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Active-Speaker Detection and Localization with Microphones and Cameras

Embedded into a Robotic Head

Jan Cech∗, Ravi Mittal, Antoine Deleforge, Jordi Sanchez-Riera, Xavier Alameda-Pineda and Radu Horaud

INRIA Grenoble Rhônes-Alpes, France
∗Center for Machine Perception, FEE, CTU Prague, Czech Republic

Abstract— In this paper we present a method for detecting
and localizing an active speaker, i.e., a speaker that emits a
sound, through the fusion between visual reconstruction with
a stereoscopic camera pair and sound-source localization with
several microphones. Both the cameras and the microphones
are embedded into the head of a humanoid robot. The proposed
statistical fusion model associates 3D faces of potential speakers
with 2D sound directions. The paper has two contributions:
(i) a method that discretizes the two-dimensional space of all
possible sound directions and that accumulates evidence for
each direction by estimating the time difference of arrival
(TDOA) over all the microphone pairs, such that all the
microphones are used simultaneously and symmetrically and (ii)
an audio-visual alignment method that maps 3D visual features
onto 2D sound directions and onto TDOAs between microphone
pairs. This allows to implicitly represent both sensing modalities
into a common audiovisual coordinate frame. Using simulated
as well as real data, we quantitatively assess the robustness of
the method against noise and reverberations, and we compare
it with several other methods. Finally, we describe a real-
time implementation using the proposed technique and with a
humanoid head embedding four microphones and two cameras:
this enables natural human-robot interactive behavior.

I. INTRODUCTION

The ability of a humanoid robot to robustly detect and

localize people that are both seen and heard is an important

task which would be very useful in many human-robot

interaction scenarii. In this paper we address the challenging

problem of robustly and accurately combining auditory and

visual sensory data for natural untethered interaction: the

users are at some distance from the robot and they do not

use any kind of wearable sensors.

There have been many approaches to identify an active

speaker among a group of people. Typical techniques involve

audio and vision as input modalities. Several methods exploit

audio-visual synchrony to recognize an active speaker by

detecting lip motions [1], [2]. Interesting results are achieved

with a simple cross-modal correlation method to mark pixels

associated with a sound by using only one camera and one

microphone [3]. However, these methods require a high-

resolution camera and some form of tethered interaction:

the user must face the robot and its facial motions must be

accurately detected in an image.

A large number of methods use multiple microphones

and sound-source localization (SSL). These methods can be

further divided into two groups. The first group performs

late fusion, namely, the audio and visual features are first

extracted and then they are combined, i.e. SSL and visual

Fig. 1: The proposed method simultaneously detects and

localizes an active speaker in an audio-visual scene. The

humanoid robot NAO (left) turns its head towards the active

speaker marked with a black disk (right). Please consult the

supplementary video.

detection are done separately [4], [2]. The second group

performs early fusion, i.e. at the feature level [5].

Sound source localization is often based on time difference

of arrival (TDOA) between microphones. TDOA cues, also

referred to as ITD (Interaural Time Difference) in the case

of two microphones, is prominent for human’s perception of

the sound directions [6]. The main issue of these methods

is to find the correspondence among the acoustic signals

from the microphones. Finding the correspondence means to

identify temporal locations of the signals which relate to the

same acoustic event. The correspondence then determines

the TDOA. This is generally difficult due to an intrinsic

ambiguity because of:

1) Reverberations are due to an echoic environment thus

causing false correspondences and phantom source

locations.

2) Signal dissimilarities due to various distortions along

the acoustic path. A non isotropic environment and

non-linear filtering affects quite differently the fre-

quency spectrum of the signals perceived by the mi-

crophones.

3) Narrow band signal. Source of harmonic tones is

difficult to localize due to signal self-similarity.

4) Low signal-to-noise ratio. There is non-stationary

noise emitted from inside the robot head which

strongly affects the quality of the perceived acoustic

signals.

