velocity is the same for all road profiles zr.

zr ∈ {βz̄r, β ∈ [0.5, 1.5]} (5.3.1)

The standard road profile z̄r is represented by an integrated white noise, band-limited
within the frequency range [0-30] Hz (see Fig. 5.6).
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Figure 5.6: Standard road profile.
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5.3.2 Performance Index

For each kind of road profile or each value of β, the following performance index will be
calculated.

PI =

√

√

√

√

∫ T

0
z̈
2

s(t)dt
∫ T

0
β2z̄2r (t)dt

(5.3.2)

where z̈s(t) is the filtered car body acceleration (by ISO 2631 filter, see 1.2.9 in Chapter
1) [m/s2] (for DSS system zs ≡ z1, for OSS system zs ≡ z), z̄r is the standard road
profile and T is the simulation running time [s].

5.4 Numerical Results

From the set of controllers obtained by Genetic optimization for OSS and DSS systems,
we choose the following controllers.

• For the OSS system, we obtain a comfort oriented controller (using the suspension
deflection z − zr as measurement output), denoted as KOSS

Comfort.

For the DSS system, we obtain two controllers: a comfort oriented controller and a stroke
oriented controller.

• The comfort oriented controller (using the suspension deflection [z1 − z2; z2 − zr]

as measurement output) is denoted as KDSS
Comfort.

• The stroke oriented controller (using the suspension deflection velocity [ż1− ż2; ż2−

żr] as measurement output) is denoted as KOSS
Stroke.

The purpose is to design controllers for the DSS system. For OSS system, we choose
only one controller, the comfort oriented controller, for the comparisons with the comfort
oriented one for the DSS system to evaluate the effectiveness of proposed method and
to see if there is any difference between the two models when using with the con-
trollers having the same behaviors. For more details of these controllers, see Appendix D.

Remark 5.4.1. Many tests were made and we found that the use of the suspension
deflections as measurement output results in better comfort oriented controllers. In the
contrary, the use of the suspension deflection velocity as measurement output gives better
stroke oriented controllers. It may be interesting to consider the influence of different
types of measurement outputs on the quality of controller (in future work).
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It is worth noticing also that all the frequency analysis are made for nonlinear models
(OSS & DSS) without the Endstop behaviors. Only in time domain analysis, the non-
linear model with Endstop effect are used. Besides, all the proposed controllers (using
strong stabilization) are clipped.

5.4.1 Baselines

To evaluate the efficiency of the proposed method, the following referenced methods are
used.

• Passive OSS Min (i.e cos = cmin), OSS Mean (cos = (cmax+ cmin)/2) and OSS Max
(cos = cmax).

• Controlled OSS: Skyhook-ADD (where the design parameter α = 2π3 rad/s),
Clipped Comfort-Oriented Controller (Proposed Method) - 1 Example .

• Passive DSS Min-Min (i.e c1 = c2 = cmin), DSS Min-Max (i.e c1 = c1min, c2 =

c2max), DSS Max-Min (i.e c1 = c1max, c2 = c2min), DSS Mean-Mean (c1 = c2 =

(cmax + cmin)/2) and DSS Max-Max (c1 = c2 = cmax).

5.4.2 Frequency domain analysis

OSS system Figures 5.7-5.8 shows the nonlinear frequency responses of the OSS with
two comfort oriented controllers KOSS

Comfort and the Skyhook-ADD (along with passive
cases). The results show that KOSS

Comfort is a little better than Skyhook-ADD in high
frequencies (significant for comfort) but worse in low frequencies. The Skyhook-ADD,
besides providing a good comfort, improves the suspension deflection as well.

DSS system Figure 5.9-5.10 show the nonlinear frequency responses of the DSS
with two controllers: the comfort oriented controller KDSS

Comfort and the stroke oriented
controller KDSS

Stroke. The comfort controller improves fairly well the comfort in high fre-
quencies, it is less effective in low frequencies. The stroke oriented controller improves
very well the suspension deflection of the higher damper (z1 − z2). In this point, it is
similar to the “DSS Max − Min” but more efficient in comfort and lower damper’s
deflection improvements. It is worth noticing also that, among 4 passive cases of DSS
system, the DSS Max−Min provide the best compromise.
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5.4.3 Time domain analysis

The performance index (5.3.2) is computed with different values of β (or different road
profiles) for different strategies and depicted in Fig. 5.11-5.13.
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Figure 5.11: Time performance comparison for OSS system.
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Figure 5.13: Time performance comparison between passive OSS and DSS systems.

In Fig. 5.11, it is can seen that the KOSS
Comfort is a little better than the Skyhook-ADD

when the road is smooth (β < 1). When the road disturbance is more significant (β > 1),
the Skyhook-ADD keeps its better performance while the KOSS

Comfort and the “OSS Min”
degrade rapidly their performances due to the Endstop effect. The “OSS Max” is not
influenced much by this effect but in general it is not a good choice.

In Fig. 5.12, it is can be seen that the KDSS
Comfort is the best one when the road is

smooth (β < 1). When the road disturbance is more significant (β > 1), KDSS
Stroke is the

best choice. It outperforms the DSS Max−Min which is considered the best among 4
passive cases. It can be seen again that the KDSS

Stroke is better than the “DSS Min−Max”
as it behaves better in frequencies responses for comfort (in low frequencies) and in lower
damper’s deflection.

In Fig. 5.13, the time performances of passive DSS and OSS systems are compared.
The results show that they have similar performance indices.

We propose here a switching controllerKComfort+Stroke to achieve a better compromise
w.r.t KOSS

Comfort and KDSS
Stroke between comfort and suspension deflection:

Kc3 = (1− sw)Kc1 + swKc2 (5.4.1)
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where sw is the switching signal given as (see [Spelta et al., 2011])

sw = 0 if

{

|zdef1| < 0.013

|żdef1| < 0.4 ∨ żdef1.zdef1 < 0
∧

|zdef2| < 0.013

|żdef2| < 0.4 ∨ żdef2.zdef2 < 0

sw = 1 else

(5.4.2)

The idea of the switching controller is that when the suspension deflection is small
and when the deflection velocity is small or when the deflection and its velocity have
different signs, the comfort controller is used; otherwise the stroke controller is preferred
to reduce the suspension deflection and thus to reduce the degradation by End-stop
effect.

Looking at in Fig. 5.14, several comments can be made, concerning the various
strategies:

• The comfort oriented controllers KDSS
Comfort and KOSS

Comfort are similar in terms of
performance improvement. Along with the comparison presented in Fig. 5.13, this
shows that the two models (OSS and DSS) are comparable and that the proposed
method (strong stabilization) is efficient for both models.

• If we consider the Skyhook-ADD as a reference for the performance evalua-
tion then the KComfort+Stroke outperforms this strategy. The switching controller
KComfort+Stroke improves the performance for almost all value of β (smooth and
rough roads).

5.5 Conclusions

In this chapter, we presented an application of the strong stabilization approach (pre-
sented in Chapter 4) for the driver seat’s comfort improvement. The results showed the
effectiveness of the proposed method.

The study of DSS model is very promising. In [Spelta et al., 2011], it has been
shown that if the damping coefficient can vary from a very low to a very high value,
the controllable stiffness and damping suspension system can be achieved with the DSS
model. This point is very interesting in that the total stiffness and damping coefficients
can be modulated by changing only the characteristic of the dampers. The studies of
controllable damping and stiffness suspension systems will be considered in future work.
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Chapter 6

LPV control design with input

saturation and state constraints: an

application to semi-active suspension

control

As seen in previous chapters, comfort, road holding and suspension deflection are the
main issues in suspension control. So far in the thesis, three objectives have not been
handled simultaneously in a design: the comfort and road holding trade-off was studied
in chapter 3 and 4; the comfort and suspension deflection improvement was proposed in
chapter 5. Besides, the passivity constraint of semi-active suspensions was not explicitly
taken into consideration. In this chapter, an H∞/LPV synthesis that encompasses all
major problems in semi-active suspension control (comfort, road holding, suspension de-
flection improvements and passivity constraint) will be introduced. First, a generic design
for LPV systems subject to additive disturbances in the presence of actuator saturation
and state constraints is proposed. LMI conditions are derived in order to simultaneously
compute an LPV controller and an anti-windup gain that ensures the boundedness of
the trajectories, considering that the disturbances belong to a given admissible set. The
disturbance attenuation is addressed via an H∞ constraint. Besides, state constraints
(corresponding to the local validity of the LPV model and system structural limits) are
always assured. Then, the theoretical results are applied to a quarter-car vehicle model
rewritten within the LPV framework where the passivity constraint is recast into the
saturation one.

The results in this chapter have been developed in collaboration with J. M. Gomes
da Silva Jr. during his visiting period in Grenoble in 2010.
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6.1 Introduction

In the last years, many studies have focused on the control of saturated (in states, control
inputs...) systems which are present in almost real applications. For a system with input
saturation, there is usually an inconsistency between the states of the plant and those
of the controller because of the saturated actuator between the system control input
and the controller output. This effect, usually called windup, degrades dramatically the
closed-loop performances or even worse may cause the system instability. To preserve
the consistency, the input to controller needs to be changed by an appropriate signal,
which is provided by a called anti-windup compensator. Usually the problems on how
to guarantee the (global or local) stabilization of the saturated system in the presence
of disturbance and to ensure some closed-loop performances are the most interesting
ones. As presented in Chapter 2, the input saturation control problem is a nonlinear
one, that may be handled using either a two-step design [Kothare et al., 1994], [Grimm
et al., 2003], [Wu & Lu, 2004]; or a one-step design [Gomes da Silva Jr. et al., 2008],
[Mulder et al., 2009]. With these approaches, numerous results have been obtained
for LTI systems. On the other hand, very few studies dealing with switched or LPV
systems can be found in the literature, see for instance [Montagner, Gomes da Silva Jr.
& Peres, 2007], for switching systems, and [Wu et al., 2000], [Montagner, Oliveira, Peres,
Tarbouriech & Queinnec, 2007], [Cao et al., 2002] for LPV systems.

