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Bridging knowing and proving in mathematics 
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To Adrien Douady 

 

 

1 An ad hoc epistemology for a didactical gap 

1.1 The didactical gap  

More often than not, the problem of teaching mathematical proof has been addressed 

almost independently from the teaching of mathematical “content” itself. Some 

curricula have exposed learners to a significant amount of mathematics without 

learning about mathematical proof as such (Herbst, 2002, p.288); others teaching 

This is a preprint of: Balacheff N. (2010) Bridging knowing and proving in 
mathematics An essay from a didactical perspective. In: Hanna G., Jahnke H. N., Pulte 
H. (eds.) Explanation and Proof in Mathematics (pp. 115-135). Heidelberg: Springer. 
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mathematical proof as a subject in itself without significantly relating it to concrete 

practical examples (cf. Usiskin, 2007, p.75). The most common didactical tradition 

chooses to introduce proof in the context of geometry—usually at the turn of the 8th 

grade—while completely ignoring it in algebra or arithmetic, where things seem to be 

reduced to ‘mere’ computations. This orientation has changed slightly in the past 

decade with an increasing emphasis on the teaching of proof. However, an implicit 

distinction between form and content has lead to references to teaching ‘mathematical 

reasoning’ (e.g., NCTM standards) or ‘deductive reasoning’ (e.g., French national 

programs) instead of mathematical proof as such which would have moved “form” 

much more to the forefront of the didactical scene.   

Nevertheless, it is generally acknowledged that mathematical proof has specific 

characteristics, among them a formal type of text (the US vocabulary often refers to 

“formal proof”), a specific organisation and an undisputable robustness once 

syntactically correct. These characteristics have given mathematics the reputation of 

having exceptionally stringent practices as compared to other disciplines, practices 

that are not socially determined but inherent to the nature of mathematics itself. 

Hence, the answer to the question: “Can one learn mathematics without learning what 

a mathematical proof is and how to build one?” is “No”. But now one can observe a 

double didactical gap: (i) mathematical proof creates a rupture between mathematics 

and other disciplines (even the ‘exact sciences’) and (ii) a divide in the course of 

mathematical teaching during the (almost) standard first 12 years of education (into an 

era before the teaching of proof and one after). 

The origin of these gaps lies at the crosspoint of several lines of tension: rigor versus 

meaning, internal development versus application-oriented development of 

mathematics, ideal objects defined and manipulated by symbolic representations 
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versus experience-based empirical evidence. I do not analyse these tensions here; I 

mention them to evoke the complexity of the epistemological and didactical problems 

which confront us.  

One source of the didactical problems is that teaching must take into account the 

learners’ initial understanding and competence: We can teach only to ones who 

know… The learners’ existing knowledge often proves resistant, especially because 

the learners may have proven its efficiency, as in the case of their argumentative 

skills. In order to overcome this difficulty, teachers organize situations, mises en 

scène and discourses in order to “convince” or “persuade” learners (in the vocabulary 

of Harel & Sowder, 1998). Argumentation seems the best means to this end. It works 

both as a tool for teaching and as a tool for doing mathematics for a long while.  But 

then learners suddenly face an unexpected revelation1: In mathematics you don’t 

argue, you prove… 

Looking to bridge this transition, mathematics educators have searched for ideas in 

psychology. In the middle of the 20th century, the success of Piaget’s ‘stage theory’ of 

development suggested that proof could be taught only after the required level of 

development had been reached2. As a result, mathematical proof was introduced 

suddenly in curricula (if at all) in the 9th grade – generally, the year that students have 

their 13th birthday.  However, this strategy has not worked so well, suggesting to some 

that Piaget may have been wrong.  

                                                 
1 Argumentation means here “verbal, social and rational activity aimed at convincing a reasonable critic of the 
acceptability of a standpoint by putting forward a constellation of one or more propositions to justify this 
standpoint” (van Eemeren et al., 2002, p.xii). "In argumentative discussion there is, by definition, an explicit or 
implicit appeal to reasonableness, but in practice the argumentation can, in all kinds of respects, be lacking of 
reasonableness. Certain moves can be made in the discussion that are not really helpful to resolving the difference 
of opinion concerned. Before a well-considered judgment can be given as to the quality of an argumentative 
discussion, a careful analysis as to be carried out that reveals those aspects of the discourse that are pertinent to 
making such a judgment concerning it reasonableness." (ibid., p.4) 
2 See e.g. Piaget J. (1969) p. 239: "L’enfant n’est guère capable, avant 10-11 ans, de raisonnement formel, c’est-à-
dire de déducation portant sur des données simplement assumées, et non pas sur de vérités observées". More 
precisely, For more, c.f.  Piaget J. (1967)  Le jugement et le raisonnement chez l’enfant. Delachaux et Niestlé.  
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Some mathematics educators then turned to psychologies of discourse and learning, 

feeling that the followers of Piaget had not paid enough attention to language and 

social interaction. Some suggested the ideas of Vygotsky and the socio-constructivists 

could have provided a solution (e.g. Forman et al. 1996).  However, this line of 

thought did not appear to be the panacea either. Then Lakatos’ work seemed to 

suggest that a solution might be found in the epistemology of mathematics itself (e.g. 