In the recent past, several methods have been proposed

to overcome these difficulties. A widely used technique is



cross-correlation between small temporal windows. Several

methods employ biologically inspired computation, i.e. the

signal is first filtered by a bank of cochlear-like gammatone

filters, correlated by bands, and then aggregated again [7],

[8]. Other methods overcome the ill-posed localization prob-

lem by learning directly the sensorimotor map of a steerable

device and of the head-related transfer function (HRTF) [9].

A drawback is that these methods tend to overfit the model

to the training environment and have difficulties to work

robustly in a different setup. Alternative methods use a

microphone array to reduce the ambiguity [10], [11].

We propose a method which finds the correspondence

between multiple microphone signals simultaneously. The

basic idea is to exhaustively sweep the discretized space

of possible 2D directions (azimuth and elevation) and to

estimate a similarity/consistency statistic of the signal cor-

respondence. This is directly inspired from methods for

finding visual correspondences in multi-view stereo [12],

[13], which are shown to be more robust than pairwise

correspondence search, since the matching ambiguity due

to insufficient/repetitive patterns is significantly reduced and

the noise is averaged out. We observed similar effects in the

case of acoustic correspondences.

The proposed SSL method is similar in spirit to beam-

forming techniques [14] which try to align signals by steer-

able delays. A drawback of these methods (including ours)

is a high sensitivity to precise calibration and validity of

the model which maps a 3D source location onto the space

of TDOAs. This is again analogous to high requirements

on calibration of cameras in multi-view stereo, e.g. [15].

Nevertheless, our contribution here is in proposing a simple

but efficient model which maps 2D source directions to

the space of TDOAs and designing a calibration procedure

which fits the model using audio-visual correspondences,

as well as employing a consistency statistic borrowed from

stereo vision. Estimated sound directions are then fed into a

statistical model which associates them with 3D faces. The

algorithm outputs the posterior probability of the speaking

state over the 3D-localized candidate speakers. While this

association is similar in spirit to the fusion model in [16], the

novel method doesn’t need an EM procedure at runtime and

yields accurate and discriminative two-dimensional audio-

visual localization and detection.

The proposed methodology is implemented on a prototype

of the NAO robot equipped with a stereoscopic camera pair

and four microphones. This cheap humanoid has low quality

microphones embedded in the head with unknown, probably

complex, HRTF. Note that there is a fan mounted inside

the head that causes wide-band non-stationary noise which

cannot be easily filtered out. Moreover, the experiments

are carried out in a standard room with no special-purpose

acoustic properties. The software is implemented onto a

dedicated middleware robotic architecture that allows real-

time execution. To the best of our knowledge, this is the first

time that a 2D active speaker localizer has been implemented

on NAO.

The paper is organized as follows. The proposed methods

is described in Sec. II. The calibration technique is described

in Sec. III. The experiments are presented in Sec. IV. Finally,

Sec. V concludes the paper.

II. ACTIVE-SPEAKER DETECTION

First we describe the method of sound source localization

and subsequently its association with visual detections.

A. Sound Source Localization

We consider a robot head equipped with N microphones,

which are located in positions mi ∈ R
3 for i ∈ {1, . . . , N}.

Let s ∈ R
3 be the unknown position of the sound source.

A direction where the sound comes from can be estimated

from the time difference of arrival between the microphones.

Travelling time of the sound between the source s and

microphone mi is denoted by τi and the TDOA between two

microphones mi and mj by τi,j = τi − τj . Therefore we

have
(

N
2

)

TDOAs, but obviously only N−1 of them are inde-

pendent. In other words, a sound source location in 3D space

fully determines the joint correspondence among microphone

signals. We denote this correspondence (t1, t2, . . . , tN ) and

without loss of generality at time instance t

t1 = t, t2 = t + τ1,2, . . . , tN = t + τ1,N . (1)