In this chapter, we aim at using the one-step anti-windup design for semi-active sus-
pension control to achieve the best compromise among conflicting objectives: passenger
comfort, road holding and suspension deflection. In our previous works [Do, Sename
& Dugard, 2010] and [Do, Spelta, Savaresi, Sename, Dugard & Delvecchio, 2010], the
LPV framework is used to model the nonlinear damper characteristics, and, also to con-
sider the actuator saturation as a scheduling parameter (this approach can be referred
to [Wu et al., 2000]). The performance on suspension deflection, along with comfort and
road holding, is managed by using some frequency-based weighting functions. An LPV
controller is then synthesized using a global analysis (global stability and performance).
Another important point is that, in this work, instead of considering the suspension
deflection as a performance objective, we will treat it as a constraint. Besides, we are
only interested in a certain working range of the damper because, in real applications, its
deflection velocity is limited. Since the states are physically bounded, due to the limit
in the suspension deflection, and since the LPV polytopic model is not globally valid
in the state space, a regional stabilization approach is considered in this work. First,
a general design method for LPV system with input saturation and state constraint is
proposed. Precisely, a sufficient condition to guarantee the regional asymptotic stability
of the origin for arbitrary scheduling parameters and to guarantee bounded trajectories
in the presence of disturbances (which are assumed to be limited in amplitude) is derived
based on the modified sector condition [Gomes da Silva Jr. & Tarbouriech, 2005] and
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on the use of quadratic Lyapunov function. The condition ensures also an upper bound
on the induced-L2 gain between the disturbance input and the controlled output when
there is no saturation. Moreover, the state constraints on the system are always assured
for the considered class of disturbances. Then we apply the result to enhance the per-
formance of a semi-active suspension system rewritten in the LPV framework where the
passivity constraint is recast into an input saturation one.

The contribution of the chapter is two-fold:

• The synthesis of a stabilizing controller for LPV system with input saturation and
state constraints.

• The application for the first time of such an approach for the semi-active suspension
control.

6.2 Problem Formulation

In the following, Xi denotes the ith row of matrix X. (*) stands for symmetric blocks and
sym(X) = X+XT . (•) stands for an element that has no influence on the development.

6.2.1 System description

Consider a quasi-LPV plant represented by:

ẋ = A(θ)x+Bw(θ)w +Buu (6.2.1)

z = Cz(θ)x+Dzw(θ)w +Dzuu

y = Cyx+Dyww

where x ∈ R
n, u ∈ R

m, w ∈ R
q, z ∈ R

r and y ∈ R
p are the state, the input, the

disturbance vectors, the control output and the measured output, respectively. θ is a
vector of scheduling parameters which are supposed to depend on states and assumed
to be known (measured or estimated).
Let us consider also an LPV controller

ẋc = Ac(θ)xc +Bc(θ)uc + v (6.2.2)

yc = Cc(θ)xc +Dc(θ)uc

where xc ∈ R
nc , uc ∈ R

p, yc ∈ R
m, v is an additional input used for anti-windup

compensation.

179



Chapter 6. LPV control design with input saturation and state constraints

The unconstrained closed-loop system of the plant (see Fig. 6.1) and the controller are
defined by the following interconnections

u = yc, uc = y, v = 0 (6.2.3)

Figure 6.1: Unconstrained closed-loop plant.

The following assumptions are considered:

• Assumption 1: The matrices Bu, Dzu, Cy and Dyz are supposed to be parameter-
independent (to satisfy the hypotheses of polytopic design for LPV systems).

• Assumption 2: The input disturbance is limited in amplitude, that is ∀t > 0, w(t) ∈

W with

W = {w ∈ R
q : wTw < δ} (6.2.4)

• Assumption 3: The scheduling parameters depend on the system’s states θ = θ(x, t)

(i.e quasi-LPV) and are bounded in

Θ = {θ : θi 6 θi 6 θi, i = 1, ..., k} (6.2.5)

• Assumption 4: The control inputs are bounded in amplitude:

−ui 6 ui(t) 6 ui, i = 1, ...,m (6.2.6)

6.2.2 LPV controller

We consider a dynamic LPV controller with a static anti-windup action

ẋc = Ac(θ)xc +Bc(θ)uc + Ec(θ)(sat(yc)− yc) (6.2.7)

yc = Cc(θ)xc +Dc(θ)uc

where xc ∈ R
nc , uc ∈ R

p, yc ∈ R
m and Ec(θ) is a static anti-windup term [Gomes da

Silva Jr. & Tarbouriech, 2005], [Montagner, Gomes da Silva Jr. & Peres, 2007].
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The interconnections between the plant and the controller (see Fig. 6.2) are given by
(according to (6.2.2))

u = sat(yc), uc = y, v = Ec(θ)(sat(yc)− yc) (6.2.8)

where the saturated function sat(.) is defined by

sat(yci) =















ui if yci > ui

yci if − ui ≤ yci ≤ ui

−ui if yci < −ui

(6.2.9)

From (6.2.1) and (6.2.2), the closed-loop system is given by

ξ̇ = A(θ)ξ + B(θ)w − (Bu +REc(θ))ψ(yc) (6.2.10)

z = C(θ)ξ +D(θ)w +Dψψ(yc)

where

ξ = [xTxTc ]
T , ψ(yc) = yc − sat(yc)

A(θ) =

[

A(θ) + BuDc(θ)Cy BuCc(θ)

Bc(θ)Cy Ac(θ)

]

B(θ) =

[

Bw(θ) + BuDc(θ)Dyw

Bc(θ)Dyw

]

Bu =

[

Bu

0

]

,R =

[

0

Inc

]

(6.2.11)

C(θ) =
[

Cz(θ) +DzuDc(θ)Cy DzuCc(θ)
]

D(θ) = Dzw(θ) +DzuDc(θ)Dyw

Dψ = −Dzu

The controller output is rewritten as

yc = K(θ)ξ +Kw(θ)w (6.2.12)

where

K(θ) =
[

Dc(θ)Cy Cc(θ)
]

, Kw(θ) = Dc(θ)Dyw

6.2.3 Problem Definition

In this chapter, we look for an LPV controller (6.2.7) for the LPV system (6.2.1) with
input saturation such that the following conditions are satisfied:
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Figure 6.2: Closed-loop plant with anti-windup controller.

(i) In the absence of disturbances, or if the disturbances are vanishing, the controller
guarantees the regional asymptotic stability of the origin for an arbitrary scheduling
parameter θ. In the presence of disturbances satisfying assumption 2, the controller
guarantees that the trajectories of (6.2.10) are bounded.
(ii) The controller guarantees some constraints on the states of the closed-loop system.
(iii) For the unconstrained closed-loop system, i.e. when the saturation is not active,
the controller guarantees an upper bound γ on the L2-gain between the disturbance
input w and the controlled output z.

Remark 6.2.1. Considering the same L2 performance when the system operates linearly
and under control saturation can lead to very conservative results. Hence, we consider
that the L2 performance should be satisfied only by the unconstrained system, which
corresponds to a classic H∞ problem. On the other hand, if the control saturates, we
should ensure that the trajectories are bounded and do not violate the state constraints.

6.3 Preliminaries

6.3.1 Practical validity region

In practice, besides the constraint on the control input, the system states are usually
bounded because of structural limits. Furthermore, the local validity of the LPV model
can be also translated in state constraints. We assume that the state constraints can be
represented by a polyhedron X defined by

X = {ξ ∈ R
2n : Hiξ ≤ h0i, i = 1 : s} (6.3.1)

Note that only the state of the plant is constrained, so H is of the form H =
[

H1 0
]

.

6.3.2 Saturation model validity region

Due to the boundedness of w and to the fact that the states of the real system are
limited in the practical validity region X , a regional analysis is made in this chapter. In
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order to take into account the saturation effects, an "LPV" version of the modified sector
condition proposed in [Gomes da Silva Jr. & Tarbouriech, 2005] is applied. With this

aim, let us define the matrix G (θ) =
[

G1 (θ) G2 (θ)
]

and the following polyhedral set

Sθ =
{

ξ ∈ R
2n, | (Ki (θ)− Gi (θ)) ξ| 6 ui, i = 1, ...,m

}

, (6.3.2)

∀θ ∈ Θ. Hence, the following Lemma can be stated.

Lemma 6.3.1. If ξ(t) ∈ Sθ, then the following inequality

ψ (yc)
T T






ψ (yc)−

[

G (θ) 0 Kw (θ)
]







ξ

ψ (yc)

w












6 0 (6.3.3)

holds for any diagonal and positive definite matrix T ∈ R
m×m.

Proof: The result can be inferred directly from [Gomes da Silva Jr. & Tar-
bouriech, 2005].

6.3.3 W-invariance

Because the disturbance input is bounded in amplitude, we use the W-invariance concept
to ensure the boundedness of the trajectories. (see [Blanchini, 1999])

Definition 6.3.1. A set E ⊂ R
2n is W-invariant with respect to the system (6.2.10) if

∀ξ(0) ∈ E, w(t) ∈ W and for any scheduling parameter signal θ(t), it follows that the
state trajectory remains in E , i.e ξ(t) ∈ E, ∀t > 0.

In the approach, E is considered as an ellipsoidal set associated to a quadratic
function V (t) = ξTPξ, P = P T ≻ 0

E = {ξ ∈ R
2n : ξTPξ < 1} (6.3.4)

To ensure that E is a W-invariant set, it suffices to ensure that

V̇ (t) < 0,

{

∀ξ(t) : ξTPξ > 1

∀w(t) : wTw < δ
(6.3.5)

along the trajectories of (6.2.10). By using S-procedure, this condition can be satisfied
if there exist scalars β1 > 0 and β2 > 0, such that

V̇ + β1(ξ
TPξ − 1) + β2(δ − wTw) < 0 (6.3.6)
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Figure 6.3: Saturation model validity region S, practical validity region X , W-invariant
set E .

