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Introduction version francaise

Les problémes étudiés tout au long de cette thése concernent le cube de
Fibonacci et le cube de Lucas.

Le cube de Fibonacci I',, est un sous-graphe isométrique de ’hypercube,
mais avec un nombre de Fibonacci de sommets. Il a été initialement introduit
par W-J. Hsu dans [Hsu93] comme réseau d’interconnexion.

Un réseau d’interconnexion peut étre représenté par un graphe G = (V, F),
ou V' désigne les processeurs et F les liens de communication pour I'échange
de données entre les processeurs.

Selon Bertsekas et Tsitsiklis (cf.[BT97]), les réseaux d’interconnexion sont
généralement évalués en fonction de leur aptitude a certaines taches de com-
munication standard. Certains critéres typiques incluent le diamétre du réseau
qui est la distance maximale entre chaque paire de sommets; la connectivité
du réseau qui fournit une mesure du nombre de chemins indépendants entre
toute paire de sommets et la flexibilité donnée en exécutant efficacement une
large variété d’algorithmes. Cela se traduit par I’étude du probléme du plonge-
ment qui demande si un graphe invité est un sous-graphe d’un graphe hote.
Si un plongement graphique existe, nous pouvons appliquer des algorithmes
concus pour les graphes hotes pour travailler efficacement sur les graphes in-
vités.

[’hypercube est un réseau d’interconnexion populaire avec 2" sommets qui
représentent des processeurs autonomes connectés avec n voisins. L’hypercube
représente une classe importante dans la théorie des graphes principalement
en raison de ses propriétés structurales.

Comme réseau d’interconnexion, I'hypercube a des propriétés trés intéres-
santes telles que la récurrence, la symétrie et la connectivité. En outre, de
nombreuses structures topologiques qui apparaissent lors de la parallélisation
d’un algorithme peuvent étre plongées dans I’hypercube. Voir [HHW88| pour
une étude de certaines propriétés structurales de ’hypercube, dont les cycles
hamiltoninens et les plongements. Nous faisons référence aussi a [SS88|, pour
un examen large des propriétés de I’hypercube qui rendent ce graphe si at-
trayant.

En revanche, lors de la mise en ceuvre d’un systéme informatique par-
alléle, plus de processeurs et de mémoires peuvent étre ajoutés, comme le
budget le permet. Dans le cas de I’hypercube, le nombre de processeurs doit
étre une puissance de 2. Lorsque le réseau est mis en ceuvre avec un plus pe-
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tit nombre de processeurs, de nombreux liens de communication peuvent étre
inutilisés. Ainsi, d’autres structures topologiques sont nécessaires afin de per-
mettre 'ajout d'un petit nombre de nceuds tout en minimisant le gaspillage
des ressources. (Voir [DYNO03].)

Parmi d’autres modéles alternatifs, le cube de Fibonacci, qui est inspiré par
les nombres de Fibonacci, s’avére étre un réseau d’interconnexion attrayant
en raison de sa structure topologique et de sa croissance plus modérée.

Dans le chapitre 2, nous introduisons le cube de Fibonacci.

Dans la section 2.2, nous présentons quelques préliminaires relatifs aux
nombres de Fibonacci. Ces nombres doivent leur nom a Léonard de Pise,
plus connu sous le nom de Fibonacci et sont liés & de nombreux problémes
d’énumeération.

The n®™¢ nombre de Fibonacci, n > 2, est déterminé par la relation de
récurrence suivante :

F, =F,_1+ F,_> avec les valeurs initiales Fy =0, F; = 1.

En d’autres termes, chaque nombre dans la suite est la somme des deux
nombres précédents. Soit g(z) la fonction génératrice de la suite de Fibonacci,
alors

B 0 x
g(x) = ;Fn =T

De nombreuses propriétés ont été trouvés dans la suite de Fibonacci et
comme Zeckendorf I'a démontré, voir [GKP94|, chaque nombre entier positif
a une représentation unique comme somme de nombres de Fibonacci non
consécutifs. On en déduit une représentation binaire du nombre entier, sans 1
consécutifs. En outre, un nombre compris entre 0 et F,,_; exige (n—2) positions
pour étre représenté. Une chaine (byby---b,) ot b; € {0,1} et b; - bj1y = 0
pour tout ¢ dans {0,1,...n — 1} sera définie comme une chaine de Fibonacci
de longueur n.

Le cube de Fibonacci T',, est défini comme le sous-graphe de I'hypercube
(., induit par les chaines de Fibonacci de longueur n ot les sommets adjacents
de T',, différent une position et le nombre de sommets de I, est F}, 5. Voir la

figure 1.1. Nous notons f(z) la fonction génératrice du nombre de sommets
de I',,. Alors

B w4z
f(z) = %% V()" = [R—
Dans la section 2.3, nous abordons différentes décompositions récursives
du cube de Fibonacci. Principalement la décomposition fondamentale de T,
qui indique que le cube de de Fibonacci I',, se decompose en deux sous-graphes
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010 1010 0010
000 100 1000 0000 0100
1 101 1001 0101
00 0 00 0001 010
I's Iy
10010
10000 10100
01010 0001
1000 10101
01000 00001 00100
01001 00101

00001

FIGURE 1: I's, I'y and T

disjoints qui sont isomorphes a I',_; et a I',,_5. En outre, chaque sommet dans
le graphe isomorphe a I',, 5 a exactement un voisin dans le sous-graphe iso-
morphe a I',,_;.

La décomposition fondamentale de I', peut étre appliquée de maniére
récursive a ses sous-graphes I';,_; et/ou I',_5. Beaucoup de propriétés im-
portantes seront déduites de cette décomposition, comme le fait de pouvoir
plonger le cube de Fibonacci dans un autre cube de Fibonacci de plus petite
taille. L’idée principale consiste a décomposer I',, en I',,_; et I',,_5. Ensuite,
nous fusionnons les arétes qui relient ces deux sous-graphes en une unique
aréte. Le graphe qui en résulte est isomorphe a I';. En appliquant cette méth-
ode itérative a chaque sous-graphe, on obtient a chaque fois, un sous-graphe
isomorphe a I'y. Nous appelons chacun de ces graphes le Cube de Fibonacci
Quotient.

Dans la section 2.4, nous énoncons d’autres résultats sur la structure du
cube de Fibonacci. Parmi ceux-ci, nous mentionnons le résultat di a Klavzar
|[Kla05|, qui dit que le cube de Fibonacci est un graphe médian. D’autres
résultats tirés de [MCSO01|, concernant le nombre d’arétes de I', sont aussi
enoncés. Dans [KMP11], nous trouvons certains résultats énumératifs concer-
nant le nombre de sommets de I',, d’un degré donné, et le nombre de sommets
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d’un degré et d'un poids donnés. Le nombre de sous-graphes induits isomor-
phes & @, dans le cube de Fibonacci est étudié dans [KM12a] et le nombre de
sous-graphes maximaux induits isomorphes a @), dans le cube de Fibonacci
est étudié dans [Mol11]. Enfin, nous citons une étude de [KM12b| sur [’indice
de Wiener des cubes de Fibonacci qui est une application en chimie associé a
ces cubes .

La derniére section présente une variante et deux généralisations du cube
de Fibonacci. Le premier, nommé le cube de Lucas est obtenu par 1’élimina-
tion de toutes les chaines qui commencent et finissent avec 1 dans le cube de
Fibonacci.

Le cube de Lucas A, introduit par E. Munarini, C.Cippo et N. Zagaglia
Salvi dans [MCS01], est un sous-graphe du n-cube qui posséde également des
propriétés intéressantes comme ses décompositions récursives en deux sous-
graphes disjoints isomorphes a I',_; et '), _3.

Le nombre de sommets du cube de Lucas, |V (A,)| pour n > 1 est L, le

n*me¢ nombre de Lucas, ot L,, est défini comme L,,_; + L,_s pour n > 2 avec
LO - 2, Ll - 1
La fonction génératrice de |V (A,,)| est
n 1+ a2
) =D V(A 2" = ———.

n>0

Nous allons également étudier ces graphes dans tous les chapitres qui vont
suivre.

Selon Xu, (cf. [Xu01]), puisque certaines applications paralléles telles que
celles du traitement de 'image et du signal sont a 'origine concgues sur une
architecture de cycle, il est important d’avoir un plongement efficace du cycle
dans un réseau.

Dans le chapitre 3, nous discutons I’'Hamiltonicité dans le cube de Fi-

bonacci et dans le cube de Lucas. Comme I',, est bipart, si il admet un cycle
Hamiltonien alors nécessairement le nombre de sommets est pair. Cette condi-
tion est aussi suffisante. En d’autre termes, I';, peut avoir un cycle Hamiltonien
si et seulement si n = 1(mod 3).
A partir de la décomposition fondamentale, dans [LHC94], il est prouvé que le
cube Fibonacci contient un chemin Hamiltonien ®, = (0P |, 10 P! ,) avec
Py = la chaine vide, P, = (0,1) et P, = (01,00, 10). En outre, Liu, Hsu et
Chung ont construit #,, un sous-graphe isomorphe a I',, induit par les som-
mets de P,. Ensuite, les auteurs ont construit dans #,, des cycles de chaque
longueur paire entre 4 et |[V(I',)| pour n = 1(mod3). Sinon, les cycles con-
struits ont toutes les longueurs paires entre 4 et |V (I',)| — 1 sommets.
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Dans l'article [Kla|, Klavzar a proposé le probléme de la caractérisation
des sommets v sommets de V(I',) pour lesquels le graphe V(I',)) — v con-
tient un cycle Hamiltonien, étant donné n # 1(mod 3). Inspirés par ce dernier
probléme et les résultats précédents, nous continuons a étudier I’Hamiltonicité
dans les cubes de Fibonacci.

Considérons la bipartition V(T,,) = (V°4(T,), Ve(T,)) avec
Ved(T,) = {u € T, | u contient un nombre impair de 1} et
Vver(T,) = {v €T, | v contient un nombre pair de 1}.

Ensuite, nous prouvons que pour n > 3, |[Ve(T,,)|—|V°4T,)| = |[VUT,_3)|—
|Ver(T,,_3)|. Cette proposition est utilisée pour montrer que |V (T,,)|—|V°4T,)| =
(—=1)L"3%], et par conséquent I'un des ensembles Ver(r,) ou Vo4T,) a un éle-
ment de plus que autre ensemble. Soit VF(T',,) cet ensemble on a

Vefu(l" ) si LH—HJ est pair
P _ n 3 ’
Vv (Fn) - { Vod(rn) si LHTHJ est 1mpa1r

Nous démontrons alors

Théoréme 0.0.1. Pourn # 1(mod3), n >5; soitv e VP(T,). AlorsT,, —v
contient un cycle Hamiltonien. De plus, T's — (010) contient un cycle Hamil-
tonien.

En outre, siv ¢ VE(T,)), alors T',, — v ne contient pas de cycle Hamiltonien.

Pour démontrer cela, nous utilisons a nouveau #,, le graphe isomorphe
a I',, induit par les sommets du chemin Hamiltonien 2, de I',,. La figure 2
représente 1, et les sommets de VF(T',) en gris.
Nous construisons ensuite les cycles de V(I',,) — v, en distinguant deux cas

02, 5 10PR
L(Ij?i ® . ® ° ® - ® ° ]
Loy ° . ° L 3 ® ° ° °
LE e ° ® °  J ® ° ® ° ®

FIGURE 2: Sommets de V7(T,)

principaux. Dans le premier cas, le sommet v de V¥ (T',) est dans le "coté
gauche" du graphe. Dans le deuxiéme cas, v est dans le "coté droit" du graphe.
Dans notre graphe de la figure 2, le "coté gauche" du graphe est composé
de tous les sommets de 0PF . et le "coté droit" du graphe est composé de
tous les sommets de 107 ,. Dans le premier cas, nous construisons un cycle
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Hamiltonien dans I',, — v en suivant le modéle utilisé par Liu et al pour con-
struire le cycle Hamiltonien dans I';, pour n = 1(mod 3). Dans le dernier cas,
nous utilisons la récursivité du chemin Hamiltonien P, 5 = 0P% , 10 P, =
0102, _5,00P, 4, 10P% ,. Ainsi, un sommet v dans le "coté droit" de #, sera
toujours adjacent a un sommet dans le "coté gauche". Nous utilisons cette
aréte pour former le cycle désiré. Nous concluons cette section avec un corol-
laire qui indique qu’il existe des cycles de chaque longueur pair entre 4 et
V(') — v| quand n est impair. La preuve de ce corollaire commence avec
les cycles Hamiltoniens que nous avons précédemment décrits. Nous retirons
alors une paire de sommets pour former un nouveau cycle a chaque fois.
Dans la section 3.2, nous construisons des cycles presque Hamiltoniens pour
les cubes de Lucas de la méme maniére que nous I’avons fait dans la section
précédente.

Nous remarquons ensuite le fait que, pour n > 1, alors

—1 (=) if n =1 (mod 3),
Ve (A)] = [V(A)| = 1(=D)™) if n =2 (mod3),
(=1)L"3%) if n =0 (mod 3),

pour mentionner que si n #Z 0(mod3), 'un des ensembles de la partition
V(A,) = (Ve(A,), Vo4 (A,)) a une chaine de plus que autre ensemble ; si n =
0 (mod 3), alors un des ensembles de la partition (V(A,),V°%(A,)) a deux
chaines plus que Pautre ensemble. Nous appelons cet ensemble VF(A,,), n > 1,
ou :

( sin=1(mod3) et [™2] est impair,
Ve(Ay)q sin=2(mod3)et |™2] est pair,
VP(A,) = sin = 0 (mod 3) et L”%zj est pair
sin=1(mod3) et [%] est pair,

Vel(A,) ¢ sin=2(mod3) et [™2] est impair,

L si n=0(mod3) et |2 est impair.

Ensuite, nous construisons un sous-graphe #’,,, isomorphe a A,,, induit par
les sommets 0 P, _; et 10 P,_5 \ {chaines qui se terminent par 1} représentés
dans les figures 3, 4 et 5 pour n = 1(mod3), n = 2(mod3) et n = 0(mod 3)

respectivement, otl les sommets de VF(A,,) sont indiqués en gris.
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07 5 1027,
010(.’7"_5 00-(Pn—4
L e . . . . . . .
Loo o . oo ' . . ° ° ° . ° .
iR o~ 0 — b —e . e e b0 oe

FIGURE 3: Sommets de VF(A,) pour n = 1(mod 3)

08,7 4 1087,
010%,, 5 002, 4
Ltj)?i T S Y 3 o0 e
Lo @000 o e V0O O 0 @ 00 9 e o @
L/llg PONPS ° . PR rs y'S @ 'y

FIGURE 4: Sommets de V' (A,,) pour n = 2(mod 3)

0 1027,
OIOTn,Lr, 00ﬂ1—4
L T e T IO
Log 9 06—6—0—0--0—0—0—0—0—0--0—9
L/llg 5 P ® @ o O @

FIGURE 5: Sommets de V7 (A,,) pour n = 0(mod 3)

Nous démontrons alors le résultat suivant :

Théoréme 0.0.2. Soit v € VI(A,) avec n 2 0(mod3) et n > 5. Alors A, —v
contient un cycle Hamiltonien.
De plus, siv ¢ VE(A,), alors A, — v ne contient pas de cycle Hamiltonien.

Dans la preuve, nous considérons deux cas principaux avec des sous-cas
spéciaux pour n = 1(mod 3) et n = 2(mod 3) comme nous l'avons fait pour le
cube de Fibonacci. Dans le premier cas, le sommet v de VF(A,) est dans le
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"coté gauche" du graphe. Dans le deuxiéme cas, v est dans le "coté droit" du
graphe. Dans les figures 3 et 4, le "coté gauche" du graphe est constitué de
tous les sommets de 0P ; et le "coté droit" du graphe se compose de tous les
sommets de 1027 ,. Nous construisons les cycles Hamiltoniens dans A, — v
avec des dessins semblables a ceux de I',, — v. Pour conclure ce chapitre, nous
prouvons que pour n > 0, n = 0 (mod3), A, a un chemin de longueur |A,|—1
et :

Théoréme 0.0.3. Pourn =0(mod3), n > 6 etl pair avec 4 <1 < |V(A,)|—
2, un cycle de longueur [ peut étre plongé dans A,,.

La preuve exhibe un cycle Hamiltonien pour A, \ {v;, v} avec des sommets
spécifiques v; et vy. Puis en enlevant deux sommets fixés du cycle a chaque
étape, nous obtenons tous les cycles désirés.

Nous présentons dans le chapitre 4, les suites d’excentricité des cubes de
Fibonacci et Lucas, qui sont les fruits d’un travail effectué avec Michel Mol-
lard.

L’excentricité e(u) d'un sommet u, est la plus grande distance entre u et tous
les autres sommets v dans le graphe. Notons que tous les sommets de I'), ou
A, n'ont pas la méme excentricité comme c’est le cas dans @, ou il n'y a
aucune restriction de 1 consécutifs.

Nous définissons la suite d’excentricité de G comme la suite {ak}Zi:aSn(G) d’en-
tiers positifs, o a; est le nombre de sommets d’excentricité k& dans (. Par
exemple, dans le tableau suivant, nous donnons le nombre de sommets d’ex-
centricité k dans I',, et dans A,, pour n = 0 jusqu’a 5 qui peut étre facilement
calculé a la main avec 'aide de la figure 1.1.

n ([0 1 2 3 4 5

k{|0j0 1{0 1 201 23/01234/0123435
r«f1fo 2{0 12003 2/0015 200047 2
A:j1|1 0{0 1 2/0130(00142(0013550

TABLE 1: Nombre de sommets d’excentricité k dans I',, et A,,.

Dans la section 4.2, nous montrons qu’'une chaine x de I',, peut étre écrite
d’une maniére unique comme z = 00101102 ---10% avec p > 0, ly,l, > 0
et 1, -+ ,l, 1 > 1. Puis nous associons a chaque chaine 0!, un ensemble de
chaines W (0') de la facon suivante :

W (') = {1(01)L%J} si [ est impair,
{(10)2(01)®/2a + 2b =1,a,b > 0} si [ est pair.
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Nous calculons ensuite I'excentricité d’une chaine x € I',, comme suit

Théoréme 0.0.4. Pour chaque x = 0010110 - - - 10% dans F,,, avec p, ly, 1, >

07 llv”' JZP—IZ]‘)
p

ea) =p+ 155

1=0

De plus, les chaines qui vérifient ’excentricité de x sont les chaines :
y = wo0w,0- - - w, 10w, ot w; € W(0") pouri=0,1,---p.

Dans la section 4.3, nous considérons les sous-ensembles F,% et F,%, qui
représentent I’ensemble des chaines de I',, avec excentricité k qui se terminent
par un nombre impair de 0 pour le premier sous-ensemble et se terminent
par un nombre pair (éventuellement nul) de 0 pour le second sous-ensemble.
Puis nous calculons la fonction génératrice de la suite d’excentricité de chaque
sous-ensemble :

Théoréme 0.0.5.

1
[wy) =" (2,y) = T2ty
f o) = 1) = Ty

ainsi la fonction génératrice de la suite d’excentricité est

1+2xy
foge 2y = ——————.
nZk;O l—z(x+ 1)y

Nous concluons avec un corollaire qui détermine la valeur de f, j :

Corollaire 0.0.1. Pour chaque n, k tel que n > k > 1,

o= k N k—1
T\ =k n—~k
De plus, foo=1 et f,0 =0 pour n > 0.

Dans la section suivante, nous calculons la fonction génératrice de la suite
d’excentricité des chaines du cube de Lucas, ¢(x,y).

Jusqu’a présent, nous avons utilisé la lettre F pour les ensembles de Fi-
bonacci. Nous désignons les ensembles de Lucas par L.

Considérons le sous-ensemble F,%(F?%) qui représente I’ensemble des
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chaines de I',, avec excentricité k qui finissent (commencent) par un nom-
bre impair de 0. De méme, fﬁfg*( g”k ") est I'ensemble des chaines de I',, avec
excentricité k qui finissent (commencent) par un nombre pair, non nul de 0, et
]:ﬁi(fﬁ,;) est I’ensemble des chaines de I',, avec excentricité k qui ne finissent
(commencent) pas par 0.

Nous montrons alors que les ensembles Egbk et .7:52 sont les mémes pour
tout (a,b) en excluant deux ensembles, L£°?°? et £2?. Nous calculons les
valeurs de (0% et (77 ainsi que les valeurs de f29°? et f72. Ces résultats
et le fait que les /,, ; peuvent étre décomposés en

Ly = (004 (00 20 o (5 B 4 20 22022, (0.0.1)

n,k
nous donnent I’équation suivante :
_ od od [58%] od od [o8%]
En,k - fn,k —JInk T fn,k: + gn,k + En,k .

Puis en appliquant le résultat du théoréme précédent, la suite d’excentricité
est déterminée comme suit

Théoréme 0.0.6. La fonction génératrice de la suite d’excentricité du cube
de Lucas est

n,k>0

1+ 2%y 1 1—a
—oy—a2%y l14+azy 1-—22y

Comme corollaire, on obtient la valeur de £, j :

Corollaire 0.0.2. Pour tout n, k avecn >k > 1,

0 - k N k—1 N
T\ —k n—k—1 Enk

o1
—1 sin=2k,
Enk = 1 sin=2k+1,
0 sinon.

De plus, loy =t1og=1, l,0=0 pour n > 1 et

gn,n -

2 sin est pair (n > 2),
0  sin is impair.

La derniére section de ce chapitre donne une autre preuve du théoréme
0.0.6 & partir de 'obtention de la fonction génératrice de la suite d’excentricité
des chaines du cube de Lucas avec une approche directe. C’est-a-dire que nous
calculons toutes les fonctions génératrices de I'équation 0.0.1.
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Enfin, le chapitre 5 présente une étude du probléme de la domination et
2-packing pour les cubes de Fibonacci et Lucas. Les résultats présentés ici sont
le produit du travail effectué¢ avec Sandi Klavzar, Michel Mollard et Yoomi
Rho. Dans la section 5.1, on montre les théorémes suivants, qui donnent les
groupes d’automorphismes des cubes de Fibonacci et Lucas.

Théoréme 0.0.7. Pour tout n > 1, Aut(T',,) ~ Zs.
Théoréme 0.0.8. Pour tout n > 3, Aut(A,,) ~ Dy,.

Dans la section 5.2, on considére le nombre de domination des cubes de
Fibonacci et Lucas. Une relation entre les nombres de domination des deux
cubes est montrée :

Proposition 0.0.3. Soit n > 4, alors
(Z) W(An) S 7<Pn—1) + ’V(Pn—3) )

Ensuite, nous discutons des nombres de domination exacts pour les petites
dimensions d’aprés [PZ12] ou les ensembles minimaux dominants de T's sont
determinées, nous calculons les nombres de domination pour I'g et Ag.

Alors que nous conjecturons que y(I'g) = 17 et v(Ag) = 16, Ili¢ et MiloSe-
vi¢ l'ont confirmé plus tard dans [IM].

La section se termine avec une borne inférieure pour le nombre de domi-
nation des cubes de Lucas :

L, —2
Théoréme 0.0.9. Pour tout n > 7, v(A,) > {—n—‘

n—3

La derniére section est dédiée au 2-packing. On prouve la borne inférieure
suivante :

ngQHJ 1

Théoréme 0.0.10. Pour tout n > 8, p(T,) > p(A,) > 2

Nous présentons ensuite les nombres de 2-packing de I',, et de A, pour
n < 10 qui ont été trouvés en utilisant I'ordinateur.