Let the origin of the coordinate be set at the centroid of

the microphones, 1/N
∑N

i=1 mi. Assuming that the distance

to the sound source r = ||s|| is much larger than the

distance between microphone pairs, r ≫ maxi,j ||mi−mj ||,
(far field assumption), the dependence of the TDOAs to

the source distance is negligible [17]. This also means that

under this assumption, it is not possible to estimate the

distance to the source, but only the spatial direction, which

we parametrize by azimuth and elevation, namely (α, β).
The algorithm requires a sound propagation model which

relates the direction (α, β) to the set of TDOAs {τi,j}. Let

us assume that this model is provided under the form of the

following mappings:

τ1,j = qj(α, β), ∀j, 2 ≤ j ≤ N. (2)

A standard model is linear propagation of acoustic waves

τi,j =
fs

c
(||mi − s||2 − ||mj − s||2), (3)

which involves difference of Euclidean distances between

the source s = (r sinα cos β, r sin α cos β, r cos α)T and the

microphones mi and mj (c denotes a sound propagation

speed, fs is the sampling frequency). Note that the TDOA is

expressed in number of signal samples and not in seconds.

This model assumes that the acoustic waves travel along

straight lines and that the 3D microphone locations are

known in the robot-head coordinate system. These locations

cannot be easily determined, in particular when the micro-

phones are inside the robot head. Therefore we propose a

method to estimate a model of the form of (2) which does

not require explicit microphone locations (Sec. III).

The basic idea of the proposed sound source localization

method is to discretize the space of expected sound directions



and to evaluate each one of these direction hypotheses

by a consistency statistic which locally measures the joint

similarity of signals in the correspondence determined by the

tested direction. At each time instance t, the final estimate

is the direction that accumulated the largest value of the

consistency statistic

(α(t), β(t))∗ = argmax
(α,β)∈A×B

corr(α, β; t), (4)

where A and B are the discretized sets of azimuth and

elevation values. The consistency statistic

corr(α, β; t) =

(

N

2

)−1
∑

(i,j)∈(N

2 )

corri,j(ti, tj) (5)

is the average over all pairwise correlations corri,j(ti, tj) and
(

N
2

)

enumerates all 2-combinations from N elements. Notice

that t1 = t and ti = t + τ1,i = t + qi(α, β) for 2 ≤ i ≤ N
which follows from (1) and (2).

Pairwise similarities are measured with the normalized

cross-correlation (NCC) function

corri,j(ti, tj) =
cov

(

W i(ti),W j(tj)
)

√

var
(

W i(ti)
)

var
(

W j(tj)
)

(6)

between short temporal windows W i and W j of L samples

each, centered at ti and tj of signals associated with micro-

phones mi and mj . The size of the window is set to 100ms

and L = 0.1fs in all our experiments.

The consistency statistic has the range [−1, 1] and it is

invariant to affine transformations of the signal intensity. It

handles well a gain difference between the microphones, and

consequently it also handles an anisotropy due to their di-

rectional characteristics. Note that the aggregated statistic (5)

uses all the sensors simultaneously and symmetrically.

B. Audio-Visual Association

Similarly to the approach in [16], the proposed audio-

visual fusion model relies on 3D visual features. Since the

task is to localize speakers and to estimate their speaking

activity status, ideally one would like to find 3D lips/mouth

locations and to combine these locations with 2D sound

source locations. We propose to use a face detector, e.g.,

[18], simply because in the case of untethered interaction

their detection/localization is quite reliable. We detect faces,

match the face centers between the two images, and estimate

their 3D position using stereoscopic triangulation. The 3D

locations thus obtained are fair approximations of lips/mouth

locations. Below we explain how these visual features are

associated with the sound source location estimates.