6.4 Main results

In this section, an LMI-based constructive condition to solve the problem stated in 6.2.3
is developed.

Theorem 6.4.1. If, for given β1 > 0 and γ > 0, there exist symmetric positive definite
matrices X, Y ∈ R

n×n, positive scalar β2, positive diagonal matrices S ∈ R
m×m, matrices

Â(θ) ∈ Rn×n, B̂(θ) ∈ Rn×p, Ĉ(θ), Ẑ1(θ), Ẑ2(θ) ∈ Rm×n, D̂(θ) ∈ Rm×p, Q̂(θ) ∈ Rn×m

such that the matrix inequalities (6.4.2)-(6.4.6) are verified, then the LPV anti-windup
controller (6.2.2) with matrices















































Ec (θ) = N−1Q̂ (θ)S−1 −N−1Y Bu

Dc (θ) = D̂ (θ)

Cc (θ) = [Ĉ (θ)−Dc (θ)CyX]M−T

Bc (θ) = N−1[B̂ (θ)− Y BuDc (θ)]

Ac (θ) = N−1[Â (θ)−NBc (θ)CyX − Y BuCc (θ)M
T

−Y (A (θ) + BuDc (θ)Cy)X]M−T

(6.4.1)

where M and N verify MNT = I −XY , solves the problem defined in Section 6.2.3.











L11(θ) L12(θ) L13(θ) L14(θ)

∗ L22(θ) L23(θ) L24(θ)

∗ ∗ L33(θ) L34(θ)

∗ ∗ ∗ L44(θ)











≺ 0 (6.4.2)
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O11 (θ) O12 (θ) O13 (θ) O14 (θ)

∗ O22 (θ) O23 (θ) O24 (θ)

∗ ∗ O33(θ) O34 (θ)

∗ ∗ ∗ O44(θ)











≺ 0 (6.4.3)







X ∗ ∗

I Y ∗

Ĉi (θ)− Ẑ1i (θ) (D̂ (θ)Cy)i − Ẑ2i (θ) ū2i






� 0

for i = 1 : m

(6.4.4)





X ∗ ∗

I Y ∗

H1iX H1i h20i



 � 0

for i = 1 : s

(6.4.5)

β2δ − β1 ≺ 0 (6.4.6)

where
L11(θ) = A(θ)X +XA(θ)T +BuĈ(θ) + Ĉ(θ)TBT

u + β1X

L12(θ) = A(θ) + Â(θ)
T
+BuD̂(θ)Cy + β1In

L13(θ) = −BuS + Ẑ1(θ)
T

L14(θ) = BuD̂(θ)Dyw +Bw(θ)

L22(θ) = Y A(θ) +A(θ)TY + B̂(θ)Cy + CTy B̂(θ)T + β1Y

L23(θ) = −Q̂(θ) + Ẑ2(θ)
T

L24(θ) = B̂(θ)Dyw + Y Bw(θ)

L33(θ) = −2S

L34(θ) = D̂(θ)Dyw

L44(θ) = −β2I

O11(θ) = A(θ)X +XA(θ)T +BuĈ(θ) + Ĉ(θ)TBT
u

O12(θ) = Â(θ)T +A(θ) +BuD̂(θ)Cy

O13(θ) = Bw(θ) +BuD̂(θ)Dyw

O14(θ) = XCz(θ)
T + Ĉ(θ)TDT

zu

O22(θ) = Y A(θ) +A(θ)TY + B̂(θ)Cy + CTy B̂(θ)T

O23(θ) = Y Bw(θ) + B̂(θ)Dyw

O24(θ) = Cz(θ)
T + CTy D̂(θ)TDT

zu

O33(θ) = −γIm

O34(θ) = Dzw(θ)
T +DT

ywD̂(θ)TDT
zu

O44(θ) = −γIp

(6.4.7)
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Proof of Theorem 6.4.1

1. Sufficient condition for stability - related to problem (i)
First, we look for the stability condition for the closed-loop system with the anti-windup
controller (6.2.10). From (6.3.3) and (6.3.6), by employing the S-procedure, if there exist
a positive definite matrix T and positive scalars β1 and β2 such that

dV
dt

+ β1(ξ
TPξ − 1) + β2(δ − wTw)− 2ψ(yc)

TT×








ψ (yc)−
[

G (θ) 0 Kw (θ)
]









ξ

ψ (yc)

w

















< 0
(6.4.8)

then it follows that V̇ < 0, for all ξ in the boundary of E that belongs to the region Sθ,
and for all w ∈ W . Hence, in order to ensure that E is a W-invariant set, we must also
satisfy:

E ⊂ Sθ (6.4.9)

The condition (6.4.8) is in fact guaranteed if both following inequalities hold [Boyd
et al., 1994]

dV
dt

+ β1ξ
TPξ − β2w

Tw − 2ψ(yc)
TT1×









ψ (yc)−
[

G (θ) 0 Kw (θ)
]









ξ

ψ (yc)

w

















< 0
(6.4.10)

and
β2δ − β1 < 0 (6.4.11)

Expanding the derivative dV
dt

, inequality (6.4.10) can be rewritten as

ξTAT (θ)Pξ + wTBT (θ)Pξ − ψT (yc) (Bu +REc (θ))
TPξ

+ξTPA (θ) ξ + ξTPB (θ)w − ξTP (Bu +REc (θ))ψ (yc)

+β1ξ
TPξ − β2ω

Tω − 2ψT (yc)Tψ (yc)

+2ψT (yc)TG (θ) ξ + 2ψT (yc)TKw (θ)w < 0

(6.4.12)

The condition (6.4.10) is equivalent to the matrix inequality (6.4.16). Note that (6.4.16)
is not an LMI in terms of β1, β2, P , T and the controller matrices Ac, Bc, Cc, Dc, Ec. By
first assuming that β1 is known and applying some congruence transformations, similar
to the ones proposed in [Scherer et al., 1997], we show in the sequel that (6.4.16) is
equivalent to 6.4.2. With this aim, let P and P−1 be partitioned as follows

P =

[

Y N

NT •

]

and P−1 =

[

X M

MT •

]

(6.4.13)
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and define the new matrices

Π =

[

X I

MT 0

]

, S = T−1 (6.4.14)

and






















































































Â (θ) = NAc (θ)M
T +NBc (θ)CyX + Y BuCc (θ)M

T

+Y (A (θ) + BuDc (θ)Cy)X

B̂ (θ) = NBc (θ) + Y BuDc (θ)

Ĉ (θ) = Cc (θ)M
T +Dc (θ)CyX

D̂ (θ) = Dc (θ)

Ẑ1 (θ) = G1 (θ)X +G2 (θ)M
T

Ẑ2 (θ) = G1 (θ)

Q̂ (θ) = Y BuS +NEc (θ)S

(6.4.15)

Pre and post-multiplying (6.4.16) by diag(ΠT , S, I) and its transpose, we obtain the
LMI (6.4.17) (which corresponds exactly to the LMI (6.4.2) in theorem 6.4.1). Now we





sym(PA (θ)) + β1P −P (Bu +REc (θ)) + GT (θ)T PB (θ)

∗ −2T TKw (θ)

∗ ∗ −β2I



 < 0 (6.4.16)











sym(A(θ)X +BuĈ(θ)) + β1X A(θ) + Â(θ)
T
+BuD̂(θ)Cy + β1In −BuS + Ẑ1(θ)

T BuD̂(θ)Dyw +Bw(θ)

∗ sym(Y A(θ) + B̂(θ)Cy) + β1Y −Q̂(θ) + Ẑ2(θ)
T B̂(θ)Dyw + Y Bw(θ)

∗ ∗ −2S D̂(θ)Dyw

∗ ∗ ∗ −β2I











≺ 0

(6.4.17)

perform the inclusion condition (6.4.9) in terms of using another LMI. It can be seen
that the following inequality implies (6.4.9)

[

P ∗

Ki(θ)− Gi(θ) u2i

]

� 0, i = 1, ..,m (6.4.18)

Pre and post-multiplying (6.4.18) by diag(ΠT , 1), we obtain the following LMI (exactly
the LMI (6.4.4) in theorem 6.4.1).









X ∗ ∗

I Y ∗

Ĉi (θ)− Ẑ1i (θ) (D̂ (θ)Cy)i − Ẑ2i (θ) ū2i









� 0, (6.4.19)
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i = 1, ..,m

2. State constraint - related to problem (ii)
To ensure the state constraint (6.3.1), it suffices to guarantee the inclusion of the W-
invariant set E in the practical validity region X

E ⊂ X (6.4.20)

Similarly to the previous manipulation to obtain the inclusion condition, we have

[

P ∗

Hi h20i

]

� 0 (6.4.21)

Pre and post-multiplying (6.4.21) by diag(ΠT , 1) and its transpose one obtains the LMI
(exactly the LMI (6.4.5) in theorem 6.4.1)









X ∗ ∗

I Y ∗

H1iX H1i h20i









� 0 (6.4.22)

3. Sufficient condition of L2 gain performance in linear mode (without saturation) -
related to problem (iii)
Consider now V̇ computed considering the unconstrained system, i.e. satisfying (6.2.3),
and the following inequality

dV
dt

+ 1
γ
zT z − γwTw < 0 (6.4.23)

Following the same steps as done in [Scherer et al., 1997], we can show that (6.4.3) ensures
that (6.4.23) is verified. Hence, we can conclude that the L2 gain of the unconstrained
system is smaller than γ.

�

Optimization problems

From the theorem 6.4.1, in some interesting optimization problem may be:
1. For a known disturbance attenuation level γ, the maximization of the stability region
E in direction v associated to the states of the plant is accomplished by the following
eigenvalue problem (EVP):

min η (6.4.24)

s.t. LMI (6.4.2)− (6.4.6), vTYv < η (6.4.25)

2. Minimization of the disturbance attenuation level γ

min γ (6.4.26)

s.t. LMI (6.4.2)− (6.4.6) (6.4.27)
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6.5 Application to semi-active suspension control

6.5.1 Quarter car model

Let us consider the quarter vehicle model presented in Fig. 6.4 made up of a sprung
mass (ms) and an unsprung mass (mus). A spring with the stiffness coefficient ks and
a semi-active damper connect these two masses. The different point of this model w.r.t
the one used in previous chapters is in the wheel tire. In this case, the tire is modeled by
a spring with the stiffness coefficient kt and a passive damper with damping coefficient
ct. The explanation for the use of the new model will be given in the next section.
Let us denote also zs (respectively zus) the vertical position of ms (respectively mus)
and zr the road profile. It is assumed that the wheel-road contact is ensured.

