
Sparse Modeling for Image and Vision Processing

Julien Mairal, Francis Bach, Jean Ponce

To cite this version:

Julien Mairal, Francis Bach, Jean Ponce. Sparse Modeling for Image and Vision Processing.
now publishers, 8 (2-3), pp.216, 2014, Foundations and Trends in Computer Graphics and
Vision, <10.1561/9781680830095>. <http://www.nowpublishers.com/>. <hal-01081139v2>

HAL Id: hal-01081139

https://hal.inria.fr/hal-01081139v2

Submitted on 6 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01081139v2

Sparse Modeling for Image and

Vision Processing

Julien Mairal
Inria1

julien.mairal@inria.fr

Francis Bach
Inria2

francis.bach@inria.fr

Jean Ponce
Ecole Normale Supérieure3

jean.ponce@ens.fr

1LEAR team, laboratoire Jean Kuntzmann, CNRS, Univ. Grenoble Alpes,
France.

2SIERRA team, département d’informatique de l’Ecole Normale Supérieure,
ENS/CNRS/Inria UMR 8548, France.

3WILLOW team, département d’informatique de l’Ecole Normale Supérieure,
ENS/CNRS/Inria UMR 8548, France.

Contents

1 A Short Introduction to Parsimony 2

1.1 Early concepts of parsimony in statistics 6

1.2 Wavelets in signal processing 8

1.3 Modern parsimony: the ℓ1-norm and other variants 13

1.4 Dictionary learning . 32

1.5 Compressed sensing and sparse recovery 36

1.6 Theoretical results about dictionary learning 40

2 Discovering the Structure of Natural Images 45

2.1 Pre-processing . 47

2.2 Principal component analysis 54

2.3 Clustering or vector quantization 57

2.4 Dictionary learning . 61

2.5 Structured dictionary learning 62

2.6 Other matrix factorization methods 66

2.7 Discussion . 74

3 Sparse Models for Image Processing 76

3.1 Image denoising . 77

3.2 Image inpainting . 84

3.3 Image demosaicking . 86

ii

iii

3.4 Image up-scaling . 90

3.5 Inverting nonlinear local transformations 93

3.6 Video processing . 97

3.7 Face compression . 97

3.8 Other patch modeling approaches 102

4 Sparse Coding for Visual Recognition 107

4.1 A coding and pooling approach to image modeling 108

4.2 The botany of sparse feature coding 116

4.3 Face recognition . 123

4.4 Patch classification and edge detection 125

4.5 Connections with neural networks 132

4.6 Other applications . 136

5 Optimization Algorithms 142

5.1 Sparse reconstruction with the ℓ0-penalty 143

5.2 Sparse reconstruction with the ℓ1-norm 150

5.3 Iterative reweighted-ℓ1 methods 156

5.4 Iterative reweighted-ℓ2 methods 159

5.5 Optimization for dictionary learning 161

5.6 Other optimization techniques 172

6 Conclusions 173

Acknowledgments 175

References 176

Abstract

In recent years, a large amount of multi-disciplinary research has been

conducted on sparse models and their applications. In statistics and

machine learning, the sparsity principle is used to perform model

selection—that is, automatically selecting a simple model among a large

collection of them. In signal processing, sparse coding consists of rep-

resenting data with linear combinations of a few dictionary elements.

Subsequently, the corresponding tools have been widely adopted by sev-

eral scientific communities such as neuroscience, bioinformatics, or com-

puter vision. The goal of this monograph is to offer a self-contained view

of sparse modeling for visual recognition and image processing. More

specifically, we focus on applications where the dictionary is learned

and adapted to data, yielding a compact representation that has been

successful in various contexts.

1

A Short Introduction to Parsimony

In its most general definition, the principle of sparsity, or parsimony,

consists of representing some phenomenon with as few variables as

possible. It appears to be central to many research fields and is often

considered to be inspired from an early doctrine formulated by the

philosopher and theologian William of Ockham in the 14th century,

which essentially favors simple theories over more complex ones. Of

course, the link between Ockham and the tools presented in this mono-

graph is rather thin, and more modern views seem to appear later in

the beginning of the 20th century. Discussing the scientific method,

Wrinch and Jeffreys [1921] introduce indeed a simplicity principle re-

lated to parsimony as follows:

The existence of simple laws is, then, apparently, to be re-

garded as a quality of nature; and accordingly we may infer

that it is justifiable to prefer a simple law to a more complex

one that fits our observations slightly better.

Remarkably, Wrinch and Jeffreys [1921] further discuss statistical mod-

eling of physical observations and relate the concept of “simplicity” to

the number of learning parameters; as a matter of fact, this concept is

relatively close to the contemporary view of parsimony.

2

3

Subsequently, numerous tools have been developed by statisticians

to build models of physical phenomena with good predictive power.

Models are usually learned from observed data, and their generaliza-

tion performance is evaluated on test data. Among a collection of plau-

sible models, the simplest one is often preferred, and the number of

underlying parameters is used as a criterion to perform model selec-

tion [Mallows, 1964, 1966, Akaike, 1973, Hocking, 1976, Barron et al.,

1998, Rissanen, 1978, Schwarz, 1978, Tibshirani, 1996].

In signal processing, similar problems as in statistics arise, but a

different terminology is used. Observations, or data vectors, are called

“signals”, and data modeling appears to be a crucial step for perform-

ing various operations such as restoration, compression, or for solving

inverse problems. Here also, the sparsity principle plays an important

role and has been successful [Mallat and Zhang, 1993, Pati et al., 1993,

Donoho and Johnstone, 1994, Cotter et al., 1999, Chen et al., 1999,

Donoho, 2006, Candès et al., 2006]. Each signal is approximated by

a sparse linear combination of prototypes called dictionary elements,

resulting in simple and compact models.

However, statistics and signal processing remain two distinct fields

with different objectives and methodology; specifically, signals of-

ten come from the same data source, e.g., natural images, whereas

problems considered in statistics are unrelated to each other in gen-

eral. Then, a long series of works has been devoted to finding ap-

propriate dictionaries for signal classes of interest, leading to vari-

ous sorts of wavelets [Freeman and Adelson, 1991, Simoncelli et al.,

1992, Donoho, 1999, Candès and Donoho, 2002, Do and Vetterli, 2005,

Le Pennec and Mallat, 2005, Mallat, 2008]. Even though statistics and

signal processing have devised most of the methodology of sparse

modeling, the parsimony principle was also discovered independently

in other fields. To some extent, it appears indeed in the work

of Markowitz [1952] about portfolio selection in finance, and also in

geophysics [Claerbout and Muir, 1973, Taylor et al., 1979].

In neuroscience, Olshausen and Field [1996, 1997] proposed a

significantly different approach to sparse modeling than previ-

ously established practices. Whereas classical techniques in signal

4 A Short Introduction to Parsimony

processing were using fixed off-the-shelf dictionaries, the method

of Olshausen and Field [1996, 1997] consists of learning it from train-

ing data. In a pioneer exploratory experiment, they demonstrated that

dictionary learning could easily discover underlying structures in nat-

ural image patches; later, their approach found numerous applica-

tions in many fields, notably in image and audio processing [Lewicki,

2002, Elad and Aharon, 2006, Mairal et al., 2009, Yang et al., 2010a]

and computer vision [Raina et al., 2007, Yang et al., 2009, Zeiler et al.,

2011, Mairal et al., 2012, Song et al., 2012, Castrodad and Sapiro,

2012, Elhamifar et al., 2012, Pokrass et al., 2013].

The goal of this monograph is to present basic tools of sparse mod-

eling and their applications to visual recognition and image processing.

We aim at offering a self-contained view combining pluri-disciplinary

methodology, practical advice, and a large review of the literature. Most

of the figures in the paper are produced with the software SPAMS1, and

the corresponding Matlab code will be provided on the first author’s

webpage.

The monograph is organized as follows: the current introductory

section is divided into several parts providing a simple historical view

of sparse estimation. In Section 1.1, we start with early concepts of

parsimony in statistics and information theory from the 70’s and 80’s.

We present the use of sparse estimation within the wavelet framework

in Section 1.2, which was essentially developed in the 90’s. Section 1.3

introduces the era of “modern parsimony”—that is, the ℓ1-norm and

its variants, which have been heavily used during the last two decades.

Section 1.4 is devoted to the dictionary learning formulation originally

introduced by Olshausen and Field [1996, 1997], which is a key com-

ponent of most applications presented later in this monograph. In Sec-

tions 1.5 and 1.6, we conclude our introductory tour with some theo-

retical aspects, such as the concept of “compressed sensing” and sparse

recovery that has attracted a large attention in recent years.

With all these parsimonious tools in hand, we discuss the use of

sparse coding and related sparse matrix factorization techniques for

discovering the underlying structure of natural image patches in Sec-

1available here http://spams-devel.gforge.inria.fr/.

http://spams-devel.gforge.inria.fr/

5

tion 2 . Even though the task here is subjective and exploratory, it is

the first successful instance of dictionary learning; the insight gained

from these early experiments forms the basis of concrete applications

presented in subsequent sections.

Section 3 covers numerous applications of sparse models of natural

image patches in image processing, such as image denoising, super-

resolution, inpainting, or demosaicking. This section is concluded with

other related patch-modeling approaches.

Section 4 presents recent success of sparse models for visual recogni-

tion, such as codebook learning of visual descriptors, face recognition,

or more low-level tasks such as edge detection and classification of tex-

tures and digits. We conclude the section with other computer vision

applications such as visual tracking and data visualization.

Section 5 is devoted to optimization algorithms. It presents in a

concise way efficient algorithms for solving sparse decomposition and

dictionary learning problems.

We see our monograph as a good complement of other books and

monographs about sparse estimation, which offer different perspec-

tives, such as Mallat [2008], Elad [2010] in signal and image processing,

or Bach et al. [2012a] in optimization and machine learning. We also

put the emphasis on the structure of natural image patches learned with

dictionary learning, and thus present an alternative view to the book

of Hyvärinen et al. [2009], which is focused on independent component

analysis.

Notation. In this monograph, vectors are denoted by bold lower-case

letters and matrices by upper-case ones. For instance, we consider in

the rest of this paragraph a vector x in R
n and a matrix X in R

m×n.

The columns of X are represented by indexed vectors x1, . . . ,xn such

that we can write X = [x1, . . . ,xn]. The i-th entry of x is denoted

by x[i], and the i-th entry of the j-th column of X is represented

by X[i, j]. For any subset g of {1, . . . , n}, we denote by x[g] the vec-

tor in R
|g| that records the entries of x corresponding to indices in g.

For q ≥ 1, we define the ℓq-norm of x as ‖x‖q , (
∑n

i=1 |x[i]|q)1/q,

and the ℓ∞-norm as ‖x‖∞ , limq→+∞ ‖x‖q = maxi=1,...,n |x[i]|.

6 A Short Introduction to Parsimony

For q < 1, we define the ℓq-penalty as ‖x‖q ,
∑n

i=1 |x[i]|q, which,

with an abuse of terminology, is often referred to as ℓq-norm. The ℓ0-

penalty simply counts the number of non-zero entries in a vec-

tor: ‖x‖0 , ♯{i s.t. x[i] 6= 0}. For a matrix X, we define the Frobenius

norm ‖X‖F =
(
∑m

i=1

∑n
j=1 X[i, j]2

)1/2
. When dealing with a random

variable X defined on a probability space, we denote its expectation

by E[X], assuming that there is no measurability or integrability issue.

1.1 Early concepts of parsimony in statistics

A large number of statistical procedures can be formulated as maximum

likelihood estimation. Given a statistical model with parameters θ, it

consists of minimizing with respect to θ an objective function represent-

ing the negative log-likelihood of observed data. Assuming for instance

that we observe independent samples z1, . . . , zn of the (unknown) data

distribution, we need to solve

min
θ∈Rp

[

L(θ) , −
n∑

i=1

logPθ(zi)

]

, (1.1)

where P is some probability distribution parameterized by θ.

Simple methods such as ordinary least squares can be written

as (1.1). Consider for instance data points zi that are pairs (yi,xi),

with yi is an observation in R and xi is a vector in R
p, and assume that

there exists a linear relation yi = x⊤
i θ+εi, where εi is an approximation

error for observation i. Under a model where the εi’s are independent

and identically normally distributed with zero-mean, Eq. (1.1) is equiv-

alent to a least square problem:2

min
θ∈Rp

n∑

i=1

1

2

(

yi − x⊤
i θ
)2
.

To prevent overfitting and to improve the interpretability of the learned

model, it was suggested in early work that a solution involving only a

2Note that the Gaussian noise assumption is not necessary to justify the ordinary
least square formulation. It is only sufficient to interpret it as maximum likelihood
estimation. In fact, as long as the conditional expectation E[y|x] is linear, the ordi-
nary least square estimator is statistically consistent under mild assumptions.

1.1. Early concepts of parsimony in statistics 7

few model variables could be more appropriate than an exact solution

of (1.1); in other words, a sparse solution involving only—let us say—

k variables might be desirable in some situations. Unfortunately, such

a strategy yields two difficulties: first, it is not clear a priori how to

choose k; second, finding the best subset of k variables is NP-hard in

general [Natarajan, 1995]. The first issue was addressed with several

criterions for controlling the trade-off between the sparsity of the so-

lution θ and the adequacy of the fit to training data. For the second

issue, approximate computational techniques have been proposed.

Mallows’s Cp, AIC, and BIC. For the ordinary least squares prob-

lem, Mallows [1964, 1966] introduced the Cp-statistics, later generalized

by Akaike [1973] with the Akaike information criterion (AIC), and then

by Schwarz [1978] with the Bayesian information criterion (BIC). Us-

ing Cp, AIC, or BIC is equivalent to solving the penalized ℓ0-maximum

likelihood estimation problem

min
θ∈Rp

L(θ) + λ‖θ‖0, (1.2)

where λ depends on the chosen criterion [see Hastie et al., 2009],

and ‖θ‖0 is the ℓ0-penalty. Similar formulations have also been derived

by using the minimum description length (MDL) principle for model

selection [Rissanen, 1978, Barron et al., 1998]. As shown by Natarajan

[1995], the problem (1.2) is NP-hard, and approximate algorithms are

necessary unless p is very small, e.g., p < 30.

Forward selection and best subset selection for least squares. To

obtain an approximate solution of (1.2), a classical approach is the for-

ward selection technique, which is a greedy algorithm that solves a se-

quence of maximum likelihood estimation problems computed on a sub-

set of variables. After every iteration, a new variable is added to the sub-

set according to the chosen sparsity criterion in a greedy manner. Some

variants allow backward steps—that is, a variable can possibly exit the

active subset after an iteration. The algorithm is presented in more

details in Section 5.1 and seems to be due to Efroymson [1960], accord-

ing to Hocking [1976]. Other approaches considered in the 70’s include

8 A Short Introduction to Parsimony

also the leaps and bounds technique of Furnival and Wilson [1974], a

branch-and-bound algorithm providing the exact solution of (1.2) with

exponential worst-case complexity.

1.2 Wavelets in signal processing

In signal processing, similar problems as in statistics have been studied

in the context of wavelets. In a nutshell, a wavelet basis represents a set

of functions φ1, φ2, . . . that are essentially dilated and shifted versions

of each other. Unlike Fourier basis, wavelets have the interesting prop-

erties to be localized both in the space and frequency domains, and to

be suitable to multi-resolution analysis of signals [Mallat, 1989].