Let sk = (xk, yk, zk)T for k ∈ {1, . . . ,K} be the 3D

positions of candidate speakers in the robot-head coordinate

system obtained by the above procedure. Clearly there is

an azimuth & elevation direction associated with each 3D

face-center location. The expected direction associated with

a sound source located in sk is found by transforming the

Cartesian coordinates into spherical ones

µk =
(

azimuth(sk), elevation(sk)
)

. (7)

Due to limited resolution in the discretization and various

possible distortion of the acoustic sound source direction

estimate (4), discussed in Sec. I, we model it statistically

with the following mixture:

p(α, β) =

K
∑

k=1

p(k)N (α, β;µk,Σ) + p(K + 1)U . (8)

The likelihood p(α, β|k) of a sound direction estimate (4)

due to the activity of speaker k is modeled by Gaussian

distribution centered at µk (7). The likelihood p(α, β|K +1)
of a direction to be an outlier is modeled with the uniform

distribution U over the range of all possible directions, i.e.,

p(α, β | K + 1) = const. For all k ∈ {1, . . . ,K + 1}
and assuming a uniform prior distribution p(k) = 1

K+1 , the

posterior probability is

p(k | α, β) =
p(α, β | k)

∑K+1
k=1 p(α, β | k)

. (9)

Hence, for each time instance t the algorithm provides a

distribution of posterior probabilities of activity over each

speaker and the outlier class.

Discussion. Notice that the covariance matrix Σ is chosen to

be the same over all Gaussians in the mixture (8). We assume

that the variance of the distribution of estimates (α, β) due

to speaker’s activity does neither depend on the expected

direction µk of particular speakers nor on the emitted sound.

We also assume that the estimates of α and β are not

correlated and that the variance of the distribution is caused

mainly by the discretization, since the system is precisely

calibrated. Therefore, the covariance matrix Σ is set as a

diagonal matrix with standard deviations as the respective

discretization steps of azimuth and elevation.

All these assumptions were verified on the calibration

sequence, where we have a correspondence between the

ground-truth direction of the sound source and the estimate

by the SSL algorithm (4), see Sec. III. We observed that

either the correct maximum is selected in (4) (the one which

corresponds to the true direction up to the precision given by

the discretization), or rarely there is a mismatch (occurring

most probably due to reverberations) which is then captured

by the uniform outlier class.

This straightforward probabilistic model can be seen as

a Bayesian classifier. The most probable class (one of the

speakers 1, . . . ,K) or the outlier class (K + 1) is selected

by (9), which is equivalent to finding the closest µk to an

estimated (α, β) in the sense of the Mahalanobis distance. If

this distance is above a threshold (given by the covariance

matrix Σ), the outlier class is selected. Despite this simplic-

ity, this audio-visual association turns out to be very efficient,

which will be illustrated with experiments.

An alternative to the proposed model would be to relax

some of the above assumptions. Namely, to hypothesize that

the distribution of the estimated sound directions (around

their expected means) do depend on the particular speaker.

If this is the case, then the covariance matrices would
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Fig. 2: Audiovisual calibration. Approximate trajectory of the loudspeaker with a light bulb superimposed in red (a), Color-

coded correlogram for TDOAs with superimposed trajectory found by dynamic programming (b), Observed TDOAs from

audio signals and visual directions projected into TDOA space using the estimated model (c).

be speaker/direction specific and should be estimated on-

line during a short period of time during which several

directions are collected. Then the GMM’s parameters would

be estimated via an EM procedure, e.g., by extending the

model [16] from 1D to 2D sound localization. Such an

approach would have required enough independent samples.

Since a 100ms window is required in order to compute an

estimate of reasonable quality, a relatively long temporal

window would have been necessary in order to gather a large

number of samples, which is necessary for GMM fitting. This

is prohibitive within the framework of an on-line interactive

process, as required by the application at hand.

III. SOUND PROPAGATION MODEL AND AV ALIGNMENT

In this section we make explicit the sound propagation

function (2), a method for estimating its parameters and the

associated procedure used in practice with the robot head.

