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Résumé

Les simulateurs industriels deviennent de plus en plus complexes car ils doivent intégrer à la
fois des modèles physiques complets et des méthodes de discrétisation évoluées tout en préser-
vant de bonnes performances. Leur mise au point nécessite donc de gérer de manière efficace
(i) la complexité des modèles physiques sous-jacents, souvent exprimés sous la forme de systèmes
d’Equations aux Dérivées Partielles (EDPs). Un aspect important est la possibilité de développer
ces modèles de manière évolutive dans le but de prolonger la vie d’un code ; (ii) la complexité des
méthodes numériques utilisées, dont l’évolution accompagne de nouveaux besoins qui émergent au
cours du temps. C’est le cas, par exemple, des méthodes d’ordre bas développées dans le cadre de
la simulation de bassins pour traiter les maillages généraux issus de la géomodélisation ; (iii) la
complexité des services numériques de bas niveau (gestion du parallélisme, de la mémoire, des
interconnexions, GP-GPU) nécessaires pour tirer parti des architectures hardware modernes. La
difficulté principale est ici de permettre l’évolution de ces services sans remettre en question les
autres parties du code ; (iv) la complexité liée aux langages informatiques, dont l’évolution doit être
maîtrisée sous peine d’obsolescence du code. Tous ces requis doivent être remplis pour bénéficier
pleinement des architectures massivement parallèles et hierarchiques. Cependant, les méthodolo-
gies et technologies associées deviennent de plus en plus sophistiquées, et leur maîtrise demande
des compétences dont un physicien ou un numericien ne dispose en général pas. Idéalement, la
complexité liée aux modèles physiques et aux méthodes numériques se gère mieux par des langages
de haut niveaux, qui permettent de cacher les détails informatiques. En revanche, l’efficacité des
composantes de bas niveau demande un accès directe aux spécificités hardware.

Langages de

haut niveau

Langages de

bas niveau

Complexité

Modèles
physiques

Services
algébriques

Informatique

Méthodes
numériques

Une réponse partielle au problème est aujourd’hui fournie par des plate-formes qui proposent
des outils avancés pour gérer de fa̧con transparente la complexité liée au parallélisme. C’est le
cas, par exemple, de la plate-forme Arcane [69], co-développée par le CEA et IFP Energies nou-
velles, qui propose une interface utilisateur donnant accès aux structures de maillage et d’algèbre
linéaire. Cependant, de telles plate-formes n’offrent effectivement qu’une réponse partielle au pro-
blème, car elles ne gèrent que la complexité du hardware et les services numériques de bas niveau
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comme l’algèbre linéaire. Dans le contexte des méthodes Eléments Finis (EF), l’existence d’un
cadre mathématique unifié a permis d’envisager des outils qui permettent d’aborder aussi la com-
plexité issue des méthodes numériques et celle liée aux problèmes physiques. C’est le cas, par
exemple, de projets tels que Freefem++[70], Getdp[8], Getfem++[9], Sundance[16], Feel++[86] et
Fenics[81], qui proposent des langages de haut niveau inspirés par la formulation mathématique.
Dans ce cas, le langage est à l’interface entre le mathématicien ou le physicien qui l’utilise et
l’informaticien qui s’occupe de le traduire en instructions et algorithmes de bas niveau.

Ce travail vise à étendre ce genre d’approche aux méthodes d’ordre bas pour des systèmes
d’EDPs actuellement étudiés dans le cadre des applications en géomodélisation. Ces méthodes
constituent un sujet de recherche de pointe en analyse numérique, et elles posent encore de nom-
breux défis. La motivation principale pour l’étude de ces méthodes est de gérer des maillages géné-
raux. Les premiers essais d’extension de la méthode Volumes Finis (FV) classique à des maillages
non orthogonaux dans le contexte de la simulation de réservoirs sont dus à Aavatsmark, Barkve,
Bøe et Mannseth [22, 23, 24, 25] et Edwards et Rogers [60, 61]. L’idée de base consiste à remplacer
le flux numérique à deux points par une version multi-points pouvant dépendre des valeurs de la
solution discrète dans d’autres mailles que celles qui partagent la face. Cependant, si l’introduction
des flux multi-points résout le problème de la consistance sur des maillages non orthogonaux, elle
ne garantit pas la stabilité de la méthode résultante. Une possible solution aux problèmes de sta-
bilité est fournie alors par les méthodes de Différences Finies Mimétiques (DFM) [42, 41] et par les
méthodes Volumes Finis Mixtes/Hybrides (VFMH) [58, 64, 59]. Dans les deux cas, l’idée de base
consiste à ajouter des inconnues de faces et à concevoir la méthode en se basant sur la formulation
variationnelle plutôt que sur un bilan maille par maille. Le défaut principal de ces méthodes est
l’absence d’un cadre suffisamment général permettant son extension à des problèmes différents.
Une réponse possible à ce problème a été fournie récemment par les travaux Di Pietro [51, 49, 52],
où on introduit une nouvelle classe de méthodes d’ordre bas inspirée par les éléments finis non
conformes ; voir aussi Di Pietro et Gratien [57]. Cette formulation permet d’exprimer dans un cadre
unifié les schémas VF multi-points et les méthodes DFM/VFMH, et elle s’étend à de nombreux
problèmes en mécanique des fluides et des solides.

Ce nouveau cadre fournit la base pour développer des concepts informatiques proche des
concepts mathématiques. Plus précisement, nous avons mis au point un langage spécifique (DSEL,
Domain Specific Embedded Language) en C++ qui permet aux physiciens ou aux numériciens de
développer des applications avec un haut niveau d’abstraction, cachant la complexité des mé-
thodes numériques et des services bas niveau garanties de haute performances. L’objectif d’un tel
langage est notamment de permettre le prototypage rapide de codes industriels ou de recherche.
La syntaxe et les techniques utilisées sont inspirée par celles de Feel++ [86], mais le back-end est
adapté aux méthodes numériques évoquées dans le paragraphe precédent. Parmi les différences
majeures par rapport aux méthodes EF, on remarquera, en particulier, l’impossibilité d’utiliser
une construction basée sur un élément de référence au sens de Ciarlet et une mappe géometrique.
Ceci nous a améné à introduire de nouveaux concepts permettant de gérer les inconnues au niveau
global de manière efficace.

Le DSEL a été développé à partir de la plate-forme Arcane[69], et embarqué dans le C++.
Cette approche, partagée par des projets tels que Feel++[86] et Sundance[16] présente plusieurs
avantages par rapport au développement d’un simple langage. Plus précisément, cela (i) évite la
construction du compilateur et permet de bénéficier du paradigme génératif du C++ avec vérifi-
cation syntaxique au moment de la compilation ; (ii) permet d’utiliser d’autres librairies, et dans
notre cas la mise en œuvre proposée se fonde, en particulier, sur de nombreux outils fournis par
les bibliothèques Boost C++ ; (iii) donne la possibilité de bénéficier des mécanismes d’optimisation
des compilateurs C++, ce qui permet d’envisager des cas plus complexes et de plus grande taille que
dans le cas des langages interprétés ; (iv) permet une approche multi-paradigme (programmation
orienté objet, fonctionnelle, générique, meta-programmation) adaptée aux calculs scientifiques. En
outre certaines extensions du nouveau standard C++11 (le mot clé auto, les functions lambda, etc)
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rendent le C++ enfin compétitif du point de vue de son accessibilté en terme de syntaxe par rapport
à des langages tels que Python ou Ruby utilisés respectivement dans FreeFem++[70] et Fenics[81],
tout en préservant ses qualités de performances.

Les techniques de DSEL sont basées sur les quatres ingrédients clés suivant : (i) la méta-
programmation qui consiste à écrire des programmes qui transforment des types à la compilation ;
(ii) la programmation générique qui consiste à écrire des composants génériques constitués de
programmes abstraits avec des types génériques ; (iii) la programmation générative qui consiste
a générer des programmes concrêts en créant des types concrêts avec de la méta-programmation,
utilisés dans des programmes abstraits de composants génériques ; (iv) et finalement des techniques
d’ “expression template” qui consistent à représenter des problèmes et des méthodes de résolution
avec des expresssions structurées en arbre et à utiliser des outils pour décrire ces expressions, les
parser et les évaluer. Toutes ces techniques permettent de représenter un problème et sa méthode
de résolution avec une expression. A la compilation, cette expression peut être parsée, analysée
pour générer un programme concrêt en selectionnant des composants génériques, les liant et les
assemblant. L’exécution du programme consiste à évaluer l’expresssion et à exécuter des bouts de
code sélectionnés pour construire au final un système linéaire que l’on peut résoudre pour trouver
la solution du problème. Toutes ces techniques ont été mises au point dans la deuxième partie
des années 90 [28, 34, 92], et ont été largement utilisées dans des bibliothèques comme blitz,
MTL dès les première années 2000. Elles ont été étendues aux méthodes de types Eléments Finis
et aux Equations aux Dérivées Partielles par Feel++[84] en 2005. Elles ont atteint une grande
maturité dans des projets à caractères généraux comme les projets Spirit[15], Phoenix[13] et
sont maintenant diffusées dans des bibliothèques comme Boost.MPL pour la méta-programmation
et Boost.Proto pour la mise au point de DSEL. Cette dernière bibliothèque conçue par Niebler
[83] est d’ailleurs en quelque sorte un DSEL en C++ pour mettre au point des DSELs. Utilisée
notamment dans les projets Phoenix, NT2[12] et Quaff[14], elle propose un ensemble d’outils pour
mettre au point un langage, parser et introspecter des expressions puis générer des algorithmes
avec des structures bas niveau basées sur l’évaluation et la transformation d’expressions. Nous
avons mis au point notre DSEL à l’aide de ces outils puis l’avons validé sur divers problèmes
académiques non triviaux tels que des problèmes de diffusion hétérogène et le problème de Stokes.

Dans un deuxième temps, dans le cadre du projet ANR HAMM (Hybrid Architecture and Mul-
tiscale Methods), nous avons validé notre approche en complexifiant le type de méthodes abordées
et le type d’architecture hardware cible pour nos programmes. Nous avons étendu le formalisme
mathématique sur lequel nous nous basons pour pouvoir écrire des méthodes multi-échelle puis
nous avons enrichi notre DSEL pour pouvoir implementer de telles méthodes.

Afin de pouvoir tirer partie de façon transparente des performances de ressources issues d’archi-
tectures hybrides proposant des cartes graphiques de type GP-GPU, nous avons mis au point une
couche abstraite proposant un modèle de programmation unifié qui permet d’accéder à differents
niveaux de parallélisme plus ou moins fin en fonction des spécificités de l’architecture matérielle
cible. Nous avons validé cette approche en évaluant les performances de cas tests utilisant des
méthodes multi-échelle sur des configurations variés de machines hétérogènes.

Pour finir nous avons implémenté des applications variées de type diffusion-advection-réaction,
de Navier-Stokes incompressible et de type réservoir. Nous avons validé la flexibilité de notre
approche et la capacité qu’elle offre à appréhender des problèmes variés puis avons étudié les per-
formances des diverses implémentations.

Pour poursuivre nos travaux, nous envisageons : (i) d’étendre notre DSEL pour prendre en
compte des formulations non linéaires en introduisant les concepts de dérivées de Fréchet[82] qui
permettent de cacher la complexité de la gestion des dérivées analytiques ; (ii) d’adresser d’autres
domaines d’application tel que la poro-mécanique ; (iii) d’étudier la possiblité d’étendre notre
approche pour décrire des méthodes Volumes Finies pour des problèmes d’advection.
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Chapter 1

Context and motivation

Industrial simulation software has to manage: (i) the complexity of the underlying physical mod-
els, usually expressed in terms of a PDE system completed with algebraic closure laws, (ii) the
complexity of numerical methods used to solve the PDE systems, and finally (iii) the complexity
of the low level computer science services required to have efficient software on modern hardware.
Robust and effective finite volume (FV) methods as well as advanced programming techniques need
to be combined in order to fully benefit from massively parallel architectures (implementation of
parallelism, memory handling, design of connections). Moreover, the above methodologies and
technologies become more and more sophisticated and too complex to be handled only by physi-
cists. Nowadays, this complexity management (figure 1) becomes a key issue for the development
of scientific software.

Best expressivity

using high

level language

Best perfor-

mance using low

level language

Complexity of

Scientific Com-

puting Software

Physical
Models

Algebraic
Methods

Computer
Science

Numerical
Methods

Figure 1.1: Complexity management

1.1 Complexity management

Some frameworks already offer a number of advanced tools to deal with the complexity related to
parallelism in a transparent way. Hardware complexity is hidden and low level algorithms which
need to deal directly with hardware specificity, for performance reasons, are provided. They often

1
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Figure 1.2: Layer Architecture.

offer services to manage mesh data services and linear algebra services which are key elements to
have efficient parallel software.

Layer architecture, see figure (1.2), helps to establish a hierarchy between the different com-
plexity levels and helps to limit the transfer of complex technical information between neighbouring
layers. However, all these frameworks often provide only partial answers to the problem as they
only deal with hardware complexity and low level numerical complexity like linear algebra. High
level complexity related to discretization methods and physical models lack tools to help physicists
to develop complex applications. New paradigms for scientific software must be developed to help
them to seamlessly handle the different levels of complexity so that they can focus on their specific
domain. Generative programming, component engineering and domain-specific languages (either
DSL or DSEL) are key technologies to make the development of complex applications easier to
physicists, hiding the complexity of numerical methods and low level computer science services.
These paradigms allow to write code with a high level expressive language and take advantage of
the efficiency of generated code for low level services close to hardware specificities (figure 1.1).
In scientific computing, these paradigms were first applied in linear algebra framework like blitz,
MTL4 or Eigen. But in in the domain of numerical algorithms to solve partial differential equa-
tions, their application has been up to now limited to Finite Element (FE) methods, for which
a unified mathematical framework has been existing for a long time. Such kinds of DSL have
been developed for finite element or Galerkin methods in projects like Freefem++[70], Getdp[8],
Getfem++[9], Sundance[16], Feel++[86] and Fenics[81]. The advantages that provide such lan-
guages have no more to be proved [84, 85]. They are used for various reasons, teaching purposes,
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design of complex problems or rapid prototyping of new methods, schemes or algorithms, the main
goal being always to hide technical details behind software layers and provide only the relevant
components required by the user or programmer.
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Express
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Figure 1.3: DSEL and generative programming

1.2 Computational frameworks overview

In scientific computing, frameworks have emerged to help physicists and numericians to design
their applications as soon as the performance issues of algebraic algorithms became crucial while
the consideration of hardware specificities like vectorisation optimisation started to be essential
to get performance. The first frameworks were concerning the algebraic layer with matrix and
vector operations. This low level layer for numericians is one of the most CPU consuming and very
early optimized generic libraries have been developed. Later some projects introduced meshes and
useful structures to manage both algebraic and geometrical objects. Finally modern frameworks
tried to bring solutions at a higher level to design numerical methods to solve partial differential
equations.

1.2.1 Linear and non linear algebra framework

After the success of the Blas, Lapack and Scalapack libraries, various projects have been devel-
oped to design frameworks providing efficient and complex methods to solve linear and non linear
systems for large parallel with distributed memory architectures. Among them Trilinos[72] and
Petsc[37] are dynamic projects, famous for their rich libraries providing a great number of parallel
algorithms and services that enable to take advantage easily of new parallel clusters.

More recently projects like MTL4[11] or Eigen[5] have introduced the generative paradigm in
their linear packages and developed DSELs to help numericians to develop complex algorithms
based on matrices-vectors operations without taking care of low level optimizations like for instance
sse or openmp optimizations. These frameworks provide a much more friendly to use interface
than the previous ones while they keep being efficient on new hardware platforms.
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1.2.2 Frameworks to solve partial differential equations systems

With the trend of large parallel clusters with distributed memory, frameworks have naturally
emerged above the linear algebraic layer to make easier the development of algorithms to solve
partial differential equations. They usually introduce a layer to abstract the management of
meshes with partitioner, import/export services, low level communication services, . . . . Among
such those frameworks:

• Arcane Platform[69] is a parallel C++ framework, co-developed by CEA (Commissariat
à l’Energie Atomique) and IFP New Energy, designed to develop applications based on 1D,
2D, 3D unstructured grids. In the Arcane component based architecture, functionalities are
provided via components, called services in Arcane terminology. The framework is extend-
able via a dynamic plug-in mechanism which makes Arcane highly adaptable and not tied
to a specific implementation. It provides services to manage meshes, mesh elements, groups
of mesh elements, manage discrete variables representing discrete fields on mesh elements,
and extra low level services to synchronize discrete variables and to manage parallelism and
network communication between processors and IO services. A linear algebra layer also
developed above the platform, provides a unified way to handle standard parallel linear
solver packages such as Petsc, Hypre, MTL4, UBlas and IFPSolver, an in house linear solver
package.

• DUNE[4], the Distributed and Unified Numerics Environment is a modular framework for
solving partial differential equations (PDEs) with grid-based methods like Finite Elements
(FE), Finite Volumes (FV), and also Finite Differences (FD). Its efficient implementation is
based on the use of generic programming techniques. It enables the reuse of existing finite
element packages in particular the finite element codes UG, ALBERTA, and ALUGrid. This
framework is used in particular in the OPM project (Open Porous Media) developing the
free simulator DuMux, DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and
transport in porous media.

Some frameworks are dedicated to solve partial differential equations with methods based on
variational formulation and provide moreover DSELs with high level abstractions closed to the
mathematical formalism. Among them:

• Sundance[16] is a library with automatic differentiation technics based on in-place Frechet
differentiation of symbolic objects allowing optimization, uncertainty quantification, and
adaptive error control.

• The FEniCS Project[6] provides a collection of open-source components. Among them, as
written in the wikipedia project page [7], there are UFL (Unified Form Language) providing a
domain-specific language embedded in Python, FIAT (Finite element Automatic Tabulator),
a “Python module for generation of arbitrary order finite element basis functions on sim-
plices”, FFC (FEniCS Form Compiler), a compiler of UFL code generating UFC code (Unified
Form-assembly Code) with “low-level functions in C++ for evaluating and assembling finite
element variational forms”, Instant, a “Python module for inlining C and C++ code in
Python” and DOLFIN, a “C++/Python library providing data structures and algorithms for
finite element meshes, automated finite element assembly, and numerical linear algebra”.

• FEEL++[84, 85, 86] provides a DSEL embedded in C++, linked with established libraries
(Petsc, Trilinos for linear and non-linear solvers, Gmsh and Metis for mesh services, MPI
for parallelism,. . . ).
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1.3 Mathematical methods to solve partial differential equa-

tions overview

To solve partial differential equations, the finite element methods (FEM), the finite volume meth-
ods (FVM) and the finite difference methods (FDM) belong to the family of methods most widely
used.

1.3.1 Finite Difference Methods

The Finite-difference methods, developed for a long time, consist in approximating the solutions to
differential equations using finite difference equations to approximate derivatives. Usually based on
regular meshes, they can be developed with algebraic frameworks like Petsc, Hypre and Trilinos

that provides to their matrix vector interfaces helper tools to map regular meshes indexes to
algebraics object indexes.

1.3.2 Finite Element Methods

The Finite Element Methods, and its other versions the generalized finite element method (GFEM),
the extended finite element method (XFEM), the spectral finite element method (SFEM), the
meshfree finite element method or the discontinuous Galerkin finite element method (DGFEM)
belong to the class of methods called Generalized Galerkin methods widely used to solve PDEs.
These methods consist in converting the continuous formulation of the PDEs into a discrete formu-
lation using the method of variation of parameters to a function space, by converting the equations
system to a weak formulation. A unified mathematical formalism to describe these methods exist-
ing for a long time[46], various frameworks dedicated to them are widely used and have nowadays
reached a good level of maturity. They generally provide a user-friendly front-end in the form of
a Domain Specific Language (DSL) possibly embedded in a general purpose, high-level hosting
language (Domain Specific Embedded Language or DSEL). They are often based on unstructured
meshes and are well known for the efficiency of their higher-order version hp-FEM.

1.3.3 Finite Volume Methods

Finite Volume methods are a kind of generalisation of the finite difference method to general
meshes. This method consists in converting surface integrals with divergence term to volume in-
tegrals, using the divergence theorem. These terms are then evaluated as fluxes at the surfaces of
each finite volume. These methods, naturally conservative, is often used by physicists. They are
employed in industrial applications where computational cost is a crucial issue. In this context,
the use of general polyhedral, possibly nonconforming meshes commends itself for a number of
reasons. To cite a few: (i) remeshing can be avoided or postponed in problems that involve mesh
deformation — e.g. in sedimentary basin modeling non-standard elements and nonconformities
can appear due to the erosion of geological layers; — (ii) the number of degrees of freedom can
be reduced by aggregative coarsening techniques — cf. [38] for an application in the context of
discontinuous Galerkin (dG) methods; — (iii) geometrical features can be represented more ac-
curately without unduly increasing the number of mesh elements. Handling general polyhedral
meshes requires numerical schemes that possess the usual properties of stability and consistency.
In the context of cell centered finite volume methods, a popular way to achieve consistency on
general polyhedral meshes is provided by Multipoint Finite Volume schemes independently in-
troduced by Aavatsmark, Barkve, Bøe and Mannseth [24] and Edwards and Rogers [61]. The
main advantage of multipoint schemes is that they can be easily fitted into existing simulators
based on standard finite volume schemes. A major drawback is their lack of stability in some
configurations. Two ways of overcoming this difficulty by designing discretizations based on the
variational formulation of the problem and featuring cell- and face-unknowns have been proposed
by Brezzi, Lipnikov and coworkers [42, 41] (Mimetic Finite Difference methods) and by Droniou
and Eymard [58] (Mixed/Hybrid Finite Volume methods). In this context, Eymard, Gallouët
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and Herbin [65] have shown that face unknowns can be selectively used as Lagrange multipliers
to enforce flux continuity, or eliminated using a consistent interpolator (SUSHI scheme). More
generally, this point of view leads to the notion that the discretization method can be locally
adapted to the features of the problem. A different approach based on the analogy between lowest
order methods in variational formulation and discontinuous Galerkin methods has been proposed
in [49, 52, 53] (Cell Centered Galerkin methods). The key advantage of this approach is that it
largely benefits from the well-established theory for discontinuous Galerkin methods [54]. When
it comes to numerical performance, recent benchmarks [71, 66] have pointed out that the choice of
the scheme for a given problem should be driven by multiple factors including, e.g., the features
of the problem itself (heterogeneity, presence of convection), the computational mesh (which may
result from an upstream modeling process), and the required precision.

Contrary to FE methods up to recently the lack of unified mathematical formalism to describe
all lowest order methods leads to the fact that no serious framework covering a wide range of
these methods has emerged. In this respect, there is an increasing urge to dispose of libraries and
applications based on similar experiences in the context of Finite Element (FE) methods.

1.4 Proposition

A new consistent unified mathematical frame has recently emerged and allows a unified descrip-
tion of a large family of lowest-order methods [31, 29, 49]. This framework allows then, as in
FE methods, the design of a high level language inspired from the mathematical notation, that
could help physicists to implement their application writing the mathematical formulation at a
high level, hiding the complexity of numerical methods, while low level computer science services
ensure the efficiency. We propose to develop a language based on that frame, embedded in the
C++ language. This approach, used in projects like Feel++ or Sundance has several advantages
over generating a specific language. Embedded in the C++ language, (i) it avoids the compiler
construction complexities, taking advantage of the generative paradigm of the C++ language and
allowing grammar checking at compile time; (ii) it allows to use other libraries concurrently which
is often not the case for specific languages, our implementation heavily relies, in particular, on the
tools provided by the boost library; (iii) it exploits the optimization capabilities of the C++ com-
piler, thereby allowing to tackle large study cases which is not possible with interpreted language;
(iv) it allows multiple paradigm programming as meta-programming, object oriented, generic and
functional programming. New concepts provided by the standard C++11 (the keyword auto,
lambda functions, . . . ), make C++ very competitive as its syntax becomes comparable to that
of interpreted languages like Python or Ruby used in projects like FreeFem++ or Fenics, while
performance issues remain preserved thanks to compiler optimisations.

In Chapter 2 we present the mathematical framework that enables us to describe a wide family
of lowest order methods including multiscale methods based on lowest order methods.

In Chapter 3 we propose a DSEL developed on top of Arcane platform 1.2.2, based on the
concepts presented in the unified mathematical frame and on the Feel++ DSEL. We present the
C++ representations of these mathematical concepts, which are the foundation for the user-friendly
interface, the front-end of a specific language which conceals most of the implementation details
and allows the numerician to focus on discretization methods. The DSEL is implemented with the
Boost.Proto library by Niebler [83], a powerful framework to build a DSEL in C++ in a declar-
ative way, which provides a collection of generic concepts and metafunctions that help to design
a DSL, its grammar and tools to parse and evaluate expressions. We provide several numerical
examples to assess the performance of the proposed approach. We propose an extension of the
computational framework to mutiscale methods. We focus on the capability of our approach to
handle complex methods based on the basic bricks of the framework and to describe and imple-
ment new methods assembling them. We validate our approach with multiscale methods with
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several numerical examples.

In Chapter 4 we extend our approach to the runtime system layer providing an abstract layer
that enable our DSEL to generate efficient code for heterogeneous architectures. We validate the
design of this layer by benchmarking the multiscale method described in §2.5. This method pro-
vides a great amount of independent computations and is therefore the kind of algorithms that
can take advantage efficiently of new hybrid hardware technology.

Finally in Chapter 5 we benchmark various complex applications and study the performance
results of their implementations with our DSEL.
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Chapter 2

Mathematical setting

This chapter is largely taken, up to section 2.4, from [48], our article published in Bit Numeri-
cal Mathematics. In the last section we turn to the mathematical extension to multiscale problems.

The unified mathematical frame presented in [52, 57] allows a unified description of a large
family of lowest-order methods. The key idea is to reformulate the method at hand as a (Petrov)-
Galerkin scheme based on a possibly incomplete, broken affine space. This is done by introducing
a piecewise constant gradient reconstruction, which is used to recover a piecewise affine function
starting from cell (and possibly face) centered unknowns. In this section we briefly present some
of these methods, in particular the cell centered Galerkin (ccG) method and the G-method with
cell unknowns only and the methods of the mimetic finite difference (MFD) and mixed/hybrid
finite volume (MHFV) family with both cell and face unknowns.

2.1 Mesh

Let Ω ⊂ Rd, d ≥ 2, denote a bounded connected polyhedral domain. The first ingredient in the
definition of lowest order methods is a suitable discretization of Ω. We denote by Th a finite
collection of nonempty, disjoint open polyhedra Th = {T} forming a partition of Ω such that
h = maxT∈Th

hT , with hT denoting the diameter of the element T ∈ Th. Admissible meshes
include general polyhedral discretizations with possibly nonconforming interfaces; see Figure 2.1
for an example in d = 2. Mesh nodes are collected in the set Nh and, for all T ∈ Th, NT contains
the nodes that lie on the boundary of T . We say that a hyperplanar closed subset F of Ω is a
mesh face if it has positive (d−1)-dimensional measure and if either there exist T1, T2 ∈ Th such
that F ⊂ ∂T1 ∩ ∂T2 (and F is called an interface) or there exist T ∈ Th such that F ⊂ ∂T ∩ ∂Ω
(and F is called a boundary face). Interfaces are collected in the set F i

h, boundary faces in Fb
h and

we let Fh
def
= F i

h ∪ Fb
h. Moreover, we set, for all T ∈ Th,

FT
def
= {F ∈ Fh | F ⊂ ∂T}. (2.1)

Symmetrically, for all F ∈ Fh, we define

TF def
= {T ∈ Th | F ⊂ ∂T}.

The set TF consists of exactly two mesh elements if F ∈ F i
h and of one if F ∈ Fb

h. For all mesh
nodes P ∈ Nh, FP denotes the set of mesh faces sharing P , i.e.

FP
def
= {F ∈ Fh | P ∈ F}. (2.2)

For every interface F ∈ F i
h we introduce an arbitrary but fixed ordering of the elements in TF and

let nF = nT1,F = −nT2,F , where nTi,F , i ∈ {1, 2}, denotes the unit normal to F pointing out of

9
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Figure 2.1: Left. Mesh Th Right. Pyramidal submesh Ph

Ti ∈ TF . On a boundary face F ∈ Fb
h we let nF denote the unit normal pointing out of Ω. The

barycenter of a face F ∈ Fh is denoted by xF
def
=
∫

F
x/|F |d−1.

For each T ∈ Th we identify a point xT ∈ T (the cell center) such that T is star-shaped with
respect to xT . For all F ∈ FT we let

dT,F
def
= dist(xT , F ).

It is assumed that, for all T ∈ Th and all F ∈ FT , dT,F > 0 is uniformly comparable to hT .
Starting from cell centers we can define a non degenerate pyramidal submesh of Th as follows:

Ph
def
= {PT,F }T∈Th, F∈FT

,

where, for all T ∈ Th and all F ∈ FT , PT,F denotes the open pyramid of apex xT and base F , i.e.,

PT,F
def
= {x ∈ T | ∃y ∈ F \ ∂F, ∃θ ∈ (0, 1) | x = θy + (1− θ)xT }.

Let Sh be such that
Sh = Th or Sh = Ph. (2.3)

For all k ≥ 0, we define the broken polynomial spaces of total degree ≤ k on Sh,

Pk
d(Sh)

def
= {v ∈ L2(Ω) | ∀S ∈ Sh, v|S ∈ Pk

d(S)},
with Pk

d(S) given by the restriction to S ∈ Sh of the functions in Pk
d where Pk

d is the space of
polynomial functions in d variables of total degree ≤ k.

We introduce trace operators which are of common use in the context of nonconforming finite
element methods. Let v be a scalar-valued function defined on Ω smooth enough to admit on all
F ∈ Fh a possibly two-valued trace. To any interface F ⊂ ∂T1 ∩ ∂T2 we assign two non-negative
real numbers ωT1,F and ωT2,F such that

ωT1,F + ωT2,F = 1,

and define the jump and weighted average of v at F for a.e. x ∈ F as

JvKF (x)
def
= v|T1

− v|T2
, {v}ω,F (x)

def
= ωT1,F v|T1

(x) + ωT2,F v|T2
(x). (2.4)

If F ∈ Fb
h with F = ∂T ∩ ∂Ω, we conventionally set {v}ω,F (x) = JvKF (x) = v|T (x). The index

ω is omitted from the average operator when ωT1,F = ωT2,F = 1
2 , and we simply write {v}F (x).

The dependence on x and on the face F is also omitted from both the jump and average trace
operator if no ambiguity arises.

2.2 Degrees of freedoms

Let Th
def
= RTh and Fh

def
= RFh . We define the space of degrees of freedom (DOFs) as the

vector space Vh such that Vh = Th or Vh = Th × Fh. The choice Vh = Th is refered to as a Cell

Centered space of DOFs, whereas the choice Vh = Th × Fh is refered to as Hybrid Space of

DOFs.
Elements v ∈ Vh are called discrete variables. They often represent in the FV community the

piecewise constant functions v where for τ ∈ Th, vτ represents the value of the function on τ .
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Figure 2.2: L-construction

2.3 A unified abstract perspective for lowest-order methods

The key idea to gain a unifying perspective is to regard lowest order methods as nonconforming
methods based on incomplete broken affine spaces that are defined starting from the vector space
Vh of DOFs. The cell centered space of DOFs Vh = Th corresponds to cell centered finite volume
(CCFV) and cell centered Galerkin (CCG) methods, while the hybrid space of DOFs Vh = Th×Fh

leads to mimetic finite difference (MFD) and mixed/hybrid finite volume (MHFV) methods. The
key ingredient in the definition of a broken affine space is a piecewise constant linear gradient
reconstruction Gh : Vh → [P0

d(Sh)]d with suitable properties. We emphasize that the linearity of
Gh is a founding assumption for the implementation discussed in Chapter 3.

Using the above ingredients, we can define the linear operator Rh : Vh → P1
d(Sh) such that,

for all vh ∈ Vh,

∀S ∈ Sh, S ⊂ TS , TS ∈ Th, ∀x ∈ S, Rh(vh)|S = vTS
+Gh(vh)|S ·(x− xTS

). (2.5)

The operator Rh maps every vector of DOFs vh ∈ Vh onto a piecewise affine function Gh(vh)
belonging to P1

d(Sh). Hence, we can define a broken affine space as follows:

Vh = Rh(Vh) ⊂ P1
d(Sh). (2.6)

The operator Rh is assumed to be injective, so that a bijective operator can be obtained by
restricting its codomain. In what follows we show how some common lowest order methods can be
interpreted in this terms. To simplify the exposition, we focus on discrete spaces approximating
H1

0 (Ω), i.e., possibly including strongly enforced boundary conditions.

2.4 Examples of gradient operator

In this section we provide a few examples for the gradient operator Gh that allow to recover
some of the methods listed in the previous section for the following heterogeneous diffusion model
problem :

−∇·(κ∇u) = f in Ω,

u = 0 on ∂Ω,

with source term f ∈ L2(Ω).

2.4.1 The G-method

As a first example we consider the special instance of CCFV methods analyzed in [29]. A pre-
liminary step consists in introducing the so-called L-construction originally proposed in [26]. The
key idea of the L-construction is to use d cell and boundary face values (provided, in this case,
by the homogeneous boundary condition) to express a continuous piecewise affine function with
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continuous diffusive fluxes. The values are selected using d neighboring faces belonging to a cell
and sharing a common vertex. More precisely, we define the set of L-groups as follows:

G def
= {g ⊂ FT ∩ FP , T ∈ Th, P ∈ NT | card(g) = d} ,

with FT and FP given by (2.1) and (2.2) respectively. It is useful to introduce a symbol for the
set of cells concurring in the L-construction: For all g ∈ G, we let

Tg def
= {T ∈ Th | T ∈ TF , F ∈ g}.