Reichel 2002); however, such attempts also failed amid scepticism from 

mathematicians and researchers. 

The responsibility for all these failures does not belong to the theories which 

supposedly underlie the educational designs, but to naive or simplifying readers who 

have assumed that concepts and models from psychology can be freely transferred to 

education.  In particular, they rarely take into account the nature of mathematics as 

content (while often emphasizing the nature of the perceived practice of 

mathematicians). 

My objective here is then to question the constraints mathematics imposes on teaching 

and learning, postulating that, as for any other domain, learning and understanding 

mathematics cannot be separated from understanding its intrinsic means for 

validation: mathematical proof.  First, I address the epistemology of proof, on which 

we could base our efforts to manage or bridge the didactical gap discussed above. 

1.2 The need to revisit the epistemology of proof 

Although apparently a bit simplistic, it may be good to start from the recognition that 

mathematical ideas are not a matter of feeling, opinion or belief. They are of the order 
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of ‘knowing’ in the Popperian sense3, by virtue of their very specific relation to proof 

(and proving). They provide tools to address concrete, materialistic or social 

problems, but they are not about the “real” world. To some extent, mathematical ideas 

are about mathematical ideas; they exist in a closed ‘world’ difficult to accept but 

difficult to escape. For this reason, mathematical ideas do not exist as plain facts but 

as statements which are accepted only once they have been proved explicitly; before 

that, they cannot be4 instrumental either within mathematics or for any application.  

However, despite this emphasis on the key role of proof in mathematics, it must be 

remembered that at stake is not truth but the validity of a statement within a well-

defined theoretical context (cf. Habermas, 1999). For example, Euclidean geometry is 

no truer than Riemannian geometry. This shift from the vocabulary of truth to the 

vocabulary of validity, which suggests a shift from proof to validation, is more 

important than we may have realized. Validation refers to constructing reasons to 

accept a specific statement, within an accepted framework shaped by accepted rules 

and other previously accepted statements. From this perspective, mathematical 

validation searches for an absolute proof in an explicit context; it can thus claim 

certainty as a foundational principle.  

This view of validity and proof is antiauthoritarian (Hanna & Janke, 1996, p.891), 

insofar as it assumes a common agreement about a collective and well-understood 

effort. It thus fits the classical conception of what a scientific proof should be, since 

such a proof must clearly not depend on specific individual or social interests. In this 

lies the democratic aspect of mathematical proof, as noted by Hanna. Proving is an 

example of an intellectual enterprise that allows a minority to overcome the opinion 

                                                 
3 Popper (1959)  proposed falsification as the the empirical criterion of demarcation of knowledge, scientific 
theories or models. 
4 Or should not be... 
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of an established majority, according to shared rules.  This is related to an ancient 

meaning of the word "demonstration" in English (e.g., Herbst, 2002, p.287). 

So the concept of proof is not a stand-alone concept; it goes with the concepts of 

“validity of a statement” and “theory”. This has been well explained and illustrated by 

the Italian school, especially Alessandra Mariotti (1997). However, the word “theory” 

is the most difficult for learners.  No such thing is available to learners a priori, and to 

understand what the word means seems out of reach. Nevertheless, learners have 

ideas about mathematics and about mathematical facts. They also have experience in 

arguing about the “truth” of a claim or the “falsity” of a statement they reject; but this 

is experience in argumentation in contexts that are not framed by a theory in scientific 

terms. To construct a proof requires an essential shift in the learner’s epistemological 

position: passing from a practical position (ruled by a kind of logic of practice) to a 

theoretical position (ruled by the intrinsic specificity of a theory).  

In addition, we cannot engage in the validation of ‘anything’ that has not been first 

expressed in a language. This principle applies across disciplines (Habermas, 1999), 

but plays a special role in mathematics, where the access to ‘mathematical objects’ 

depends in the first place on their semiotic availability (Duval, 1995). 

In other words, the teaching and learning of mathematical proof requires mastery of 

the relationships among knowing, representing and proving mathematically. 



 7

2 A model to bridge knowing and proving 

2.1 Short story 1: Fabien and Isabelle misunderstanding 

-------------------------------------------------------------------------------------------------- 

Consider the following problem5: 

B

A

C

P

P1

P2

P3I

 

Construct a triangle ABC.  Construct a point P and  its symmetrical point P1 

about A.  Construct the symmetrical point P2 of P about B, construct the 

symmetrical point P3 of P about C.   Move P.  What can be said about the 

figure when P3 and P are coincident?  Construct the point I, the midpoint of 

[PP3].  What can be said about the point I when P is moved?  Explain. 

Figure 1. 

---------------------------------------------------------------------------------------------------- 

Constructing the diagram (Fig.1) with dynamic geometry software6, one can easily 

notice that the point I does not move when one manipulates the point P. This fact 

seems surprising; the crux of the situation is to propose an explanation. 