❦

zs

zus

zr

ms

mus

ks Semi-active

damper

kt ct

Figure 6.4: Model of quarter vehicle with a semi-active damper.

The dynamical equations of a quarter vehicle are given by

{

msz̈s = −kszdef − Fdamper

musz̈us = kszdef + Fdamper − kt (zus − zr)− ct (żus − żr)
(6.5.1)

where zdef = zs − zus is the damper deflection (m) (assumed to be measured or esti-
mated), żdef = żs − żus is the deflection velocity (m/s) (can be directly computed from
zdef ) and Fdamper, the damper force, is given as follows:

Fdamper = cżdef (6.5.2)

The passivity constraint of a semi-active damper is

0 6 cmin 6 c 6 cmax (6.5.3)
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where cmin = 700 [Ns/m] and cmin = 5000 [Ns/m].
Let us rewrite the damper force as follows

Fdamper = cnomżdef + użdef = cnomżdef + uθ (6.5.4)

where

• cnom = (cmax + cmin)/2 is the nominal damping coefficient

• u is the new control input.

• θ = żdef is the scheduling parameter.

It can be seen that the passivity constraint (6.5.3) is now recast into the saturation
constraint

|u| < (cmax − cmin)/2 (6.5.5)

6.5.2 State-space representation and control objective

The state-space representation of the quarter car model is given by

ẋs = Asxs +Bs1w +Bs2(θ)u (6.5.6)

z = Czxs +Dz(θ)u

y = Csxs

where xs = (zs − zus, żs, zus − zr, żus)
T is the state vector, w = żr is the disturbance

input, z = z̈s is the controlled output and y = (zs − zus, żs − żus)
T is the measurement

output.

As =















0 1 0 −1

−ks
ms

−cnom

ms
0 cnom

ms

0 0 0 1

ks
mus

cnom

mus

−kt
mus

−cnom−ct
mus















, Bs1 =
[

0 0 −1 ct
mus

]

,

Bs2(θ) =
[

0 −θ
ms

0 θ
mus

]

Cz =
[

−ks
ms

−cnom

ms
0 cnom

ms

]

, Cs =

[

1 0 0 0

0 1 0 −1

]

, Dz(θ)=
[

−θ
ms

]

.

Note that the input matrices Bs2 and Dz are parameter dependent so the Assumption
1 is not satisfied. By using a strict low-pass filter as the one (3.4.8) in section 3.4 in
Chapter 3, these matrices can be made parameter independent.
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Remark 6.5.1. To our exhaustive knowledge, the LPV formulation 6.5.6 is used for the
first time in semi-active suspension design.

Remark 6.5.2. Now we can explain the reason of using the quarter vehicle depicted
in Fig. 6.4. As seen in Assumption 2 in section 6.2.1, the bound on disturbance
amplitude must be known for the synthesis. The question is: considering the bound of
road disturbance and that of its velocity, which one is more significant? Let take for
example two road profiles with the same maximum amplitude zr1 = 0.01sin(2π0.5) [m]

and zr2 = 0.01sin(2π5) [m]. It is worth noting that the maximal absolute velocity of zr2
is five times larger than zr1 . Obviously, zr2 influences the vehicle dynamics more than
zr1 does because the energy contained in zr2 is larger.
Moreover, in our case of LPV control, the scheduling parameter θ which is the damper
deflection velocity (whose bound must be known as well for polytopic design) is
influenced by the velocity of road disturbance more than by its amplitude. It means
that the bound on the scheduling parameter θ is related to the road disturbance velocity
rather than the road disturbance amplitude.
Both reasons above can explain the investigation of the model (6.4) (where żr is
considered as disturbance input) instead of the model (where zr is considered as
disturbance input) used in previous chapters.

6.5.3 Numerical analysis and results

We use the parameter of the Renault Mégane Coupé (see Tab. 1.1 in Chapter 1) for the
quarter vehicle model (see Fig. 6.4) and the tire damping coefficient ct = 100 [Ns/m].
The stroke of the suspension is 0.125 m

The road disturbance is described using the following common equation (see Fig. 6.5)

zr =

{

±A
2

(

1− cos
(

2πV
L
t
))

, 0 ≤ t ≤ L
V

0, t > L
V

where A and L the height and length, V the vehicle velocity, “+” a bump, “-” a pothole.
As in figure 6.5, we consider a road profile with a bump where A = 0.15 m, L = 5

m, V = 27 km/h at 0 s (corresponding to a low frequency disturbance) and a pothole
where A = 0.055 m, L = 5 m, V = 72 km/h at 2.5 s (corresponding to a high frequency
disturbance). The chosen road profile is suitable w.r.t the assumption on disturbance
amplitude with δ = 0.5 m2/s2.

In this preliminary study, we suppose that with this road disturbance, the working ve-
locity of the damper is smaller than 1.2 m/s. The only state constraint is the suspension
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Figure 6.5: Road Profile.

deflection constraint |zdef | < 0.125 m, i.e. the state constraint (6.3.1) defined with

H =
[

1 0 0 0
]

(6.5.7)

h0 = 0.125 (6.5.8)

We aim at improving the passenger comfort by minimizing the disturbance attenuation
level γ of the closed-loop transfer function from w to z (while taking into account the
constraints on the system input and states). To realize such a control objective we
make use of the optimization problem 2 in section 6.4. Like conventional H∞ control,
the weighting function on controlled output z is used. Once again, for this study, it is
optimized using a genetic algorithm:

Wz(s) =
0.4901s2 + 1563s+ 360.9

s2 + 217.7s+ 788.9
(6.5.9)

As seen in Fig. 6.6-6.7, we can improve the passenger comfort (the car body acceleration
z̈s filtered by ISO 2631) w.r.t the passive open-loop cases (Soft Damper (c = cmin), Hard
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Figure 6.6: Performances Comparison.
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Damper (c = cmax) and Nominal Damper (c = cnom)). Observe that between 2.5 s

and 3 s, the control effectively saturates, but the stability is kept. Indeed, during the
saturation, the anti-windup acts and the performance does not degrade. Furthermore, it
should be noticed that the limits of the suspension travel and the validity for the LPV
system are not violated by the trajectory.

6.6 Conclusions

The contribution of the chapter may be summarized as follows:

• A new control design for general LPV systems with input saturation and state
constraints has been proposed. The objective is that the H∞ performance is min-
imized when the system is not saturated and the stability is always guaranteed
even in the presence of input saturation. Besides, the controller guarantees some
constraints on states of the closed-loop system.

• An application of this proposed method to semi-active suspension control has
been considered. The simulation results have shown the efficiency of the proposed
methodology w.r.t several passive cases.

• The proposed methodologies general for all LPV systems, henceforth we can make
use of it for the case of nonlinear MR dampers presented in Chapter 3.

In future works, in order to better understand the real effectiveness of the introduced
methodology, the significance of the simulation results will be improved by choosing
better critical road disturbances. Moreover, a comparison with other strategies (Skyhook,
Groundhook, Skyhook-ADD...) will be done.
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Chapter 7

Conclusions and Future works

Main contributions

This thesis has been devoted to the problem of improving the vehicle dynamics in terms
of comfort and road holding. This is mainly achieved through the suspension control
systems. As far as we are concerned, we have more particularly studied the semi-active
suspension control which in addition, is an interesting problem for both academic and
industrial aspects. The results on this subject have been presented in Chapter 3, 4, 5
and 6. In summary, the main contributions of the thesis are:

In terms of modeling:

• An LPV control-oriented model for semi-active suspensions with Magneto-
Rheological dampers (where the bi-viscous and hysteresis characteristics are taken
into account) (Chapter 3).

• A new LPV model for linear damper control where the damper velocity is consid-
ered as a scheduling parameter (Chapter 6).

In terms of control methodologies:

• The design of a conventional LPV control method for Magneto-Rheological control
(for nonlinear MR dampers) (Chapter 3).

• An extended version of the Skyhook-ADD control for nonlinear MR dampers (Ap-
pendix A).

• The design of a new clipped optimal control for semi-active suspension with linear
hydraulic dampers based on the strong stabilization approach (Chapter 4 and 5).
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• The design of a generic LPV control with input saturation and state constraints
was proposed. The results obtained can be possibly applied for both nonlinear MR
and linear dampers (Chapter 6).

• A multi-objective optimization procedure using genetic algorithms for semi-active
suspension control problem. The interest of the methodology is in the fact that
it can provide a set of controllers which may approach the best solutions for the
multi-objective optimization problem in semi-active suspension control.

In terms of applications:

• Quarter car vehicle (for the comfort, road holding and suspension deflection im-
provement).

• Driver’s seat (for the comfort and deflection improvement).

We would like to discuss a little further on the proposed multi-objective optimization
procedure using genetic algorithms for suspension control. Although the case of semi-
active suspension has been considered, it is possible to extend the results to a more
general case where the synthesis of a controller satisfying many industrial performance
criteria (in both frequency and time domains) is needed. The control schematic layout
for such a multi-objective optimization problem is depicted in Fig. 7.1. The function of
each block in a general context can be described as follows
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Figure 7.1: Schematic of the proposed control methods for semi-active suspension sys-
tems

• The weighting function: define the searching space (the space of all closed-loop
performances that are possibly achieved with a predefined set of weighting func-
tions).

196



Chapter 7. Conclusions and Future works

• Controller synthesis methods: define the searching region (a reduced one of the
searching space) which may contains the solutions with which the desired perfor-
mances are achieved.