The standard model (3) requires the positions of the micro-

phones in a head-centered coordinate system [19], [16]. We

performed a number of experiments using the manufacturer’s

technical documentation, and it turned out that the model (3)

does not hold well. Namely, we noticed a systematic bias in

the TDOA estimates. For instance, we observed that the max-

imum value of TDOA estimated from acoustic signals was

significantly larger than the maximum TDOA which would

correspond to the actual baseline between microphones. The

wave travels around the head to reach the microphones

probably. The shape and the head’s material influence the

sound propagation. Therefore we propose to model (2)

using regression functions, one for each microphone pair,

which relates the sound source direction in the robot-head

coordinate system with the TDOAs between audio signals.

With the far-field assumption in mind, we suggest to use a

model of the form

τ1,j = q2
j α + q1

j β + q0
j (10)

The model parameters {q2
j , q1

j , q0
j }

N
j=2 are estimated from

a set of correspondences {(α(t), β(t)) ↔ τ
(t)
1,j}

T
t=1 using

a standard linear regression. Moreover, since the reference

directions (α(t), β(t)) are provided to the calibration by the

vision system, the proposed model implements the audio-

visual (AV) alignment which is used in the statistical asso-

ciation (8).

To acquire calibration data we use a loudspeaker with a

light source attached to it. This audi-visual target is freely

moved in front of the robot. This setup was also used in [20],

where an EM procedure is used to estimate the microphone

positions mi of model (3).

The visual field of view of the robot is slowly swept in

a ‘zig-zag’ trajectory by the loudspeaker emitting random

white noise while the attached light source is easily de-

tectable in the image pair, see Fig. 2a. Since, the cameras

are calibrated in a common coordinate frame using standard

camera calibration, after detecting the light-bulb in left

camera and matching with the right image, we reconstruct a

3D position of the sound source s(t) for each time instance

t. Angles (α(t), β(t)) are then easily derived by conversion

to spherical coordinates.

Signals from the microphones perceiving the white noise

correlate well in general. However, there might still be some

errors if we find τ1,j at each time instance t independently by

shifting signals and maximizing their correlations. Therefore,

we use the fact that we move the speaker slowly and TDOAs

do not change abruptly. We are looking for their smooth

sequence over time t = 1, . . . , T which maximizes

corr1,j(1, 1+τ
(1)
1,j )+

T
∑

t=2

(

corr1,j(t, t+τ
(t)
1,j )+λ(τ

(t)
1,j−τ

(t−1)
1,j )2

)

.

(11)

Regularization parameter is λ = 0.1. The optimum sequence

(τ
(1)
1,j , . . . , τ

(T )
1,j ) is found by dynamic programming. See the

smooth path over the table of corr1,2 in Fig. 2b. This way, we

avoid outliers in the correspondence set (α(t), β(t)) ↔ τ
(t)
1,j

and we use statistically efficient least squares regression to fit

the model (10). The procedure is repeated for all microphone

pairs, j = 2, . . . , N.
The accuracy of the model is demonstrated in Fig. 2c.

There are two curves: TDOA trajectory found from audio
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Fig. 3: Error rate against noise.

signal by optimization (11) (observed), and the curve where

3D trajectory of the target is projected onto the TDOA space

using the estimated model (model). This shows that, for a

limited range of directions (spanning the robot’s visual field

of view), the model (10) approximates very well the actual

sound propagation.

IV. EXPERIMENTS

The accuracy of the presented method was evaluated quan-

titatively. We measure the error rate, which is a percentage

of discrepancies of the MAP estimate (9) against the ground-

truth annotation.The annotation labels the active speakers

who take speaking turns sequentially. Three speakers were

used in all the tests, which means the maximum error rate

(by pure random chance) is 75% since there is an additional

class to capture outliers. The evaluation is for every frame

lasting 1/30 sec, which is derived from the video frame-rate.

Besides the proposed method (2D-NCC), we compare with

several other baseline methods. The first (1D-NCC) uses only

two microphones and hence estimates the ITD τ1,2. Then,

Gaussian means are projections of source direction (found

by visual detection) into this space, standard deviation is set

to σ = 1 sample.