Let us examine the interaction between a teacher and a student, Fabien, about this 

problem7.  Fabien has observed the fact but he has no insight about the reason: “The 

                                                 
5 From Capponi, 1995, Cabri-classe, sheet 4-10. 
6 e.g. Cabri-geometry (here used for the drawing), or Geometer Sketchpad; or Geogebra or one of the several 
others now available sometimes open access. 
7 A more detailed analysis can be found in Balacheff & Soury-Lavergne (1995), Sutherland & Balacheff (1999). 
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point I does not move, but so what...”  However, he noticed and proved that ABCI is a 

parallelogram.  At this stage, from the point of view of geometry (and of the tutor), 

the reason I stands immobile while P moves should be obvious.  The tutor then 

provides Fabien with several hints but with no results.  After a while she desperately 

insists: “The others, they do not move. You see what I mean? Then how could you 

define the point I, finally, without using the points P, P1, P2, P3?”  Throughout the 

interaction, the tutor is moved by one concern which can be summarized by the 

question: “Don’t you see what I see?”  But Fabien does not see the ‘obvious’; it is 

only when she tells him the mathematical reasons for the immobility of I that the tutor 

provokes a genuine “Aha!” effect... 

In order to explain the immobility of I, the teacher had get the student to construct a 

link between a mechanical world—that of the interface of the software8 – and a 

theoretical world— the world of geometry. Only this link can turn the observed fact 

(the immobility of I) into a phenomenon (the invariance of I). But the construction of 

this link is not straightforward; it is a process of modelling. 

Teacher and student did share representations, words, and arguments so that they 

could communicate and collaborate; however, this did not guarantee that they shared 

understanding. Educators have made considerable efforts to develop representations 

that could make the nature and the properties of mathematical concepts more tangible. 

But these remain just representations with no visible referent; manipulating them and 

sharing factual experience does not guarantee shared meaning.  Nevertheless, they are 

the only means of communication, since in mathematics the referent, in a semiotic 

sense, is itself a representation (i.e., a tangible entity produced on purpose). 

                                                 
8 Another student’s search for an explanation illustrates well what is meant here by mechanical world: “So... I have 
said... But is not very clear... That when, for example, we put P to the left, then P3 compensates to the right.  If it 
goes up, then the other goes down...”  (Sébatien, [prot. 78-84]). 
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In the next section, I will explore this issue of representation and its relation with the 

learners’ building of meaning, and then take up the challenge of defining “knowing” 

in a way that may not solve the old epistemological problem but will provide some 

grounds to build a link between knowing and proving. 

2.2 Trust, doubt and representations 

The fascination for proof without words9, which would give access to the very 

meaning of the validity of a mathematical statement without the burden of 

sophisticated and complicated discourses, is a symptom of the expectations 

mathematics educators have attached to the use of non-verbal representations in 

mathematics teaching. The development of multimedia software, advanced graphical 

interfaces and access to ‘direct manipulation’ of the represented ‘mathematical 

objects’ has even strengthened these expectations. The above story of the Fabien and 

his tutor  misunderstandings is initial evidence that things might be slightly more 

difficult. I will explore this difficulty now, starting with an example coming from 

professional mathematics. 

In 1979, Benoit Mandelbrot noticed in a picture produced by a computer and a printer 

that the Mandelbrot set10—as it is now known, following a suggestion of Adrien 

Douady—was not connected. “A striking fact, which I think is new” Mandelbrot11 

remarked.  John Hubbard, a former PhD student of Adrien Douady’s who became his 

well known collaborator, reported that: 

                                                 
9 See Claudi Alsina and Roger B. Nelsen (2006), Math Made Visual: Creating Images for Understanding 
Mathematics, published by MAA, and a good example in Roger B. Nelsen (1993), Proofs without words: exercises 
in visual thinking, published by MAA. See Hanna (2000, esp. pp.15-18) for an analysis. 
10 Considering the sequence of complex numbers zn+1 = zn

2 + c, the Mandelbrot set (or set M) is obtained by fixing 
z0=0 and varying the complex parameter c. 
11 Quotation from p.250 of Mendelbrot (1980) Fractal aspects of the iteration of zλz(1-z) for complex λ and z. 
Annals of the New York Academy of Sciences. 357 (1) 249 - 259 
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Mandelbrot had sent [them] a copy of his paper, in which he announced the 

appearance of islands off the mainland of the Mandelbrot set M. Incidentally, 

these islands were in fact not there in the published paper: apparently the 

printer had taken them for dirt on the originals and erased them. (At that time, 

a printer was a human being, not a machine). Mandelbrot had penciled them 

in, more or less randomly, in the copy [they] had. (Hubbard 2000 pp.3-4) 

This anecdote reflects two things: first, the efficiency and strength of the computer-

based picture in supporting a conjecture; second, the fragility of this same picture, 

which depends on both the algorithmic and technical conditions of its production.  

Then, Hubbard reported:  

One afternoon, Douady and I had been looking at this picture, and wondering 

what happened to the image of the critical point by a high iterate of the 

polynomial z2 + c as c takes a walk around an island. This was difficult to 

imagine, and we had started to suspect that there should be filaments of M 

connecting the islands to the mainland. (ibid.)  