Let now g ∈ G and denote by Tg an element Tg such that g ⊂ FTg
(this element may not be

unique). For all vh ∈ Vh we construct the function ξg
vhh

piecewise affine on the family of pyramids
{PT,F }F∈g, T∈Tg

such that: (i) ξg
vhh

(xT ) = vT for all T ∈ Tg and ξg
vhh

(xF ) = 0 for all F ∈ g∩Fb
h;

(ii) ξg
vhh

is affine inside Tg and is continuous across every interface in the group: For all F ∈ g∩F i
h

such that F ⊂ ∂T1 ∩ ∂T2,
∀x ∈ F, ξg

vhh
|T1

(x) = ξg
vhh
|T2

(x);

(iii) ξg
vhh

has continuous diffusive flux across every interface in the group: For all F ∈ g∩F i
h such

that F ⊂ ∂T1 ∩ ∂T2,
(κ∇ξg

vhh
)|T1
·nF = (κ∇ξg

vhh
)|T2
·nF .

For further details on the L-construction we refer to [26, 29]. For every face F ∈ Fh we define the
set GF of L-groups to which F belongs

GF def
= {g ∈ G | F ∈ g}, (2.7)

and introduce the set of non-negative weights {ωg,F }g∈GF
such that

∑

g∈GF
ωg,F = 1. The trial

space for the G-method is obtained as follows: (i) let Sh = Ph and Vh = Th; (ii) let Gh = G
g
h with

G
g
h such that

∀vh ∈ Th, ∀T ∈ Th, ∀F ∈ FT , G
g
h(vh)|PT,F

=
∑

g∈GF

ωg,F∇ξgvhh
|PT,F

.

We denote by R
g
h the reconstruction operator defined as in (2.5) with Gh = G

g
h and let V g

h

def
=

R
g
h(Vh). The G-method of [29] is then equivalent to the following Petrov-Galerkin method:

Find uh ∈ V g
h s.t. agh(uh, vh) =

∫

Ω

fvh for all vh ∈ P0
d(Th), (2.8)

where agh(uh, vh)
def
= −∑F∈Fh

∫

F
{κ∇huh}·nF JvhK with ∇h broken gradient on Sh.

2.4.2 A cell centered Galerkin method

The L-construction is also used to define a trace reconstruction to be used in the CCG method
of [50, 49]. More specifically, for all F ∈ F i

h we select one group gF ∈ GF with GF defined by (2.7)
and introduce the linear operator T

g
h : Th → Fh which maps every vT

h ∈ Th onto the vector
vF
h = (vF )F∈Fh

in Fh such that

∀F ∈ F i
h, vF =

{

ξgF

vT
h h

(xF ) if F ∈ F i
h,

0 if F ∈ Fb
h.

(2.9)

The operator T
g
h is used in a gradient reconstruction based on Green’s formula and inspired

from [64]. More precisely, we introduce the linear gradient operator G
green
h : Th × Fh → [P0

d(Th)]d
such that, for all (vT ,vF ) ∈ Th × Fh and all T ∈ Th,

G
green
h (vT ,vF )|T =

1

|T |d
∑

F∈FT

|F |d−1(vF − vT )nT,F . (2.10)
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The discrete space for the CCG method under examination can then be obtained as follows: (i) let
Sh = Th and Vh = Th; (ii) let Gh = G

ccg
h with G

ccg
h such that

∀vh ∈ Vh, G
ccg
h (vh) = G

green
h (vh,T

g
h(vh)). (2.11)

The reconstruction operator defined taking Gh = G
ccg
h in (2.5) is denoted by R

ccg
h , and the

corresponding discrete space by V ccg
h

def
= R

ccg
h (Th). The last ingredient to formulate the discrete

problem is a suitable definition of the weights in the average operator. To this end, we let, for all
F ∈ F i

h,

ωT1,F =
λT2,F

λT1,F+λT2,F
, ωT2,F =

λT1,F

λT1,F+λT2,F
,

where λTi,F
def
= κ|Ti

nF ·nF for i ∈ {1, 2}. Set, for all (uh, vh) ∈ V ccg
h × V ccg

h ,

accgh (uh, vh)
def
=

∫

Ω

κ∇huh·∇hvh −
∑

F∈Fh

∫

F

[{κ∇huh}ω·nF JvhK + JuhK{κ∇vh}ω·nF ]

+
∑

F∈Fh

η
γF
hF

∫

F

JuhKJvhK,

(2.12)

with ∇h broken gradient on Th, γF =
2λT1,FλT2,F

λT1,F+λT2,F
on internal faces F ⊂ ∂T1 ∩ ∂T2 and γF =

κ|TnF ·nF on boundary faces F ⊂ ∂T ∩ ∂Ω. The CCG method reads

Find uh ∈ V ccg
h s.t. accgh (uh, vh) =

∫

Ω

fvh for all vh ∈ V ccg
h . (2.13)

The bilinear form accgh has been originally introduced by Di Pietro, Ern and Guermond [56] in
the context of dG methods for degenerate advection-diffusion-reaction problems. In particular,
for κ = 1d, the method (2.13) coincides with the Symmetric Interior Penalty (SIP) method of
Arnold [33] associated to the bilinear form

asiph (uh, vh) =

∫

Ω

∇huh·∇hvh −
∑

F∈Fh

∫

F

[{∇huh}·nF JvhK + JuhK{∇hvh}·nF ]

+
∑

F∈Fh

η

hF

∫

F

JuhKJvhK.

(2.14)

For further details on the link between CCG and discontinuous Galerkin methods we refer to [50,
49, 52].

2.4.3 A hybrid finite volume method

As a last example we consider the SUSHI scheme of [64]; see also [59] for a discussion on the link
with the MFD methods of [42, 41]. This method is based on the gradient reconstruction (2.10),
but stabilization is achieved in a rather different manner with respect to (2.12). More precisely,
we define the linear residual operator rh : Th × Fh → P0

d(Ph) as follows: For all T ∈ Th and all
F ∈ FT ,

rh(v
T
h ,v

F
h )|PT,F

=
d

1

2

dT,F

[

vF − vT −G
green
h (vT

h ,v
F
h )|T ·(xF − xT )

]

.

The discrete space for SUSHI method with hybrid unknowns is then obtained as follows: (i) let
Sh = Ph and Vh = Th × Fh; (ii) let Gh = G

hyb
h with G

hyb
h such that, for all (vT

h ,v
F
h ) ∈ Th × Fh,

all T ∈ Th and all F ∈ FT ,

G
hyb
h (vT

h ,v
F
h )|PT,F

= G
green
h (vT

h ,v
F
h )|T + rh(v

T
h ,v

F
h )|PT,F

nT,F . (2.15)
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Denote by R
hyb
h the reconstruction operator defined by (2.5) with Gh = G

hyb
h . The SUSHI method

with hybrid unknowns reads

Find uh ∈ V hyb
h s.t. asushih (uh, vh) =

∫

Ω

fvh for all vh ∈ V hyb
h ,

with asushih (uh, vh)
def
=
∫

Ω
κ∇huh·∇hvh and ∇h broken gradient on Ph. Alternatively, one can

obtain a cell centered version by setting Vh = Th and replacing G
hyb
h defined by (2.15) by Gh = Gcc

h

with Gcc
h such that

∀vh ∈ Th, Gcc
h (vh) = G

hyb
h (vh,T

g
h(vh)), (2.16)

with T
g
h defined by (2.9). This variant coincides with the version proposed in [64] for homoge-

neous κ, but it has the advantage to reproduce piecewise affine solution to (2.4) on Th when κ is
heterogeneous. The resulting discrete spaces is labeled V cc

h in Table 3.4.

This space allows a Flux Reconstruction Operator:
Fh(v

T
h ,v

F
h )|F,T =

∑

F ′∈FT
AFF ′

T (vT − vF ′),
where:

AFF ′

T =
∑

F”∈FT
yF”F .κT,F ′′yF”F

yF,F = |F |
|T |nT,F

+
√
d

dT,F
(1− |F |

|T |nT,F · (xF − xT ))nT,F

yF,F ′

= |F ′|
|T |nT,F ′

−
√
d

dT,F |T | |F ′|nT,F ′ · (xF − xT )nT,F

2.4.4 Integration

To compute integral expression with the different methods, considering Vh a functional space,
vh ∈ Vh, for T ∈ Th, for each S ∈ Sh and S ⊂ T for all x ∈ S, as Gh(vh)(x) is constant and vh(x)
is affine, we approximate

∫

T
vh(x)dx ≈ |T |v(xT ) and

∫

T
∇f(x)dx ≈∑S⊂T |S|∇hf |S .

For u ∈ V, uh ∈ Vh with uT = f(xT ) we can write then
∫

Ω
f(x)dx ≈ ∑

T∈Th
|T |uT and

∫

Ω
∇f(x)dx ≈∑T∈Th

∑

S⊂T |T |∇hu|S

2.5 Extensions for multiscale methods

In this section, we extend the formalism presented in the previous section for multiscale methods.
These methods have been introduced to solve PDE systems modeling phenomena that are gov-
erned by physical processes occurring on a wide range of time and/or length scales. This kind of
problems cannot be solved on the finest grid due to time and memory limitations. They consist in
incorporating fine-scale information into a set of coarse-scale equations in a way that is consistent
with the local properties of the mathematical model on the unresolved subscale(s). In geoscience,
multiscale methods are considered for the simulation of pressure and (phase) velocities in porous
media flow. Multiscale behavior in porous media flow are due to heterogeneities in rock and sand
formations which are reflected in the permeability tensor used in the governing partial differential
equations. To accurately resolve the pressure distribution, it is necessary to account for the influ-
ence of fine-scale variations in the coefficients of the permeability tensor. For incompressible flow,
the pressure equation reduces to the following variable coefficient Poisson equation:

v = −κ∇p on Ω,

∇ · v = q on Ω,

p = g on ∂ΩD,

∂np = 0 on ∂ΩN = ∂Ω \ ∂ΩD,

(2.17)

where

• q is a source term,
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• κ stands for the symmetric positive definite permeability tensor that typically has a multi-
scale structure due to the strongly heterogeneous nature of natural porous media,

• ∂ΩD (respectively ∂ΩN ) is a subset of the boundary ∂Ω of Ω where Dirichlet (respectively
Neumann) boundary conditions are enforced.

In [91] an interesting overview on multiscale methods is done by Kippe V., Aarnes J. E.
and Lie K. A. They describe various methods and in particular the multiscale finite-element
method (MsFEM) [73], the variational multiscale method [76], the mixed multiscale finite-element
method (MxMsFEM) [44], and the multiscale finite-volume method (MsFVM)[75]. We present
these methods with more details in Annexe C where we present the main ideas of their work.
These methods are all based on lowest order methods and, except for the multiscale finite volume
method, they are formulated as Petrov-Galerkin schemes. All these elements make it possible
to formulate them within our mathematical formalism. We have therefore extend our unified
mathematical formalism to describe such methods. In this section we present this extension
applied in particular to a variation of the MxMsFEM method described in §C.3 of Annexe C. This
variation consists in using the SUSHI method presented in §2.4.3 as lowest order method, and in
formulating the coarse level method with the discontinuous Galerkin formalism to deal with the
discontinuity of the basis functions at interfaces in the same spirit as for the the CCG method of
§2.4.2.

2.5.1 Multiscale ingredients

Like the previous methods presented in this chapter, multiscale methods are based on a multiscale
functional space built from the following ingredients:

• a mesh partitioning the domain Ω;

• a space of degree of freedoms Vh;

• a gradient and a reconstruction operator that enable us to map vectors of Vh to functions.

The main differences rely in the introduction of a two level mesh and basis functions allowing to
handle a gradient reconstruction operators piecewise constant on the thin elements of Th, whereas
in the methods presented in Chapter 2 only piecewise constant operators on the element of Sh
submesh of Th are considered.

2.5.2 Mesh settings

Multiscale methods are based on a coarse and a fine grid. For the following section we introduce
a few notations: we denote Th and TH respectively the fine and the coarse grid. The exponent c

and f are used for respectively elements related to the coarse grid and the fine grid. We denote
τ c and σc respectively cell and face elements of TH and τf and σf , cell and face elements of Th.
Let Th be a discretization of Ω and TH be a coarse mesh obtained by a coarsening of Th. Let Fh

be the set of faces of Th and FH , the set of faces of TH . We introduce the following notations:

• ∀τ c ∈ TH , we define Gτc
def
= (

⋃

τ)τ∈Th,τ∩τc 6=∅ as the set of fine elements of the coarse element

τ c and Fc
τc

def
= {σc ∈ FH | F ⊂ ∂τ c}.

• ∀σc ∈ FH , we define Gσc
def
= (

⋃

σ)σ∈Fh,σ∩σc 6=∅.

We say that (Th, TH) is a two level mesh partitioning Ω.

If σ is shared by two cells τ1 and τ2, we denote τσ the union τ1 ∪ τ2. σ can be denoted also
τ1 ∩ τ2 or τ1,2.
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We denote Fb
H

def
= {σc ∈ FH | σc ∩ ∂Ω 6= ∅} and F i

H

def
= {σc ∈ FH | σc ∩ ∂Ω = ∅}

We define ΓD
def
= {σc ∈ FH | σc ∩ ∂ΩD 6= ∅} and ΓN

def
= {σc ∈ Fhc | σc ∩ ∂ΩN 6= ∅}.

2.5.3 The Hybrid Multiscale Method

The Hybrid Multiscale method (HMsM) is a variation of the MxMsFEM presented in Annexe
C.3. The idea is to use the SUSHI method instead of the standard FE methods to build the basis
functions and to design the coarse level formulation. The main principles remain to compute with
a lowest order method defined on the coarse grid TH a solution from which we interpolate the
solution on the fine grid T f

h .

Basis functions For each σc = τ c1 ∩ τ c2 ∈ F i
H ∪ ΓD, (σc, τ c1 and τ c2 are represented by Fc, K an

L in figure 2.3) we define φσc
basis functions as follows:

• If σc ∈ (F i
H) and σc = τ c1 ∩ τ c2 , Ωσc

def
= supp(φσc) is defined by Gτc

1
∪ Gτc

2
and φσc

is solution
of

−∇ · (κ∇φσc) = w1 on τ c1 ,

−∇ · (κ∇φσc) = −w2 onτ c2 ,

κ∇φσc · n = 0 on ∂Ωσc

(2.18)

In (2.18), the functions wi, i ∈ {1, 2} are weight functions defined by

wi =
trace(κ)
∫

τi
trace(κ)

if q|τi = 0, wi = q otherwise (2.19)

where trace(κ) is the trace of the permeability tensor κ.

The basis functions are computed up to one constant. Here we assumed the unit normal
vector nσc is oriented outward with respect to τ c1 .

• If σc ∈ ΓD ∩ Fc
τc , Ωσc

def
= supp(φσc) is defined by Gτc and φσc

is solution of:






−∇ · (κ∇φσc) = w on τ c,
κ∇φσc · n = 0 on ∂τ c \ σc,
−κ∇φσc · nσc = κnσc∫

σc κn
on σc.

(2.20)

The function w is also given by (C.11). As previously, we assumed that nσc is oriented
outwards with respect to τ c.

By defining the basis functions in that way, we can notice that:
∫

∂τc
1

−κ∇φσc · n = −
∫

∂τc
2

−κ∇φσc · n =

∫

σc

−κ∇φσc · n = 1.

The functions φσc are thus defined to set a unit flux on σc and no fluxes on τ c1,2. The term
trace(κ) in the weight functions or in the boundary conditions of (2.18) and (2.20) enables to
weight the fine fluxes at the fine scale according to the permeability field.

To solve the local problems (2.18) and (2.20) we use the SUSHI method. Let Usushi
Ωσc

, an SUSHI

space defined on Ωσc
, the variational formulation reads: find uh ∈ Usushi

Ωσc
so that:

∀vh ∈ Usushi
Ωσc

, ah(uh, vh) = bh(vh) where






ah(uh, vh)
def
=
∫

Ωσc
κ∇huh · ∇hvh

bh(vh)
def
=
∫

Ωσc
wvh
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K L

Fc

fine mesh

coarse mesh

Multiscale method : basis function support

Figure 2.3: Basis function

Hybrid multiscale functional space

The Hybrid Multiscale method consists in finding discrete solutions of (2.17) expressed as linear
combination of the multiscale basis functions φ and the characteristic function of coarse element
i.e.:

uh =
∑

τc∈TH

uτcχτc +
∑

σc∈FH

vσc
φσc

where (uτc , vσc
) ∈ RTH×FH , χτc is the characteristic function of τc ∈ TH .

Let TH = RTH and FH = RFH , in the unified framework formalism, it is equivalent to set
VH = TH × FH with DOFs on both coarse cells and coarse faces and to define the operator
Rhms

H mapping every vector of DOFs (uH , vH) ∈ VH onto the function RH(uH , vH)hms defined
∀τc ∈ TH , ∀x ∈ τ c as follows:

u|τc(x) = uτc +
∑

σc∈Fc
τc

vσc
φσc

(x)

We define a discrete functional space for hybrid multiscale method as V hms def
= Rhms

H (TH ,FH)

The concept of gradient reconstruction operator Gh defined in Chapter 2 can be extended by
setting:

• Sh = TH
• ∀vh ∈ Vh, ∀τc ∈ TH ,Ghms

h (vh) is defined as:

Ghms
h (vh) =

∑

σc∈Fc
τc

vσc
∇φσc

Here, Gh does not define elements of P0
d(Sh) but rather a function that is piecewise constant on

the fine elements of Sh.

The coarse level variational formulation

Unlike for the original MxMsFEM method, we have to deal with the discontinuity of our basis
functions on each coarse element. To this end, we rely on a weak enforcement of continuity across
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interfaces inspired by the SIP method of Arnold [33]. The variational formulation for the coarse
problem reads:

Find uh ∈ Uhms, so that ∀vh ∈ Uhms, ahms
H (uh, vh) = bH(vh) where

ahms
H (uh, vh)

def
=

∫

Ω

κ∇Huh · ∇Hvh

−
∑

σc∈FH

∫

σc

(JuhK({κ∇Hvh} · nσc) + ({κ∇Huh}·nσc)JvhK)

+
∑

σc∈FH

∫

σc

η

h
JuhKJvhK

(2.21)

where we use a weighted average operator to deal with the heterogeneity of κ.

The source term q of the model problem (2.17) is embedded in the construction of the basis
functions, more exactly in the computation of the source term w involved in the local PDE prob-
lem (2.5.3) defining a basis function φσc . Indeed this term depends on q when q(x) 6= 0 on Ωσc .
For this reason we have generally bH(vh) = 0.

The right hand side of the linear system is filled while evaluating the bilinear form ahms
H (uh, vh),

we deal with the dirichlet boundary conditions. This is done at the evaluation of the terms
corresponding the weak enformcement of continuity across the interfaces σc ∈ ΓD.

2.5.4 Hybrid Multiscale algorithm

The hybrid multiscale method defines a two steps algorithm: the first step consists in building a
coarse linear system with the coarse level method defined previously to compute a coarse solution.
The second step consists in downscaling that solution on the fine level.

Coarse linear system Assembly

The coarse linear system is built by the evaluation of the bilinear forms (2.21) which is composed
of the two main terms:

∫

τ

κ∇Huh · ∇Hvh and
∫

σ

(JuhK({κ∇Hvh} · nσ)

Writting uh =
∑

τ∈TH
uτχτ +

∑

σ∈FH
vσφσ, we can notice that:

•
∫

Ω

κ∇Huh · ∇Hvh =
∑

τ∈TH

∫

τc

κ∇Huh · ∇Hvh

=
∑

τc∈TH

∑

σ1,σ2∈Fc
τc

vσ1
vσ2

∫

τc

κ∇Hφσ1
· ∇Hφσ2

(2.22)

• integrating
∫

σ
(JuhK({κ∇Hvh} ·nσ) with one quadrature point on the barycenter xσ, we have

for σ = τ1 ∩ τ2:
∫

σ

(JuhK({κ∇Huh} · nσ) =
∫

σ

(uh|τ1 − uh|τ2)(κ∇Huh · nσ)

= |σ|(uh|τ1(xσ)− uh|τ2(xσ))(κ∇Huh · nσ)(xσ)

= |σ|( 1

|σ|

∫

σ

uh|τ1 −
1

|σ|

∫

σ

uh|τ2)vσ

1

|σ|

∫

σ

κ∇Hφσ · nσ

(2.23)

Noting that
∫

σ
κ∇Hφσ ·nσ = 1, we obtain finally an assembly phase based, for τ ∈ TH , σ1 ∈ Fτ

and σ2 ∈ Fτ , on the evaluation of the terms
∫

τc
κ∇Hφσ1

· ∇Hφσ2
and 1

|σ1|
∫

σ1

φσ2
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Algebraic considerations

The mathematical functions and basis functions involved in the multiscale method have all alge-
braic representations:

• Elements uh ∈ V hms are represented by vectors (uH ,vH) ∈ TH ×FH at the coarse level and
(uh,vh) ∈ Th × Fh at the fine level;

• the basis functions φσc are represented by vectors (fuσc , fvσc) ∈ Th × Fh and ∇φσc by
gσc ∈ Fh. The component values of these vectors are null for all mesh elements indices τf

and σf except those belonging to Ωσc .

The computation of the basis functions consists in solving a collection of independent local
PDE problems which leads to build and solve a collection of independent local linear systems. All
these computations are independent and can be done in parallel.

Fine solution reconstruction

The fine solution pf and vf = −κ∇pf is recovered from the coarse solution (uH ,vH) ∈ TH × FH ,
with uH = (uτc) and uH = (vσc), writting:

pf =
∑

τc∈TH
uτcχτc +

∑

σc∈FH
vσcφσc and vf = Fh(u

c, vc) =
∑

σc∈FH
vσcFh(φσc), where Fh

is the flux reconstruction operator introduced in §2.4.3.

Let (uph,vph) ∈ Th × Fh be the algebraic representation of pf and vvh the algebraic rep-
resentation of vf . Let (ufσc ,vfσc) ∈ Th × Fh and gσc ∈ Fh be the algebraic representation of
respectively φσc and Fh(φσc). The computation of (uph,vph) consists in iterating on each coarse
cells τ c ∈ TH then in updating (uph,vph) and vvh evaluating the following vector linear combi-
nations:

uph+ = uτc +
∑

σc∈Fc
τc

vσcufσc

vph+ =
∑

σc∈Fc
τc

vσcvfσc

vvh+ =
∑

σc∈Fc
τc

vσcgσc
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Chapter 3

Computational setting

This chapter is partly taken from our Bit Numerical Mathematics [48] up to section 2.4, then in
the last section we turn to the mathematical extension to multiscale problems.

DS(E)Ls are an established means to break the complexity of applications by allowing each
contributor to express themselves in a language as close as possible to their technical jargon. In
the context of scientific computing, complexity spans different levels:

(i) Modeling. Modelers investigate more and more comprehensive physical models expressed in
terms of (systems of) Partial Differential Equations (PDEs) possibly completed by algebraic
closure laws;

(ii) Discretization. Numericians confront with an increasing number of discretization methods
which are potentially suited to convert the PDE problem into a system of algebraic equations.
Disposing of different discretization methods within a unified framework is highly beneficial
since it allows to identify the most efficient choice for the problem at hand;

(iii) Solution. Several low-level numerical packages are available to solve systems of algebraic
equations. Their performance in terms of computational efficiency and stability is strongly
related to both the features of the matrix to solve (symmetry, fill-in pattern, etc.) and the
underlying hardware architecture;

(iv) Software design. Finally, computer scientists design low-level data structures and algorithms
that benefit from the evolution of both hardware architectures and languages to ensure the
overall efficiency.

Ideally, a software platform should allow contributors at each level to focus on a specific aspect
of the problem without being hindered by the interaction with the other levels.

The mathematical framework presented in Chapter 2 enables to describe a large family of
lowest order methods in a unified Galerkin formalism. As for FE methods, this formalism gives
the opportunity to design of a high level language aimed at numericians that allows to express
lowest-order methods using a syntax as close as possible to the mathematical notation.

For our diffusion model problem (2.4), such a DSEL will for instance achieve to express the
variational discretization formulation 2.13 with the programming counterpart in listing 3.1.

Listing 3.1: Diffusion problem implementation

MeshType Th ;
Real K;
auto Vh = new CGGSpace(Th ) ;
auto u = ∗Vh−>t r i a l ( ) ;

21
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auto v = ∗Vh−>t e s t ( ) ;
auto lambda = eta ∗gamma/H( ) ;
Bi l inearForm a =

integrate ( a l l C e l l s (Th) ,dot (K∗grad (u ) ,grad ( v ) ) ) +
integrate ( a l l Fa c e s (Th) ,jump(u)∗dot (N( ) ,avg (grad ( v ) ) ) −

dot (N( ) ,avg (K∗grad (u ) ) )∗ jump( v ) +
lambda∗jump(u)∗jump( v ) ;

LinearForm b =
integrate ( a l l C e l l s (Th) , f ∗v ) ;

The Key ingredients to design a DSEL are:

1. Meta-programming techniques that consist in writing programs that transform types at
compile time

2. Generic programming techniques that consist in designing generic components composed of
abstract programs with generic types

3. Generative programming techniques that consist in generating concrete programs, trans-
forming types with meta-programs to create concrete types to use with abstract programs
of generic components

4. Expression template techniques [28, 34, 92] that consist in representing problems with ex-
pression trees and using tools to describe, parse and evaluate theses trees.

Parametric

DSEL and Generative programming

Expression tree

Application description

Domain Specific Generative component Concrete application

Translator BuilderParser

generic components

Figure 3.1: Generative programming

Applying all these techniques, it is possible to represent a problem with an expression tree.
Parsing this tree at compile time, using meta programming tools to introspect the expression, it is
possible to select generic components, to link them together to assemble and generate a concrete
program. The execution of this program consists in evaluating the tree at runtime, executing the
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concrete instance of the selected components to build a linear system, solve it to find the solution
of the problem. Figure 3.1 illustrates the main principles of the generative programming work-
flow: on the left we have the description of the problem with a tree expression, in the middle the
generative process at compile time, and on the right the execution process at runtime.

Using these principles, we have designed a DSEL that enables us to express and define linear
and bilinear forms. The terminals of our language are composed of symbols representing C++
objects with base types (Real or Integer) and with types representing discrete variables, functions,
test and trial functions. Our language uses the standard C++ binary operators (+,-,*,/), the
binary operator dot(.,.) representing the scalar product of vector expressions, unary operators
representing standard differential operators like grad(.) and div(.). The language is completed
by a number a specific keywords integrate(.,.), N() and H().

The integrate(.,.) keyword associates a collection of mesh entities to linear and bilinear
expressions.

N() and H() are free functions returning discrete variables containing respectively the pre-
computed values of nF and hF of the mesh faces of Th.

Figure 3.2 illustrates the link between the front end of a language composed of high level user
structures and keywords and the back-end composed of low level algebraic structures and generic
algorithms.

The generative programming is nowadays a well established technology. The technics of ex-
pression template and meta-programming in C++ have been developed since the middle of the
90s [28, 34, 92]. They have been already applied in scientific computing in projects like blitz

in the early 2000s. Since then, they have been applied intensively in general purpose libraries
like Spirit[15], Phoenix[13]. The Boost.Proto library of Niebler [83] is a framework of this kind
that provides user friendly tools to design DSLs in C++. It is somehow a DSEL to design user
DSELs. This library, part of the Boost project, has been successfully used in projects like Phoenix,
NT2[12] and is nowadays very mature. We have based our development on this framework for
all the useful tools its provides to design languages, to parse and introspect expressions and to
generate algorithms with low level structures.

The material in this chapter is largely taken from [48] and [68] and is organized as follows:
In §3.1 we present the algebraic back-end for the DSEL. In particular, we introduce the pro-

gramming counterpart of meshes and spaces of DOFs.
In §3.2 we present the functional front-end of the DSEL, which is based on the concept of

function space. We focus on the originality of these concepts which are inspired by the Feel++

library, but are here extended to account for the peculiarities of the methods at hand.
In §3.3 we present a DSEL framework that allows to build complex expressions representing

bilinear and linear forms. We show how different evaluation contexts enable us to generate algo-
rithms to solve the discrete problem by exploiting the linear algebra layer. We present also a few
extensions that handle:

• vector expressions representing 2D and 3D fields like for instance the velocity fields or prop-
erties of collection of entities;

• general boundary conditions with extra constraints or equations that modify the linear sys-
tem to solve.

In §3.4 we present the extension of computational framwork to multiscale methods.
Finally in §3.5 we provide several numerical examples to assess the performance of the pro-

posed approach. A special care is devoted to the evaluation of the overhead of the DSEL and to
the comparison with more standard methods/implementations.
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Figure 3.2: DSEL and generative programming
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3.1 Algebraic back-end

In this section we focus on the elementary ingredients used to build the terms appearing in the
linear and bilinear forms of Chapter 2, which constitute the back-end of the DSEL presented in
§3.3.

3.1.1 Mesh

The mesh concept is an important ingredient of the mathematical frame. Mesh types and data
structures are a very standard issue and different kinds of implementation already exists in various
frameworks. We have developed above Arcane mesh data structures a mesh concept defining
(i) MeshType::dim the space dimension, (ii) the subtypes Cell, Face and Node for a mesh element
of dimension respectively MeshType::dim, MeshType::dim-1 and 0. The free functions listed in
table 3.1 are provided to manipulate the mesh, to extract different parts, and to access to the
mesh connectivity. Observe that the notion of geometric element type is absent from the mesh
concept, as it is irrelevant for the methods considered in this work.

Table 3.1: Connectivity and mesh element extraction tools. Pkey
h is a subset of Th or Fh associated

to a key label <key>

All<Item>::items(<mesh>) elements of the mesh,
Th for cells, Fh for faces

Boundary<Item>::items(<mesh>) elements of the boundary of the mesh
T b
h for cells, Fb

h for faces
Internal<Item>::items(<mesh>) T i

h for cells, Fb
h for faces

All<Item>::items(<mesh>,<key>) Pkey
h

Boundary<Item>::items(<mesh>,<key>) Pkey
h ∩ T b

h for cells, Pkey
h ∩ Fb

h for faces
Internal<Item>::items(<mesh>,<key>) Pkey

h ∩ T i
h for cells, Pkey

h ∩ F i
h for faces

elements<Item>::items(<mesh>,<item>) the set of elements of <mesh>
connected to <item>,TF or FT

A user friendly version of these free functions are listed in Table 3.2

Table 3.2: Mesh accessors for an object Th of type Mesh

Item set Accessor

Th allCells(Th)

Fh allFaces(Th)

F i
h interfaces(Th)

Fb
h boundaryFaces(Th)

SubMesh, submesh element identification. Tags (listing 3.2) have been created to identify:
(i) the back or the front position of a cell regarding a face; (ii) the two submesh types identity
and pyramidal.

Listing 3.2: Tags definition for submesh identification

namespace mesh {
//!enum type defining cell position with respect to face
typede f enum {eBack , eFront } eCellFacePosType ;
namespace tag {

s t r u c t back {} ; //! back position tag
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s t r u c t f r on t {} ; //! front position tag
s t r u c t boundary {} ; //! boundary position tag
namespace submesh {

s t r u c t Th {} ; //! idendity submesh tag
s t r u c t Ph {} ; //! Pyramidal submesh tag

} ;
} ;

} ;

The identity submesh Sh = Th is represented by mesh::tag::submesh::Th.
The pyramidal submesh Sh of Th is represented by mesh::tag::submesh::Ph, and each

element S ∈ Sh is uniquely identified by a face element F ∈ Fh and a position p ∈ {back, front}
relatively to F or by a cell element T ∈ Th and an integer relative position of a face F ∈ FT .

3.1.2 Vector spaces, degrees of freedom and discrete variables

The class Variable with template parameters ItemT and ValueT manages vectors of values of
type ValueT and provides data accessors to these values with either mesh elements of type ItemT,
integer ids or iterators identifying these elements. Instances of the class Variable are managed
by VariableMng, a class that associates each variable to its unique string key label corresponding
to the variable name.

We represent vector spaces of DOFs Vh by instances of VariableMng, and vector space ele-
ments vh ∈ Vh, identified by their name by instances of Variable. The vector of DOF values is
represented by the variable vector values and the different data accessors that enable us to map
mesh entities to DOF values.

3.1.3 Assembly

The point of view presented in Chapter 2 naturally leads to finite element-like assembly of local
contributions stemming from integrals over elements or faces. However, a few major differences
have to be taken into account: (i) the stencil of the local contributions may vary from term to
term; (ii) the stencil may be data-dependent, as is the case for the methods of Chapter 2 based
on the L-construction; (iii) the stencil may be non-local, as DOFs from neighboring elements may
be used in local reconstructions. All of the above facts invalidate the classical approach based on
a global table of DOFs inferred from a mesh and a finite element (in the sense of Ciarlet [47, pag.
93]).

Linear combination Our approach to meet the above requirements is to (i) drop the concept
of local element, and to refer to DOFs by a unique global index; (ii) introduce the concept of linear
combination, which realizes a linear application from Vh onto the space Tr of real tensors of order
r ≤ 2.