The concept of parsimony is central to wavelets. When a signal f is

“smooth” in a particular sense [see Mallat, 2008], it can be well approx-

imated by a linear combination of a few wavelets. Specifically, f is close

to an expansion
∑

i αiφi where only a few coefficients αi are non-zero,

and the resulting compact representation has effective applications in

estimation and compression. The wavelet theory is well developed for

continuous signals, e.g., f is chosen in the Hilbert space L2(R), but

also for discrete signals f in R
m, making it suitable to modern digital

image processing.

Since the first wavelet was introduced by Haar [1910], much research

has been devoted to designing a wavelet set that is adapted to particular

signals such as natural images. After a long quest for finding good

orthogonal basis such as the one proposed by Daubechies [1988], a series

of works has focused on wavelet sets whose elements are not linearly

independent. It resulted a large number of variants, such as steerable

wavelets [Simoncelli et al., 1992], curvelets [Candès and Donoho, 2002],

contourlets [Do and Vetterli, 2005], or bandlets [Le Pennec and Mallat,

2005]. For the purpose of our monograph, one concept related to sparse

estimation is particularly important; it is called wavelet thresholding.

Sparse estimation and wavelet thresholding. Let us consider a dis-

crete signal represented by a vector x in R
p and an orthogonal wavelet

basis set D = [d1, . . . ,dp]—that is, satisfying D⊤D = I where I is the

1.2. Wavelets in signal processing 9

identity matrix. Approximating x by a sparse linear combination of

wavelet elements can be formulated as finding a sparse vector α in R
p,

say with k non-zero coefficients, that minimizes

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α‖0 ≤ k. (1.3)

The sparse decomposition problem (1.3) is an instance of the best sub-

set selection formulation presented in Section 1.1 where α represents

model parameters, demonstrating that similar topics arise in statistics

and signal processing. However, whereas (1.3) is NP-hard for general

matrices D [Natarajan, 1995], we have assumed D to be orthogonal in

the context of wavelets. As such, (1.3) is equivalent to

min
α∈Rp

1

2

∥
∥
∥D⊤x−α

∥
∥
∥

2

2
s.t. ‖α‖0 ≤ k,

and admits a closed form. Let us indeed define the vector β , D⊤x

in R
p, corresponding to the exact non-sparse decomposition of x

onto D—that is, we have x = Dβ since D is orthogonal. To obtain

the best k-sparse approximation, we denote by µ the k-th largest value

among the set {|β[1]|, . . . , |β[p]|}, and the solution αht of (1.3) is ob-

tained by applying to β an operator called “hard-thresholding” and

defined as

αht[i] = 1|β[i]|≥µβ[i] =

{

β[i] if |β[i]| ≥ µ,
0 otherwise,

(1.4)

where 1|β[i]|≥µ is the indicator function, which is equal to 1 if |β[i]| ≥ µ
and 0 otherwise. In other words, the hard-thresholding operator simply

sets to zero coefficients from β whose magnitude is below the thresh-

old µ. The corresponding procedure, called “wavelet thresholding”, is

simple and effective for image denoising, even though it does not per-

form as well as recent state-of-the-art techniques presented in Section 3.

When an image x is noisy, e.g., corrupted by white Gaussian noise,

and µ is well chosen, the estimate Dαht is a good estimate of the clean

original image. The terminology “hard” is defined in contrast to an im-

portant variant called the “soft-thresholding operator”, which was in-

troduced by Donoho and Johnstone [1994] in the context of wavelets:3

3Note that the soft-thresholding operator appears in fact earlier in the statistics
literature [see Efron and Morris, 1971, Bickel, 1984], but it was used there for a

10 A Short Introduction to Parsimony

αst[i] , sign(β[i]) max(|β[i]| − λ, 0) =

β[i]− λ if β[i] ≥ λ,
β[i] + λ if β[i] ≤ −λ,
0 otherwise,

(1.5)

where λ is a parameter playing the same role as µ in (1.4). Not only

does the operator set small coefficients of β to zero, but it also reduces

the magnitude of the non-zero ones. Both operators are illustrated and

compared to each other in Figure 1.1. Interestingly, whereas αht is the

solution of (1.3) when µ corresponds to the entry of β = D⊤x with k-

th largest magnitude, αst is in fact the solution of the following sparse

reconstruction problem with the orthogonal matrix D:

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1. (1.6)

This formulation will be the topic of the next section for general non-

orthogonal matrices. Similar to statistics where choosing the parame-

ter k of the best subset selection was difficult, automatically selecting

the best thresholds µ or λ has been a major research topic [see, e.g.

Donoho and Johnstone, 1994, 1995, Chang et al., 2000a,b].

Structured group thresholding. Wavelets coefficients have a particu-

lar structure since the basis elements di are dilated and shifted versions

of each other. It is for instance possible to define neighborhood rela-

tionships for wavelets whose spatial supports are close to each other,

or hierarchical relationships between wavelets with same or similar lo-

calization but with different scales. For one-dimensional signals, we

present in Figure 1.2 a typical organization of wavelet coefficients on a

tree with arrows representing such relations. For two-dimensional im-

ages, the structure is slightly more involved and the coefficients are

usually organized as a collection of quadtrees [see Mallat, 2008, for

more details]; we present such a configuration in Figure 1.3.

A natural idea has inspired the recent concept of group sparsity

that will be presented in the next section; it consists in exploiting the

wavelet structure to improve thresholding estimators. Specifically, it is

different purpose.

1.2. Wavelets in signal processing 11

β

αst

λ

−λ

(a) Soft-thresholding operator,
αst = sign(β) max(|β| − λ, 0).

β

αht

µ

−µ

(b) Hard-thresholding operator
αht = 1|β|≥µβ.

Figure 1.1: Soft- and hard-thresholding operators, which are commonly used for
signal estimation with orthogonal wavelet basis.

α1

α2 α3

α4 α5 α6 α7

α8 α9 α10 α11 α12 α13 α14 α15

Figure 1.2: Illustration of a wavelet tree with four scales for one-dimensional
signals. Nodes represent wavelet coefficients and their depth in the tree corre-
spond to the scale parameter of the wavelet. We also illustrate the zero-tree coding
scheme [Shapiro, 1993] in this figure. Empty nodes correspond to zero coefficient:
according to the zero-tree coding scheme, their descendants in the tree are also zero.

12 A Short Introduction to Parsimony

Figure 1.3: Wavelet coefficients displayed for the image lena using the orthogonal
basis of Daubechies [1988]. A few coefficients representing a low-resolution version
of the image are displayed on the top-left corner. Wavelets corresponding to this
low-resolution image are obtained by filtering the original image with shifted ver-
sions of a low-pass filter called “scaling function” or “father wavelet”. The rest of
the coefficients are organized into three quadtrees (on the right, on the left, and
on the diagonal). Each quadtree is obtained by filtering the original image with a
wavelet at three different scales and at different positions. The value zero is rep-
resented by the grey color; negative values appear in black, and positive values
in white. The wavelet decomposition and this figure have been produced with the
software package matlabPyrTools developed by Eero Simoncelli and available here:
http://www.cns.nyu.edu/~lcv/software.php.

http://www.cns.nyu.edu/~lcv/software.php

1.3. Modern parsimony: the ℓ1-norm and other variants 13

possible to use neighborhood relations between wavelet basis elements

to define groups of coefficients that form a partition G of {1, . . . , p}, and

use a group-thresholding operator [Hall et al., 1999, Cai, 1999] defined

for every group g in G as

αgt[g] ,

{ (

1− λ
‖β[g]‖2

)

β[g] if ‖β[g]‖2 ≥ λ,
0 otherwise,

(1.7)

where β[g] is the vector of size |g| recording the entries of β whose

indices are in g. By using such an estimator, groups of neighbor coeffi-

cients are set to zero together when their joint ℓ2-norm falls below the

threshold λ. Interestingly, even though the next interpretation does not

appear in early work about group-thresholding [Hall et al., 1999, Cai,

1999], it is possible to view αgt with β = D⊤x as the solution of the

following penalized problem

min
α∈Rp

1

2
‖x−Dα‖22 + λ

∑

g∈G
‖α[g]‖2, (1.8)

where the closed-form solution (1.7) holds because D is orthogonal [see

Bach et al., 2012a]. Such a formulation will be studied in the next sec-

tion for general matrices.

Finally, other ideas for exploiting both structure and wavelet par-

simony have been proposed. One is a coding scheme called “zero-tree”

wavelet coding [Shapiro, 1993], which uses the tree structure of wavelets

to force all descendants of zero coefficients to be zero as well. Equiv-

alently, a coefficient can be non-zero only if its parent in the tree is

non-zero, as illustrated in Figure 1.2. This idea has been revisited later

in a more general context by Zhao et al. [2009]. Other complex models

have been used as well for modeling interactions between coefficients:

we can mention the application of hidden Markov models (HMM) to

wavelets by Crouse et al. [1998] and the Gaussian scale mixture model

of Portilla et al. [2003].

1.3 Modern parsimony: the ℓ1-norm and other variants

The era of “modern” parsimony corresponds probably to the use

of convex optimization techniques for solving feature selection or

14 A Short Introduction to Parsimony

sparse decomposition problems. Even though the ℓ1-norm was in-

troduced for that purpose in geophysics [Claerbout and Muir, 1973,

Taylor et al., 1979], it was popularized in statistics with the Lasso es-

timator of Tibshirani [1996] and independently in signal processing

with the basis pursuit formulation of Chen et al. [1999]. Given obser-

vations x in R
n and a matrix of predictors D in R

n×p, the Lasso consists

of learning a linear model x ≈ Dα by solving the following quadratic

program:

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α‖1 ≤ µ. (1.9)

As detailed in the sequel, the ℓ1-norm encourages the solution α to be

sparse and the parameter µ is used to control the trade-off between

data fitting and the sparsity of α. In practice, reducing the value of µ

leads indeed to sparser solution in general, i.e., with more zeroes, even

though there is no formal relation between the sparsity of α and its ℓ1-

norm for general matrices D.

The basis pursuit denoising formulation of Chen et al. [1999] is rel-

atively similar but the ℓ1-norm is used as a penalty instead of a con-

straint. It can be written as

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1, (1.10)

which is essentially equivalent to (1.9) from a convex optimization per-

spective, and in fact (1.10) is also often called “Lasso” in the literature.

Given some data x, matrix D, and parameter µ > 0, we indeed know

from Lagrange multiplier theory [see, e.g., Borwein and Lewis, 2006,

Boyd and Vandenberghe, 2004] that for all solution α⋆ of (1.9), there

exists a parameter λ ≥ 0 such that α⋆ is also a solution of (1.10). We

note, however, that there is no direct mapping between λ and µ, and

thus the choice of formulation (1.9) or (1.10) should be made accord-

ing to how easy it is to select the parameters λ or µ. For instance, one

may prefer (1.9) when a priori information about the ℓ1-norm of the

solution is available. In Figure 1.4, we illustrate the effect of changing

the value of the regularization parameter λ on the solution of (1.10)

for two datasets. When λ = 0, the solution is dense; in general, in-

creasing λ sets more and more variables to zero. However, the relation

1.3. Modern parsimony: the ℓ1-norm and other variants 15

0 1 2 3
−0.5

0

0.5

1

1.5

λ

c
o

e
ff

ic
ie

n
t

v
a

lu
e

s

α
1

α
2

α
3

α
4

α
5

(a) Path for dataset 1

0 1 2 3 4
−0.5

0

0.5

1

1.5

λ
c
o

e
ff

ic
ie

n
t

v
a

lu
e

s

α
1

α
2

α
3

α
4

α
5

(b) Path for dataset 2

Figure 1.4: Two examples of regularization paths for the Lasso/Basis Pursuit. The
curves represent the values of the p = 5 entries of the solutions of (1.10) when
varying the parameter λ for two datasets. On the left, the relation between λ and
the sparsity of the solution is monotonic; On the right, this is not the case. Note
that the paths are piecewise linear, see Section 5.2 for more details.

between λ and the sparsity of the solution is not exactly monotonic. In

a few cases, increasing λ yields a denser solution.

Another “equivalent” formulation consists of finding a sparse de-

composition under a reconstruction constraint:

min
α∈Rp

‖α‖1 s.t. ‖x−Dα‖22 ≤ ε. (1.11)

This formulation can be useful when we have a priori knowledge about

the noise level and the parameter ε is easy to choose. The link be-

tween (1.10) and (1.11) is similar to the link between (1.10) and (1.9).

For noiseless problems, Chen et al. [1999] have also introduced a

formulation simply called “basis pursuit” (without the terminology “de-

noising”), defined as

min
α∈Rp

‖α‖1 s.t. x = Dα, (1.12)

which is related to (1.10) in the sense that the set of solutions of (1.10)

converges to the solutions of (1.12) when λ converges to 0+, whenever

the linear system x = Dα is feasible. These four formulations (1.9-1.12)

16 A Short Introduction to Parsimony

have gained a large success beyond the statistics and signal processing

communities. More generally, the ℓ1-norm has been used as a regular-

ization function beyond the least-square context, leading to problems

of the form

min
α∈Rp

f(α) + λ‖α‖1, (1.13)

where f : Rp → R is a loss function. In the rest of this section, we will

present several variants of the ℓ1-norm, but before that, we will try to

understand why such a penalty is appropriate for sparse estimation.

Why does the ℓ1-norm induce sparsity? Even though we have

claimed that there is no rigorous relation between the sparsity of α

and its ℓ1-norm in general, intuition about the sparsity-inducing effect

of the ℓ1-norm may be obtained from several viewpoints.

Analytical point of view. In the previous section about wavelets,

we have seen that when D is orthogonal, the ℓ1-decomposition prob-

lem (1.10) admits an analytic closed form solution (1.5) obtained by

soft-thresholding. As a result, whenever the magnitude of the inner

product d⊤
i x is smaller than λ for an index i, the corresponding vari-

able α⋆[i] is equal to zero. Thus, the number of zeroes of the solution α⋆

monotonically increases with λ.

For non-orthogonal matrices D, such a monotonic relation does not

formally hold anymore; in practice, the sparsity-inducing property of

the ℓ1-penalty remains effective, as illustrated in Figure 1.4. Some in-

tuition about this fact can be gained by studying optimality conditions

for the general ℓ1-regularized problem (1.13) where f is a differentiable

function. The following lemma details these conditions.

Lemma 1.1 (Optimality conditions for ℓ1-regularized problems).

A vector α⋆ in R
p is a solution of (1.13) if and only if

∀i = 1, . . . , p

{

−∇f(α⋆)[i] = λ sign(α⋆[i]) if α⋆[i] 6= 0,

|∇f(α⋆)[i]| ≤ λ otherwise.
(1.14)

Proof. A proof using the classical concept of subdifferential from con-

vex optimization can be found in [see,e.g., Bach et al., 2012a]. Here,

1.3. Modern parsimony: the ℓ1-norm and other variants 17

we provide instead an elementary proof using the simpler concept of

directional derivative for nonsmooth functions, defined as, when the

limit exists,

∇g(α,κ) , lim
t→0+

g(α + tκ)− g(α)

t
,

for a function g : R
p → R at a point α in R

p and a direction κ

in R
p. For convex functions g, directional derivatives always exist and

a classical optimality condition for α⋆ to be a minimum of g is to

have ∇g(α⋆,κ) non-negative for all directions κ [Borwein and Lewis,

2006]. Intuitively, this means that one cannot find any direction κ such

that an infinitesimal move along κ from α⋆ decreases the value of the

objective. When g is differentiable, the condition is equivalent to the

classical optimality condition ∇g(α⋆) = 0.

We can now apply the directional derivative condition to the func-

tion g : α 7→ f(α) + λ‖α‖1, which is equivalent to

∀κ ∈ R
p, ∇f(α⋆)⊤κ + λ

p
∑

i=1

{

sign(α⋆[i])κ[i] if α⋆[i] 6= 0,

|κ[i]| otherwise

}

≥ 0.