Nous concluons le chapitre avec quelques conjectures qui mettent en cor-
rélation les nombres de domination et de 2-packing des deux cubes.
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n |0 1 23 45 6 7 8 9 10
A1 11 2 3 45 8 12 <17 -
pC,) 1 1 1 2 235 6 9 14 20
yA)[1T 11 1 3 4 5 7 11 <16 -
p(A)[1 1T 1 1 2 3 5 6 8 13 18

TABLE 2: Nombres de domination et du 2-packing pour des cubes de petite
taille
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CHAPTER 1

Introduction

The problems studied throughout this thesis deal with the Fibonacci cube
and one of its generalizations: the Lucas cube. The Fibonacci cube T',, is an
isometric subgraph of the hypercube, but with a Fibonacci number of ver-
tices. It was originally proposed by W-J. Hsu in [Hsu93] as an interconnection
network.

An Interconnection network can be represented by a graph G = (V| E),
where V' denotes processors and E the communication links for data exchange
among the processors.

According to Bertsekas and Tsitsiklis ¢f.[BT97|, the interconnection net-
works are usually evaluated in terms of their suitability for some standard com-
munication tasks. Some typical criteria include the diameter of the network
which is the maximum distance between any pair of vertices; the connectivity
of the network which provides a measure of the number of independent paths
between any pair of vertices and the flexibility given by running efficiently
a wide variety of algorithms. This translates in the study of the embedding
problem which asks if a guest graph is a subgraph of a host graph. Therefore
if a graph embedding exists, we can apply algorithms designed to work effi-
ciently for guest graphs to host graphs.

The hypercube is a popular interconnection network of 2™ vertices which
represents autonomous processors connected with n neighbors. The hypercube
represent an important class in graph theory mainly because of its structural
properties.

As an interconnection network, the hypercube has very attractive proper-
ties such as recurrency, symmetry and connectivity. Also, many topological
structures that arise while parallelizing an algorithm can be embedded into
the hypercube. On the contrary, when a parallel computer system is being
implemented under this architecture, the number of processors is restricted
to be a power of two which becomes impractical as the network’s size grows.
This can be saved using a network with less vertices. Therefore, among other
alternative models, the Fibonacci cube, which is inspired in the Fibonacci
numbers, arise as an appealing interconnection network due to its topological
structure and its more moderated growth.

In chapter 2, we present some preliminaries related to the Fibonacci num-
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bers. As Zeckendorf proved cf. [Zec72|, each positive integer has a unique
representation as a sum of nonconsecutive Fibonacci numbers. The result is
a binary representation of the integer with no consecutive 1’s. Notice that a
number between 0 and F,, — 1 requires (n — 2) positions to be represented.

We will define a string (by by - - - b,) where b; € {0,1} and b; -b;1; =0 as a
Fibonacci string of length n.

The Fibonacci cube, T',, is the subgraph of (), induced by the Fibonacci
strings of length n where adjacent vertices of I',, differ in one position and the
number of vertices in I'), is F}, 5. See figure 1.1.

010 1010 0010
) 1 1000 1
000 00 000 0000 0100
001 101 1001 0001 0101
I Iy
10010
10000 10100
01010 0001
1000 10101
1 1
01000 00001 00100
01001 00101

00001
I's

Figure 1.1: I's, 'y and I’

We discuss next, different recursive decompositions of the Fibonacci cube.
Mainly, the fundamental decomposition of I',, which states that the Fibonacci
cube I',, contains two disjoint subgraphs that are isomorphic to I',,_y and I',, 5.
Furthermore, each vertex in the subgraph isomorphic to I',,_s has exactly one
neighbor in the subgraph isomorphic to I, _;.

The fundamental decomposition of I',, can be recursively applied to its sub-
graphs I',,_; and/or I';,_s. Throughout this document, many important prop-
erties will be deduced from this decomposition.

We will also mention in this chapter other structural results of the Fibonacci
cube. Among these, the result due to Klavzar, cf. [Kla05], that states that the



Fibonacci cube is a median graph. Other results concerning the number of
edges of I, are presented as well as other enumerative results. Finally, section
2.5 presents a variant and two generalizations of the Fibonacci cube. The for-
mer, named the Lucas cube is obtained by removing all the strings that begin
and end with 1 from the Fibonacci cube.

The Lucas cube A,, was introduced by E. Munarini, C.Cippo and N. Za-
gaglia Salvi in [MCSO01]| as a subgraph of the n-cube that has also attractive
properties as its recursive decompositions into two disjoint subgraphs which
are isomorphic to I',,_; and I',,_3. We will also study these graphs in all the
chapters that will follow.

Since some parallel applications such as those in image and signal process-
ing are originally designated on a cycle architecture, it is important to have
an effective cycle embedding in a network. (See [Xu01]).

In chapter 3, we discuss the Hamiltonicity in the Fibonacci and the Lucas

cubes. Because I', is bipartite, it can have a Hamiltonian cycle only if it has
an even number of vertices. In other words, I',, can have a Hamiltonian cycle
if and only if n = 1(mod 3).
Based on the fundamental decomposition, J. Liu, W. J. Hsu and M. J. Chung
proved in [LHC94| that the Fibonaci cube contains a Hamiltonian path P,.
Furthermore, the authors constructed cycles of every even length from 4 to
|[V(T',)] if and only if n = 1(mod3). Otherwise the constructed cycles have
every even length from 4 to|V (I',)| — 1 vertices.

In the survey paper |Kla|, Klavzar proposed the problem of characterizing
the vertices v of V(I',,) for which the graph I', — v contains a Hamiltonian
cycle given that n # 1(mod 3).

Inspired by this last problem and the previous results, we characterize these
vertices which we denote by VF(I',) and continue to study the Hamiltonicity
in the Fibonacci cubes. Specifically, we prove the following

Theorem 1.0.4. For n # 1(mod3), n > 5; let v € VF(T,). Then T,, — v
contains a Hamiltonian cycle. Moreover, I's — (010) contains a Hamiltonian
cycle.
Furthermore, if v ¢ VEP(T,,), then T,, — v does not contain a Hamiltonian
cycle.

The second part of this chapter is consacrated to construct almost Hamil-
tonian cycles for the Lucas cubes in the same way as we did for the Fibonacci
cubes.

We give in chapter 4, the eccentricity sequences of the Fibonacci and the
Lucas cubes which are the fruits of a work done with Michel Mollard cf.
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[CM12]. The eccentricity e(u) of a vertex u, is the greatest distance between
u and any other vertex v in the graph. Notice that not all the vertices of
I',, or A,, have the same eccentricity as it happens in (), where there are no
restrictions of consecutive 1’s.

We define the eccentricity sequence of G as the sequence {ak}Zi:agL(G) of non-
negative integers, where a; is the number of vertices of eccentricity k£ in G.
For example, in the next table we show the number of vertices of eccentricity
kin I',, and in A,, for n = 0 to 5 which can be easily computed by hand with

help of figure 1.1.

0
0
1
1

=N
Rl NS TN

n
k
I:
A

oo
O N =
OO O
NN DO
OO O
e =
Wl W N
(sl LY UL
oo O
OO
| Ot W
DN | DN | i~
o|loo
OO =
= O N
Ot | W
O 3| o~
S| Do Ot

Table 1.1: Number of vertices of eccentricity &k in I',, and A,,.

We proceed to prove in section 4.2 that a vertex x in I',, can be written
uniquely as the concatenation of particular strings. We give some results con-
cerning the eccentricity of these substrings which lead us to compute e(x) and
to characterize the vertices y in I',, that satisfy e(z). In the section 4.3, we
consider the subsets fﬁ?,f and F%, which represent the set of strings of I',
with eccentricity k that end with an odd number of 0’s for the first subset
and that end with an even (eventually null) number of 0’s for the second sub-
set. Then we compute the generating function of the eccentricity sequence of
each subset to conclude with a corollary that determines the value of f, j, the
number of vertices of eccentricity k in I';:

Corollary 1.0.5. For all n, k such that n > k > 1,

o= k N k—1
kT \n -k n—=k
Furthermore, foo =1 and f,o =0 for n > 0.

The results of the previous section and some observations that relate some
sets of strings of the Lucas and the Fibonacci cubes, give us the eccentricity
sequence of the Lucas cube’s strings, ¢(x,y). As a corollary we obtain the
value of ¢, i, the number of vertices in A, with eccentricity k.

The last section of this chapter shows an alternative proof for obtaining
the generating function of the eccentricity sequence of the Lucas cube’s strings
with a direct approach.



Finally, chapter 5, presents a study of the Fibonacci and the Lucas cubes
from the domination (y(G)) and the 2-packing (p(G)) points of view. The
results presented here are the product of the work done with Sandi Klavzar,
Michel Mollard and Yoomi Rho cf. [CKMR11]. In the first section of this
chapter, the automorphism groups of the Fibonacci and the Lucas cubes are
determined in the following theorems.

Theorem 1.0.6. For any n > 1, Aut(['),) ~ Z,.
Theorem 1.0.7. For any n > 3, Aut(A,) ~ Dsy,.

Section 5.2 considers the domination number of Fibonaci and Lucas cubes
where a relation between the domination numbers of both cubes is shown.
Then we discuss exact domination numbers for small dimensions following
Pike and Zou (|PZ12]) who determined the minimum dominating sets of Ts.
Thus we compute the domination numbers for I'g and Ag and conjecture that
v(Tg) = 17 and y(Ag) = 16, hold. (Conjecture that was later confirmed by
Ili¢ and Milogevi¢ in [IM]).

The section concludes with a lower bound for the domination number of the
Lucas cubes:
Theorem 1.0.8. For any n > 7, v(A,) > [L:L—:?l—‘

The last section, 5.3, is dedicated to the 2-packing number where it is
proven the next lower bound:

llgn]

Theorem 1.0.9. For any n > 8, p(I'y) > p(A,) > 22 7,

We present next the 2-packing numbers of of I',, and A,, for n < 10 found
using computer:

n 01 234567 8 9 10
AT, [1 1 1 2 3 45 8 12 <17 -
pC) 1 1 1 2 2 35 6 9 14 20
YyA)[1T 11 1 3 4 5 7 11 <16 -
p(A)[1 1T 1 1 2 3 5 6 8 13 18

Table 1.2: Domination numbers and 2-packing numbers of small cubes

We conclude the chapter with some conjectures that interrelate the domi-
nation and the 2-packing numbers of both the Fibonacci and the Lucas cubes.






CHAPTER 2

Fibonacci Cube

2.1 Motivation

Following J. Xu [Xu01|, a Computer network is a system whose compo-
nents are autonomus computers and other devices that are connected together
usually over long physical distance in order to transfer information according
to some pattern. A connection pattern of the components is called an Inter-
connection network. In other words, an interconnection network provides a
specific way in which the components interact. An interconnection network
can be represented by a graph G = (V, E), where V' denotes the processors
and E the communication links for data exchange among the processors. Such
graph is called the Topological structure of the interconnection network.

The hypercube of dimension n, also known as the n-cube is a popular in-
terconnection network consisting in 2" parallel processors, each one provided
with its own memory and connected with n neighbors. The interconnection is
achieved by sending a message from one processor to another processor. This
message (or data) travels through a sequence of nearests neighbors.

The structural properties of the hypercube such as recurrency (an hyper-
cube @, can be decomposed into two @, 1 hypercubes), symmetry, vertex
degree, diameter or connectivity are well-appreciated characteristics whithin
an interconnection network. Embedding problems are concerned with finding
mappings between two graphs that preserve certain topological properties.
Many particular topological structures that arise while parallelizing an algo-
rithm can be embedded into @,,.

All of this make this graph very appealing for its implementation as an
interconnection network. See [HHW88| for a survey of structural properties
of the hypercube including hamiltoninan cycles and embeddings. We refer to
[SS88| as well, for a wide examination of the hypercube properties that make
this graph so attractive.

In the other hand, while implementing a parallel computer system, more
processors and memories may be added as the budget permits it. In the case
of the hypercube, the number of processors must be a power of 2. When the
network is implemented with a smaller number of processors, many commu-
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nications links may be unused. Thus, other topological structures are needed
in order to allow the addition of a small number of nodes while minimizing
the resource’s wasting. [DYNO3]

The Fibonacci cube was introduced by W-J. Hsu in [Hsu93| as a new inter-
connection network. This graph is an isometric subgraph of the hypercube. In
other words, the set of vertices of the Fibonacci cube is a subset of the vertices
of the hypercube and for every u,v € V(FibCube), dpiycupe(u, v) = dg, (u,v).

The Fibonacci cube, which is inspired in the Fibonacci numbers has also
attractive recurrent structures such as its decomposition into disjoint sub-
graphs that are also Fibonacci cubes by themselves.

In the next section, we will define the Fibonacci cube and describe in more
detail its self-similar structure.

2.2 Preliminaries

More than eight hundred years ago, Leonardo of Pisa, better known as
Fibonacci, introduced the numbers that are known today as the Fibonacci
numbers. These numbers were used to solve the problem of how many rabbits
can be produced from an original pair through a year, supposing that each
pair of rabbits will last all the year giving birth to a new pair each month and
supposing also that they become fertile a month after they were born.

It is not clear though if Fibonacci invented the series of numbers that hold
his name. Parmanand Singh wrote in |Sin85| that the same sequence had been
studied and used by Indian scholars to write prosody in Sanskrit and Prakrit
languages long time before Fibonacci wrote his book Liber Abaci where he
presented the sequence. According to Singh, authorities on metrical sciences
gave the rule for the Fibonacci numbers explicitly prior to 1200.

The Fibonacci numbers are often found in the nature, for example in the
arrangement of the leaves around a plant stem or the number and arrange-
ment of petals in flowers as daisies and sunflowers or in pine cones. These
associations between nature and Fibonacci numbers are frequently related, as
for the original rabbits problem, to counting problems.

The n'"* Fibonacci number, n > 2, is determined by the following recurrence
relation:

F,=F, 1+ F, o

with the initial values
=0, Fi =1.
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In other words, each number in the sequence is the sum of the two preceding

numbers.
We will denote by g the generating function of the Fibonacci sequence,

g(x) = ZF” "

n>0

Proposition 2.2.1.
(1) = +——
g 1—x— a2

Proof.

g(x) =) Foa"=F+F o+ Y (Fui+ Fi) 2"

n>0 n>2
= x+ZFn_1 :17”+2Fn_2 "
n>2 n>2
=x+ Z(Fn,l 2" N + Z(Fn,g 2" ?)
n>2 n>2
=+ Z(Fn—l 2"+ Z(Fn_g R
n>1 n>2

=1+ xg(z) + 2%g().

g

As time passed by, mathematicians continued to associate the Fibonacci
sequence to a wide variety of problems and found different properties as well.
As Edouard Zeckendorf observed, see |GKP94|, each positive integer has a
unique representation as a sum of nonconsecutive Fibonacci numbers. The
result is a binary representation of the integer with no consecutive 1’s.

Theorem 2.2.2 (Zeckendorf). Any integer i such that 0 < i < F,, can be
uniquely represented as
n—1
L= Z a; Fj,
j=2

where
(lj'aj+1:0 f()’f‘ 2§]§(n—2)

with F; is the j™ Fibonacci number and a; € {0, 1}.

Proof. Let « = m — F,, with F,, < m < F,,,. By inductive hypothesis, %
has a unique representation as a sum of nonconsecutive Fibonacci numbers,
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, -1
1= Z;’L:Q a; Fj.

Thus m = Z?;Ql a;F; + (1 - F,). The representation of ¢ does not have con-
secutive 1’s and if the representation of m had, then m > F,, 1 + F,, = F,,11.
Hence, m is expressed as a sum of nonconsecutive Fibonacci numbers. ]

Note that by the Zeckendorf theorem, a number between 0 and F,, — 1
requires (n — 2) positions to be represented.

We say that a positive integer ¢ is in its Fibonacci representation if it
is expressed as a sum of two or more nonconsecutive Fibonacci numbers.
Therefore, we can represent it as (i)p = (an41 - - - a3 az) where a; € {0,1} and
aj-aj1=0;2<7<n+1

A greedy approach to find the Fibonacci representation of (i) is described
in the following way:

Assign 1 to aj, for the largest Fj, < ¢. Then assign 1 to aj, for the largest
F;, <i— F} and so on until the reminder is 0. The values of the unassigned
a; are 0.

Using this previous algorithm, and with the help of table 2.1, we show the

first 13 positive integers in their Fibonacci representation (table 2.2).

Fo | Fy | Fy | Fs | Fy | F5 | Fe | Fr | Fs | Iy | Fio
O] 1 12 3|5 |8 [13|21]|34] 55

Table 2.1: First 11 Fibonacci numbers.

» = (00000), (1)F = (00001), (2)z = (00010), (3)F = (00100),
(4)p = (00101), (5)p = (01000), (6)r = (01001), (7)r = (01010),
(8)r = (10000), (9)p = (10001), (10)r = (10010), (11)p = (10100),
(12)F = (10101).

(0)

Table 2.2: Fibonacci representation of the first 13 positive integers.

Notice that (i)p = (ap41 - - - a3 az) has length n.

Therefore, any string (by by - - - b,) where b; € {0,1} and b; - b1 = 0 will be
defined as a Fibonacci string of length n.

The Fibonacci cube, '), is the subgraph of (), induced by the Fibonacci
strings of length n where adjacent vertices of I',, differ in one position. Taking
into consideration the empty string, we define I'y = K. Notice that |V (I',,)| =
F, 2. Thus, the generating function of the vertices of I'), is obtained in the
following
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Proposition 2.2.3. The generating function of |V (I',)| is

14+
= V(I,)|z" = ——.
) = S VOl = =
Proof.
flx) = ZFnJrQ "
n>0
1 n+2
=52 P
x n>0
1 n
n>0

g

In figure 2.1, we show I's,['y and I's as the subgraphs of @), induced by
the Fibonacci strings of length n = 3, 4 and 5.

2.3 Recursive decompositions

Parallel computers are usually shared by several users at a time. It is de-
sirable then, that the network traffic produced by other users does not affect
other applications. Thus, it is well-appreciated if the network can be parti-
tioned into smaller subnetworks. This recursion property may also be required
for security reasons.

Fault-tolerance is the property that enables a system to continue oper-
ating properly in the event of the failure of one or more of its components.
Fault-tolerance can also define the rules of interaction between machines. For
example, when a failure occurs, other functioning components may be re-
assigned to a smaller and similar subgraph so that the system can continue
operating. Therefore, a self-similar network is an appealing structure for fault-
tolerant computing.

In this section we will discuss some recursive decompositions of the Fi-
bonacci cube.
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1 101
010¢ 010 0010
1 1 1
000 00 000 G000 0100
1 101 1001 101
00 0 00 oot 010
F3 I‘4
10010
10000 10100
01010 w001
1000 10101
01000 G000 00100
01001 oo 00101
I's

Figure 2.1: I's, 'y and I’

Theorem 2.3.1 (|JHPL93|). The Fibonacci cube Iy, with n > 2, contains two
disjoint subgraphs that are isomorphic to I',_1 and to I',_s.

Moreover, each vertex in the subgraph isomorphic to I',,_s has exactly one
neighbor in the subgraph isomorphic to I',,_1.

Proof. Let x = (by by ---b,) € V(I',)). Thus = has two possible forms:
(i) If by =0,
thus the graph induced by {z |z = (0by - - - b,)} is a Fibonacci cube
whose strings have length (n — 1).
(ii) If by = 1, thus by = 0,
then the graph induced by {z|xz = (10bs---b,)} is a Fibonacci
cube whose strings have length (n — 2).

Furthermore, every string = (10bg---b,) in the subgraph isomorphic to
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I',_5 has exactly one neighbor 2/ = (000, --- b)) in the subgraph isomorphic
to I,y with b; = b, for 3 < j <n. O

Let us denote by aX the concatenation of a string a to all the strings of a
set of strings X.

Corollary 2.3.2. The vertex set of '), is defined recursively by
V(T,) =0V(I,—1) W10V (T, _2)

where W is the disjoint union of sets.

Figure 2.1, exemplifies the previous Theorem where it is clear that I's is
composed of two disjoint subgraphs which are isomorphic to I'y and to I's.

We will continue to use I's through this chapter to exemplify the different
recursive decompositions since it can illustrate a fair number of them. There-
fore, in order to introduce the generalization of Theorem 2.3.1, we will use
again this graph as follows:

As mentioned above, I's is decomposed into I'y and I's. We can decompose
subsequently the subgraph I'y into I's and I's. By now, I's is decomposed in
two subgraphs I's and one subgraph I's.

Again, I's is the disjoint union of I'y and I';. Therefore, I'; can be decomposed
in three subgraphs I'y and two subgraphs I';.

Finally, with the decomposition of each I'y into I'y and I'y, we observe that
I's can be decomposed in five I'; and three I'y. Figure 2.2 illustrates these
recursive decompositions.

Theorem 2.3.3 (|[HPL93|). For 2 < k < n, the Fibonacci cube T',, can be
decomposed in F}, disjoint subgraphs isomorphic to Iy, 1 and Fj_y disjoint
subgraphs isomorphic to I',,_}.

Proof. The statement is true for I'5. Let us assume that it is true for I'y and
let us consider I'y.1. By Theorem 2.3.1, I'yy; can be decomposed in I'y and
I'v_1. By hypothesis,

'y can be decomposed into Fj subgraphs isomorphic to I'y_x; and Fj_
subgraphs isomorphic to I'y_j for 2 < k < N and

I'y_1 into Fj_; subgraphs isomorphic to I'(xy_1)—(x—1)+1 and Fj_, subgraphs
isomorphic to I'y_1)—(x—1) for 2< k-1 < N — 1.

The case k = 2 is verified by Theorem 2.3.1. Thus, for 3 < k < N,

I'yi1 can be decomposed in Fj, subgraphs isomorphic to I'y_ 11, Fj_1 sub-
graphs isomorphic to I'y_; and
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Fj,_1 subgraphs isomorphic to I' y_1)—(k—1)+1 and Fj_, subgraphs isomorphic
to I'(v—1)—(k—1)-

Notice that

Iy—kr1 = Fiv—n)—e—1)+1 = I'(v41)— k1)1 and

Pyt =Tw-1-t-1) =Tvin—r+1)-

Therefore, Iy 1 has Fj,1, subgraphs isomorphic to I'(ny41)—(k+1)41 and

F}, subgraphs isomorphic to I'(ny1)—(k+1)-

For the case k = N + 1, let us consider £ = N. Then,

I'y41 can be decomposed in Fyy subgraphs isomorphic to I' y41)—n41 and Fiy_;
subgraphs isomorphic to I'(yy1)—n.

At the same time, each one of the Fy subgraphs isomorphic to I'(y41)—y41 can
be decomposed into one subgraph isomorphic to I'(y41)—n and one subgraph
isomorphic to I'(yy1)—(v41)-

Hence, 'y is decomposed into Fi subgraphs isomorphic to I'\yi1)—n, Fiv
subgraphs isomorphic to I'(ny1)—(nv+1) and Fy_; subgraphs isomorphic to
Fviny-n-

Therefore, 'y 1 can be decomposed in:

Fy1 subgraphs isomorphic to I'(vy1)—(nv+1)4+1 and Fyy subgraphs isomorphic
to I'(v4+1)—(v41), Wwhich completes the proof. Il

Figure 2.2: Theorem 2.3.3, recursive decompositions of I's.

2.3.1 Quotient Fibonacci Cube

We will discuss a last recursive decomposition in this section, which plunges
a Fibonacci cube into another Fibonacci cube of a smaller order. The main
idea is to use Theorem 2.3.1 to decompose I',, into I',,_; and I',,_5. Then,
proceed to merge the edges that link these two subgraphs into a unique edge.
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The resulting graph is isomorphic to I';. Applying this method iteratively to
every subgraph, we obtain each time, a subgraph isomorphic to I'.

Let (byby...b,) € V(I',) and let (¢yco...cx) be a string of Fibonacci of
length k£ with 1 < k < n.

Let G,(c1¢2...c,) be the subgraph of I',, induced by the set of vertices

For 1 < k < n, let F; be the set of strings of I';.