Soon, Adrien Douady realized that this meant that the set M is connected12, but “the 

proof of this fact is by no means obvious,” he remarked (Douady, 1986, p.162). The 

proof followed after a long process of writing, initiated by a Note aux Comptes-rendus 

in 1982.  After the discovery of the connectedness, images of the set M got 

transformed, offering a more beautiful picture full of colours which, so to speak, 

‘displayed’ the connectivity of M (Fig. 2). 

                                                 
12 Régine Douady remembers that Adrien had been quickly convinced of the connectivity of M, thanks to the 
theoretical argument which convinced him in an astonishingly “simple” way. However, to complete the explicit 
proof took some time (2008, personal communication). 
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--------------------------------------------------------------------------------------------------- 

 

The Mandelbrot set for z→z2+c 

before and after the Douady and Hubbard discovery 

Figure 2. 

--------------------------------------------------------------------------------------------------- 

 

This case supports the idea of complex relations between representation and 

mathematical objects—or, more precisely, the role of representations as mediators for 

the conceptualisation of mathematical objects. It invites more caution in considering 

evidence in a non-verbal representation.  Not to say that non-verbal representations or 

expressions of an argument are of no value; rather, I emphasize that the frequent 

claim in education that, “A picture is worth a thousand words” has limits and cannot 

be accepted without further examination.  

For example, graphic calculators are widely used by students. They provide students 

with efficient tools for calculus, blending graphical and symbolic representations. The 

use of this technology has led to new problem-solving strategies that take advantage 

of the low cost of exploring of graphical representations. Among them is what Joel 

Hillel (1993, p.29) called “window shopping,” which consists of playing with the 
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various possibilities offered by the display.  The diagrams (below) reproduce two 

appearances of the graph of the same function, f(x) = x4-5x²+x+4. As one can ‘see’, 

these pictures can induce different conjectures about, for example, the numbers of 

zeros of the polynomial or its behaviour within the interval [-2, +2] 

--------------------------------------------------------------------------------------------------- 

 

 

Figure 3. 

--------------------------------------------------------------------------------------------------- 

 

It is now common for teachers to warn students and teach them strategies to ensure 

reliable, optimal use of their calculators. Still, the problem of knowing how to balance 

trust and doubt when using these machines and looking for conjectures has no 

straightforward answer. Part of achieving this balance depends not only on how 

learners critically organize their explorations but also on the reliability of the 

embedded software.  Consider the case of the function g(x)=sin(ex). Most students are 

prepared to study this function without a priori foreseeing difficulties; that is, until 

their machine displays something like the following picture: 



 13

--------------------------------------------------------------------------------------------------- 

 

 

Figure 4. 

--------------------------------------------------------------------------------------------------- 

 

‘Window shopping’ will not help to answer the questions this display raises. An 

algebraic study will just leave students with a question they probably cannot solve 

with their knowledge of mathematics and computer science. This picture results from 

the interference between the computation of the coordinates of each point to be 

displayed and the choice of which pixel to turn black on the screen. In the end, it is 

the product of a kind of stroboscopic effect, as suggested by Adrien Douady13.  

Producing a ‘correct’ figure would be a matter of first mathematically notating both 

the capabilities and the limitations of the drawing instrument and then using 

sophisticated computational strategies to decide on the intervals at which to plot an 

‘informative’ graph. 

The problem of how students can decide to trust or doubt mathematical 

representations goes beyond graphical representations to include any representation. 

A last example, taken from Luc Trouche work (2003) on computer algebra systems 

demonstrates this. Consider the equation [Ln(ex-1)=x]: One can use a pocket graphical 
                                                 
13 Personal communication 
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calculator to solve it algebraically or to graph it; the two pictures below (from 

Trouche, 2003, p.27) show the respective results. 

--------------------------------------------------------------------------------------------------- 

 

 

Figure 5 

--------------------------------------------------------------------------------------------------- 

 

The results speak for themselves. The optimal treatment leading to a solution – in this 

case, that this equation has no solution – consists of a formal transformation of the 

algebraic expression, producing [ex-1= ex]. 

The difficulty students may have relates not to their lack of mathematical knowledge 

but to a general human inclination not to question their knowledge and their 

environment unless there is a tangible contradiction between what is expected after a 

given action and what is obtained, as my final example will demonstrate. 

In this case, upper secondary students were asked to tell what is the limit at +∞ of the 

function [f(x)=ln(x)+10sin(x)]. Without a graphic calculator, only five percent of the 

students answered wrongly; with a graphic calculator, which displayed the window 

reproduced below, this number grew to 25 percent (Guin & Trouch, 2001, p.65). 
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--------------------------------------------------------------------------------------------------- 

 

 

Figure 6. 