(1.15)

It is then easy to show that (1.15) holds for all κ if and only the

inequality holds for the specific values κ = ei and κ = −ei for all i,

where ei is the vector in R
p with zeroes everywhere except for the i-th

entry that is equal to one. This immediately provides an equivalence

between (1.15) and (1.14).

Lemma 1.1 is interesting from a computational point of view (see

Section 5.2), but it also tells us that when λ ≥ ‖∇f(0)‖∞, the condi-

tions (1.14) are satisfied for α⋆ = 0, the sparsest solution possible.

Physical point of view. In image processing or computer vision,

the word “energy” often denotes the objective function of a minimiza-

tion problem; it is indeed common in physics to have complex systems

that stabilize at a configuration of minimum potential energy. The neg-

ative of the energy’s gradient represents a force, a terminology we will

borrow in this paragraph. Consider for instance a one-dimensional ℓ1-

18 A Short Introduction to Parsimony

regularized estimation problem

min
α∈R

1

2
(β − α)2 + λ|α|, (1.16)

where β is a positive constant. Whenever α is non-zero, the ℓ1-

penalty is differentiable with derivative λ sign(α). When interpreting

this objective as an energy minimization problem, the ℓ1-penalty can

be seen as applying a force driving α towards the origin with con-

stant intensity λ. Consider now instead the squared ℓ2-penalty, also

called regularization of Tikhonov [1963], or ridge regression regulariza-

tion [Hoerl and Kennard, 1970]:

min
α∈R

1

2
(β − α)2 +

λ

2
α2. (1.17)

The derivative of the quadratic energy (λ/2)α2 is λα. It can be inter-

preted as a force that also points to the origin but with linear intensity

λ|α|. Therefore, the force corresponding to the ridge regularization can

be arbitrarily strong when α is large, but if fades away when α gets

close to zero. As a result, the squared ℓ2-regularization does not have

a sparsity-inducing effect. From an analytical point of view, we have

seen that the solution of (1.16) is zero when |β| is smaller than λ. In

contrast, the solution of (1.17) admits a closed form α⋆ = β/(1 + λ).

And thus, regardless of the parameter λ, the solution is never zero.

We present a physical example illustrating this phenomenon in

Figure 1.5. We use springs whose potential energy is known to be

quadratic, and objects with a gravitational potential energy that is

approximately linear on the Earth’s surface.

Geometrical point of view. The sparsity-inducing effect of the ℓ1-

norm can also be interpreted by studying the geometry of the ℓ1-ball

{α ∈ R
p : ‖α‖1 ≤ µ}. More precisely, understanding the effect of the

Euclidean projection onto this set is important: in simple cases where

the design matrix D is orthogonal, the solution of (1.9) can indeed be

obtained by the projection

min
α∈Rp

1

2
‖β −α‖22 s.t. ‖α‖1 ≤ µ, (1.18)

1.3. Modern parsimony: the ℓ1-norm and other variants 19

E1 = k1
2 (β − α)2

E2 = k2
2 α

2 α β
α

E1 = k1
2 (β − α)2

E2 = mg|α|, α ≥ 0

(a) Small regularization

E1 = k1
2 (β − α)2

E2 = k2
2 α

2 α
α⋆ = 0

E1 = k1
2 (β − α)2

E2 = mg|α|, α ≥ 0

(b) High regularization

Figure 1.5: A physical system illustrating the sparsity-inducing effect of the ℓ1-
norm (on the right) in contrast to the Tikhonov-ridge regularization (on the left).
Three springs are represented in each figure, two on the left, one on the right. Red
points are fixed and cannot move. On the left, two springs are linked to each other
by a blue point whose position can vary. On the right, a blue object of mass m is
attached to the spring. Right and left configurations define two different dynamical
systems with energies E1+E2; on the left, E1 and E2 are elastic potential energies; on
the right, E1 is the same as on the left, whereas E2 is a gravitational potential energy,
where g is the gravitational constant on the Earth’s surface. Both system can evolve
according to their initial positions, and stabilize for the value of α⋆ that minimizes
the energy E1 +E2, assuming that some energy can be dissipated by friction forces.
On the left, it is possible to show that α⋆ = βk1/(k1 + k2) and thus, the solution α⋆

is never equal to zero, regardless of the strength k2 of the bottom spring. On the
right, the solution is obtained by soft-thresholding: α⋆ = max(β − mg/k1, 0). As
shown on Figure 1.5(b), when the mass m is large enough, the blue object touches
the ground and α⋆ = 0. Figure adapted from [Mairal, 2010].

20 A Short Introduction to Parsimony

where β = D⊤x. When D is not orthogonal, a classical algorithm for

solving (1.9) is the projected gradient method (see Section 5.2), which

performs a sequence of projections (1.18) for different values of β. Note

that how to solve (1.18) efficiently is well studied; it can be achieved

in O(p) operations with a divide-and-conquer strategy [Brucker, 1984,

Duchi et al., 2008].

In Figure 1.6, we illustrate the effect of the ℓ1-norm projection and

compare it to the case of the ℓ2-norm. The corners of the ℓ1-ball are

on the main axes and correspond to sparse solutions. Two of them are

represented by red and green dots, with respective coordinates (µ, 0)

and (0, µ). Most strikingly, a large part of the space in the figure,

represented by red and green regions, ends up on these corners after

projection. In contrast, the set of points that is projected onto the blue

dot, is simply the blue line. The blue dot corresponds in fact to a dense

solution with coordinates (µ/2, µ/2). Therefore, the figure illustrates

that the ℓ1-ball in two dimensions encourages solutions to be on its

corners. In the case of the ℓ2-norm, the ball is isotropic, and treats

every direction equally. In Figure 1.7, we represent these two balls in

three dimensions, where we can make similar observations.

More formally, we can mathematically characterize our remarks

about Figure 1.6. Consider a point y in R
p on the surface of the ℓ1-ball

of radius µ = 1, and define the set N , {z ∈ R
p : π(z) = y}, where π

is the projection operator onto the ℓ1-ball. Examples of pairs (y,N)

have been presented in Figure 1.6; for instance, when y is the red or

green dot, N is respectively the red or green region. It is particularly

informative to study how N varies with y, which is the focus of the

next proposition.

Proposition 1.1 (Characterization of the set N).

For a non-zero vector y in R
p, the set N defined in the previous para-

graph can be written as N = y + K, where K is a polyhedral cone of

dimension p− ‖y‖0 + 1.

Proof. A classical theorem [see Bertsekas, 1999, Proposition B.11] al-

lows us to rewrite N as

N = {z ∈ R
p : ∀ ‖x‖1 ≤ 1, (z− y)⊤(x− y) ≤ 0} = y +K,

1.3. Modern parsimony: the ℓ1-norm and other variants 21

where y +K denotes the Minkowski sum {y + z : z ∈ K} between the

set {y} and the cone K defined as

K , {d ∈ R
p : ∀ ‖x‖1 ≤ 1, d⊤(x− y) ≤ 0}.

Note that in the optimization literature, K is often called the “normal

cone” to the unit ℓ1-ball at the point y [Borwein and Lewis, 2006].

Equivalently, we have

K = {d ∈ R
p : max

‖x‖1≤1
d⊤x ≤ d⊤y}

= {d ∈ R
p : ‖d‖∞ ≤ d⊤y},

(1.19)

where we have used the fact that quantity max‖x‖1≤1 d⊤x, called the

dual-norm of the ℓ1-norm, is equal to ‖d‖∞ [see Bach et al., 2012a].

Note now that according to Hölder’s inequality, we also have d⊤y ≤
‖d‖∞‖y‖1 ≤ ‖d‖∞ in Eq. (1.19). Therefore, the inequalities are in fact

equalities. It is then easy to characterize vectors d such that d⊤y =

‖d‖∞‖y‖1 and it is possible to show that K is simply the set of vectors d

satisfying d[i] = sign(y[i])‖d‖∞ for all i such that y[i] 6= 0.

This would be sufficient to conclude the proposition, but it is also

possible to pursue the analysis and exactly characterize K by finding

a set of generators.4 Let us define the vector s in {−1, 0,+1}p that

carries the sparsity pattern of y, more precisely, with s[i] = sign(y[i])

for all i such that y[i] 6= 0, and s[i] = 0 otherwise. Let us also define

the set of indices {i1, . . . , il} corresponding to the l zero entries of y,

and ei in R
p the binary vector whose entries are all zero but the i-th one

that is equal to 1. Then, after a short calculation, we can geometrically

characterize the polyhedral cone K:

K = cone (s, s− ei1 , s + ei1 , s− ei2 , s + ei2 , . . . , s− eil
, s + eil

) ,

where the notation “cone” is defined in footnote 4.

It is now easy to see that the set K “grows” with the number l of

zero entries in y, and that K lives in a subspace of dimension l+ 1 for

4A collection of vectors z1, z2, . . . , zl are called generators for a cone K when K
consists of all positive combinations of the vectors zi. In other words, K =
{
∑l

i=1
αizi : αi ≥ 0}. In that case, we use the notation K = cone(z1, . . . , zl).

22 A Short Introduction to Parsimony

all non-zero vector y. For example, when l = 0—that is, y is a dense

vector (e.g., the blue point in Figure 1.6(a)), K is simply a half-line.

To conclude, the geometrical intuition to gain from this section is

that the Euclidean projection onto a convex set encourages solutions

on singular points, such as edges or corners for polytopes. Such a prin-

ciple indeed applies beyond the ℓ1-norm. For instance, we illustrate

the regularization effect of the ℓ∞-norm in Figure 1.8, whose corners

coordinates have same magnitude.

Non-convex regularization. Even though it is well established that

the ℓ1-norm encourages sparse solutions, it remains only a con-

vex proxy of the ℓ0-penalty. Both in statistics and signal process-

ing, other sparsity-inducing regularization functions have been pro-

posed, in particular continuous relaxations of ℓ0 that are non-convex

[Frank and Friedman, 1993, Fan and Li, 2001, Daubechies et al., 2010,

Gasso et al., 2009]. These functions are using a non-decreasing concave

function ϕ : R+ 7→ R, and the sparsity-inducing penalty is defined as

ψ(α) ,
p
∑

i=1

ϕ (|α[i]|) .

For example, the ℓq-penalty uses ϕ : x 7→ xq [Frank and Friedman,

1993], or an approximation ϕ : x 7→ (x + ε)q; the reweighted-ℓ1 algo-

rithm of Fazel [2002], Fazel et al. [2003], Candès et al. [2008] implicitly

uses ϕ : x 7→ log(x + ε). These penalties typically lead to intractable

estimation problems, but approximate solutions can be obtained with

continuous optimization techniques (see Section 5.3).

The sparsity-inducing effect of the penalties ψ is known to be

stronger than ℓ1. As shown in Figure 1.9(a), the magnitude of the

derivative of ϕ grows when one approaches zero because of its con-

cavity. Thus, in the one-dimensional case, ψ can be interpreted as a

force driving α towards the origin with increasing intensity when α gets

closer to zero. In terms of geometry, we also display the ℓq-ball in Fig-

ure 1.9(b), with the same red, blue, and green dots as in Figure 1.6.

The part of the space that is projected onto the corners of the ℓq-ball

is larger than that for ℓ1. Interestingly, the geometrical structure of

the red and green regions are also more complex. Their combinatorial

1.3. Modern parsimony: the ℓ1-norm and other variants 23

ℓ1-ball

‖α‖1 ≤ µ

α[2]

α[1]

(a) Effect of the Euclidean projection onto the ℓ1-ball.

α[2]

α[1]
ℓ2-ball

‖α‖2 ≤ µ

(b) Effect of the Euclidean projection onto the ℓ2-ball.

Figure 1.6: Illustration in two dimensions of the projection operator onto the ℓ1-
ball in Figure (a) and ℓ2-ball in Figure (b). The balls are represented in gray. All
points from the red regions are projected onto the point of coordinates (0, µ) denoted
by a red dot. Similarly, the green and blue regions are projected onto the green and
blue dots, respectively. For the ℓ1-norm, a large part of the figure is filled by the red
and green regions, whose points are projected to a sparse solution corresponding to
a corner of the ball. For the ℓ2-norm, this is not the case: any non-sparse point—say,
for instance on the blue line—is projected onto a non-sparse solution.

24 A Short Introduction to Parsimony

(a) ℓ2-ball in 3D (b) ℓ1-ball in 3D

Figure 1.7: Representation in three dimensions of the ℓ1- and ℓ2-balls. Figure
borrowed from Bach et al. [2012a], produced by Guillaume Obozinski.

α[2]

α[1]
ℓ∞-ball

‖α‖∞ ≤ µ

Figure 1.8: Similar illustration as Figure 1.6 for the ℓ∞-norm. The regularization
effect encourages solution to be on the corners of the ball, corresponding to points
with the same magnitude |α[1]| = |α[2]| = µ.

1.3. Modern parsimony: the ℓ1-norm and other variants 25

nature makes the projection problem onto the ℓq-ball more involved

when q < 1.

The elastic-net. To cope with some instability issues of the estima-

tors obtained with the ℓ1-regularization, Zou and Hastie [2005] have

proposed to combine the ℓ1- and ℓ2-norms with a penalty called elastic-

net:

ψ(α) , ‖α‖1 + γ‖α‖22.
The effect of this penalty is illustrated in Figure 1.10. Compared to

Figure 1.6, we observe that the red and green regions are smaller for

the elastic-net penalty than for ℓ1. The sparsity-inducing effect is thus

less aggressive than the one obtained with ℓ1.

Total variation. The anisotropic total variation penalty [Rudin et al.,

1992] for one dimensional signals is simply the ℓ1-norm of finite differ-

ences

ψ(α) ,
p−1
∑

i=1

|α[i+ 1]−α[i]|,

which encourages piecewise constant signals. It is also known in statis-

tics under the name of “fused Lasso” [Tibshirani et al., 2005]. The

penalty can easily be extended to two-dimensional signals, and has

been widely used for regularizing inverse problems in image process-

ing [Chambolle, 2005].

Group sparsity. In some cases, variables are organized into predefined

groups forming a partition G of {1, . . . , p}, and one is looking for a so-

lution α⋆ such that variables belonging to the same group of G are set

to zero together. For example, such groups have appeared in Section 1.2

about wavelets, where G could be defined according to neighborhood

relationships of wavelet coefficients. Then, when it is known before-

hand that a problem solution only requires a few groups of variables

to explain the data, a regularization function automatically selecting

the relevant groups has been shown to improve the prediction per-

formance or the interpretability of the solution [Turlach et al., 2005,

26 A Short Introduction to Parsimony

α

ϕ(|α|) = log(|α|+ ε)

(a) Illustration of a non-convex sparsity-inducing penalty.

α[2]

α[1]
ℓq-ball

‖α‖q ≤ µ with q < 1

(b) ℓq-ball with q < 1.

Figure 1.9: Illustration of the sparsity-inducing effect of a non-convex penalty.
In (a), we plot the non-convex penalty α 7→ log(|α| + ε), and in (b), we present a
similar figure as 1.6 for the ℓq-penalty, when choosing q < 1.

1.3. Modern parsimony: the ℓ1-norm and other variants 27

elastic-net

ball

(1− γ)‖α‖1 + γ‖α‖22 ≤ µ

α[2]

α[1]

Figure 1.10: Similar figure as 1.6 for the elastic-net penalty.

Yuan and Lin, 2006, Obozinski et al., 2009, Huang and Zhang, 2010].

The group sparsity principle is illustrated in Figure 1.11(b).