• Computation of closed-loop performance: provides a cost function for the optimiza-
tion by genetic algorithms. It is very important to define an effective formulation
of control objectives from the desired performances. The reason is that the desired
(industrial) performances are usually multi-objective and may be not always math-
ematically represented. As a result, a reformulation of control objectives based on
the control system is needed. A good formulation is the one with which a less
number of objective functions are used and the optimization of these objective
functions leads to the optimal desired performances.

• Genetic algorithms: a powerful MOEA (Multi-Objective Evolutionary Algorithm)
helps achieving an optimal solution as fast as possible.

Finally, from the practical implementation point of view, the proposed control meth-
ods are interesting in the following points:

• Simple and easy to implement: a single relative displacement sensor to measure
the suspension deflection (the deflection velocity can be deduced numerically from
the deflection) is needed and the controllers are stable.

• Robust facing the load transfer and the sprung mass uncertainty (unavoidable
factors appearing on a vehicle when it travels).

Future works

Although some results have been obtained, the work in this thesis can be further devel-
oped following some directions.

Short-term perspectives

• For MR dampers, the use of the strong stabilization approach for LPV systems is
a key point to reduce the conservatism. In Chapter 3, the stable LPV controllers
were not designed. We just used a “trick” (Algorithm 1, page 82) to remove the
unstable controllers during the optimization by Genetic Algorithms. Besides, the
application of the results in Chapter 6 for MR dampers will be tested and compared
with the proposed methods (conventional LPV, extended Skyhook-ADD for MRD).

• Improving the simulation results in the Chapter 6 is necessary. Besides, the com-
parisons with other control methods are needed to show the effectiveness of the
proposed method (LPV control subject to input saturation and state constraint).
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• From the results obtained in Chapter 5, the study on DSS systems will be extended
to controllable stiffness and damping systems

• A test of the proposed methods on real platform will be performed (hopefully).

Long-term perspectives

• As mentioned in Chapter 3 & 4 and in [Savaresi, Bittanti & Montiglio, 2005],
the optimal solution for comfort or road holding oriented control problems is a
switching control i.e. the damping coefficient switches between a minimal value cmin
and a maximal value cmax. The investigation on switching control is worth a strong
consideration. In [Geromel & Colaneri, 2006], [Geromel & Colaneri, 2010] (and
references therein), the authors have proposed a method based on the Lyapunov-
Metzler inequalities to determine the switching control law so that the stability
and the minimization of a cost function are both guaranteed. These are good
initializing papers for this direction.

• When working with the LPV systems, the synthesis using a whole range of schedul-
ing parameters is very conservative. It would be better to separate the LPV systems
in to smaller LPV subsystems and then switch among them so that the stability
of the closed-loop system still remains and the performance is optimized. The
idea is related to hybrid switching LPV control (see [Lim & Chan, 2003], [Lu &
Wu, 2004] and references therein). For the case of semi-active suspension control,
with the model using θ = żdef in chapter 6, we can do, for example, the synthesis
for θ ∈ [−0.5, 0.5] and θ = [−1.2, 1.2]. Then we switch between two sub-systems
(also LPV systems) depending on the working velocity of the damper. The idea is
suitable for nonlinear Magneto-Rheological dampers as well.

• It can be seen throughout the thesis, the common procedure to solve the semi-active
suspension optimization problem is to make use of probabilistic and stochastic Ge-
netic Algorithms (see Fig. 7.1). Although as mentioned in the Remark 3.5.2 in
page 109, the weighting functions parameters are the decision vector, it is inter-
esting also to consider the same optimization procedure but with the controller
parameters as a decision vector. Moreover, the test with different measurement
output can be performed (as seen in Chapter 4, the use of suspension deflection
gave good comfort controllers, otherwise the use of suspension deflection velocity
offered good stroke controllers).

• Up to now, the suspension systems, steering systems and braking systems have
been studied separately. The good cooperation among subsystems is not a trivial
task as said Maurice Olley “The engineers had made all parts function excellently,
but when put together the whole was seldom satisfactory”. This motivate us for a
global chassis control in the near future (see Fig. 7.2).
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Figure 7.2: Global chassis control
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Appendix A

Proof of Sky-hook and ADD for MR

damper

This paper was written in my first visiting period at DEI, Polimi (from November 2009 to
February 2010) and was presented at the IFAC conference in Ancona, Italy, in September
2010 (see full version in [Do, Sename, Dugard, Savaresi, Spelta & Delvecchio, 2010]).

The aim of this paper extends the Mixed Skyhook-ADD to the MR dampers.

A.1 Extended Skyhook for MR damper

Sky-hook for MRD - B: The main idea of the Skyhook for linear suspension system is
that the damper exerts a force that reduces the velocity of the body mass żs. By using
the same principle, the modified Sky-hook for MR damper will be as follows

fI =

{

fmax if żsρ > 0

fmin if żsρ ≤ 0
(A.1.1)

where ρ = tanh(c1żdef + k1zdef ).

The explanation can be illustrated by Fig. A.1. In this model, the damper force is
fIρ. If the sprung mass ms is moving upward, there are two possibilities: if ρ > 0, we
maximize the damper force by choosing fI = fmax to pull the sprung mass downward, if
ρ ≤ 0 we minimize the damper force by choosing fI = fmin to avoid increasing more the
movement of the sprung mass. The same reason is used for the case when the sprung
mass is moving downward.
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Figure A.1: Illustration of the extended Skyhook control for MR damper

A.2 Extended ADD for MR damper

The following modified ADD for MR dampers is inspired by the physical meaning of the
existing ADD algorithm presented in [Savaresi, Silani & Bittanti, 2005].

fI =

{

fmax if z̈sρ > 0

fmin if z̈sρ ≤ 0
(A.2.1)

where ρ = tanh(c1żdef + k1zdef ).

Indeed, the control law (A.2.1) turns out to be very simple to explain. Looking at the
dynamical equation of the quarter vehicle with MR damper, the only variable parameter
is fI , so when z̈s tanh (c1żdef + k1zdef ) > 0, for example z̈s and tanh (c1żdef + k1zdef )

are positive, z̈s will rapidly decrease to zero if fI =fmax. On the contrary, when
z̈s tanh (c1żdef + k1zdef ) ≤ 0, z̈s will be kept not floating away from zero if fI =fmin,
and so on.

We present here the proof for the modified ADD which is based on the one given
in [Savaresi, Silani & Bittanti, 2005] (proven for the case of a quarter vehicle model
equipped with a linear damper).

The dynamic equations of a quarter car model equipped with an MR damper are given
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by






































msz̈s = −kszdef − c0żdef − k0zdef

−fI tanh (c1żdef + k1zdef )

musz̈us = kszdef + c0żdef + k0zdef

fI tanh (c1żdef + k1zdef )− kt (zus − zr)

ḟI = −βfI + βu

(A.2.2)

where β represents the bandwidth of a real MR damper and u is the control input which
can take its values in [fImin, fImax].

A state-space representation of (A.2.2) is given by

ẋ = f(x) + Bu+ Pzr (A.2.3)

where

x =
(

żs żus fI zs zus

)T

,

f(x) =





















−k
ms

(x4 − x5)−
c0
ms

(x1 − x2)−
ρ(x)
ms
x3

k
mus

x4 −
k+kt
mus

x5 +
c0
mus

(x1 − x2) +
ρ(x)
mus

x3

−βx3

x1

x2





















where k = ks + k0 and ρ(x) =

tanh(c1(x1 − x2) + k1(x4 − x5)),

B =
(

0 0 β 0 0
)T

, P =
(

0 kt
mus

0 0 0
)T

The global optimization using the Minimum Principle of Pontryagin can be used for
the nonlinear system (A.2.3) with a constraint on the control input u ∈ [fImin, fImax].
Consider only the known parts of (A.2.3) (without road disturbance Pzr). Let define
the control problem

minimize J =
∫ tf
t0
z̈2sdt =

∫ tf
t0
l(x)dt (A.2.4)

where l(x) = (−k
ms

(x4 − x5)−
c0
ms

(x1 − x2)−
ρ(x)
ms
x3)

2

subject to

ẋ = f(x) + Bu (A.2.5)

u ∈ [fImin, fImax] (A.2.6)

tf = t0 +∆T (A.2.7)
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The Hamiltonian function is defined by

H(x, u, λ) = l(x) + λT [f(x) + Bu] (A.2.8)

Let (u∗(t), x∗(t)) is the optimal solution of problem (A.2.4). The adjoint equation is

λ̇(t) = −∇xH(x∗(t), u∗(t), λ(t)) (A.2.9)

with λ(tf ) = 0.

Minimize the Hamiltonian gives

u∗(t) = argmin
u(t)∈[fImin,fImax]

H(x∗(t), u(t), λ(t)) (A.2.10)

The problems (A.2.9) and (A.2.10) are difficult to solve, however, it can be seen from Eq.
(A.2.8) that the optimal control law of a semi-active suspension with comfort objective
without preview is a genuine on - off strategy and is given by

u∗(t) =

{

fImin if BTλ(t) > 0

fImax if BTλ(t) ≤ 0
(A.2.11)

In order to find an explicit solution of u, consider the linear approximation of the system
(A.2.3) around the initial condition (x(t0), u(t0), zr(t0). After some manipulations, one
has

ẋ = Ax+Bu+ Pzr + E (A.2.12)

where

A =





















− a0
ms

a0
ms

ρ0
ms

− a1
ms

a1
ms

a0
mus

− a0
mus

ρ0
mus

a1
mus

− a1
mus

0 0 −β 0 0

1 0 0 0 0

0 1 0 0 0





















,

a0 = c0+x30(1−ρ0
2)c1, a1 = k+x30(1−ρ0

2)k1, ρ0 = ρ(x(t0)) = tanh(c1(x10−x20)+

k1(x40 − x50)) and xi0 is the ith component of the state vector x(t0).