Then, I'),/k = (V,,/k, E,/k), is called the Quotient Fibonacci Cube, where
(i) Vo/k={Gu(c1ca...c) for every (cica...cr) € Fr} and

(ii) for two different vertices of V,,/k, namely G, (c1 ¢z ...cx) and G, (¢ ¢
.. ¢), the edge (Gp(cica...cp),Gn(c) ... ¢,)) € Ey/k if and only
if there exists (v,v2) € E(I',) such that v; € Gp(cica...c) and

vy € Gp(c) &y .. ¢)-

In other words, at each iteration k+ 1, we will decompose each vertex G,,(c1 ¢o
...Cg) into two new vertices, i.e. G,(c1ca...¢0) and G,(ci1¢z...¢x 1) when
¢ = 0. Whenever ¢, = 1, then G, (c1¢co...cp11) =Gplciea...cx-110).

In table 2.3, we show the vertices of ['s decomposed into the subsets
Gs(cy...cp) forevery (c1...¢) € Fr; 1<k <n.

k=1] k=2 | k=3 k=4 V([s)
5(0000) || (00000),  (00001)

G5(00) G5(000) 5(0001 (00010)
G5(0) G5(001) | G5(0010) || (00100), (00101)

(01000),  (01001)

IR IR R IEDI NI DI

/-\AAABAAA
S

\_/\_/\_/\_/8\_/\_/\_/

5(0101 (01010)
5(1000) || (10000),  (10001)

Gs(1) G5(10) G5(100) =7 001 (10010)
G5(101) | G5(1010) || (10100), (10101

Table 2.3: Vi /k

Figure 2.3 illustrates the Quotient Fibonacci cube I's/k. Note that for
k =1,2,3 and 4, each Quotient cube I'),/k is isomorphic to I'.

Theorem 2.3.4 ([HPL93|). For 1 < k <n —1, the Quotient Fibonacci cube
I, /k is isomorphic to T.
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F5/12F1

F5/2’:F2

Figure 2.3: Quotient Fibonacci cubes I'; /k.

I'y

I'y

Proof. By Corollary 2.3.2, V(T',,) = 0V(I',,—1) & 10V (I',,_2) Consider all the
vertices of I',,_; as a single node v; and the vertices of I',,_5 as a single node
ve. Let the |V(I',_2)| edges between I',,_; and I',,_5 be merged into a single
edge (v1,vy). The resulting graph is isomorphic to I';, /1. We assume then, that

T,/ K ~Tg.

We will consider 'y with 2 < (K +1) < (n —1).
Again, by Corollary 2.3.2, V(I'x,1) = 0V(I'k) W 10V (' _1). By hypothesis,
I,/K~TgandT',/(K — 1) ~ T'x_;. Therefore,

together with the edges defined by (i) and (i7') give us T, /(K + 1).

(i) Vo/K ={Gp(c1ca...cx) for every (c1cy...cx) € Fr},

(ii) for two different vertices of V,,/ K, namely G, (cico . .. cx) and G, (¢ c

.. i), the edge (G, (cica ... cx), Gu(cidy ... ) € E, /K if and only

if there exists (v1,v2) € E(I',) such that v; € G,(cics...cx) and
vy € Gp(c)ch ... ¢ ) and

@) Vo /(K —=1)={Gu(c1¢a...cx_1) for every (cica...cx1) € Fx_1},

(ii’) for two different vertices of V,,/(K — 1), namely G,,(¢i¢cy ... cx—1) and
Gn(ccy ... _y), theedge (Gplcico...cx1),Gn(c ¢y . ) € En/(K—
1) if and only if there exists (v, v2) € E(I',) such that v; € G, (c1¢2. .. cx1)

and ve € G, (¢) &y ... C_y)-

Thus, V,,/K WV, /(K —1) and the |V(I'x_1)| edges between ' and T'jc_4

g
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2.4 Other structural results

Let G be a graph. Then a median of vertices u, v, w is a vertex that simul-
taneously lies on a shortest (u,v)—path, a shortest (u, w)—path and a shortest
(v,w)—path. A connected graph is called a median graph if every triplet of its
vertices has a unique median.

Theorem 2.4.1 ([Mul78|). A graph G is a median graph if and only if G is
a connected induced subgraph of an n—cube such that any three vertices of GG,
their median in the n—cube is also a verter of G.

A subgraph H is median closed if, with any triplet of vertices of H, their
median is also in H. Klavzar proved in 2005 that the Fibonacci cube is a
median closed subgraph of the n—cube:

Theorem 2.4.2 ([Kla05|). Forn >0, I',, is a median graph.

Proof. Let u = (uj,ug,...u,), v = (v1,v2,...0,) and w = (wy,wy, ... w,)
be three arbitrary vertices of I', embedded into (),,. The median of a triplet
in Q, is obtained by the majority rule: the i** coordinate is equal to the
element that appears at least twice among wu;,v; and w;. Suppose that for
some ¢ the majorities of u;,v;, w; and w;11,v;41,w;+1 are both 1. Then there
are two consecutive 1’s in at least one of the vertices of u, v or w, say u; = ;11
which is not possible. Therefore, the median of u,v and w does not contain
two consecutive 1’s and hence it is a vertex of I',,. Thus I',, is a median closed
subgraph of @), and hence a median graph. Il

Also, it is proved in [Kla05| the following proposition concerning the num-
ber of edges of the Fibonacci cube:

Proposition 2.4.3. For anyn > 1,

n—2

|E(T,)| = Foi+ Y FiF, .

=1

Proof. The equality holds for n = 1,2. Let n > 3 and assume that it holds for
all indices smaller than n. Since |E(I',)| = |E(Ty_1)| + |E(Th_o)| + [V (Th_2)|
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and |V (I',_2)| = F,, then

n—3 n—4
|E(T,)| = (Fu+ Y FF,_)+ (Fii+ Y FF.i)+F,
i=1 i=1
n—4
= rp+ Z Fi(Fooi+ Foo1) + FosFs + F,
i=1
n—4
= I'pt1+ Z EFn+1—z’ + 2Fn—3 + Fn—l + Fn—2
i=1
n—4
= Fpy1+ Z EFF, i+ 3F, s+2F, -
i=1
n—4

= Fpy1+ Z FiF, 1+ FyF, s+ F5F, 5
i=1

n—2

= I'py1 + Z EFnJrl*i'

i=1

In the other hand, Munarini, Cippo and Zagaglia Salvi found the next
proposition, also concerning |E(L,)|:

Proposition 2.4.4 (|]MCS01]). For any n > 1,

nF,q+2n+1)F,
5 .

[E(T)| =

Proof. The equality holds for n = 1,2. Let n > 3 and assume that it holds
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for all indices smaller than n. Then

|E(Fn)| = |E(Fn—1)| + |E(Fn—2)| + |V(Fn—2)|
(n—1F,+2nF, 1 (n—2)F,1+2(n—1)F, »

- 5 * ; + F,
_ (A4 F 42+ (n—2)F, 420 — DF,y
_ (n+4)F, +nk,_1 + (2n5— 2Q)F, 1+ (2n—2)F, 5
_ (n+4)F, +nkF,_1+ (2n5— 2)(F_ 1+ F,»)
G e ?271 —2)F,
_ n(Fn+ Fo) +5(2n +2)F,
_nknt 2(n5+ 1) F,
- .

g

In more recent papers, other enumerative results have been obtained such
as the following due to Klavzar, Mollard and Petkovsek concerning the number
of vertices of a given degree in [KMP11].

Let f, 1, denote the number of vertices of I';, having degree k.

Theorem 2.4.5 (|[KMP11|). For alln >k > 0,
k : :
n—2 1+1
f”’k_;<k—i)(n—k—i+1>'

Let f, w be the number of vertices in I';, having degree k and weight w,
where the weight of a string u is the number of 1’s in u.

Theorem 2.4.6 (|[KMP11|). For all integers k,n,w with k,w < n,
s B w+1 n — 2w
T \n—w—k+1)\k—w )
Introduced in [BKv03|, the cube polynomial

C(G,x) =) cal@a"

n>0

of a graph G is the counting polynomial for the number of induced subgraphs
isomorphic to @,. In [KM12al, Klavzar and Mollard showed the following
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Theorem 2.4.7 ([KM12al). For any n >0, C(Ty,z) is of degree |+ ]| and

L5
— 1
CTpax)= Y (” Z+ )(l—i—x)“.
a=0

Corollary 2.4.8. For any n > 0, the number of induced Qy, k>0 in T, is

NER n—i+1 1
= ("))
i=k

Mollard determined in [Moll1], the number of maximal induced hyper-
cubes () in I',,, that is,

Theorem 2.4.9 (|[Molll]). For any k > 1, the number of mazimal hypercubes
of dimension k in '), is equal to

k+1
n—2k+1)

Fibonacci cubes were introduced as interconnection networks and were
later studied from other points of view. In particular, some applications in
chemistry have been associated to these cubes. The Wiener index of a graph
is a very studied invariant in mathematical chemistry. See |[Kla|. An equivalent
approach is to study the average distance of a graph. Klavzar and Mollard
obtained this index in terms of the Fibonacci numbers in [KM12b].

2.5 Related Graphs

We will present a variant and two generalizations of the Fibonacci cube
in this section. The former, namely, the Lucas cube is obtained by removing
all the strings that begin and end with 1 from the Fibonacci cube which lead
us to a more symmetric graph. Therefore, the Fibonacci and the Lucas cubes
are frequently studied together as we will be doing in some of the following
chapters. The latter ones unify other interconnection topologies as the Hyper-
cube @, and the Fibonacci cube I',, among others. For further variations of
the Fibonacci cube proposed in literature, we refer to |Klal.

2.5.1 Lucas cubes

Introduced by E. Munarini, C. P. Cippo and N. Zagaglia in [MCS01], the
Lucas cube is a subgraph of the n-cube that has also attractive properties as
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its recursive decompositions into two disjoint subgraphs which are isomorphic
toI',,—; and I',,_s.
A Fibonacci string of length n is a Lucas string if by - b, # 1. That is,
a Lucas string has no two consecutive 1’s including the first and the last
element of the string. The Lucas cube A, is the graph induced by the Lucas
strings of length n where two strings are adjacent if they differ in one position.
Considering the empty string, we have that Ay = K;. Furthermore, A; = K.
The n'* Lucas number, L, is defined as Lo =2, Ly =1 and L, = L,_1 +
L, _o for n > 2.
As for the Fibonacci cube, where |V(T,)| is F, 9, the (n + 2)"* Fibonacci
number; the number of vertices of the Lucas cube, |V(A,)| is L, for n > 1.

Proposition 2.5.1. The generating function of |V (A,)| is

@) = 3 V(A 27 = —2

1—ax—a2
n>0
Proof.

l(x) =) Lya"+1

:1+x+3x2+ZLn "

n>3

=14+2+32° 4+ (Lyo1+ Lya) 2"

n>3

=1+z+32%+z (Z L, :E"_1> + 22 (Z L, o :1:”_2>

n>3 n>3
=1+a+32°+2 (Il(x) —z—1)+2* (I(z) - 1)
=1+2°+xl(z)+2° ()
Thus,
(2)(1 — 2 —2%) =1+ 2%
U

In figure 2.4, we show the Lucas cubes A3, Ay and A5 as the subgraphs of
@, induced by the Lucas strings of length n = 3,4 and 5.

2.5.2 Fibonacci (p,r)-cubes

For positive integers p, < n, we define the Fibonacci (p,r)-string of length
n as the binary string of length n in which there are at most r consecutive
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010 1010

0010
000 100 1000 5000 0100
001 0101
10010 0001
A3 A4
10000 10100
101
01010 0001
01000 50000 00100
01001 o001 00101
As

Figure 2.4: A3, A4 and Aj

1’s, and at least p consecutive 0’s between two substrings of (at most r)
consecutive 1’s. The Fibonacci (p,r)-cube, denoted ng’r), is the graph induced
by the Fibonacci (p,r)-strings of length n. Also, two adjacent strings differ
in one position. This generalization was introduced by Karen Egiazarian and
Jaakko Astola in [EA97| and contains the Hypercube and the Fibonacci cube
as subgraphs since ™ = Q,, and T'("Y =T,.

2.5.3 Generalized Fibonacci cubes

Very recently, Aleksandar Ili¢, Sandi Klavzar and Yoomi Rho, introduced
in [TKR12| the Generalized Fibonacci cube Q,,(f), as the graph obtained from
removing all the vertices containing a given binary string f as a substring from
the Hypercube. Notice that @Q,(11) = I',. The authors study the question
of which graphs of @,(f) are embeddable into @,, proposing also several
problems and conjectures around the Generalized Fibonacci cubes, opening
them for further investigation.
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Also using this term, J. Liu, W.-J. Hsu and M. J. Chung defined previously
in [LHC94|, the graphs Q,,(1°), where 1° is the string of s consecutive 1’s. Note
that @, (1°) is included in the GFC defined by Ili¢, Klavzar and Rho.






CHAPTER 3

Hamiltonicity

3.1 Hamiltonicity in the Fibonacci cubes

A graph G is called pancyclic if it contains a cycle of every length from 3 to
[V (G)]. A restriction of the concept of pancyclicity was proposed for bipartite
graphs whose cycles are necessarily of even length. Therefore, a bipartite graph
G is called bipancyclic if it contains a cycle of every even lenght from 4 to
V(G)I.

Since I, is bipartite, it can have a Hamiltonian cycle only if it has an even
number of vertices. Thus |V(I',)| = F),12 must be even and hence n = 3k + 1
for some k > 0. Thus we have the next proposition which will be proven below:

Proposition 3.1.1. Forn >0, |[V(L,)| is even if and only if n = 1(mod 3).

In other words, I',, can have a Hamiltonian cycle if and only if n =
1(mod 3).
We will show in Theorem 3.1.5 that when the order of I',, is even, then it is
bipancyclic. Otherwise, the graph contains cycles of even lengths from 4 to

‘V(Fn)‘ — L

A walk in a graph G is a sequence of vertices W = (wy, ws, ..., wy) such
that for j =1,2,...,k — 1, the vertices v; and v, are adjacent. We say that
W is a path if it doesn’t have repeated vertices.

For n > 1, we will denote a path whose strings have length n by 7, =
(tr, 15, ..., t7) and by TF the reversed sequence of T,,. Strictly speaking, T2 =
(705, ) = (1 1),

Let T, T, be the concatenation of two paths.

Theorem 3.1.2 ([LHC94|). For n >0, I',, contains a Hamiltonian path.

Proof. Consider P, = (p},ph, . .. ,pﬁ,(rn”), the sequence of strings of length
n, defined by B, = 0PE , 10 P!, for n > 2 with B = the empty string and
P =(0,1).

We will prove by induction that ‘P, is a Hamiltonian path of I', and that
Pt = 010p" for every n > 3.

25
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Notice that for n = 3, the property is true since %> = (01,00,10) and
p} = 0p3 = 010. Thus P3 = 0PF 10PF = (010,000,001,101,100) is a
Hamiltonian path in I['s.

Let us assume then that the statement is true for values up to N > 3.
Consider Py 1, which by Theorem 2.3.1, has exactly |V (I'yy1)| vertices. No-
tice also that Pyyq can be decomposed in the following way:

Py =0PF, 10PF |
= 0Py, 10 (0 Py_y, 10 PY_5)")
= 0Px, (1010Py_3, 100 Py _»).
Since for every N >3, pY = 010 pY >, then
Pyt = (0P -+ 0010p7 %), (1010pY 2, ..., 1002 )
is a Hamiltonian path of I',, and

pr =010 (P ) = 0Py, = 010py 2

g

Another proof for this theorem can be seen in [Vaj0l|, where the author
constructs a Gray code for I',.

Notice that from Corollary 2.3.2, when n > 3,

V(L) =0V () W10V (L, s)
=00V (Fy_s) @010 V(Ty_3) W10V (Fps).

Thus I'), can be decomposed in two disjoint subraphs isomorphic to I',,_ and
one subraph isomorphic to I',,_3.

Let us suppose that |[V(I',)| is even, then |V(I',_3)| must be even because
2|V (I',—2)| is even. Consequently, if |V (I',,)| is odd, then |V (I',_3)| is odd and
hence we have the next proposition which will be proven below:

Proposition 3.1.3. For every n > 3, |V/(I',)| and |V (T',,_3)| have the same
parity.

Corollary 3.1.4. For n >0, |V(T',)]| is even if and only if n = 1(mod 3).

Proof. |V (I'y)| is even, |V(I'g)| and |V(I'y)| are odd. Thus by construction
and using the previous proposition, for every n = 1(mod3), |V (I',)| is even.
U
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Theorem 3.1.5 ([LHC94|). For n > 3, and even | with 4 <[ < |V([',)|, a
cycle of length | can be embedded in T',,.

Proof. Let us define Sy, as the subgraph induced by the nodes 0V (I',,_;) and
S1, the subgraph induced by the nodes 1 (V(I',—1) \ 10V ([',_3)).

So is isomorphic to I',,_; and §; is isomorphic to a graph obtained by removing
I',,_3 from I',,_4, i.e. $; is isomorphic to I',,_s.

By Theorem 3.1.2, Sy has a Hamiltonian path P,_;. Notice that by definition
of P,_1, there exists the Hamiltonian path 0 PR, = P, ; \ 10V (T,,_3) in ;.
Let Lo be formed by 0 2%, = 0(0 Q’f 2 10 ?5_3) = 01(0P,—3), 00(P,_2).
Then using the fact that Oplv( ) = = p!™, we have:

Lo = 010p1 - 0pfyr, ) 0000 Py r, o = P15 P, o)-

We can decompose Lg in Ly; and Lgy. The former is a Hamiltonian path in
1 \00V(I',—2) and the latter is a Hamiltonian path in I';,_; \ 01 V/(I',,_3).
In other words, Lg; is a Hamiltonian path in I',_3 and Lgy is a Hamiltonian
path in I',,_».

Let Lig be formed by 10 % ,. Thus Ljg = 10(]9|"V*(2Fn%)|7 L.

Let #,, be the subraph of I',, formed by Ly and L.

Notice that the path Ly, Lo = 0P, 10P~E, is a Hamiltonian path in T,
since Ly and Ly can be linked together.

Furthermore, for every 1 <1 < |V([',,_3)|,

pl =010p}~* and
P3jv(r, o)1 =000 )~

Therefore there exists the edge between every vertex 010p? > of Lo and
000 p' =3 of Log in H,.
In addition, for every 1 <i < |V(T,,_2)|,

pVV(Fn_g)\-i-z‘ :OOP?_Q and
Py, +1—i =10p) 2.

Thus, the edge between every vertex 00p 2 of Loy and 10p)~? of Ly, exists
in H,.
Figure 3.1 represents the subgraph #, formed by Lgi, Loy and Ly and the
edges previously decribed between them.

We will next construct in #, the cycles of even lenght that can be embed-
ded in I',,.

Case 1: 4 <1 <2|V(I')_2)
The cycle of length [, €, is constructed with the first é strings of L
and LIt
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_3 .
otop* n—3 _ n
PV, _g)l 010py" " = py
R . e——o—<—m
LOl
LO 000p" T3 — 00pn—2 000p™ 3 = pn 00p" T2
[V(Tp—3)l 1 1 2|V(Ty—3)l V(T —2)]

Loy t——e——o - 0—0—0—02—0
e
0% v (1, )1+
R
Lo

=pn 10p7:,—2 IOp\nV_(i )
V(Tn)| V(D _g)|+1 n-2

100p™

3 n—2
= 10p
[V(Tp—3)I 1

Figure 3.1: #,, subraph of T,

Case 2: 2|V(I',—9)| <1 < |V(L,)]
Taking back %, the cycle of length [ = 2|V(I',_3)| constructed in
Case 1, we will embedd the first pair of strings of L to obtain a new
cycle of length [+2. By embedding the next pair of strings of L each
time, we increase the length of the cycle by two (refer to figure 3.2)
until having 1 string of L not been added if | Lo;| = |V (I',,_3)| is odd,
or 0 strings not been added if |Lg;| is even. Therefore, using corollary
3.1.4, the biggest cycle that we can embedd in #,, and hence in T',, is

V()| it [V(T',,)| is even
V(L) =1 if V()| is odd.

Lé?i [ T.
Loy ¢ > - —— o o - ———o 9o

R
Y
Ly ¢

Figure 3.2: Cycle of length [ with 2 |V([',,_o)| <1 < |V(T',)| in ',

Hence for 4 < [ < |V(T,)], a cycle of length [ can be embedded in #,.
Therefore, this cycle can also be embedded in T',,. Il

From Theorem 3.1.5, we conclude the following

Theorem 3.1.6 (|[LHC94|). For n > 3, the Fibonacci cube T, contains a
Hamiltonian cycle if and only if n = 1(mod 3); otherwise the longest cycle in
I, contains exactly |V (I',)| — 1 vertices.

An example of a cycle of length |V (I'g)| — 1 in I is constructed next and
depicted in figure 3.3.
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Let P5 = (01001, 01000,01010,00010, 00000, 00001, 00101, 00100, 10100,
10101, 10001, 10000, 10010) be a Hamiltonian path of I's constructed as in
Theorem 3.1.2. In this path, we can recognize the Hamiltonian path of I'y,
0P, =% \10V(I's) = (01001, 01000,01010, 00010, 00000, 00001, 00101,
00100).

Let Lo; = 01(0010,0000,0001, 0101, 0100),

Lo = 00(0100, 0101, 0001, 0000, 0010, 1010, 1000, 1001) and

Lo = 10(1001, 1000, 1010, 0010, 0000, 0001, 0101, 0100).

Thus,

6,20 = (010100, 010101, 000101, 000001, 010001, 010000, 000000, 000010,
001010, 001000,001001, 101001, 101000, 101010, 100010, 100000, 100001,
100101, 100100, 000100, 010100).

0100 0101 0001 0000 0010 1010 1000 1001
01 °

00 e

10 ° ° ° ° °

[

Figure 3.3: Cycle of length 20 in [y

From Theorem 3.1.6, the longest cycle in I',, contains [V (I',)| — 1 vertices
when |V(I',)| is odd. Then, it rises the question of characterizing the vertices
v € I'), for which the graph I',, —v contains a Hamiltonian cycle. This problem
is proposed by S. Klavzar in [Kla]. In that which follows, we give an answer
to this question.

Consider the bipartition V(I',) = (V°4(T,,), V<’(T',)) with
Ved(T,) = {u € V(I',) | u has an odd number of 1’s} and
Ve(r,) ={v e V(T,) | v has an even number of 1’s}.
Let a string u € V¢(T',,). Then 00u belongs to V’(T',,42), and 10u belongs to
V4T, 12). Accordingly, if v € V°4(T,), therefore 00v belongs to V°4(T,,.2),
and 10v belongs to V(I 12).

Proposition 3.1.7. For n > 3,

V()| = [V Tw) = [VO(Ts)] = [V (Taos)].
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Proof. Let (V*(T,), V°4T,)) be the bipartition of V(T',) with n > 3.
By Corollary 2.3.2, V(TI',,) = 010V (T',,_3) U 00V ([',,_o) U 10V (T',,_5).
Thus,

Ver,) = V(010 T, _3) UV (00T, o U 10T, »)
=010 VYT, _3) UV (00T, o U 10T, _s),
VoUT,) = Vol 010T,_5) U V00T, o U10T,_5)
=010 V(T 3) UV400T,, 5 U10T, ,).

Notice that

V(00,2 U10T,_5)| = [V (T s)| + [VOUT, )|
= [V410T,_ U00T,_s)|.

Hence V()| — [VOUT)| = [Vo4Ts)| — [V (Fms)l. .