The second baseline method (pairwise NCC) uses all four

microphones. The association model lives in the space of

TDOAs of N−1 dimensions. Gaussian means are projections

of source direction into the space τ1,2 × τ1,3 × τ1,4. The co-

variance matrix Σ is set as unit matrix. All three TDOAs are

found independently by maximizing the pairwise correlation

by shifting the signals.

The last two baseline methods are classical techniques

based on Fourrier domain correlation statistic. The corre-

lation statistic is a dot product of the short-time Fourier

transforms of signals which are steered by a multiplication

of a complex exponential with a phase shift set according to

the expected TDOA. In one-dimensional case (between two

signals), it is the generalized cross-correlation (GCC) – it

corresponds to 1D-NCC. In the two-dimensional case (using

multiple microphones), it is the steered response power (SRP)

– it corresponds to 2D-NCC. For further details on these

methods, we refer the reader to [21], [22], [23]. In all

experiments, we use the same size of the Hamming window

in short-time Fourier transform as the size of the temporal

window in NCC correlation (6), i.e. 100 ms.
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Fig. 4: Error rate against reverberations.

A. Simulated Experiment

To quantitatively demonstrate the influence of noise and

reverberations we performed a controlled synthetic experi-

ment. The setup is similar as in [17]. A room of 3 × 4 × 2
meters contains 3 collinear sound sources which are placed

either horizontally or vertically about 2 meters away from

an array of 4 microphones. The array is arranged as a

tetrahedron with an edge of 10 cm placed roughly in the

middle of the room. The baseline between the left and right

microphones was parallel to the ground floor. The simulation

which allowed to control the reverberation time1 T60 was

performed using the toolbox of [24]. The sound sources

were repeatedly emitting, one by one, 0.5s length speech

fragments randomly chosen from the TIMIT dataset with

0.25s silence gaps. All the results below are averaged out

over 10 random trials of speech fragments generations. The

plots in Fig. 3 and Fig. 4 have error bars of the standard

deviation.

First, we tested the methods against increasing level of

additive Gaussian noise over all signals independently. In

Fig. 3, we can see that 1D-NCC has problems in the vertical

setup. Since it uses only two horizontal microphones and the

single τ1,2 have almost the same value for all three sound

sources. In the vertical setup, the simple method pairwise

NCC which uses all four microphones is of course able

to distinguish vertically aligned sources for low noise, but

it deteriorates quickly with increasing level of noise. The

reason is that a single mistake in any of three TDOAs causes

an error. We can see that for sources aligned horizontally,

the error rate of pairwise NCC increases even faster than

with 1D-NCC. However, we can see that the proposed

method 2D-NCC is consistently significantly better than both

baseline methods. The reason is that all microphones are used

simultaneously and the aggregated correlation statistic (5)

efficiently averages out the noise.

Concerning a comparison with GCC and SRP, i.e. Fourier

domain methods, we can see the GCC has similar perfor-

mance as 1D-NCC and SRP is consistently slightly worse

than 2D-NCC. This is probably due to certain effects of the

Hamming window used in the short-time Fourier transform,

although the temporal support was the same as in 2D-NCC.

A similar behavior is observed for tests with reverberations,

see Fig. 4. The proposed method 2D-NCC is still consistently

1Reverberation time T60 is the time in seconds required that the sound
level decays by 60dB below the original level.



Fig. 5: People emitting sounds sequentially (top) and the

corresponding aggregated statistic (5) for azimuth and eleva-

tion (bottom) roughly aligned with the image and when the

leftmost person speaks. See the supplementary video for the

entire sequence with the original sound track. Please notice

the high level of noise in the signal due to fan inside the

robot head.

better, although we can see that after T60 > 0.1s, the error

rate increases quickly. The problem is that in a highly rever-

berant room, the reflected sound causes multiple phantom

source locations which corrupt the correlation statistic. It

may even happen with large T60 that such a phantom source

overwhelms the original sound in cases of pauses in speech.

Since the SSL is run in at a regular rate, large error bars are

then probably due to this effect when SSL is computed close

to speech pauses.