In practice, the main ingredient of linear combination is an efficient mapping of the DOFs in
Vh onto the corresponding coefficients in Tr. A Linear Combination l

r can indeed be thought of
as a list of couples (I, τl,I)I∈Il where Il ⊂ Vh is the stencil described as a vector of global DOFs
and τl,I ∈ Tr, I ∈ Il, are the corresponding coefficients. The evaluation at vh ∈ Vh (obtained by
calling the operator()(vh)) actually returns

l
r(vh) =

∑

I∈Il

τl,IvI ∈ Tr.

The concept havs been implemented with the following class:

template<typename ValueT , typename ItemT>
c l a s s LinearCombination {
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pub l i c :

//!evaluation for a MeshVariable
template<typename VariableType>
ValueT operator ( ) ( const VariableType& var ) const ;

//!List of integer ids of the combination mesh elements
i n l i n e ConstArrayView<Integer> l i d s ( ) const ;

//!List of combination mesh elements
i n l i n e ItemVectorViewT<ItemT> items ( ) const {

//!List of combination values
i n l i n e ConstArrayView<ValueT> c o e f f i c i e n t s ( ) const ;

} ;

We have defined an efficient algebra extending in a straightforward manner the algebraic op-
erators defined on the type ValueT of the linear combination coefficients. We have also defined
for l

a
I1,(τa

i
)
i∈I1

and l
b
Ib,(τb

i
)
i∈Ib

the bilinear operations l
a ∗ lb and dot(la, lb) returning the local

matrix Aloc = (mi,j)i∈Ib,j∈Ia with mi,j = τa,j ∗ τb,i respectively dot(τa,j , τb,i).

In the algebra implementation, a particular care has been devoted to the computation of expres-
sions containing the sum or subtraction of linear combinations, since this involves computing the
intersection of the corresponding set of DOFs, see Figure 3.3. To overcome this difficulty, the lin-
ear combination algebra is implemented with the classes LinearCombBuffer and LinearCombMng

with the template parameters ItemT and ValueT.

LinearCombBuffer implements the algebra operations set(), add(), mult() and scaMul(),
and also the operators +=,.*= and /=.

LinearCombMng helps to manage sets of linear combinations with the same template parame-
ters. It efficiently computes the union of linear combination stencils requested to implement the
sum or substraction of linear combinations. The result of the built LinearCombBuffer can be
stored in an instance of LinearCombMng that centralizes the memory management. Linear com-
binations can be used in computation as views on centralized data avoiding unuseful memory copy.

I1

I2

=
I = I1 ∪ I2

(τ1,I)I∈■1\■2
(τ1,I + τ2,I)I∈■1∩■2

(τ2,I)I∈■2\■1

I1 ∩ I2

+

Figure 3.3: Computing the sum of two linear combinations l1 = (I, τ1,I)I∈I1 and l2 = (I, τ2,I)I∈I2

requires computing the intersection I1 ∩ I2 and the union I1 ∪ I2

This algebra allows to implement the gradient reconstruction operator Ggreen
h defined by (2.10)
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as described in Listing 3.3.

Listing 3.3: Implementation of the gradient reconstruction G
green
h (2.10) for an element T ∈ Th.

// define grad value type in a space of dimension dim
typede f Vector<ValueType , MeshType : : dim> GradValueType ;
TraceOpType traceop (Vh ) ; // a given trace reconstruction operator
LinearCombT<ValueType , ItemType> vT(IT , 1 . ) ;
LinearCombBufferT<GradValueType , ItemType> bu f f e r ;
bu f f e r . i n i t ( )
f o r (F ∈ FT ) {

LinearCombT<ValueType , ItemType> vF = traceop (F ) ;

bu f f e r . add (
|F |d−1

|T |d
nT,F ,vF ) ;

bu f f e r . add(−
|F |d−1

|T |d
nT,F ,vT ) ;

}
bu f f e r . f i n a l i z e ( ) ;
LinearCombT<ValueType , ItemType> GT = bu f f e r . linearComb ( ) ;

The linear combination is a key ingredient in our framework upon which high level concepts
such as function spaces, functions, test and trial functions implementation are built. Its imple-
mentation is therefore crucial to ensure good performance. Indeed the flexibility and efficiency of
our framework is mainly based on the fact that the linear combination algebra enables partial lazy
evaluation on linear combination expressions without evaluating the final result with the variable
data values. This final evaluation can then be postponed and applied with several different vari-
ables at once.

Linear and bilinear contributions Exploiting the concept of linear combination, it is possible
to devise a unified treatment for local contributions stemming from integrals over elements or faces.
We illustrate the main ideas using the example: For a given T ∈ Th and for uh, vh ∈ V ccg

h we
consider the local contribution Aloc associated to the term

∫

T

κ∇huh·∇hvh.

The key remark is that both (κ∇huh)|T = κ|T∇(uh|T ) and (∇hvh)|T = ∇(vh|T ) are constant
functions in T which can be represented as objects of type
LinearCombination<GradValueType,ItemType>, say lu = (J, τlu,j)j∈J and lv = (I, τlv,i)i∈I.
The associated local contribution reads

Aloc = |T |ddot(lv, lu). (3.1)

where dot(lv, lu) in our algebra returns a local matrix. Generalizing the above remark, one can
implement local terms in matrix assembly as BilinearContributions which can be represented
by a local matrix Aloc equal to the result of the bilinear operations lv∗lu or dot(lv, lu) multiplied
by a factor γ. Observe, in particular, that I and J play the same role as the lines of the table
of DOFs corresponding to test and trial functions supported in T in standard finite element
implementations. As such, they are related to the lines and columns of the global matrix A to
which Aloc contributes,

A(I,J)← A(I,J) +Aloc. (3.2)

The additional argument γ in BilinearContribution serves as a multiplicative factor for the
whole expression (in the above example, γ = |T |d). More generally, γ can be a function of space
and time, and may depend on discrete variables.
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Similarly, right-hand side contributions can be represented by LinearContributions, which
are initialized by a multiplicative coefficient γ and a linear combination lv. A typical assembly
pattern is described in Listing 3.4.

Listing 3.4: Assembly of a bilinear and linear contribution (A represents here the global matrix
b the global right-hand side vector)

LinearCombT<ValueType , ItemType> lu , lv ;
// Assemble a bilinear contribution into the left-hand side
Bi l inea rCont r ibut i on <ValueType> blc (γ , LCAlgebra : : dot (lu , lv ) ) ;
A . assemble ( b l c ) ;
// Assemble a linear contribution into the right-hand side
LinearContr ibut ion<ValueType> l c (γ ,lv ) ;
b . assemble ( l c ) ;

3.2 Functional front-end

3.2.1 Function spaces

Incomplete broken polynomial spaces defined by (2.6) are mapped onto C++ types according to
the FunctionSpace concept detailed in Listing 3.5.

Listing 3.5: FunctionSpace concept

c l a s s FunctionSpace {
// Types for trial and test functions
typede f . . . TrialFunctionType ;
typede f . . . TestFunctionType ;
typede f . . . FunctionType ;
// Create a new instance of the space
FunctionSpace ∗ c r e a t e ( const Mesh &);
// Constant value of Gh|S for S ∈ Sh expressed as a linear combination of DOFs
LinearCombT<ValueT , ItemT> grad (S ) const ;
// Value of Rh|S(x) for x ∈ S and S ∈ Sh expressed as a linear combination of DOFs
LinearCombT<ValueT , ItemT> eval (S , x) const ;

} ;

The actual types are generated by a helper template class FunctionSpace parametrized by
a containing polynomial space, labeled span, and a piecewise constant gradient reconstruction,
labeled gradient (labels for template arguments are here defined using the boost::parameter

library).

The gradient reconstruction implicitly fixes both the vector space of DOFs Vh according to (2.6)
as well as the choice (2.3) for Sh. The helper template class GradOp enables to generate gradient
reconstruction types for given values of the polynom degree, SubmeshType, InterpolatorType and
DOFType, labeled respectively by the predefined keywords poly, submesh, gradient, interpola-

tor and dof. DOFType are identified by the tags space::tag::dofs::Th, space::tag::dofs::Fh
and space::tag::dofs::ThxFh representing respectively RTh , RFh and RTh × RFh .

The programming counterparts of the gradient reconstruction operator used in Chapter 2 are
listed in Table 3.3.

The programming counterparts of the function spaces used in Chapter 2 are listed in Table 3.4.

For instance, in listing 3.6 we can see how is defined and generated a type representing a
gradient reconstruction operator using the Green formula and a type representing a ccG Space.

Listing 3.6: ccG space definition
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Table 3.3: gradient template parameters for the gradient reconstruction operator of Chapter 2

Gh submesh interpolator dof

GFormulaGradOp tag::submesh::Ph BarycentricOp tag::dofs::Th

GreenFormulaGradOp tag::submesh::Th LInterpolatorOp tag::dofs::Th

SUSHIFormulaHybridGradOp tag::submesh::Ph – tag::dofs::ThxFh

Table 3.4: span and gradient template parameters for the discrete spaces of Chapter 2

Space Sh span gradient

P0
d(Th) Th poly<0> Null

V g
h Ph poly<1> GFormulaGradOp

V ccg
h Th poly<1> GreenFormulaGradOp

V hyb
h Ph poly<1> SUSHIFormulaHybridGradOp

V cc
h Ph poly<1> SUSHIFormulaGradOp

typede f
GradOp< MeshType , //!set mesh type

submesh<tag : : submesh : : Th>, //!set submesh option
interpolator<BarycentricOp> //!set trace operator
dof<tag : : do f s : : Th> //!set dof type

>:: type GreenFormulaGradOp ;

typede f
FunctionSpace< MeshType , //!set mesh type

span< poly<1>, //!set polynom degree
gradient<GreenFormulaGradOp > //!set gradient type

> //!generate space
>:: type CCGSpaceType ;

We provide the user friendly free functions listed in Table 3.5 to create function space with
default parameters.

Table 3.5: Function space fabric free functions

Space type free function

P0
d(Th) newP0Space(Th)
V g
h newGSpace(Th)

V ccg
h newCCGSpace(Th)

V hyb
h newSUSHISpace(Th)

The key role of a FunctionSpace is to bridge the gap between the algebraic representation of
DOFs and the functional representation used in the methods of Chapter 2. This is achieved by
the functions grad and eval, which are the C++ counterpart of the linear operators Gh and Rh

respectively; see §2.1. More specifically,

(i) for all S ∈ Sh, grad(S) returns a vector-valued linear combination corresponding to the
(constant) restriction Gh|S ;

(ii) for all S ∈ Sh and all x ∈ S, eval(S, x) returns a scalar-valued linear combination corre-
sponding to Rh|S(x) defined according to (2.5).

The linear combinations returned by grad and eval can be used to build LinearContributions
and BilinearContributions as described in the previous sections.
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A function space type also defines the sub types FunctionType, TestFunctionType and
TrialFunctionType corresponding to the mathematical notions of discrete functions, test and
trial functions in variational formulations. Instances of TrialFunctionType and FunctionType

are associated to a Variable object containing a vector of DOFs stored in memory associated to
a string key corresponding to the variable name. For functions, the vector of dofs is used in the
evaluation on a point x ∈ Ω while for trial functions, this vector is used to receive the solution
of the discrete problem. Test functions representing implicitely the space basis, are not associ-
ated to any Variable objects, neither vector of dofs. Unlike FunctionType, the evaluation of
TrialFunctionType and TestFunctionType is lazy in the sense that it returns a linear combi-
nation. This linear combination can be used to build local linear or bilinear contributions to the
global system, or enables to postpone the evaluation with the variable data.

3.2.2 Gradient reconstruction operator

An Interpolator operator Th : Vh → RFh realizes the mapping Vh ∋ vh 7→ Th(vh) = (vF )F∈Fh

with (vF )F∈Fh
∈ RFh and, for all F ∈ Fh,

vF = 〈ξgF
vh
〉F = ξgF

vh
(xF ). (3.3)

Most of Interpolator operators can be set defining for each F ∈ Fh the linear combination LF

such that vF = LF (vh).

The interpolator concept specifies a classe type that implements the function:
LinearCombT<Cell,ValueType> eval(Face const & face) that returns LF for each F ∈ Fh.

c l a s s Interpo latorType {
pub l i c :
typede f MeshType : : Face Face ;
typede f MeshType : : Ce l l Ce l l ;
LinearCombT<Cel l , ValueType> eval ( Face const & fa c e ) const ;

} ;

The mapping vF = LF (vh) is then realized evaluating vf on each face of a mesh as follows:

LinearCombT<Cel l , ValueType> comb = interpolator . eval ( f a c e ) ;
ValueType vf = comb( f a c e ) ;

We have implemented the L-Interpolator that uses the L-construction procedure with a piece-
wise constant tensor field on Th, and the Barycentric Interpolator that builds for each F ∈ Fh

a group SF ⊂ Th of cell neighbours and computes the barycentric coordinates (αT )T∈SF
of the

barycenter xF =
∑

T∈SF
αTxT in the barycenters system (xT )T∈SF

.

We have seen that for a given mesh Th, a gradient reconstruction operator Gh fixes the submesh
Sh and the value of Gh(vh)|T ∈ Rd for each vh ∈ Vh, T ∈ Sh. It can be set defining for each
T ∈ Sh a linear combination LT , such that Gh(vh)|T = LT (vh) for each vh ∈ Vh. The Gradient

operator concept specifies classes that define SubMeshType precising the submesh type on which
gradient is piecewise constant and that implement an evaluation function

LinearCombT<Cell,VectorValueT> eval(S ∈ Sh) on each submesh element. The signature
of the function depends of Sh conforming to the way submesh elements are identified in §3.1.1.

template<typename InterpolatorT> class GreenFormulaGradOpT implements the gradi-
ent operator Gh(.) based on an interpolator operator Th(.) that builds the gradient on cell elements
using the green formula:

Gh(vh)|T =
1

|T |d
∑

F∈FT

|F |d−1(vF − vT )nT,F
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For T ∈ Th, F ∈ FT , let LT
F = Th(.)|F be the linear combination value of Th(.) on F , LI

T the
identity linear combination on T , and LG

T the value of gradient operator on T . Using vF = LT
F (vh)

we have Gh(vh)|T = LG
T (vh) =

1
|T |d

∑

F∈FT
|F |d−1(L

T
F (vh)− LI

T (vh))nT,F .

The gradient operator is built setting for each T LG
T = 1

|T |d
∑

F∈FT
|F |d−1(L

T
F − LI

T )nT,F

3.2.3 Linear and bilinear forms

The BilinearForm and LinearForm concepts represent the linear and bilinear forms described
in Chapter 2. They allow to define expressions using test and trial functions, unary and binary
operators. Then, using the linear and bilinear contribution concepts defined in 3.1.3 and the matrix
and vector types of the linear system framework, they allow to write integration algorithms (listing
3.7) leading to the construction a global linear system, based on an assembly procedure that adds
local terms computed on each elements of the mesh.

Listing 3.7: Integration algorithm to evaluate a linear and bilinear form

MeshType Th ; // declare Th

SpaceType Uh(Th ) ; // Trial function space
SpaceType Vh(Th ) ; // Test function space
SpaceType : : TrialFunctionType u(Uh) ;
SpaceType : : TestFunctionType v (Vh) ;
LinearAlgebra : : Matrix matrix (Uh,Vh) ;
LinearAlgebra : : Vector rhs (Vh) ;
std : : for_each ( All<Cel l >: : i tems (Th ) . begin ( ) ,

All<Cel l >: : i tems (Th ) . end ( ) ,
[& va l ] ( Ce l l& c e l l )

{
ValueType meas = measure (Th, c e l l ) ;
B i l i n ea rCont r ibut i on <ValueType> GuGv =
LinearCombAlgebra : : dot (grad (u ) . eval ( c e l l ) ,grad ( v ) . eval ( c e l l ) ) ;

matrix . assemble (meas ,GuGv) ;
B i l i n ea rCont r ibut i on <ValueType> uv =
LinearCombAlgebra : : mult( id (u ) . eval ( c e l l ) , id ( v ) . eval ( c e l l ) )

matrix . assemble (meas , uv ) ;
rhs . assemble (meas∗ f [ c e l l ] , id ( v ) . eval ( c e l l ) ) ;

}

Generalizing Example 3.1.3, we notice that bilinear forms result from the sum of terms with
the following general form:

∑

I∈Ih

∫

I

(γu × Lu(uh)) · (γv ∗ Lv(vh)) , (3.4)

where

(i) Ih ∈
{

Th,Fh,F i
h,Fb

h

}

is a set of mesh items (cf. §3.1);

(ii) γu and γv are tensor fields of rank rγu
and rγv

respectively possibly depending on constants
and on discrete variables;

(iii) Lu is a linear operator acting on the trial function uh ∈ Uh and yielding a tensors-valued
field of order ru. The operator Lu is represented by an instance of LinearCombination;

(iv) Lv is a linear operator acting on the test function vh ∈ Vh (which can possibly belong to a
space Vh 6= Uh) and yielding a tensor-valued field of order rv. The operator Lv is represented
by an instance of LinearCombination;
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(v) × (resp. ∗) is an admissible product between a tensor of order rγu
(resp. rγv

) and a tensor
of order ru (resp. rv) yielding a tensor-valued field with order r;

(vi) · is the contraction product for tensors of order r.

The factors (γu×Lu(uh)) and (γv∗Lv(vh)) are respectively referred to as a trial and test expression.

Example 1 (Bilinear term). The term considered in Example 3.1.3 can be recast into the form
(3.4) by setting Ih = Th, γu = κ and rγu

= 2, γv = 1 and rγv
= 0, Lu = ∇h and ru = 1, Lv = ∇h

and rv = 1, and denoting by ×, ∗, and · the standard matrix-vector product, the scalar product,
and the standard vector inner product respectively.

Right-hand side contributions can be handled in a similar fashion.

3.3 DSEL design and implementation

The main goal of the DSEL is to allow a notation as close as possible to that of Chapter 2. The
focus of this section is on bilinear forms, as the ingredients for linear forms are essentially similar.
In what follows we do not mean to be exhaustive. Instead we first define our DSEL giving the
production rules that enable to create trial and test expressions as well as bilinear terms of the
form (3.4) using the Extended Backus–Naur Form (EBNF), [19], then we detail how this DSEL
has been implemented using the tools provided by the Boost Proto framework.

3.3.1 Language definition

Terminals and keywords The terminals of the DSEL is composed of a number of predefined
types categorized in the following families:

• the BaseType family for the standard C++ types representing integers and reals;

• the VarType family for all discrete variable types defined in §3.1;

• the MeshGroupType family for types representing collections of mesh entities such as the ones
listed in Table 3.1;

• the DiscreteFunction, TestFunction and TrialFunction families representing the discrete
functions, test and trial functions defined in §3.2.

The DSEL is based on some predefined keywords listed in table 3.6 semantically close to their
counterpart in the mathematical framework.

Trial and test expressions Trial (resp. test) expressions are obtained as the product of a
coefficient γu (resp. γv) by a linear operator Lu (resp. Lv) acting on a trial (resp. test) function.
The coefficient can result from the algebraic combination of constant values and Variables eval-
uated at item I (cf.(3.4)). Listing 3.8 defines the production rules that enable to create coefficient
expressions involving, in particular, constant values, Variables over Cells and products thereof.

Listing 3.8: Examples of production rules for the coefficient γ in (3.4)

BaseExpr = BaseType | BaseExpr * BaseExpr;

VarExpr = VarType | BaseExpr * VarExpr | VarExpr * VarExpr;

CoefExpr = BaseExpr | VarExpr;

To obtain trial and test expressions, we introduce linear operators acting on test and trial
functions. A few examples are provided in Listing 3.9, and include (i) grad, the gradient of the
trial/test function; (ii) trace operators like jump and avg representing, respectively, the jump
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and average of a trial/test function across a face. Besides linear operators, the production rules
for trial and test expressions in Listing 3.9 include various products by coefficients resulting from
the production rules of Listing 3.8 (dot denote the vector inner product).

Listing 3.9: Production rules for trial and test expressions

LinearOperator = "grad" | "jump" | "avg";

TrialExpr = TrialFunction |

CoefExpr * TrialExpr |

"dot("CoefExpr , TrialExpr")" |

LinearOperator"("TrialExpr")";

TrialExpr = TestFunction |

CoefExpr * TestExpr |

"dot("CoefExpr , TestExpr")" |

LinearOperator"("TestExpr")";

Bilinear forms Once test and trial expressions are available, bilinear terms can be obtained as
contraction products of trial and test expressions or as sums thereof, as described in Listing 3.10.

Listing 3.10: Production rules for bilinear terms

BilinearTerm = TrialExpr * TestExpr |

"dot("TrialExpr , TestExpr")" |

CoefExpr * BilinearTerm |

BilinearTerm + BilinearTerm;

Bilinear forms finally result from the integration of bilinear terms on groups of mesh items (cf.
Table 3.2). Production rules for bilinear forms are given in Listing 3.11. Observe that integrate

acts as a binary operator that takes as arguments the group of items over which integration is
performed and the bilinear term to integrate.

Listing 3.11: Production rules for bilinear forms

IntegrateBilinearTerm = "integrate("MeshGroup , BilinearTerm")";

BilinearForm = IntegrateBilinearTerm |

IntegrateBilinearTerm + BilinearForm;

3.3.2 Language design and implementation with Boost.Proto

We have based our implementation on the Boost.Proto library by Niebler [83], a powerful frame-
work to build DSELs in C++. In the online documentation[83], the framework is presented as
follows:

This library provides a collection of generic concepts and metafunctions that help to
design a DSL, its grammar and tools to parse and evaluate expressions. It provides
tools for constructing, type-checking, transforming and executing expression templates
[28, 34, 92], more specifically, it provides: (i) an expression tree data structure, (ii) a
mechanism for giving expressions additional behaviors and members, (iii) operator
overloads for building the tree from an expression, (iv) utilities for defining the grammar
to which an expression must conform, (v) an extensible mechanism for immediately
executing an expression template, (vi) an extensible set of tree transformations to
apply to expression trees.
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This framework enables to design a DSEL in a declarative way with mechanisms based on concepts
like: (i) tag, (ii) meta-function, (iii) grammar, (iv) context, (v) and transform structures (see the
framework documentation [83] for more details).

In this section, we detail in the first part how we have translated our language formal definition
§3.3.1 in proto objects that enable to define expressions, the language grammar, context and
transforms structures to evaluate expressions and implement algorithms. We present first the
mechanisms used to create expressions with user types, and the tools to parse and introspect them.
We introduce then the specific domain structure that allow us to encapsulate all the expressions
that one user can define. We show how, using grammar structures we can define constraints on
expressions and match patterns in them. We explain finally how we can extend the language with
new keywords and associate them to grammar structures. In the last part, we show how we have
written algorithms by evaluating expressions with context or transform objects.

Language front-ends

The language front ends are defined by: (i) the terminals; (ii) the keywords listed in 3.6; (iii) and
the grammar based on the production rules of Listings 3.8, 3.9, 3.10, and 3.11. Expressions
are implemented with proto expression tree structures where each node is an object of type
proto::base_expr identified by a tag and where the leafs of the tree are occupied by terminals
(cf. Listing 3.8), meshes (cf. Listing 3.11), test and trial functions (cf. Listing 3.9).

Example 2 (Bilinear form for the SUSHI method). The programming counterpart of the bilinear
form asushih defined by (2.15) is given in Listing 3.12. The corresponding expression tree is detailed
in Fig. 3.4.

Listing 3.12: DSEL based implementation of the bilinear form asushih defined by (2.15)

1 Mesh Th(/∗ . . . ∗/);
2 auto Vh = newSUSHISpace(Th);

3 auto uh = Vh ->trial ();

4 auto vh = Vh ->test ();

5 // Observe that the language automatically handles the fact that gradients are piecewise constant
6 // over pyramids rather than cells
7 BilinearForm ah = integrate (allCells(Th),

8 dot(K*grad(uh),grad(vh));

Tag structures and meta functions

The implementation of a proto expression tree is based on tag structures and on associated
meta-functions that enable to create nodes, implement grammar or transform structures.

The boost::proto framework already provides standard tags for standard unary and binary
C++ operator and metafunctions to easily navigate in the expression tree (cf table 3.7).

We have completed them with tags representing : (i) the different types of the DSEL terminals
(the leafs of the tree) ; (ii) the DSEL keywords corresponding to the nodes of the tree.

Listing 3.13: Tags definition

namespace fvdsel {

namespace tag {

//! DSEL terminal tags
struct basetype {} ;

struct meshvartype {} ;

struct testfunctiontype {} ;

struct trialfunctiontype {} ;

struct meshzonetype {} ;
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expr<tag::integrate>

allCells(Th) expr<tag::dot>

expr<tag::mult>

K expr<tag::grad>

uh

expr<tag::grad>

vh

Figure 3.4: Expression tree for the bilinear form defined at line 8 of Listing 3.12. Expressions are
in light gray, language terminals in dark gray

struct nulltype {} ;

//! DSEL keyword tags
struct dot{} ;

struct grad{} ;

struct jump{} ;

struct avg{} ;

struct integrate {} ;

}

}

FVDSL domain definition We have defined our domain FVDSLDomain where all expressions
are encapsulated in a FVDSLExpr that comform to our grammar FVDSLGrammar detailed in §3.3.2.
This mechanism enables the Boost.Proto framework to overload most of C++ operators.

Listing 3.14 illustrates how we have defined our domain.

Listing 3.14: FVDSL expression domain definition

template<typename Expr> s t r u c t FVDSLExpr ;

s t r u c t FVDSLGrammar
: proto : : or_<

proto : : terminal<boost : : proto : :_>
, proto : : nary_expr<boost : : proto : :_, proto : : vararg<FVDSLGrammar> > >

>
{} ;

// Expressions in the pde domain will be wrapped in FVDSLExpr<>
// and must conform to the FVDSLGrammar
s t r u c t FVDSLDomain

: proto : : domain<proto : : generator<FVDSLExpr>, FVDSLGrammar>
{} ;
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template<typename Expr>
s t r u c t FVDSLExpr

: proto : : extends<Expr , FVDSLExpr<Expr>, FVDSLDomain>
{

e x p l i c i t FVDSLExpr(Expr const &expr )
: proto : : extends<Expr , FVDSLExpr<Expr>, FVDSLDomain>(expr )

{}

BOOST_PROTO_EXTENDS_USING_ASSIGN(FVDSLExpr)

} ;

DSEL keywords The DSEL keywords listed in table 3.6 are associated to specific tags. For
each tag, we have implemented a free function that creates a tree node associated to this tag, a
meta-function that generates the type of that node, and a grammar element that matches expres-
sions and as PrimitiveTransform (cf [83], 3.3.2) that dispatches to the proto::pass_through<>

transform. For instance, the grad keyword is associated to the tag fvdsel::tag::grad. Listing
3.15 illustrates the definition of the unary free function grad(.) creating nodes with that tag
and the definition of fvdsel::gradop<ExprT> the meta-function that matches grad expression or
dispatches transforms. The dot keyword is associated to the tag fvdsel::tag::dot. Listing 3.16
illustrates the definition of the binary free function dot(.,.) creating nodes with that tag and
the definition of fvdsel::dotop<LExprT,RExprT> the meta-function that matches inner product
expression or dispatches transforms.

Listing 3.15: free function and meta-function associated to fvdsel::tag::grad

//! grad metafunction
template<typename A>
typename proto : : r e su l t_o f : : make_expr< f vd s e l : : tag : : grad , FVDSLDomain

, A const &
>:: type

grad (A const &a )
{

return proto : : make_expr<f vd s e l : : tag : : grad , FVDSLDomain>(boost : : r e f ( a ) ) ;
}

//! grad metafunction
template<typename T>
s t r u c t gradop : proto : : transform< gradop<T> >
{

// types
typede f proto : : expr< f vd s e l : : tag : : grad ,

proto : : l i s t 1 < T >
> type ;

typede f proto : : basic_expr< f vd s e l : : tag : : grad ,
proto : : l i s t 1 < T >

> proto_grammar ;

// member classes/structs/unions
template<typename Expr , typename State , typename Data>
s t r u c t impl :

proto : : pass_through<gradop >: : template impl<Expr , State , Data>
{
} ;

} ;
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Listing 3.16: Free function and meta-function associated to fvdsel::tag::dot

template<typename L , typename R>
typename
proto : : r e su l t_o f : : make_expr<

f vd s e l : : tag : : dot

, FVDSLDomain
, L const &
, R const &

>:: type
dot (L const &l ,R const& r )
{

re turn proto : : make_expr< f vd s e l : : tag : : dot ,
FVDSLDomain >(boost : : r e f ( l ) , boost : : r e f ( r ) ) ;

}

template<typename LeftT , typename RightT>
s t r u c t dotop : proto : : transform< dotop<LeftT , RightT> >
{

// types
typede f proto : : expr< f vd s e l : : tag : : dot ,

proto : : l i s t 2 < LeftT , RightT >
> type ;

typede f proto : : basic_expr< f vd s e l : : tag : : dot ,
proto : : l i s t 2 < LeftT , RightT >

> proto_grammar ;

// member classes/structs/unions
template<typename LExpr , typename RExpr , typename State , typename Data>
s t r u c t impl :

proto : : pass_through<dotop >: : template impl<LExpr , RExpr , State , Data>
{
} ;

} ;

Table 3.5 lists the main keywords with their associated tags, free functions and meta-functions.

Figure 3.5: DSEL keywords

keyword n-arity tag free function meta-function

integrate 2 fvdsel::tag::integrate integrate(.,.) integrateop<.,.>

grad 1 fvdsel::tag::grad grad(.) gradop<.>

jump 1 fvdsel::tag::jump jump(.) jumpop<.>

avg 1 fvdsel::tag::avg avg(.) avgop<.>

dot 2 fvdsel::tag::dot dot(.,.) dotop<.,.>

Grammar definition :
The grammar of our language is based on the production rules detailed in §3.3.1. Proto provides

a set of tools that enables us to implement each production rule in a user friendly declarative way.
Terminal structures are detected with the meta-function defined in listing 3.17. Each production
rule is implemented by a grammar structure composed with other grammar structures, proto
pre-defined transforms (cf table 3.7) or some of our specific transforms (cf table 3.5).

Listing 3.17: terminal meta-function

template<typename T> s t ru c t is_base_type ;
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template<typename T> s t ru c t is_mesh_var ;
template<typename T> s t ru c t is_mesh_group ;
template<typename T> s t ru c t i s_funct i on ;
template<typename T> s t ru c t i s_tes t_funct ion ;
template<typename T> s t ru c t i s_t r i a l_ func t i on ;

template<typename T>
s t r u c t IsFVDSLTerminal

: mpl : : or_<
f vd s e l : : i s_function_type<T>,
f v d s e l : : is_base_type<T>,
f v d s e l : : is_mesh_var<T>,
f v d s e l : : is_mesh_group<T>

>
{} ;

In listing 3.18 we can compare the implementation of the DSEL grammar with the BaseTypeGrammar,
MeshVarTypeGrammar, TestFunctionTerminal, TrialFunctionTerminal, CoefExprGrammar and
BilinearGrammar structures to the EBNF definition of the production rules 3.8, 3.9, 3.10, and
3.11 specifying bilinear expressions.

Listing 3.18: Bilinear expression grammar

namespace f v d s e l {

s t r u c t BaseTypeGrammar
: proto : : terminal< proto : : convert ib le_to<Real> >
{} ;

s t r u c t MeshVarTypeGrammar
: proto : : and_< proto : : terminal<proto : :_>,

proto : : if_< f vd s e l : : is_mesh_var<proto : : _value >() > >
{} ;

s t r u c t TestFunctionTerminal
: proto : : and_< FunctionTerminal ,

proto : : if_< f vd s e l : : i s_test_funct ion<proto : : _value >() > >
{} ;

s t r u c t Tria lFunct ionTerminal
: proto : : and_< FunctionTerminal ,

proto : : if_< f vd s e l : : i s_t r i a l_ func t i on <proto : : _value >() > >
{} ;

s t r u c t CoefExprGrammar ;

s t r u c t CoefExprGrammar
: proto : : or_<

BaseTypeGrammar ,
MeshVarTypeGrammar ,
proto : : plus<CoefExprGrammar , CoefExprGrammar>,
proto : : mu l t i p l i e s <CoefExprGrammar , CoefExprGrammar>,
proto : : d iv ide s <CoefExprGrammar , CoefExprGrammar>

>
{} ;

s t r u c t TrialExprGrammar
: proto : : or_< TrialFunct ionTerminal ,

proto : : mu l t i p l i e s <CoefExprGrammar , TrialExprGrammar>,
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f v d s e l : : jumpop<TrialExprGrammar>,
f v d s e l : : avgop<TrialExprGrammar>,
f v d s e l : : gradop<TrialExprGrammar>,
f v d s e l : : traceop<TrialExprGrammar>

>

{} ;

s t r u c t TestExprGrammar
: proto : : or_< TestFunctionTerminal ,

proto : : mu l t i p l i e s <CoefExprGrammar , TestExprGrammar>,
f v d s e l : : jumpop<TestExprGrammar>,
f v d s e l : : avgop<TestExprGrammar>,
f v d s e l : : gradop<TestExprGrammar>,
f v d s e l : : traceop<TestExprGrammar>

>
{} ;

s t r u c t BilinearGrammar ;

s t r u c t P lu sB i l i n e a r
: proto : : plus< BilinearGrammar , BilinearGrammar >

{} ;

s t r u c t MinusBi l inear
: proto : : minus< BilinearGrammar , BilinearGrammar >

{} ;

s t r u c t MultBi l inear
: proto : : mu l t i p l i e s < CoefExprGrammar , BilinearGrammar >

{} ;

s t r u c t BilinearGrammar
: proto : : or_<

proto : : mu l t i p l i e s <TrialExprGrammar , TestExprGrammar>,
f v d s e l : : dotop<TrialExprGrammar , TestExprGrammar>,
P lusB i l i n ea r ,
MinusBi l inear ,
Mul tBi l inear

>
{} ;

}

Context evaluation and transforms

Language back-ends: Expression evaluation, algorithm implementation The DSEL
back-ends are composed of algebraic structures (matrices, vectors, linear combinations) used in
different kinds of algorithms based on iterations on mesh entities, matrices, vectors evaluation
or assembly operations. Theses algorithms are implemented by evaluating and manipulating our
FVDSLDomain expressions. Such evaluations are based on two kind of Proto concepts: Contexts
and Transforms structures. In [83] these concepts as presented as follows:

• A Context is like a function object that is passed along with an expression to the
proto::eval() function. It associates behaviors with node types. proto::eval()

walks the expression and invokes your context at each node.