E =





















((x10−x20)c1+(x40−x50)k1)x30(1−ρ02)
ms

− ((x10−x20)c1+(x40−x50)k1)x30(1−ρ02)
mus

0

0

0
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By using the Lagrange Formula, x(t) at t0 +∆T can be computed

x(t0 +∆T ) = eA(∆T )x(t0)

+
∫ t0+∆T

t0
eA(t0+∆T−τ)(Bu(τ) + Pzr(τ) + E)dτ

(A.2.13)

Assume that, during the sampling interval ∆T , the control input is constant u = u

and the body car acceleration z̈s(t) or ẋ1(t) does not change its sign. The optimal
solution u is given as

uopt(t0, t0 +∆T ) = argmin
u∈[fImin,fImax]

(ẋ1(t0 +∆T )2)

=











argmin
u∈[fImin,fImax]

(ẋ1(t0 +∆T )) if z̈s(t0) > 0

argmax
u∈[fImin,fImax]

(ẋ1(t0 +∆T )) if z̈s(t0) ≤ 0

=











argmin
u∈[fImin,fImax]

(gu(t0 +∆T )) if z̈s(t0) > 0

argmax
u∈[fImin,fImax]

(gu(t0 +∆T )) if z̈s(t0) ≤ 0

(A.2.14)

where gu(t0 + ∆T ) =
d(u

∫ t

t0
eA(t−τ)Bdτ)1

dt

∣

∣

∣

∣

t=t0+∆T

and subscript "1" indicates the first ele-

ment of the vector u
∫ t

t0
eA(t−τ)Bdτ . By using the Taylor series expansion for eA(t−τ), the

following approximation is used for the calculation of gu(t0 +∆T ):

eA(t−τ) = I + A(t− τ) +
1

2
A2(t− τ)2 +

1

6
A3(t− τ)3 (A.2.15)

Finally one has

gu(t0 +∆T ) = −uρ0βγ(∆T, ρ0, x30) (A.2.16)

Due to the length and the complexity, the explicit form of γ(∆T, ρ0, x30) is not given
here. But note that with the damper’s bandwidth β = 40π, ρ0 ∈ [−1, 1] and the initial
state x30 ∈ [0, 870], one always has γ(∆T, ρ0, x30) > 0. From Eq. (A.2.14) and Eq.
(A.2.16), the optimal solution is finally given as:

uopt(t0, t0 +∆T ) =

{

fImax if z̈s(t0)ρ0 > 0

fImin if z̈s(t0)ρ0 ≤ 0
(A.2.17)

The control law proposed in (A.2.1) has been proved.
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A.3 Extended Mixed Skyhook-ADD (SH-ADD) for

MR dampers

The Extended Mixed SH-ADD algorithm guarantees the best behavior of both Skyhook
and ADD (A.2.1) and is given as follows

fI =



























fmax if (z̈2s − αż2s ≤ 0 ∧ żsρ̂ > 0)∨

(z̈2s − αż2s > 0 ∧ z̈sρ̂ > 0)

fmin if (z̈2s − αż2s ≤ 0 ∧ żsρ̂ ≤ 0)∨

(z̈2s − αż2s > 0 ∧ z̈sρ̂ ≤ 0)

(A.3.1)

where ρ̂ = tanh(c1żdef + k1zdef ).

The amount (z̈2s−αż
2
s) is the frequency-range selector and α is the SH-ADD crossover

frequency (see [Savaresi & Spelta, 2007]).
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Appendix B

Nonlinear Frequency Response -

(Pseudo-Bode)

The following nonlinear frequency response analysis is done by using the "variance gain"
algorithm (see [Savaresi, Silani & Bittanti, 2005]) for nonlinear systems. The "variance
gain" is simple and provides a good approximation to frequency response.

• Feed the system with a sinus signal zri = Arsin(ωit) (ωmin ≤ ωi ≤ ωmax, i=1,2,3...N
and t ∈ [0, T ]).

• For each input, measure output signals; for example, to evaluate the comfort, the
body car acceleration z̈si is measured.

• The approximate variance gain is computed and is defined as

Facc(ωi) =

√

√

√

√

1
T

∫ T

0
(z̈si)

2dt
1
T

∫ T

0
(zri)

2dt
(i = 1, 2, 3...N) (B.0.1)

207



Appendix B. Nonlinear Frequency Response - (Pseudo-Bode)

208



Appendix C

Paper CDC-2010

This paper was done in my first visiting period at DEI, Polimi (from November 2009 to
February 2010) and was presented at the CDC conference in Atlanta, USA, in 2010.

The aim of this paper is to propose a hybrid control method based on switching
(the Extended ADD for MR Dampers) and LPV control to reduce the effect of end-stop
collision on the passenger comfort.
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An LPV Control Approach for Comfort and Suspension Travel

Improvements of Semi-Active Suspension Systems

AnhLam Do,Cristiano Spelta,Sergio Savaresi,Olivier Sename,Luc Dugard and Diego Delvecchio

Abstract�In this paper, we present a new H∞/LPV con-
trol method to improve the trade-off between comfort and
suspension travel. Firstly, a semi-active automotive suspen-
sion equipped with a nonlinear static semi-active damper
is presented. Secondly, the semi-active suspension system is
reformulated in the LPV framework which can be handled in a
polytopic way. Finally, in numerical analysis, to emphasize the
performance of the proposed controller, the end-stop event is
introduced. The results show that the proposed method provides
a good improvement in comfort and suspension travel compared
with other strategies.

I. INTRODUCTION

Amongthe many different types of controlled suspensions

(see e.g. [1] for a detailed classi"cation),semi-active sus-

pensions have received a lot of attention in the last two

decades,since they provide the best compromise between

cost (energy-consumption and actuators/sensors hardware)

and performance (see e.g. [2],[3],[4],[5],[6],[7]).

A classical semi-active suspension is characterized by

the closed-loop regulation of the damping coef"cient;the

electronic modulation of the dampingcoef"cient is obtained

with Magneto-Rheological (MR),Electro-Rheological (ER)

or Electro-Hydraulic (EH)technologies. In the last years,

variable-dampingsemi-active suspensions have had a large

growth,and today they are employed over a wide range of

application domains:road vehicles suspensions,cabin sus-

pensions in trucks or agricultural tractors,seat suspensions,

lateral suspensions in high-speed trains,etc. (see e.g. [6],[8],

[9],[10],[11],[12],[13],[14],[7],[15]).

It can be seen that the main semi-active suspension con-

trol problems to be solved are trade-offs between comfort,

handling and suspension travel. In [16],the semi-active

control problem has been explored using Linear Parameter

Varying (LPV)technique. The methodology is based on a

nonlinear static model of the semi-active damper,where the

bi-viscous and hysteretic behaviors of the semi-active damper

are taken into account. Then,the nonlinear system associated

with the quarter vehicle model is reformulated in the LPV

framework. The passivity problem of semi-active dampers

is recast into the problem of input saturation. Finally,the

H∞/LPV controller is synthesized to achieve the performance

A. L. Do,O. Sename and L. Dugard are with GIPSA-lab,Control
Systems Dept,CNRS-Grenoble INP,ENSE3,BP 46,F-38402 St Mar-
tin d�Hères cedex,France {anh-lam.do, olivier.sename,
luc.dugard}@gipsa-lab.grenoble-inp.fr
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S. Savaresi,D. Delvecchio are withDipartimento di Elettronica e Infor-
mazione,Politecnico di Milano,Piazza L. da Vinci,32,20133,Milano -
Italy {savaresi, delvecchio}@elet.polimi.it

objectives (passenger comfort and handling)while satisfying

the passivity constraint of semi-active dampers.

In this paper,the trade-off between passenger comfort and

suspension travel will be considered. It is quite obvious,

while the comfort/handling trade-off has been studied in

many approaches duringthe past decades,that the suspension

travel issue has not been always considered. Hitting the

structural limits when road disturbance is particularly tough

degrades dramatically the passenger comfort (the so-called

end-stop effect)and decreases the lifetime of vehicle com-

ponents. The LPV control method used in [16] is modi"ed

by includinga comfort oriented control rule -Acceleration

Driven DampingControl (ADD)(see e.g[7])and a schedul-

ingfactor that permits an improvement of suspension travel.

The outline is as follows. In Section II,the quarter car

model witha nonlinear semi-active damper and the control

problem on this model are presented. In Section III,a new

H∞/LPV controller to improve the trade-off between comfort

and suspension travel is designed. In Section IV,the results

obtained in simulations witha nonlinear quarter car model

are discussed. Finally,some conclusions and perspectives are

drawn in Section V.

II. PROBLEM STATEM ENT

A. Quarter Car Model

Consider a simple model of quarter vehicle (see Fig. 1)

made up of a sprungmass (ms)and an unsprungmass (mus).

A springwith the stiffness coef"cient ks and a semi-active

damper connect bothmasses. The wheel tire is modeled by

a spring with the stiffness coef"cient kt . In this model,zs
(respectively zus)is the vertical position of ms (respectively

mus)and zr is the road pro"le. It is assumed that the wheel-

road contact is ensured.

The dynamical equations of a quarter vehicle are governed

❤

zs

zus

zr

ms

mus

ks Semi-active
damper

kt

Fig. 1. Model of quarter vehicle witha semi-active damper.



by
{

msz̈s =−Fspring−Fdamper
musz̈us = Fspring+Fdamper− kt (zus− zr)

(1)

where Fspring = kszde f is the spring force,zde f = zs− zus
is the damper de#ection (assumed to be measured or esti-

mated),$zde f = $zs− $zus is the de#ection velocity.
In this paper,the behavior of a realistic semi-active suspen-

sion is represented using the followingnonlinear equation,
as in [17]

Fdamper = c0 $zde f +k0zde f + fI tanh
(

c1 $zde f +k1zde f
)

(2)

where c0,k0,c1 and k1 are constant parameters and fI is a

controllable force. The interest in this model is that it allows

ful"llingthe passivity constraint of the semi-active damper

by consideringonly the constraint

0 ≤ fmin ≤ fI ≤ fmax (3)

The dynamical equations (1)-(2)can then be rewritten as






msz̈s =−(ks+ k0)zde f − c0 $zde f − fI tanh
(

c1 $zde f + k1zde f
)

musz̈us = (ks+ k0)zde f + c0 $zde f + fI tanh
(

c1 $zde f + k1zde f
)

− kt (zus− zr)
(4)

B. The End-stop Phenomenon

The end-stop phenomenon happens when the piston hits

the rubber bushings because of the toughroad disturbance.