Proposition 3.1.8. For n # 1(mod3), n > 2,
Ve ()| = V()] = (-
Proof. If n = 2, then |V (Ty)| — [Vo4Ty)|=1—-2= —1.
If n =3, then [V (T3)] — |[VoUT3)| =2 -3 = —1.
Consider now Proposition 3.1.7 and let n = 5. Thus
[Ver(Ds)| — [Vo4(Ds)| = [Vo(T)] — [Ver(Ta) =2 — 1 = 1.
Let us assume that the statement is true for N # 1 (mod3), N > 3.
If N+1=2(mod3), then (N + 1) —3 =2 (mod3).
If N+1=0(mod3), then (N +1) —3=0(mod3).
By hypothesis and Proposition 3.1.7,

N ev O O ev
(=D)L = V(T npn)—s)| — [VOUT vrr)—s)| = [VOUTn)| — [V (T

Notice that (—1)15) = —1(=1)\" 5" for N + 1 £ 1 (mod 3).
Therefore,
L(NJ’;)HJ

VT = V()| = (=1)
U

As mentioned before, I',, has an odd number of vertices for n # 1 (mod 3).
Thus one of the sets of V(T',,) or V°4(T',,) has one more string than the other
set. By Proposition 3.1.8, this set is V¥ (T,,) where

Ver(r,) if [%£2] is even
P — n 3 )
Vi) { Vedr,) i [252] is odd.
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Proposition 3.1.9. For n # 1(mod3), n > 1, the vertices v € VE(T,,) are
the vertices represented with the color gray in figure 3.4.

0PE . 1028 ,
LY o . . . * - . . °
Loy @ ° . ® ® - L3 ° ° ° °
Lﬁ) ° ° ® ° o - e ° ® ° °

Figure 3.4: Vertices in V' (T,)

Proof. Recall that |L01| = |V(Fn_3)|, |L00| = |V(Fn_2)| and |L10| = |V(Fn_2)|
Note that there are the same number of vertices of V(T',) in Loy than in L%
Since we are considering the case where |V(T,)| is odd, then |V (LE)| must
be odd, hence {010p}?|j is odd, 1 < j < |V([',_3)|} belong to VF(I,).
Consequently, {00p}~?]j is even, 1 < j < |V(I'n_5)[} and

{10p} 2] is odd, 1 < j < |V(['—2)|} belong to VF(I',) as well.

Notice that when |V (I',_2)| is even, then OOpﬁ/_(%n_Q)‘ e VP(T,) and

10pg|;/2(m_2)| € VP(T,,) when |V(T,,_5)| is odd. 0

Theorem 3.1.10. For n # 1(mod3), n > 5; let v € VF(T,). Then T, — v
contains a Hamiltonian cycle. Moreover, I's — (010) contains a Hamiltonian
cycle.
Furthermore, if v ¢ VFP(T,,), then T,, — v does not contain a Hamiltonian
cycle.

Proof. By definition, V*(T,,) and V°4(T,,) are independent sets. Thus, in or-
der to have a Hamiltonian cycle, |V¢(T,)| must be equal to [V°4(T,,)|. Hence,
if a vertex v ¢ VI (T,,), then T',, — v does not contain a Hamiltonian cycle.
Consider the paths Lgi, Log and L;o described in Theorem 3.1.5. Then let
LE be formed by 010 PE .,

Lo be formed by 00 ®, _» = 000 P , 0010 PE , and

LR formed by 10 B, _» = 100 P ,, 1010 % .

where P,_», P,_3 and P,,_, are the Hamiltonian pathsin I',,_», I',_sand I',,_4,
constructed in Theorem 3.1.2, where B, = 02", 10P~E,,.

It isn’t difficult to see that I's — (010) contains a Hamiltonian cycle.

Let v € VF(T,) for n > 5. We will distinguish two cases. The first case
considers the vertices of VF(T,) in {01027, U 000 2%, U 100 P" .} —
{ last string of 100 P® .} where the constructed Hamiltonian cycle has the
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same pattern. The second case considers the vertices of V(I',,) in {0010 P2 , U
1010, ;}. The last string of {100 2}, namely 10p[ 7 = 100p~%, is
included as a variant of this case.

Case 1:

(a) ve L
Thus v = 010]921Jrl for some 0 < 7 < m. See Proposition 3.1.9.
Consider the path 7, from 000p}~* to (J()Op‘v(F  defined by the
concatenation of

(000py =2, 010p} 2, 010p5 2, 000p5 2, . .. 000p4, >, 010py, >, 010ph; 2,
000pf; *, ... 000ph, %, 010p5; 75, 010p3; 2, 000p3; %, 000p3; )
and
(000p5;%, 010p5;,%, 010ph%, . .. 000py,”, 010p5,*, 010p5;.2 |,

000ph° ., . .. 000ps,.%, 010p5, 2, 010p5 % |, 000p5 3 ).

forl<k<djandi+1<Ek <m.
See figure 3.5.
7, can be rewritten as the concatenation of

(000ph; 2, 010ph; 2, 010ph, 2, 000ph; %) for every k=0,...i—1
with
(000p2,+1)
and

(000p5;*, 010phy,°, 010pyy> 1, 000ps,° ) for every k' =i+ 1,...m.

Note that the length of 7, is 4i + 4(m — i) = 4m.
Finally, we will concatenate 7, with Lﬁ) followed by 0010 P,_4.

0Pk, 1028,
L[ﬁ > - o * 5 - ¢
LOO' l l o l l . 4 ® - [

LY I e e e e IR S S S e

Figure 3.5: H. cycle in T',, — v: Case 1 (a)
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(b) NS LOO \ 0010 ?5_4
Thus v = ()O(f]pg[3 for some 1 < i < m. See Proposition 3.1.9. We will
describe a similar cycle as in the preceding case. Consider the path
7, from 000p" to OOOpW( formed by the concatenation of

(ooop?*?’,o1op?*3,o1op§*3,ooopg* ... 000p%, 2, 010py, 2, 010p5, 2,
000ph 2 ... 000py; 3, 010p%; 3, 010p5?)

and

(010p2z+17 OOOszJrl’ 000p21+2, 010p2@+27 OlOlefg, 000p22+3 OOOPQk/ )

010p5°, 010pyy2 1, 000pse> . . . 0005, 2, 010p%, 2, 010p5,.3 1, 000p5,.3 )

forl<k<iandi+1<k <m.
See Figure 3.6.
7, can be rewritten as the concatenation of:

(000ph;.2;, 010ph; 21, 010ph, 2y, 000p%, %), for every k=0,...i— 2

with
(OOOpzz 17010}72@ 1»010}? 0 010p21+17000p21+1>

and
(000p5;°, 010p5,”, 010ph; % 1, 000py,2 ) for every k' =i+ 1,.

Note that the length of 7, is 4i + 4+ 4(m —i — 1) = 4m.
To complete the cycle, we will concatenate ‘7, with L followed by
0010 P, 4.

0P 5 102,

I

R
Lyje d o *

Figure 3.6: H. cycle in I';, — v: Case 1 (b)

(c) ve LE\ {1010 P ,, 1op|v( o = 100p7 %}
Then we have v = IOOpQZH for some 1 < i < m. See Proposition
3.1.9. Consider 7,,, a path from 100p5~* to OOOpW(F  defined by
the concatenation of

(100p5~*,000p5 2, 000p5 >, 100p5 2, ... 100py, *, 000py; °, 000p%, 2,
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100py, 2, .. 100p5;2, 000p5; 2, 000p57%)
and
(OOOp22 +2,100pQZ +2,1001022 3 000102,43 100p2k, ,100p2k, 1

000p5° ., . .. 000ps,.%, 1005, %, 100p5 % |, 000p5 % ).

forl1 <k <iandi+1<k <m.
See figure 3.7. Again, we can restate 7, as the concatenation of

(100ph 2, 000p5, > ,OOOpzkH, 100p2k+1) forevery k=1,...1—1

with
(100p5; 2, 000p3;*, 000p5;%)

and
(000ph;*, 100phy°, 100pyy2 1, 000ps,~ ) for every k' =i+ 1,.

7, has length 4(: — 1) + 2+ 4(m — i) = 4m — 2.
Concatenate 7, with LE followed by the vertex (000p} ). Concate-
nate next 0010 ¥ , 1010 B, 4 and the vertex (100p} ).

0% 5 1027,

Léi'lo—o—o—o
LOO" O -p—I I—q- o ——eo—0 - 6——9
L{% -»—I L» oV &— oo o - —o

Figure 3.7: H. cycle in I';, — v: Case 1 (c)

Case 2:

(a) v € {0010P%, U 1010 P2 ,}
Let v € {0010 PE }. Thus v = 00py; 2, for some 2m + 1 < 2i <
[V (I'y—2)|- See Proposition 3.1.9. The case 2i = |V(I[',,_2)| will be
considered at the end of this item. Assume then, 2m + 1 < 2i <
[V(Fne2)l.
Recall that B, » = 0PE , 10 PE , = 010P, _5,00P, 4, 10P% ,.
Therefore any vertex of 10? -+ 4 1s adjacent to some vertex of 00%,_4.
Let u = 00ph; 3 € {102 ,}. Thus 2i +1 = [V(T,—3)| + & with § > 0
and the element in the position |V(I',_3)| —d + 1 of Lg is adjacent
to u. Therefore v’ = 00p2|v( 5)|—2i is adjacent to wu.
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With the help of figure 3.8, we will construct a Hamiltonian cycle in
I',, — v as described next.

Consider 7,,, a path from v = 00p2|v - 0 (= 00p2(2m+1) ;) to
00p}2(= OOOmeH) defined by the concatenation of

(00p2(2m+1) 21’10p2(2m+1) 21710p2(2m+1) 2i— 1’00p2(2m+1) 2i—1)

.. 00ph 2, 10ph 2, 10p, 2, 00ph, 2, .. 00ps 2, 10ps 2, 10p} 2, 00p}~?)

for 2m+1) —i <k <1

We can restate ‘7, as the concatenation of

(00py;, 2> 10py;, 2, 10p2k 15 00ph; 1)

for every k= (2m +1) —i,... 1.
7, has length 2[2(2m + 1) — 2i] — 1 = 2(4m + 2 — 2i) — 1.

Consider also T, a path from 1Op|"v_(2rn to 10p4; 2 defined by

_3)|+1

(10p5,% 5, 00ps2 5, 00ph 2 o, 10ph 2 o, ... 10ph, 2, 00ph, 2,

Oop2k+1’ 1Op2k+17 - 10p5; 7%, 00p5;~%, 00p5,3, 10p5,3, 10p5;%)
form+1<k<i-—1.
We can also rewrite 7 as the concatenation of

(10p5; %, 00py; %, 00py, 2, 10ph 7)) for every k =m+1,...i — 1

and
(10pgi_2)'

Thus 7, has length 2(2i — 2m — 2).

We will form the cycle concatenating:

7, with L{ followed by (OOmeH, 00ph-2, . OOp2 (@m-1)— si11)-and by
(10p2(2m+1) 2it1> 1()p2(2m+1) niso 1()p2m+1) Then 7, and

(10p5:355 10535, - 10p[y s 00D 5y 00D g
10p22+1)
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0F; 102,

010P,_; 00%, 4

L{f‘l —e— - — —e— ——¢——@ - —e—

L T T [T

Figure 3.8: H. cycle in T'), —v : v € {0010 BE ,}

The cycle is similar if v € {1010 2% ,}. Thus v = 10p5;.3, for some
2m + 1 < 2i +1 < |V(I',_2)|- See Proposition 3.1.9. Assume that
2m+1<2i+1 < |V(I',—2)| since we will consider the case 2i + 1 =
|V (I'p—2)| below.

Let u = 10py. % € {10 PR ,}. Thus o = 1Op2‘v( _)|—(2i+1) 15 adjacent
to u.

See figure 3.9 In this case, let ‘7, be the path from v/ = 10pQ|V(Fn B)|—(2i+1)
to 00p" 2 defined by

(10p2(2m+1) (2i4+1) 00p2(2m+1) (2i+1) 00p2(2m+1) (21+2)’10p2(2m+1) (2i+2)

10p2 00p2(2m+1) (2i43) ° - 00p5; 2, 105 %, 10p5 %, 00p5; 2,

.. 00py 2, 10p5~2, 10p} 2, 00p}~?)

for 2m+1)—(i+1) <k<L
We can restate 7, as the concatenation of

(2m~+1)—(2i+3)’

<1Op2(2m+1) (2i+1)’00p2(2m+1) (2z+1)>

and
(00p5; . 10ph; *, 10ph; %, 00, %))
for every k= (2m+1)— (i+1),...1.

Notice that 7, has length 2[2(2m+1)—2i] —1+2 = 2(4dm+2—27) + 1.

Let also 7. be the path from 10p|"’

V(%n,3)|+1 to Oopg i1 defined by

(1Op2m+27 00P2m+27 00p2m+37 10p2mi37 .. 10}7% 2, OOP% )
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00p2k+17 10p2k+1? - 10p21 , 00ps; OOle 1 10?2@ 1
10p5;~ ? , 00py;~ ? 00;02,“)
form+1<k<i—1.
We can also rewrite T' as the concatenation of
(10p,. 2, 00p5, 2, OOkaH, 10p2k+1) for every k=m+1,...i—1

and

(10p22 ? Oopgz ? 00p2z+1)
Thus 7. has length 2(2i — 2m — 1).

The Hamiltonian cycle in I',, — v is obtained by concatenating
T, with LE followed by (00ph.2,,00p52, .. 00p2(2m+1) 9it2s

10p?(2m+1) 2427 10p2m+1) Then T and (00p21+2" OOPW(Fn 2)’
]‘Op‘V(F )| 10p|V(F 2)|717 .. 10p21+2)

08 10PF ,

0102, —5 00P,—4

0O o o

Figure 3.9: H. cycle in [, —v : v € {1010 PE ,}

We have mentioned before that when |V(I',,_2)| is even, then
OOpW(F ,)| belongs to VE(T,). In this case, let u = 10p‘V(Fn ,- The
Hamiltonian cycle of T',, — OOpW(FnJ)| can be constructed as above.
See figure 3.10.

02r 1021,

0102, _5 002, 4
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Figure 3.10: H. cycle in T',, OOpW( 2|

Whenever |V (T, )| is odd, then 10]0"”“/72 | belongs to VE(T,). In
this case, let u = OOp ( )| The Hamﬂtonlan cyclein I',, 10])1“‘/_(2“72)|
is constructed as prev1ous1y done. Figure 3.11.

01’5’4 10?7514

010P,_5 007, 4

L —e— v ——— o9 - —e—

pipnainninnn

R
LlO

Figure 3.11: H. cycle in T',, 1Op|V( D)l

(b) v=10p 7, ) = 100p7~
In this case, let u = OOpW( B)l+2 and proceed as in case 2(a). See

figure 3.12.
0PR 1087,
0102, 5 002, 4

LI% J [ J J J v L—o —0——0—J
Figure 3.12: H. cycle in [, 10p|v( 2|
U

Corollary 3.1.11. T, — v is bipancyclic with v € VF(T',,); n # 1 (mod 3) and
n > 5. Furthermore, I's — (010) is bipancyclic as well.

Proof. The only cycle in I';—(010) has length 4. Thus I'3—(010) is bipancyclic.
Let v € VP(T,); n # 1 (mod3), n > 5. We will commence with €y, ), the
cycle constructed in Theorem 3.1.10 which contains |V(I',)| —1 vertices. Then
we will remove recurrently a pair of vertices to obtain a smaller cycle each time.
In order to do this, we will separate the vertices of V¥ (T,,) in four cases:
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L v e L U L{H \ {00pf 7, ), 1010 22}
From figure 3.5 (for v € L) , we can see that by removing recurrently
a pair of vertices from L{ € GV (r,—v)| the size of the cycle decreases
by two each time until having a cycle of length 2|V(I',,_5|. By deleting
from the cycle the appropriate vertex 00p} 2 of Loy with 1 < k <
|V(T,,_3)| — 2 and its correspondent vertex 10p} 2 of L& iteratively,
we obtain the remaining cycles.
When v € LI\ {1010 PZ 1Op|V |} (see figure 3.7) the cycles are
formed by deleting the approprlate vertex 00p} 2 of 0010PF Wlth
|[V(Ty—2)] <k < |V(I'h—3)| + 1 and its correspondent vertex 10p}~
of 1010P , iteratively until having a cycle of length 3|V (T,,_3|. Then
we can remove recurrently a pair of vertices in the cycle from L% until
obtaining a cycle of length 2|V (I',,_3|. Removing the suitable vertices
01p}~2 and 00p;~? with |V(T,_3| < k < 2, we get the smaller cycles.
2. v € Ly \ {0010 PR}
For v = OOp}l’2, 2 < j < |V([,_3], see figure 3.6. Then, as in case 1,
we can remove the appropriate pair of vertices each time until having
the cycle that surrounds 00p~ 2 that is,
s = (OOpJ T 01pj 1, 01pl™ 2! 01PJ+1 , 00ijrl , 1Opj+17 10p}~ 2 , 10p}~

OOp?_ ).
The two remaining cycles:
_ n—2 n—
o = (001, oy 0Pl e, o 0PIV, o LOPIV T, 2

L0}y 7, 3)|+1’1OP|V(rn ol OOPW( »)) and
¢ = (00p| Vb OBy 0Py LOPE,
00, )
3. v e {0010 PR} — OOpW(Fn g1 U {10105?R4}
Let v = oop;? 2 € {0010 B, — 00py 1. a1}
Then, for j < j' < |V(I',-2)], remove recurrently from the cycle the
vertices ()Op?f2 and its correspondent 10p?,’2. See figure 3.13.

ok, 1028,

0102, _5 00, 4

L[I)?'1 — e — —o—

TR R

Figure 3.13: Case 3:v € {00108 ,} — 00pf:2 )
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Refer to figure 3.14 for the next cycle which does not contain the pair
: n—2 n—2
of the vertices Olp‘v(rn%)‘ and OOplX/(ans)l‘

0P, 107;L,
0102, _5 00P,—4
L5 e e 1Py k)
Lo u’ .T .Oopﬁ;&"%)‘ Yol

T T

Figure 3.14: Case 3: %"\ {Olpﬁ/_(zp 3) 0010|V( o1t

We will include again the vertex 0()]17?‘/_(%71_3)| and exclude the vertices
U= OOp]H, 1OpJJrl and 10p;-‘_2 in order to construct a new cycle with
two vertices less than the previous one, using the same structure as
in case 1. See figure 3.15. Therefore we can find the remaining cycles
in the same form.

For the case v = 10p|v( ,))p We commence with the cycle of length
|[V([',,)| — 1. Thus, in this stage, we will delete vertex Olpﬁ;(%nig)l and

the vertex u = OOpfv’(QFn%)‘, where we can use the structure of case 1
to find the remaining cycles.

0Pr . 10258,
0107, _5 00, _4
& — O
) 7 ‘ T T [T 1T ._T
10p; 2

Figure 3.15: Case 3: %\ {1019? ? Olp\v(rn 3)\}

Ifv= 10p"_2 € {1010 2% ,}, the cycles are constructed similarly.

If v = 00p|V(F .y We use the cycle of length [V(I';)[ — 1. We will
delete vertex Olplvf(%nfs)| and the vertex u = 10pﬁ;(2rn72)‘, where we
can use the structure of case 1 to find the remaining cycles.
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For ]V( e 3)]—1-2 < j" < |V(I',,—2)|, remove recurrently from the cycle
the vertices OOp;-Lf2 and its correspondent 10p?,’2. Figure 3.16.

0Pk . 1025,

010P, 5 00P,_4

R
LOl

- T Uﬁ ........................... -

........................... @ @

Figure 3.16: Case 4:v = 00p|v(1“n 3)|+1

We will construct the new cycle by removing the vertices 10]0“/(F 9l
and

IOpW(F »)+1 and by replacing the edge (OOprV_(%n_S”_l, 10p‘v(rn )l )
by the edge (10p‘V(Fn )42 10p|v(rn o)— 1)- See figure 3.17.

0Pk, 1025,

010P,_5 00P,_4

L(I)?l — o 0— — o

T T

Figure 3.17: Case 4: €\ {IOpW(Fn e IOpW(Fn Y

A smaller cycle is obtained by deleting l‘o‘()(Fn_s)H )2 We

recognize now the structure of case 1. Therefore the remaining cycles
can be obtained.

, and l|1\9(r

When v = lll\(;(l“nfg)l’ we will delete again, recurrently from €y (r, ),
the vertices 00p,~* and 10p%? for [V/(I),_3)[ +1 < j' < [V(T's)] to
obtain the cycles of length [ = |[V/(T',)|—1,... |[V(I's)|=2(|]V(T—2)|—
3).

We get a smaller cycle by removing 10p|”v_(2F and OOpr(

3)|+1 —3)[+1
and adding the edge (1Op|”vf(%n73)‘+2, 10p|v(r 3)|_1). (Figure 3. 18.)
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As for the previous case, deleting OOp?V_(QFn )

)42 and 10}9?‘/_(2F
gives us the known structure of case 1.

n—3)‘+2

0 1)7157 3 10 fpfﬁ— 4

0102, _s 00,4

L[I)?'1 — e c— —o——

RIRARRERENR DA EREREEN

Figure 3.18: Case 5:v = 10pr\;(2rn,3)|

3.2 Hamiltonicity in the Lucas cubes

We have mentioned before that the Lucas cubes have been widely studied
due to the fact that these cubes are closely related to the Fibonacci cubes.
The Lucas cubes are defined as the Fibonacci cubes but with the restriction
of consecutive 1’s applied in a circular manner.

In 2005, Jean-Luc Baril and Vincent Vajnovszki proved in [BV05] that the
Lucas cube has a Hamiltonian path if and only if n # 0 (mod 3) constructing a
Gray Code for the Lucas strings of length n which is an ordered list of strings
such that the distance between two strings is 1.

In this section, we will construct nearly Hamiltonian cycles for the Lucas
cubes in the same way as we did for the Fibonacci cubes. Therefore, we will
be using many of the results of the previous section throughout this section.

Lemma 3.2.1. Forn >3, V(A,) =0V ([,,—1) U110V (',_3)0.
Proof. By definition, V(A,) = V(I',) \ { strings that begin and end with 1}

and since V() = 0V(Tp_y) UL0V(Tys) = 0V(Tyoy) U 10V(Thy3) 0 U
10V(T',,_3) 1, the result is obtained. O

The parity difference relation is stated in the next known result:
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Theorem 3.2.2. Forn > 1, then

— (- if n=1(mod3),
VA = VA =1 (=DEF i n=2(mod3),
2= if n =0 (mod 3).

Proof. For n =1,2 and 3,

V(A = V(A =1
[V (A)| = [VH(Ag) =1 -2 =1
[Ver(As)] = [Vo(As)| = 1

By Lemma 3.2.1, for n > 3, V/(A,,) = 00V (I',,—2) U 010V (I,,_5) U 10V (I",,_3)0.
Notice that

[V (010T—3)| = [V(10T,,—3 0)] = [V°U(D,—3)],
Vo4 (010T,,_3)| = [V (10 T_30)| = |V (T,_3)| and
V(00T o) = [V(T'h-2)l,

[VoU00T—2)| = [V (Tp2)l.

Hence,

VD) = [V (AR = 2(V(Tms)| = [V (Tazs)])
+ [V (Cos)| = [V*(Tas)].