• A Transform is a way to associate behaviors, not with node types as in an ex-
pression, but with rules in a Proto grammar. They are like semantic actions in
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other compiler-construction toolkits.

Algorithms are then implemented as specific expression tree evaluations, as a sequence of piece
of algorithms associated to the behaviour of Evaluation Context on each node or on transforms
that match production rules.

For instance, let us consider the bilinear form defined by the following expression:

Listing 3.19: SUSHI bilinear form label

Bil inearForm ah = integrate ( a l l C e l l s (Th) , dot (K∗grad (u ) ,grad ( v ) ) ;

allCells(Th), K, u, v are terminals of the language. integrate, dot and grad are specific
keywords of the language associated to the tags fvdsel::tag::integrate, fvdsel::tag::dot

and fvdsel::tag::grad. The binary operator * is associated to the tag proto::tag::mult

At evaluation, the expression is analyzed as follows:

1. The root node of the tree is associated to the tag tag::integrate composed of an MeshGroup

expression (allCells(Th)) and the BilinearTerm expression (dot(K*grad(u),grad(v)));

2. The integration algorithm consists in iterating on the cell elements of the allCells(Th) and
evaluating the bilinear expression on each cell. This bilinear expression is composed of:

• a TrialExpr expression: K*grad(u);

• a TestExpr expression: grad(v)

• a binary operator associated to the tag: tag::dot

The evaluations of the TrialExpr expression and of the TestExpr expression on a cell return
two linear combination objects which, associated to the binary operator tag lead to a bilinear
contribution which is a local matrix contributing to the global linear system of the linear
context with a factor equal to the measure of the cell.

To implement the integration algorithm associated to linear variational formulation, we have
used both Context and Transform structures. A BilinearContext object, referencing a linear
system back-end object used to build the global linear system with different linear algebra packages
has been developed to evaluate the global expression. On an Integrate node, this object calls a
IntegratorOp transform on the expression tree. In listing 3.3.2, we detail the implementation of
this transform that matches in our example the expression with the tag fvdsel::tag::integrate,
the MeshGroup expression allCells(Th) and the term dot(K*grad(u),grad(v)).

s t r u c t I n t e g r a t o r : proto : : c a l l a b l e
{

//... callable object that will use a BilinearIntegrator transform on
// a bilinear expression
typede f i n t resu l t_type ;

template<typename ZoneT , typename ExprT , typename StateT , typename DataT>
in t
operator ( ) ( ExprT const& expr , ZoneT const& zone , StateT& state , DataT const& data ) const
{

//call a transform that analyze ExprT and dispatch to the appropriate
//transform
re turn 0 ;

}
} ;

s t r u c t IntegratorOp
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: proto : : or_<
proto : : when<

f vd s e l : : IntegratorGrammar ,
f v d s e l : : I n t e g r a t o r ( proto : : _child_c<2>, //! expr

proto : : _child_c<1>, //! zone
proto : : _state , //! state
proto : : _data //! context
)

>
proto : : when<

proto : : plus<IntegratorOp , IntegratorOp >,
IntegratorOp ( proto : : _le f t ,

IntegratorOp ( proto : : _right ,
proto : : _state ,
proto : : _data

) ,
proto : : _data )

>
>

{} ;

In the Integrator callable transform, analyzing the integrate expression term, when a bi-
linear expression is matched, another transform BilinearIntegrator (listing 3.3.2) matching a
DotExpr associated to fvdsel::tag::dot and the production rules matching the test and trial
part of the bilinear expressions. The algorithm (listing 3.20) is called by the callable transform
DotIntegrator. Note that the BilinearContext is passed along the expression tree with the
proto::_data structure.

s t r u c t Mult Integrator : proto : : c a l l a b l e
{

typede f i n t resu l t_type ;
template<typename TrialExprT ,

typename TestExprT ,
typename StateT ,
typename DataT>

in t
operator ( ) ( TrialExprT const& lexpr ,

TestExprT const& rexpr ,
StateT& state ,
DataT const& data ) const

{
// call integrate algorithm
// with tag proto::tag::mult

re turn integrate<proto : : tag : : mult>(getMesh ( data ) ,
getGroup ( data ) ,
l expr ,
rexpr ,
GetContext ( data ) ) ;

}
} ;

s t r u c t DotIntegrator : proto : : c a l l a b l e
{

typede f i n t resu l t_type ;
template<typename TrialExprT ,

typename TestExprT ,
typename StateT ,
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typename DataT>
in t
operator ( ) ( TrialExprT const& lexpr ,

TestExprT const& rexpr ,
StateT& state ,
DataT const& data ) const

{
// call integrate algorithm
// with tag proto::tag::dot
re turn integrate<proto : : tag : : dot>(getMesh ( data ) ,

getGroup ( data ) ,
l expr ,
rexpr ,
GetContext ( data ) ) ;

}
} ;

s t r u c t B i l i n e a r I n t e g r a t o r
: proto : : or_<

proto : : when< proto : : mu l t i p l i e s <TrialExprGrammar , TestExprGrammar>,
Mult Integrator ( proto : : _le f t , //! lexpr

proto : : _right , //! rexpr
proto : : _state , //! state
proto : : _data //! context
)>,

proto : : when< f vd s e l : : dotop<TrialExprGrammar , TestExprGrammar>,
DotIntegrator ( proto : : _child_c<0>, //! left

proto : : _child_c<1>, //! trial
proto : : _state , //! state
proto : : _data //! context

)
>,

proto : : when< proto : : plus<BilinearGrammar , BilinearGrammar >,
B i l i n e a r I n t e g r a t o r ( proto : : _right , //! bilinear expr

B i l i n e a r I n t e g r a t o r ( proto : : _le f t ,
proto : : _state ,
proto : : _data ) ,

proto : : _data //! context
)

>
>

{} ;

Listing 3.20 is a simple assembly algorithm. We iterate on each entity of the mesh group and
evaluate the test and trial expressions on each entity. For this evaluation, we have defined differ-
ent kinds of context objects. The structure EvalContext<ItemT> enables to compute the linear
combination objects that return test and trial expressions, which associated to the binary operator
tag lead to a bilinear contribution, a local matrix contributing to the global linear system of the
linear context with a factor equal to the measure of the cell. Note that the BilinearContextT is
parametrized by a phase_type parameter that enables to optimize and factorize the global linear
system construction: intermediate computation can be stored in system cache and be reused. For
instance when a global linear system is built, the global system dimensions setting phase, the
sparse structure matrix definition and the matrix filling phase can be separated. The first two
phases can be easily factorized for several filling phases in iterative algorithms.

Listing 3.20: Integration assembly algorithm
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template<typename ItemT ,
typename TestExprT ,
typename TrialExprT ,
typename tag_op ,
typename Bil inearContextT>

void integrate (Mesh const& mesh ,
GroupT<ItemT> const& group ,
TrialExprT const& t r i a l ,
TestExprT const& te s t ,
Bi l inearContextT& ctx )

{
s t a t i c const Context : : ePhaseType phase = Bi l inearContextT : : phase_type ;
auto matrix = ctx . getMatrix ( ) ;
f o r ( auto c e l l : group )
{

EvalContext<Item> ctx ( c e l l ) ; //! eval context on mesh item
auto lu = proto : : eval ( t r i a l , ctx ) ; //! trial linear combination
auto lv = proto : : eval ( t e s t , ctx ) ) ; //! test linear combination
Bi l inea rCont r ibut i on <tag_op> uv ( lu , l v ) ;
assemble<phase >(matrix , //! matrix

measure (mesh , c e l l ) , //! cell measure
uv ) ; //! bilinear contribution

}
}

In the same way the evaluation of a linear form expression with a linear context leads to the
construction of the right hand side of a global linear system.

Once built, the global linear system can be solved with a linear system solver provided by the
linear algebra layer.

3.3.3 Extensions for vectorial expressions

Vector functions are used in many problems. They represent 2D and 3D fields for instance (velocity
fields) or properties of collection of entities. To have a more expressive language, the grammar
has been extended to express loops on vectorial expression components with the following tools:

(i) the concept of rank has been introduced to qualify the expression rank (Scalar, Vector or
Tensor);

(ii) The classes FunctionArray, TestFunctionArray and TrialFunctionArray representing
vectors elements (u1, . . . , un) ∈ Vh× . . .×Vh = Vn

h, are new terminals used to build vectorial
expressions;

(iii) The new concepts Range and Index enable to iterate on Vector or Tensor expressions. The
Range is associated to a finite number of indices (i,j,k,. . . ) and provides iterators for each
of them. We have 1D Range with one index for vectorial expression and 2D Range with two
indexes, for tensorial expression.

We have completed our language definition with:

• the new terminals Range and Index;

• the new keywords sum defining an unary function sum(<range>) that enables to iterate on
the indexes of a range, Dxi defining the binary function Dxi(<index>,<expr>) giving the
component values of an grad(<expr>) expression;



3.3. DSEL DESIGN AND IMPLEMENTATION 45

• the new production rules adding the operator()(<index>) to vectorial and tensorial ter-
minals and the operator[](<expr>) to sum(<range> nodes.

The Proto framework enables to overload the operator() and operator[] creating expression
nodes associated to the tags proto::tag::function and proto::tag::subscript. It is then
possible to evaluate separately each componant of vectorial and tensorial expressions iterating on
the index values. For instance, with vector variables with the dimension of the mesh, the two
following expressions:
sum(_i)[ dxi(_i,u(_i)) ] and div(u) are equivalent.

The mathematical expressions: a1(u,v)
def
=
∫

Ω
∇u:∇v and a2(u,v)

def
=
∫

Ω
Σi,j∂juivj have the

following programming countpart:

s t a t i c const i n t dim = 3 ;
// declare i,j in 0,1,2
Range<2> range (dim , dim ) ;
Range<2>:: Index& _i = range . get <0>();
Range<2>:: Index& _j = range . get <1>();
// declare u and v
auto u = Uh−>tr i a lA r r ay ( "U" ,dim ) ;
auto v = Uh−>testArray ( "V" ,dim ) ;

Bi l inearForm a1 =
integrate ( a l l C e l l s (Th) ,
sum(_i ) [ dot (grad (u(_i ) ,grad ( v (_i ) ) ) ] ;

BiLinearForm a2 =
integrate ( a l l C e l l s (mesh ) ,
sum( range ) [ dxi (_j , u (_i ) ) ∗ v (_j ) ) ] ;

3.3.4 Extensions for boundary conditions management

In Chapter 2 we have presented only homogeneous boundary conditions. In fact most of these
methods are easily extended to more general boundary conditions. Let ∂Ωd ⊂ ∂Ω and ∂Ωn ⊂ ∂Ω,
let consider the following conditions:

u = g on ∂Ωd, g ∈ L2(∂Ωd) (3.5)

∂nu = h on ∂Ωn, h ∈ L2(∂Ωn) (3.6)

To manage such conditions, we introduce: (i) extra degree of freedoms on boundary faces,
(ii) constraints on the bilinear form or (iii) extra terms in the linear form. These contraints and
terms lead to add or remove some equations in the matrix and to add extra terms in the right
hand side of the linear system.

In our DSEL, the keyword trace(u) enables us to recover degrees of freedom on mesh elements,
and on(.,.) enables us to add contraints on groups of mesh elements. For example, with the
hybrid method the boundary conditions 3.5 and 3.6 are expressed with the expressions of listing
3.21

Listing 3.21: boundary conditions management

Bil inearForm ah = integrate ( a l l C e l l s (Th) , dot (K∗grad (u ) ,grad ( v ) ) ;
LinearForm bh = integrate ( a l l C e l l s (Th) , f ∗v ) ;

//Dirichlet condition on ∂Ωd

ah += on( boundaryFaces (Th, " d i r i c h l e t " ) , t r a c e (u)=g ) ;



46 CHAPTER 3. COMPUTATIONAL SETTING

//Neumann condition on ∂Ωn

bh += integrate ( boundaryFaces (Th, "neumann" ) ,h∗ t r a c e (v ) ) ;

3.4 Extensions for multiscale methods

In this section we extend our computational framework to the multiscale methods described in
§2.5. We first complete the DSEL front end by introducing new C++ concepts to handle meshes
with a fine and a coarse level, function spaces and their basis functions. We extend then the DSEL
to refer to restriction-interpolator operators, to design lowest order methods on a coarse level and
to interpolate coarse solution on the fine level.

3.4.1 Multiscale mesh

The MultiscaleMesh concept extends the Mesh concept defined in §2.5.2. It grants access to a
coarse mesh built from a fine one. The free functions listed in table 3.8 are provided to give access
to the mapping between coarse and fine mesh elements.

3.4.2 Basis function

The BasisFunction concept allows to implement the mathematical basis functions φσc described
in §2.5.3. Associated to a coarse item of the coarse mesh, it defines DomainType modeling Ωσc =
supp{φσc} the support of the basis function. The functions getDomain() and getX() give access
to the basis function support and to the solution of the PDE. A compute() function is provided
to solve the local PDE problem of which the basis function is a solution.

Listing 3.22: BasisFunctionSpace concept

c l a s s Bas isFunct ion
{
pub l i c :

typede f . . . DomainType ;
typede f . . . ItemType ;
typede f . . . FunctionType ;
void i n i t ( ) ;
void prepare ( ) ;
void s t a r t ( ) ;
void compute ( ) ;

DomainType const& getDomain ( ) const ;
FunctionType const& getX ( ) const ;

}

When basis functions are associated to coarse faces, the basis function support is defined with
the back and the front cell of the face. The concept of HalfBasisFunction represents the associ-
ation of a basis function and the back or the front cell of its support.

The template<typename BasisFunction> GradValueT gives access to the gradient value of
a basis function ∇φσc described in §2.5.3.

A linear algebra is provided to easily compute expressions like λ∇φσc
1
+µ∇φσc

2
and ν∇φσc

1
·∇φσc

2

used in the assembly phase of the coarse linear systems.

3.4.3 Multiscale functional space

The MultiscaleFunctionSpace concept represents the mathematical concept of multiscale func-
tion space V hms described in 2.5.3. It extends the FunctionSpace described in §3.2 and defines the
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subtypes FunctionType, TrialFunctionType and TestFunctionType. It is based on a multiscale
mesh defining a coarse and a fine mesh, and on a collection of basis functions associated to a col-
lection of items of the coarse mesh which can be computed and updated. Moreover, it defines the
DofType representing DOFs and implements the eval() and grad() functions of for the coarse ba-
sis functions. The grad() function returns a linear combination of GradvalueT<BasisFunction>
that enables to compute the terms like

∫

τc ν∇φ1 · ∇φ2 and
∫

σc ν∇φ · nσ.

The basis function of the Hybrid Multiscale Method described in §2.5.3 is implemented with
the HBasisFunction class cf. listing3.23. Instances of this class are associated to a coarse face
and implement the bilinear forms as in listing 3.24

Listing 3.23: BasisFunction concept

template<typename MultiScaleDomainT>
c l a s s HBasisFunction
{
pub l i c :

typede f enum { Back , Front } ePosType ;
typede f typename MultiScaleDomainT : : FineType DomainType ;
typede f typename MultiScaleDomainT : : FaceType ItemType ;

HBasisFunction ( ItemType const& fa c e ) ;

Ha l fBas i sFunct ion ∗ ha l fBa s i s ( ePosType pos ) ;
}

Listing 3.24: BasisFunction linear and bilinear form

{
CoarseFace c f a c e = /∗ . . . ∗/ ;
Ce l lRea lVar i ab l e& k = /∗ . . . ∗/ ;
Ce l lRea lVar i ab l e& w = computeWeight (k ) ;
auto Th = bui ld ( c f a c e ) ;
auto space = newHybridSpace (Th ) ;
auto u = space−>t e s t ( "U" ) ;
auto v = space−>t e s t ( "V" ) ;
Bi l inearForm ah = integrate ( a l l C e l l s (Th) , k∗dot (grad (u ) ,grad ( v ) ) ) ;
LinearForm bh = integrate ( a l l C e l l s (Th) ,w∗v ) ;

}

The template class MultiScaleFunctionalSpace (listing 3.25) implements the hybrid multi-
scale functional spaces V hms described in §2.5.3. This class instantiates the basis function on the
coarse faces of the coarse mesh. It implements the three main functions:

• void start(κ,IMultiSystemSolver* solver) to compute all the basis functions for a
given permeability tensor κ and a algebraic layer to solve efficiently collections of inde-
pendent linear systems;

• eval(Cell const& cell,Integer iface) returning for τ ∈ TH , σ ∈ ∂τ the linear combi-
nation

l(τ, σ) =
1

|σ|

∫

σ

u = uτ +
∑

σ′∈∂τ

vσ′

∫

σ

φσ′

• grad(Cell const& cell) returning for τ ∈ TH the linear combination

l(τ) =
∑

σ∈∂τ

vσ∇φσ

.
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During the basis functions computation, independent algebraic operations are delegated to an
algebraic layer that can perform them efficiently with respect to the hardware configuration. Such
layer is described in details in §4.3.3.

During the assembly phase, the evaluation of
∫

τ
κ∇u · ∇v leads to evaluate the expression

dot(u.grad(cell),v.grad(cell)) which is based on the evaluation of the scalar product of two
gradient linear combinations. This evaluation needs for σ1 ∈ Fc

τ and σ2 ∈ Fc
τ , the evaluation of

∫

τ
κ∇φσ1

· ∇φσ2
which is implemented as in listing 3.26.

Listing 3.25: MultiscaleFunctionSpace concept

//! Define a class representing V hms

template<typename MultiScaleDomainT , typename BasisFunctionT>
c l a s s Mult i sca leFunct ionSpace
{
pub l i c :

typede f Real ValueType ;
typede f DualNode DofType ;
typede f GradValueT<Basis funct ionT> GradValueType ;
typede f LinearCombT<DofType , ValueType> LinearCombType ;
typede f LinearCombT<DofType , GradValueType> GradLinearCombType ;

//! compute basis functions
void s t a r t (κ , IMult iSystemSolver ∗ s o l v e r ) ;

LinearCombType eval ( Ce l l const& c e l l , I n t eg e r i f a c e ) ;

GradLinearCombType eval ( Ce l l const& c e l l ) ;
}

Listing 3.26: basis function scalar product algorithm

{
//! Algorithm to compute

∫
τ
κ∇φ1 · ∇φ2

Real scaMul ( HBasisFunction const& bas i s1 ,
HBasisFunction const& bas i s2 ,
Var i ab l eCe l lRea l const& k ,
ValueType const& f a c t o r ) const

{
typede f HBasisFunction : : DomainType DomainType ;
auto Th = bas i s 1 . getDomain ( ) ;
auto c e l l s = c e l l s ( bas i s1 , bas i s2 ,Th ) ;
i f ( ! c e l l s . empty ( ) ) re turn 0 . ;
auto x1 = bas i s 1 . getX ( ) ;
auto x2 = bas i s 2 . getX ( ) ;
f v d s e l : : Eval IntegrateContext<DomainType> ctx (Th ) ;
r e turn f a c t o r ∗ f v d s e l : : eval ( integrate ( c e l l s , k∗dot (grad ( x1 ) ,grad ( x2 ) ) ) , ctx ) ;

}
}

3.4.4 Extension of the DSEL

Our DSEL has been extended with the new keyword downscale(.,.) that enables us to create
expressions that can be evaluated and interpolated from the coarse to the fine level following
the procedure described in §2.5.4. The DownscaleEvalContext object enables us to choose a
DiscreteVariable on the fine mesh which will be filled with the solution of the interpolation of
the coarse expression. Finally, in Listing 3.4.4, we have an illustration of how to implement the
hybrid multiscale method described in §2.5.3.
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MultiscaleMeshType Th ;
So lve r coar se_so lve r = /∗ . . . ∗/ ;
Mult iSystemSolver ba s i s_so lv e r = /∗ . . . ∗/ ;
Matrix matrix ( coar s e_so lve r ) ; //! coarse matrix
Vector rhs ( coar s e_so lve r ) ; //! coarse right hand side

//COARSE PROBLEM DEFINITION

//! create V hms

auto Uh = newHMSSpace(Th ) ;

//! compute basis functions φσc

// with a multi-system linear solver layer
Uh−>s t a r t (κ , ba s i s_so lv e r ) ;

/∗ . . . ∗/
auto u = Uh−>t r i a l ( ) ;
auto v = Uh−>t e s t ( ) ;
Bi l inearForm ah =

integrate ( a l l C e l l s (Th) ,dot (grad (u ) ,grad ( v ) ) ) +
integrate ( a l lFa c e s (Th) ,−jump(u)∗dot (N(Th) , avr (grad ( v ) ) )

−dot (N(Th) , avr (grad (u ) ) )∗ jump( v )
+η/H(Th)∗jump(u)∗jump( v ) ) ;

ah += on( boundaryFaces (Th) , u=ud ) ; //! dirichlet condition
LinearComputeContext l c t x ( matrix , rhs ) ;
f v d s e l : : eval ( ah , l c t x ) ;
coar s e_so lve r . s o l v e ( matrix , rhs ) ;

//FINE PROBLEM SOLUTION
FaceRealVar iable& f i n e_ve l o c i t y = . . . ;
DownScaleEvalContext dctx ( f i n e_ve l o c i t y ) ;
f v d s e l : : eval ( downscale ( a l l C e l l s (Th) , f l u x (u ) ) , dctx ) ;

3.5 Numerical results

The performance of the DSEL-based implementation of lowest-order methods discussed in Chap-
ter 3 is compared with

• Feel++, an open source FE library whose main developer is one of the authors [87]. When
possible, Feel++ is used for comparison with more standard FE methods both in terms of
accuracy and performance. The DSEL implemented in Feel++ has profoundly inspired the
present work;

• fvC++, an stl-based implementation of the back-end discussed in §3.1 used in [49, 52, 53].
The matrix assembly in fvC++ closely resembles Listing 3.7. No language facility is offered
in this case.

The three codes are compiled with the gcc 4.5 compiler with the following compile options:

-03 -fno -builtin

-mfpmath=sse -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4 .2

-fno -check -new -g -Wall -std=c++0x

--param -max -inline -recursive -depth =32

--param max -inline -insns -single =2000

The benchmark test cases are run on a work station with a quad-core Intel Xeon processor Gen-
uineIntel W3530, 2.80GHz, 8MB for cach size.
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(a) Skewed quadrangular mesh (b) Stratigraphic mesh. The actual
aspect ratio is 10:1

3
4π
S1S2

S3 S4

(c) Partition of the domain Ω for
the test cases of §3.5.4

(d) Tilted quadrangular mesh for
the test cases of §3.5.4

Figure 3.6: Elements of the mesh families used in the benchmark

3.5.1 Meshes

In our numerical tests we consider the following families of h-refined meshes: (i) the skewed quad-
rangular mesh family of Figure 3.6(a) generated using Gmsh [67] is used for the benchmarks of
Sections 3.5.4 and 3.5.5; (ii) the stratigraphic mesh family of Figure 3.6(b) representing a geologi-
cal basin is used for the benchmark of §3.5.4. This mesh family mixes triangular and quadrangular
elements. The actual aspect ratio of the mesh is 10:1, resulting in elongated elements and sharp
angles. (iii) the tilted quadrangular mesh family of Figure 3.6(d) is used for the benchmark of
Sect. 3.5.4. This mesh family is consistent with the partition of the domain depicted in Fig-
ure 3.6(c).

3.5.2 Solvers

The linear systems are solved using the PETSc library. For the diffusion benchmark of §3.5.4,
we use the BICGStab solver preconditioned by the euclid ILU(2) preconditioner, with relative
tolerance set to 10−13. For the Stokes benchmark of §3.5.5, we use the GMRes solver with a
ILU(3) preconditioner and a relative tolerance of 10−13. The constant null space constraint option
is activated to solve the system, and the resulting discrete pressure is scaled to ensure that the zero-
mean constraint (3.10d) is satisfied. Note that our objective is not to test the solvers but rather
compare for a given solution strategy the behavior of the various methods exposed in Chapter 2
as well as more conventional FE methods.

3.5.3 Benchmarks metrics

The benchmarks proposed in this section monitor various metrics:
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(i) Accuracy. The accuracy of the methods is evaluated in terms of the L2- and of discrete
energy-norms of the error. For the methods of Chapter 2, the L2-norm of the error is
evaluated using the cell center as a quadrature node, i.e.,

‖u− uh‖L2(Ω) ≈
(

∑

T∈Th

|T |(u(xT )− uT )2
)

1

2

.

The actual definition of the discrete energy-norm is both problem and method dependent.
Further details are provided for each test case. The convergence order of a method is classi-
cally expressed relating the error to the meshsize h.

(ii) Memory consumption. When comparing methods featuring different number of unknowns
and stencils, a fairer comparison in terms of system size and memory consumption is obtained
relating the error to the number of DOFs (NDOF) and to the number of nonzero entries of
the corresponding linear system (Nnz).

(iii) Performance. The last set of parameters is meant to evaluate the CPU cost for each method
and implementation. To provide a detailed picture of the different stages and estimate the
overhead associated to the DSEL, we separately evaluate:

• tinit, the time to build the discrete space;

• tass, the time to fill the linear systems (local/global assembly). When DSEL-based
implementations are considered, this stage carries the additional cost of evaluating the
expression tree for bilinear and linear forms;

• tsolve, the time to solve the linear system.

An important remark is that, in the context of nonlinear problems on fixed meshes, tinit often
corresponds to precomputation stages, while tass contributes to each iteration.

3.5.4 Pure Diffusion benchmarck

We consider the standard Poisson problem:

−△u = 0 in Ω ⊂ R3

u = g on ∂Ω
(3.7)

The continuous weak formulation reads: Find u ∈ H1
0 (Ω) such that

a(u, v) = 0 ∀v ∈ H1
0 (Ω),

with

a(u, v)
def
=

∫

Ω

∇u·∇v.

The discrete formulations of the problem with the G-method, the ccG-method and the Hybrid-
method defined in Chapter 2 are represented by the definition of the bilinear forms agh, accgh , ahybh

and the linear form bh. We can compare them to their programming counterpart in listings
3.27,3.28 and 3.29

Listing 3.27: C++ implementation of agh and bh
MeshType Th ; // declare Th

auto Vh = newP0Space (Th ) ;
auto Uh = newGSpace (Th ) ;
auto u = Uh−>t r i a l ( "U" ) ;
auto v = Vh−>t e s t ( "V" ) ;
Bi l inearForm ah_g =
integrate ( a l l Fa c e s (Th) ,dot (N( ) ,avg (grad (u ) ) )∗ jump( v ) ) ;

LinearForm bh =
integrate ( a l l C e l l s (Th) , f ∗v ) ;
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Figure 3.7: Diffusion problem

Listing 3.28: C++ implementation of accgh

MeshType Th ; // declare Th

auto Uh = newCCGSpace(Th ) ;
auto u = Uh−>t r i a l ( "U" ) ;
auto v = Uh−>t e s t ( "V" ) ;
auto lambda = eta ∗gamma/H( ) ;
Bi l inearForm ah_ccg =

integrate ( a l l C e l l s (Th) ,dot (grad (u ) ,grad ( v ) ) ) +
integrate ( a l l Fa c e s (Th) ,−jump(u)∗dot (N( ) ,avg (grad ( v ) ) )

−dot (N( ) ,avg (grad (u ) ) )∗ jump( v )
+lambda∗jump(u)∗jump( v ) ;

Listing 3.29: C++ implementation of ahybh

MeshType Th ; // declare Th

auto Uh = newHybridSpace (Th ) ;
auto u = Uh−>t r i a l ( "U" ) ;
auto v = Uh−>t e s t ( "V" ) ;
Bi l inearForm ah_hyb =
integrate ( a l l Fa c e s (Th) ,dot (grad (u ) ,grad ( v ) ) ;

3D results

We consider the analytical solution u(x, y, z) = sin(πx)sin(πy)sin(πz) of the diffusion problem
3.7 on the square domain Ω = [0, 1]3 with f(x, y, z) = 3π2sin(πx)sin(πy)sin(πz).

Table 3.9, 3.10 and 3.11 list the errors in the L2 and L norms of respectively the G method,
the ccG method and the hybrid method.

In Figure 3.7, we compare the convergence error of the G method, the ccG method, the SUSHI
method and a standard hand written L Scheme FV method.

In the tables 3.12, 3.13, 3.14 and 3.15, we compare the performance of each methods.

The analysis of these results shows that the G-method is comparable to the hand written FV
method and the language implementation does not contribute to extra cost. The G-method and
the Hybrid-method have equivalent convergence order. A closer look to the Nnz column shows
that the ccG method requires much more nonzero entries for the linear system than the G-method
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Table 3.6: DSEL keywords

keyword meaning

integrate(.,.)
∫

(.) integration of expression
dot(.,.) (. · .) vector inner product
jump(.) J.K jump accross a face
avg(.) {.} average accross a face

Table 3.7: Proto standard tags and meta-functions

operator narity tag meta-function

+ 2 proto::tag::plus proto::plus<.,.>

- 2 proto::tag::minus proto::minus<.,.>

* 2 proto::tag::mult proto::mult<.,.>

/ 2 proto::tag::div proto::div<.,.>
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Figure 3.8: time vs. NDOF
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fineElements(<mesh>,<cell>) fine elements of a coarse cell
fineElements(<mesh>,<face>) fine elements of a coarse face
backCell(<mesh>,<face>) back cell a coarse face,
frontCell(<mesh>,<face>) front cell of a coarse face,
boundaryCell(<mesh>,<face>) boundary cell of a boundary coarse face,

Table 3.8: Multiscale mesh element extraction tools

Table 3.9: Diffusion test case: G method
card(Th) h ‖u− uh‖L order ‖u− uh‖L2(Ω) order

1000 1.00 10−1 1.58 10−2 2.92 10−3

8000 5.00 10−2 3.96 10−3 2. 7.28 10−4 2.
64000 2.50 10−2 9.89 10−4 2. 1.82 10−4 2.
125000 2.00 10−2 6.32 10−4 2. 1.16 10−4 2.

and the hybrid-method, and we can see the effect on the cost of the linear system building phase
which is more important for the ccG method than for the G-method.

The inspection of the columns tstart/tref and tbuild/tref shows that the implementation remains
scalable with respect to the size of the problem.

2D results

Our second benchmark is based on the following exact solution for the diffusion problem (2.4):

u(x) = sin(πx1) cos(πx2), κ = 1d

with 1d identity matrix in Rd,d. The right-hand side f is inferred from the exact solution, and
Dirichlet boundary conditions are enforced on ∂Ω. The problem is solved on the skewed mesh
family depicted in Figure 3.6(a). We compare the following methods: (i) the DSEL and fvC++

implementations of the ccG method (2.13). The DSEL implementation is provided in Listings 3.1;
(ii) the DSEL implementation of the SUSHI method with face unknowns (2.15) provided in List-
ing 3.12; (iii) the Feel++ implementation of the first-order Rannacher–Turek elements RaTu1;
(iv) the Feel++ implementation of Qk elements with k ∈ {1, 2}. Since the solution is smooth,
the Q2 element is expected to yield better performance. In real-life applications, however, the
regularity of the solution is limited by the heterogeneity of the diffusion coefficient; see [55] and
references therein for a discussion.

The accuracy and memory consumption analysis is provided in Figure 3.10. The discrete H1-
norm coincides with the natural coercivity norm for the method; see [53, 65] for further details
on the SUSHI and ccG methods. As expected, the higher-order method Q2 elements yields better

5 10 15 20 25 30

ccG

hybrid

g

fv

tinit

tass

tsolve

Figure 3.9: time vs. NDOF,h = 0.02
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Table 3.10: Diffusion test case: ccG method
card(Th) h ‖u− uh‖L order ‖u− uh‖L2(Ω) order

1000 1.00 10−1 3.1474 10−2 5.3866 10−3

8000 5.00 10−2 7.8977 10−3 1.99 1.4257 10−3 1.92
64000 2.50 10−2 1.9763 10−3 2. 3.6157 10−4 1.95
125000 2.00 10−2 1.2649 10−3 2. 2.3180 10−4 1.95

Table 3.11: Diffusion test case: Hybrid method

card(Th) h ‖u− uh‖L order ‖u− uh‖L2(Ω) order

1000 1.00 10−1 1.58 10−2 2.92 10−3

8000 5.00 10−2 3.95 10−3 2. 7.28 10−4 2.01
64000 2.50 10−2 9.87 10−4 2. 1.82 10−4 2.
125000 2.00 10−2 6.32 10−4 2. 1.16 10−4 2.