An appropriate regularization function to obtain a group-sparsity

effect is known as “Group-Lasso” penalty and is defined as

ψ(α) =
∑

g∈G
‖α[g]‖q, (1.20)

where ‖.‖q is either the ℓ2 or ℓ∞-norm. To the best of our knowledge,

such a penalty appears in the early work of Grandvalet and Canu [1999]

and Bakin [1999] for q = 2, and Turlach et al. [2005] for q =∞. It has

been popularized later by Yuan and Lin [2006].

The function ψ in (1.20) is a norm, thus convex, and can be in-

terpreted as the ℓ1-norm of the vector [‖α[g]‖q]g∈G of size |G|. Conse-

quently, the sparsity-inducing effect of the ℓ1-norm is applied at the

group level. The penalty is highly related to the group-thresholding

approach for wavelets, since the group-thresholding estimator (1.7) is

linked to ψ through Eq. (1.8).

In Figure 1.13(a), we visualize the unit ball of a Group-Lasso norm

obtained when G contains two groups G = {{1, 2}, {3}}. The ball has

two singularities: the top and bottom corners, corresponding to solu-

tions where variables 1 and 2 are simultaneously set to zero, and the

28 A Short Introduction to Parsimony

(a) Sparsity. (b) Group sparsity. (c) Hierarchical sparsity.

Figure 1.11: Illustration of the sparsity, group sparsity, and hierarchical sparsity
principles. Each column represents the sparsity pattern of a vector with 12 variables.
Non-zero coefficients are represented by gray squares. On the left (a), the vectors
are obtained with a simple sparsity-inducing penalty, such as the ℓ1-norm, and the
non-zero variables are scattered. In the middle figure (b), a group sparsity-inducing
penalty with three groups of variables is used. The sparsity patterns respect the
group structure. On the right (c), we present the results obtained with a hierarchical
penalty consisting of the Group Lasso plus the ℓ1-norm. The group structure is
globally respected, but some variables within a group can be discarded.

1.3. Modern parsimony: the ℓ1-norm and other variants 29

middle circle, corresponding to solutions where variable 3 only is set to

zero. As expected, the geometry of the ball induces the group-sparsity

effect.

Structured sparsity. Group-sparsity is a first step towards the more

general idea that a regularization function can encourage sparse solu-

tions with a particular structure. This notion is called structured spar-

sity and has been introduced under a large number of different point

of views [Zhao et al., 2009, Jacob et al., 2009, Jenatton et al., 2011a,

Baraniuk et al., 2010, Huang et al., 2011]. To some extent, it follows

the concept of group-thresholding introduced in the wavelet literature,

which we have presented in Section 1.2. In this paragraph, we briefly

review some of these works, but for a more detailed review, we refer

the reader to [Bach et al., 2012b].

Some penalties are non-convex. For instance, Huang et al. [2011]

and Baraniuk et al. [2010] propose two different combinatorial ap-

proaches based on a predefined set G of possibly overlapping groups

of variables. These penalties encourage solutions whose support is in

the union of a few number groups, but they lead to NP-hard optimiza-

tion problems. Other penalties are convex. In particular, Jacob et al.

[2009] introduce a sparsity-inducing norm that is exactly a convex re-

laxation of the penalty of Huang et al. [2011], even though these two

approaches were independently developed at the same time. As a result,

the convex penalty of Jacob et al. [2009] encourages a similar structure

as the one of Huang et al. [2011].

By following a different direction, the Group-Lasso penalty (1.20)

has been considered when the groups are allowed to over-

lap [Zhao et al., 2009, Jenatton et al., 2011a]. As a consequence, vari-

ables belonging to the same groups are encouraged to be set to zero to-

gether. It was proposed for hierarchical structures by Zhao et al. [2009]

with the following rule: whenever two groups g and h are in G, they

should be either disjoint, or one should be included in another. Ex-

amples of such hierarchical group structures are given in Figures 1.11

and 1.12. The effect of the penalty is to encourage sparsity patterns

that are rooted subtrees. Equivalently, a variable can be non-zero only

30 A Short Introduction to Parsimony

if its parent in the tree is non-zero, which is the main property of the

zero-tree coding scheme introduced in the wavelet literature [Shapiro,

1993], and already illustrated in Figure 1.2.

Finally, Jenatton et al. [2011a] has extended the hierarchical

penalty of Zhao et al. [2009] to more general group structures, for ex-

ample when variable are organized on a two-dimensional grid, encour-

aging neighbor variables to be simultaneously set to zero. We conclude

this brief presentation of structured sparsity with Figure 1.13, where we

present the unit balls of some sparsity-inducing norms. Each of them

exhibits singularities and encourages particular sparsity patterns.

α1

α2 α3

α4 α5 α6 α7

α8 α9 α10 α11 α12 α13 α14 α15

Figure 1.12: Illustration of the hierarchical sparsity of Zhao et al. [2009], which
generalizes the zero-tree coding scheme of Shapiro [1993]. The groups of variables
correspond to the red rectangles. The empty nodes represent variable that are set
to zero. They are contained in three groups: {4, 8, 9}, {13}, {7, 14, 15}.

Spectral sparsity. Another form of parsimony has been devised in the

spectral domain [Fazel et al., 2001, Srebro et al., 2005]. For estimation

problems where model parameters are matrices, the rank has been used

as a natural regularization function. The rank of a matrix is equal to

the number of non-zero singular values, and thus, it can be interpreted

as the ℓ0-penalty of the matrix spectrum. Unfortunately, due to the

combinatorial nature of ℓ0, the rank penalization typically leads to

1.3. Modern parsimony: the ℓ1-norm and other variants 31

(a) Group-Lasso penalty
ψ(α) = ‖α[1, 2]‖2 + |α[3]|.

(b) Hierarchical penalty
ψ(α) = ‖α‖2 + |α[1]| + |α[2]|.

(c) Structured sparse penalty. (d) Structured sparse penalty.

Figure 1.13: Visualization in three dimensions of unit balls corresponding to var-
ious sparsity-inducing norms. (a): Group Lasso penalty; (b): hierarchical penalty
of Zhao et al. [2009]; (c) and (d): examples of structured sparsity-inducing penal-
ties of Jacob et al. [2009]. Figure borrowed from Bach et al. [2012a], produced by
Guillaume Obozinski.

32 A Short Introduction to Parsimony

intractable optimization problems.

A natural convex relaxation has been introduced in the control

theory literature by Fazel et al. [2001] and consists of computing the ℓ1-

norm of the spectrum—that is, simply the sum of the singular values.

The resulting penalty appears under different names, the most common

ones being the trace, nuclear, or Schatten norm. It is defined for a

matrix A in R
p×k with k ≥ p as

‖A‖∗ ,

p
∑

i=1

si(A),

where si(A) is the i-th singular value of A. Traditional applications

of the trace norm in machine learning are matrix completion or col-

laborative filtering [Pontil et al., 2007, Abernethy et al., 2009]. These

problems have become popular with the need of scalable recommender

systems for video streaming providers. The goal is to infer movie prefer-

ences for each customer, based on their partial movie ratings. Typically,

the matrix is of size p × k, where p is the number of movies and k is

the number of users. Each user gives a score for a few movies, corre-

sponding to some entries of the matrix, and the recommender system

tries to infer the missing values. Similar techniques have also recently

been used in other fields, such as in genomics to infer missing genetic

information [Chi et al., 2013].

1.4 Dictionary learning

We have previously presented various formulations where a signal x

in R
m is approximated by a sparse linear combination of a few columns

of a matrix D in R
m×p. In the context of signal and image processing,

this matrix is often called dictionary and its columns atoms. As seen

in Section 1.2, a large amount of work has been devoted in the wavelet

literature for designing a good dictionary adapted to natural images.

In neuroscience, Olshausen and Field [1996, 1997] have proposed a

significantly different approach to sparse modeling consisting of adapt-

ing the dictionary to training data. Because the size of natural images

is too large for learning a full matrix D, they have chosen to learn

the dictionary on natural image patches, e.g., of size m = 16 × 16

1.4. Dictionary learning 33

pixels, and have demonstrated that their method could automatically

discover interpretable structures. We discuss this topic in more details

in Section 2.

The motivation of Olshausen and Field [1996, 1997] was to show

that the structure of natural images is related to classical theories

of the mammalian visual cortex. Later, dictionary learning found nu-

merous applications in image restoration, and was shown to signifi-

cantly outperform off-the-shelf bases for signal reconstruction [see, e.g.,

Elad and Aharon, 2006, Mairal et al., 2008c, 2009, Protter and Elad,

2009, Yang et al., 2010a].

Concretely, given a dataset of n training signals X = [x1, . . . ,xn],

dictionary learning can be formulated as the following minimization

problem

min
D∈C,A∈Rp×n

n∑

i=1

1

2
‖xi −Dαi‖22 + λψ(αi), (1.21)

where A = [α1, . . . ,αn] carries the decomposition coefficients of the

signals x1, . . . ,xn, ψ is sparsity-inducing regularization function, and C
is typically chosen as the following set:

C , {D ∈ R
m×p : ∀j ‖dj‖2 ≤ 1}.

To be more precise, Olshausen and Field [1996] proposed several

choices for ψ; their experiments were for instance conducted with the ℓ1-

norm, or with the smooth function ψ(α) ,
∑p

j=1 log(ε+ α[j]2), which

has an approximate sparsity-inducing effect. The constraint D ∈ C was

also not explicitly modeled in the original dictionary learning formu-

lation; instead, the algorithm of Olshausen and Field [1996] includes

a mechanism to control and rescale the ℓ2-norm of the dictionary ele-

ments. Indeed, without such a mechanism, the norm of D would arbi-

trarily go to infinity, leading to small values for the coefficients αi and

making the penalty ψ ineffective.

The number of samples n is typically large, whereas the signal

dimension m is small. The number of dictionary elements p is often

chosen larger than m—in that case, the dictionary is said to be over-

complete—even though a choice p < m often leads to reasonable re-

sults in many applications. For instance, a typical setting would be to

34 A Short Introduction to Parsimony

have m = 10 × 10 pixels for natural image patches, a dictionary of

size p = 256, and more than 100 000 training patches.

A large part of this monograph is related to dictionary learning and

thus we only briefly discuss this matter in this introduction. Section 2 is

indeed devoted to unsupervised learning techniques for natural image

patches, including dictionary learning; Sections 3 and 4 present a large

number of applications in image processing and computer vision; how

to solve (1.21) is explained in Section 5.5 about optimization.

Matrix factorization point of view. An equivalent representation

of (1.21) is the following regularized matrix factorization problem

min
D∈C,A∈Rp×n

1

2
‖X−DA‖2F + λΨ(A), (1.22)

where Ψ(A) =
∑n

i=1 ψ(αi). Even though reformulating (1.21) as (1.22)

is simply a matter of using different notation, seeing dictionary learn-

ing as a matrix factorization problem opens up interesting perspec-

tives. In particular, it makes obvious some links with other unsu-

pervised learning approaches such as non-negative matrix factoriza-

tion [Paatero and Tapper, 1994], clustering techniques such as K-

means, and others [see Mairal et al., 2010a]. These links will be further

developed in Section 2.

Risk minimization point of view. Dictionary learning can also be seen

from a machine learning point of view. Indeed, dictionary learning can

be written as

min
D∈C

{

fn(D) ,
1

n

n∑

i=1

L(xi,D)

}

,

where L : Rm × R
m×p is a loss function defined as

L(x,D) , min
α∈Rp

1

2
‖x−Dα‖22 + λψ(α).

The quantity L(x,D) should be small if D is “good” at representing

the signal x in a sparse fashion, and large otherwise. Then, fn(D) is

called the empirical cost.

1.4. Dictionary learning 35

However, as pointed out by Bottou and Bousquet [2008], one is usu-

ally not interested in the exact minimization of the empirical cost fn(D)

for a fixed n, which may lead to overfitting on the training data, but

instead in the minimization of the expected cost, which measures the

quality of the dictionary on new unseen data:

f(D) , Ex[L(x,D)] = lim
n→∞ fn(D) a.s.,

where the expectation is taken relative to the (unknown) probability

distribution of the data.5

The expected risk minimization formulation is interesting since

it paves the way to stochastic optimization techniques when a

large amount of data is available [Mairal et al., 2010a] and to the-

oretical analysis [Maurer and Pontil, 2010, Vainsencher et al., 2011,

Gribonval et al., 2013], which are developed in Sections 5.5 and 1.6,

respectively.

Constrained variants. Following the original formulation of

Olshausen and Field [1996, 1997], we have chosen to present dic-

tionary learning where the regularization function is used as a penalty,

even though it can also be used as a constraint as in (1.9). Then,

natural variants of (1.21) are

min
D∈C,A∈Rp×n

n∑

i=1

1

2
‖xi −Dαi‖22 s.t. ψ(αi) ≤ µ. (1.23)

or

min
D∈C,A∈Rp×n

n∑

i=1

ψ(αi) s.t. ‖xi −Dαi‖22 ≤ ε. (1.24)

Note that (1.23) and (1.24) are not equivalent to (1.21). For in-

stance, problem (1.23) can be reformulated using a Lagrangian func-

tion [Boyd and Vandenberghe, 2004] as

min
D∈C

n∑

i=1

(

max
λi≥0

min
αi∈Rp

1

2
‖xi −Dαi‖22 + λi(ψ(αi)− µ)

)

,

where the optimal λi’s are not necessarily equal to each other, and

their relation with the constraint parameter µ is unknown in advance.

5We use “a.s.” to denote almost sure convergence.

36 A Short Introduction to Parsimony

A similar discussion can be conducted for (1.24) and it is thus important

in practice to choose one of the formulations (1.21), (1.23), or (1.24);

the best one depends on the problem at hand and there is no general

rule for preferring one instead of another.

1.5 Compressed sensing and sparse recovery

Finally, we conclude our historical tour of parsimony with recent the-

oretical results obtained in signal processing and statistics. We focus

on methods based on the ℓ1-norm, i.e., the basis pursuit formulation

of (1.9)—more results on structured sparsity-inducing norms are pre-

sented by Bach et al. [2012b].

Most analyses rely on particular assumptions regarding the prob-

lem. We start this section with a cautionary note from Hocking [1976]:

The problem of selecting a subset of independent or pre-

dictor variables is usually described in an idealized setting.

That is, it is assumed that (a) the analyst has data on a

large number of potential variables which include all rele-

vant variables and appropriate functions of them plus, possi-

bly, some other extraneous variables and variable functions

and (b) the analyst has available “good” data on which to

base the eventual conclusions. In practice, the lack of sat-

isfaction of these assumptions may make a detailed subset

selection analysis a meaningless exercise.

In this section, we present such theoretical results where the assump-

tions are often not met in practice, but also results that either (1) can

have an impact on the practice of sparse recovery or (2) do not need

strong assumptions.

From support recovery to signal denoising. Given a signal x in R
m

and a dictionary D in R
m×p with ℓ2-normalized columns, throughout

this section, we assume that x is generated as x = Dα⋆ + ε with a

sparse vector α⋆ in R
p and an additive noise ε in R

m. For simplic-

ity, we consider α⋆ and D as being deterministic while the noise is

1.5. Compressed sensing and sparse recovery 37

random, independent and identically distributed, with zero mean and

finite variance σ2.

The different formulations presented earlier in Section 1.3, for in-

stance basis pursuit, provide estimators α̂ of the “true” vector α⋆.