Assume that the statement is true for Ay; N > 3. Thus, using Propositions
3.1.8 and 3.1.7 for I'y;1, we have that
If N+1=1(mod3),
then (N + 1) —3=1(mod3) and |V°4Txny1-3)] = |V (Tny1-3)]
and (N +1) — 2 =2 (mod 3).
Thus

VD) = VA Ay)] = [V (Cy)| = V()|
= (-pE
Notice that for N + 1 =1 (mod 3), then

(~DIF = (-
Therefore,

|2

[V (Anar)| = VO Ani)] = —(=1)
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If N+1=2(mod3),
then (N +1) —3=2(mod3) and (N + 1) —2 =1 (mod 3);
Hence

[V (Ana)l = [V (Axns)] = =20V (Civan-s)] = [V (Civen-3)])
+ IV vr-2)| = V(T2

= —2(-D\5) 4 ()l
When N + 1 = 2(mod3), then
—(—1)E) = —(—)F = (),
Therefore,
IV (Ayan)] = [V (Axir)| = (D

If N +1=0(mod3),
then (N +1) —3=0(mod3) and (N + 1) —2 = 1(mod3) and
Ve (Cwy-2) = VT vi1)-2)].
Hence

Ve (Ans)] — [V (An)] = 2(V(Tn—2)| — [V (Tn-2)])
2(—1)L%]
2

(-

(N+1)+2

since (—1)L5) = (=D)L 5L for N +1=0(mod3). O

From Theorem 3.2.2, for any n > 1, one of the following occurs: if n #
0 (mod 3), the longest possible cycle in A, contains |V (A,)| — 1 vertices and
therefore, one of the sets of the partition V(A,) = (V(A,), V°4(A,)) has
one more string than the other set; if n = 0 (mod 3), then the longest possible
cycle in A,, contains |V(A,)| — 2 vertices and hence, one of the sets of the
partition (V(A,,), V°4(A,)) has two more strings than the other set. In both
cases, we will call this set, V' (A,,) where:
For every n > 1,

( if n=1(mod3) and [™2] is odd,
Ve(A,) § if n=2(mod3) and |%2] is even,
VP(A,) = ¢ if n=0(mod3) and |2 is even.
" if n=1(mod3) and [™2] is even,
Vel(A,) S if n=2(mod3) and |[™2] is odd,
\ if n=0(mod3) and |2 is odd.
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We will take back the Hamiltonian path constructed for the Fibonacci

cubes, B, = 0PE | 10 P, = (p}, p3, .. -p%nu)'

Proposition 3.2.3. Let P1,; n > 1 be a mazimal subpath of P, whose strings
end with 1. Then we have that

(PF,.,) is the only P1,, subpath of length one  if n =1 (mod3),
(pt) is the only P1,, subpath of length one if n =2 (mod3),
there are no P1,, subpaths of length one if n =0 (mod3).

Moreover, any other P1,, subpath has length two and it is not found in the
first nor in the last positions of B,.

Proof. Consider P, = (0,1) and &, = (01,00, 10). Then (p}) and (p?) are the
only P1; and P15 subpaths and they both have length one.

Thus, P3 = 0P, 10 P, and P13 = (0p?, 10 p}) is the sole P13 subpath.

We will now suppose that the statement is true for all the subpaths P1y of
Py. Let us consider Py 1 where we distinguish the three cases of N + 1.

1. N+1=1(mod3):
Thus N =0(mod3) and N — 1 = 2 (mod 3).
By hypothesis of induction, Py has no P1y subpaths of length one and
(pY~1) is the only subpath of this length in Py_;. Therefore, (10 pY 1),
now labeled (pp N“ ) is the only P1y,, subpath of lenght one. The P1y
and Ply_, subpaths of length two are maintained in Py .

2. N+1=2(mod3):
Thus N =1 (mod3) and N — 1 = 0 (mod 3).
Again, by hypothesis of induction, (pgNH) is the sole P1y subpath of
lenght one and Py_; has no Ply_; subpath with this length. There-
fore, (0pf,.,) = (p1'") is the only P1y; subpath with length one. As
in the previous case, the Ply and P1y_; subpaths of length two are
maintained in Py,q.

3. N+1=0(mod3):
Thus N =2 (mod3) and N — 1 =1 (mod 3).
(pY) and (pgle) are the only P1y and P1y_; subpaths of length one of
Py+1 and Py respectively. Hence Pyi1 = 0(pp,,,,---P M), 10 (pFNH,

.pY 1) does not contain a P1y,, subpath of length one. Notice that

all the P1y and P1y_; subpaths of lenght two are preserved in Py
together with (0pY IOpFNH) OJ
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Proposition 3.2.4. For every n > 1, P, \ {strings that end with 1} is a
Hamiltonian path in T',,_4.

Proof. Let Sy be the subgraph induced by the vertices of 0 P,_;. Then S is
isomorphic to I',,_.

We will prove that &, \ V(I',,_2) 01 is a Hamiltonian path in S.

From the preceding proposition, the strings of P, that end with 1 are either
the first or the last string of P, or they form a subpath of two strings in P,.
Let P1, = (p},p},,) be one of these latter subpaths with 1 < j < [V(I'|. Tt
suffices to show that p} ; and p},, differ in one position. Notice that these
two strings both end with 0. Thus they only differ in the position in which p’
and p’, differ and hence the edge between them exists in Sp.

Therefore the path P, \ V(I',_2) 01 is a Hamiltonian path in Sy and hence in
| O

We will next construct a subgraph #’,,, isomorphic to A,, in the following
way:
Let Sy be the subgraph isomorphic to I',,_; induced by the vertices 0 P,_;.
Let S’y by induced by the vertices 10 &, _o \ {strings that end with 1}. Then,
by Proposition 3.2.4, S’y is isomorphic to I',,_s.
Let Ly = 01(0P,_3),00 P, 5. Thus, we can decompose L in Ly and L,
both Hamiltonian paths in I',,_5 and I',,_5 respectively.
Let also L/, be the Hamiltonian path of T',_5 formed by 1 &, _» \ {strings that
end with 1}.
Finally, let #’,, be the subgraph of T',, formed by Ly and L.
By Lemma 3.2.1, #’, is isomorphic to A,. Also, as we proved in Theorem
3.1.5, there exists the edge between every vertex 010 p"~® of Ly, and 000 p}?
of Lo in H',. Also, the edge between every vertex 10 p!' 20 of L), and 00 p} 2
of Lo exists in H’,,.

Notice that for an easy recognition of the elements of #’,,, we will maintain
the same subscript j in the labels of the strings 1()p;.”_2 of L/llg as the labels of
the strings OOQU’]?’2 in Lgp.

We will next describe and show the figures of #’,, for every n > 2. For
this purpose, we will use Proposition 3.2.3 as well as the next

Proposition 3.2.5. Let P0,; n > 1 be a mazimal subpath of P, whose strings
end with 0. Then
(pt) is a PO, subpath of length one if n=1(mod3),
(P, o1 P, .,) 18 @ PO, subpath of length two  if n =2 (mod 3),
(pt, p) is a PO, subpath of length two and
(PF,.,,) is a PO, subpath of length one if n =0 (mod3).



3.2. Hamiltonicity in the Lucas cubes 47

Moreover, there are no other PO, subpaths of length one. Furthermore, any
other PO,, subpath has length two or four and is not found in the first or in
the last positions of P,.

Proof. Consider 7, = (0,1) and P, = (01,00,10). Then (pj) is the only
P0; subpath of length one and (p3,p3) is the only P0; of length two. For
Py = 0PF 10 PE = (010,000,001, 101, 100),the sole P03 subpath of length
two is (0p2,0p3) = (p3,p3) and (10p]) = (pd) is the only POz subpath of
length one in P;.

We will now suppose that the statement is true for all the POy subpaths of
Py. Let us consider Py 1 where we distinguish the three cases of N + 1.

1. N+1=1(mod3):
Thus N = 0(mod3) and N — 1 = 2 (mod 3).
By hypothesis of induction, (py’, py’) and (py, ) are POy subpaths of

—1 N—1 :
42— pF(N—1)+2> is a POy

length two and one respectively and (pg( o

subpath of length two.

Therefore, (OpgNH) = (p¥™) is POy, subpath of length one.

Notice also that (1Op]1¥(;171>+2, 10p¥<;171)+2_1,0pév,0p11v) form a POn,iq
subpath of length four.

All the POy and POy _; subpaths of lengths two and four are maintained

in fPN+1.
2. N+1=2(mod3):
Thus N =1 (mod3) and N —1 = 0 (mod 3).
Again, by hypothesis of induction, (p)) is a POy of length one and

(p =1, pY 1) is a POy of length two and (pg&l_w) is a POy_; of length
one.

Therefore, (10pY~* 10pY 1) = (pg(;il)ﬂ_l,pg(xlﬂ)ﬁ) is a POynyq of
length two.

Notice also that (0p, 10p1}7&1_1)+2) = (p%j;,p%jjzﬂ) is a POyyq of

length two. As in the previous case, the POy and POy_; subpaths of
length two are maintained in Py ;.

3. N+1=0(mod3):

Thus N =2 (mod3) and N — 1 =1 (mod 3).

Hence (pJ}[NJrrl,p]}[NH) is a POy subpath of length two and (p
POn_; subpath of length one.

Therefore, (0py, ,,0p¥, 1) = (P, py""") is a POyyy subpath of
length two and (10pY~!) = (pg(ﬁw) is a POy, subpath of length
one. Notice that all the POy and P0Oy_; subpaths of lenght two and
four are preserved in Pyy;. O

Mis a
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Notice that |Lgg| is even for n = 0(mod3) and |Lg| is odd for n #
0 (mod 3).
Additionally, since |L | = |LZ|, then there are the same number of vertices
of VP(A,) in LE than in L.

n = 1(mod3) :

For n > 3 and considering Propositions 3.2.3 and 3.2.5, we depict in figure
3.19 the vertices of VT'(A,) in gray. In this case, |Lo| = |V (I',,_2)| is odd and
(n —2) = 2(mod3). Also, |LF\| = |Lf| = |[V(I',_3)| is even and (n —3) =
1 (mod3). Then for each of these paths, the number of vertices that do not
belong to VF(A,,) is the same as the number of vertices that belong to V7 (A,,).
Therefore, {00p}~?|j is odd, 1 < j < [V(Tng)|}, {01p)?]j is even, 1 <
j < |V([,-3)|} and {IOp;-"_2 |j is even, 1 < 5 < |V(I';,—3)|} correspond to
VE(A,).

0PE 10PE ,
010P, 5 00,4
L(Iﬁ ° . . ° ° ° ° .
Lo . . L RO . . ° . . . . . .
L’llg ° ° ° . ° ° ° °

Figure 3.19: Vertices of VF(A,,) for n = 1(mod 3)

n = 2(mod3) :

Considering again Propositions 3.2.3 and 3.2.5 and for n > 3, the vertices
of VP(A,) are drawn in gray in figure 3.20. Observe that |LE| = |L\E| =
|V(T',,_3)| is odd and (n — 3) = 2(mod3). Thus the set V¥ has one more
vertex of each of these paths.

Therefore {01p~?|j is odd, 1 < j < |V(I',_3)|} and {1()]9;.”_2 | j is odd, 1 <
J < |V(T,_3)|} belong to VI (A,).

Furthermore, |Lgo| is odd, thus {0010?_2 | j is even, 1 < j < |V(I',_2)|} belong
to VF(A,). Note that there is one more vertex of |Lg| not in VF(A,) than
in VP(A,,) which, in addittion to the vertex of |Lf| and |LE| in VF(A,,) are
consistent with Theorem 3.2.2.
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0,7 4 108,
0102, 5 00,4
L(}ﬁ e R . S e RN S
Log &—0--0—0—e L R S S S D e S .
L’lfg I =Y O T == I

Figure 3.20: Vertices of VF(A,,) for n = 2(mod 3)

n = 0(mod3) :

Figure 3.21 shows the isomorphic subgraph to the Lucas cube, #’, formed by
L¥ . Lo and L'E for n = 0 (mod3), n > 3 and the vertices of VF(A,) in gray.
Note that in this case, |L{ | = |LiE| = |[V(I',_3)| and (n—3) = 0 (mod 3). Thus
by Proposition 3.1.8, the set V¥ has one more vertex from each of these paths.
Hence {01p~2|j is odd, 1 < j < |V(T',_3)|} and {10p" | is odd, 1 < j <
|V(T,,_3)|} belong to VI (A,,). Also, since | Lgo| is even, {OOp?_2 | j is even, 1 <
j < |V(D,_2)|} belong to VF(A,) as well.

08,7 1027,
0102, _5 002, _4
L(I)—Cl . R . S R
Lope 06— 00— 0 o 0 990
Llllg P S ISP S PR o -0 ¢

Figure 3.21: Vertices of VF(A,,) for n = 0(mod 3)

Theorem 3.2.6 (|[BVO05|). A,, has a Hamiltonian path for n % 0 (mod3),n >
2.

Proof. By construction of #’,,, isomorphic to A,,, it is induced by the vertices
of Lyy = 010P,_3, Log = 00P,_5 and L'10 =102P,_30. We've proved that in
H',,, every 10p." "2 of L, is adjacent to 00p? 2 of L.

Then, it suffices to show that the string 1Op]$z13n72)| exists for every n #
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0 (mod 3). Indeed, when n = 1(mod3) then (n — 3) = 1(mod3). When n =
2 (mod 3) then (n — 3) = 2 (mod3). In both cases, because |L},| = |[V(I',,_3)|
and by Proposition 3.2.3, the string exists. Therefore, Lf U Lo U L is a
Hamiltonian path in A,,. See figures 3.19 and 3.20. U

Theorem 3.2.7. Let v € VF(A,) withn # 0(mod3) and n > 5. Then A, —v
contains a Hamiltonian cycle.

Furthermore, if v & VT(A,), then A, — v does not contain a Hamiltonian
cycle.

Proof. Let us consider the Lucas cube induced by L{, Loy and LiF. We will
describe the Hamiltonian cycle in A,,—v considering v within five main subsets
of vertices.
The cycles where v belongs to L&, Lo \ {vertices of Loy in 0010 27 ,} and
LN\ {vertices of Li¥ in 1010 2 ,} have the same structure with some slight
differences. We consider as well, the cases of v in Lgg N 0010 Q’R ‘,and v in
LEN1010 PR ,; all together with some special subcases.
Let v € VF(A,).
Case n = 1(mod 3): Since |V (I',_3)| is even, then let |V(Fn_3)] =2m
1. v € LE ULy \ {010p”*3 _y1-1000p7 % = 000pf 7 ],0010 B}
Let v € LY — 010pjy ( (= 01ps~ %) Thus v = 01ng ? for some 2 <
i < m. Consider the path 7, from 00p|"v_(2rn_3)| = 000p} % to 00p} 2 =
OOOpW( -3 defined by the concatenation of

(Oop2m2701p§m2701p2m 1700p2m 1o+ - 00p2k2>01pgk2701p2k 1700p2k %)
00p21+2a 01p2@+2a Opoerl’ 00p21+1v 00p3;~ )
and
(OOpgl 1,01p2l 1,01p OOp . OOp%, 1,01p2k, 1,Olp%, 2,00p2k, ,

.. 00p2 2, 01pE =2, 01p} 2, 00p;~2)

form>k>¢+1and >k > 2.
See Figure 3.22.
7, can be rewritten as the concatenation of

(00py,. 2 01ps, 2 Olp% 1, 00p5, 1) for every k=m,...i+1

with
(00Pgi_2)
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and
(00py2,, 01pl2 1, 01ph2 ,, 00ph,2 ) for every k' =i,... 2.

Note that the length of 7, is 2(2m — 2i+2i — 1 — 3) = 4m — 8.
We will finally concatenate ‘T, with (00p%—2, 01p% 2, 01p5 2, 01p} 2, 00p] 2,
00p5~2) followed by Lf and the vertices of 0010 B, _,.

) HUUHJUUUL e

Figure 3.22: H. cycle in A,, — v for v € LE — 01p5 =% and n = 1(mod 3)

Let v € Lo \ {00p} % = OOOpW( 0010 2%} Thus v = 00ps; 3 for
some 1 < i < m. We will construct 7, from 00p|v( N 000p* to
O0lpy ° = 010p‘v( 5|2 concatenating

<00p3%2701pzm2701p2m 1700p2m 1y '001731;270117% , 01p,.~ 170017% 1

00p2z+4’ 01p21+4, 01p21+3v 00p21+3v 00p21+27 01p2z+27 01p22+1)

and
(01102Z 2 ,00p5; 2 , 00p5; I,Olp% 1,Olp OOp . .00p2k, 1,01p2k/ 1)

01ph2 5, 00ph% 5, ... 00p2~2, 01pE =2, 01p} 2, 00p} 2, 00p; 2, 01p%~?)

form<k<i+2and: <k <3.
See figure 3.23.
We can restate 7, as the concatenation of

(00py,, 2 01ps, 2 01102,C 1, 00p5,~ 1) for every k=m,...i 4+ 2

with
(00p53%, 01ph5, 01py 3, 01ph 2, 00ph; %)

and
(00py2,, 01p%2 |, 01ph2,, 00ph,,2 , for every K =i ---3
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with
(00ps~2,01ps—2).

7, has length 2(2m — 2i — 2) +4 4+ 2(2i — 1 — 3) + 2 = 4m — 6. The cycle
is formed by 7, linked to (01py~2,01p7 2, 00p72,01p5~2) and to L} and
the vertices of 0010 P,_y4.

0Pl , 10PF ,

) HMWILWUM

L% —e——o - *~—— —o ey S 6 ——e —e -

Figure 3.23: H. cycle in A, — v for v € Loy \ {00p} 2,0010 PF ,} and
n = 1(mod 3)

v e {01ph~2, 00pt 2}

Recall that L} = 010 PE ; where

0PR, =010, 5,00 P,_4 = 010 P,_s5,000 2% .. 0010 P~ ,.

Let 2|V (I',_5)| = 2m’ and notice that P ; has an even length.

Let v = 01p2’2, then let u = 01p}~2 € 0102, 5. Thus u is adjacent to
u = 01p2|v sy € 0002 .
Let 7, the path from OOpW
catenation of

n—3 n—2
(Tns) = 000p] " to OOpQ‘V(Fn%‘)‘Jr1 as the con-

<00p2m 701p2m 701p2m 1700p2m 15 OOlec 701p2k , 01p,~ 1700p2k 1

00p2m 1429 Olpzm 1425 01p2m 419 00p5,,,; +1)

form+1 <k <m.
See Figure 3.24.
7, can be rewritten as the concatenation of

(00py, 2, 01p%, 2, 01ph, 2, 00p5, %)) for every k=m'+1,.

The Hamiltonian cycle in A,,—01p} 2 is constructed linking u to 00p} 2, fol-
lowed by 2L10, 1021’”*4, T, and by the vertices (00ph %, 00p5 e 0,
.. 00ps~2,01p5 =2, 01p} 2, 01pQ|V(F = u').
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002, 4 10PF ,

0102, 5 000PF . 001022 ¢

.

Figure 3.24: H. cycle in A,, — 01py 2 for n = 1(mod 3)

For v = 00p}~2, let u = 01p? 2. Thus «/ = OlpW( I We will consider 7,
as in the previous case. Hence, 7, is the concatenation of

(00py, 2, 01p%, 2,01p2k 1, 00ph,~ 1) for every k =m' +1,.

See figure 3.25.

The Hamiltonian cycle in A,, — OOpgf*2 consists in (u = 01p?*2, OlpZ*Q, o

01pW(F D1 OOplv(F -1 OOprV_(%nis )2, 00p5 ™2, 00p5~?), linked to L and
n—2

to P ,. Then, ‘Z, followed by 00P}y (1,4 Olp‘V(Fn 0= "

008, _4 10PF ,

0102, 5 000?,{";5 00101’7{’16
u/
Loo o T *~—\ o0——o——o——o - 0— LTlTL —— —eo— 0— —o

Figure 3.25: H. cycle in A,, — 00p} 2 for n = 1(mod 3)

3. ve LB\ {1010 PE 10p|v(r _3)|}
Letv = 1Op2’; 2. We refer to Figure 3.26, which represents the cycle in 7, —v
for this case which is similar to the cycle of this case for the Fibonacci cubes.
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0PE 10PE

NERRRRRRARA RN
o WL T T

Figure 3.26: H. cycle in A, — v for v € L%\ 1010P* , and n = 1(mod 3)

4. v € {1010 P, 4,00p|v( )‘H,O()p‘v( N 10p‘v S
Let v = 10p" > € 1010 . Let u = 10p/"}*> € 10102 ;. Thus u is
adjacent to u' = 1Op2|v( - 1 00 P, 4 since L = 0PF, 10PE,
010 P, 5,00 B,_4,10 P ,. Agaln Figure 3.27 represents the Hamlltoman
cycle that is constructed in a similar way as in the Fibonacci cubes.

'n—2 .

Ifv= OOpW( 41 OF U = 1Op|V(Fn73)|, then let let u = OOp|V(F |42 In
10 P2, for both cases. See figures 3.28 and 3.29 respectively.
Ifv= ()Op‘"vf(2 then let u = 10p]"}zr2n72)‘ and refer to Figure 3.30 for this

In_2)|
case.
0B;% 4 1077,
010?»,,,_5 OOTn—4
Ly — e 0. —0— 00— 0 0—— 06—

——- - 0—0——

MMUU TT+U+U“_J

Figure 3.27: H. cycle in A,, — v for v € 1010 P¥ , and n = 1(mod 3)

0PE , 10PE ,

0102, —5 0028, -4

LU T

Figure 3.28: H. cycle in A, 00p|\/(r for n = 1(mod 3)

3)[+1
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0PE , 10PE ,

Figure 3.29: H. cycle in A,, — 10]?]3_1%

0PE , 10PE ,

010?77‘,5 00?7174

L — e — 60— 00— 09— 17— —

T T T

Figure 3.30: H. cycle in A,, — O()pﬁ;(%n%)‘ for n = 1(mod 3)

5. v € 0010 PR\ {OOp‘V . 3)‘Jrl,()()pw(rn 2) |}
If v = oop” 2 let w = 00p)—7 and u = 00p™2j + 1%, both in 0010 P ,.
Therefore, there exist w' = OOpQMFn Dl-(—-2) and u' = OOpQ‘V( o)l which
are adjacent to w and u respectively.
Figure 3.31 shows the Hamiltonian cycle in A,, — v.

0PR . 10P2

0102, 5 00,4

Lcjfl ’ —e -0 = e - | T_
Loo ﬁﬁ o e e———

L
o LU L T T ]

Figure 3.31: H. cycle in A, — v for v € 0010PE, \
{OOP\V(Fn 3)|+17 OOPW(F |} and n = 1(mod3)
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Case n = 2(mod 3): Because the similarity between the Hamiltonian cycles
of the Lucas cubes for n = 1(mod3), we will not describe the Hamiltonian
cycles for this case, and will refer to the correspondent figures.

1. ve LB U Le \ 0010 27,
See Figure 3.32 for v € L and Figure 3.33 for v € Ly \ 0010 B2 ,.

0Es 1027,
Lg1 TT 1 T { T
Llllg [ NP PN QP ——e——
Figure 3.32: H. cycle in A, — v for v € LE and n = 2 (mod 3)
0PE , 10PE ,
LOl

ST

IR | :
Ll(] —

Figure 3.33: H. cycle in A, — v for v € Lgo \ 0010 P2 , and n = 2 (mod 3)

2. ve L\ 1010 PF,
See Figure 3.34.

0PE , 1027,

LE o—e...o0—e—o—0o—o—o
01

S
L] 1

Figure 3.34: H. cycle in A, — v for v € LiE\ 1010 P , and n = 2 (mod 3)
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3. v =00pyr, )i
Refer to figure 3.35 which depicts the cycle for this case, then let u =

OO]OW(F J4o- Thus v = 00p" 2l (r,_s)—1 is adjacent to w since Loy is
formed by 00 P, 5, where B, 5 =0PE, 10PE , =010P, 5,00 P, 4, 10 P2,

05?5;3 10?5_4
010T7L,5 001)71/74
LoRi TT ’ |_T|_._|
e —
Loo : l —l |—l I‘ d‘_\o— —

}

'R : & | 1
L10 —e - —e —® -«

Figure 3.35: H. cycle in A, OOpW(F for n = 2 (mod 3)

3)|+1
R

4. v € 0010 P, OOp‘V( T a) 41
Let v = 00p}~? thus [V(Cp_s)| +3 < j < [V(Dpea)| — 1.
Let u = 00p7,7 and w = 00p}~7, both in 0010 PF .
Therefore j +1 = |V( n— 3)|+5andj—1— V(- 3)|+6—2for5>0.
Hence, there exist u' = 00p2|v( N and w' = OOpZW( o)l—j+2 which are
adjacent to u and w respectlvely since «' is the element \V( n,g)\ —0+1
and w' is the element (|V(I',_3)| — 0 + 1) + 2 of L.
In figure 3.36, we show the cycle corresponding to this case.