Table 3.12: Diffusion test case: G-method performance results

card(Th) Nit Nnz tstart tdef tbuild tsolve tref
tstart

tref

tdef

tref

tbuild

tref

1000 4 16120 8.89 10−2 1.19 10−2 7.99 10−3 3.00 10−3 7.50 10−4 118. 16.0 10.6
8000 8 140240 6.01 10−1 1.03 10−1 6.49 10−2 1.69 10−2 2.1210−3 283. 48.9 30.5
64000 14 1168480 4.80 8.47 10−1 6.21 10−1 2.00 10−1 1.44 10−2 334. 59.0 43.3
125000 25 2300600 7.09 1.71 1.17 5.91 10−1 2.37 10−2 299. 72.3 49.5

Table 3.13: Diffusion test case: ccG-method performance results

card(Th) Nit Nnz tstart tdef tbuild tsolve tref
tstart

tref

tdef

tref

tbuild

tref

1000 3 117642 6.59 10−2 3.54 10−1 9.29 10−2 3.09 10−2 1.03 10−2 6.39 34.36 9
8000 5 1145300 5.22 10−1 3.46 8.00 10−1 2.95 10−1 5.92 10−2 8.83 58.6 13.5
64000 8 10114802 4.13 2.98e1 6.99 3.06 3.83 10−1 10.8 78.08 18.27
125000 10 20017250 8.16 6.09e1 1.35e1 6.38 6.39 10−1 12.7 95.3 21.17

Table 3.14: Diffusion test case: Hybrid method performance results

card(Th) Nit Nnz tstart tdef tbuild tsolve tref
tstart

tref

tdef

tref

tbuild

tref

1000 7 16120 4.69 10−2 1.09 10−2 4.00 10−3 2.19 10−2 3.14 10−3 14.9 3.5 1.27
8000 17 140240 3.40 10−1 1.18 10−1 2.59 10−2 1.60 10−1 9.47 10−3 36.0 12.5 2.75
64000 33 1168480 2.86 1.11 2.11 10−1 2.41 7.30 10−2 39.2 15.2 2.9
125000 50 5563700 5.21 2.05 3.80 10−1 4.53 9.06 10−2 57.5 22.62 4.2

Table 3.15: Diffusion test case: standard hand written performance results

card(Th) Nit Nnz tstart tdef+build tsolve tref
tstart

tref

tbuild

tref

1000 4 16120 4.89 10−2 3.39 10−2 3.998 10−3 1.00 10−3 49.01 34.01
8000 7 140240 3.51 10−1 2.14 10−1 3.399 10−2 4.86 10−3 72.47 44.26
64000 13 1168480 2.78 1.86 3.489 10−1 2.68 10−2 103.8 69.34
125000 16 9536960 5.33 3.89 7.688 10−1 4.81 10−2 111.09 81.02

performance whether or not the error is related to the meshsize h, the number of DOFs NDOF, or
the number of nonzero elements in the matrix Nnz. It has to be noted, however, that both the
SUSHI and the ccG methods exhibit superconvergence in the discrete H1-norm, thereby providing
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a better approximation of the gradient with respect to the first-order element methods.
The CPU cost analysis is provided in Figures 3.11 and 3.12. The cost of each stage of the

computation is related to the number of DOFs in Figure 3.11 to check that the expected complexity
is achieved. This is the case for all the methods considered. A comparison in terms of absolute
computation time is provided in Figure 3.12. Overall, the initialization and assembly steps appear
more expensive for the lowest-order methods. The overhead of the DSEL can be estimated by
comparing with the fvC++ implementation of the ccG. Some other remarks can be done: (i) the
main interest of the lowest-order methods presented in Chapter 2 is that general meshes can
be handled seamlessly. For an example based on a less conventional mesh see §3.5.4. When a
classical FE implementation is possible, the approach based on a reference element and a table
of DOFs can be expected to overperform the LinearCombination-based handling of degrees of
freedom; (ii) the FE code Feel++ is a more mature project, which benefits from some degree of
optimization and finer tuning; (iii) even when the overhead of the DSEL is disregarded, the stl-
based implementation of LinearCombination in fvC++ yields similar performance as the dedicated
implementation used in the DSEL version; (iv) The solution times are slightly different between
the fvC++ and DSEL version of lowest-order methods owing to a different degree of optimization in
handling the matrix profile. Indeed, in the fvC++ implementation of LinearCombinationBuffer,
zero coefficients are expunged when a LinearCombination is computed; cf. §3.1.3. As a result, in
some circumstances the matrices in fvC++ are sparser than in the DSEL implementation.

Heterogeneous results

We consider in this section two exact solutions for a heterogeneous medium originally proposed
in [27]. The regularity of the solutions is affected by the heterogeneity of the diffusion tensor, and
is insufficient to attain the maximum convergence rate for some or all of the considered methods.
In the context of geological simulations, this test case models some of the difficulties encountered
when faults are present. The domain Ω = (0, 1)2 is partitioned into four areas corresponding
to different values of the diffusion coefficient κ as depicted in Figure 3.6(c), and we consider the
tilted mesh family of Figure 3.6(d). The permeability coefficient is such that κ|S1

= k11d and
κ|Ω\S1

= k21d. Using polar coordinates (r, θ) with θ = cos−1(x1/r) and origin at the center of the
domain, the first solution is given by

u =

{

rα cos
(

α(θ − π
3 )
)

if θ ∈
[

0, 2π3
)

,

rαβ cos
(

4π
3 − θ

)

if θ ∈
[

2π
3 , 2π

)

,
(3.8)

where α = 3
π
tan−1

(√

1 + 2
ǫ

)

, β = cos
(

απ
3

)

/ cos
(

2απ
3

)

and ǫ = k1/k2 is the heterogeneity

ratio taken equal to 0.1. It can be proved that u ∈ H2.29(Ω). While this solution has sufficient
regularity to attain the optimal order of convergence for lowest-order methods, it does not allow
to fully exploit Q2 or higher order elements. The expected behaviour is confirmed by the accuracy
analysis of Figure 3.13.

A second solution with less regularity is the following:

u =

{

rα sin
(

α(θ − π
3 )
)

if θ ∈
[

0, 2π3
)

,

rαβ sin
(

α( 4π3 − θ)
)

if θ ∈
[

2π
3 , 2π

)

,
(3.9)

where now α = 3
π
tan−1

(√
1 + 2ǫ

)

, β =
(

2 cos(απ
3 )
)−1

and, as before, ǫ = k1/k2 = 0.1. In
this case, u ∈ H1.79(Ω), so that even lowest order methods cannot attain the maximum order of
convergence. The expected behaviour is confirmed by the accuracy analysis of Figure 3.14. It is
interesting to note that the H1 error norm in the lowest order method and RaTu1 behaves better
than the Qk methods and conversely the L2 norm behaves better using the Qk methods. This
is expected as the lowest order methods are designed to recover better approximations for the
gradient.
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Figure 3.10: Accuracy and memory consumption analysis for the example of §3.5.4

Remark 3 (Implementation note). The Qk implementation requires to use a weak formulation
to handle the Dirichlet conditions to ensure optimal (or the best possible) convergence. This is
due to the localisation of the sharp solution features at the degrees of freedom on the boundary.
The weak formulation requires interpolation only at interior edge points. RaTu1 can use strong
Dirichlet treatment — the degrees of freedom are located at the middle of the edges — as well as
the weak one.
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Figure 3.11: Performance analysis for the example of §3.5.4

A problem in basin modeling

The last problem is based on the basin mesh family depicted in Figure 3.6(b) which contains both
triangular and quadrangular elements. Handling this kind of mesh usually requires some specific
modifications in finite element codes, since two reference finite elements exists. A key advantage
of the lowest-order methods considered in the present work is that their construction remains
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Figure 3.12: Comparison of different methods and implementation for the test case of §3.5.4 (time
vs. NDOF, h = 0.00625)

unchanged for elements of different shape. We consider the anisotropic test case of [30],

u(x) = sin(πx1) sin(πx2), κ =

[

ǫ 0
0 1

]

,

with suitable right-hand side f and Dirichlet boundary conditions on ∂Ω. The anisotropy ratio
ǫ is taken equal to 0.1. We compare the following discretizations: (i) the G-method (2.8) whose
DSEL implementation is provided Listing 3.30; (ii) the ccG method (2.13); (iii) the SUSHI method
(2.15) with discrete gradient (2.16) expressed in terms of cell unknowns only.

Listing 3.30: Implementation of the G-method (2.8)

Mesh Th(/∗ . . . ∗/);
auto Uh = newGSpace(Th);

auto Vh = newP0Space(Th);

auto uh = *Uh ->trial("uh");

auto vh = *Vh ->test("vh");

BilinearForm ah = integrate (allFaces(Th),

-dot(N(),avg(K*grad(uh)))*jump(vh)

);

LinearForm bh = integrate (allCells(Th), f*v);

The difficulty in this case is related to both the mesh, which mixes elongated triangular and
quadrangular elements, and the anisotropy of the diffusion tensor. The results are presented in
Figure 3.15. To facilitate the comparison with the results of [30, Figure 5], the discrete energy norm
is defined according to [30, eq. (4.1)] for both the G-method and the SUSHI scheme, while for the
ccG method we have used the norm of [53, eq. (3.7)]. While all of the methods have cell centered
unknowns only, their stencils differ significantly. It is interesting to remark that, despite its larger
stencil, the ccG method outperforms both the G-method and the SUSHI methods in terms of the
discrete H1-norm even when relating the error to the number of nonzero elements in the matrix.
On the other hand, the G-method displays good convergence properties in the L2-norm, but its
performance is poor when it comes to the discrete H1-norm. Finally, the SUSHI method may be
a compromise when the memory occupation of the ccG method becomes unacceptable.
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Figure 3.13: Accuracy and memory consumption analysis for the heterogeneous diffusion exam-
ple (3.8)
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Figure 3.14: Accuracy and memory consumption analysis for the heterogeneous diffusion exam-
ple (3.9)
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Figure 3.15: Accuracy and memory consumption analysis for the example of §3.5.4
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3.5.5 Stokes benchmarck

We consider the Stokes problem3.5.5:

−ν△u+∇p = f in Ω, (3.10a)

∇·u = 0 in Ω, (3.10b)

u = 0 on ∂Ω, (3.10c)
∫

Ω

p = 0, (3.10d)

where u : Ω→ Rd is the vector-valued velocity field, p : Ω→ R is the pressure, and f : Ω→ Rd is
the forcing term. Equations (3.10a) and (3.10b) express the conservation of momentum and mass
respectively. The problem is supplemented by the homogeneous boundary condition (3.10c)

The continuous weak formulation for g = 0 reads:
Find (u, p) ∈ [H1

0 (Ω)]
d × L∗(Ω) such that

a(u,v) + b(p,v)− b(q,u) =
∫

Ω

f ·v ∀(v, q) ∈ [H1
0 (Ω)]

d × L∗(Ω),

with

a(u,v)
def
=

∫

Ω

ν∇u:∇v, b(q,v)
def
= −

∫

Ω

∇q·v =

∫

Ω

q∇·v.

Set c((u, p), (v, q))
def
= a(u,v) + b(p,v)− b(q,u).

The discretization of the variational formulation with a ccG method is:

ah(uh, vh)
def
=

∫

Ω

−ν∇uh · ∇vh

+
∑

Fh∈Ωh

∫

Fh

−νJuhK({∇uh} · nFh
)− ν({∇uh}·nFh

)JvhK

+
∑

Fh∈∂Ωh

∫

Fh

−νJuhK({∇vh} · nFh
)− ν({∇uh} · nFh

)JvK

(3.11)

bh(ph, vh)
def
=

∑

Th∈Th

∫

Th

−ph∇·vh +
∑

Fh∈Fh

∫

Fh

{ph}(nFh
· JvhK))

bh(ph, vh)
def
=

∑

Th∈Th

∫

Th

∇ph · vh −
∑

Fh∈Fi
h

∫

Fh

JphK(nFh
· {vh})

This formulation can be compared to its programming counterpart in listings 3.31.

Listing 3.31: C++ implementation of the Stokes problem

MeshType Th ; // declare Th

Real nu , eta ; //declare ν, η
VariableArray<Real> f ; //declare vectorial source term f
auto Uh = newCCGSpace(Th) ;
auto Ph = newP0Space (Th) ;
auto u = ∗Uh−>t r i a l ( "U" ,Th : : dim) ;
auto v = ∗Uh−>t e s t ( "V" ,Th : : dim) ;
auto p = ∗Ph−>t r i a l ( "P" ) ;
auto q = ∗Ph−>t e s t ( "Q" ) ;
FVDomain : : a lgo : : Range<1> range (dim) ;
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FVDomain : : a lgo : : Index& _i = range . get <0>() ;
Bi l inearForm ah =

integrate ( a l l C e l l s (Th) ,
sum(_i ) [

nu∗dot (grad (u(_i ) ) , grad ( v (_i ) ) )
]

) +
integrate ( i n t e rna lFac e s (Th) ,

sum(_i ) [ −nu∗dot (N( ) , avr (grad (u(_i ) ) ) ) ∗ jump( v (_i ) ) −
nu∗jump(u(_i ) )∗dot (N( ) , avr (grad ( v (_i ) ) ) ) +
eta /H( )∗jump(u(_i ) )∗jump( v (_i ) )

]
) ;

Bi l inearForm bh =
integrate ( a l l C e l l s (Th) , −p∗div ( v ) ) +
integrate ( a l lFa c e s (Th) , avr (p)∗dot ( fn , jump( v ) ) ) ;

Bi l inearForm bth =
integrate ( a l l C e l l s (Th) , div (u)∗ id ( q ) ) +
integrate ( a l lFa c e s (Th) , −dot (N( ) , jump(u ) ) ∗ avr ( q ) ) ;

Bi l inearForm sh =
integrate ( i n t e rna lFac e s (Th) , H( )∗jump(p)∗jump( q ) ) ;

LinearForm form1 =
integrate ( a l l C e l l s (Th) , sum(_i ) [ f (_i )∗v (_i ) ] ) ;

Results

We consider the following analytical solution of the Stokes problem (3.5.5):

u1(x) = − exp(x1)(x2 cos(x2)+sin(x2)), u2(x) = exp(x)x2 sin(x2), p(x) = 2 exp(x1) sin(x2)−p,

where p is chosen in such a way that the constraint (3.10d) is verified. The problem is solved on
the skewed mesh family depicted in Figure 3.6(a). We compare the following methods: (i) the
ccG method (3.11); (ii) an inf-sup stable method based on first-order Rannacher–Turek RaTu1

elements for the velocity and Q0 elements for the pressure; (iii) an inf-sup stable method based on
second-order Q2 elements for the velocity and Q1 elements for the pressure. The error is measured
in terms of the L2-norm for both the velocity and the pressure. The energy-norm of the error is
defined as follows:

Esto(uh, ph)2 def
= ‖∇u−∇huh‖2L2(Ω)d,d + ‖p− ph‖2L2(Ω)

+ α





∑

F∈Fh

h−1
F ‖JuhK‖2L2(F )d +

∑

F∈Fi
h

hF ‖JphK‖2L2(F )



 ,

where α = 1 for the ccG method and α = 0 for both the RaTu1 − Q0 and the Q2 − Q1 methods.
The accuracy and memory consumption analysis for the Stokes benchmark is provided in

Figure 3.16. As expected, the higher-order method benefits from the regularity of the solution
and is therefore more efficient. The results in terms of the L2-error on the velocity are comparable
for both the ccG and the RaTu1 − Q0 methods, whereas the ccG method has a slight edge when
it comes to the L2-norm of the pressure. As regards the energy norm, the differences between
the RaTu1 − Q0 and the ccG methods are essentially related to the presence of the jumps of the
pressure in the energy norm for the latter. An interesting remark is that the superconvergence
phenomenon observed in the example of §3.5.4 for the ccG method is no longer present here.
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Figure 3.16: Accuracy and memory consumption analysis for the example of Sect. 3.5.5

The performance analysis for the Stokes benchmark is provided in Figure 3.16. Similar con-
siderations hold as for the benchmark of §3.5.4. In this case, however, tsolve largely dominates
tinit + tass (especially for the Q2 −Q1 method). The reason is that the chosen default linear solver
is not necessarily the more appropriate. It has been excluded from the overall time comparison in
Figure 3.18 to improve readability.

3.5.6 Multiscale methods

In this section, we present some results to validate the implementation of the multiscale method
described in §2.5. We first study a simple 1D study case on which it is easy to analyze the numerical
results and the effect of the coarse fine size grid ratio, and the effect of the homogenization of
the permeability tensor. We then present a 2D study case on a unit square domain with an
anisotropic permeability field. We analyze the convergence behaviour of the method and compare
its performance to the SUSHI method.

1D test case

We solve the diffusion problem (2.17) on a 1D domain Ω = [0, 1] discretized by a first mesh with
100 cells and a second with 2048 cells. We consider the following boundary conditions:
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Figure 3.17: Performance analysis for the example of §3.5.5
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Figure 3.18: Comparison of different methods and implementations for the test case of §3.5.5
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Figure 3.19: Plot of basis functions for κ = 1

• u = −10 on ∂Ωxmin;

• u = 10 on ∂Ωxmax;

• ∂nu = 0 on ∂Ω \ {Ωxmin ∪ Ωxmax}

Let sizef and sizec be the number of cells of respectively the fine mesh and the coarse mesh,
and R = sizef

sizec
. We consider an homogeneous permeability field κ1 = 1, a heterogenous field κ2

with values between 0.1 (figure 3.20) and a log-normal field κ3 with a spheric variogram with a
correlated length lc = 0.3 (figure 3.22). For each test we compute the reference solution with the
SUSHI method on the fine grid. In Figure 3.19, we plot the value of the basis functions obtained
with κ1 and R = 10. In Figure 3.20 we compare for κ1, the multiscale solution to the reference
one. In Figure 3.21, we plot the value of the basis functions obtained with sizef = 2018, κ3 and
R = 16. In figure 3.22 we compare the multiscale solution to the reference one.

In Figures 3.19 and 3.21 we can easily check the support of each basis function. They effectively
set a unit flux across their related coarse face. Figures 3.20 and 3.22 illustrate the behaviour of
the method with respect to the heterogeneity of the permeability tensor κ. For the homogeneous
test case, all the basis function have the same shape while for the heterogeneous test case, their
shape are related to the values of the permeability tensor on the basis function support.

2D test case

We solve the diffusion problem (2.17) on a 2D unit square domain Ω = [−0.5, 0.5] × [−0.5, 0.5].
We consider the following boundary conditions:

• u = −1 on ∂Ωxmin;

• u = 1 on ∂Ωxmax;

• ∂nu = 0 on ∂Ω \ {Ωxmin ∪ Ωxmax}

Let sizef and sizec be the number of cells of respectively the fine mesh and the coarse mesh,
and the coarsening ratio R = sizef

sizec
. We consider the family of coarse and fine meshes with

sizef ∈ {20 × 20, 40 × 40, 80 × 80} and R ∈ {5, 10}. We consider the heterogenous field κ(x) =
νeλ sin(π x

ǫ
) sin(π y

ǫ
)) illustrated in Figure 3.23 for λ = 1 and ǫ = 0.35. To have a reference solution,

we solve the problem with the SUSHI method on a mesh of size = 160× 160 (cf. figure 3.24). For
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Figure 3.20: Heterogeneous permeability and Multiscale vs SUSHI solution
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Figure 3.21: Basis functions
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Figure 3.22: Heterogeneous permeability and Multiscale vs SUSHI solution
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Figure 3.23: Heterogeneous permeability tensor field

each value of the parameters sizef the fine grid size and R the coarsening ratio, we estimate the
error of the solution by evaluating:

‖vx − vrefx ‖
‖vrefx ‖

+
‖vy − vrefy ‖
‖vrefy ‖

Tables 3.27 and 3.28 list the errors ‖v − vref‖, ‖vx − vrefx ‖, ‖vx − vrefx ‖, card(T f
h ) the number

of cells of the fine mesh, fine element size hf and coarse element size hc, respectively for R = 5
and R = 10. Tables 3.30, 3.31 list tassembly, tsolver, tdownscale and ttotal the times in seconds to
assemble the linear system, to solve it and to downscale the coarse solution on the fine mesh,
respectively for R = 5 and R = 10. Table 3.32 list the these times for the SUSHI method on
the fine mesh. These results show that on this synthetic test case, the method seems to converge
to the same solution than the SUSHI method. For a given size of the thin grid, the cost of the
multiscale method is smaller than the cost of the standard SUSHI method.

Figure 3.34(a) illustrates the permeability field for λ = 4 and ǫ = 0.35. Figures 3.33(a) and
3.33(b) illustrate respectively the multiscale solution and the reference solution. Figure 3.34(b)
illustrates the relative error between the multiscale solution and the reference one. Comparing the
repartition of large error to the repartion of large scale variation of the permeability field, we can
observe the numerical resonance effects of the multiscale method in regions concentrating large
scale permeability variations. This well known behaviour is described by Yalchin R. Efendiev and
Thomas Y. Hou and Xiao-Hui Wu in [62]. Zhiming Chen and Thomas Y. Hou propose in [44, 90]
an over-sampling method consisting in building basis functions with overlapping supports. Other
techniques consist in constructing judicious boundary conditions for the basis function problems
(2.18) using for example the solution of first resolution of (2.17).
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Figure 3.24: Reference pressure solution

Figure 3.25: Reference velocity in X direction
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Figure 3.26: Reference velocity in Y direction

card(T f
h ) hf hc ‖v − vref‖ ‖vx − vrefx ‖ ‖vx − vrefx ‖ order

20x20 0.05 0.25 1.81 1.04e-04 8.29e-06
40x40 0.025 0.125 1.06 7.61e-05 1.16e-06 0.77
80x80 0.0125 0.0625 0.42 3.29e-06 6.76e-07 1.05

Figure 3.27: Convergence results for R = 5

card(T f
h ) hf hc ‖v − vref‖ ‖vx − vrefx ‖ ‖vy − vrefy ‖ order

20x20 0.05 0.5 2.86 5.43e-04 8.29e-06
40x40 0.025 0.25 1.82 1.02e-04 8.71e-06 0.65
80x80 0.0125 0.125 0.38 1.06e-06 7.60e-07 1.46

Figure 3.28: Convergence results for R = 10
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Figure 3.29: Convergence results: ‖vrefv ‖ vs hf
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card(T f
h ) hf hc tassembly tsolver tdownscale ttotal

20x20 0.05 0.1 4.744e-04 4.158e-04 1.16e-03 8.91e-04
40x40 0.025 0.05 1.629e-03 1.602e-03 5.38e-03 3.23e-03
80x80 0.0125 0.025 1.046e-02 6.688e-03 2.26e-02 1.71e-02

Figure 3.30: Convergence results for R = 5

card(T f
h ) hf hc tassembly tsolver tdownscale ttotal

20x20 0.05 0.5 5.95e-04 3.93e-04 2.77e-03 9.91e-04
40x40 0.025 0.25 1.35e-03 1.18e-03 1.25e-02 2.54e-03
80x80 0.0125 0.125 4.58e-03 4.31e-03 2.20e-02 8.90e-03

Figure 3.31: Convergence results for R = 10

card(T f
h ) hf hc tassembly tsolver tdownscale ttotal

20x20 0.05 0.5 5.98e-03 6.15e-03 0. 1.21e-02
40x40 0.025 0.25 1.08e-02 2.53e-02 0. 3.61e-02
80x80 0.0125 0.125 4.64e-02 1.12e-01 0. 1.59e-01

Figure 3.32: Performance results of the SUSHI scheme

0 5 · 10−2 0.1 0.15

R10-20x20

R10-40x40

R10-80x80

R5-20x20

R5-40x40

R5-80x80

SUSHI-20x20

SUSHI-40x40

SUSHI-80x80

time in seconds

tassembly

tsolver

tdownscale



3.5. NUMERICAL RESULTS 73

(a) Multiscale pressure

(b) Reference pressure

Figure 3.33: Mutiscale and the reference solution
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(a) Domain description

(b) Relative error

Figure 3.34: Permeability field and relative error between the Mutiscale and the reference solution



Chapter 4

Runtime system for new hybrid

architecture

4.1 Technical context and motivation

4.1.1 Hardware context

The trend in hardware technology is to provide hierarchical architecture with different levels of
memory, process units and connexion between resources, using either accelerating boards or by
the means of hybrid heterogeneous many-core processors. Nowadays the use of accelerators like
Graphic cards (GPU), taking advantage of the gaming market and becoming more and more
programmable, gives access to affordable process units providing a high level of parallelism for a
limited power consumption. Hybrid architectures are based on clusters of hierarchical multi-
core nodes where each node has a heterogeneous design using either accelerating boards or directly
by the means of hybrid heterogeneous many-core processors. For example, the figure 4.1 illustrates
the design of a SMP node with 2 quad-core processors connected to a GPU tesla server with 4 GPU.
This kind of architecture, characterized by different levels of memory, heterogeneous computation
units, gives access to a high potential amount of performance with different levels of parallelism:
parallelism between the nodes of a cluster linked by a high speed network connexion, parallelism
between the cores of shared memory nodes with multi-core processors linked by a SMP or a NUMA
memory, or even at a higher level parallelism between all the cores of the streaming processors of
accelerators like GP-GPU.

4.1.2 Programming environment for hybrid architecture

The complexity to handle hybrid architectures has considerably increased. The heterogeneity
introduces serious challenges in term of memory coherency, data transfer between local memories,
load balancing between computation units. All these issues are managed by the software layer,
and the way they are handled becomes all the more important since the time scale of hardware
evolution is much smaller than the time scale of software design. Various approaches have appeared
to manage the different levels of parallelism involved to take advantage of the potential power of
performance:

1. Different programming models have emerged to address parallelism:

• the multi-threading paradigm is traditionally used for multi-core architecture with
shared memory,

• the message passing paradigm widely developed to support distributed memory archi-
tecture has been popularized by the emergence of the MPI standard,

75
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(a) Herogeneous node (b) GPU server

Figure 4.1: Example of hybrid architecture

• the data parallelism is in general used by solutions proposing a high level approach
based on a distribution of the data (HPF),

• the task parallelism consisting in dividing the work into different pieces of computation
(tasks) applied on a predefined data set is a paradigm that becomes more and more
successfull with modern highly parallel architectures, as it provides a simple and flex-
ible way to manage memory hierarchies and the parallelism of tasks, independent or
organized into directed acyclic graphs.

2. Programming environments have been developed:

• some are based on libraries provided to the end-user (Quark scheduler,TBLAS data
management),

• some provide compiling environments with generated compute kernel or annotation
based language extension(TBB, OpenMP,. . . , HMPP, PGI, OpenACC,. . . ),

• OpenCL, OpenACC are emerging standards.

3. Schedulers have been developed to handle the problem of dispatching work on the different
computation units available in an accelerator based platform. They are aimed at avoiding
end users to map by their own tasks to devices. Different approaches exist, based on different
kinds of technologies (syntax analysis, compiler, annotation-based languages,. . . ), on which
rely environments providing static, dynamic or mixed static-dynamic scheduling services
more or less portable.

4. Data management support has become a critical issue as with distributed and hierarchical
memory, data movement is often more expensive than computation. Providing a coherent
memory subsystem or optimizing data transfer in order to ensure that data is available on
time has become an important concern to have performance. There are two main approaches:
explicit managed memory and the virtual distributed shared memory, a classical approach
to deal with distributed memory consisting in implementing a Distributed Shared Memory
(DSM) which provides programmers with a unified shared address space.

5. Runtime systems (see figure 4.2) provide higher-level software layers with convenient
abstractions which permit to design portable algorithms without having to deal with low-
level concerns. Compared to most of the other approaches, they provide support for both
data management and scheduling. Among them there are research Runtime systems like:



4.1. TECHNICAL CONTEXT AND MOTIVATION 77

  

Parallel
Compilers

HPC Applications

Runtime system

Operating System

CPU

Algebra
 Framework

GPU …

Figure 4.2: Runtime system for hybrid architecture

• Charm++ (Urbana, UIUC) a parallel C++ library that provides sophisticated load
balancing and a large number of communication optimization mechanisms[1]

• StarSS, OmpSs (Barcelona, BSC) both a language extension and a collection of run-
time systems targeting different types of platforms, that provide an annotation-based
language which extends C or Fortran applications to offload pieces of computation on
the architecture targeted by the underlying runtime system.

• StarPU (INRIA Bordeaux), that handles fine grain parallelism, provides dynamic schedul-
ing of sequential tasks (DAG), performance prediction, implicit data management[35,
36].

• XKaapi (INRIA Rhones-Alpes) is a C++ library that allows to execute multi-threaded
computation with data flow synchronization between threads[18].

• S_GPU (Bull, CEA INAC, UJF/LIG) aimed at coarse grain parallelism that provides
services to map parallel tasks, for resource virtualization and explicit data management.

• HPX, an open source implementation of the ParalleX model for classic Linux based
Beowulf clusters or multi-socket highly parallel SMP nodes, providing a runtime system
architecture extendable to new computer system architectures. ([78])

4.1.3 Motivation for an Abstract Object Oriented Runtime System model

Multiscale methods like those described in Annexe C are based on algorithms providing a great
amount of independent computations. For instance, in the method described in §2.5:

• the basis function computations lead to solve for N coarse faces Fc, the linear systems

AFc
xFc

= bFc

where AFc
is a matrix, xFc

and bFc
are vectors;

• the computation of the elements of the coarse linear system is equivalent, for a coarse cell
Kc and for two coarse faces Fc ∈ ∂Kc and F ′

c ∈ ∂Kc, to the algebraic computation

(GKc,F ′
c
.x′

F ′
c
)t.GKc,Fc

.xFc
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where GKc,F ′
c

are matrices, xFc
vectors;

• the interpolation of the fine solution from the coarse solution leads to compute the following
contributions

yFc
= vFc

VFc
xFc

where VFc
are matrices, xFc

vectors and vFc
scalars.

Theses computations can be parallelized on various architectures with multiple nodes, mutiple
cores and multiple accelerator boards with different kinds of technologies (MPI, TBB, OpenMP,
CUDA, OpenCL. . . ).

Such methods are good candidates to perform on new hardware technology. However, using
often complex numerical concepts, they are developed by programmers that cannot deal with
hardware complexity. Most of the approaches presented in §4.1.2 remain often too poor to man-
age the different levels of parallelism involved to take advantage of the potential of computing
power. Runtime system solutions that expose convenient and portable abstractions to high-level
compiling environments and to highly optimized libraries are interesting. Indeed they enable end
users to develop complex numerical algorithms offering good performance on new hardware tech-
nology by hiding the low level concerns of data management and task scheduling. Such a layer
provides a unified view of all processing units, enables various parallelism models (distributed data
driven, task driven) with an expressive interface that bridges the gap between hardware stack and
software stack.

In the DSEL framework presented in §3.3, we are led to generate C++ algorithms with ob-
jects of the back-end of the DSEL (§3.1). In this context an Object Oriented Runtime System
solution is an interesting solution. Indeed such a layer is naturally integrated to C++, our host
language, separating as illustrated in figure 4.2 the abstractions of the algebraic and numerical
frameworks from those modeling the operating system and the various computation units (CPU,
GPU) composing hybrid architectures. However, to handle the variety of new hybrid architectures
and to follow the fast evolution of hardware design, its architecture needs to be based on the
right abstract concepts so that it could be easily extended with new implementations modeling
new hardware components, limiting in that way the impacts on our generative framework and
separating the evolution of our language from the one of hardware.

Another important issue is to deal with legacy codes. Many existing Runtime System solutions
involve important modifications in existing application architecture making painful the migration
of legacy code to take advantage of the power of new hybrid hardware. Solutions that enable us to
enhance specific parts of existing applications without needing to restructure the whole application
architecture are interesting, as they can be deployed seamlessly in algorithms that can potentially
perform well on hybrid architecture but are too complex to be re-written from scratch.

4.2 An abstract object oriented Runtime System Model

4.2.1 Contribution

In Chapter 3 we have presented a generative framework based on a DSEL that enables us to
describe numerical methods at a high level, and a generative mechanism to generate C++ codes
with back-end objects. We propose a runtime system layer on top of which we base the back-
end of the DSEL to obtain generated source code that performs efficiently on new heterogeneous
hardware architectures. Our approach is to provide an abstract object oriented runtime system
model that enables us to handle, in a unified way, different levels of parallelism and different grain
sizes. Like for most existing Runtime System frameworks, the proposed model is based on:
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• an abstract architecture model that enables us to describe in a unified way most of nowadays
and future heterogeneous architectures with static and runtime information on the memory,
network and computational units;

• an unified parallel model programing based on tasks that enables us to implement parallel
algorithms for different architectures;

• an abstract data management model to describe the processed data, its placement in the
different memory and the different way to access to it from the different computation units.

The main contribution with respect to existing frameworks is to propose an abstract architecture
for the model based on abstract concepts . We define Concept as a set of requirements for
types of objects that implement specific behaviours. Most of the abstractions of our Runtime
system models are defined as requirements for C++ structures. Algorithms are then written with
some abstract types which must conform to the concepts they implement. This approach has
several advantages:

1. it enables to clearly separate the implementation of the numerical layer from the implemen-
tation of the runtime system layer;

2. it enables to take into account the evolution of hardware architecture with new extensions,
new concepts implementation, limiting in that way the impact on the numerical layer based
on the DSEL generative layer;

3. it enables the benchmark of competiting implementations of each concept with various tech-
nologies, which can be based on existing research frameworks like StarPU which already
provides advanced implementation of our concepts;

4. it enables us to design a non intrusive library, which unlike most of existing framework, does
not constraint the architecture of the final applications. One can thus enhance any part of
any existing applications with our framework, re-using existing classes or functions without
needing to migrate the whole application architecture to our formalism. This issue is very
important because often legacy codes cannot take advantage of new hybrid hardware because
most of existing programming environments make the migration of such applications painful;

5. finally the proposed solution does not need any specific compiler tools and does not have
any impact on the project compiling tool chain.