--------------------------------------------------------------------------------------------------- 

 

Given such cases of error, teachers and mathematics educators might have to consider 

whether graphic calculators contribute positively to mathematics learning or whether 

students have difficulty shifting from one semiotic context to another. (Other 

examples of common errors include: the value of  is exactly 3.14, or a convergent 

series reaches its limit, or the Fibonacci series U0=1, U1=(1+√5)/2, Un=Un-1+Un-2 is 

divergent). Most such errors, or “misconceptions” to use the 1980s term, are probably 

symptomatic of the students’ knowledge, which can be legitimate in certain contexts 

although possibly wrong mathematically. To analyse this issue further, we must have 

a conceptualization of the students’ knowledge which (i) allows us to make sense of it  

from a mathematical perspective; (ii) is relevant from a cognitive perspective; and (iii) 

opens the possibility of didactical solutions. 
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2.3 A phenomenological definition of knowing 

Studying students’ productions that were mathematically incorrect, the mathematics 

educators of the 1980s usually chose to use the word “misconception”. As noted by 

Jere Confrey (1990), such student errors should be first considered as indications of 

what they know. Comfrey used the generic word “conception” to refer to the rationale 

of students’ answers to a given problem or question.  I postulate that such conceptions 

result from the learner’s interactions with the environment, and that learning is both a 

process and an outcome of the learner’s adaptation to this environment. By 

“environment”, I refer to a physical setting, a social context or even a symbolic 

system (especially now that the latter can be depicted by a technology which 

dynamically materialises it). 

However, only some characteristics of the environment are relevant from the point of 

view of learning.  Educators do not deal with the learner in all his or her social, 

emotional, physiological and psychological complexity, but from a knowledge 

perspective: as the epistemic subject. The same principle applies to the environment, 

which we restrict to the milieu defined as the subject's antagonist system in the 

learning process (Brousseau, 1997, p.57); that is, we only consider those features of 

the environment that are relevant from the epistemic perspective. This means that our 

characterizations of the (epistemic) subject and of the milieu are interdependent 

systemically (and dynamically, since both will evolve during the learning process). 

Pragmatically, the only accessible evidences of a conception are behaviours and their 

outcomes. Our problem is to interpret these in terms of indicators of strategies the 

adapted nature of which must be demonstrated in a model or representation attributed 
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to the student (Brousseau, 1997, p.215)14. The formalisation of a conception I propose 

below aims at providing such a model. Recognizing this interdependence, expressed 

by Noss and Hoyles15 (1996, p.122) as situated abstraction, accepts that people could 

demonstrate different and possibly contradictory conceptions depending on 

circumstances, although knowledgeable observers may ascribe them to the same 

source concept. 

Thus, a conception is attached neither to the subject nor to the milieu, but exists as a 

property of the interaction between the subject and the milieu—its antagonist system 

(Brousseau, 1997, p.57).  The objective of this interaction is to maintain the viability 

of the subject/milieu system (or [S↔M] system) by returning it to a safe equilibrium 

after some perturbation (i.e., the tangible materialization of a problem).  This implies 

that the subject recognizes the perturbation (e.g., a contradiction or uncertainty) and 

that the milieu has features which make the perturbation tangible (since otherwise, the 

milieu may “absorb” or “tolerate” errors or dysfunctions). 

                                                 
14 For the convenience of the English-speaking reader, I take all the references to Brousseau's contributions to 
mathematics education from Kluwer, 1997 but Brousseau’s work was primarily published between 1970 and 1990. 
15 This proposition should be understood in the light of the development of the ‘situated learning paradigm’ of 
Jeane Lave and Etienne Wenger, whose work was published in the early 1990s. 
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--------------------------------------------------------------------------------------------------- 

 

 

A conception is the state of dynamical equilibrium 

of an action/feedback loop between a subject and a 

milieu under proscriptive constraints of viability.16 

Figure 7 

--------------------------------------------------------------------------------------------------- 

 

From this definition of conception, I can derive a definition of knowing as the 

characterization of a dynamic set of conceptions. This definition has the advantage of 

being in line with our usual use of the word “knowing” while providing grounds to 

understand the possible contradictions evidenced by learners’ behaviours and their 

variable mathematical development. A conception is a situated knowing; in other 

words, it is the instantiation of a knowing in a specific situation detailed by the 

properties of the milieu and the constraints on the relations (action/feedback) between 

this milieu and the subject. 

                                                 
16 These constraints do not address how the equilibrium is recovered but the criteria of this equilibrium.  
Following Stewart (1994, pp. 25-26), I argue that these constraints are proscriptive – they express necessary 
conditions to ensure the system’s viability – and not prescriptive, since they do not tell in detail how equilibrium 
must be reconstructed. 
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This definition of conception provides a starting point but still has to be refined in 

order to make it relevant to our research. To do so, I will now introduce the model 

cK¢17, in order to provide an effective tool to concretely represent and analyze the 

corpus of data obtained from the observation of students’ activities.  This model aims 

to establish a necessary bridge between knowing and proving by providing a more 

balanced role to control structures with respect to the role usually assigned to actions 

and representations. 

2.4 A model to bridge knowing and proving:  cK¢ 

That validation plays a key role in the emergence of ‘knowing’ has been established at 

least since Popper proposed the criterion of falsification and Piaget introduced the 

process of cognitive disequilibrium. This principle is also inherent in a “conception” 

as we define it, adding the explicit condition that a conception is not self-

contradictory. 