Then, the three following goals have been studied in sparse recovery,

typically in decreasing order of hardness:

• support recovery and sign consistency: we want the support

of α̂ (i.e., the set of non-zero elements) to be the same or to be

close to the one of α⋆. The problem is often called “model selec-

tion” in statistics and “support recovery” in signal processing; it

is often refined to the estimation of the full sign pattern—that is,

among the non-zero elements, we also want the correct sign to be

estimated.

• code estimation: the distance ‖α̂ − α⋆‖2 should be small. In

statistical terms, this correspond to the “estimation” of α⋆.

• signal denoising: regardless of code estimation, we simply want

the distance ‖Dα̂−Dα⋆‖2 to be small; the goal is not to obtain

exactly α⋆, but simply to obtain a good denoised version of the

signal x = Dα⋆ + ε.

A good code estimation performance does imply a good denoising

performance but the converse is not true in general. In most analyses,

support recovery is harder than code estimation. As detailed below,

the sufficient conditions for good support recovery lead indeed to good

estimation.

High-dimensional phenomenon. Without sparsity assumptions, even

the simplest denoising task can only achieve denoising errors of the

order 1
n‖Dα̂ − Dα⋆‖22 ≈ σ2p

m , which is attained for ordinary least-

squares, and is the best possible [Tsybakov, 2003]. Thus, in order to

have at least a good denoising performance (prediction performance in

statistics), either the noise σ is small, or the signal dimension m (the

number of samples) is much larger than the number of atoms p (the

number of variables to select from).

38 A Short Introduction to Parsimony

When making the assumption that the true code α⋆ is sparse with

at most k non zeros, smaller denoising errors can be obtained. In

that case, it is possible indeed to replace the scaling σ2p
m by σ2k log p

m .

Thus, even when p is much larger than m, as long as log p is much

smaller than m, we may have good prediction performance. However,

this high-dimensional phenomenon currently6 comes at a price: (1) ei-

ther an exhaustive search over the subsets of size k needs to be per-

formed [Massart, 2003, Bunea et al., 2007, Raskutti et al., 2011] or (2)

some assumptions have to be made regarding the dictionary D, which

we now describe.

Sufficient conditions for high-dimensional fast rates. Most sufficient

conditions have the same flavor. A dictionary behaves well if the off-

diagonal elements of D⊤D are small, in other words, if there is little cor-

relation between atoms. However, the notion of coherence (the maximal

possible correlation between two atoms) was the first to emerge [see,

e.g., Elad and Bruckstein, 2002, Gribonval and Nielsen, 2003], but it is

not sufficient to obtain a high-dimensional phenomenon.

In the noiseless setting, Candes and Tao [2005] and Candès et al.

[2006] introduced the restricted isometry property (RIP), which states

that all submatrices of size k×k of D⊤D should be close to isometries,

that is, should have all of their eigenvalues sufficiently close to one.

With such an assumption, the Lasso behaves well: it recovers the true

support and estimates the code α⋆ and the signal Dα⋆ with an error

of order σ2k log p
m .

The main advantage of the RIP assumption is that one may exhibit

dictionaries for which it is satisfied, usually obtained by normalizing

a matrix D obtained from independent Gaussian entries, which may

satisfy the condition that (k log p)/m remains small. Thus, the sufficient

conditions are not vacuous. However, the RIP assumption has two main

drawbacks: first, it cannot be checked on a given dictionary D without

checking all O(pk) submatrices of size k; second, it may be weakened

if the goal is support recovery or simply estimation performance (code

6Note that recent research suggests that this fast rate of σ2k log p
m

cannot be
achieved by polynomial-time algorithms [Zhang et al., 2014].

1.5. Compressed sensing and sparse recovery 39

recovery).

There is therefore a need for sufficient conditions that can be

checked in polynomial time while ensuring sparse recovery. However,

none currently exists with the same scalings between k, p and m

[see, e.g., Juditsky and Nemirovski, 2011, d’Aspremont and El Ghaoui,

2011]. When refining to support recovery, Fuchs [2005], Tropp [2004],

Wainwright [2009] provide sufficient and necessary conditions of a

similar flavor than requiring that all submatrices of size k are

sufficiently close to orthogonal. For the tightest conditions, see,

e.g., Bühlmann and Van De Geer [2011]. Note that these conditions

are also typically sufficient for algorithms that are not based explicitly

on convex optimization [Tropp, 2004].

Finally, it is important to note that (a) most of the theoretical re-

sults advocate a value for the regularization parameter λ proportional

to σ
√
m log p, which unfortunately depends on the noise level σ (which

is typically unknown in practice), and that (b) for orthogonal dictio-

naries, all of these assumptions are met; however, this imposes p = m.

Compressed sensing vs. statistics. Our earlier quote from Hocking

[1976] applies to sparse estimation as used in statistics for least-squares

regression, where the dictionary D is simply the input data and x the

output data. In most situations, there are some variables, represented

by columns of D, that are heavily correlated. Therefore, in most practi-

cal situations, the assumptions do not apply. However, it does not mean

that the high-dimensional phenomenon does not apply in a weaker

sense (see the next paragraph for slow rates); moreover it is important

to remark that there are other scenarios, beyond statistical variable

selection, where the dictionary D may be chosen.

In particular, in signal processing, the dictionary D may be seen

as measurements—that is, we want to encode α⋆ in R
p using m linear

measurements Dα⋆ in R
m for m much larger than p. What the result

of Candes and Tao [2005] alluded to earlier shows is that for random

measurements, one can recover a k-sparse α⋆ from (a potentially noisy

version of) Dα⋆, with overwhelming probability, as long as (k log p)/m

remains small. This is the core idea behind compressive sensing. See

40 A Short Introduction to Parsimony

more details from Donoho [2006], Candès and Wakin [2008].

High-dimensional slow rates. While sufficient conditions presented

earlier are often not met beyond random dictionaries, for the ba-

sis pursuit/Lasso formulation from (1.9), the high-dimensional phe-

nomenon may still be observed, but only for the denoising situation

and with a weaker result. Namely, as shown by Greenshtein [2006]

and Bühlmann and Van De Geer [2011, Corollary 6.1], without as-

sumptions regarding correlations, we have 1
n‖Dα̂−Dα∗‖22 ≈

√
σ2k2 log p

m .

Note that this slower rate does not readily extend to non-convex for-

mulations.

Impact on dictionary learning. The dictionary learning framework

which we describe in this monograph relies on sparse estimation, that

is, given the dictionary D, the estimation of the code α may be ana-

lyzed using the tools we have presented in this section. However, the

dictionaries that are learned do not exhibit low correlations between

atoms and thus theoretical results do not apply (see dedicated results

in the next section). However, they suggest that (a) the codes α may

not be unique in general and caution has to be observed when repre-

senting a signal x by its code α, (b) methods based on ℓ1-penalization

are more robust as they still provably perform denoising in presence

of strong correlations and (c) incoherence promoting may be used in

order to obtain better-behaved dictionaries [see, e.g., Ramirez et al.,

2009].

1.6 Theoretical results about dictionary learning

Dictionary learning, as formulated in Eq. (1.21), may be seen from

several perspectives, mainly as an unsupervised learning or a matrix

factorization problem. While the supervised learning problem from the

previous section (sparse estimation of a single signal given the dictio-

nary) comes with many theoretical analyses, there are still few theo-

retical results of the same kind for dictionary learning. In this section,

we present some of them. For simplicity, we assume that we penalize

1.6. Theoretical results about dictionary learning 41

with the ℓ1-norm and consider the minimization of

min
D∈C,A∈Rp×n

n∑

i=1

1

2
‖xi −Dαi‖22 + λ‖αi‖1, (1.25)

where A = [α1, . . . ,αn] carries the decomposition coefficients of the

signals x1, . . . ,xn, and C is chosen as the following set:

C , {D ∈ R
m×p : ∀j ‖dj‖2 ≤ 1}.

Non-convex optimization problem. After imposing parsimony

through the ℓ1-norm, given D the objective function is convex in α,

given α the objective and constraints are convex in D. However, the

objective function is not jointly convex, which is typical of unsuper-

vised learning formulations. Hence, we consider an optimization prob-

lem for which it is not possible in general to guarantee that we are

going to obtain the global minimum; the same applies to EM-based

approaches [Dempster et al., 1977] or K-means [see, e.g., Bishop, 2006].

Symmetries. Worse, the problem in Equation (1.25) exhibits sev-

eral symmetries and admits multiple global optima, and the descent

methods that are described in Section 5 will also have the same in-

variance property. For example, the columns of D and rows of A can

be submitted to p! arbitrary (but consistent) permutations. There are

also sign ambiguities: in fact, if (D,A) is solution of (1.25), so is

(Ddiag(ε),diag(ε)A), where ε is a vector in {−1,+1}p that carries

a sign pattern. Therefore, for every one of the p! possible atom or-

ders, the dictionary learning problem admits 2p equivalent solutions.

In other words, for a solution (D,A), the pair (DΓ,Γ−1A) is also solu-

tion, where Γ is a generalized permutation formed by the product of a

diagonal matrix with +1 and −1’s on its diagonal with a permutation

matrix (in particular, Γ is thus orthogonal).

The fact that there are no other transformations Γ such that

(DΓ,Γ−1A) is also solution of Eq. (1.25) for all solutions (D,A) of

this problem follows from a general property of isometries of the ℓq
norm for finite values of q such that q ≥ 1 and q 6= 2 [Li and So, 1994].

42 A Short Introduction to Parsimony

A manifold interpretation of sparse coding with projective geometry.

The interpretation of sparse coding as a locally linear representation of

a non-linear “manifold” is problematic because certain signals/features

are best thought of as “points” in some space rather than vectors. For

example, what does it mean to “add” two natural image patches? The

simplest point structure that one can think of is affine or projective,

and we show below that sparse coding indeed admits a natural inter-

pretation in this setting, at least for normalized signals.

Indeed, Let us restrict our attention from now on to unit-norm sig-

nals, as is customary in image processing after the usual centering and

normalization steps, which will be studied in Section 2.1.7 Note that

the dictionary elements dj in a solution D = [d1, . . . ,dp] of Eq. (1.25)

also have unit norm by construction.

Let us now consider the “half sphere”

S
m−1
+ ,

{

d ∈ S
m−1 : the first non-zero coefficient of d is positive

}

,

(1.26)

where S
m−1 is the unit sphere of dimension m− 1 formed by the unit

vectors of R
m.8 A direct consequence of the sign ambiguities of dic-

tionary learning discussed in the previous paragraph is that, for any

solution (D,A) of Eq. (1.25), there is an equivalent solution (D′,A′)
with all columns of D′ in S

m−1
+ . Indeed, suppose some column dj is

not in S
m−1
+ , and let dj [i] be its first non-zero coefficient (which is

necessarily negative since dj /∈ S
m−1
+). We can replace dj by −dj and

the corresponding row of the matrix A by its opposite to construct an

equivalent minimum of the dictionary learning problem in S
m−1
+ ×Rp×n.

Likewise, we can restrict the signals xi to lie in S
m−1
+ since replac-

ing xi by its opposite for a given dictionary simply amounts to replacing

the code αi by its opposite. Note that this identifies a patch with its

“negative”, but remember that the sign of its code elements is not

uniquely defined in the first place in conventional dictionary learning

settings (it is uniquely defined if we insist that the dictionary elements

7Note that the fact that the individual signals are centered does not imply that
the dictionary elements are.

8Similarly, one may define the set Sm−1
− by replacing “positive” by “non-negative”

in (1.26). The two sets S
m−1
+ and S

m−1
− form a partition of Sm−1 with equal volume,

and indeed, each one geometrically corresponds to a half sphere.

1.6. Theoretical results about dictionary learning 43

belong to S
m−1
+). This allows us to identify both the dictionary elements

and the signals with points in the projective space P
m−1 = P (Rm).

Any k independent column vectors of D define a (k − 1)-dimensional

projective subspace of Pm−1 (see Figure 1.14).

Figure 1.14: An illustration of the projective interpretation of sparse coding.

In particular, if the data signals are assumed to be sampled from

a “noisy manifold” of dimension k− 1 embedded in P
m−1, an approxi-

mation of some sample x by a sparse linear combination of k elements

of D can be thought of as lying in (or near) the k − 1 dimensional

“tangent plane” there.

Consistency results. Given the dictionary learning problem from a

finite number of signals, there are several interesting theoretical ques-

tions to be answered. The first natural question is to understand the

properties of the cost function that is minimized when the number of

signals tends to infinity, and in particular how it converges to the ex-

pectation under the signal generating distribution [Vainsencher et al.,

2011, Maurer and Pontil, 2010]. Then, given the non-convexity of the

optimization problems, local consistency results may be obtained, by

showing that the cost function which is minimized has a local mini-

44 A Short Introduction to Parsimony

mum around the pairs (D⋆,A⋆) that has generated the data. Given

RIP-based assumptions on the dictionary D⋆ and number of non zero

elements in the columns of A⋆, and the noise level, Gribonval et al.

[2014] show that the cost function defined in Eq. (1.25) has a local min-

imum around (D⋆,A⋆) with high probability, as long as the number of

signals n is greater than a constant times mp3. In the noiseless case,

earlier results have been also obtained Gribonval and Schnass [2010],

Geng et al. [2011], and recently it has been shown that under additional

assumptions, a good initializer could be found so that the previous type

of local consistency results can be applied [Agarwal et al., 2013].

Finally, recent algorithms have emerged in the theoretical science

community, which are not explicitly based on optimization [see, e.g.,

Spielman et al., 2013, Recht et al., 2012, Arora et al., 2014]. These

come with global convergence guarantees (with additional assumptions

regarding the signals), but their empirical performance on concrete sig-

nal and image processing problems have not yet been demonstrated.

2

Discovering the Structure of Natural Images

Dictionary learning was first introduced by Olshausen and Field [1996,

1997] as an unsupervised learning technique for discovering and vi-

sualizing the underlying structure of natural image patches. The re-

sults were found impressive by the scientific community, and dictionary

learning gained early success before finding numerous applications in

image processing [Elad and Aharon, 2006, Mairal et al., 2008c, 2009,

Yang et al., 2010a]. Without making any a priori assumption about

the data except a parsimony principle, the method is able to produce

dictionary elements that resemble Gabor wavelets—that is, spatially

localized oriented basis functions [Gabor, 1946, Daugman, 1985], as

illustrated for example in Figure 2.1.

Surprisingly, the goal of automatically learning local structures in

natural images was neither originally achieved in image processing, nor

in computer vision. The original motivation of Olshausen and Field

[1996, 1997] was in fact to establish a relation between the statistical

structure of natural images and the properties of neurons from area V1

of the mammalian visual cortex.1 The emergence of Gabor-like patterns

1Neuroscientists have identified several areas in the human visual cortex. Area
V1 is considered to be at the earliest stage of visual processing.

45

46 Discovering the Structure of Natural Images

from natural images was considered a significant result by neuroscien-

tists. To better understand this fact, we will briefly say a few words

about the importance of Gabor models within experimental studies of

the visual cortex.

Since the pioneer work of Hubel and Wiesel [1968], it is known that

some visual neurons are responding to particular image features, such

as oriented edges. Specifically, displaying oriented bars at a particular

location in a visual field’s subject may elicit neuronal activity in some

cells. Later, Daugman [1985] demonstrated that fitting a linear model

to neuronal responses given a visual stimuli may produce filters that

can be well approximated by a two-dimensional Gabor function. Models

based on such filters have been subsequently widely used, and are still

present in state-of-the-art predictive models of the neuronal activity in

V1 [Kay et al., 2008, Nishimoto et al., 2011]. By showing that Gabor-

like visual patterns could be automatically obtained from the statistics

of natural images, Olshausen and Field [1996, 1997] provided support

for the classical Gabor model for V1 cells, even though such an intrigu-

ing phenomenon does not constitute a strong evidence that the model

matches real biological processes. It is indeed commonly admitted that

little is known about the early visual cortex [Olshausen and Field, 2005,

Carandini et al., 2005] despite intensive studies and impressive results

achieved by predictive models.