In this section we present the different abstractions on which the proposed framework relies.
We detail the concepts we have proposed to modelize these abstractions. We illustrate them by
proposing different types of implementation with various technologies. The back-end of our DSEL
relies on this model, that bridges the gap between our DSEL and the low level API used to execute
algorithms on various computational units. We study how the proposed solution enables us to
address seamlessly heterogeneous architectures and to manage the available computation resources
to optimize the application performance.

4.2.2 An abstract hybrid architecture model

The purpose of this abstract hybrid architecture model is to provide a unified way to describe
hybrid hardware architecture and to specify the important features that enable to choose at
compile time or at run time the best strategies to ensure performance. Such an architecture model
has been already developed in the project HWLOC (Portable Hardware Locality)[10] which
provides

“a portable abstraction (across OS, versions, architectures, ...) of the hierarchical topol-
ogy of modern architectures, including NUMA memory nodes, sockets, shared caches,
cores and simultaneous multi-threading. It also gathers various system attributes such
as cache and memory information as well as the locality of I/O devices such as network
interfaces, InfiniBand HCAs or GPUs”.
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We propose an architecture model, based on the HWLOC framework. An architecture description
is divided into two part, a static part grouping static information which can be used at compile-time
and a dynamic part with dynamic information used at run-time. The information is modelized
with the following abstractions:

• system which represents the whole hardware system;

• machine for a set of processors and memory with cache coherency;

• node modeling a NUMA node, a set of processors around the memory on which the processors
can directly access.

• socket for sockets, physical packages, or chip;

• cache for cache memory (L1i, L1d, L2, L3,. . . );

• core for computation units;

• pu for processing unit, execution units;

• bridge for bridges that connect the host or an I/O bus, to another I/O bus;

• pci_device for PCI devices;

• os_device for operating system device.

The static information is represented by tag structures and string keys as in listing 4.1. They
are organized in a tree structure where each node has a tag representing a hardware component, a
reference to a parent node and a list of children nodes. Tag structures are used in the generative
framework at compile time. For a target hardware architecture and with its static description, it
is possible to generate the appropriate algorithms with the right optimisations.

The dynamic information is stored, in each node of the tree description, with a prop-
erty map associating keys representing dynamic hardware attributes, to values which are eval-
uated at runtime, possibly using the HWLOC library. Theses values form the runtime informa-
tion which enables to instantiate algorithms with dynamic optimization parameters like cache
memory sizes, stack_size the size of the memory stack, nb_pu the maximum number of Pro-
cess Units, warp_size the size of a NVidia WARP (NVidia group of synchronized threads) and
max_thread_block_size the maximum size of a NVidia thread block executed on GP-GPUs,
nb_core or nb_gpu the number of available physical cores of CPUs or GPUs,. . . Such runtime fea-
tures, are useful parameters to optimize low level algorithms, in particularly for CUDA or OpenCL
algorithms for GP-GPUs.

Such static and dynamic information associated to technics of tags dispatching is used by Joel
Falcou in NT2 [12] to transform expressions at compile time and generate efficient code with right
optimizations.

Listing 4.1: Tag id for hardware component units

namespace RunTimeSystem {
namespace tag {

s t r u c t system {
s t a t i c std : : s t r i n g name ( ) { re turn std : : s t r i n g ( " system" ) ; }

} ;
s t r u c t machine {

s t a t i c std : : s t r i n g name ( ) { re turn std : : s t r i n g ( "machine" ) ; }
} ;
s t r u c t core {



4.2. AN ABSTRACT OBJECT ORIENTED RUNTIME SYSTEM MODEL 81

s t a t i c std : : s t r i n g name ( ) { re turn std : : s t r i n g ( " core " ) ; }
} ;
s t r u c t pu {

s t a t i c std : : s t r i n g name ( ) { re turn std : : s t r i n g ( "pu" ) ; }
} ;
s t r u c t cache {

s t a t i c std : : s t r i n g name ( ) { re turn std : : s t r i n g ( " cache " ) ; }
} ;
/∗ . . . ∗/

}
}

4.2.3 An abstract unified parallel programming model

We propose an abstract unified parallel programming model based on the main following abstrac-
tions:

• a task abstraction representing pieces of work, or an algorithm that can be executed on a
core or onto accelerators asynchronously. A task can have various implementations that can
be executed more or less efficiently on various computational units. Each implementation
can be written in various low level languages (C++, CUDA, OpenCL) with various libraries
(BLAS, CUBLAS) and various compilation optimizations (SSE directives,. . . ). Tasks can
be independent or organized in direct acyclic graphs which represent algorithms.

• a data abstraction representing the data processed by tasks. Data can be shared between
tasks and have multiple representations in each local memory device.

• a scheduler abstraction representing objects that walk along task graphs and dispatch
the tasks between available computational units.

These abstractions are modelized with C++ concepts (defined in §4.2.1). This approach enables
to write abstract algorithms with abstract objects with specific behaviours. Behaviours can be
implemented with various technologies more or less efficient with respect to the hardware on which
the application is executed. The choice of the implementation can be done at compile time for a
specific hardware architecture, or at runtime for general multi-platform application.

A particular attention has been paid in the design of the architecture to have a non intrusive
solution in order to facilitate the migration of legacy code, to enable the reusability of existing
classes or functions and to limit the impacts on the existing application architecture. The purpose
is to be able to select specific parts of an existing code, for example some parts which a great
amount of independent works, then to enhance them by introducing multi-core or gpu optimisation
without having to modify the whole of the code.

Runtime System Architecture

The proposed runtime system architecture, illustrated in figure 4.3 is quite standard:

• Computation algorithms implemented by user free functions or classes are encapsulated in
Tasks objects, managed by a centralized task manager ;

• The pieces of data processed by the task objects, represented by user data classes are en-
capsulated in data handler objects, managed by a centralized data manager ;

• The associations between tasks and the processed data handlers are managed by DataArg
objects;

• Tasks are organized in DAGs and processed by scheduler objects that dispatch them on
devices to run them with executing drivers.
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Figure 4.3: Runtime system architecture

The executing model is illustrated in figure 4.4:

• A Scheduler object processes a DAG of tasks belonging to a centralized task manger;

• Task objects which are ready to be executed are pushed back in a task pool ;

• The scheduler object dispatches ready tasks on available computation devices, with respect
to a given strategy;

• Tasks objects are executed on a target device by a driver object, then they are notified once
their execution is finished;

• A DAG is completely processed once the task pool is empty.

Task management

The task management of our Runtime System Model is modelized with the class TaskMng described
in listing 4.2. The sub type TaskMng::ITask is an interface class specifying the requirements for
task implementation. TaskMng::ITask pointers are registered in a TaskMng object that associates
them to an unique integer identifier uid. Tasks are managed in a centralized collection of tasks
and dependencies between tasks are created with their uid. The base class TaskMng::BaseTask

in listing 4.4 refines the TaskMng::ITask interface to manage a collection of uids of children tasks
depending of the current task. Thus a Directed Acyclic Graph (DAG) (figure 4.5) is repre-
sented by a root task, and walking along it then consists in iterating recursively on each task and
on its children.

Listing 4.2: TaskMng class
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Figure 4.4: Executing model

c l a s s TaskMng {
pub l i c :

typede f i n t uid_type ;
s t a t i c const i n t undefined_uid = −1 ;
c l a s s ITask ;
TaskMng(){}
v i r t u a l ~TaskMng(){}
i n t addNew( ITask∗ task ) ;
void c l e a r ( ) ;
template<typename SchedulerT>
void run ( SchedulerT& scheduler , s td : : vector< in t > const& ta s k_ l i s t ) ;

} ;

Listing 4.3: Task class interface

c l a s s TaskMng : : ITask
{
pub l i c :

ITask ( ) : m_uid(TaskMng : : undefined_uid ){}
v i r t u a l ~ITask ( ) {}
uid_type getUid ( ) const {

re turn m_uid ;
}
v i r t u a l void compute ( TargetType& type , TaskPoolType& queue ) = 0 ;
v i r t u a l void compute ( TargetType& type ) = 0 ;

protec ted :
uid_type m_uid ;
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} ;

Listing 4.4: Task class interface

c l a s s TaskMng : : BaseTask : pub l i c TaskMng : : ITask
{
pub l i c :

BaseTask ( ) ;
v i r t u a l ~BaseTask ( ) ;
void addChild ( ITask∗ ch i l d ) ;
void c l e a rCh i l d r en ( ) ;
void no t i f yCh i l d r en ( TaskPoolType& queue ) ;
void no t i f y ( ) ;
bool isReady ( ) const ;

} ;

The Task concept enables to implement a piece of algorithm for different kinds of target
devices. A specific type of target device, or computational unit is identified by a unique Target
label. Task instances are managed by a TaskMng that associates them to an unique id that can be
used to create dependencies between tasks. Each task manages a list of children tasks. Directed
Acyclic Graphs (DAGs) can be created with task dependencies. They have one root task. Task
dependencies are managed by task unique id. To ensure graphs to be acyclic, tasks can only be
dependent on an existing task with a lower unique id. A task can have various implementations.
They are associated to a Target attribute representing the type of computational unit on which
they should be used.

Example of Direct Acyclic Graph

JT9

T8T7T6

T5T4

T1

T0

T3T2

Figure 4.5: Example of directed acyclic graph

Data management

Our runtime system model is based on a centralized data management layer aimed to deal with:

• the data migration between heterogeneous memory units;

• an efficient data coherency management to optimize data transfer between remote memory
and local memory;

• the concurrency of tasks accessing to shared data.

Our data management is based on the DataMng and DataHandler classes (listing 4.10). DataHandler
objects represent pieces of data processed by tasks. They are managed by a DataMng object
which has a create member function to instanciate them. DataHandler objects have a unique
DataUidType identifier uid. The DataArgs class is a collection of
std::pair<DataHandler::uid_type,eAccessMode> where AccessMode is an enum type with the
following values W, R or RW. The DataHandler class provides a lock, unlock service to prevent
data access concurrency:
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• a task can be executed only if all its associated data handlers are unlocked ;

• when a task is executed, the DataHandlers associated with a W or RW mode are locked during
execution and unlocked after.

A piece of data can have multiple representations on each device local memory. The coherency
of all representations is managed with a timestamp DataHandler service. When a piece of data is
modified, the timestamp is incremented. A representation is valid only if its timestamp is up to
date. When a task is executed on a specific target device, the local data representation is updated
only if needed, thus avoiding unuseful data transfer between different local memories.

Task dependencies

Task dependencies can be created in three ways:

• Explicit task dependencies is based on task uids. The addChild member function enables
to create dependencies between tasks. Only a task with a lower uid can be the parent of
another one, thus ensuring that the created graph is acyclic;

• Logical tag dependencies, based on task tags create dependencies between a group of
tasks with a specific tag and another group of tasks with another specific tag;

• Implicit data driven dependencies is based on the sequential consistency of the DAG
building order. When a task is registered, if the DataHandler access is in:

– RW or W mode, then the task implicitly depends on all tasks with a lower uid accessing
that same DataHandler in R or RW mode,

– R or RW mode, then the task implicitly depends on the last task accessing that data in
RW or W mode.

Once a task is executed, all its children tasks are notified. Each task manages a counter
representing the number of parent tasks. When a task is notified, this counter is decremented . A
task is ready when its parent counter is equal to zero and when all its dependent data handlers are
unlocked. Its uid is then put in the queue of ready tasks managed by the scheduler that processes
the DAG.

Scheduling and executing model

On heterogeneous architectures, the parallelism is based on the distribution of tasks on available
computation units. The performance of the global execution depends a lot on the strategy used to
launch independent tasks. It is well known that there is not a unique nor a best scheduling policy.
The performance depends on both the algorithm and the hardware architecture. To implement
various scheduling solutions adapted to different algorithms and types of architecture, we propose
a Scheduler concept defining the set of requirements for scheduler types to represent scheduling
models. The purpose of objects of such a type is to walk along task DAGs, to select and execute
independent tasks on the available computation units, with respect to a given strategy. The
principles for a scheduler object are:

1. to manage a pool of ready tasks (tasks which all parent tasks are finished and all datahandlers
of its DataArgs attribut are unlocked);

2. to distribute the ready tasks on the different available computation units following a given
scheduling stategy;

3. to notify the children tasks of a task once the task execution is finished;

4. to push back tasks that get ready in the pool of ready tasks.
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The TaskPoolConcept defines the behaviour that must implement a type representing a
TaskPool, that is to say the possibility to push back new ready tasks and to grab tasks to execute.

Listing 4.5: TaskPool

c l a s s TaskPoolConcept
{
pub l i c :

template<typename TaskT>
void pushBack (TaskT : : uid_type uid ) ;

template<typename TaskT , typename TargetT>
typename Task : : ptr_type grabNewTask ( TargetT const& ta rg e t ) ;

bool isEmpty ( ) const ;
} ;

A coarse grain parallelism strategy consists in executing the different independent ready tasks
in parallel on the available computation units. We have implemented various schedulers like the
StdScheduler, the TBBScheduler and PoolThreadScheduler described in §4.2.3

Parallelism can be managed at a finer grain size with concepts like the ForkJoin and the
Pipeline concepts.

ForkJoin On multi-core architecture, a collection of equivalent tasks can be executed efficiently
with technolgies like TBB, OpenMP, Posix threads. The ForkJoin concept (figure 4.6) consists
in creating a DAG macro task node which holds a collection of tasks. When this node is ready,
the collection of nodes is processed by a ForkJoin Driver in parallel. The macro task node
is finished when all its children tasks are finished. The ForkJoin Driver is a concept defining
the requirement for the types of objects that implement the fork-join behaviour with different
technologies or libraries like TBB, Boost.Thread or Pthread.

Listing 4.6: Fork-Join driver concept

c l a s s ForkJoinDriverConcept
{
pub l i c :

template<typename TaskT , typename TargetT , typename QueueT>
void execForkJoin ( std : : vector< typename TaskPtrT : : ptr_type > const& tasks ,

std : : vector< typename TaskPtrT : : uid_type > const& uids ,
TargetT& target ,
QueueT& queue ) ;

template<typename TaskT , typename TargetT>
void execForkJoin ( std : : vector< typename TaskPtrT : : ptr_type > const& tasks ,

std : : vector< typename TaskPtrT : : uid_type > const& uids ,
TargetT& ta rg e t ) ;

} ;

Pipeline On vectorial device or accelerator boards, the Pipeline concept (figure 4.6) consists
in executing a sequence of tasks (each task depending on its previous one) with a specific internal
structure of instructions. The Pipeline Driver is a concept defining the requirement for the
types of objects implementing the pipeline behaviour. These objects are aware of the internal
structure of the tasks and execute them on the computation device in a optimized way often
with a thin grain size parallelism. This approach is interesting for new GPU hardwares which
can execute concurrent kernels. It enables to implement optimized algorithms with streams and
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Figure 4.6: ForkJoin and pipeline task node

asynchroneous execution flows that improve the occupancy of device resources and lead then to
better performance. For instance, for the computation of the basis functions of the multiscale
model, we illustrate in §4.4 how the flow of linear system resolutions can be executed efficiently
on GPU device with the GPUAlgebraFramework layer.

Listing 4.7: pipeline driver concept

c l a s s ForkJoinDriverConcept
{
pub l i c :

template<typename TaskT , typename TargetT , typename QueueT>
void exe cP ip e l i n e ( std : : vector< typename TaskPtrT : : ptr_type > const& tasks ,

std : : vector< typename TaskPtrT : : uid_type > const& uids ,
TargetT& target ,
QueueT& queue ) ;

template<typename TaskT , typename TargetT>
void exe cP ip e l i n e ( std : : vector< typename TaskPtrT : : ptr_type > const& tasks ,

std : : vector< typename TaskPtrT : : uid_type > const& uids ,
TargetT& ta rg e t ) ;

} ;

Asynchronism management On an architecture with heterogeneous memories and computa-
tion units, it is important to provide enough work to all available computation units and to reduce
the latency due to the cost of data transfer between memories. The Asynchronism mechanism is
a key element for such issues. The parametrized classes
template<typename DriverT,typename TaskT> class AsynchTask and
template<typename AsynchTaskT> class Wait implement the asynchronous behaviour:

• the AsynchTask<TaskT> is a task node that executes asynchronously its child task;

• the Wait<AsynchTaskT> is a task node that waits for the end of the execution the child task
of the previous node then notifies the children of this task.

The Driver concept specifies the requirement of the type of objects that implement the asyn-
chronous behaviour. This behaviour can be easily implemented with threads. The child task is
executed in a thread. The end of the execution corresponds to the end of the thread. For GPU
device, this behaviour can be implemented using a stream on which is executed an asynchronous
kernel. The wait function is implemented with a synchronisation on the device.
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The asynchronous mechanism is interesting to implement data prefetching on device with
remote memory. Prefetch task nodes can be inserted in the DAG to load asynchronously data on
GPU device so that they are available when the computational task is ready to run.

Listing 4.8: Data management

template<typename DriverT , typename TaskT>
c l a s s AsynchTask : pub l i c TaskMng : : BaseTask
{
pub l i c :

typede f TaskMng : : BaseTask BaseType ;
AsynchTask ( DriverT& dr ive r , TaskT& task ) ;
v i r t u a l ~AsynchTask ( ) ;
v i r t u a l void wait ( TargetType& type , TaskPoolType& queue ) ;
v i r t u a l void no t i f y ( ) ;
v i r t u a l bool isReady ( ) const ;
void compute ( TargetType& type ) ;
void compute ( TargetType& type , TaskPoolType& queue ) ;
void f i n a l i z e ( TargetType& type , TaskPoolType& queue ) ;

p r i va t e :
TaskT& m_task ;

} ;

template<typename AsynchTaskT>
c l a s s Wait : pub l i c TaskMng : : BaseTask
{
pub l i c :

typede f TaskMng : : BaseTask BaseType ;
Wait (AsynchTaskT& parent ) ;
v i r t u a l ~Wait ( ) ;
void compute ( TargetType& type , TaskPoolType& queue ) ;
void compute ( TargetType& type ) ;
void f i n a l i z e ( TargetType& type , TaskPoolType& queue ) ;

p r i va t e :
AsynchTaskT& m_parent ;

} ;

Example of application of the runtime system

With our runtime system abstractions, listing 4.9 illustrates how to write a simple program adding
two vectors, which can be executed on various devices.

Listing 4.9: Simple vector addition program

c l a s s AxpyTask {
void computeCPU( Args const& args ) {

auto x const& args . get<VectorType>( ’ x ’ ) . impl<tag : : cpu >() ;
auto y& args . get<VectorType>( ’ y ’ ) . impl<tag : : cpu >() ;
SAXPY(x . s i z e ( ) , 1 . 0 , x . dataPtr ( ) , 1 , y . dataPtr ( ) , 1 ) ;

}
void computeGPU( Args const& args ) {

auto x const& args . get<vector_type >( ’ x ’ ) . impl<tag : : gpu >() ;
auto y& args . get<vector_type >( ’ y ’ ) . impl<tag : : gpu >() ;
cublasSaxpy (x . s i z e ( ) , 1 . 0 , x . dataPtr ( ) , 1 , y . dataPtr ( ) , 1 ) ;
cudaThreadSynchronize ( ) ;

}
} ;

i n t main ( i n t argc , char ∗∗ argv ) {
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f l o a t vec_x [N] , vec_y [N] ;

/∗ ( . . . ) ∗/
//
// DATA MANAGEMENT SET UP
DataMng data_mng ;
VectorType x ;
VectorType y ;
DataHandler∗ x_handler = data_mng . create<VectorType>(&x) ;
DataHandler∗ y_handler = data_mng . create<VectorType>(&y) ;

//
// TASK MANAGEMENT SET UP
TaskMng task_mng ;
/∗ ( . . . ) ∗/
AxpyTask op ;
TaskMng : : Task<AxpyTask>∗ task = new TaskMng : : Task<AxpyTask>(op ) ;
task−>set<tag : : cpu>(&AxpyTask : : computeCPU) ;
task−>set<tag : : gpu>(&AxpyTask : : computeGPU) ;
task−>args ( ) . add ( ’ x ’ , x_handler , ArgType : : mode : :R) ;
task−>args ( ) . add ( ’ y ’ , y_handler , ArgType : : mode : :RW) ;

i n t uid = task_mng . addNew( task ) ;
t a s k_ l i s t . push_back ( uid ) ;

//
// EXECUTION
SchedulerType schedu l e r ;
task_mng . run ( scheduler , t a s k_ l i s t ) ;

}

Elements of implementation of different concepts

Data and task management concepts The implementation of data and task management is
based on the following principles:

• User Data are implemented by the mean of user C++ classes or structures;

• User algorithms are implemented by the means of user free functions or member functions
of user C++ classes.

We have implemented DataHandler as a class that encapsulate any user classes or structures
and which provides functions to retrieve the original user data structure, to lock or unlock the
user data.

The DataMng is a centralized class that manages a collection of DataHandler objects and their
integer unique identifier. This class enables to access any user data by the means of its unique
identifier.

Listing 4.10: Data management

typede f enum {R,W,RW, Undefined} eAccessModeType ;

c l a s s DataHandler
{
pub l i c :



90 CHAPTER 4. RUNTIME SYSTEM FOR NEW HYBRID ARCHITECTURE

typede f i n t uid_type ;
s t a t i c const i n t nul l_uid = −1 ;
DataHandler ( uid_type uid=nul l_uid ) ;
v i r t u a l ~DataHandler ( ) ;
uid_type getUid ( ) const ;
template<typename DataT>
DataT∗ get ( ) const ;
void lock ( ) ;
void unlock ( ) ;
bool i sLocked ( ) const ;

} ;

c l a s s DataMng
{
pub l i c :

typede f DataHandler∗ DataHandlerPtrType ;
DataMng ( ) ;
v i r t u a l ~DataMng ( ) ;
template<typename DataT>
DataHandler∗ c r e a t e ( ) ;
DataHandler∗ getData ( i n t uid ) const ;

} ;

Tasks are implemented with the classes TaskMng::Task0 and class TaskMng::Task (list-
ing 4.11). TaskMng::Task0 encapsulates any user free function while class TaskMng::Task,
parametrized by a type ComputerT encapsulates a user class ComputerT and its member func-
tion, stored in a boost::function attribute. They implement the TaskMng::ITask interface
that enables any scheduler to execute task objects on any target computation unit. They have a
set(<target>,<function>) member function to define the implementation of the task for each
target device.

Listing 4.11: Task class inplementation

c l a s s TaskMng : : Task0 : pub l i c TaskMng : : BaseTask
{
pub l i c :

typede f ITask : : TargetType TargetType ;
typede f boost : : funct ion1<void ,

DataArgs const&> FuncType ;
typede f std : : map<TargetType , FuncType> FuncMapType ;
typede f typename FuncMapType : : i t e r a t o r FuncIterType ;
Task0 ( ) ;
v i r t u a l ~Task0 ( ) ;
void s e t ( TargetType type , FuncType func ) ;
void compute ( TargetType& type , TaskPoolType& queue ) ;
void compute ( TargetType& type ) ;

} ;

template<typename ComputerT>
c l a s s TaskMng : : Task : pub l i c TaskMng : : BaseTask
{
pub l i c :

typede f ITask : : TargetType TargetType ;
typede f boost : : funct ion2<void ,

ComputerT∗ ,
DataArgs const&> FuncType ;

typede f std : : map<TargetType , FuncType> FuncMapType ;
typede f typename FuncMapType : : i t e r a t o r FuncIterType ;
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Task (ComputerT∗ computer ) ;
v i r t u a l ~Task ( ) ;
void s e t ( TargetType type , FuncType func ) ;
void compute ( TargetType& type , TaskPoolType& queue ) ;
void compute ( TargetType& type ) ;

} ;

Task execution When a task is executed, data user structures are recovered with a DataArgs

object that stores data handlers and their access mode. This data can be locked if it is accessed
in a write mode when the user algorithm is applied to it. Modified data is unlocked at the end of
the algorithm execution.

TaskPool concept We have implemented the TaskPoolConcept with a simple parametrized
class template<TaskMng> class TaskPool with two attributes: m_uids a collection of task uid
and m_mng a reference to the task manager. The member function pushBack(TaskMng::ITask::uid_type uid)

feeds the collection of ready tasks. The Task::ptr_type grabNewTask(<target>) grabs a uid

from m_uids and returns the corresponding task with m_mng.

Scheduler concept To implement a scheduler class, one has to implement the
exec(<tasks>,<list>) function that gives access to a collection of tasks and a list of tasks, roots
of different DAGs. Walking along these DAGs, the scheduler manages a pool of ready tasks: the
scheduler grabs new tasks to execute, children tasks are notified at the end of execution and feed
the task pool when they are ready. Some Driver objects can be used to execute tasks on specific
devices, to modelize different parallel behaviours, to give access for example to a pool of threads
that grab tasks to be executed in the pool of ready tasks. We have implemented the following
scheduler types:

• the StdScheduler is a simple sequential scheduler executing the tasks of a TaskPool on a
given target device;

• the TBBScheduler is a parallel scheduler for multi-core architecture implemented with the
parallel_do functionality of the TBB library;

• the PoolThreadScheduler is a parallel scheduler based on a pool of threads dispatched on
several cores of the multi-core nodes, implemented with the Boost.Thread library. Each
thread is associated to a physical core with an affinity, and dedicated to executed tasks on
this specific core or on an accelerator device. The scheduler dispatches the tasks of the task
pool on the threads which are starving.

ForkJoinDriver implementation We have developed for multi-core architectures three im-
plementations conforming to this concept:

• the TBBDriver is a multi-thread implementation using the parallel_for algorithm of the
TBB library;

• the BTHDriver is a multi-thread implementation based on a pool of threads implemented
with the Boost.Thread library;

• the PTHDriver is a multi-thread implementation based on a pool of threads written with the
native posix thread library.
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4.3 Parallelism and granularity considerations

Hybrid architectures provide different levels of parallelism, parallelism between nodes with dis-
tributed memory and linked by a high speed connexion network, parallelism inside nodes with
more and more cores per processor with shared memory, and at least the parallelism inside ac-
celerators with a great amount of physical computation units and even more available processing
units like threads. It is important to optimize each level of parallelism, maximizing the compu-
tation units occupancy keeping all of them busy, feeding them with both data and work. In this
section, we see how the proposed runtime system can be a solution to deal with the different
levels of parallelism. We first detail the parallelization principles for multi nodes with distributed
memory architecture, then we study different levels of parallelism inside a SMP or NUMA node,
the granularity of the tasks and different ways to deal with tiny tasks avoiding the overhead of
task creation and destruction.

4.3.1 Parallelisation on distributed architecture

The first level of parallelization of our framework concerns the parallelization of global PDE
problems described and solved with our DSEL. This level of parallelization enables us to solve
large problems on distributed memory architectures with a limited memory size per node by
distributing data between nodes. For such a parallelism, we have a standard approach based on
the message passing paradigm, well adapted for this kind of architecture, based on a partition
of the mesh among processors. Data are distributed with respect to the mesh distribution and
computation works, with respect to the data they proccess. In §3.3.4 we have introduced space
constraints and extra closure equations to deal with boundary conditions. In this section we
discuss the way we parallelize these extra conditions. Finally we also discuss the parallelization
of the CCG method which needs a special treatment: the use of jump operator on faces in the
discrete formulation of this method leads to manage large linear combinations that leading to
difficulties on faces shared by different mesh domains.

Mesh, data and linear system distribution

Our DSEL is based on the Arcane framework that provides mesh partition services. When the
mesh data Th is loaded, it is partitioned in np sub-domains Pi∈{0,...,np−1} with standard partitioner
algorithms (Parmetis, Scotch, Zoltan,. . . ). Subdomains Pi are distributed on MPI processes of
rank i. For each subdomain Pi, we define the set of ghost cells connected by faces as the set of cells
τj ∈ Pj,j 6=i such that ∃τi ∈ Pi/τi ∩ τj 6= ∅. These ghost cells are added to each MPI subdomains.
The set of nodes and faces connected to those cells are also designated as ghost mesh entities.
Let MPI subdomain be the set of mesh entities processed by a MPI process of rank i, i.e. the
subdomain Pi and its ghost entities. For each MPI subdomain, we define the physical boundary

as the set of faces of Pi belonging to Fb
h, the MPI interface as the set of faces of the boundary

of the MPI subdomain not belonging to its physical boundary and the physical interface

between two subdomains Pi and Pj as the set of faces shared by Pi and Pj . In figure 4.7 we
illustrate a mesh partitioned into two sub-domains P1 and P2 and the physical boundary of P1

in black, the physical interface in blue and the MPI interface in red.

Discrete variables (presented in 3.1) are distributed with respect to the mesh distribution. That
is to say their values are indexed only by the mesh entities managed by the current MPI process.
The coherency of data shared by several processes, the values indexed by ghost entities, is ensured
with synchronization services of the Arcane framework presented in §1.2.2. In our framework,
DOFs are deeply linked to mesh entities as each of them refer to its parent mesh entity, and
the distribution of vector of DOFs follows naturally the distribution of the values of the discrete
variables on which they are based. Let local DOFs be the DOFs related to local mesh entities and
ghost DOFs, DOFs related to ghost entities. The vectors of our backend (presented in §3.1) are
algebraic representations of vectors of DOFs. Finally linear system distribution follows as well the
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Figure 4.7: Mesh partition, sub-domain boundaries and interfaces

DOFs distribution (figure 4.8). As for DOFs and mesh entities, some equations or unknowns may
be duplicated and ghost equations or ghost unknowns are equations or unknowns related to
ghost mesh entities. In the linear system assembly phase, we must detect ghost equations to treat
them in a special way and to ensure that the global linear system is square. With a local numbering
mechanism that numbers local equations before ghost equations related to ghost entities, the local
ids of local equations (respectively unknowns) are always lower than ghost equations (respectively
unknowns). It is then easy to take into account or not the last equations which may not be valid
as they are related to ghost entities.

parallelization principles

The principles of the parallelization is quite standard:

• each MPI process executes the different algorithms on its own data, and builds the local
part of a distributed linear system;

• a parallel linear solver layer is used to solve the parallel linear system and to compute the
solution of local DOFs;

• the values of ghost DOFs are updated with the Arcane synchronizer services.

Boundary conditions parallelization

The parallelization of algorithms related to boundary conditions is a little more tricky, as on each
MPI subdomains we have to deal with both the physical boundaries and the MPI interfaces. In the
assembly phase, we must only take into account closure equations related to physical boundaries
and not to MPI interfaces. This is done using our numbering systems separating local entities
from ghost ones.
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Figure 4.8: Mesh and matrix distribution on distributed memory architecture

Cell centered methods parallelization

For cell centered methods, there are only DOFs on cell entities. In many cases there are not
boundaries closure equations, but implicit space constraints to take into account Dirichlet bound-
ary conditions. The parallelization of such methods is more difficult since we cannot take into
account such conditions on MPI interfaces. For example for the ccG method, the Gh operator
takes implicitly into account the values of functions on face boundaries. Let us consider a MPI
subdomain and a face F of the MPI interface. This face has a back cell τ b and a front cell τf . Let
us suppose that the τ b belongs to the subdomain. Then τf belongs to another MPI subdomain
and not to the current subdomain. For τ b, the gradient reconstruction operator is incomplete as
we do not have the dirichlet boundary condition on F and we do not have access to the DOFs
related to τf . The operator Rh based on the operator Gh with the green formula is also incom-
plete. We have a parallelization difficulty as the discretization of the jump operator on a local face
connected to τ b involves the Rh operator on τ b which is incomplete.

A solution to overcome this difficulty would be to add an extra ghost layer so that we would
have access to the DOFs of τf . In figure 4.9, we consider two MPI domains, the face F belonging
to the frontier of the domains and the back and front cells K and L of F. We can see that, to
compute the jump operator on F, we need to evaluate the operator Gh on L which leads to a
linear combination with the stencil stencilGradL composed of the cells L, L1, L2 and L3. We can
understand then the necessity to add a second ghost layer to access to the DOFs related to L2.
This solution gives poor performance for a large number of nodes because it increases a lot, the
amount of communication when the number of MPI processes increases and the size of MPI sub-
domain decreases: this amount of communication is proportional to the size of the MPI interface
boundary which gets fatter relatively to the local size of the MPI subdomain.