This phenomenon generates a shockthat makes passengers

uncomfortable. In this paper,the end-stop effect is simply

modeled as follows:

Fspring =

{

kszde f if |zde f |< ∆es
keszde f if |zde f | ≥ ∆es

(5)

where ∆es is the suspension stroke and kes ≫ ks (typically

represents the stiffness of rubber bushings).

The end-stop effect is shown in Fig. 2. It is obvious that

hittingthe structural limits deteriorates dramatically the car

body acceleration (i.e the passenger comfort).
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Fig. 2. Time history of the suspension de#ection (top)and the body
acceleration (bottom),withand without the end-stops.

C. Cost Function

In this paper,the followingcriteria are used to evaluate

the performance of the proposed controller

Jacc =

√

1

T

∫ T

0
z̈
2
s (t) (6)

Jde f =

√

1

T

∫ T

0
z2de f (t) (7)

where z̈s(t) is the  ltered car body acceleration (by ISO 2631

 lter) [m/s2], zde f is the damper de!ection [m] and T is the

simulation running time [s]. The ISO 2631  lter (see [18])

represents the sensitivity of human to body car acceleration

and is given as

FISO−2631 =
81.89s3+ 796.6s2+ 1937s+ 0.1446

s4+ 80.00s3+ 2264s2+ 7172s+ 21196
(8)

The criteria (6) and (7) are used to evaluate the comfort

and the suspension travel, respectively. It can be seen that

when the end-stop event occurs, the peak values in car body

acceleration (as seen in Fig. 2) resulting from this effect will

be taken into account in J.

D. Acceleration Driven Damping Control (ADD)

This paper is based on the extension of ADD control rule

[6]. The ADD is based on a linear model of the electronic

shock absorber, F = c"zde f where "zde f is the suspension

de!ection velocity and c is the damping coef cient that may

vary from a minimum value cmin to a maximum value cmax.

The ADD switching rule is as follows:

c=

{

cmax if z̈s "zde f > 0

cmin if z̈s "zde f ≤ 0
(9)

ADD, a comfort-oriented control method, has been proven

to approximate the solution of an optimal control problem

where the cost function is the integral of the squared body

car acceleration, the suspension system is modeled as a

linear quarter car, the road disturbance is described as a

white noise and the optimization horizon is based on one

step of simulation. The limitation of this method is that the

suspension travel has been not improved.

III. CONTROL DESIGN FOR COMFORT AND STROKE

To obtain a better compromise between the ride quality

and the suspension travel, a new control method is presented

as follows

fI = fmaxhsw+(u+α fmax)(1− hsw) (10)

= fmax[α + hsw(1−α)]+ u(1− hsw)

where 0≤ α ≤ 1 and hsw ∈ {0,1} are two parameters and u

is the control input to design. In the following, the roles of

α , hsw and u are explained.

• The switching control rule hsw is chosen so that it

specially enhances the passenger comfort. In this paper,

the design of hsw is based on the ADD control rule (9).



• It can be seen that the smaller α , the more comfortable
the car but the bigger the suspension travel and vice-

versa.

• The control input u is designed in the H∞/LPV frame-

work to improve the suspension travel without deterio-

rating the comfort too much for all values of hsw and

α .

A. Design of Comfort-Oriented Switching Controller hsw

The following control rule is inspired by the exist-

ing ADD algorithm developed for the linear suspension

systems in [7]. The idea turns out to be very sim-

ple. Looking at (1) and (2), the only variable parame-

ter is fI , so when z̈s tanh
(

c1 "zde f + k1zde f
)

> 0, for ex-

ample z̈s and tanh
(

c1 "zde f + k1zde f
)

are positive, z̈s will

rapidly decrease to zero if fI =fmax. On the contrary, when

z̈s tanh
(

c1 "zde f + k1zde f
)

≤ 0, z̈s will be kept not !oating away

from zero if fI =fmin. Hence, the on-off comfort-oriented

control rule is summarized as follows:

fI =















fmax if z̈s tanh
(

c1 "zde f + k1zde f )> 0
)

(i.e hsw = 1)
fmin if z̈s tanh

(

c1 "zde f + k1zde f )≤ 0
)

(i.e hsw = 0)

(11)

Noticing that in the case of linear semi-active damper, k1=0,

sign(tanh
(

c1 "zde f + k1zde f
)

)≡ sign("zde f ), the rule (11) is the
same as the conventional ADD algorithm.

B. Choice of α

In order to detect the suspension travel limits (the End-

stop event) and to enlarge as much as possible the capacity

of the H∞/LPV controllers, α can be chosen as

α(ε) = 0.5
µε2n

µε2n+ 1/µ
(12)

where µ modi es the slope of the α(ε) function and is

chosen suf ciently high, n is an integer. See Fig. 3 for various

values of α .
In this paper, ε = zde f + "zde f /λ . The factor λ can be

roughly chosen so that α(ε) is close to zero when the car

body acceleration of the open loop system ( fI = 0) is close

to zero. Not that, from Eq. (4), one has

z̈s = 0⇔ zde f +
c0

ks+ k0
"zde f = 0 (with fI = 0)

So λ = (ks+ k0)/c0 can be a good choice.

C. H∞/LPV Control Design u

From Eq. (10), the constraint (3) on fI is tantamount to

the following inequality

|u| ≤ fα (13)

where fα = min{α,1−α} fmax. Hence, the passivity con-

straint of the semi-active damper is recast as the saturation

constraint on the control input u.
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Fig. 3. Various values of α

1) LPV Formulation For Ideal Linear Design: For sim-

plicity, in this step, the saturation constraint (13) is omitted.

The nonlinear model (1)-(2)-(10) is now rewritten in the LPV

framework.

P :







"xs = (As+Bs2
[α+hsw(1−α)] tanh(Cs2xs)

Cs2xs
Cs2)xs

+Bs(1− hsw)tanh(Cs2xs)u+Bs1w
y=Csxs

(14)

where xs=(zs, "zs, zus, "zus)
T
, u: control input, w=zr distur-

bance, y=zs-zus measurement output,

As =









0 1 0 0

− ks+k0
ms

− c0
ms

ks+k0
ms

c0
ms

0 0 0 1
ks+k0
mus

c0
mus

− ks+k0+kt
mus

− c0
mus









Bs =









0

− 1
ms
0
1
mus









, Bs1 =









0
0
0
kt
mus









, Bs2 =









0

− fmax
ms
0
fmax
mus









,

Cs =
(

1,0,−1,0
)

, Cs2 =
(

k1,c1,−k1,−c1
)

In (14) the control input matrix Bs(1− hsw)tanh(Cs2xs)
is parameter dependent, which is not consistent with the

solution of the H∞ design problem for systems as in [19],

[20]. This problem can be easily solved by adding a strictly

proper  lter into (14) to make the controlled input matrix

independent from the scheduling parameter (see [21]). Be-

sides, this  lter allows for modeling low-pass dynamics of

semi-active dampers.

F :

(

"x f
u

)

=

(

A f B f
C f 0

)(

x f
uc

)

(15)

where A f , B f , C f are constant matrices and uc is the

controller output.

2) LPV Reformulation For Linear Design with Input Sat-

uration: Let now include the saturation constraint (13) in

the LPV controller design. First the system is augmented by

adding a saturating function block as in Fig. 4. where

✲✲ ✲✲ F P
yu fuc u

Fig. 4. Linear design with input saturation.

u= sat(u f ) =







fα if u f > fα
u f if − fα ≤ u f ≤ fα
− fα if u f <− fα

(16)



To cope with a linear control design, the saturation func-

tion sat(u f ) is roughly approximated by a tangent hyperbolic

function: fα tanh(
u f
fα
) or fα tanh(

C f x f
fα

). The interest of the

use of tangent hyperbolic function is its bounded derivative

which may be exploited in LPV design with parameters-

dependent Lyapunov function to reduce the conservatism (in

future work). The state-space representation of the transfer

function from uc to u is then:

F1 :

(

"x f
u

)

=

(

A f B f
C f tanh(ψ)/ψ 0

)(

x f
uc

)

(17)

where ψ =
C f x f
fα

Finally, from (14) and (17), an LPV model formulation

for the semi-active suspension control problem is given as

follows

{

"x= A(ρ1,ρ2)x+Buc+B1w
y=Cx

(18)

where x=
(

xs
T x f

T
)T

A(ρ1,ρ2) =

(

As+ρ2Bs2Cs2 ρ1BsC f
0 A f

)

,

B=

(

0

B f

)

, B1 =

(

Bs1
0

)

, C =

(

Cs
0

)T

and two scheduling parameters

ρ1 = (1− hsw) tanh(Cs2xs)
tanh(ψ)

ψ where ψ =
C f x f
fα

ρ2 = [α + hsw(1−α)]
tanh(Cs2xs)
Cs2xs

Let us note that the LPV formulation presented above is

similar to the one given in [16]. The main difference relies

on both scheduling parameters ρ1 and ρ2 which here depend
on the exogenous signals hsw and α . This will be useful to
improve of comfort and suspension travel, respectively, while

the same is not true in the LPV formulation in [16].

Note also that ρ1 and ρ2 are not independent. Fig. 5depicts
the set of (ρ1, ρ2). It is represented by the bounded area

below the continuous curve.