0PE , 10PE ,

010P,_5 00P,_4

o

=

LOO © - o— P <
u' w| w vou

L’llg—o ° H—e - b—e —n .0

Figure 3.36: H. cycle in A, — v for v € 0010 P, — 00p|"_2 and

V(Fn73)|+1
n = 2(mod 3)

5. v € 1010 EPf_4
Let v = 10p" 2. |[V(T'_3)| < j < [V(I'u_2)|. The case j = [V(T',_2)| will
be considered at the end of this item.



58 Chapter 3. Hamiltonicity

Assume then, |V(I',_3)| < j < |[V(T'n-2)l-

Let u = 1Op;.’“‘+’12 in 1010 PZ ,. Therefore, v/ = 1Op;’|“;(2rn73)|_j is adjacent to
u. The cycle depicted in figure 3.37, is a Hamiltonian cycle in A,, — v.
When v = 10p$&2n_2)|, then let u = 101)]3&2”_2)\- The Hamiltonian cycle is

similar to the one described in this case. See figure 3.38.

0Pr . 1028,

0107, 5 00,4

Lgi @ 0—O—— @ ——— @ —e—

LT

Figure 3.37: H. cycle in A,, — v for v € 1010 P , and n = 2(mod 3)

0Pk, 10PE ,

010£Pn_5 00?’”—4

Figure 3.38: H. cycle in A, — 1017]3?13",2)\ for n = 2(mod 3)

Proposition 3.2.8. For n > 0, n = 0(mod3), A, has a path of length
|An| — L

Proof. By construction, the subgraph #’,,, isomorphic to A, is induced by
the vertices of Lo =0 P,_1 = 01(0P,_3),00 P,_» and by the vertices of L, =
10 P, \ {strings that end with 1} = 10 ?,_3 0. Notice that by Proposition
3.2.3, the last string of P, 5, namely 00]9‘"‘/_(2“_2)| is a a P1,,_5 and hence the
string 1Op]@a?n_2)| does not exist in L}, =10 B,_3 0.

We have already proved that every 1Op;”’2 of L}, is adjacent to 00p 2 of Lo
in H',,.
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Therefore, the path 01(0 P,_3), (00 P,—5 — OOp‘V( )s 10 PR . 0is a path of
length |A,| — 1. O

Theorem 3.2.9. Forn = 0(mod3); n > 6 and even | with 4 <1 <|V(A,)|—
2, a cycle of length | can be embedded in A,,.

Proof. By definition, the only vertices that can be removed in order to find
a Hamiltonian cycle in A, \ {v1,v;} are those of VP (A,,). Also, |[V(T,,_3)| is
odd. Thus |[V(T',,_3)| = 2m+ 1. Let vy = 01p" 2ljy(r,_,) and vy = OOpTLV_(QFn_g)r
Consider ‘7, from 00p5 2 to OOp‘V( 2| defined as the concatenation of
(00p5~2, 01p5 2, 01ps 2, 00p5 2, ... 00ph; 2, 01ph; 2, 01ph; 2, 00phe 2 - .-
00p2m ’ 01p2m27 01p2m+17 00p2m+1)
7, can be rewritten as the concatenation of

(OOka ,Olp% ,01p2k+1, OOp%H) for every k =1, .

Hence, the cycle €’ shown in figure 3.39 is a Hamiltonian cycle in A, \ {v1, v},
which begins with 7, followed by L and by 10 B, ,.

0Pr , 102,
R P
) T XTJT lw !
Loo Deen . b —— —o—
v
L/llg —- —e o— o - 0—0

Figure 3.39: H. cycle in A, \ {v1, v} for n = 0 (mod 3)

Removing a pair of vertices of L from %", decreases the lenght of the cycle
by two. Thus the cycles of length s with [V(A,)| —2 < s < 2|V(I',_2)| are
obtained. Cycles of length s with 2|V(I',_3)| < s’ < 4 are constructed by
removing two suitable vertices of the current cycle each time. U

A natural question that would be interesting to respond is for which pair
of vertices v; and vy of VF(A,),n = 0(mod3) is always possible to have a
Hamiltonian cycle in A,,\{v1, v2}7 In a partial response, we let v; = OOpW(Fn )|
and vy € VT (A,,) which seems to work properly. Unfortunately we still have
not found a complete answer to this question.






CHAPTER 4

Eccentricity Sequences of the
Fibonacci and Lucas cubes

The eccentricity of a vertex u, denoted eg(u) is the greatest distance be-

tween u and any other vertex v in the graph. When no confusion is possible we
will shorten this notation to e(u). We say that v satisfies the eccentricity of
u when d(u,v) = e(u). Clearly, not all the vertices of I, or A,, have the same
eccentricity as it happens in (),, where there are no restrictions of consecutive
1’s. For example, let us consider the vertex u = (01010) that belongs to I's. We
can come back to figure 2.1 to see that e(u) = 5 since the vertex v = (10101)
has the gratest distance between u and any other vertex among all the vertices
of T's. In the other hand, we can see that the vertex v = (10101) also satisfies
the eccentricity of ' = (00000) and e(00000) = 3.
Now, let us consider the same vertex u = (01010) in As. The vertex v =
(10101) does not belong to A5 because it begins and ends with 1. Thus, we can
return to figure 2.4 to verify that the vertices v; = (10100) and vy = (00101)
satisfy both, the eccentricity of w and that e(u) = 4. Also, the vertex that sat-
isfy the eccentricity of v’ = (00000) in I',, does not belong to A,,. Therefore,
the vertices (10100), (10010), (01010), (01001) and (00101) satisfy all of them,
the eccentricity of «’ in A, and e(00000) = 2.

The radius of a graph G, denoted rad(G), is the minimum eccentricity
among the vertices of G, while the diameter of G, denoted diam(G) is the
maximum eccentricity among the vertices of the graph.

The radius, rad(',) = [%] and diameter, diam(I',) = n of the Fibonacci
cubes are obtained in [MS02|. Similarly rad(A,) = |%| and diam(A,) =2 | %]
are determined in [MCSO01].

We define the eccentricity sequence of G as the sequence {ak}Zan(G) of
nonnegative integers, where a; is the number of vertices of eccentricity £ in
G.

In the next table, we show the number of vertices of eccentricity & in I',
and in A,, for n = 0 to 10 which can be computed by hand.

61
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n|[0] 1 2 3 4 ) 6

E{0j0 1{0 1 2(01 2 3/01234{012345/01234256
r:f1{0 20 1 20 0 3 20 015200047 2000199 2
A:{|1{10/012/0130(00142/001550[{00019¢6 2

7 8 9 10

012345 67012345 6 780123456 7 890123456 7 8 9 10

n
k
I':j0000516112/000011425132/0000063036152{000001 20554917 2
A

0001714 70000011620 8 20000193027 9 0j00000125503510 2

Table 4.1: Number of vertices of eccentricity k in I',, and A,,.

4.1 Notation of Fibonacci cubes

Let F,, be the set of strings of I',.
Let F2% be the set of strings of ', that begin with an odd number of 0s,
Fev the set of strings of T',, that begin with an even number (eventually null)
of 0’s,
Fe" the set of strings of I, that begin with an even number, not null of 0’s
and
FZ the set of strings of T',, that do not begin with a 0.
We have thus F, = FoU W F& = Fob W F @ F2°, where & is the disjoint
union of sets.
Let F.°? be the set of strings in I', that end with an odd number of 0’s.
Similarly, we define F.* where b € {ev, ev*, &}
Let F24°d he the set of strings in I, that begin and end with an odd number
of 0’s.
In the same way, we define F% where a,b € {od, ev,ev*, &, - }.
Note that F, = F,,. Let F, ; the set of strings of I';, with eccentricity k.
For any a,b € {od,ev,ev*, @, }, let Fih = Fib N Fop and fif be |[Fibl.
We will denote by f*° the generating function

fMay) = T ek anyt

n,k>0
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4.2 Eccentricity of a vertex of I,

In this section, we show that a vertex x in I',, can be written uniquely as
the concatenation of particular strings. We give some results concerning the
eccentricity of these substrings. These results lead us to compute e(z) and to
characterize the vertices y in I, that satisfy e(x). Finally, we determine the
last character of the strings y at distance e(x) (Corollary 4.2.9). This latter
result will be very useful through this section.

Let us recall that IT",, is an isometric subgraph of @, i.e.:

Proposition 4.2.1. The distance dr, (a,b) between a and b in T, is dg, (a,b),
the number of positions in which the two strings a and b differ.

Proof. Let a = (ajas---ay,), b= (biby---b,) € ', and let z = (2129 - 2,,) €
@, be defined as

0 if a; 7é bi,
Note first that 2z is a Fibonacci string. Indeed z; = 2,417 = 1 would imply
a; = a;y1 = 1. Consider now a shortest path in @, from a to b, s = (a =
S0, 81, , %, ,8; = b), obtained by concatenation of a shortest path from
a to z and a shortest path from z to b. It is easy to see that all the vertices of
s belong to I',, as well thus s is also a path in I'),. Furthermore s is a shortest
path in I', because, as a subgraph, dr, (a,b) > dg, (a,b). d

We will thus shorten the notation dr, (a,b) to d(a,b) in this section. Let
us denote by = = (ab) the concatenation of two strings a and b.

Proposition 4.2.2. Let z € F,, such that z = (zy) with x € F,,, y € Fy,
and ni + ny = n, then

e(2) < e(x) +e(y)

Proof. Let ¢ € F, such that d(z,c¢) = e(z). Then ¢ = (ab) with a € F,, and

be Fn,.
By the definition of eccentricity, d(x,a) < e(z) and d(y,b) < e(y).
Then e(zy) = d(zy, ab) = d(z,a) + d(y,b) < e(x) + e(y). O

Proposition 4.2.3. Let z € F,, such that z = (zy) with x € F,,, y € Fn,
and ny +ng = n. If e(xy) = e(x) + e(y), then any string u € F,, that satisfies
d(u, z) = e(z), can be decomposed in u = (vw) with v € F,,, w € F,, such
that d(v,x) = e(z) and d(w,y) = e(y).
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Proof. Consider a string v € F, that verifies the eccentricity of z, then
u = (vw) with v € F,,, w € F,, and e(xy) = d(vw, zy) = d(v, x) + d(w, y).
But d(v,z) < e(x) and d(w,y) < e(y).

Thus, we must have d(v,z) = e(x) and d(w,y) = e(y). O

Because a Fibonacci string of length n is a binary string with no consecu-
tive 1’s, the next proposition is clear

Proposition 4.2.4. The strings of F,, with n > 0, can be uniquely written as
x =0°10"10"---10%

with p >0, lo,l, >0 and ly,--- ,{,_1 > 1.

Proposition 4.2.5. For [ > 0,
e(0"?) = e(0) + 1

Proof. 0*? is the concatenation of 0' and 02, then by Proposition 4.2.2,
e(0+2) < e(0') + 1. Furthermore, if y € F; is a string that satisfy the eccen-
tricity of 0', then the string (y01) belongs to F;4» and is at distance e(0') + 1
of 01+2, O

Proposition 4.2.6. Forl >0,

e(10") = e(0) + 1

Proof. Again, by Proposition 4.2.2, ¢(10') < 1 + ¢(0"). Assume that y € JF
is a string that satisfy the eccentricity of 0, then (Oy) € Fj4; is at distance
e(0Y) + 1 of 10, O

We associate next, to every string 0! € F, a set of strings W (0') of F; in
the following way:
W) = { {1(01)= 1Y if 1 is odd
{(10)2(01)°/2a + 2b =1, a,b > 0} if | is even

Proposition 4.2.7. Forl >0,

Furthermore, the strings of W(0!) are the only strings that satisfy the eccen-
tricity of 0.
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Proof. Notice that the property is true when [ < 1. When [ = 2, the property
is also true and W (00) = {10,01}. Assume by induction that the proposition
is true for [.

e(0+2) = ¢(0%) + 1 by proposition 4.2.5. Furthermore, by Proposition 4.2.3, a
string of Fj, that satisfies e(02) must be (w01) or (w10) with w € W(0').
Let W be the set of strings of F;, 5 that satisfy the eccentricity of 02

(i) If I is odd, then W(0') = {1(01)LZ")}. Then w ends with 1 and only
+1

(w01) belongs to Fio, thus W = {1(01)L= 1} = W(0!+2).
(ii) If I is even, then W (0') = {(10)%(01)® /2a +2b =1I; a,b > 0}.

If b = 0, then both (10)201 and (10)210 satisfy the eccentricity of 02,
If b # 0, then only the string (10)%(01)°(01) = (10)*(01)*** verifies the
eccentricity of 0"+2.
Then W = {(10)201, (10)210} U {(10)2(01)**! /2a+2b=1; a > 0,b >
1} = {(10)%(01)" /2a + 20 =1+ 2; a,b' >0} = W(0!+2).

U

Theorem 4.2.8 (|[CM12|). For every x = 0°10110%2---10% in F,, with
b, lOa lp Z Oa ll;"' alp—l Z 1;

ela) =p+ 3|2~

Furthermore, the strings that verify the eccentricity of x are the strings
y = wolw10 - - - w, 10w,
where w; € W(0%) fori=0,1,--- p.

Proof. Let z = 00101102 - - 10% € F,, with p, lp, [, > 0; l1,- -+ , 1,1 > 1.
Then, from Proposition 4.2.2, e(x) < e(0%) + e(10™) + e(10%2) + - - - + e(10%).
Combining Propositions 4.2.6 and 4.2.7, e(z) < [ ] + 377 ([5E] +1).
Hence e(z) <p+ >0 [5E].

Furthermore, any string y = w0w;0- - - w,_;0w, with w; € W(0%) satisfies
d(z,y) =p+>b_o[ 5], then we have the equality for the eccentricity.
Given that the strings of W (0%) are the only ones that verify the eccentricity
of 0, by Proposition 4.2.3, the only strings z € F,, that satisfy d(z,2) = e(x)
are those of the form of y. U

We will use frequently the following consequence:

Corollary 4.2.9. For every x = 00101102 -..10% € F,, with p, ly, [, >
0; b, 11 > 1, n > 1, the following are true:
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(1) if 1, is an odd number and y € F, satisfies the eccentricity of x, then
y = (y'1) with y' € F,_1,
(i) if 1, is a not null even number, then there exist y', y" € F,_1, such that
y = (¥'0) and y = (y"1), both satisfy e(x),
(1ii) if L, = 0 and y € F, satisfy the eccentricity of x, then y = (y'0) with
y' c Fn—l-
Proof. Consider y € F, such that d(z,y) = e(z).
(i) Since I, is odd, the only string of W (0'7) is 1(01)27). Thus, y = (y/1).
(ii) Because [, is a not null even number, W (0') = {(10)*(01)"/2a + 2b =
ly, a,b > 0}. When b = 0 then @ > 1 and y takes the form y = (y/0).
When b > 1 then y = (y”1). The two cases are possible since [, is not
null.
(iii) Given that [, = 0, it follows from Theorem 4.2.8 that y = (y/0).
U

Notice that if we consider the beginning of a word z = 0°10110% ... 10% €
F, rather than the end, then the symmetrical of Corollary 4.2.9 occurs. In
this case (i), (i7) and (4i7) will be satisfied according to the parity of lo.

4.3 Eccentricity sequence of Fibonacci cubes

Considering two subsets, namely, ﬂ?,g’ and F, %, we will compute f(z,y),
the generating function of the eccentricity sequence of the Fibonacci cube’s
strings. As a corollary, the value of f, ; is also determined.

Proposition 4.3.1. Forn>1,k > 1,

cod __ pr-ev
nk — Jn—-1,k—1

Proof. Let z = 010110 ...10% € fﬁf’,f, thus p, lo > 0; 1, -+ {1, [, >
1; n>1, k> 1 and assume that [, is an odd number. Notice that [, — 1 is a
possibly null even number. Then z = (6(2)0) with 6(z) € F, such that

Olo10h ... 101 if lp >3
O(x) = { 010" - - 10%-11if [, = 1.

We have e(z) < e(6(z)) + 1. Furthermore, by Corollary 4.2.9, (i) and (éii),
there exists a vertex y = (y/0) with d(y,0(z)) = e(f(x)). Since d((y/01),z) =
e(f(x)) + 1, we have e(x) = e(6(z)) + 1, and € is a 1 to 1 mapping between
]:ﬁ,olg and F, % . O
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Proposition 4.3.2. Forn >3, k> 2,

-ev - ev - ev - ev
wk = ook T ok ot ik 0

Proof. Let z = 0°10"10%---10% € F,%, hence p, lo, [, > 0; ly,- -+ [, >
1; n >3, k> 2. Asl,is an even number, we will distinguish two cases:

(i) If I, > 2, then z = (2/00) with 2’ € F,¢,. Furthermore, by theorem
4.2.8, e(2') = e(r) =1 =k — 1 thus o' € F, %%, .

(ii) If I, = 0 then let us consider [,_;.
If 1, is odd, then z = (21) with 2’ € F,°4. If y satisfies e(z’), then
d((y0),z) = e(a’) + 1. Therefore, e(x') = e(z) — 1 and 2’ € F, >, .
If [, is even, then since [,_; cannot be null, x = (2’001) with 2’ € F,%,.
Because €(001) = 2, then e(z) < e(2’) + 2. The equality is reached
because if y is such that d(z,y) = e(y), then d((y010),z) = e(y) + 2.
Then 2’ € F, %%, ».

e
I3 - -ev -ev -od
Then z — 2’ is a 1 to 1 mapping between F %" and F, %, | U F ", ;U
“ev . By the previous proposition, f;°4, |, = f.¢,, , and we are done.
0

Theorem 4.3.3 ([CM12]).

[ y) = (2,y) = ma (4.3.1)
folwy) = 1) = T oy (432)

thus the generating function for the eccentricity sequence is

142y
n, k __
Z UER A 1—z(x+ 1)y

Proof. Let x = 0°10"1---10% € F ¢, thus p > 0; lo,l, > 0; Iy, ,L,-1 > 1
and p is even.

Let r(z) = 0'10%-1 ... 10% in . Then r is a 1 to 1 mapping between JF~
and F°".

Hence for any n, k>0, f,% = fr5 and f (2, y) = f (2, y).

The same applies for z € F °¢ therefore f 4 (x,y) = foU(z,y).

We will first demonstrate the equality (4.3.1), considering the linear recur-
rence given by Proposition 4.3.2, and the following initial values:

eV __ prev . peev . prev
00 —Ji11 = Jon —f2,2 =1 and



68 Chapter 4. Eccentricity Sequences of the Fibonacci and Lucas cubes

9 =0forn>1, f,7=0forn >3,
% =0 for k> n.
The generating function
Fory) = LYy
n,k>0
satisfies the equation
Fooy) =1+ay+aly+ 2%+ D L5yt
n>3, k>2
Then

F(ry) =14 zy + 2y + 2y + Z gt + LS S )2y
n>3, k>2

=1tay+a’y+a2"+ Y (L% 2" )2ty
n>3, k>2

n—2, k—2\ 2, 2
+ Z n2k2x y )ty
n>3, k>2

+ D (R ety

n>3, k>2
=1+ ay + 2%y + 2’y +(f (2, y) — Daly + (f “(z,y) — D2’y® + [z, y)2’y>.

Hence
1

[ y) = T2ty
For the equality (4.3.2), we will use the relation given by Proposition 4.3.1
and the initial values

(')f}Cd: nO—Oforn k> 0.

Thus
Z nO]glxnyk _ Z no]gll,nyk
n,k>0 n,k>1
—xy Y LY = ey f ().
n,k>1
Therefore,
-od LY
xr,y) = ———-——.
G e PO A
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Corollary 4.3.4 (|CM12|). For all n, k such that n > k > 1,

k k-1
o= (o) + (02)

Furthermore, foo =1 and f,o =0 for n > 0.

Proof.
£ e,y) ! (ay(1+2))"
Z, y = (L’y T
l—z(x+ 1)y =
b b b b
_ [y Zl,a( )] _ Zzwbyb( >
b>0 a=0 a b>0 a=0 a
" k
_ n k
-yt
n>0 k=0
Therefore,

cev k
wk T \p— k)
-od

The proof for f,% is similar to the proof of f,% since f°*(x,y) is xy times
f(z,y). Hence

[N, y) = % =y ;(I?J(l +z))°

b b
= 2y Z Z xa+byb (2) _ Z Z xa+b+lyb+1 (2)
b>0 a=0 b>0 a=0

n>1 k=1

Thus f,% = (ii) when n > k > 1, and f,% = 0 for n > 0. In conclusion

fok = £+ L= (1) + () O

Using the precedent corollary, it is immediate to deduce the value of
rad(I',) determined in [MS02]:

Corollary 4.3.5. The value of k > 0 that satisfies mkln{fn/y€ | far > 0} is
k=rad(T,) = [2].

2
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Notice that using
N (m—i
g ( . ) = Fm+1
: 0
=0
(see [GKP94], pg. 289, equation 6.130), we obtain

=2 (05 (2)
:Z<nl—z)+z(n—ll—z> it B = Fo

=0 1=0

which is consistent with
V(T = Fruta.

4.4 Eccentricity sequence of Lucas cubes

We will use the same notation for the strings in the Fibonacci cube to
define the strings in the Lucas cube. In all the previous sections, when we
referred to Fibonacci sets, we used the letter F. For the Lucas sets, we will
use the letter L.

Accordingly, the functions for the Lucas cube will be defined in the same way
as in the Fibonacci cube, but with a different letter, /.

In this section, we will compute the generating function of the eccentricity
sequence of the Lucas cube’s strings, ¢(z,y). For this aim, we will prove that
the sets ﬁflbk and FSZ are the same for all (a,b) excluding two sets, namely,
Lo4ot and £7?. We proceed to compute the values of ¢29¢ and ty 7 as well
as the values of f29°? and f7?. These results and Theorem 4.3.3 will give us
the eccentricity sequence that we search. As a corollary we obtain the value
of én,k-

Note further that A, is an isometric subgraph of I',, and @, i.e.:
Proposition 4.4.1. For all z,y € L,,n > 1,

dA,L(fU,y) = an(xvy) = dQn(:Evy)

Proof. We will prove this proposition in the same way that we proved that
dr, (z,y) = dg, (z,y) at the beginning of Section 4.2.

We have dy, (z,y) > dg, (x,y). Assume z = (2122 2,), ¥ = (V1y2 - Yn)
and let z = (2122 2,,) € @, be defined as
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then the path s = (v = s¢, 51, ,2,---,s; = y) considered in proposition
4.2.1 is a shortest path in @), from x to y using only vertices of A,,, thus the
equality is obtained. O

Proposition 4.4.2. Forx € L,,,n > 1,
ex(2) < er, (@)

Proof. Let x € £,,. Then using proposition 4.4.1 and the fact that £, C F,,
we have

en, () = ?é%}f{d/\ (x,2)} = max{dp (x,2)} < inax{dp (x,y)} =er,(2).

Proposition 4.4.3. For x € £, \ L% n > 1,

ea, () =er, (z).

Proof. Let x € £, \ £29°? and without loss of generality, let us assume that
x ends with an even (eventually null) number of 0’s. By Corollary 4.2.9 (ii)
and (iii), there exists y € F,, such that dr, (z,y) = er, (z) and y ends with a
0. Therefore, y € L,, and

da, (z,y) = dp,(z,y) = er, (z).

Let us observe that ¢, ; can be decomposed as follows:

_ podod od ev* od ev od ev*ev* ev *& o @ev Ja)%)
U = (2000 4 000" 4 (002 02000 4 (20 4 + 070 + 077,

Corollary 4.4.4. Forn >0, k > 0,

od ev* ev*od __ rodev*
Gt =00 =,
od® Zod _ podo

En k gn k — Jnk >
evtev® _ pev*ev*

n,k - Jnk )

ev* — 6@61} — Jev*

n,k n,k
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Proof. When n = 0 all these numbers are null. Assume n > 1 and let z € F2°
with (a,b) # (&, @) then x € L.
Furthermore if (a,b) # (od, od) we have, by Proposition 4.4.3, e5, (z) = er, (z)
and
Ly = Fik
O

In order to obtain £, ;, we will compute the values of the functions ¢2 % in
terms of fgz For this reason, we will come again to the Fibonacci cube in
this part of the section.