A better solution, more complex but more scalable, consists in introducing DOFs on MPI
interface faces so that the Gh operator remains valid even on ghost cells, and in adding extra
closure equations on the MPI subdomains where these faces are local, using for example the trace
operator Th which is complete as the face is local. For example in figure 4.9, introducing DOFs
on the face F2, the linear combination of the operator Gh evaluated on L is composed of L1, L3
and the face F2 which already belongs to the first ghost layer. We need to add an extra equation
on the MPI Domain 2 to evaluate the DOFs on F2, which can be done with a trace operator.
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Figure 4.9: Cell centered methods parallelization

4.3.2 Task parallelization and granularity consideration

In modern architectures, within a node, we can have access to different kinds of computational
units: processors with several cores and accelerator boards. To maximize the occupancy of all these
computation units, we have to parallelize algorithms considering for each of them the different
levels of parallelism and grain sizes. Let us consider for example the basis computation of the
multiscale algorithm described in §2.5. Let Nf and Nc be the size of the fine and coarse grid,
R =

Nf

Nc
the rate of refinement. The number Np of independent basis problems to solve is equal

to the number of inner coarse faces,Np ≈ α1 ∗ Nc = α1 ∗ Nf

η
where α1 is a factor dependent

on the mesh dimension. The size Nb of each problem is proportional to the number of entities
of each basis domain which is the number of fine entities of the back and front coarse cell of
a coarse face. We have then Nb ≈ α2 ∗ R where α2 is another factor only depending on the
mesh dimension. For a given fine problem size Nf , we can see that Np and Nb are inversely
proportional. The more independent problems there are, the smaller is each problem. This is a
typical granularity size problem of parallelism which it is important to take into consideration to
choose the best strategy of parallelism with respect to the type of available computation units.
When η increases, Np gets smaller and Nb larger, then we have a small number of big tasks.
Such a configuration is well adapted to multi core technology with a small number of cores. The
overhead of the construction and destruction of tasks can be balanced by the computation cost
of each task. When η decreases, Np gets large and Nb small, then we can have a great number
of small tasks. Such a configuration requires solutions adapted to thin grain size parallelism that
minimize the overhead of task construction and destruction. The ForkJoin (§4.2.3) and Pipeline
(§4.2.3) concepts are useful tools to handle such a thin grain parallelism. When accelerator devices
like GPGPU are available a thinner level of parallelism can be considered when the algorithm of
each independent problem can be parallelized. For example, on GP-GPU devices, in our example,
the algorithms of linear system resolution and matrix vector product can be parallelized. We can
consider nested loops of parallelism or a pipeline mechanism to improve the rate of occupancy of
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the GPU cores. The GPUAlgebra framework presented in §4.3.3 is a useful layer that helps
to compute efficiently on GPGPU when we have linear algebra operations to perform on a great
amount of linear systems (matrices and vectors) too small to be considered individually. Nowadays
with standard GPU libraries, direct linear solvers are efficient on dense matrices of size greater
than 5000 rows [32]. We consider that matrices with lower than 1000 rows are small. This layer
performs linear algebra operations on a flow of small systems. This flow is processed in streams,
each stream executed by a flow of instructions structured in a pipeline process.

4.3.3 GPUAlgebra framework

GPUAlgebra framework is a software layer aimed at performing linear algebra operations (matrix-
vector products, linear system resolutions, linear vector operations) on a flow of independent
matrices and vectors, efficiently on GP-GPUs. The originality of that framework is to exploit
both the coarse level of parallelism due to the independency of the linear systems and the thinner
level of the parallelism inside the algorithms of the linear operations. This two levels approach
enables to have performance on a great number of linear systems even if the size of each system
is not large enough to maximize the occupancy of the GPU device.

Context and Motivation

Over the last few years, several libraries have been developed to solve linear algebra problems
on GPUs: The BLAS and LAPACK routines have been implemented for GPUs in libraries like
CUBLAS and CULA [2, 3] by NVidia or in the MAGMA library [32] by teams of the University
of Tennessee. Up to now, the effort has been essentially done for dense matrices. Some works
concerning sparse matrices are mentioned in recent papers[39, 40]. The CULA library functional-
ities have been extended to sparse structures only recently. Nowadays most of these libraries are
competitive with respect to standard CPU libraries (Lapack, ScaLapack, MKL) only for matri-
ces with more than 5000 rows, generally for dense matrices and even more for sparse structures.
The problematics of solving a great amount of sparse systems with less than 1000 rows is very
particular and there is no existing efficient solution for GPUs.

Proposition

The efficiency of GPUAlgebraFramework to perform linear algebra operations on a collection of
linear systems relies on:

• the design of structures representing the linear system data on GPU adapted to the algorithm
of the linear operations;

• the optimization of the occupancy of the cores of the GPUs using the maximum of levels of
parallelism;

• the reduction of the cost and the overhead of the data transfer between the main memory
and the GPUs local memory.

In the first version of the framework, we focus on the implementation of the LU direct solver and
the matrix-vector product operation. The parallelization of the LU factorization at a thin grain size
is an important issue because it enables then to consider another level of parallelization, at a coarse
grain size, based on the independency of the linear systems to solve. For such a parallelization, we
have studied different matrix storage formats [89], to choose the one which preserves the sparsity
of the matrix structure while enabling the parallelization of the LU factorisation algorithm with
efficient parallel loop without indirections. Different techniques have also been considered to
reduce the cost of the data transfer between the main memory and the GPU local memory as
its overhead can reduce dramatically the interest of the computational power of GPUs. These
techniques consist mainly in reducing the amount of data to transfer, in using the asynchronism
to enable CPU computation overlapping and in using pinned memory mechanisms to enhance
memory copy between host and devices.
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Elements of implementation

In this section, we detail some elements of the LU factorisation implementation that enables us
to improve the performance of the framework on GP-GPU devices. Our implementation depends
on different hardware parameters: the warp_size, max_block_size, the stack_size and the
number of streams nb_stream. These parameters are dynamic properties of our architecture
model 4.2.2 initialized at the beginning of the application execution. Our framework has been
designed mainly on NVidia GP-GPU device (Tesla S1070, Tesla C2070) with a certain number of
streaming multi processors. On this kind of architecture, the parallelism is based on the concept of
thread blocks, split in groups of threads WARP with a minimum number of threads that execute
SIMD instructions. The warp_size and max_block_size parameters are used to evaluate the
granularity of the thinner level of parallelism. Maximizing the occupancy of the device consists
in ensuring that most of the streaming multi-processors are active. A multi-processor is inactive
when there are not enough WARP ready to be executed. A WARP is not ready when it is waiting
for a synchronization or waiting for a global memory request. When a kernel is executed, a thread
block is either active, affected to a stream processor, or inactive, waiting for an available stream
processor. The availability of a stream processor depends on the following characteristics:

• the maximum number of active blocks;

• the number of registries used by a thread;

• the shared memory size allocated by a block.

There are different ways to optimize stream processors occupancy:

• The first way is to ensure that most of the executed warps are full;

• On recent NVidia device, concurrent kernels can be executed in different streams. A second
way consists in overlapping the latency, providing enough work in different streams. Thus
when warps are waiting for synchronisation or waiting for a global memory request, there
still remains other warps ready to be executed, on which stream processors could switch
instead of remaining in an inactive state.

Parallelization principle The LU algorithm is parallelized with a classic approach based on
a band storage column (BSC) matrix structure format. In the algorithm (listing 4.12) at each
iteration of the outer loop on the row index k, we parallelize the inner loops on the row index i

and column index j with a group of threads. The BSC format ensures that the two inner loops
have a maximum size equal to the matrices bandwidth parameter.

Listing 4.12: standard LU factorization

DO k = 1 , n−1
DO i = k+1, n ! Column

A( i , k ) = A( i , k ) / A(k , k ) ! Normal izat ion
END DO !
DO i = k+1, n !

DO j = k+1, n ! Submatrix
A( i , j ) = A( i , j ) − A( i , k )∗A(k , j ) ! Mod i f i ca t i on

END DO !
END DO !

END DO

When bandwidth>warp_size, the two inner loops are split in blocks of warp_size. Another
outer loop on these blocks is introduced between the outer loop on k and the parallelized inner
loops on i and j.

Otherwise, we consider the rate=max_warp_size/bandwidth that evaluates the number of
independent systems that can be solved in parallel by a same group of threads. If this rate
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Figure 4.10: Parallel LU Factorisation on GPGPU

is big enough, we introduce another coarser level of parallelism to solve a number nb of ma-
trices with the same bandwidth. This flow of systems is solved by a group of threads of size
nb*bandwidth<max_warp_size.

We introduce two local cache buffers of size nb*bande_size

Data transfer The transfer of linear system data between the host memory and the local
memory is executed asynchronously (figure 4.11). Linear systems are built on the host memory
with a compressed storage row (CSR) format. Data is transferred in the local memory of the device,
then a transformation from CSR to BSC format is executed asynchronously. These operations
are executed within a stream that creates a pool of systems to solve on the device. The size of
the pool is limited by a pool_max_size parameter depending on a device memory parameter.
The resolution of the linear systems of a pool is executed when the pool_max_size parameter is
reached or when all the built systems are transferred.

Stream feature As recent Nvidia cards support concurrent kernel execution, we have introduced
the possiblity to create multiple streams managing different pools of linear systems. This feature
has two advantages:

• it enables to manage the concurrency of multiple MPI processes sharing GPU devices in
multi-core nodes when the number of GPUs is lower than the number of cores;

• it enables to improve the occupancy of each GPU by overlapping memory access or synchro-
nization latency by the execution of concurrent kernels of multiple streams.

The figure 4.12 illustrates the flow of executions on a GPU device shared by two CPUs executing
two different streams.

Matrix bandwidth management Matrices are stored on the device memory in a BSC format
and the amount of memory used directly depends on the matrix bandwidth. We provide the
Cuthill-Mckee renumbering algorithm that reduces the matrix bandwidth. Such a bandwidth
reduction has two advantages:
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Figure 4.11: CPU and GPU memory management

Figure 4.12: Streams and kernel concurrency
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• it reduces the memory needed to store each system, increasing in that way the number of
systems that can be managed by each system pool;

• it enables to increase the number of systems that can be solved by each group of threads.

4.4 Application to multiscale basis functions construction

We have validated the RunTime System Model presented in §4.2 implementing the basis function
computation of the multiscale method. The purpose was to have a generic way to implement these
computations for various hardware configurations and various implementations of the runtime
system using muti-thread technology with TBB, Boost.Thread or pThread library for multi-core
platform or with the GPUAlgebraFramework layer written with Cuda or OpenCL for node with
GP-GPU accelerators.

We have implemented a BasisFunction class with a standard implementation for CPU and
a GPU implementation based on the GPUAlgebraFramework layer for GP-GPU devices. The
algorithm to compute all the basis functions has been written as in listing 4.13 with the Task,
ForkJoin and Pipeline concept, and with various fork-join driver implementations based on the
TBB, Boost.Thread, pThread and with the pipeline driver based on the GPUAlgebraFramework
library.

Listing 4.13: Basis computation algorithm

template<typename SchedulerT ,
typename TaskMngT ,
typename ForkJoinDriverT ,
typename Pipe l ineDriverT ,
typename DataMngT>

void computeBasis ( std : : vector<BasisFunct ion∗>& bas i s )
{

typede f typename TaskMngT : : uid_type uid_type ;
typede f typename TaskMngT : : ForkJoinTask<ForkJoinDriverT> ForkJoinTask ;
typede f typename TaskMngT : : Pipel ineTask<Pipe l ineDriverT> Pipe l ineTask ;
typede f typename TaskMngT : : TaskNode TaskNode ;
typede f typename TaskMngT : : Task<Basis> TaskType ;

//DATA MANAGEMENT
DataMng data_mng ;
DataHandlerType∗ so lver_handler = data_mng . getNewData ( ) ;
so lver_handler−>set<IL inearSo lve r >(bas i s_so lv e r ) ;
DataHandlerType∗ k_handler = data_mng . getNewData ( ) ;
k_handler−>set<Var iab l eCe l lRea l const >(&k) ;

//TASK MANAGEMENT
std : : vector< uid_type > dag ;
TaskMng task_mng ;

//DEFINE PARALLEL FORKJOIN FOR MULTICORE ARCHITECTURE
ForkJoinDriverT f o r k j o i n ( /∗ . . . ∗/ ) ;
ForkJoinTask∗ f o rk jo in_task =

new ForkJoinTask ( f o r k j o i n , task_mng . getTasks ( ) ) ;
uid_type fk_uid = m_task_mng . addNew( fo rk jo in_task ) ;

//DEFINE PIPELINE FOR GPU ARCHITECTURE
Pipe l ineDr iverT p i p e l i n e ( /∗ . . . ∗/ ) ;
P ipe l ineTask ∗ p ipe l ine_task =

new Pipe l ineTask ( p ip e l i n e , task_mng . getTasks ( ) ) ;
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uid_type p ipe l ine_uid = m_task_mng . addNew( fo rk jo in_task ) ;

//DEFINE A DAG ROOT NODE WITH CPU AND GPU IMPL
TaskNode∗ root = new TaskNode ( ) ;
root−>se t ( "cpu" , fk_uid ) ;
root−>se t ( "gpu" , p ipe l ine_uid ) ;
uid_type root_uid = task_mng . addNew( root ) ;

//ADD ROOT TASK LIST AS A DAG ROOT NODE
dag . push_back ( root_uid ) ;

//DEFINE BASIS TASKS AND TASK DEPENDANCIES
std : : for_each ( auto i b a s i s : b a s i s )
{

TaskType∗ task = new TaskType (∗ i b a s i s ) ;
task−>args ( ) . add ( " So lve r " , DataHandlerType : : R, so lver_handler ) ;
task−>args ( ) . add ( "K" , DataHandlerType : : R, k_handler ) ;
typename TaskType : : FuncType f_cpu = &BasisFunctionType : : computeCPU ;
task−>se t ( "cpu" , f_cpu ) ;
task−>se t ( "gpu" , f_gpu ) ;
I n t eg e r uid = m_task_mng . addNew( task ) ;
fo rk jo in_task−>add ( uid ) ;
p ipe l ine_task−>add ( uid ) ;

}

//EXECUTE THE DAG
SchedulerT schedu l e r ;
task_mng . run ( scheduler , dag ) ;

}

The parallelisation on hybrid architectures has two main levels:

• the first level is based on the parallelization of the coarse problem on the coarse grid with
the method described in §4.3.1. The coarse mesh is partitioned and we create MPI coarse
subdomains adding ghost elements. The distribution of the fine mesh follows the coarse mesh
partition. MPI fine subdomains are built with the fine elements of the fine mesh belonging
to coarse elements of the MPI coarse subdomain including ghost elements. On each MPI
coarse subdomain the basis functions related to local coarse faces are computed. That can
be done since the computation domain of the basis function are complete even if they are
based on a ghost coarse cell. The parallelisation of the coarse method is then standard as
all the assembly elements are local.

• On heterogeneous nodes with several cores with several accelerator boards, a second level
of parallelization is done on the computation of the local basis function transparently with
the runtime system as described previously. This parallelisation is based on the use of the
ForkJoin concept for multi-core nodes and of the Pipeline concept for node enhanced with
accelerator boards.

4.5 Performance results

In this section we present some performance results of the basis functions computation of the
multiscale method implemented with our RunTime System Model on a benchmark of the 2D
SPE10 study case described in §5.4.3. We compare different implementations and solutions run
on various hardware configurations. We focus on the test case with a 65x220x1 fine mesh and
a 10x10x1 coarse mesh which leads to solve 200 linear systems of approximately 1300 rows. We
apply the reducing bandwidth renumbering algorithm to all matrices and their bandwidth is lower
than 65 for all them.
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4.5.1 Hardware descriptions

The benchmark test cases have been run on two servers (figure 4.13):

• the first one, Server 1 is a Bull novascale server with a SMP node 2 quad-core intel Xeon
E5420 GPU tesla server S1070 with 4 GPU tesla T10 with 30 streaming processors with
8 cores, 240 computation units per processor, total of 960 for the server. 16 GB central
memory;

• the second, Server 2 is a server with a SMP node with 2 octo-core processors Intel Xeon
E5-2680 linked by a NUMA memory and with 2 GPUs Tesla C2070 per processor with a
fermi architecture.

4.5.2 Benchmark metrics

In our benchmark we focus on the execution time in seconds of the computation of all the basis
functions of the study case. This computation time includes for each basis function, the time to
discretize the local PDE problem, to build the algebraic linear system, to solve it with a linear
solver and to finalize the computation of the basis functions updating them with the solution of
the linear system.

To analyze in detail the different implementations, we also separately measure in seconds:

• tstart the time to define basis matrix structures;

• tcompute the time to compute the linear systems to solve;

• tsinit the setup time of the solver;

• tsolver the time to solve all the linear systems;

• tfinalize the time to get the linear solution and finalize the basis function computation;

• tbasis the global time to compute all the basis functions.

The performance results are organized in tables and graphics containing different times in
seconds which can be compared to the time of a reference execution on one core.

4.5.3 Results of various implementations executed on various hardware

configurations

Multithread forkjoin and GPU pipeline implementation In table 4.14 and figure 4.15,
we compare the performances of:

• the forkjoin concept implementations TBB, BTH and PTH using respectively the TBBDriver,
BTHDriver and PTHDriver drivers which are all thread based implementations for multi-core
configuration.

• various pipeline concept implementations based on the GPUAlgebraFramework using one or
multiple CUDA streams.

We study the following hardware configurations:

• cpu, the reference configuration with 1 core;

• gpu, configuration with 1 core, 1 gpu;

• sgpu-1, configuration with 1 core, 1 gpu and 1 stream;
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(a) Server 1

(b) Server 2

Figure 4.13: Servers architecture
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NbThreads 1 2 4 8 16

TBB 1.09 0.62 0.33 0.22
Boost Thread 1.17 0.62 0.37 0.26
Posix Thread 1.05 0.58 0.35 0.18

(a) Basis functions computation time vs number of threads

opt tstart tcompute tsinit tsolver tfinalize tbasis

cpu 1.73 0.36 0. 0.68 0.022 2.80
gpu 1.79 0.39 1.36 0.01 0.024 3.59

sgpu-1 1.78 0.38 1.29 0.16 0.024 3.67
sgpu-2 1.79 0.37 1.30 0.18 0.024 3.68
sgpu-4 1.79 0.37 1.31 0.26 0.024 3.77

(b) Basis computation phase time for various solver configuration

Figure 4.14: Server 2: Multi-thread and GPU implementation results
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Figure 4.15: Performance analysis for multi-core configuration and GPU configurations

• sgpu-2, configuration with 1 core, 1 gpu and 2 stream;

• sgpu-4, configuration with 1 core, 1 gpu and 4 stream;

• n x p core, configuration with n cpus and p cores per cpu.

In figure 4.15, we compare three implementations of the fork-join behaviour with threads. The
analysis of the results shows that they all enable us to improve the efficiency of the basis function
computation taking advantage of the multi-core architecture. The PTH implementation, directly
written by hand with Posix threads is the most efficient while the PTH one implemented with Boost
threads the less. The TBB version efficiency is between the two others. Comparing the various
implementation of the pipeline behaviour for GPU, we can notice that only the solver part is
really accelerated on the GPU. The influence of the number of cuda stream on the performance
is not evident on that test case. Nevertheless all the GPU implementations enable to improve
the efficiency of the basis function computation with respect to the standard version on one core.
Finally all these results prove that we can handle various hardware architectures, with one or
several cores, with or without several GPGPUs, with a unified code. That illustrates the capacity
of the runtime system to hide the hardware complexity in a numerical algorithm.

Multi-core multi-GPU configuration For multi-core and multi-GPU configuration, we study
the performance of a mixed MPI-GPU implementation with two levels of parallelism:

• the first level is a MPI based implementation for distributed memory;

• the second level is based on the GPUAlgebraFramework to solve the linear systems on GP-
GPU devices.
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ncpu 1 gpu 2 gpus 4 gpus

1 1.95 1.95 1.95
2 1.22 1.04 1.04
4 0.98 0.76 0.66
8 0.63 0.37 0.45

(a) Computation times vs number of cpus
and gpus

ngpu 2 x 2 cores 1 x 4 cores 1 x 8 cores

1 1.06 1.05 0.51
2 0.76 0.76 0.37
4 0.66 0.66 0.40

(b) Computation times vs number of cpus, cores per cpu
and gpus

Figure 4.16: Server 1: multi-cores multi-gpu configuration

ncpu 1 gpu 2 gpus

1 0.75 0.75
2 0.44 0.38
4 0.25 0.24
8 0.12 0.12
16 0.05 0.06

(a) Computation times vs num-
ber of cpus and gpus

ngpu 2 x 2 cores 1 x 4 cores 2 x 4 cores 1 x 8 cores

1 0.53 0.67 0.57 0.50
2 0.46 0.45 0.37 0.37

(b) Computation times vs number of cpus, cores per cpu and gpus

Figure 4.17: Server 2: multi-cores multi-gpu configuration

We test different hardware configurations with different number of cores (1,2,4,8 and 16) sharing
1, 2 or 4 GPUs. In table 4.16 and figure 4.18 (respectively table 4.17 and figure 4.19) we present
the performance results for the server 1 (respectively server 2).

The results show that the runtime system enable us to easily compare various hardware con-
figurations: configurations where gpus are shared or not by cpus and cores, configurations with
different strategies of connexion between gpus and cpus.

Conclusions Analyzing the results of the different benchmarks, we have different levels of con-
clusions:

• the first level concerns the capacity of the Runtime system to hide the hardware complexity
in a numerical algorithm. These benchmarks prove that we can handle various hardware
architectures, with one or several cores, with or without several GPGPUs, with a unified
code.

• the second level concerns the extensibility of the Runtime system. We could compare com-
peting technologies with different implementations of our abstract concepts with few impacts
on the numerical code.
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Figure 4.18: Server 1: multi-cores multi-gpu configuration
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Figure 4.19: Server 2: multi-cores multi-gpu configuration

• the third level concerns the capability of the Runtime system to really improve the perfor-
mance of the numerical algorithm using the different levels of parallelism provided by hybrid
architecture. With all the technologies tested the performance of the computation has been
improved compared to one computation executed on one core.

• the last level of conclusion is the fact that the runtime system enables to benchmark in a
simply way the different hardware configurations parameters like the number of cores, the
number of GPUs, the number of streams, the fact that a GPU is shared or not by several
cores.

Perspective Our first results have prove the interest of our approach to handle the variety
of hardware technology with few impacts on the numerical layer. Nevertheless the solutions we
have implemented are still to simple to get the maximum of the performance that can provide
new heterogeneous architectures. We need to implement our different abstractions with advanced
solutions as those existing in research runtime system solutions like StarPU or XKaapi. We plan
also to benchmark different mechanisms that help to optimize data transfer between main memory
and local accelerator memories and to measure the overhead of each solution with respect to the
parallelism grain sizes.



Chapter 5

Results on various applications

In this chapter we study various application problems. We present their mathematical contin-
uous settings and we detail different variational discrete formulations that we compare to their
programming counterpart with the DSEL. We evaluate the flexibility of the language to describe
and to implement various discretization methods. We benchmark the study cases on different
hardware configurations and present their performance results.

We study first two application problems, representative of the diffusive models solved in reser-
voir and CO2 storage simulation. We study then the incompressible Navier Stokes problem which
is a more complex academic problem. We study finally a problem, inspired from the well known
SPE10 reservoir benchmark with an heterogeneous data set, usually used as a representative dif-
ficult model of oil industry.

For these benchmarks, the prototypes are compiled with a gcc 4.5 compiler with the following
compilation flags “-O3 -mssse3”. The test cases are run on a server with a SMP node with 2 octo-
core processors Intel Xeon E5-2680 linked by a NUMA memory and with 2 GPUs Tesla C2070
per processor with a fermi architecture.

5.1 Advection diffusion reaction

In this section we study an advection diffusion reaction problem modeling the injection of CO2 in
a porous media domain.

5.1.1 Problem settings

Let Ω ⊂ Rd, d ≥ 2, the mathematical coutinuous settings reads:
{

∇·(−ν∇u+ βu) + µu = f in Ω,
u = g on ∂Ω,

(5.1)

with ν > 0, β ∈ Rd, µ ≥ 0, f ∈ L2(Ω) and g ∈ L2(∂Ω).

The continuous weak formulation reads:
Find u ∈ H1

0 (Ω) such that
a(u, v) = b(v) ∀v ∈ H1

0 (Ω), (5.2)

with
{

a(u, v)
def
=
∫

Ω
−ν∇u·∇v + (β · ∇u)v + µuv,

b(v)
def
=
∫

Ω
fv

(5.3)
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The discretization of the variational formulation with the ccG method presented in 2.4.2 reads:
Let Th a mesh representation of Ω, Uh(Th) a ccG space, find uh ∈ Uh(Th) such that:

ah(uh, vh) = bh(v) ∀vh ∈ Uh(Th) (5.4)

with

ah(uh, vh)
def
=

∫

Ω

− ν∇uh · ∇vh + (β · ∇uh)vh + µuhvh)

+
∑

Fh∈Ωh

(

∫

Fh

−νJuhK({∇uh} · nFh
)− ν({∇uh}·nFh

)JvhK

+ (
η

h
+

1

2
|β · n|)JuKJvK− (β · n)JuhK{vh})

+
∑

Fh∈∂Ωh

(

∫

Fh

−νJuhK({∇vh} · nFh
)− ν({∇uh} · nFh

)JvK

+ (
η

h
+

1

2
|β · n|)JuhKJvhK + (β · n)−uhvh)

bh(vh)
def
=

∫

Ω

fvh

(5.5)

This formulation can be compared to its programming counterpart in listing 5.1.

Listing 5.1: C++ implementation of the diffusion-advection-reactive problem

MeshType Th ; // declare Th

Real nu , mu, eta ; // declare ν, µ and η

auto Uh = newCCGSpaceType(Th) ;
auto u = ∗Uh−>t r i a l ( "U" ) ;
auto v = ∗Uh−>t e s t ( "V" ) ;
auto lambda1 = eta /H( ) + 0 .5∗abs (dot ( beta ,N( ) ) ) ;
auto lambda2 = eta /H( ) + 0 .5∗abs (dot ( beta ,N( ) ) ) ;
Bi l inearForm ah =
integrate ( a l l C e l l s (Th) ,

dot (nu∗grad (u ) ,grad ( v ) ) +
dot ( beta , grad (u ) )∗ v +
mu∗ u∗ v ) +

integrate ( i n t e rna lFac e s (Th) ,
−nu∗jump(u)∗dot (N( ) , avr (grad ( v ) ) ) −
nu∗dot (N( ) , avr (grad (u ) ) )∗ jump( v ) +
lambda1∗jump(u)∗jump( v ) −
dot ( beta ,N( ) )∗ jump(u) ∗avr ( v ) ) +

integrate ( boundaryFaces (Th) ,
−nu∗jump(u)∗dot (N( ) , avr (grad ( v ) ) ) −

nu∗dot (N( ) , avr (grad (u ) ) )∗ jump( v ) +
lambda2∗jump(u)∗jump( v ) +
ominus(dot ( beta ,N( ) ) ) ∗ u ∗ v ) ;

LinearForm bh =
integrate ( a l l C e l l s (Th) , va l (m_f)∗ id ( v ) ) +
integrate ( boundaryFaces (Th) ,

ominus(dot ( beta ,N( ) )∗ g ) ∗ v ) ;

5.1.2 Results

We consider the analytical solution of the advection diffusion problem (5.1) on the square do-
main Ω = [0, 1]2 with η = 1, µ = 0. β = (1., 0., 0.), f(x, y) = 2sin(x)(cos(x) + 2sin(y)) and
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g(x, y) = sin(x)sin(y).

The test case is run on a family of meshes of increasing sizes. We evaluate the errors to the
analytical solution, with the following norms:

• ‖u‖2L2 =
∫

Ω
u2;

• ‖u‖2L =
∑

T∈Th

∑

F∈FT

∫

F
1

d2

F,T

T(u)2;

• ‖u‖2F =
∑

F∈Fh

∫

F
T(u)2;

• ‖u‖2G =
∑

F∈Fh

∫

F
T(u)2 +

∫

Ω
‖∇u‖2.

and estimate the order of convergence as

order = d ln (e1/e2) / ln (card(Th2
)/card(Th1

)) ,

where e1 and e2 denote, respectively, the errors committed on Th1
and Th2

, h1, h2 ∈ H.

To analyze the performance of the framework, we evaluate the overhead of the language, the
relative part of algebraic computations (defining, building and solving linear systems) and linear
combination computations by monitoring the following times:

• tstart the time to precompute trace and gradient operators, to build the expression tree
describing linear and bilinear forms;

• tdef the time to compute the linear system profile;

• tbuild the time to build the linear system evaluating the expression tree;

• tsolve the time to solve le linear system with linear algebra layer;

• Nit the number of iterations of the linear solver, a ILU0 preconditioned BiCGStab algorithm
with relative tolerance set to 1.10−6;

• Nnz the number on non zero entries of the linear system of the test case.

All these times in seconds are compared to tref = tsolver

Nit
the solver time per iteration which is

equivalent to a fixed number of matrix vector multiplication operations. This reference time is a
good candidate to compare the cost of each part of the computation as it enables comparisons to
other numerical methods, for a given numerical error.

In iterative methods (time integration, non linear solver), tstart and tdef correspond to com-
putation phases often factorized and done once before the first iterative step, while the tbuild
corresponds to a computation phase done at each steps. A careful attention has to be paid to the
tbuild results specially for iterative algorithms.

To evaluate the memory consumption we monitor Nnz, the number of non zero entries of the
linear system.

Figure 5.1 is a 2D view of the solution. Convergence results are listed in Table 5.1. Perfor-
mance results are listed in table 5.2.

The analysis of these results shows that the ccG-method has the expected convergence described
in [49]. The implementation remains scalable with respect to the mesh size.
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Figure 5.1: Advection diffusion solution

(a) 2D view
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(b) convergence curves

Figure 5.2: Advection Diffusion reaction problem
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Figure 5.3: Performance analysis for the example (5.1)
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Table 5.1: Advection diffusion test case
card(Th) h ‖u− uh‖T order ‖u− uh‖G order ‖u− uh‖F order ‖u− uh‖L2 order.

400 1.00E-01 7.64E-03 2.81E-02 3.34E-02 9.54E-03
1600 5.00E-02 2.35E-03 1.7 1.29E-02 1.12 1.30E-03 1.12 4.30E-03 1.15
6400 2.50E-02 7.13E-04 1.71 6.21E-03 1.09 7.17E-03 1.11 2.10E-03 1.09
25600 1.25E-02 1.86E-04 1.79 3.09E-03 1.06 3.54E-03 1.08 1.06E-03 1.06

Table 5.2: Advection diffusion test case: performance results

card(Th) Nit Nnz tstart tdef tbuild tsolve tref
tstart

tref

tbuild

tref

400 3 35734 1.91E00 9.00E-01 9.1E-01 1.00E-02 3.33E-03 274.21 270.31
1600 5 165638 4.11E00 4.11E00 4.01E00 5.00E-02 1.00E-02 400.6 411.39
6400 8 723906 3.70E01 1.70E01 1.71E01 2.92E-01 3.65E-02 469.7 466.74
25600 10 1120118 1.52E01 2.70E01 2.63E01 4.96E-01 4.96E-02 531.07 545.18

5.2 SHPCO2 test case

In this section we study a synthetic test case proposed in the ANR project SHPCO2, inspired
from one of the benchmarks proposed by the GDR MoMaS [4] 2008 integrating specific elements
of the CO2 problematics.

5.2.1 Problem settings

We consider the following heterogeneous diffusion model problem :

−∇·(κ∇u) = 0 in Ω,

u = g on ∂Ωd,

∂nu = 0 on ∂Ωn

(5.6)

where:

• Ω ⊂ R2 is described in figure 5.4. The problem size depends on the characteritic length
L = 1000m. The depht of the 3D volum is H = 100m.
The domain is partioned into two parts:

– the drain part with a high permeability tensor;

– the barrier part (in green) with a low permeability tensor.

• The domain boundary ∂Ω is partitioned in 4 specific areas:

– ∂ΩInj1 and ∂ΩInj2 with an injector imposed pressure boundary conditions Pinj1 and
Pinj2,

– ∂Ωprod with a productor imposed pressure boundary condition Pprod,

– and the boundary complementary part ∂Ωn with an homogen Neumann boundary
condition (null flux).

Ωd corresponds to ∂ΩInj1 ∪ ∂ΩInj2 ∪ ∂ΩProd;

• g is equal to Pinj1, Pinj2 and Pprod on respectively ∂ΩInj1, ∂ΩInj2 and ∂ΩProd;

• κ is a permeability tensor with Kdrain value on the drain part and Kbarrier value on the
barrier part.
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The problem (5.6) has been discretized with the SUSHI-method defined in Chapter 2 and
implemented as in listing 5.2

Listing 5.2: C++ implementation of ahybh

MeshType Th ; // declare Th

auto Uh = newSUSHISpace (Th ) ;
auto u = Uh−>t r i a l ( "U" ) ;
auto v = Uh−>t e s t ( "V" ) ;
Bi l inearForm ah = integrate ( a l l C e l l s (Th) , k∗dot (grad (u ) ,grad ( v ) ) ) ;
LinearForm bh = integrate ( a l l C e l l s (Th) , f ∗v ) ;

//Dirichlet boundary condition
ah += on( boundaryFaces (Th, " d i r i c h l e t " ) , t r a c e (u)=g ) ;

//Neunman boundary condition
bh += integrate ( boundaryFaces (Th, "neumann" ) ,h∗ t r a c e (u ) ) ;

5.2.2 Results

Simulation parameters The problem has been solved with the following parameters:

• Φ = 0.2

• Pinj1 = 110.e5Pa,

• Pinj2 = 1.5.e5Pa,

• Pprod = 100.e5Pa

Figure 5.4 illustrates the permeability field with the following parameters:

• Kdrain = 100.e−15m2

• Kbarrier = 1.e−15m2

Figure 5.4 gives a 2D view of the problem solution.

Performance results The study case is run on 1, 2, 4 and 8 cores. We collect tinit, tbuid and
tsolve respectively the times in seconds to initialize the problem, to build the linear system and to
solve it in table 5.2.2 and in the graphic of figure 5.2.2. These results show that the implemen-
tation of the tinit, tbuild and tsolve phases is scalable and their relative costs between each others
remain constant.

5.3 Navier-Stokes

5.3.1 Problem settings

We consider the steady incompressible Navier-Stokes problem:

−ν△u+ u · ∇u+∇p = f in Ω,

∇·u = 0 in Ω,

u = g on ∂Ω,
∫

Ω

p = 0,

(5.7)
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(a) Domain description

(b) Permeability field (c) Pressure solution

Figure 5.4: SHPCO2 problem

NCPU 1 2 4 8

tinit 1.09 0.62 0.33 0.22
tbuild 1.17 0.62 0.37 0.26
tsolve 1.05 0.58 0.35 0.18

Figure 5.5: SHPCO2: Performance results of the Hybrid method
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Figure 5.6: SHPCO2: Performance results of the Hybrid method
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with Ω ⊂ Rd, u : Ω→ Rd and p : Ω→ R.