“Proving” is the most visible part of the intellectual activity related to validation.  

However, as the Italian school has clearly demonstrated (Boero et al. 1996), proving 

cannot be separated from the on-going controlling activity involved in solving a 

problem or achieving a task. To some extent, “proving” can be seen as an ultimate 

achievement of controlling and validating. No one can claim to know without a 

commitment to and a responsibility for the validity of the claimed knowledge.  In 

return, this knowledge functions as a means to establish the validity of a decision in 

the course of performing a task and even in the process of building new knowledge—

especially in the learning process. In this sense, knowing and proving are tightly 

related.  Hence, a conception is validation dependent: In other words, we can 

                                                 
17 The letters cK¢ stand for : “conception”, “knowing” and “concept”; more about this model is presented and 
discussed on [http://ckc.imag.fr] 
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diagnose the existence of a conception because there is an observable domain in 

which “it works”, in which there are means to validate it and to challenge possible 

falsifications. This is the essence of Vergnaud’s (1981, p.220) statement that problems 

are the sources and criteria of concepts.  

Vergnaud demonstrated that we could characterize students’ conceptions with three 

components: problems, representation systems and invariant operators (1991, 

p.145)18. I take this model as a starting point, with the addition of the related control 

structure. 

Then, I can characterize a conception by a quadruplet (P, R, L, ∑) in which: 

- P is a set of problems; 

This set corresponds to the class of the disequilibria the considered 

subject/milieu [S↔M] system can recognize; in mathematical terms: P 

is the set of problems which can be solved—in pragmatic terms, P is 

the conception’s sphere of practice. 

- R is a set of operators; 

- L is a representation system; 

R and L describe the feedback loop relating the subject and the milieu, 

namely the actions, feedbacks and outcomes. 

- ∑ is a control structure; 

The control structure describes the components that support the 

monitoring of the equilibrium of the [S↔M] system. This structure 

ensures the conception’s coherence; it includes the tools needed to take 

                                                 
18  Vergnaud in fact proposed this definition at the beginning of the 1980's. 
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decisions, make choices, and express judgement on the use of an 

operator or on the state of a problem (i.e., solved or not). 

This model aims at accounting for the [S↔M] system and is not restricted to one of 

its components19. The representation system allows the formulation and the 

manipulation of the operators by the active subject as well as by the reactive milieu. 

The control structure allows expression and discussion of the subject’s means for 

deciding the adequacy and validity of his or her action as well as the milieu’s criteria 

for selecting a feedback. This symmetry allows us both to take the subject’s 

perspective when evaluating his or her knowing and the milieu’s perspective when 

designing the best conditions to stimulate and support learning. Moreover, it gives us 

a framework in which to describe, analyze and understand the didactical complexity 

of learning proof by taking into account the interrelated relevant dimensions: the 

subject, the milieu and the problem. 

In the next section I will give an illustration of this distinctive role of the control 

structure and the light it sheds on the learners’ behaviors we observe and aim at 

understanding. I will then summarize the proposed framework discussing the relations 

we must establish between action, formulation and validation in order to understand 

the didactical complexity of learning and teaching mathematical proof. These three 

dimensions provide the means we need to build a bridge between knowing and 

proving. 

                                                 
19 By extension, one can often refer to students’ conceptions as acceptable given that one can account precisely for 
the circumstances, which are the milieu and the constraints within which [S↔M] functioned. 
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3 Proving from a learning perspective 

3.1 Short story 2: Vincent and Ludovic mismatch 

Vincent and Ludovic are two middle school students who had no specific difficulties 

with mathematics.  They volunteered to participate in an experiment that Bettina 

Pedemonte (2002) was carrying out to study the cognitive unity between problem 

solving and proof. The problem was the following: 

------------------------------------------------------------------------------------------------------- 

Construct a circle with AB as a diameter.  Split AB in two equal parts, AC and 

CB.  Then construct the two circles of diameter AC and CB… and so on.   

 

 

 

 

How does the perimeter vary at each stage?   

How does the area vary? 

Figure 8. 

------------------------------------------------------------------------------------------------------- 

 

With no hesitation, the two students expressed – with the formulas they knew well – 

the perimeter and the area of the first steps in the series of drawings.  Their letters 

represent quantities and the formulas are another description of the reality the drawing 

factually displays.  The students conjectured that the perimeter will be constant and 
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that the area decreases to zero. But Vincent noticed that “the area is always divided by 

2…so, at the limit? The limit is a line, the segment from which we started …”.  The 

discussion then continued: 

41. Vincent:  It falls in the segment… the circle are so small. 

42. Ludovic: Hmm… but it is always 2πr. 

43. Vincent: Yes, but when the area tends to 0 it will be almost equal… 

44. Ludovic: No, I don’t think so. 

45. Vincent: If the area tends to 0, then the perimeter also… I don’t know…  

46. Ludovic: I will finish writing the proof. 

Although Vincent and Ludovic collaborate well and seem to share the mathematics 

involved, the types of control they have on their problem-solving activity differ. 