Proposition 4.4.5. For n,k > 2,
dod dod d d od
Tk = ol 2+f0621}k ot focok-1

Proof. Let z = 0%1011-.-10% € ]-"Odk‘)d, n,k > 2, thus p, ly, I, > 0;

n

li,--- ,l,—1 > 1 and ly, [, are odd numbers. Let us consider [,. We distinguish
2 cases:
(i) If I, = 1, then p # 0 and z = (2/10) where 2’ is either in F2?¢"" or in
g

Let y € F,—o such that d(2',y) = e(a’), then d(y01,2'10) = e(z’) + 2
and since e(10) = 2 then e(x) < e(z’) + 2.
Therefore e(z) = e(2’) + 2 and 2’ € F45% , or o’ € Folgh .

(ii) If I, > 3, then z = (2/00) with 2’/ € F2?9". There exists y € F,_» such
that d(y,2’) = e(2') then d(y01,2'00) = e(z’) + 1 and e(x) < e(2’) + 1.
Therefore e(x) = e(2’) + 1 and 2’ € F4%% ;.

n

Then z — 2’ is a 1 to 1 mapping between F29°¢ and F4%% , U Fols o U
Fg . O

Consider a string = = 0°10"1---10% € F”". We will demonstrate next,
that when we remove a 0 from 0%, we obtain a string that belongs to .FOd‘{dk\{
words composed by an odd number (n — 1) of 0’s }.
For this purpose, for even n and eccentricity k, let g;f" be the number of
strings in F,, composed only by 0’s. Notice that by Proposition 4.2.7, n = 2k,

then
goven — 1 ifn=2k
.k 0 otherwise.

Proposition 4.4.6. Forn>1, k>0,

odev* __ podod even
n,k — Jn—1,k gnk :
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Proof. Let x = 0°10"1---10* e F4*", n > 1, k > 0, thus p > 1;
lo,l1,-++ 1,1 >1and [, > 2. Then z = (2/0) with 2’ € F°?9? such that

2 = 01011101,

Then by Corollary 4.2.9 (i), all the strings of F,,_; that satisfy the eccentricity
of 2’ have the form y = (y'1). Thus e(z') = e(z), and 2" € F2?9%. Conversely,
for any string z € F2%9? that is not composed only by 0’s, the string (20) €
Jt'gdev*‘

Therefore, z — 2’ is a 1 to 1 mapping between F25" and Fo?9% \ { words
composed by an odd number (n — 1) of 0’s }. O

Proposition 4.4.5 can be rewritten in terms of f°?°¢ using the result of
Proposition 4.4.6, which gives us the next

Proposition 4.4.7. Forn > 3, k > 2,

odod __ podod od od od od even
nk = Jn—2k-2 T Jn—2k-1 T Jn-3k—2 ~ Gn—2k—2-

Notice that

geven(x,y) _ Z grel'i)];anxnyk

k>0
= Z eyt =14+ 2%y + ahy? + 2P 4
n,k>0
1
- (4.4.1)
1— 22y
Proposition 4.4.8.
od od l’y(l B ZL'Qy - x3y2)
z,y) = : 4.4.2
Py = =i - =) (42
4,3
Foe () = - (4.4.3)

(1 +2y)(1 = 2%y)(1 — wy — 2°y)’
Proof. Considering that

odod — 1 and f24°? = 0 for other values n < 2 or k < 1, then

deOd(iC,y) _ Z Ziodxnyk

n,k>0

=y + Z ;zfikodxnyk

n>3, k>2
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Therefore by Proposition 4.4.7

dod dod dod dod k
[N, y) —ay = Z (frihe + oot + o5 he — Inak—2)T"Y

n>3, k>2
2.2 odod n, k 2 odod n,  k
n>1, k>0 n,k>1
3,2 odod, n, k 2,2 even n, k
+ a7y E nk TY XY E Ink TY
n,k>0 n>1, k>0

thus

ferol (@, y)—ay = 2Py? f1U @, y)+aty £ (@, y)+2ty? £ @, y) 2Py (g7 (2, y) - 1)

and by relation (4.4.1),

o 22y
fora ) (L= 2y’ =’y —ay’) = ay + 2%y + 5
thus ) 5 5
deOd(l' y) _ l’y(l — Yy — Ty ) )

’ (1+zy)(1 — 2?y)(1 — 2y — 2%y)
Now we will prove equation (4.4.3). First we observe that f§4¢" = 0 then

fodev* (ZL‘, y) _ Z ;iiev* xnyk:

n>1, k>0

and by Proposition 4.4.6,
) = Y (s gieatyt = Y fesetan iyt Y germany

n>1, k>0 n,k>0 n>1, k>0
= medOd(xv y) - (geven(l,7y) - 1)

Therefore, by relation (4.4.1),

od ev* Ilf2y(1 B $2y - 1/'3?/2 513'2'3/
f ¢ (l’,y) - 2 ) 2 - 2
(14 zy)(1 —2?y)(1 —zy —2%y) 1-2%
x4y3

(I +2y)(1 —22y)(1 — zy — 22y)

Proposition 4.4.9. Forn,k > 1,

od?d __ rodev* + od od
nk — Jn—-1k—1 n—1,k—1"
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Proof. Let z = 0°10"1---10% € F%% n, k > 1.

Thus p > 1; ly, {4, -+ ,1,-1 > 1 and lp = 0. We have therefore, z = (2'1) with
2’ either in F249% or in FoU5".

Let y € F,,_1 such that d(z/,y) = e(2').

Then d((z'1), (y0)) = e(z’) + 1 and e(z) < e(z’) + 1, thus e(z) = e(2) + 1.
Therefore, 2’ belongs to deOd _, or to ]:"d"i”k 1

n

Then z — 2’ is a 1 to 1 mapping between ]-"T‘; and Foi99 U F . O

n

Proposition 4.4.10.

oa . I2y
f7 ) = (1+ay)(1 — zy —a2y)’

Proof. Considering that
13,%@ = &C’lcz =0 for n, k > 0, we have
od@ Z fodzxn k
kY
n,k>1

Then from Proposition 4.4.9,

Fo ) = > (0 + Dyt

n,k>1

_ od ev* " 1 k: 1 od od " 1, k—1

= E (foi )Ty + E e T Y Ty
n,k>1 n,k>1

= [ (w, )y + fON @, y)ay.
Thus by Proposition 4.4.8,

4,3 2 3,2
0 rhySxy ry(l — a2y — 2°y°)xy
[, y) =

(It ay)(1 - 2%y)(1 — 2y — 2y) " (14 zy)(1 —2%y)(1 — 2y — 2%y)
_ 2’y*(1 - z%y)
(1+zy)(1 —22y)(1 — xy — 2%y)
B 172y2
(T4 ay) (1 —ay —a?y)

Proposition 4.4.11. Forn>1, k>0,

fev*Q_ od &
nk T Jn—1k

thus
[ y) = xf(x,y).
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Proof. The equality is true when n =1 or n = 2.
Then let & = 00104102 ---10% € F¢%?, with n > 3 and k > 0. Thus p >
Lilo>2 0y, -1 > 151, =0.
Because [y > 0, then z = (02') with 2’ € F2%2.
By Proposition 4.2.2,

e(x) <e(x')+ 1.
Let’s suppose that e(z) = e(z’) 4+ 1, then there exists y = (1y’) such that
d(y',z') = e(z’). By a symmetry argument and Corollary 4.2.9, /' must begin
with 1 which leads us to a contradiction.
Therefore, e(x) = e(2’). Thus  — 2’ is a 1 to 1 mapping between ]—"ﬁf’,:g and
Fr,

n

Considering the fact that fgf;:@ =0 for k£ > 0, we have:

fev*@(l,,y) _ Z ev @xnyk Z ev Zl,nyk

k>0 n>1,k>0
= Y aff N = e (e y).
n>1,k>0
]
Proposition 4.4.12. Forn > 3, k > 1,
ff,i?: fefk 1+f@01dk 1
Proof. Let z = 001041 .--10% wp with n > 3,k > 1. Thus p > 2;

Ly by > 1and Iy =1, = 0.

Then z = (2'1) with 2/ € F2¢" if [, ; is an even number and 2z’ € F2% if
lp—1 is odd.

By Proposition 4.2.2, e(z) < e(2’) + 1.

Let ¥/ € F,—1 such that d(2,y') = ( "), then d((y/0), (2'1)) = e(2) + 1.
Hence e(z) = e(a’) + 1. Thus x — 2’ is a 1 to 1 mapping between F77 and

& ev™  od
n—1,k—1 fn 1,k—1" U

Proposition 4.4.13.

ry(2®y? + 2%y°)
(1 +2y)(1 —zy — 2%y)

[Pz, y) =14+ ay +

Proof. Let us consider the next initial values:

(?,0@2 11 —1andf = 0 for other values n < 2 or k£ = 0.
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Then

FP0wy) = Y f22amy"

n,k>0

=14+zy+ Z f22amyk
n>3,k>1

Then by Proposition 4.4.12,

Poey) —1—ay= > (2D + [ )a"y
n>3,k>1

= 2y Z (fq?,ljv*+f£fikg)xnyk

n>2,k>0

I evx od & ()
n,k ’I’L,k

Hence
[Pz, y) =1 —ay = ay(f7 (z,y) + f°(z,y)).

From Proposition 4.4.11,
22z, y) = 1+aytay(z o (z,y)+ 77 (2,y)) = 1+ay+ay(1+z) 17z, y).

Substituting f°¢?(z,y) from Proposition 4.4.10, we obtain the desired result.
U

Proposition 4.4.14. Forn > 3, k > 1,

godod_ od od
nk T JInk+1

thus
godod(x’ y) — y_ldeOd(l’, y)

Proof. Let x = 001011---10» € EflflkOd, n > 3,k > 1. Thus p > 0;
loly -+ 1,0, > 1

By Corollary 4.2.9 (i) and by symmetry, every y such that d(z,y) = er,(z)
has the form y = (1y/1), with v/ € F,, 5. Then, y ¢ £, and ey, () < er, (z).
Furthermore, note that the string (1y'0) € £,,. Thus d((1y'0),z) = er, (z) — 1.
Hence ey, (z) =er,(z) — 1.

Thus, 2 — z maps L% into Fo4°0,.

For the second part of the Proposition, consider the initial values
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EOdOd =1 and KOdOd = () for other values n <2 or £ = 0.

Thus
€Od0d(l’,y) _ Z Eododxnyk — x4+ Z ;detfl'r y

nk>0 n>3k>1

d od k 1

—r+y! Z ey

n>3,k>1
But
deOd(CL’ y) =2y + Z deOdZL'nyk,
n>3,k>2

thus

Nz y) = o+ y T (fN 2 y) —ay) =y N e y).

Proposition 4.4.15.
7% (z,y) = 1.

Proof. The empty word is the only string that belongs to some L, that
neither begins nor ends with a 0. Thus fff =0 forn > 1. O

Theorem 4.4.16 (|[CM12|). The generating function for the eccentricity se-
quence of Lucas cube 1s

1+ 2%y 1 1—2z
= U™yt = — :
) n%;() wy 1—:Uy—:172y+1+;1:y 1 — a2y

Proof. Recall that
gnk — godod + godev + go + gev *od + gev ev* + éev + E@ + g@ev + Ei?

and we have the same decomposition for f, .
From Corollary 4.4.4, when (a,b) # (od,od) and (a,b) # (@,9), then
(2t = fot. Thus

fnk o odod f + Eodod + f

Thus, the generating function

x,y) = Z En,kx”yk

n,k>0
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satisfies the equation

Ua,y) = D (fuk = J20 = 27+ 050+ 027).

n,k>0

By Theorem 4.3.3 and Propositions 4.4.8, 4.4.13, 4.4.14 and 4.4.15, we con-

clude that

14+ zy ry(1 — 2%y — 239>
t(ayy) - - ( :

l—ay—a2%y (1+xy)(1—22y)(1 — 2y — 2%y)

(e )
+y7! (( e >+

1+ zy)(1 —2%y)(1 — 2y — 2%y)
4

1

1+ — 2%y + 2%y? — 23y + 23y% — aty? — 253

(1+2y)(1 —2%y)(1 — 2y — 2%y)
1 11—z . 1+ 2%y
l+zy 1—2%2y 1—ay—a2y

Corollary 4.4.17 (|CM12|). For all n,k withn >k > 1,

. k N k—1 N
T\ —k n—k—1 Enk

—1  if n =2k,
Enk = 1 z/"ank—i—l,
0 otherwise.

where

Furthermore, oo = lig =1, £,0 =0 forn > 1 and

0 2 ifnis even (n > 2),
Tl 00 df nois odd.

Proof. By the previous theorem,

1 %y 1

11—z

U(z,y) =

We will analyse each term of this sum separately.

+ - .
l—ay—2a2%y 1—aoy—2%y 1+2xy 1—2%y

(4.4.4)



80 Chapter 4. Eccentricity Sequences of the Fibonacci and Lucas cubes

m = (ey(1+2))" = Z”ﬁbybixa (Z)

b>0 b>0 a=0
’ b "k
_ a+b, b _ n, k
= g E "y (a) = 5 E <n— k>x Y (4.4.5)
b>0 a=0 n>0 k=0
%y ’ b
2 b 2 a+b, b
T 5, =Ty ry(l+x =Ty x ?J()
Rt D ICTEE R I
b n—1
. b k-1 \
— E E T +b+2yb+1 <a> — E § (n N k B 1)1‘ yk (446)
b>0 a=0 n>2 k=1

The third term of the sum is

1 +1xy B ;(_W)b = HZZO(—U”I"y”- (4.4.7)

Finally, the last term will be decomposed as follows:

11—z T 1

_l—nyzl—aﬂy_l—x?y’

1 —xx2y =) (*y) =) @™y, (4.4.8)

a>0 k>0

and the second sub-term

=) = - (149)

1— a2
Yy a>0 k>0

Equations (4.4.5), (4.4.6), (4.4.8) and (4.4.9) give us the desired result when
k #0, k # n.

When k = 0, equation (4.4.5) contributes with 1 when n = 0; equation (4.4.7)
contributes with 1 when n = 0; equation (4.4.8) contributes with 1 when n =1
and equation (4.4.9) contributes with —1 for n = 0.

When k = n > 1, equation (4.4.5) contributes with 1 and equation (4.4.7)
contributes with (—1)". O

Notice that for n > 2,

n n—1 k k’—l
14 - n gn Enn»
OUTES Wi [ ) R Rty | ESHARRTR
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where
En|n] = (=)™ L,o=0 and f,, =1+ (-1)"

Therefore,

Zﬁ”’“_z(nfk>+n_: <n—§—k)

k=0 k=
= I'pt1 _I'Fn—l - Ln = |V(An)|

4.5 Eccentricity sequence of Lucas cubes
Second version

In this section, we give an alternative proof of Theorem 4.4.16, obtaining
the generating function of the eccentricity sequence of the Lucas cube’s strings
with a direct approach.

Let us recall that in section 4.3, we obtained the generating function of all
the strings that end with an even number of 0’s (eventually null) along with
the generating function of all the strings that end with an odd number of 0’s.
That is, f*(x,y) and f°¢(z,y) respectively. (Theorem 4.3.3.)

Recall further that

Jre = Fok + ok = fak £
odod + fodev fDd@ fev od fev ev* fev *o f@Od fzev fik@

and that the same decomposition applies for ¢, .

In section 4.4, we used the fact that €25 = (29 = fao} for (a,b) # (od, od)
and (a,b) # (9, @) (Corollary 4.4.4), which gave us the next equation:

fn p — fodod + godod + Ei?

Then, using f,, » and computing the missing generating functions of this equa-
tion, we obtained ¢, j.

We will now compute ¢, ;, directly, using each of the nine terms that com-
pose it. For this purpose, we will take back the terms already obtained in the
previous section, namely:

ooz y) =yt fo%°%x,y), Proposition 4.4.14,
_ xy(l — 2y — 2%y?)
(14 ay) (1 —22y)(1 — 2y — 22y)

, Proposition 4.4.8,
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godev* (.I', y) — fodev* (.Z', y)
l’4y3

N Proposition 4.4.3
(1+2y)(1 —22y)(1 — xy — 22y)’ Toposition )

l'2y2
(1+2y)(1 — 2y — 22y)

0072 (2, 9) = fo19(x,y) = , Proposition 4.4.10,

(% (x,y) = f (2, y) = x £°*?(x,y), Proposition 4.4.11 and

0??(x,y) = 1, Proposition 4.4.15.

In order to compute ("¢ (x,y), the generating function that has not
been obtained up to now, we will consider a string x = 0°1011-.-10% €

* * 9
Feu. e\ {words composed by an even number n of 0’s}, and demonstrate
’

that when we remove a 0 from 0'7, we obtain a string that belongs to fﬁﬂ*lfg.

Recall that g;%¢" was defined as the number of strings in F,, composed only
by 0’s for even n and eccentricity k and that by Proposition 4.2.7, n = 2k,

then
wen ) 1 ifn=2k
Ink = 0 otherwise.

Recall as well that

1
even :,B — .
9" (2 y) = 1= =
Proposition 4.5.1. Forn >1 and k > 0,
EeV*k ev*k evx Od even
n,k = Jn—1k + gn,k )

thus .
22y — aly? — oty

(1 +zy)(1 = 2?y)(1 - zy — 2%y)

Proof. Let z = 0°10"1---10" € Fg4 " that is not composed only by 0’s
with n > 1, kK > 0, thus p > 0; lo, [, > 2 and ly,---1,_y > 1. Then = = (2/0)
with 2/ € Fe*°? such that 2/ = 00101 -..10%~1. Then, by Corollary 4.2.9
(i), all the strings of F,_; that satisfy the eccentricity of 2z’ have the form

y=(y'1).

fe’l)* ev*(l,’ y) —
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On the other hand, for any string y € F<%°¢, the string (y0) € Fe*v*,
Therefore,  — 2’ is a 1 to 1 mapping between JF " \ { words composed
by an even number n of 0’s } and Fe%°d.

For the second part of the proposmon, let us consider the following initial

conditions:

Gerr = frorert =0, for k > 0, then we have

fev*ev*(l,’y) — Z fev*ev* n k

n>2,k>0
_ ev* od even\ ..n, k
- E ( n—1,k + gn k ) Y
n>2,k>0
. evkod, n, k even .n, k
n>1,k>0 n>2,k>0

thus

fev*ev*(x’y) — xfev*od(a:’y) + (geven(mjy) _ 1)

_ (z%y") Y
(14 zy)(1 — 22y)(1 — 2y — 2%y) 1 —a%y

B x2y . $4y2 _ $4y3

(T4 ay)(1—22y)(1 — 2y — 2%y)’

g

Theorem 4.5.2 ([CM12|). The generating function for the eccentricity se-
quence of the Lucas cube is

1+ 2%y 1 J—
= O "y = — :
) n;() +EY 1—ay 2y+ l+zy 1—2%

Proof. The generating function

ry) = Y logz"y
n,k>0
satisfies the equation

E(l’,y) — Z (godod zflkev* +f§fjk@+ ev Od‘l' ev ev* +

n,k>0

ev* o Jod @ev [o4%]
n,k + n,k + + n,k)'
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By Propositions 4.4.14, 4.4.8, 4.4.3, 4.5.1, 4.4.10, 4.4.11 and 4.4.15, we con-
clude that

g(m y) _ ZL’(]_ . [)L'Qy - $3y2> + I4y3
’ (I +zy)(1 —2?2y)(1 —zy —2?y) (1 +ay)(1 —2%y)(1 — 2y — 2%y)
+ 172?/2 + $4y3
I+zy)(l —zy —2?y)  (1+zy)(1 —2%y)(1 — 2y — 2%y)
. xzy . x4y2 . x4y3 . x(xzyQ)
(1 +ay)(1 —22y)(1 —oy —2%y) (1 +ay)(l -y —2%)
x2y2 $($2y2)

- (I+ay)(1 -2y —2?y) (1 +2y)(1 -2y — 2%Y) !

1 +x— a2ty + a2ty -y + 2ty — a2ty —aby?
(1 +ay)(1 - 2%y)(1 — 2y — 2%y) '

Therefore,
1+ 2%y 1 1—x

Ux,y) = — .
(z.9) l—oy—2a2?y 14+zy 1—2%

g

As a Corollary, which has been proven in the previous section, the number
of vertices of A,, with eccentricity k is stated below.

Corollary 4.5.3 (|CM12|). For all n,k withn >k > 1,

A AN T
kT \n—k n—k—1 Enk

-1 ifn=2k,
Enk = 1 zfn:2k+1
0 otherwise.

where

Furthermore, oo = tlig =1, £,0 =0 forn>1 and

0 = 2 ifnis even (n > 2),
L0 ifmods odd.



CHAPTER 5

Domination number and
2-packing number

An automorphism of a graph is a permutation « of its vertex set which
preserves adjacency: if (uv) is an edge, then so is (a(u), a(v)).
The automorphism of a graph reflect its symmetries. For example, u,v € V(G)
if there exists the automorphism « which maps u to v, then v and v are alike
in the graph and are referred to as similar vertices. See [BMOS].
In this sense, while we remove certain 'mon-symmetric’ vertices of the Fi-
bonacci cube to generate the Lucas cube, we get graphs with more symme-
tries.
In this chapter, we study these cubes from the domination and 2-packing
points of view. While searching for subsets of a graph, it is useful to know
symmetries of the graph, hence we describe the automorphism groups of these
graphs. Next, we investigate the domination number of the Fibonacci cubes as
initiated by Pike and Zou in |PZ12|, and also study that of the Lucas cubes.
We give some connections between the domination number of Fibonacci cubes
and Lucas cubes. Then we construct dominating sets for I'g and for Ay and
a lower bound on the domination number of A,. A graph invariant closely
related to the domination number is the 2-packing number. First, we obtain
a lower bound for the 2-packing number of the Lucas cubes and therefore, for
the Fibonacci cubes. We also give the values for the 2-packing number of both
cubes including those of dimension 'y and Aqp.
Notice that the most part of this chapter is published in [CKMR11].

For 0 < k < n,let I',, ; be the set of vertices of I',, that contain k£ 1's. Hence
I, is the set of vertices of I', at distance k from 0". See figure 5.1. A, is
defined analogously. In particular, I, g = A, = {0"} and I',,; = A, =
{10m1,010"2,...,0" "1}, If wv € E(T,), where uw € T, and v € T, 54
(k > 1), then we say that v is a down-neighbor of u and that w is an up-
neighbor of v. The same terminology again applies to Lucas cubes.

85
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010010

010000

r
00101 0000 60
10101 ® I
r
00100 @/ 0000 02
10101 1000 Lo3
0010(95@ 000001
101000 1000
101001@/ 100001 00101

Figure 5.1: I'g 4, k = 0,1, 2, 3.

For a binary string b = b1b, . .. b,, let b be the binary complement of b and
let b® = b,b,_1...b; be the reverse of b. For binary strings b and ¢ of equal
length, let b+c denote their sum computed bitwise modulo 2. For 1 <7 < n, let
e; be the binary string of length n with 1 in the ¢-th position and 0 elsewhere.
According to this notation, I',,; = A, 1 = {eq, eq,...,€,}.

Let G be a graph. Then D C V(G) is a dominating set if every vertex
from V(G) \ D is adjacent to some vertex from D. The domination number
7(G) is the minimum cardinality of a dominating set of G. A domination set
D(T'¢) = {010000,001010,001001, 000101, 100000} of I's can be seen in figure
5.1.