B. Real Data Experiment

For real experiments, we used a subset of data used in [16],

which consists of 10 sequences (of about 30 sec) captured

with the prototype head of NAO. There are always three

persons in front of the robot in various configurations as in

Fig. 5. They are sequentially uttering by counting from 1

to 15. Full ground-truth annotation was available. The room

does not have any special acoustic properties and it is quite

echoic. The audio track of the video in the supplementary

material corresponds to NAO’s sound track recorded by one

of the robot’s microphones, thus allowing one to listen to

what the robot actually hears. The noise is mainly due to a

CPU fan located inside the head, which makes the problem

of robot listening particularly challenging.

The error rate for each sequence is shown in Table I. The

proposed method 2D-NCC is the best performing one for all

sequences. The fluctuation of the performance is probably

due to large variations in the speech loudness. Notice that the

difference between SRP and 2D-NCC is more significant for

the real than for the synthetic data, which could be caused by

higher sensitivity of the method to effects due to the HRTF

1D-NCC pairwise NCC GCC SRP 2D-NCC

seq-1 19.7 32.8 21.3 23.0 16.4

seq-2 13.4 22.8 17.4 8.7 0.7

seq-3 11.5 18.9 12.8 7.4 4.1

seq-4 14.6 21.9 18.5 12.6 11.9

seq-5 13.1 20.9 15.7 7.2 2.0

seq-6 22.8 30.4 22.8 7.6 7.0

seq-7 22.7 22.1 16.9 5.8 1.7

seq-8 17.0 25.5 13.1 9.8 6.5

seq-9 18.9 19.6 16.1 21.7 16.1

seq-10 10.9 18.2 11.5 12.7 7.9

average 16.4 23.3 16.6 11.7 7.4

TABLE I: Error rate for real experiments.

Fig. 6: Humanoid-human interaction in an unconstrained

environment (background noise, reverberations, etc.). Please

see the the supplementary video.

of the head being used. Certain frequency bands could be

distorted in an anisotropic way, which might be more harmful

for the Fourier domain method. Moreover, unlike 2D-NCC,

SRP is not invariant to affine transformations of the signal

level. This effect may be present due to the poor quality of

the microphones.

C. Interactive Behavior

The proposed method was implemented on NAO to

demonstrate a possible human-robot interaction. Two demon-

strations were performed, both of them run in real-time. The

first demonstration was a simple reactive behaviour, where

the robot turns its head towards an active speaker, see Fig. 1.

The second demonstration extends the first one, such that the

active speaker is engaged in a simple multimodal dialogue.

The scenario and implementation details follow.

1) Proposed Scenario: There are many situations where

an active-speaker detector and localizer could be useful. In

this section we describe a simple scenario and its associated

protocol of communication, as shown in the Fig. 7. Several

people face NAO, Fig. 6, who stands up on a table, to be

at approximately the same height as the persons and thus

to optimally gather audio and visual information with its

head-embedded cameras and microphones. Using the active-

speaker detection and localization (AV fusion module), NAO

is able to turn its head towards one of the active speakers.

The speaker can then enter a dialogue by clapping his/her

hands. Several modules are then activated.

First, a visual Identity Recognition module determines

whether NAO has already seen that person and spoken to

him or her. If it is the case, NAO turns its attention to another
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Person Recognized?

Hand Clap?

Sound Recognition

Sound ?

Tell estimated age Tell estimated gender

NO
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YES

YES

Tongue clicFinger snap

Fig. 7: Flowchart of the interactive protocol with NAO.

The modules involved in the scenario are shown with blue

squares. A brown rhombus illustrates a decision that NAO

has to make based on the information flow received from

the different modules. Purple parallelograms correspond to

situations when NAO has to take an action. The AV Fusion

module corresponds to active-speaker detection.

person. If the person was never seen before, NAO greets and

asks him/her to emit a sound. Based on an isolated sound

recognizer [25], a number of human-emitted acoustic signals

can be recognized and NAO exhibits a different behaviour

for each one of the recognized sounds. In this scenario, NAO

attempts to guess either the gender or the age of that person

based on facial cues.