In this chapter, we show how to use dictionary learning for discover-

ing latent structures in natural images, and we discuss other unsuper-

vised learning techniques. We present them under the unified point of

view of matrix factorization, which makes explicit links between differ-

ent learning methods. Given a training set X = [x1, . . . ,xn] of signals—

here, natural image patches—represented by vectors xi in R
m, we wish

to find an approximation Dαi =
∑p

j=1 αi[j]dj for each signal xi, where

D = [d1, . . . ,dp] is a matrix whose columns are called “dictionary el-

ements”, and the vectors αi are decomposition coefficients. In other

words, we wish to find a factorization

X ≈ DA,

where the matrix A = [α1, . . . ,αn] in R
p×n carries the coeffi-

cients αi. Many unsupervised learning techniques can be cast as ma-

2.1. Pre-processing 47

(a) 2D Gabor filter. (b) With shifted phase. (c) With rotation.

Figure 2.1: Three examples of two-dimensional Gabor filters. Red represents pos-
itive values and blue negative ones. The first two filters correspond to the function

g(x, y) = e−x2/(2σ2

x
)−y2/(2σ2

y
) cos(ωx + ϕ), with ϕ = 0 for Figure (a) and ϕ = π/2

for Figure (b). Figure (c) was obtained by rotating Figure (a)—that is, replacing x
and y in the function g by x′ = cos(θ)x + sin(θ)y and y′ = cos(θ)x − sin(θ)y. The
figure is best seen in color on a computer screen.

trix factorization problems; this includes dictionary learning, princi-

pal component analysis (PCA), clustering or vector quantization [see

Nasrabadi and King, 1988, Gersho and Gray, 1992], non-negative ma-

trix factorization (NMF) [Paatero and Tapper, 1994, Lee and Seung,

1999], archetypal analysis [Cutler and Breiman, 1994], or independent

component analysis (ICA) [Hérault et al., 1985, Bell and Sejnowski,

1995, 1997, Hyvärinen et al., 2004]. These methods essentially differ

in a priori assumptions that are made on D and A (sparse, low-rank,

orthogonal, structured), and in the way the quality of the approxima-

tion X ≈ DA is measured. We will see in the rest of this chapter how

these criterions influence the results obtained on natural image patches.

2.1 Pre-processing

When manipulating data, it is often important to choose an appropri-

ate pre-processing scheme. There are several reasons for changing the

way data looks like before using an unsupervised learning algorithm.

For example, one may wish to reduce the amount of noise, make the

data invariant to some transformation, or remove a confounding (un-

48 Discovering the Structure of Natural Images

wanted) factor. Unfortunately, the literature is not clear about which

pre-processing step should be applied given a specific problem at hand.

In this section, we describe common practices when dealing with natu-

ral image patches, such as centering, contrast normalization, or whiten-

ing. We study the effect of these procedures on the image itself, and

provide visual interpretation that should help the practitioner make his

choice.

Centering. The most basic pre-processing scheme consists of remov-

ing the mean intensity from every patch. Such an approach is called

“centering the data” in statistics and machine learning. Borrowing some

terminology from electronics, it is also called “removing the DC com-

ponent” in the signal processing literature. Formally, it means applying

the following update to every signal xi:

xi ← xi −

1

m

m∑

j=1

xi[j]

1m,

where 1m is the vector of size m whose entries are all ones. It can also

be interpreted as performing a left multiplication on the matrix X:

X←
(

I− 1

m
1m1⊤

m

)

X.

When analyzing the structure of natural patches, one is often inter-

ested in retrieving geometrical visual patterns such as edges, which is a

concept related to intensity variations and thus invariant to the mean

intensity. Therefore, centering can be safely used; it makes the data in-

variant to the mean intensity, and the learned structures are expected

to have zero mean as well. The effect of such a pre-processing scheme

can be visualized in Figure 2.2(b) for the image man. We extract all

overlapping patches from the image, remove their average pixel value,

and recombine the centered patches into a new image, which is dis-

played in Figure 2.2(b). Because of the overlap, every pixel is contained

in several patches; the pixel values in the reconstructed image are thus

obtained by averaging their counterparts from the centered patches.

The procedure is in fact equivalent to applying a high-pass filter to the

2.1. Pre-processing 49

original image. As a result, the geometrical structures are still present

in the centered image, but some low frequencies have disappeared.

In practice, centering the data has been found useful in con-

crete applications, such as image denoising with dictionary learning

[Elad and Aharon, 2006]. First removing the mean component before

learning the patches structure, and then adding the mean back after

processing, leads to substantially better results than working with the

raw patches directly.

Variance - contrast normalization. After centering, another common

practice is to normalize the signals to have unit ℓ2-norm, or equivalently

unit variance. In computer vision, the terminology of “contrast normal-

ization” is also often used. One motivation for such a pre-processing

step is to make different regions of an image more homogeneous and

to gain invariance to illumination changes. Whereas this is probably

not useful for image reconstruction problems, it is a key component of

many visual recognition architectures [Pinto et al., 2008, Jarrett et al.,

2009]. However, contrast normalization should be applied with care:

the naive update xi ← xi/‖xi‖2 is likely to provide poor results for

patches from uniform areas—e.g., from the sky in natural scenes. After

centering, such patches do not contain any information about the scene

anymore but carry residual noise, which will be greatly amplified by

the naive ℓ2-normalization. A simple way of fixing that issue consists

in providing a different treatment for patches with a small norm—say,

smaller than a parameter η—and use the following update instead:

xi ←
1

max(‖xi‖2, η)
xi.

We present in Figure 2.2(c) the effect of contrast normalization where η

is chosen to be 0.2 times the mean value of ‖xi‖2 in the image, follow-

ing the same patch recombination scheme as in the previous paragraph.

Compared to Figure 2.2(c), areas with small intensity variations have

been amplified, making the image more homogeneous. Contrast nor-

malization can also be applied after a whitening step, which we now

present.

50 Discovering the Structure of Natural Images

Whitening and dimensionality reduction. Centering consists of re-

moving from data the first-order statistics for every patch. Some

early work dealing with natural images patches goes a step fur-

ther by removing global second-order statistics, a procedure called

whitening [Olshausen and Field, 1996, 1997, Bell and Sejnowski, 1997,

Hyvärinen et al., 2009].

Let us consider a random variable x representing centered patches

uniformly sampled at random from natural images. Even though the

centering step is performed at the patch level, the pixel values across

centered natural images patches have zero mean µ , E[x] = 0. The

different pixels of a patch are indeed identically distributed, and thus

the vector µ is constant; it is then necessarily equal to the constant zero

vector since it has zero mean after centering. Therefore, the covariance

matrix of x is the quantity Σ , E[xx⊤]. Whitening consists of finding a

data transformation such that Σ becomes close to the identity matrix.

As a result, the pixel values within a whitened patch are uncorrelated.

In practice, whitening is performed by computing the eigenvalue

decomposition of the sample covariance matrix (1/n)
∑n

i=1 xix
⊤
i =

US2U⊤, where U is an orthogonal matrix in R
m×m, and S in R

m×m

is diagonal with non-negative entries. Since the sample covariance

matrix is positive semi-definite, the eigenvalues are non-negative

and S = diag(s1, . . . , sm) carries in fact the singular values of the

matrix (1/
√
n)X. Then, whitening consists of applying the following

update to every patch xi:

xi ← US†U⊤xi,

where S† = diag(s†
1, . . . , s

†
m) with s†

j = 1/sj if |sj | > ε and 0 other-

wise, where ε is a small threshold to prevent arbitrarily large entries

in S†. It is then easy to show that the sample covariance matrix after

whitening is diagonal with k = rank(Σ) entries equal to 1. Choosing ε

can be interpreted as controlling the dimensionality reduction effect

of the whitening procedure. According to Hyvärinen et al. [2009], such

a step is important for independent component analysis. The experi-

ments presented in this chapter do not include dimensionality reduc-

tion for dictionary learning with grayscale image patches—that is, we

choose ε = 0, since the resulting whitened images do not seem to suffer

2.1. Pre-processing 51

from any visual artifact. The case of color patches is slightly different

and is discussed in the next paragraph.

Similarly as for centering and contrast normalization, we visual-

ize the effect of whitening on Figure 2.2(d). Removing the spatial

correlation essentially results in sharper edges. As a matter of fact,

whitening can be shown to amplify high frequencies and reduce low

ones [Hyvärinen et al., 2009]. The reason is related to the nature of the

principal components of natural images that form the columns of the

matrix U, which will be discussed in Section 2.2. In practice, whitening

is often not used in image restoration applications based on dictionary

learning since it modifies the nature of the noise.

Pre-processing color patches. Finally, we conclude this section on

pre-processing by discussing the treatment of color image patches. We

assume that images are encoded in the RGB space, and that patches are

obtained by concatenating information from the three color channels.

In other words, l× l image patches are represented by vectors xi of size

m = 3× l × l.
The main question about color processing is probably whether or

not the RGB color space should be used [Pratt, 1971, Faugeras, 1979,

Sharma and Trussell, 1997]. The choice of the three channels R, G, and

B directly originates from our first understanding of the nature of color.

After discovering the existence of the color spectrum, Newton [1675]

already suggests that the rays of light “impinging” on the retina will

“affect the sense with various colours, according to their

bigness and mixture; the biggest with the strongest colours,

reds and yellow; the least with the weakest, blue and violets;

the middle with green”.

Building upon Newton’s findings, it appears that Young [1845] was

the first to introduce the concept of trichromatic vision. According

to Maxwell [1860]:

“Young appears to have originated the theory, that the three

elements of colour are determined as much by the constitu-

tion of the sense of sight as by anything external to us. He

52 Discovering the Structure of Natural Images

(a) Without pre-processing. (b) After centering.

(c) After centering and ℓ2-normalization. (d) After whitening.

Figure 2.2: The effect of various pre-processing procedures on the image man. For
the figures (b), (c) and (d), the value 0 is represented by a gray pixel. Since they con-
tain negative values, pre-processed images are shifted and rescaled for visualization
purposes.

2.1. Pre-processing 53

conceives that three different sensations may be excited by

light. . . He conjectures that these primary sensations corre-

spond to red, green, and violet.”

Finally, von Helmholtz [1852], Grassmann [1854], and Maxwell [1860]

proposed rigorous rules of color compositions, paving the way to the

modern treatment of color in vision processing [see Forsyth and Ponce,

2012, Chapter 3]. More than a century after these early discoveries,

the existence in the eye of three types of biological photoreceptors—

respectively corresponding to red, green, and blue wavelengths—is es-

tablished [Nathans et al., 1986], and the RGB color space is widely

used in electronic devices.

The question of changing the color space can be rephrased as fol-

lows: should we apply a linear or non-linear transformation f to each

RGB pixel value: (u, v, w) = f(r, g, b) and work in the resulting space?

One of the early motivation for studying the representation of color

was to reduce the bandwidth required by RGB over communication

channels. RGB components are indeed highly correlated; thus, remov-

ing the redundant information between the different channels allows

more efficient coding for transmitting information [Pratt, 1971]. An-

other motivation is that the Euclidean distance on RGB is known to

be a poor estimation of the perceptual distance by humans. Therefore,

a large variety of color spaces have been designed, such as CIELab,

CIEXYZ, YIQ, or YCrBr [see Sharma and Trussell, 1997], which are

partially improving upon RGB regarding the decorrelation of the trans-

formed channels and human perception. However, it remains unclear

whether these spaces should be used or not in practice, and the opti-

mal choice depends on the task and algorithm. For instance, for color

image denoising, Takeda et al. [2007] and Dabov et al. [2007b] choose

the YCrBr space, whereas Buades et al. [2005], Mairal et al. [2008c]

and Chatterjee and Milanfar [2012] successfully use RGB. Changing

the color space modifies indeed the noise structure as a side effect,

which may be problematic for some methods.

The other pre-processing steps that we have presented for grayscale

images can also be applied to color image patches. The first difference

with the monochromatic setting lies in the centering scheme when work-

54 Discovering the Structure of Natural Images

ing with RGB. One motivation for centering grayscale image patches

is to learn geometric structures that are invariant to the mean inten-

sity. For color images, the quantity 1
m

∑m
j=1 xi[j] unfortunately lacks of

interpretation, and removing it from a patch does not seem to achieve

any interesting property. Instead, we may be looking for geometrical

structures in images that are invariant to color patterns, and thus, one

may remove the mean color from the patch. In other words, one should

center every R,G,B channel independently. As a result, the centering

scheme becomes also invariant to any linear transformation of the color

space, which can be a desirable property. The effect of such a pre-

processing can be visualized in Figure 2.3(b) for the image kodim07

from the Kodak PhotoCD dataset.2 Note that centered images have

negative values and thus images are shifted and rescaled for visualiza-

tion purposes. Regions with relatively uniform colors appear grayish,

and thus mostly contain geometrical content; some other areas contain

transitions between a color—say, represented by RGB values (r, g, b)—

and its opponent one—represented by (−r,−g,−b). The colored ha-

los around the pink flowers and the green leaves are thus due to this

color/opponent color transitions.

In the experiments of this paper about dictionary learning, whiten-

ing comprises a light dimensionality reduction step, where we threshold

to zero the smallest singular values of X (the entries on the diagonal

of S). More precisely, we keep the k largest singular values s1, . . . , sk

such that
∑k

i=1 s
2
i ≥ 0.995

∑m
i=1 s

2
i ; in other words, we keep 99.5% of

the explained variance of the data. Contrast normalization can then be

applied without particular attention to the nature of the patch. The

effects of whitening and contrast normalization are displayed on Fig-

ures 2.3(c) and 2.3(d), respectively. Similar conclusions can be drawn

for color image patches as in the monochromatic case.

2.2 Principal component analysis

Principal component analysis (PCA), also known as the Karhunen-

Loève or Hotelling transform [Hotelling, 1933], is probably the most

2available here: http://r0k.us/graphics/kodak/.

http://r0k.us/graphics/kodak/

2.2. Principal component analysis 55

(a) Without pre-processing. (b) After centering.

(c) After centering and ℓ2-normalization. (d) After whitening.

Figure 2.3: The effect of various pre-processing procedures on the image kodim07.
Pre-processed images are shifted and rescaled for visualization purposes, since they
contain negative values. The figure is best seen in color on a computer screen.

56 Discovering the Structure of Natural Images

widely used unsupervised data analysis technique. Even though it is

often presented as an iterative process finding orthogonal directions

maximizing variance in the data, it can be cast as a low-rank matrix

factorization problem:

min
U∈Rm×k,V∈Rn×k

∥
∥
∥X−UV⊤

∥
∥
∥

2

F
s.t. U⊤U = Ik,

where k is the number of principal components we wish to obtain,

and Ik is the identity matrix in R
k×k. We also assume that the rows

of the matrix X have zero mean. As a consequence of the theorem

of Eckart and Young [1936], the matrix U contains the principal com-

ponents of X corresponding to the k largest singular values. In Fig-

ure 2.4(b), we visualize the principal components of n = 400 000 natu-

ral image patches of size 16× 16 pixels, ordered by largest to smallest

singular value (form left to right, then top to bottom). The components

resemble Fourier basis—that is, product of sinusoids with different fre-

quencies and phases, similarly to the discrete cosine transform (DCT)

dictionary [Ahmed et al., 1974] presented in Figure 2.4(a).