Aset X C V(G) is called a 2-packing if d(u,v) > 2 for any different vertices
uw and v of X. The 2-packing number p(G) is the maximum cardinality of a
2-packing of G. Notice that {010010,010101,001001, 101010, 100100} is a 2-
packing set in T'g and therefore, v(I's) = p(I's) = 5.

It is well known that for any graph G, v(G) > p(G). See [HHS98|.

The automorphism group of a graph G is denoted by Aut(G). For instance,
Aut(C,) = Dy, where C,, is the n-cycle and Dy, is the dihedral group on n
elements. Recall that Dy, can be represented as (z,y | 2% = 1,y" = 1, (xy)? =

).
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5.1 Automorphism groups

In this section we determine the automorphism groups of Fibonacci cubes
and Lucas cubes.

Let n > 1 and define the reverse map r : I',, — I',, with:
’f‘(blbgbn) :bR:bnbn_lbl (511)

It is easy to observe that r is an automorphism of I',,. We are going to prove
that r is the only nontrivial automorphism of T',,. For this sake, the following
lemma is useful.

Lemma 5.1.1. Let n > 3 and k > 2. Then u,v € I',,;, have different sets of
down-neighbors.

Proof. Since u,v € I';,j,, d(u,v) > 2. We distinguish two cases.

Suppose first d(u,v) = 2 and let u and v differ in positions ¢ and j. Since
u,v € I'y, we may assume without loss of generality that u; = v; = 1 and
uj; = v; = 0. Moreover, u and v agree in all the other positions. Since k& > 2,
there exists an index ¢ # 4, j such that uy = v, = 1. Then u + €, is a down-
neighbor of v but not a down-neighbor of v.

Assume now d(u,v) > 3. Let i be an arbitrary index such that u; # v;. We
may assume that u; = 1. Then u + ¢; is a down-neighbor of v but not of v. [

Theorem 5.1.2. For any n > 1, Aut(',) ~ Z,.

Proof. The assertion is clear for n < 2, hence assume in the rest that n >
3. Let @ € Aut(T',,). Since 0" is the only vertex of degree n, a(0") = 0™.
Therefore, o maps I', 1 onto I'yp. Let I, ; = {107,011} and T, ; = Ty \
I, ;. Since 10"~ and 0"~'1 are the only vertices of degree n — 1, & maps [
and F;;J onto I", | and F;;l, respectively. We distinguish two cases.

Case 1: o(10"') = 10" 1.

Then, because a maps I}, | onto I}, |, we have a(0""'1) = 0"~'1. Among the
vertices of F;’L’l, only 010”2 has no common up-neighbor with 10"~!. There-
fore, (010""%) = 010"~2. In turn, among the remaining vertices of T',, |, only
0010"~3 has no common up-neighbor with 010"~2. Therefore «(0010"73%) =
0010"~3. By proceeding with the same argument, o fixes F;;l pointwise and
hence fixes I'),; pointwise. Now apply Lemma 5.1.1 and induction on k to

conclude that « fixes I',, , pointwise for all k. Therefore a = id in this case.
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Case 2: o(10"') = 011,

Now a(0"'1) = 10"~*. Among the vertices of T, ;, only 010”2 has no com-
mon up-neighbor with 10"~!. Thus «(010"72) = 07210, which is the only
element of I', | with no common up-neighbor together with a/(10"~!) = 0"~'1.

1"

By proceeding with the same argument, « reverses all the elements of I, |,
that is, apr = T and consecutively ar, ; = rr,,. By Lemma 5.1.1 and
induction on k, the same holds for any ', x, k > 2. Therefore o = r in this

case. O

Let n > 1. An equivalent way to define A, is that it is the subgraph of
(2, induced on all the binary strings of length n that have no two consecutive
1’s in circular manner. This definition is more symmetric than the definition
of the Fibonacci strings, so it is reasonable to expect that Aut(A,) is richer
than Aut(I',). This is indeed the case. Define ¢ : A,, — A, by

By the above remark it is clear that ¢ € Aut(A,). Zagaglia Salvi |Zag02|
proved that the automorphism groups of the Lucas semilattices are the dihe-
dral groups. The arguments that determine the automorphism group of the
Lucas cubes are in a way parallel to the arguments from [Zag02|, hence we
next give just a sketch of them.

Note first that Lemma 5.1.1 (with the same proof) applies to Lucas cubes
as well. Let o € Aut(A,). Suppose that for some a,b € {0,1,...,n — 1},
a(10m71) = 021021 and (0" 1) = 0°10"*1, where computations are
mod n. Then either b = a — 1 or b = a + 1 because a(10""!) and a(0""'1)
cannot have a common up-neighbor. When b = a — 1 we get o = ¢ and in
the other case o = ™! or. We conclude that Aut(A,,) is generated by r and
p® for 0 < a <n —1, and hence:

Theorem 5.1.3. For any n > 3, Aut(A,) ~ Dsy,.

5.2 The domination number

In this section we consider the domination number of Fibonaci and Lu-
cas cubes. We first interrelate their domination numbers. Then we discuss
exact domination numbers for small dimensions. The section is conluded by
establishing a general lower bound on the domination number of Lucas cubes.

Proposition 5.2.1. Let n > 4, then
(i) Y(An) < ¥(Tno1) +7(Tnos),
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(ii) y(An) < ’Y(Fn) <y(A) + V(Fn—4) .

Proof. (i) V(A,) can be partitioned into vertices that start with 0 and vertices
that start with 1. The latter vertices are of the form 10...0 and hance can
be dominated by 7(I',,_3) vertices while the former vertices can be dominated
by 7(I',—1) vertices.

(ii) Let D be a minimum dominating set of I',, and set

D' = {u | uis a Lucas string from D} U {0by...b, 10 | 1by...b, 11 € D}.

A vertex 1by...b,_11 dominates two Lucas vertices, namely 0by...b,_11 and
1bsy ... b,_10. Since these two vertices are dominated by 0b, .. .b,_10, we infer
that D’ is a dominating set of A,. It follows that v(A,) < ~(I',).

A dominating set of A,, dominates all vertices of I',, but the vertices of the
form 10b3 . ..b,_201. These vertices can be dominated by ~(I',,_4) vertices. [J

It can be easily checked that Proposition 5.2.1 (i) holds for any n > 2, and
that the first inequality of Proposition 5.2.1 (ii) holds for any n > 0.

Pike and Zou |PZ12] obtained exact values of «(I',,) for n < 8, see Table 5.2.
By computer search they found 509 minimum dominating sets of I's. Following
their approach we have computed the domination numbers of A,, n < 8, see
Table 5.2 again.

Hence the smallest Fibonacci cube and Lucas cube for which the domina-
tion numbers are not known are I'g and Ag. Since y(T",) < Y(T1) +7(Th_2),
it follows that vy(I'g) < 20, cf. [PZ12, Lemma 3.1]. In order to find a smaller
dominating set we have used a local search procedure, that is, to get a new
dominating set we have replaced one or more vertices in the current dominat-
ing set with one or more vertices in their neighborhood. In this way we were
able to construct a dominating set of I'g of size 17 given on the left-hand side
of Table 5.1. Similarly we have found a dominating set of Ag of order 16 given
on the right-hand side of Table 5.1. Hence:

Proposition 5.2.2. y(I'g) < 17 and y(Ag) < 16.

While we conjecture that y(I'g) = 17 and v(Ag) = 16 hold, Ili¢ and Miloge-
vi¢ confirmed it later in [IM]. Furthermore, they established that ~v(I'1g) = 25.

Pike and Zou |PZ12| also proved that for any n > 4,

Y(In) = [MW :

n—2
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010000000 | 000000000
100100000 (000010000
010100000 |, 000000100
001000100 (000100100
000010010 (000100010
000001010 |, 000010010
000001001 (101000010
101001000 (100101000
101000010 (010100001
1000101001 010001010
100000101 /001001001
001010001 (/101010100
000101001 101001010
000101010 1010101001
000100101 1010010101
101010001 /001010101
010010101

Table 5.1: A dominating set of I'g and a dominating set of Ag

We next prove a parallel lower bound for the domination number of Lucas
cubes. For this sake we first consider degrees of some specific vertices in Lucas
cubes.
Recall that A, ; is the set of all the vertices with exactly one 1. In addition,
set
A, ={071010"""" |0 <a<n—1},

where we again compute by modulo n. Hence A/ , is the subset of A, 5 con-
sisting of the Lucas strings containing (in circular manner) 101 as a substring.

Lemma 5.2.3. Let n > 7. Then for the Lucas cube A, the followings hold.
(i) The vertex O™ is the only vertex of the mazimum degree n.
(i) The vertices of A1 have degree n — 2.

(i4i) Among the vertices with at least two 1’s, only the vertices of A, 5 have
degree n — 3 and all the other vertices have degree at most n — 4.

Proof. (i) and (ii) are clear.

(iii) Let w € A, for some k& > 2. Then u has k down-neighbors. The up-
neighbors of u are obtained by switching a bit 0 into 1. Let iy <o < --- <1y
be the positions in which u contains 1. Throughout the proof, the indices of
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i’s will be considered by modulo k and ¢; by modulo n. As no consecutive bits
of 1's are allowed, ;14 —i; > 2 forall 1 < j <k. Let [; = {i; — 1,i; + 1} be
the set of the positions which are adjacent to ¢; for each 1 < j < k and let
I = U1§j§k I;. Then any bit which is not in I can be switched to 1 and hence
the number of up-neighbors of u is n — k — |I|. Therefore, deg(u) = n — |I|.
Note that [;NI; = 0 if |j—j'| > 2, therefore by pigeon-hole principle, |I| > k.
The equality holds if and only if I; () I;41 # 0 for all 1 < j <k, which occurs
if and only if 7,1 = i; +2 for all 1 < j < &, which is in turn if and only if n is
even and k = %. But in this case, deg(u) = § <n —4 as n > 8. In the other
cases, |I| > k41 and hence deg(u) < n—k—1.If k£ > 3, then deg(u) < n—4.
Assume k = 2. Then deg(u) < n — 3, where the equality holds exactly when

[I| = 3 and I, () Iy # () which means that u € A; ,. O

Lemma 5.2.4. Any | vertices from A , has at least | down-neighbors, that
is, at least | neighbors in A, 1.

Proof. For 1 <i <[, let A; be the set of down-neighbors of v; € A;z,z- Then
|A;| = 2 for each i. Considering bits by modulo n, each vertex 04107~}
in A,; can be a down-neighbor of at most two vertices 0°1010" “~* and
0%721010""*~!, and hence at most two of vy,...,v;. By pigeon-hole princi-
ple, the assertion is true. ]

To establish the announced lower bound, we will apply the natural concept
of over-domination, just as it is done in [PZ12|. It is defined as follows. Let
D be a dominating set of a graph G. Then the over-domination of G with
respect to D is:

ODg(D) = (degg(v) + 1) — [V(G)] . (5.2.1)

veD

Note that ODg(D) = 0 if and only if D is a perfect dominating set [L.S90,
HHO7|, that is, a dominating set such that each vertex is dominated exactly
once.

L,—2
Theorem 5.2.5. For any n > 7, y(A,) > [—3”-‘

n —

Proof. Let D be a minimum dominating set of A,. Set D; = D N A, ; and
Dy = DNA,,, and let k = [D N A, and [ = [D N A],|. Then clearly
0 < k,l < n. Note that the over-domination of G with respect to D can be
rewritten as

OD(G)= > (fveD|duwv) <1} -1). (5.2.2)

ueV(Ay)
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For a vertex u of A, set t(u) = {v € D | d(u,v) < 1}| —1. As D is a
dominating set, t(u) > 0 for all u € V(A,). We now distinguish two cases.

Case 1: 0" € D.
Combining Lemma 5.2.3 with Equation (5.2.1) we get

ODD) < (n+1)+k(n—1)4+1ln—-2)+((A,) —k—=1-1)(n—3)— L,

= Y(A)(n—=3)+2k+1+4—-L,.
Also as t(u) > 0 for all u € V, Equation (5.2.2) implies

OD(D) > t(0") + Y t(v) > 2k.

veEDq

Therefore y(A,,) > [fo=t4] > [Lozncd]

Case 2: 0" ¢ D.
Again, combining Lemma 5.2.3 with Equation (5.2.1) we infer

OD(D) kn—1)4+1ln—2)+ (v(An) =k —=1)(n—3) — L,

YA (n—3)+ 2k +1—L,.

Let A be the set of down-neighbors of D,. Then for u € Dy N A, t(u) > 1.
By Lemma 5.2.4, |A| > [ and hence |Dy(A| > k + [ — n. Therefore by
Equation (5.2.2),

OD(D)> Y tw)>k+l-n.

n—3

Thus y(A,) > [fe=kon] > [Le=zn],
By Case 1 and Case 2, v(A,,) > [£2=22], O

5.3 The 2-packing number

We now turn to the 2-packing number and first prove the following asymp-
totical lower bound.
lgn]

Theorem 5.3.1. For any n > 8, p(I',) > p(A,) > 2% *

Proof. Since for any n > 1, A,, is an isometric subgraph of T, cf. [Kla05], a
2-packing of A, is also a 2-packing of T',,. Therefore p(T",,) > p(A,).
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Let r,s > 1 and let X and Y be maximum 2-packings of A, and A,
respectively. Then {20y | v € X,y € Y} is a 2-packings of A, 4.1 of size
p(Ag)p(Ag). Tt follows that

p<Ar+s+1) > p(AT)p(A8> :

Set now k = |lgn]. Then p(Ay) > p(Agi-141) > p(Ags—2)®. By repeatedly
applying this argument we get

p(An) > p(Age) > p(Age=) .

k=2 k—2

When  is even, take | = 252 to get p(A,) > p(As)> * =227 . When k is
k=3 J k=3 k=2

odd, take I = 553 to get p(A,) > p(As)? 7 >827 =227 >227 O

Using computer we obtained the 2-packing numbers of ', and A, for
n < 10 given in Table 5.2.

n [0 1 23456 7 8 9 10
AT [1 1 1 2 3 4 5 8 12 <17 -
pC) 1 1 1 2 2 35 6 9 14 20
yA)[1T 11 1 3 45 7 11 <16 -
p(A)[1 1T 1 1 2 35 6 8 13 18

Table 5.2: Domination numbers and 2-packing numbers of small cubes

Table 5.2 needs several comments.

— The computer search found exactly ten 2-packings of size 20 in I'yy.
This already implies that p(I'19) = 20. Indeed, if T';p would contain a
2-packing of size 21, then it would contain twenty-one 2-packings of size
20.

By exhaustive search with computer no 2-packing of size 19 in A;q was
found, hence p(Ajg) = 18.

— There is only one (up to isomorphisms of the graphs considered) max-
imum 2-packing of A5, Ag, A7, Ag, as well as I's. There are two non-
isomorphic 2-packings of maximum cardinality of 'y, they are presented
in the first two columns of Table 5.3.

Since the reverse map given in (5.1.1) is an automorphism of Fibonacci
cubes, the reverse of a 2-packing is also a 2-packing. Interestingly, the maxi-
mum 2-packing of I'g shown on the left-hand side of Table 5.3, denoted X, is
also invariant under the reverse map. That is, 7(X) = X.
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Similarly, the shifts ¢, where ¢ is given in (5.1.2) and are automorphisms
of Lucas cubes, hence they map 2-packings into 2-packings. Now consider the
2-packing of Ag shown on the right-hand side of Table 5.3, denote it Y. Then
it can be checked that ©*(Y) =Y. As a consequence, ¢°(Y) =Y.

0000010101( 000001000 100100100
010100000 (000100100} 000010001
000100101 (001000010} 000101001
101001000} 001010001 001000010
0010000011 010000101 001000101
100000100 0100100001( 010001000
0100010011 010100010 010010100
100100010 [{010101001 (010100010
010010101 (100010010} 010100101
101010010} 100010101 |100010010
0010101001( 100100001 (100101010
010010010 (100101010 (101001000
100010001 [ 101000100(101010100
100101001 101001001

Table 5.3: Maximum 2-packings of I'g and of Ag

In [CKMR11]|, we propose the following conjectures:
(i) v(Tn) = p(I'n) = v(An) — p(Ay) for n > 07
(i) v(A,) > p(Ty,) for n > 47
(iii) v(A,) <~y([Th-1) +v(T_3) — 1 for n > 67

Note that the last question, if it has an affirmative answer, reduces the
bound of 7(A,,) in Proposition 5.2.1 (i) by 1. Moreover, if (iii) is true, then
one can also ask whether v(A,) < v(I',—1) + v([',,—4) holds for n > 6.



CHAPTER 6

Conclusions

This work studies some structural and enumerative properties of the Fi-
bonacci and the Lucas cubes. Originally introduced by W. -J. Hsu as an
interconnection network, the Fibonacci cube is an isometric subgraph of the
hypercube. Closely related to this class of graphs is the Lucas cube, intro-
duced by Munarini, Cippo and Zagaglia Salvi as a subgraph of the Fibonacci
cube and hence of the hypercube. The Fibonacci and the Lucas cubes have
been a subject of research because of their structural properties. Some of the
structural results that we discuss are the recursive decompositions, mainly,
the fundamental decomposition of the Fibonacci cube which leads to many
important structural properties.

Based on the fundamental decomposition, Liu, Hsu and Chung constructed
cycles of every even length from 4 to |[V(I',,)| when I';, has even order. Using
classical graph theory techniques, and in response to a question posed in the
literature, we characterized the vertex set such that removing one of its vertices
from the graph, it admits a Hamiltonian cycle (when T, has odd order). As a
corollary to this result, it was proved that I',, — v is furthermore bipancyclic.

Turning to the Lucas cube Hamiltonicity, similar results are shown to
characterize the vertex set such that removing any vertex (or two vertices in
one case) of the set from the graph, it contains a Hamiltonian cycle. Baril
and Vajnovszki previously showed the existence of a Hamiltonian path when
n # 0 (mod 3). Extending this result, Hamiltonian cycles are constructed for
A, — v when n # 0 (mod 3).

In the case of n = 0 (mod3), bipancyclicity is proven for the graph A, \
{v1, vy} for particular vertices v; and vy. Thus it would be interesting to know
which pair of vertices we can remove in order to have a Hamiltonian cycle.

As stated by Bertsekas and Tsitsiklis, interconnection networks are usu-
ally evaluated in terms of their suitability for some standard communication
tasks. Some typical criteria include the diameter and the connectivity of the
network. While the diameter and the radius of the Fibonacci cube were ob-
tained by Munarini and Zagaglia, the same invariants for the Lucas cube were
determined by Munarini, Cippo and Zagaglia.
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In this work, we characterized the vertices of I',, that satisfy the eccentric-
ity of a given vertex x as well as the eccentricity of z. We computed afterwards,
the generating function of the eccentricity sequence of the Fibonacci cube’s
strings. As a corollary, the number of vertices of eccentricity k of a given Fi-
bonacci cube was obtained. Regarding the Lucas cube, similar results were
shown. Bijective proofs to show that two sets have the same cardinality were
used as well as the generating functions technique that allowed us to obtain
an exact formula of the members of the eccentricity sequences.

In the last part of this work, the automorphism groups of the Fibonacci
and the Lucas cubes are determined.

Broading a previous result due to Pike and Zou, we determined the domi-
nation numbers for I'g and Ag, using computing techniques. These results were
later extended by Ili¢ and MiloSevic.

Also, different upper and lower bounds were proven for the domination
number and for the 2-packing number of the Fibonacci Lucas cubes. This
work concluded with some conjectures that associate the domination and the
2-packing numbers of both the Fibonacci and the Lucas cubes which makes
the subject wide open for further research.



APPENDIX A

Definitions

In that which follows, we present some basic graph theory definitions,
following Bondy cf. [BM08| and Harary cf. [Har94].

A graph G is a set of vertices V and set E of unordered pairs of elements
of V called edges.

The order of a graph is the number of vertices |V| and the graph’s size |E)|
is the number of edges.

A graph with only one vertex and no edges is called the trivial graph.

An edge with identical ends is called a loop and two or more edges with
the same pair of ends are said to be parallel edges. A graph is simple if it has
no loops or parallel edges.

A complete graph is a simple graph in which any two vertices are adjacent.
The complete graph of order n is denoted by K.

The degree of a vertex is the number of edges that connect to it. The
ends of an edge are said to be incident with the edge, two vertices which are
incident with a common edge are adjacent and two distinct adjacent vertices
are neighbors. The set of neighbors of a vertex v € V' is denoted by N(v).

If V! CV, thus G[V’] is the subgraph of G induced by V’ whose vertex set
is V' and whose edge set consists of all edges of G which have both ends in
V.

A path is a simple graph whose vertices can be arranged in a linear se-
quence in such a way that two vertices are adjacent if they are consecutive in
the sequence, and are nonadjacent otherwise. If there is a path between any
two vertices of G, then G is connected, otherwise disconnected. A cycle is a
connected graph where every vertex has exactly two neighbors. The length of
a path or a cycle is the number of its edges.
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A graph is bipartite if its vertex set can be partitioned into two subsets
Vi and V5 so that every edge has one end in Vi and one end in V5; such a
partition (V7,V3) is called a bipartition of the graph, and V;j and V5 its parts.

The cartesian product of simple graphs G and H is the graph GLJH whose
vertex set is V(G) x V(H) and whose edge set is the set of all pairs ((u1,v1),
(ug,v7)) such that either (uy,us) € E(G) and vy = vy, or (v1,v9) € E(H) and
Uy = Usp.

The n-cube or n-dimensional hypercube (), is defined recursively in terms
of the cartesian product of two graphs as follows:

Q1 = K,

Qn - K2|:|Qn71

The n-cube, @), may also be defined as a graph whose node set V, consists
of the 2" n-dimensional boolean vectors, i.e., vectors with binary coordinates
0 or 1, where two nodes are adjacent whenever they differ in exactly one
coordinate.

A Hamiltonian path is a path in a graph that visits each vertex exactly
once. A Hamiltonian cycle is a Hamiltonian path that is a cycle. A Hamilto-
nian graph is a graph having a Hamiltonian cycle.
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Codes de Gray généralisés a I’énumération des objets
d’une structure combinatoire sous contrainte

Résumé : Le cube de Fibonacci est un sous-graphe isométrique de I'hyper-
cube ayant un nombre de Fibonacci de sommets. Le cube de Fibonacci a
été initialement introduit par W-J. Hsu comme un réseau d’interconnexion
et, comme 'hypercube, il a des propriétés topologiques trés attractives, mais
avec une croissance plus modérée. Parmi ces propriétés, nous discutons de
I’hamiltonicité dans le cube de Fibonacci et aussi dans le cube de Lucas qui
est obtenu a partir du cube de Fibonacci en supprimant toutes les chaines qui
commencent et finissent avec 1. Nous trouvons également le nombre de som-
mets des cubes de Fibonacci et Lucas ayant une certaine excentricité. Enfin,
nous présentons une étude de deux cubes du point de vue de la domination
et du 2-packing.

Mots clés : Cube de Fibonacci, Cube de Lucas, Hypercube, Hamil-
tonicité, Excentricité, Domination, 2-packing, Code de Gray

Generalised Gray codes for the enumeration of the
objects of a combinatorial structure under certain
restrictions

Abstract: The Fibonacci cube is an isometric subgraph of the hypercube
having a Fibonacci number of vertices. The Fibonacci cube was originally
proposed by W-J. Hsu as an interconnection network and like the hypercube it
has very attractive topological properties but with a more moderated growth.
Among these properties, we discuss the hamiltonicity in the Fibonacci cube
and also in the Lucas cube which is obtained by removing all the strings that
begin and end with 1 from the Fibonacci cube. We give also the eccentricity
sequences of the Fibonacci and the Lucas cubes. Finally, we present a study
of both cubes from the domination and the 2-packing points of view.
Keywords: Fibonacci cube, Lucas cube, Hypercube, Hamiltonicity,
Eccentricity Sequence, Vertex Domination, 2-packing, Gray code