2) Implementation on the Humanoid Robot NAO: The

scenario described above was implemented using the Robotic

Service Bus (RSB) middleware [26], see Fig. 8. The RSB

middleware interfaces robot’s sensors and actuators and hosts

additional software modules which run in parallel. The RSB

is in charge of module interconnection, communication and

synchronization. The software modules may run in different

computers and the processes communicates over the net-

work in a way transparent for a user. All the events are

automatically equipped with time stamps, which provide

for introspection and synchronization abilities. Several tools

Fig. 8: The method described in this paper was imple-

mented using the RSB (robotic service bus) middleware that

interfaces NAO’s sensors and actuators with the software

modules.

exist which can record event flow, and replay it later, so that

application development can largely be done without running

the robot.

In practice the modules involved in this scenario are

the followings: Face Detector [27], Identity Recognition

(identity, age, and gender) [28], [29], Face Tracking [30],

Sound Recognition [25], Sound Localization and AV Fusion

(described in this paper).

Some of the modules are necessary to read results of other

modules. For example, Face Detector is used in AV Fusion

and in Tracking, while at the same time Face Tracking is used

by Identity Recognition. All these modules are available for

download2.

For example, the Face Detector module collects image

sequences from NAO’s cameras, localizes the faces in these

images, if any, and communicates to other modules, through

RSB, the corresponding bounding boxes of the faces. In

this manner, Face Tracking can be initialized and start the

tracking of a face. Something similar holds for the AV Fusion

module, which needs 2D auditory directions and 3D visual

features, e.g., 3D face positions.

The active speaker detection and localization is very

important in the whole application, and the fact that NAO

is able to find who is speaking and move the head towards

the speaker provides the sensation of a natural conversation.

It would be certainly even more natural if the dialogue is

driven by a speech recognition module instead of the isolated

sound recognizer. However, the speech recognition in a

reverberant environment with distant microphones embedded

in the noisy robotic head is not reliable. This is a widely

studied research topic itself which typically employs larger

microphone arrays [31], [32]. Therefore we replaced the

Nao’s built-in speech recognition module with the sound

recognition module [25], which turned out to be much more

reliable in this condition.

V. CONCLUSIONS

In this paper we presented a method for the detection

and localization of an active speaker that faces a robot.

We devised a novel sound-source localization method that

2https://code.humavips.eu/



sums up correlation statistics from an arbitrary number of

microphone pairs and which builds a 2D auditory map of

possible sound directions. We also devised a simple Gaussian

mixture model that combines this map with 3D visual data

such that the two modalities can be fused in a principled way.

A sound propagation model which captures robot’s visual

field of view and its calibration procedure was designed.

The method was experimentally validated and tested with

both simulated and real data using cameras and microphones

embedded into the head of the humanoid robot NAO.

The method is robust against noise, but is still quite sensi-

tive to reverberations. In our future work, we will investigate

how to estimate sound-source direction prominently based on

strong onsets detected in the perceived acoustic signals as

in [33]. Furthermore, there are many possibilities in feeding

the statistical model from the correlation map (4). For

instance, multiple maxima or weights related to correlation

could be used.

The system assumes that there is no overlapping acoustic

activity of multiple subjects. When this is violated the

algorithm tends to select a dominant source at a time. We are

planning to investigate this challenge in future by a statistical

modelling in both temporal and frequency domains.

Since the algorithm outputs posterior probabilities, the

reasoning on the active speaker could be further improved

by including temporal information. So far the data are pro-

cessed independently, frame by frame. Therefore, one could

construct a HMM over the posterior probability distribution

of the speakers activity over several frames.

The human-robot interaction scenario that we described

is illustrative because it encompasses a large number of

situations where human-robot dialogue is based on both

auditory and visual information.
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