Ludovic is working in the algebraic setting (c.f., Douady, 1985); the control is 

provided by his ensuring the correctness of the symbolic manipulation and his 

knowledge of elementary algebra. Vincent is working in a symbolic-arithmetic 

setting; the control comes from a constant confrontation between what the formula 

“tells” and what is displayed in the drawings. Both students understood the initial 

situation in the “same” way, both syntactically manipulated the symbolic 

representations (i.e., the formulas of the perimeter and of the area), but their controls 

on what they performed were different, revealing that the conceptions they mobilized 

were also significantly different. I deduce that the operators they manipulated 

(algebraic writings, sketching diagrams, etc.), although they coincided from the 

behavioural perspective, were semantically different. Moreover, from this evidence, 

an observer could argue that the students were not addressing the same “problem”; 

Vincent was “baffled” by the gap between what he saw and what he computed, while 
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Ludovic was “blind” to this gap.  (Actually, Ludovic’s knowledge of calculus would 

not have been sufficient to provide any relevant explanation). 

The symbolic representation plays the role of a semiotic mediator between the two 

students’ different conceptions. It allows communication between the students and is 

instrumental for each in controlling the problem-solving process and building a proof. 

We know that two different representations may demonstrate two different 

understandings; however, here one given representation also supports different 

understandings and hence different proofs.  

3.2 The complex nature of proof 

Many theorists have attempted to answer the question of what counts as a proof, from 

either an epistemological or an educational point of view. However, there is no single, 

final answer. The Vincent and Ludovic discussion above confirms that sheer formal 

computation is not enough. As in one of the best previous anecdotes in the history of 

mathematics20, Vincent could well say to Ludovic: I see it, but I don’t believe it. As 

several authors have emphasised, a proof should be able to fulfil the need for an 

explanation; however the explanatory nature of a proof may become the object of an 

even more irreconcilable disagreement than was its rigor. Consider the simple 

mathematical statement: The sum of two even numbers is itself even.  The following 

figures provide a sample of proofs of this statement.  A discussion of these proofs by 

mathematicians, mathematics teachers and learners provokes very different responses 

from each.   

                                                 
20  “Je le vois, mais je ne le crois pas”, wrote Cantor to Dedeking, in 1877,  after having proved that for any 
integer n, there exists a bijection between the points on the unit line segment and all of the points in an n-
dimensional space. 
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----------------------------------------------------------------------------------------------------- 

 

Example adapted from Healey and Hoyles, (2000 p.400) 

Figure 9 

----------------------------------------------------------------------------------------------------- 

The arguments in such a discussion involve three types of critical considerations: the 

search for certainty, the search for understanding and the requirements for a 

successful communication. The complex nature of proof lies in the fact that any effort 

to improve a candidate-proof on one of these dimensions may change its value on the 

other two. There is no clear standard to decide on the correct balance.  Restricting the 

evaluation to the “certainty” side is playing safe, as this side is compulsory for the 

transformation of mathematical ideas. However, such reductionism is not viable from 

a learning perspective, especially when students are first introduced to mathematical 

proof; their control structures are not appropriately evolved.  Educators at this point 

need to give academic status to activities that may not lead to what would be a proof 
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for professional mathematicians but that still make sense as mathematical activities. 

Hence, my proposal to structure the relations between explanation, proof and 

mathematical proof as I did to ground my own work (Balacheff, 1988). This 

structuration distinguished between pragmatic and intellectual proof, and within both 

it identified categories related first to the nature of the student knowing and his or her 

available means of representation. 

The rationale for this organisation (sketched below in figure 10) is the postulate that 

the explaining power of a text (or non-textual “discourse”) is directly related to the 

quality and density of its roots in the learner’s (or even mathematician’s) knowing. 

What is produced first is an “explanation” of the validity of a statement from the 

subject’s own perspective. This text can achieve the status of proof if it gets enough 

support from a community that accepts and values it as such.  Finally, it can be 

claimed as mathematical proof if it meets the current standards of mathematical 

practice.  So, the keystone of a problématiques of proof in mathematics (and possibly 

any field) is the nature of the relation between the subject’s knowing and what is 

involved in the ‘proof’.  
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---------------------------------------------------------------------------------------------------- 

 

Figure 10 

---------------------------------------------------------------------------------------------------- 

This recognition of a proof’s roots in knowing may justify a statement as strong as 

Harel & Sowder’s that “one's proof scheme is idiosyncratic and may vary from field 

to field, and even within mathematics itself,” (1998, p.275). However, this view 

misses the social dimension of proof, which transcends an entirely subjective feeling 

of understanding (as well as “ascertaining” or “persuading”; Harel & Sowder, ibid., p. 

242). From a didactical perspective, the issue is not psychological but 

epistemological, being directly related to the role a proof plays in building links 

between a theory that provides its framework and means and a statement that it aims 

to validate. The transcendence of a proof, proposed by Habermas (1999) as a 

requirement for a problématique of truth and justification, is a dimension too often 

forgotten in favour of a psychological or sociological analysis of proving. This 

transcendence is not a dogmatic but a pragmatic position which allows the 

construction of knowledge as a collective asset which can be shared and be 

sustainable without depending on its author(s) and circumstance(s) of birth.  
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The technicalities of mathematical proof are then essential, and can be accepted as the 

price for a viable construction of mathematics. In this respect, formal rigour is a 

weapon against the biases that “idiosyncratic proof schemes” may produce. 