However, there is a good reason for obtaining sinusoids that is sim-

ply related to a property of translation invariance, meaning that the pat-

terns observed in Figure 2.4(b) are unrelated to the underlying structure

of natural images. This fact is well known and has been pointed ear-

lier by others in the literature [see, e.g., Bossomaier and Snyder, 1986,

Field, 1987, Simoncelli and Olshausen, 2001, Hyvärinen et al., 2009].

Second-order statistics of natural images patches are commonly as-

sumed to be invariant by translation, such that the correlation of pixel

values at locations z1 = (k1, l1) and z2 = (k2, l2) only depends on the

displacement z1 − z2 [Simoncelli and Olshausen, 2001]. This is partic-

ularly true for patches that are extracted from larger images at any

arbitrary position, and whose distribution is exactly translation invari-

ant. Such signals are called “stationary” and their principal compo-

nents (equivalently the eigenvectors of the covariance matrix) are often

considered to be well approximated by the Discrete Fourier Transform

(DFT), as noted by Pearl [1973], leading to sinusoidal principal com-

ponents.

Nevertheless, the relation between principal components and si-

2.3. Clustering or vector quantization 57

nusoids only holds rigorously in an asymptotic regime. For instance,

consider the case of an infinite one-dimensional signal with covariance

Σ[k, l] = σ(k − l) for positions k and l, where σ is an even function.

Then, for all frequency ω and phase ϕ,

∑

l

Σ(k, l)ei(ωl+ϕ) =
∑

l

σ(l − k)ei(ωl+ϕ) =

(
∑

l′

σ(l′)eiωl′
)

ei(ωk+ϕ),

where i denotes the imaginary unit, and the sums are over all integers.

Since the function σ is even, the infinite sum
(
∑

l′ σ(l′)eiωl′
)

is real,

and the signals [sin(ωk + ϕ)]k∈Z are all eigenvectors of the covariance

operator Σ. Equivalently, they are principal components of the input

data. The case of two-dimensional signals can be treated similarly but it

involves heavier notation. Drawing conclusions about the eigenvectors

of a finite covariance matrix computed on natural image patches is

nevertheless subject to discussion, and understanding the quality of the

approximation of the principal components by the DFT in the finite

regime is non-trivial [Pearl, 1973].

From an experimental point of view, the fact that the structure

of natural images has nothing to do with the patterns displayed in

Figure 2.4(b) is easy to confirm. In Figure 2.5, we present principal

components computed on all overlapping patches from the image tiger.

Even though this image is sketched by hand—and thus, is not natural—

we recover sine waves as in Figure 2.4(b).

2.3 Clustering or vector quantization

Clustering techniques have been used for a long time on natural image

patches for compression and communication purposes under the name

of “vector quantization” [Nasrabadi and King, 1988, Gersho and Gray,

1992]. The goal is to find p clusters in the data, by minimizing the

following objective:

min
D∈Rm×p

∀i, li∈{1,...,p}

n∑

i=1

‖xi − dli‖22, (2.1)

where the columns of D = [d1, . . . ,dp] are called “centroids” and li
is the index of the cluster associated to the data point xi. The al-

58 Discovering the Structure of Natural Images

(a) DCT Dictionary. (b) Principal components.

Figure 2.4: On the right, we visualize the principal components of 400 000 randomly
sampled natural image patches of size 16 × 16, ordered by decreasing variance, from
top to bottom and left to right. On the left, we display a discrete cosine transform
(DCT) dictionary. Principal components resemble DCT dictionary elements.

(a) Original Image. (b) Principal components.

Figure 2.5: Visualization of the principal components of all overlapping patches
from the image tiger. Even though the image is not natural, its principal components
are similar to the ones of Figure 2.4(b).

2.3. Clustering or vector quantization 59

gorithm K-means [see Hastie et al., 2009] approximately optimizes the

non-convex objective (2.1) by alternatively performing exact minimiza-

tion with respect to the labels li with D fixed, and with respect to D

with the labels fixed.

To make the link between clustering and matrix factorization, it is

also possible to reformulate (2.1) as follows

min
D∈Rm×p

A∈{0,1}p×n

1

n

n∑

i=1

1

2
‖xi −Dαi‖22 s.t. ∀i,

p
∑

j=1

αi[j] = 1,

where A = [α1, . . . ,αn] carries binary vectors that sum to one, and

clustering can be subsequently seen as a matrix factorization problem:

min
D∈Rm×p

A∈{0,1}p×n

1

2n
‖X−DA‖2F s.t. ∀i,

p
∑

j=1

αi[j] = 1.

Then, the algorithm K-means is performing alternate minimization be-

tween A and D, each step decreasing the value of the objective.

We visualize clustering results in Figure 2.6 after applying 250 iter-

ations of the K-means algorithm on n = 400 000 natural image patches

and choosing p = 256 centroids. Without whitening, K-means produces

mostly low-frequency patterns, which is not surprising since most of the

energy (ℓ2-norm) of images is concentrated in low frequencies. It is in-

deed known that the spectral power of natural images obtained in the

Fourier domain typically decreases according to the power law 1/f2

for a frequency f [see Simoncelli and Olshausen, 2001]. After whiten-

ing, high-frequency “Gabor-like” patterns and checkerboard patterns

emerge from data. It is thus interesting to see that with an appropri-

ate pre-processing procedure, simple unsupervised learning techniques

such as K-means are able to discover Gabor features with different

orientations, frequencies, and positions within patches. We note that

the localized checkerboard patterns might be an artifact of the whiten-

ing procedure without dimensionality reduction, which amplifies such

patterns appearing among the last principal components presented in

Figure 2.4(b).

60 Discovering the Structure of Natural Images

(a) With centering. (b) With whitening.

Figure 2.6: Visualization of p = 256 centroids computed with the algorithm K-
means on n = 400 000 image patches of size m = 16 × 16 pixels. We compare the
results with centering (left), and whitening (right). In both cases, we also apply a
contrast normalization step. Centroids are ordered from most to least used (from
left to right, then top to bottom).

2.4. Dictionary learning 61

2.4 Dictionary learning

We are now interested in the dictionary learning formulation originally

introduced by Olshausen and Field [1996, 1997] and its application to

natural image patches. We consider the corresponding matrix factor-

ization formulation (1.22), which we recall here

min
D∈C,A∈Rp×n

1

2
‖X−DA‖2F + λΨ(A), (2.2)

where Ψ(A) =
∑n

i=1 ψ(αi) and C is the set of matrix whose columns

have a Euclidean norm smaller than one.

In Figure 2.7, we present visual results obtained with such a for-

mulation where ψ is the ℓ1-norm. As in the previous section about

clustering, we use n = 400 000 natural image patches, either gray, or

extracted from color images in RGB. We center the patches, according

to the procedure presented in Section 2.1, and rescale the matrix X

such that its columns have unit norm on average. Then, we learn a

dictionary D with p = 256 dictionary elements and set the regulariza-

tion parameter λ to 0.1. We use the online dictionary learning algo-

rithm of Mairal et al. [2010a] available in the software SPAMS, mak-

ing 10 passes over the data. The dictionaries obtained for gray and

RGB patches and with two different preprocessing steps are displayed

in Figure 2.7. Note that other dictionary learning approaches can be

used for this task and providing similar results. This is for instance the

case of the K-SVD algorithm of Aharon et al. [2006], which we present

in Section 5.5.

When processing grayscale image patches, a simple centering

step produces dictionary elements with both low-frequency elements,

and high-frequency, localized, Gabor-like patterns, as shown in Fig-

ure 2.7(a). The results after a whitening step are displayed in Fig-

ure 2.7(c). Whitening corresponds to applying a high-pass filter to the

original images, and we obtain exclusively Gabor-like features as in the

early work of Olshausen and Field [1996, 1997]. The case of color image

patches presented in Figures 2.7(b) and 2.7(d) is also interesting. After

centering, about 230 dictionary elements out of 256 are grayscale, or

are almost grayscale, which is consistent with the greyish appearance

62 Discovering the Structure of Natural Images

of images after centering (see Section 2.1). An intriguing phenomenon

concerns the remaining colored dictionary elements. Those exhibit low-

frequency patterns with two opponent colors, blue and yellow for 10

of them, green and red/purple for 16 of them. Interestingly, such op-

ponent color patterns are typical characteristics of neurons’ receptive

fields described in the neuroscience literature [Livingstone and Hubel,

1984, Ts’o and Gilbert, 1988].

2.5 Structured dictionary learning

Because the ℓ1-norm cannot model interactions between dictionary ele-

ments, it is natural to consider extensions of dictionary learning where

a particular structure is taken into account. The concept of structured

sparsity presented in Section 1.3 is a natural tool for this; it consists of

replacing the ℓ1-norm by a more complex sparsity-inducing penalty.

Hierarchical dictionary learning. A first extension has been investi-

gated by Jenatton et al. [2010a, 2011b], when a pre-defined hierarchical

structure is assumed to exist among the p dictionary elements. The for-

mulation (2.2) is considered where the function Ψ is the hierarchical

Group-Lasso penalty of Zhao et al. [2009]. A tree is given, e.g., is de-

fined by the user, and one dictionary element is associated to every

node of the tree. The penalty constructs a group structure G of subsets

of {1, . . . , p}, each group containing one node and all its descendants

in the tree. An example is illustrated in Figure 1.12. The resulting

penalty Ψ is then defined as

Ψ(A) =
n∑

i=1

∑

g∈G
‖αi[g]‖q, (2.3)

where ‖.‖q can either represent the ℓ∞- or the ℓ2-norm. As explained

in Section 1.3, an effect of the penalty is that a dictionary element can

be used in the decomposition of a patch only if its parent in the tree is

also used. We present some visual results for q =∞ in Figure 2.8, after

centering the natural image patches, for some manually tuned regu-

larization parameter λ, and two different tree structures. Dictionary

2.5. Structured dictionary learning 63

(a) With centering - gray. (b) With centering - RGB.

(c) With whitening - gray. (d) With whitening - RGB.

Figure 2.7: Dictionaries obtained with the formulation (2.2), with two different
pre-processing procedures, and with gray or RGB patches. The dictionary elements
are ordered from most to least used (from left to right, then top to bottom). Best
seen in color on a computer screen.

64 Discovering the Structure of Natural Images

(a) Tree structure 1. (b) Tree structure 2.

Figure 2.8: Dictionaries obtained with the formulation (2.2) and a hierarchical
structured-sparsity penalty Ψ for natural image patches of size 16 × 16 pixels. The
tree structures are pre-defined, and the dictionary elements naturally organize them-
selves in the tree during learning. For each tree, the root is represented in the middle
of the figure. (a): the tree is of depth 4 and the branching factors at depths 1, 2, 3
are respectively 10, 2, 2; (b): the tree is slightly more complex; its depth is 5 and the
branching factors at depths 1, 2, 3, 4 are respectively 10, 2, 2, 2. Figures borrowed
from Jenatton et al. [2010a, 2011b]. Best seen by zooming on a computer screen.

elements naturally organize themselves in the tree, often with low fre-

quencies near the root of the tree, and high frequencies near the leaves.

We also observe strong correlations between each parent node and their

children in the tree, where children often look like their parent, but with

higher frequencies and with minor variations.

Topographic dictionary learning. A two-dimensional grid structure

has also been used for learning dictionaries [Kavukcuoglu et al., 2009,

Mairal et al., 2011], which was directly inspired from the topographic

independent component analysis formulation of Hyvärinen et al. [2001].

The principle is similar to the hierarchical case—that is, we can use a

penalty Ψ as in (2.3), but the set of groups G takes into account a

different structure. We assume here that the dictionary elements are

organized on a grid, such that we can define neighborhood relations

2.5. Structured dictionary learning 65

(a) With 3 × 3 neighborhoods. (b) With 4 × 4 neighborhood.

Figure 2.9: Dictionaries obtained with the formulation (2.2) and a structured spar-
sity penalty Ψ inducing a grid structure in the dictionary. The dictionaries are com-
puted on whitened natural image patches of size 12 × 12 pixels for two different
group structures. Figure borrowed from Mairal et al. [2011]. Best seen on a com-
puter screen.

between them.

For instance, we can organize the p dictionary elements on a
√
p×√p

grid, and consider p overlapping groups that are 3× 3 or 4× 4 spatial

neighborhoods on the grid (to avoid boundary effects, we assume the

grid to be cyclic). We represent some results obtained with such a for-

mulation in Figure 2.9, where a function Ψ is defined in (2.3) with q = 2.

The regularization parameter λ is also manually tuned. The dictionary

elements automatically organize themselves on the grid, and exhibit

some intriguing spatial smoothness. Another formulation achieving a

similar effect was also proposed by Garrigues and Olshausen [2010], by

mixing sparse coding with a probabilistic model involving latent vari-

ables for groups of neighbor variables. Another approach was also pro-

posed by Gregor et al. [2011], which models inhibition effects between

dictionary elements.

66 Discovering the Structure of Natural Images

2.6 Other matrix factorization methods

We have focused our study of learning methods for natural image

patches on sparse coding and clustering techniques so far. Other matrix

factorization formulations have shown to be also effective for this task.

In particular, independent component analysis (ICA) was applied suc-

cessfully to image patches around the same time as dictionary learning

by Bell and Sejnowski [1997], who also obtained Gabor-like patterns

from whitened data.

Independent component analysis. A significantly different point of

view than dictionary learning consists of factorizing whitened data X

as a product DA, where the sparsity principle is replaced by an as-

sumption of statistical independence. Therefore, the ICA approach re-

quires by nature a probabilistic interpretation of the data. We assume

that x in R
m is a random variable representing a signal—here, a nat-

ural image patch— and the columns of X = [x1, . . . ,xn] are random

realizations of the variable x—that is, a set of natural image patches

selected uniformly at random. The principle of ICA assumes that there

exists a factorization x = Dα, where D is an orthogonal matrix,

and α = D⊤x is a random vector whose entries are statistically inde-

pendent [see Bell and Sejnowski, 1997, Hyvärinen et al., 2004, 2009].

Then, the columns of D are called independent components.

Given data, the concept of “statistical independence” alone does not

immediately yield a precise cost function to optimize, and thus numer-

ous variants of ICA exist in the literature. Ultimately, most variants

of ICA try to approximate the statistical independence assumption,

by finding an orthogonal transformation D⊤ such that the probabil-

ity density p(α), assuming it exists, factorizes into the product of its

marginals
∏p

j=1 p(α[j]). A popular cost function to compare probability

distributions is the Kullback-Leibler distance [see Cover and Thomas,

2006], denoted by KL, and a natural goal of ICA is to minimize over D

KL

p(α),
p
∏

j=1

p(α[j])

 ,

∫

Rp
p(α) log

(

p(α)
∏p

j=1 p(α[j])

)

dα,

which is equal to zero if and only if the α[j]’s are independent. The

2.6. Other matrix factorization methods 67

quantity KL above is also called the mutual information between the

variables α[j], and can also be simply written in terms of the entropy

function H:3

KL

p(α),
p
∏

j=1

p(α[j])

 =
p
∑

j=1

H(α[j])−H(α).