The continuous weak formulation for g = 0 (when g 6= 0 a trace lifting must be considered)
reads:

Find (u, p) ∈ [H1
0 (Ω)]

d × L∗(Ω) such that

a(u,v) + b(p,v)− b(q,u) + th(u
n

h
,uh,vh) =

∫

Ω

f ·v ∀(v, q) ∈ [H1
0 (Ω)]

d × L∗(Ω),

with

a(u,v)
def
=

∫

Ω

∇u:∇v, b(q,v)
def
= −

∫

Ω

∇q·v =

∫

Ω

q∇·v.

The discretization of the variational formulation with the ccG method detailed in [49] reads:

Let Th a mesh representation of Ω, Uh
def
= [V ccg

h ]d, Ph
def
= P0

d(Th)/R, find (uh, ph) ∈ Uh × Ph

such that, for all (vh, qh) ∈ Uh × Ph,

ah(uh, vh) + bh(vh, ph)− bh(uh, qh) + th(uh, uh, vh) =

∫

Ω

f ·vh. (5.8)

where,

ah(uh, vh)
def
=

∫

Ω

−ν∇uh · ∇vh

+
∑

Fh∈Ωh

∫

Fh

−νJuhK({∇uh} · nFh
)− ν({∇uh}·nFh

)JvhK+

∑

Fh∈∂Ωh

∫

Fh

−νJuhK({∇vh} · nFh
)− ν({∇uh} · nFh

)JvK

(5.9)

bh(ph, vh)
def
=

∑

Th∈Th

∫

Th

−ph∇·vh +
∑

Fh∈Fh

∫

Fh

{ph}(nFh
· JvhK))

(5.10)

bh(ph, vh)
def
=

∑

Th∈Th

∫

Th

∇ph · vh −
∑

Fh∈Fi
h

∫

Fh

JphK(nFh
· {vh})

(5.11)

th(wh, uh, vh)
def
=

∑

Th∈Th

∫

Th

(wh · ∇uh,i)vh,i −
∑

Fh∈Fi
h

∫

Fh

({wh} · nFh
)(JuhK · {vh})+

∑

Th∈Th

∫

Th

1

2
(∇·wh)(uh · vh)−

∑

Fh∈Fh

∫

Fh

1

2
(JwhK · nFh

){uh · vh}

(5.12)

The non linear formulation is linearized setting c((u, p), (v, q))
def
= a(u,v) + b(p,v)− b(q,u) +

th(u
n

h
,uh,vh) + th(uh,u

n

h
,vh) for the jacobian.

This formulation can be compared to its programming counterpart in listings 5.3.
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Listing 5.3: C++ implementation of the Navier Stokes problem

MeshType Th ;
auto Uh = newCCGSpaceType(Th) ;
auto Uh = newCCGSpace(Th) ;
auto Ph = newP0Space (Th) ;
auto u = ∗Uh−>t r i a l ( "U" ,Th : : dim) ;
auto v = ∗Uh−>t e s t ( "V" ,Th : : dim) ;
auto p = ∗Ph−>t r i a l ( "P" ) ;
auto q = ∗Ph−>t e s t ( "Q" ) ;
FVDomain : : a lgo : : MultiIndex<2> _ij (dim , dim) ;
FVDomain : : a lgo : : Index _i = _ij . get <0>() ;
FVDomain : : a lgo : : Index _j = _ij . get <1>() ;
Bi l inearForm ah =

integrate ( a l l C e l l s (Th) ,
sum(_i ) [ nu∗dot (grad (u(_i ) ) , grad ( v (_i ) ) ) ]

) +
integrate ( i n t e rna lFac e s (Th) ,

sum(_i ) [ −nu∗dot (N( ) , avr (grad (u(_i ) ) ) ) ∗ jump( v (_i ) ) −
nu∗jump(u(_i ) )∗dot (N( ) , avr (grad ( v (_i ) ) ) ) +
eta /H( )∗jump(u(_i ) )∗jump( v (_i ) )

]
) ;

Bi l inearForm bh =
integrate ( a l l C e l l s (Th) , −p∗div ( v ) ) +
integrate ( a l lFa c e s (Th) , avr (p)∗dot (N( ) , jump( v ) ) ) ;

Bi l inearForm bth =
integrate ( a l l C e l l s (Th) , div (u)∗q ) +
integrate ( a l lFa c e s (Th) , −dot (N( ) , jump(u ) ) ∗ avr ( q ) ) ;

Bi l inearForm sh =
integrate ( i n t e rna lFac e s (Th) , H( )∗jump(p)∗jump( q ) ) ;

Bi l inearForm th1 =
integrate ( a l l C e l l s (Th) ,

sum( _ij ) [ ( uk (_j )∗ dxi (_j , u (_i ) ) )∗ v (_i ) ] ) +
integrate ( i n t e rna lFac e s (Th) ,

sum(_i ) [ (− dot (N( ) , avr ( uk ) )∗jump(u(_i ) ) )∗ avr ( v (_i ) ) ] ) +
integrate ( a l l C e l l s (Th) , 0 . 5 ∗ div ( uk )∗ dot (u , v ) ) +
integrate ( a l lFa c e s (Th) ,

(−dot (N( ) , jump( uk ) )∗dot (avr (u ) , avr ( v ) ) −
0 .25∗dot (N( ) , jump( uk ) )∗ dot (jump(u ) ,jump( v ) ) ) ) ;

Bi l inearForm th2 =
integrate ( a l l C e l l s (Th) ,

sum( _ij ) [ ( dxi (_j , uk (_i ) )∗u(_j ) )∗ v (_i ) ] ) +
integrate ( i n t e rna lFac e s (Th) ,

− dot (N( ) , avr (u ) )∗dot (jump( uk ) , avr ( v ) ) ) +
integrate ( a l l C e l l s (Th) , 0 . 5 ∗ div (u)∗dot (uk , v ) ) +
integrate ( a l lFa c e s (Th) ,

− dot (N( ) , jump(u ) )∗ avr (dot (uk , v ) ) ) ;

LinearForm bh =
integrate ( a l l C e l l s (Th) , sum(_i ) [ m_f(_i )∗v (_i ) ] ) ;
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5.3.2 Kovasznay study case

We consider Kovasznay’s analytical solution of the navier stokes equations [80] on the square
domain Ω = (−0.5, 1.5)× (0, 2),

ux = 1− eπx cos(2πy), uy = −1/2eπx sin(2πy), p = −1/2eπx cos(2πy)− p,

where p = 〈− 1
2e

πx cos(2πy)〉Ω ensures the zero mean constraint for the pressure, ν = 3π, and
f = 0. The example is run on a family of meshes with mesh sizes ranging from 0.5 down to
0.03125. According to Table 1, the errors |||u − uh|||ns and ‖p − ph‖L2(Ω) converge to first order,
while second order is attained for ‖u − uh‖[L2(Ω)]d . The results are collected in Table 5.3.2 and
convergence curves are plotted in figure 5.7

Table 5.3: Convergence results for the Kovasznay problem

card(Th) ‖u− uh‖[L2(Ω)]d order ‖p− ph‖L2(Ω) order |||u− uh|||ns order

224 1.6539e-01 – 2.5536e-01 – 4.7777e-01 –
896 4.3732e-02 1.92 1.0737e-01 1.25 2.1759e-01 1.13
3584 1.1847e-02 1.88 3.9802e-02 1.43 1.0763e-01 1.02
14336 3.1620e-03 1.91 1.7385e-02 1.19 5.5182e-02 0.96

(a) 2D view
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(b) convergence curves

Figure 5.7: Kovasznay problem

5.3.3 Driven cavity study case

We consider the lid-driven cavity problem on a two-dimensional unit square domain with Dirichlet
boundary conditions on all sides, with three stationary sides and one moving side (with velocity
tangent to the side) as described in figure 5.8.

We solve the steady incompressible Navier-Stokes problem with the ccG method and present
its solution at Reynolds number Re = U

ν
= 1000 on a uniform grid of 128×128. In figures 5.11(a),

5.11(c) and 5.11(e) we plot the values of the components of the velocity and its magnitude along
axes x = 1

2 and y = 1
2 and compare them to some reference results published by Erturk, Corke,

and Gökçöl in [63]. We illustrate the results with 2D views in figures 5.10(a), 5.10(b) and 5.9(b).
Finally we present the streamlines colored by the velocity magnitude in figure 5.9(a).

Theses figures show that the results are globally correct. Nevertheless, a closer look up of the
curves comparing the results to reference solution show that there remains accuracy problems in
some difficult regions closed to the boundaries. We are still investigating these problems. We do
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not know whether it is due to mesh effects or to non linear solver problems.

ux=uy=0

ux=uy=0

ux=uy=0

ux=0

uy=U

U

Driven cavity problem

Figure 5.8: Driven cavity problem

(a) U (b) U

Figure 5.9: Driven cavity problem: Streamline and velocity magnitude

5.4 SPE10 test case

The SPE10 study case is based on data taken from the second model of the 10th SPE test case [45].
The geological model is a 1200×2200×170 ft block discretized with a regular Cartesian grid with
60× 220× 85 cells. This model is a part of a Brent sequence. The first 35 top layers represent the
Tarbert formation with a prograding near-shore environment (figure 5.16(a)) whereas the lower
part corresponds to the Upper Ness formation which is fluvial. The maps of porosity, horizontal
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(a) UX (b) UX

Figure 5.10: Driven cavity: velocity components Ux and Uy

and vertical permeability can be downloaded from the web site of the project [17].

5.4.1 Problem settings

Let Ω be the domain represented by the grid, ∂Ωxmin and ∂Ωxmax, the left and right boundaries
of the layer. We consider the following heterogeneous diffusion model problem :

−∇·(κ∇u) = 0 in Ω,

u = Pmin on ∂Ωxmin,

u = Pmax on ∂Ωxmax,

∂nu = 0 on ∂Ωn

(5.13)

where κ is associated to the map of the horizontal permeability field and with the following
boundary conditions:

• Pxmin = 500 on ∂Ωxmin;

• Pxmax = 1000 on ∂Ωxmax;

• ∂nu = 0 on ∂Ωn = ∂Ω \ {Ωxmin ∪ Ωxmax}

5.4.2 Results with the SUSHI method

The discrete formulations of this problem 5.13 have been implemented with the SUSHI-method
defined in Chapter 2 as in listing 5.4

Listing 5.4: C++ implementation of ahybh

MeshType Th ; // declare Th

Real Pmin = 500 , Pmax=1000;
auto Uh = newHybridSpace (Th ) ;
auto u = Uh−>t r i a l ( "U" ) ;
auto v = Uh−>t e s t ( "V" ) ;
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Bil inearForm ah_hyb =
integrate ( a l l Fa c e s (Th) , k∗dot (grad (u ) ,grad ( v ) ) ;
ah_hyb += on( boundaryFaces (Th, "xmin" ) , t r a c e (u)=Pmin) ;
ah_hyb += on( boundaryFaces (Th, "xmax" ) , t r a c e (u)=Pmax) ;

The study case is run on 1, 2, 4, 8 and 16 cores. We collect tinit, tbuid and tsolve respectively the
times in seconds to initialize the problem, to build the linear system and to solve it in table 5.4.2
and in the graphic of figure 5.4.2.

In figure 5.12, we have a 3D view of the permeability field and of the solution of the problem.

5.4.3 Results with the multiscale method

The SPE10 test case was initially built to compare upscaling methods since the reservoir which
is considered here, is made of two block units with different geological environments. It has been
also used to compare multiscale methods in [79].

The Hybrid Multiscale Method described in §2.5.3 is tested on a 2D version of the SPE10
study case. We solve the diffusion problem 2.17 on the first layer of the SPE10 domain discretized
by a fine mesh with 65x220x1 cells. We consider the agglomeration leading to a coarse mesh with
10x10x1 cells, and the following boundary conditions:

• Pymin = 500 on ∂Ωymin;

• Pymax = 1000 on ∂Ωymax;

• ∂nu = 0 on ∂Ω \ {Ωymin ∪ Ωymax}
In figures 5.17 we compare the pressure solution of the hybrid method on the fine mesh to the
solution of the multiscale method. In figures 5.18 we compare the velocity solution of the hybrid
method on the fine mesh to the solution of the multiscale method.

The test case has been run with three versions of the runtime system presented in Chapter 4,
the standard version, the multi-core version based on threads and a mono-core mono-gpu version.
We have tested the following hardware configurations:

• 1 CPU corresponding to a run on 1 core with the standard version;

• 1 TH, 2 TH, 4 TH, 8 TH corresponding to a run on 1, 2, 4 and 8 cores with the multi-thread
version based on the TBBDriver;

• 1 GPU corresponding to a run with 1 core and 1 GPU.

We have monitored the following execution times in seconds:

• tbasis, the time to compute the basis functions;

• tassembly, the time to assemble the coarse system;

• tsolve, the time to solve the coarse system;

• tdownscale, the time to compute the solution on the fine grid.

For comparison, we ran the test case with the SUSHI method on the fine grid, and monitored
tfassembly and tfsolve the times to assemble and solve the fine linear system. Performance results
are listed in table 5.15(a). The performance of the different configurations are compared in the
graphic 5.15(b).

The analysis of the results shows how the computation performance can be enhanced by using
all the cores of a processor, or by using a GP-GPU. In the multi-thread version the basis compu-
tation is completely parallelized while in the GPU version, only the phase to solve the basis linear
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systems is executed on CPU. The phase to assemble basis linear systems is executed on 1 core.
That explains why the run on 8 cores has better performance than the run on 1 core and 1 GPU.
Further work will be done to use the 8 cores and the GPU.

To compare the performance of the multiscale method to the SUSHI method, we have to re-
member that in an iterative run with several time steps, the basis functions are computed once and
only updated if needed. The interest of the multiscale method can be understood by comparing
tassembly + tsolve + tdownscale to tfassembly + tfsolve. In an iterative run, to improve performance
while preserving the accuracy of the solution, the crucial issue is to compensate the overhead of
the basis computation by optimizing the frequency of basis function updates.
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(a) Ux along axe x=0.5
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Figure 5.11: Driven cavity: components and magnitude velocity along middle axes
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(a) 3D view

(b) 3D view

Figure 5.12: SPE10 permeability field and pressure solution
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NCPU 1 2 4 8 16

tinit 7.34 4.68 2.79 1.88 1.44
tbuild 1.17 0.62 0.37 0.26 0.26
tsolve 23.26 13.16 7.62 5.32 4.19

(a) Table

Figure 5.13: SPE10 3D: Performance results of the Hybrid method
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Figure 5.14: SPE10 3D: Performance results of the Hybrid method

1 CPU 1 TH 2 TH 4 TH 8 TH 1 GPU

tbasis 1.04 1.09 0.62 0.33 0.22 0.40
tassembly 0.021 0.021 0.021 0.021 0.021 0.021
tsolve 0.015 0.015 0.015 0.015 0.015 0.015

tdownscale 0.049 0.049 0.049 0.049 0.049 0.049
(a) Table
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(b) GPU

Figure 5.15: SPE10 2D: Performance results
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(a) Permeability

Figure 5.16: Multiscale and fine pressure
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(a) Multiscale P (b) FineHybrid P

Figure 5.17: Multiscale and fine pressure
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(a) Multiscale VX (b) SUSHI VX

(c) Multiscale VY (d) SUSHI VY

Figure 5.18: Multiscale and fine velocity



Chapter 6

Conclusion and perspectives

Scientific computing has to deal with:

(i) the Modeling complexity of physical phenomena expressed in terms of systems of Partial
Differential Equations;

(ii) the Numerical complexity of the discretization methods used to convert PDE problems into
systems of algebraic equations;

(iii) the complexity of the algebraic algorithms to solve linear systems on which rely a great part
of the performance of applications;

(iv) the complexity of new hardware architectures which provide a high level of parallelism by
the mean of heterogeneous memory and computation units;

DS(E)Ls have become an established means to break these different levels of complexity allowing
each contributor at each level to focus on a specific aspect of the problem without being hindered
by the interaction with the other levels. Up to now this approach was limited to frameworks for
linear algebra algorithms or for Finite Element methods for which a unified mathematical formal-
ism has been existing for a long time.

With the emergence of a new consistent unified mathematical frame allowing a unified de-
scription of a large family of lowest-order methods, we have been able, as for FE methods, to
design a high level language inspired from the mathematical notation, that allows to describe and
implement various lowest-order methods. We have designed this language with the Boost.Proto

library, a powerful framework for DSEL in C++, that provides useful tools to define a specific
domain language and its grammar, to parse and introspect expressions of its domain and finally
to generate algorithms by evaluating and transforming these expressions. Various non trivial aca-
demic problems have been solved and different numerical methods have been implemented with the
designed DSEL. The analysis of the performance results shows that the overhead of the language
is not important compared to standard hand written codes, while the flexibility of the language
enables fast prototyping and easy numerical comparisons between different methods to solve a
given problem.

The DSEL has been extended to handle multiscale methods. We have at the occasion designed
an abstract runtime system layer to address seamlessly heterogeneous hardware architecture, on
which relies our generative framework. We have illustrated in that way the capability of our ap-
proach to handle both numerical and hardware complexity thanks to the clear separation between
the numerical layer with the high level language and the hardware layer thanks to the abstract
runtime system model.
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In some future works, we plan to extend our DSEL: (i) to take into account the non linear for-
mulation hiding the complexities of derivatives computation introducing the Fréchet derivatives;
(ii) to handle lowest order methods for hyperbolic problems;
(iii) to address new business applications like the linear elasticity, the porous mechanic and ad-
vection problems.

The approach studied in this work is one of various approaches that enable to manage the
different levels of complexity in scientific computing. Other approaches have been studied to deal
with the complexity of software environments, the connexion of scientific applications to data bases,
to external workflow tools that launch them as black boxes within business loops. In this context
a generative framework based on plugins of the eclipse RCP framework (EMF, Acceleo,. . . ) has
been developed. This work is the object of the article "Migration to Model Driven Engineering in
the Development Process of Distributed Scientific Application Software" which has been presented
at the SPLASH 2012 conference, in Tucson, Arizona.



Appendix A

Sujet de thèse

La spécificité des logiciels scientifiques développés par IFP Energies nouvelles tient avant tout à
l’originalité des modèles représentant les situations physiques exprimés sous forme de systèmes
d’EDPs assortis de lois de fermeture complexes. Le développement de ces logiciels, conçus pour
être exécutés sur les super calculateurs parallèles modernes, nécessite de combiner des méthodes
volumes finis robustes et efficaces avec des technologies informatiques qui permettent de tirer au
mieux parti de ces calculateurs (parallélisme, gestion de la mémoire, réseaux d’interconnexion,
etc). Ces technologies de plus en plus sophistiquées ne peuvent plus être maîtrisées dans leur
ensemble par les chercheurs métiers chargés d’implémenter des nouveaux modèles. A ce propos,
IFP Energies nouvelles a signé un accord de coopération avec le CEA pour développer et utiliser
la plateforme Arcane. Ce choix n’est cependant qu’une reponse partielle au problème posé par
le développement, la maintenance ou encore la pérennisation des codes de calcul à IFP Energies
nouvelles.

Le but de cette thèse est de compléter l’apport de la plateforme Arcane en proposant des
nouveaux outils qui (i) permettront de simplifier le passage du modèle physique à sa résolution
numérique en s’appuyant à la fois sur des outils informatiques et un cadre mathématique ro-
buste; (ii) seront intégrés eux-mêmes à la plateforme. Tout d’abord, la programmation générative,
l’ingénierie des composants et les langages spécifiques aux domaines d’applications (DSL ou DSEL)
sont des technologies clé pour automatiser le développement de programmes. Ces paradigmes per-
mettent d’écrire des codes à la fois lisibles, efficaces et facilement modifiables. Leur application au
calcul scientifique était jusqu’à maintenant restreinte aux méthodes de type éléments finis, pour
lesquelles un formalisme mathématique unifié existe depuis plus longtemps. L’émergence d’une
vision unifiée des méthodes volumes finis et éléments finis [51, 52, 53] permet désormais d’éteindre
ces technologies aux approches volumes finis.

Cette thèse se propose donc de développer un langage spécifique aux méthodes de discrétisation
Volumes Finis permettant le prototypage rapide de codes industriels ou de recherche. Ce langage
sera ensuite intégré à la plate-forme Arcane. Les axes de recherche principaux de ce projet sont
(i) l’adaptation du cadre mathématique aux applications d’intérêt pour IFP Energies nouvelles;
(ii) le développement d’un langage spécifique permettant de décrire de manière exhaustive ces ap-
plications; (iii) le développement d’un interpréteur sous la plateforme Arcane. Le choix entre DSL
et DSEL sera évalué pour assurer l’efficacité des applications générées; (iv) finalement, la valida-
tion des travaux se fera sur des problèmes académiques puis par le prototypage d’une application
industrielle dans le cadre de l’axe “CO2 maîtrisé”.
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Appendix B

Publications

B.1 Published articles

• “Basic concepts to design a DSL for parallel finite volume applications” : Daniele A. Di Pietro,
Jean-Marc Gratien, Florian Häberlein,Anthony Michel, Christophe Prud’homme Proceeding
POOSC ’09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented
Scientific Computing ACM New York, NY, USA c©2009 table of contents ISBN: 978-1-60558-
547-5 doi>10.1145/1595655.1595658

• “Lowest order methods for diffusive problems on general meshes: A unified approach to defi-
nition and implementation”, Di Pietro and J-M. Gratien, Sixth International Symposium on
Finite Volumes for Complex Applications, http://hal.archives-ouvertes.fr/hal-00562500/fr/

• “A Domain Specific Embedded Language in C++ for lowest-order methods for diffusive prob-
lem on general meshes”, J-M. Gratien, Di Pietro and Christophe Prud’homme, BIT Numeri-
cal Mathematics, 53 (1):111-152, 2013, DOI:10.1007/s10543-012-0403-3 - http://hal.archives-
ouvertes.fr/hal-00654406

• “Implementing Lowest-Order Methods for Diffusive Problems with a DSEL”, J-M. Gratien,
Modelling and Simulation in Fluid Dynamics in Porous Media,Springer Proceedings in Math-
ematics

• “Implementing a Domain Specific Embedded Language for lowest-order variational methods
with Boost Proto”, J-M. Gratien, CppNow 2012,
https://github.com/boostcon/cppnow_presentations\_2012/blob/master/papers/gratien.pdf

• "Migration to Model Driven Engineering in the Development Process of Distributed Sci-
entific Application Software",R. Gayno, J-M. Gratien, D. Rahon, S. Schneider, G.Lefur,
proceedings of SPLASH 2012 conference, in Tucson, Arizona

B.2 Conference presentations

• POOSC 2009, Genova, Italia
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• CppNow 2012, Aspen, Colorado, USA

• ECCOMAS, 2012, Vienna, Austria
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Appendix C

Overview of multiscale methods in

geoscience

Multiscale methods have been introduced to solve PDE systems modeling phenomena that are
governed by physical processes occurring on a wide range of time and/or length scales. This
kind of problems cannot be solved on the finest grid due to time and memory limitations. They
consist in incorporating fine-scale information into a set of coarse-scale equations in a way that is
consistent with the local properties of the mathematical model on the unresolved subscale(s). In
geoscience, multiscale methods are considered for the simulation of pressure and (phase) velocities
in porous media flow. Multiscale behavior in porous media flow are due to heterogeneities in
rock and sand formations which are reflected in the permeability tensor used in the governing
partial differential equations. To accurately resolve the pressure distribution, it is necessary to
account for the influence of fine-scale variations in the coefficients of the permeability tensor. For
incompressible flow, the pressure equation reduces to the following variable coefficient Poisson
equation:

v = −κ∇p on Ω,

∇ · v = q on Ω,

p = g on ∂ΩD,

∂np = 0 on ∂ΩN = ∂Ω \ ∂ΩD,

(C.1)

where

• q is a source term,

• κ stands for the symmetric positive definite permeability tensor that typically has a multi-
scale structure due to the strongly heterogeneous nature of natural porous media,

• ∂ΩD (respectively ∂ΩN ) is a subset of the boundary ∂Ω of Ω where Dirichlet (respectively
Neumann) boundary conditions are enforced.

Kippe V., Aarnes J. E. and Lie K. A. have done an interesting overview on multiscale methods
in [91]. They say:

“The literature on numerical methods for elliptic problems contains a number of mul-
tiscale methods that are geared toward solving problems with highly oscillatory coeffi-
cients. Examples include the multiscale finite-element method (MsFEM) [73], the vari-
ational multiscale method [76], the mixed multiscale finite-element method (MxMsFEM)[44],
and the multiscale finite-volume method (MsFVM)[75]. All of these methods are based
on a hierarchical two-scale approach, where the general idea is to derive a set of equa-
tions on a coarse scale that embodies the impact of subgrid variations in the elliptic
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coefficients. To this end, subgrid computations are performed as part of the multiscale
method to estimate how these fine-scale variations influence the coarse-grid solution.”

In this section inspired from Kippe V and al. work [91] we present the MsFEM, MxMsFEM
and MsFVM methods. All these methods are based on a coarse and a fine grid. For the following
section we introduce a few notations: we denote Th and TH respectively the fine and the coarse
grid. The exponent c and f are used for respectively elements related to the coarse grid and the
fine grid. We denote τ c and σc respectively cell and face elements of TH and τf and σf , cell and
face elements of Th.

C.1 Multiscale Finite-Element methods

MsFEMs are based on multiscale basis functions and on a global numerical formulation that
couples them. Basis functions are designed to capture the multiscale features of the solution.
Important multiscale features of the solution are incorporated into these localized basis functions
which contain information about the scales that are smaller as well as larger than the local nu-
merical scale defined by the basis functions. A global formulation couples these basis functions to
provide an accurate approximation of the solution.

Basis functions Let TH be the coarse grid, a partition of Ω into finite elements. We assume
that the coarse grid can be resolved via a finer resolution Th called the fine grid. Let xi be the
interior nodes of the mesh TH and φ0i be the nodal basis of the standard finite element space
Wh = span{φ0i }. If TH is a triangular partition, we denote by Si = supp(φ0i ) (the support of φ0i )
and define φi with support in Si as follows : ∀τ c ∈ , τ c ⊂ Si

−∇·κ∇φi = 0 on τ c,

φi = φ0i on ∂τ c,
(C.2)

Those multiscale basis functions coincide with standard finite element basis functions on the
boundaries of a coarse-grid block τ c, and are oscillatory in the interior of each coarse-grid block.
In general, one solves (C.2) on the fine grid to compute basis functions. Once the basis functions
are constructed, we denote by Ph the discrete space spanned by φi:

Ph = span{φi}
.

Global formulation The dimension computation is reduced by representing the fine-scale so-
lution with multiscale basis functions as follows:

ph =
∑

i

piφi

where pi are the values of the solution at coarse-grid nodal points and substituing ph in the fine-
scale equation. To obtain the coarse-level equation, we multiply then the resulting equation with
coarse-scale test functions. In the case of Galerkin finite element methods with conforming basis
functions, the MsFEM reads : find ph ∈ Ph such that

∫

Ω

κ∇ph · ∇vh =

∫

Ω

fvh ∀vh ∈ Ph (C.3)

When the test functions are chosen from Wh we obtain the Petrov-Galerkin version of the
MsFEM which reads: find ph ∈ Ph such that

∫

Ω

κ∇ph · ∇vh =

∫

Ω

fvh ∀vh ∈Wh (C.4)

Equation (C.3) or (C.4) couples the multiscale basis functions. The values of the solution at
the nodes of the coarse-grid block are obtained solving the coarse linear system of equations,
determining the coarse solution.
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C.2 Multiscale Finite-Volume method

The MsFVM is based on a finite-volume formulation. In a finite-volume method, a family of
control volumes is introduced and mass conservation is imposed locally on each control volume τ :

∫

∂τ

−κ∇P · n =

∫

τ

q (C.5)

where n is the outward unit normal on ∂τ . Usually a two-point flux approximation scheme is used
as finite-volume method expressing the flux accross an interface σ = ∂τi ∩ ∂τj as:

∫

σ

−κ∇P · n = Tσ(pi − pj)

where Tσ is the transmibility coefficient related to σ of the two-point scheme. The method,
introduced by Jenny and al. [77, 21] is a control-volume finite-element formulation on the coarse
mesh TH . The pressure P =

∑

i piφi is expressed as a linear combination of basis functions and
substitued in (C.5). Thus, we obtain ∀τ ci ⊂ TH :

∫

∂τc
i

n · κ∇(
∑

j

pjφj) = −
∑

j

pj

∫

∂τi

n · κ∇φj = −
∑

j

pjfi,j =
∑

i

∫

τi

q (C.6)

The quantitiy fi,j denote the flux over the boundary of cell τ ci due to the basis function centered
in cell τ cj . These quantities are refered as the MsFVM transmissibilities. Equations (C.6) give a
coarse linear system that can be solved for {pj}, and the fine-scale pressure solution is given as:

P =
∑

j

pjφj

The fine-scale pressure solution gives a velocity field that is mass conservative on the coarse
mesh TH , but generally not on the fine mesh Th. A mass-conservative velocity solution on the
fine scale is obtained by solving (C.1) within each control volume τ c ∈ TH using the following
Neumann boundary condition

v · n = −κ∇P · n on ∂τ c

with P =
∑

j pjφj .

C.3 Mixed Multiscale Finite-Element method

The mixed multiscale finite-element method was first introduced by Chen and Hou in [44] and
used for the simulation of two-phase flows later by Aarnes in [20]. In this method, the coarse
mesh TH is defined coarsening the initial fine grid Th. Basis functions are related to coarse faces
σc of TH . They are computed by solving local problems at the fine scale, then used to build a
mixed hybrid linear system on the coarse grid. After the resolution of this coarse system, the basis
functions are used to compute the pressures and the velocities on the fine grid from the values of
the coarse solution.

For the model problem (C.1), the mixed formulation reads: find (u, p) ∈ Hdiv
0 (Ω)×L2(Ω) such

that,

(κ−1u, v)− (p,∇·v) = 0, ∀v ∈ Hdiv
0 (Ω), (C.7)

(∇·u, l) = (q, l), ∀l ∈ L2(Ω). (C.8)

where Hdiv
0 (Ω) = {v ∈ L2(Ω)n : ∇·v ∈ L2(Ω), v · n = 0 on ∂Ω}.
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The mixed finite-element methods consist in searching an discrete solution (uh, ph) of (C.7)
that is confined to lie in finite-dimensional subspaces V ∈ Hdiv

0 (Ω) and W ∈ L2(Ω). The discrete
formulation reads:

find (uh, ph) ∈ V ×W such that,

(κ−1uh, vh)− (ph,∇·vh) = 0, ∀vh ∈ V,
(∇·uh, lh) = (qh, lh), ∀lh ∈W

(C.9)

There are two standard mixed finite element methods.

• the lowest-order Raviart-Thomas method (RT0) [88] consists in setting:

W = P0(Th) and V ⊂ {v ⊂ Hdiv(Ω) : ∇·v ∈W, v · n ∈ P0(σ
c)}

where σc = ∂τ ci ∩ ∂τ cj for τ ci ∈ TH , τ cj ∈ TH and n is a uniquely oriented unit normal. The
normal component of the velocity on each interface is constant.

• the lowest-order Brezzi-Douglas-Marini method (BDM1) [43] consists in setting:

W = P0(Th) and V ⊂ {v ⊂ Hdiv(Ω) : ∇·v ∈W, v · n ∈ P1(σ
c)}

In this case the normal component of the velocity on each interface is linear.

The velocity approximation spaces in mixed methods are spanned by the basis functions associated
with interfaces in the mesh. For RT0, there is only one degree of freedom per interface and basis
functions represent flow units across element interfaces.

Hou and Wu introduced in [74] a new family of multiscale finite-element methods. These
methods gives mass-conservative velocity fields on the coarse mesh and also on the fine mesh
in coarse blocks not containing sources. On the coarse scale, they generalize the standard RT0
method with the piecewise linear velocity basis functions accountting for subgrid variations in the
coefficients. The basis functions are related to a coarse interface σc = ∂τ ci ∩ ∂τ cj . They are the
solutions of (C.1) restricted to τ ci ∪ τ cj with source terms specified in such a way that unit flow is
forced across σc. The multiscale velocity basis functions ψi,j are defined as follows:
supp(ψi,j) = τi ∪ τj and ψi,j is solution of















ψi,j = −κ∇φi,j ,
−∇ · (κ∇φi,j) = w1 on τ ci ,
−∇ · (κ∇φi,j) = −w2 onτ cj ,
κ∇φi,j · n = 0 on ∂(τ ci ∪ τ cj )

(C.10)

where wi,i∈{1,2} are weight functions defined by

wi =
trace(κ)
∫

τi
trace(κ)

if q|τi = 0, wi = q otherwise . (C.11)

The functions ψi,j are thus defined to set a unit flux on σc and no fluxes on ∂(τ ci ∪ τ cj ). The
term trace(κ) in the weight functions or in the boundary conditions of (C.10) is the trace of the
permeability tensor κ. It enables to weight the fine fluxes at the fine scale according to the per-
meability field.

The coarse scale approximation consists in searching a solution in the discrete approximation
spaces (V ms, P 0(Th)) where V ms = span{ψi,j}
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