3.3 Knowing and proving in the didactical genesis of proof 

Learning mathematics starts with the first years of schooling, at least from an 

institutional point of view. As is well documented, learners at this elementary level 

depend as much on their experience as on the teacher as a reference to distinguish 

between their opinions, their beliefs and their actual knowledge. The criterion for 

assessing this difference rests either in the tangible efficiency of the knowledge at 

stake or in ad hoc validation by the teacher. But the teacher has to rely on knowledge, 

demonstrating that authority is not the ultimate reference. Hence, efficiency and 

tangible evidence are the supports for the validity of a statement: It’s true because we 

verify that it works. Mathematical learners are first of all practical persons; to enter 

mathematics they have to change their intellectual posture and become a theoretician. 

This shift can easily be seen in the passage from practical geometry (the geometry of 

drawings and shapes) to theoretical geometry (the deductive or axiomatic geometry), 

or from symbolic arithmetic (computation of quantities using letters) to algebra. A 

learner making the transition from the practical to the theoretical has to face the 

epistemological difficulty of a transition from knowing in action to knowing in 

discourse: The origin of knowing is in action but the achievement of mathematical 

proof is in language (see below figure 12).  

Again, the tight relationship among action, formulation (semiotic system) and 

validation (control structure) imposes itself (Brousseau 1997). This trilogy which 
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defines a conception, also shapes didactical situations21; there is no validation possible 

if a claim has not been explicitly expressed and shared; and there is no representation 

without a semantic which emerges from the activity (i.e., from the interaction of the 

learner with the mathematical milieu).  

 

Indeed, this passage from mathematics as a tool whose rationale is ‘transparent’, to 

mathematics as a theoretically-grounded means for the production and evaluation of 

explicit validation has a key stepping stone: language; as a symbolic technology 

(Bishop 1991 p.82), not just a means for social interaction and communication. 

Language allows learners to understand and appropriate the value of mathematical 

proof compared with the pragmatic proof they were used to. Now, this language could 

be of lower levels than the naïve formalism mathematicians use; the level of language 

will bind the level of the proof learners can produce and/or understand.  However, 

there is room for genuine mathematical activity at all these levels, provided that the 

learners have moved beyond empiricism and have seen the added value of the 

theoretical posture (see figure 12 below).  

                                                 
21 figure 11 below sketches the interactions between these three poles 
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This figure illustrates the approximate mapping between 

the critical categories in each of the three dimensions 

(action, formulation and validation). It points the most 

difficult problem for teacher, that is to provide students 

with the means to switch from a pragmatic approach of 

truth to a theoretical approach of validity based on 

mathematical proof. Realising that language is a tool is a 

critical milestone on this move. 

Figure 12 

----------------------------------------------------------------------------------------------------- 

4 Still an open problem: the situations… 

After a few decades, researchers have now reached a consensus on the variety of 

meanings that proof may have for learners (if not for teachers). Several classifications 

and analyses of the complexity of the different aspects of mathematical proof have 

been extensively reported.  Although they still express significant differences 

(Balacheff, 2008), researchers have converged on considering mathematical proof as a 
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core issue in the challenge of learning and teaching mathematics; mathematical 

knowing and proving cannot be separated. In other words an educational 

problématique of proof cannot be separated from that of constructing mathematical 

knowledge.  

This challenge is well understood from an epistemological perspective.  However, it is 

far from clear from a didactical perspective.  A lot of effort has gone into proposing 

problems and mathematical activities which could facilitate the learning of 

mathematical proof.  At the turn of the 20th century, computer science and human-

computer interaction research have made so much progress that it is possible to 

provide learners and teachers with environments able to provide much more 

mathematically relevant feedback on users’ activities.  Especially, dynamic geometry 

environments and computer algebra systems  allow learners to experience 

conjecturing and refuting in a manner never available before, hence giving them 

access to a dialectic necessary to ground the learning of mathematical proof.  

However, there is some evidence that learners can remain in a pragmatic intellectual 

posture, not catching the value of mathematical proof. 

Prompting the ultimate move from pragmatic to theoretic knowing requires designing 

situations so that the pragmatic posture is no longer safe or economical for the 

learners, while the theoretical posture demonstrates all its advantages. The resultant 

social and situational challenges are levers which one can use to modify the nature of 

the learners’ commitment to proving.  Such design is possible if solving a problem is 

no longer the main issue and fades away behind the issue of being “sure” of the 

validity of the solution.  We already have some examples which witness the 

possibility of designing such situations (e.g., Bartolini-Bussi 1996, Boero et al. 1996, 

Arsac and Mantes 1997, etc.). The scientific challenge is now to better understand the 
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didactical characteristics of these situations and to propose a reliable model for their 

design, for the sake of both researchers and teachers. 
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