Fig. 5. Scheduling parameters ρ1 and ρ2

3) Comfort/Stroke H∞/LPV Controller: The structure for
the controller synthesis is presented in Fig. 6. The H∞ control

problem for the LVP system (with scheduling parameters

ρ1 and ρ2) consists in  nding an LPV controller K(ρ1,ρ2)
such that the closed-loop system is quadratically stable and

that, for a given positive real γ , the L2-induced norm of the

operator mapping w1 into (z1 , z2)
T is bounded by γ for all

possible trajectories of (ρ1 , ρ2)
T . The H∞/LPV controller

can be obtained by solving an LMIs problem (see [19] and

[20]).

z̈s

zde f

Wz̈s

Wzde f

zr

u

zde f

"zde f , z̈s

ρ1,ρ2

K(ρ1,ρ2)

P

F

z1

z2

✲

✲

✛

✛

✛

✲

Wzr
✲w1

✢

u f

uc

✛

Fig. 6. Structure for H∞/LPV controller design.

Although they are not independent, ρ1 and ρ2 are consid-
ered in this design as independent parameters and (ρ1, ρ2)
belongs to a larger polytope whose vertices are P1 = (−1,1),
P2 = (1,0), P3 = (1,1), P4 = (0,1). At each vertex, a local

H∞ controller will be found. Then, a convex hull of these

local controllers gives the global LPV controller.

As seen in Eq. (12) and Eq. (13), the role of u is strongly

emphasized when α ≈ 0.5(i.e when the suspension is going
to reach its structural limits). The aim of the H∞/LPV
design is to minimize the frequency response zde f /zr in high
frequencies [5-20] Hz (the suspension de!ection is normally

large around the �tyrehop frequency�
√

kt/mus ≈ 12 Hz)

while not deteriorating much z̈s/zr. Therefore the weighting
functions for the H∞ controller synthesis have been chosen

as:

Wz̈s = 3.65
s2+ 2ξ11Ω1s+Ω1

2

s2+ 2ξ12Ω1s+Ω1
2

where Ω1 = 2π f1 with f1 = 10.7685Hz, ξ11 = 5.65, ξ12 =
0.091, and

Wzde f = 0.0218
s2+ 2ξ21Ω1s+Ω2

2

s2+ 2ξ22Ω1s+Ω2
2

where Ω2 = 2π f2 with f2 = 10.3 Hz, ξ21 = 4.71, ξ22 =
2.2326.

D. Analysis on Fixed Values of α

The following frequency response analysis is done by

using the �variance gain�algorithm (see [6]) for nonlinear

systems. The �variance gain�is simple and provides a good

approximation to frequency response. In Fig. 7 and Fig. 8,

the frequency responses of the closed-loop systems are done

with α=0 (good for comfort) and α=0.5(good for stroke).

These responses are upper and lower bounds of the closed-

loop systems. All intermediate frequency responses of the

closed-loop systems, 0 ≤ α ≤ 0.5, will be found between

these two bounds.
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IV. NUMERICAL RESULTS

The quarter vehicle used in this paper is the quarter car

Renault Mégane Coupé (1/4 RMC) model (see [22]) with

the parameters presented in Tab. I. The spring used in this

simulation has a nonlinear characteristics. The MR damper

model parameters are chosen according to the MR damper

in [23] and summarized in Tab. I. In this numerical analysis,

α is chosen as in Eq. (12) with µ = 108, n=5and λ = 30.

1/4 RMC Value MR damper Value

ms 315[kg] c0 810.78[Ns/m]
mus 37.5[kg] k0 620.79[N/m]
ks 29500[N/m] fmin 0[N]
kt 210000[N/m] fmax 914[N]
− − c1 13.76[s/m]
− − k1 10.54[1/s]
− − ∆es 0.05[m]

TABLE I

PARAMETER VALUES.

The standard road pro le is represented by an integrated

white noise, band-limited within the frequency range [0-

30] Hz (see Fig. 9). The performance index (6) and (7)

will be calculated with different road-pro les obtained by

multiplying the standard road-pro le by a scaling factor β .
To check the constraints of the H∞/LPV control design, a
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Fig. 9. Standard road pro le zr

road pro le with β = 2 is chosen as the input disturbance.

Looking at Fig. 10, the results show that the passivity

constraint is satis ed since the controllable force fI is kept in

the range [0−900] N because |u| ≤ fα where max( fα)=450

[N].

The comparisons of the performance for different strate-

gies, with β in [0.5− 3], are presented in Fig. 11-12-13.

In general, the semi-active suspension with the proposed

H∞/LPV control method is less sensitive to road input dis-

turbances and provides a better comfort than other strategies.

It then achieves the best compromise between comfort and

suspension travel.

V. CONCLUSIONS

In this paper, an H∞/LPV controller is designed to improve

the compromise between the passenger comfort and the

suspension travel. The simulation results have shown that the

proposed control strategy provides a good passenger comfort

and a good suspension travel while the passivity constraint

is always satis ed.

The next step is to reduce the conservatism in the con-

troller design. To do that, the smaller polytope P1P2P5P6P7P8
can be employed instead of the one used in this paper

P1P2P3P4, as seen in Fig. 5. In addition, by analogy, the trade-

off between comfort and road holding will be considered in

future works.
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Appendix D

Controllers for DSS and OSS systems

For the OSS system, we obtain a comfort oriented controller (using suspension deflection z − zr as measurement output)

KOSS
Comfort =

−3035398209.8691(s+ 5513)(s+ 10.43)(s+ 3.449)(s+ 0.1645)(s+ 0.001722)

(s+ 4373)(s+ 5513)(s+ 707.8)(s+ 3.647)(s+ 0.1646)(s+ 0.001722)
(D.0.1)

For the DSS system, we obtain two controllers: a comfort oriented controller and a stroke oriented controller. The comfort
oriented controller (using suspension deflection [z1 − z2; z2 − zr] as measurement output) is given as follows:

KDSS
Comfort =

[

Kc
11

Kc
12

Kc
21

Kc
22

]

(D.0.2)

where

Kc
11

=
−512487364.601(s+ 4.529e004)(s+ 1.068e004)(s+ 8456)(s+ 119.4)(s+ 33.25)(s+ 13.41)(s+ 1.703)(s2 + 5.939s+ 12.07)

(s+ 4.529e004)(s+ 1.068e004)(s+ 9741)(s+ 1559)(s+ 384.7)(s+ 132.7)(s+ 33.25)(s+ 13.87)(s+ 3.794)(s+ 1.703)
(D.0.3)

Kc
12

=
−355883678.0397(s+ 4.529e004)(s+ 1.068e004)(s+ 9231)(s+ 114.5)(s+ 33.25)(s+ 20.83)(s+ 4.144)(s+ 3.197)(s+ 1.703)

(s+ 4.529e004)(s+ 1.068e004)(s+ 9741)(s+ 1559)(s+ 384.7)(s+ 132.7)(s+ 33.25)(s+ 13.87)(s+ 3.794)(s+ 1.703)
(D.0.4)
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Kc
21

=
−1486624528.0808(s+ 4.529e004)(s+ 1.068e004)(s+ 8464)(s+ 119.3)(s+ 33.25)(s+ 13.5)(s+ 1.703)(s2 + 7.356s+ 17.82)

(s+ 4.529e004)(s+ 1.068e004)(s+ 9741)(s+ 1559)(s+ 384.7)(s+ 132.7)(s+ 33.25)(s+ 13.87)(s+ 3.794)(s+ 1.703)
(D.0.5)

Kc
22

=
−1033062088.9903(s+ 4.529e004)(s+ 1.068e004)(s+ 9234)(s+ 114.4)(s+ 33.25)(s+ 20.15)(s+ 5.968)(s+ 3.683)(s+ 1.703)

(s+ 4.529e004)(s+ 1.068e004)(s+ 9741)(s+ 1559)(s+ 384.7)(s+ 132.7)(s+ 33.25)(s+ 13.87)(s+ 3.794)(s+ 1.703)
(D.0.6)

The stroke oriented controller (using suspension deflection velocity [ż1− ż2; ż2− żr] as measurement output) is given as follows:

KDSS
Stroke =

[

Ks
11 Ks

12

Ks
21 Ks

22

]

(D.0.7)

where

Ks
11

=
80184278.3769(s+ 5.79e004)(s+ 1.615e004)(s+ 3690)(s+ 905.3)(s+ 106.4)(s+ 20.54)(s+ 5.688)(s+ 0.2545)(s+ 0.0005396)

(s+ 6.388e004)(s+ 5.79e004)(s+ 8900)(s+ 3690)(s+ 1252)(s+ 106.4)(s+ 25.9)(s+ 5.688)(s+ 0.0149)(s+ 0.000536)
(D.0.8)

Ks
12

=
14550403.985(s+ 5.79e004)(s+ 1.646e004)(s+ 3690)(s− 2830)(s+ 106.4)(s− 17.31)(s+ 5.688)(s+ 1.377)(s+ 0.0005398)

(s+ 6.388e004)(s+ 5.79e004)(s+ 8900)(s+ 3690)(s+ 1252)(s+ 106.4)(s+ 25.9)(s+ 5.688)(s+ 0.0149)(s+ 0.000536)
(D.0.9)

Ks
21

=
−94526683.4753(s+ 5.79e004)(s− 4652)(s+ 3690)(s+ 180.2)(s+ 106.4)(s− 70.77)(s+ 15.34)(s+ 5.688)(s+ 0.0005434)

(s+ 6.388e004)(s+ 5.79e004)(s+ 8900)(s+ 3690)(s+ 1252)(s+ 106.4)(s+ 25.9)(s+ 5.688)(s+ 0.0149)(s+ 0.000536)
(D.0.10)
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Ks
22

=
−18440903.6037(s+ 5.79e004)(s+ 3690)(s+ 106.4)(s+ 5.688)(s+ 0.0005434)(s2 + 23.52s+ 176.3)(s2 − 1990s+ 7.344e007)

(s+ 6.388e004)(s+ 5.79e004)(s+ 8900)(s+ 3690)(s+ 1252)(s+ 106.4)(s+ 25.9)(s+ 5.688)(s+ 0.0149)(s+ 0.000536)
(D.0.11)

2
1
9



Appendix D. Controllers for DSS and OSS systems
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