Interestingly, the entropy H(α) can be shown to be independent of D

when D is orthogonal and x is whitened with identity covariance, such

that the goal of ICA can be expressed as the minimization of the sum

of entropies
p
∑

j=1

H(α[j]) =
p
∑

j=1

H(d⊤
j x). (2.4)

Unfortunately, entropy remains an abstract quantity that is not com-

putable, and thus (2.4) is not yet an objective function that is easy

to minimize. Turning (2.4) into a concrete formulation and algorithm

can be achieved by following different strategies. One of them consists

of parameterizing the densities p(d⊤
j x), assuming they admit a known

parametric form, and minimizing (2.4) becomes equivalent to perform-

ing maximum likelihood estimation [see Hyvärinen et al., 2004]. An-

other approach consists of using non-parametric estimators of the en-

tropy [Pham, 2004]. Finally, a large class of methods consists of using

approximations of the entropy cost function (2.4) or encourage the

distributions of the α[j]’s to be “non-Gaussian” [Cardoso, 2003]. The

non-gaussianity principle might not seem intuitive at first sight, but

it is in fact rather natural when considering a minimization entropy

problem. Among all probability distributions with same variance, the

Gaussian ones are known to maximize entropy [Cover and Thomas,

2006]. As such, minimizing (2.4) implies that we are looking for some

non-Gaussian random variables α[j].

Extensions where D is not orthogonal and when the data X is

not whitened exist, but we have omitted them in this brief presenta-

tion for simplicity [see Hyvärinen et al., 2004, for a better overview].

3The entropy is defined as H(x) ,
∫
p(x) log p(x)dx [see Cover and Thomas,

2006]. In general, H(x) is not computable exactly since the probability density p is
unknown.

68 Discovering the Structure of Natural Images

A remarkable fact is that ICA applied to natural image patches yields

very similar results to the sparse coding model of Olshausen and Field

[1996, 1997], as shown by Bell and Sejnowski [1997]. In fact, an equiva-

lence exists between the two formulations under particular asymptotic

conditions [see the appendix of Olshausen and Field, 1997].

Non-negative matrix factorization. Another popular unsuper-

vised learning technique is the non-negative matrix factorization

(NMF) [Paatero and Tapper, 1994], which was shown to be able to au-

tomatically discover some interpretable features on datasets of human

faces [Lee and Seung, 1999]. When the data matrix X is non-negative,

the method consists of finding a product DA that approximates X, and

where each factor is also non-negative. The corresponding formulation

can be written as

min
D∈Rm×p,A∈Rp×n

‖X−DA‖2F s.t. D ≥ 0 and A ≥ 0.

Even though this technique could be applied to natural image

patches without pre-processing, it has been empirically observed that

NMF does not yield any interpretable feature when applied to such

data [Mairal et al., 2010a]. Note that NMF is often used with a differ-

ent loss function than the square loss, in particular for audio applica-

tions [Févotte et al., 2009].

Archetypal analysis. Around the same time as dictionary learning

and non-negative matrix factorization, archetypal analysis was intro-

duced by Cutler and Breiman [1994] for discovering latent factors from

high-dimensional data. The main motivation was to propose an unsu-

pervised learning technique that is more interpretable than principal

component analysis. The method seeks a factorization X = DA, with

two symmetrical geometrical constraints. First, each column dj of D,

called “archetype” is forced to be a convex combination of a few data

points. In other words, for all j ∈ {1, . . . , p}, there exists a vector βj

such that dj = Xβj , and βj is in the simplex ∆n defined as

∆n ,

{

β ∈ R
n s.t. β ≥ 0 and

n∑

i=1

β[i] = 1

}

. (2.5)

2.6. Other matrix factorization methods 69

Second, each data point xi is encouraged to be close to the convex hull

of the archetypes, meaning that xi should be close to a product Dαi,

where αi is in the simplex ∆p, defined as in (2.5) when replacing n

by p. The resulting formulation is the following

min
αi∈∆p for 1≤i≤n
βj∈∆n for 1≤j≤p

n∑

i=1

‖xi −Dαi‖22 s.t. ∀j,dj = Xβj ,

which, in the matrix factorization form, is equivalent to

min
αi∈∆p for 1≤i≤n
βj∈∆n for 1≤j≤p

‖X−XBA‖2F ,

where A = [α1, . . . ,αn], B = [β1, . . . ,βp] and the matrix of

archetypes D is equal to the product XB.

Archetypal analysis is closely related to the dictionary learning for-

mulation of Olshausen and Field [1996, 1997] since the simplicial con-

straint αi ∈ ∆p can be equivalently rewritten as the ℓ1-norm con-

straint ‖αi‖1 = 1 associated to a non-negativity one αi ≥ 0. As a

result, the coefficients αi are sparse in practice and archetypal anal-

ysis provides a sparse decomposition of the data points xi. The main

difference with dictionary learning is the set of constraints dj = Xβj .

Because the vectors βj are constrained to be in the simplex ∆n, they

are encouraged to be sparse and each archetype is a convex combina-

tion of a few data points only. Such a relation between latent factors dj

and the data X is useful whenever interpreting D is important, e.g.,

in experimental sciences. For example, clustering techniques provide

such associations between data and centroids. It is indeed common in

genomics to cluster gene expression data from several individuals, and

to interpret each centroid by looking for some common physiological

traits among individuals of the same cluster [Eisen et al., 1998].

Archetypal analysis is also related to non-negative matrix factoriza-

tion [Paatero and Tapper, 1994]. When the data X is non-negative, it

is easy to see that both the matrix A and the matrix D of archetypes

are also non-negative. Unfortunately, archetypal analysis did not en-

countered as much success as dictionary learning or NMF, despite the

fact that it provides an elegant methodology for interpreting its output.

70 Discovering the Structure of Natural Images

One of the reason for this lack of popularity may be that no efficient

software has been available for a long time, which may have limited its

application to important scientific problems. Based upon such observa-

tions, Chen et al. [2014] have recently revisited archetypal analysis for

computer vision, with the goal of bringing back this powerful unsuper-

vised learning technique into favor. They made publicly available an

efficient implementation of archetypal analysis in the SPAMS software,

and demonstrated that it could perform as well as dictionary learn-

ing for some classification tasks, while offering natural mechanisms for

visualizing large databases of images (see Section 4.6).

Bayesian models for dictionary learning. Early models of dictionary

learning were probabilistic [see, for instance, Lewicki and Olshausen,

1999, Lewicki and Sejnowski, 2000]. Each image patch x is considered

to be a random variable with a normal distribution given a dictionary D

and a latent variable α. More precisely, we have the conditional law

p(x|D,α) ∝ e− 1
2σ2 ‖x−Dα‖2

2 , (2.6)

and the prior distribution on the coefficients α is Laplacian:4

p(α) ∝ e−λ‖α‖1 . (2.7)

With this probabilistic model, maximizing the posterior p(α|x,D)

given some observation x and a dictionary D, or equivalently mini-

mizing the negative log posterior, yields the Lasso formulation. Indeed,

by using Bayes’ rule, we have

− log p(α|x,D) = − log p(x|D,α)− log p(α)

=
1

2σ2
‖x−Dα‖22 + λ‖α‖1.

(2.8)

When n natural image patches x1, . . . ,xn are observed, learning a dic-

tionary D can be achieved by (i) modeling each xi according to (2.6)

with a latent variable αi associated to xi, (ii) assuming the αi’s to be

4Note that choosing the Laplace distribution for the prior does not mean implic-
itly assuming that the true distribution of the latent variable α is Laplace. In fact,
Gribonval et al. [2012] have shown that if this was the case, the choice (2.7) would
be inappropriate in the context of maximum a posteriori estimation.

2.6. Other matrix factorization methods 71

statistically independent one from each other, (iii) choosing a prior dis-

tribution p(D), e.g., uniform on the set of matrices C defined in (2.2),

and (iv) computing the point estimate

min
D,α1,...,αn

− log p(D,α1, . . . ,αn|x1, . . . ,xn).

By using again Bayes’ rule and by using the statistical independence

assumption, we recover the classical “matrix factorization” formulation

presented earlier:

− log p(D,A|X) = − log p(α1, . . . ,αn|X,D)− log p(D)

=
n∑

i=1

− log p(αi|xi,D)− log p(D)

=
n∑

i=1

1

2σ2
‖xi −Dαi‖22 + λ‖αi‖1 − log p(D),

(2.9)

where X = [x1, . . . ,xn] and A = [α1, . . . ,αn]. Simply maximizing

the posterior distribution is however not satisfactory from the point of

view of a Bayesian statistician, who is usually not interested in point

estimates, but in the full posterior distribution [see Bayarri and Berger,

2004].5 In fact, the formulation (2.9) discards any uncertainty regarding

the model parameters D and A and would be called a “frequentist”

approach in statistics: assuming that one can repeatedly draw natural

image patches at random, one wishes to find a dictionary D that is good

on average, which is nothing else than the (non-probabilistic) empirical

risk minimization point of view presented in Section 1.4.

A first step towards a Bayesian dictionary learning formulation

consists of integrating instead of maximizing with respect to the la-

tent variables αi, as typically done in Bayesian sparse linear mod-

5It seems that a common misconception in the computer vision and image pro-
cessing literature is to call “Bayesian” any probabilistic model that uses Bayes’ rule
such as (2.8). Such a terminology for maximum a posteriori (MAP) estimation is
slightly misleading regarding the hundred-year-old debate among frequentists and
Bayesian statisticians. In general, the latter do not assume that there exists a “true”
parameter that can be obtained with MAP estimation; instead, they treat all pa-
rameters as random variables and model their uncertainty [see Bayarri and Berger,
2004].

72 Discovering the Structure of Natural Images

els [Park and Casella, 2008, Seeger, 2008], and maximizing the poste-

rior p(D|X). As a result, we need to minimize

− log p(D|X) = − log p(X|D)− log p(D)

=
n∑

i=1

− log p(xi|D)− log p(D)

=
n∑

i=1

− log

(∫

αi∈Rp
p(xi,αi|D)dαi

)

− log p(D)

=
n∑

i=1

− log

(∫

αi∈Rp
p(xi|αi,D)p(αi)dαi

)

− log p(D).

(2.10)

The formulation is again a pointwise estimator for the dictionary D

but it can be argued to be more “Bayesian” due to the treatment of

the latent variables αi. Another possibility is to maximize the data

likelihood p(X|D), resulting in the same formulation as (2.10) without

the prior term − log p(D); this is the strategy adopted for instance by

Lewicki and Olshausen [1999]. Note that optimizing (2.10) is difficult

since the integrals do not admit an analytical closed form, and some

approximations have to be made [Lewicki and Olshausen, 1999].

Recently, a fully Bayesian dictionary learning formulation has been

proposed by Zhou et al. [2009, 2012]. By “fully Bayesian”, we mean

that all model parameters such as dictionary D, coefficients α, but

also hyper-parameters such as σ are modeled with probability distri-

butions, and the full posterior density is estimated by using Gibbs sam-

pling. The model is in fact significantly different than the one described

by (2.6) and (2.7). In a nutshell, it involves a Beta-Bernoulli process for

selecting the non-zero coefficients in α, Gaussian priors with Gamma

hyperpriors for the value of these coefficients and for the dictionary

elements. Compared to the traditional matrix factorization formula-

tion (2.2), a Bayesian treatment has both advantages and drawbacks,

which often appear in passionate discussions between Bayesians and

frequentists: on the one hand, the Bayesian formulation is robust to

model misspecification and can learn some hyper-parameters such as

the noise level σ; on the other hand, Bayesian inference is significantly

more involved and computationally costly than matrix factorization.

2.6. Other matrix factorization methods 73

Convolutional sparse coding. The dictionary learning formulation

of Olshausen and Field [1996, 1997] is appropriate for processing nat-

ural image patches. A natural extension to full images instead of

patches is called “convolutional sparse coding”. It consists of lin-

early decomposing an image by using small dictionary elements placed

at all possible locations in the image. Such a principle was de-

scribed early by Zhu et al. [2005] without concrete application. It has

been revisited recently, and has been shown useful for various recog-

nition tasks [Zeiler et al., 2010, 2011, Rigamonti et al., 2011, 2013,

Kavukcuoglu et al., 2010a]

Specifically, let us consider an image x represented by a vector of

size l and let the binary matrix Rk in {0, 1}m×l be the linear operator

such that Rkx is the patch of size
√
m×√m from x centered at the pixel

indexed by k. The purpose of Rk is to “extract” a patch at a specific

location, but it is also easy to show that its adjoint operator R⊤
k is such

that R⊤
k z, for some vector z in R

m, is a vector of size l representing an

image with zeroes everywhere except the patch k that contains the m

entries of z. In other words, R⊤
k positions at pixel k a small patch in

the larger image. To simplify, we assume that there is no boundary

effect when the pixel k is close to the image border, e.g., we use zero-

padding to define patches that overlap with the image boundary. Then,

it becomes natural to decompose x with the Lasso formulation:

min
A∈Rp×l

1

2

∥
∥
∥
∥
∥
x−

l∑

k=1

R⊤
k Dαk

∥
∥
∥
∥
∥

2

2

+ λ
l∑

k=1

‖αk‖1, (2.11)

where D is a dictionary in R
m×p, and, as usual, A = [α1, . . . ,αl].

Solving (2.11) is easy with any standard method adapted to large-scale

ℓ1-regularized convex problems [see Bach et al., 2012a, for a review].

For instance, Rigamonti et al. [2011] uses a proximal gradient method,

whereas Kavukcuoglu et al. [2010a] uses a coordinate descent scheme.

To conduct the experiment of this paragraph, we have implemented

the ISTA and FISTA algorithms of Beck and Teboulle [2009] for solv-

ing (2.11), and we have made it available in the SPAMS toolbox.6

Given now a collection of n images x1, . . . ,xn, which are assumed

6http://spams-devel.gforge.inria.fr/.

http://spams-devel.gforge.inria.fr/

74 Discovering the Structure of Natural Images

to be of the same size for simplicity, the dictionary D can be learned

by minimizing

min
{Ai∈Rp×l}i=1...n

D∈C

1

n

n∑

i=1

1

2

∥
∥
∥
∥
∥
xi −

l∑

k=1

R⊤
k Dαi,k

∥
∥
∥
∥
∥

2

2

+ λ
l∑

k=1

‖αi,k‖1

 ,

(2.12)

where Ai = [αi,1, . . . ,αi,k] for all i = 1, . . . , n. A natural optimization

scheme for addressing (2.12) is to alternate between the minimization

of D with A fixed and vice versa, as often done for the classical dictio-

nary learning problem (see Section 5). Even though finding the global

optimum of (2.12) is not feasible because the objective function is non-

convex, alternate minimization provides a stationary point [Bertsekas,

1999]. Updating the dictionary D with fixed coefficients A can be

achieved by projected gradient descent.

In Figure 2.10, we visualize two dictionaries of size p = 100 with

elements of size m = 16× 16 pixels. We learned them on 30 whitened

natural images that are rescaled such that each
√
m × √m patch has

unit ℓ2-norm on average. We perform 300 steps of alternate minimiza-

tion. For updating A or D, we always use 5 iterations of the algorithm

ISTA [Beck and Teboulle, 2009], yielding a small decrease of the ob-

jective function at each step. Interestingly, we observe that the learned

features have the following properties: (i) in general, they are well cen-

tered; (ii) some of them are more complex than the ones obtained with

the classical dictionary learning formulation. In other words, they go

beyond simple Gabor features, with curvy patterns, corners, and blobs.

2.7 Discussion

In this section, we have reviewed a large number of unsupervised learn-

ing techniques that are able to discover underlying structures in natural

images. We have focused on matrix factorization and sparse coding, but

other techniques that are out of the scope of our study are known to

achieve similar results. We briefly mention a few of them.

A successful approach is the Gaussian mixture model (GMM).

Even though it is classical, it has been shown only recently to be well

2.7. Discussion 75

(a) With λ = 0.2.

Figure 2.10: Visualization of p = 100 dictionary elements learned on 30 whitened
natural images. Dictionary elements are ordered from most to least used (from left
to right, then top to bottom).

adapted to represent natural image patches. GMMs for image patches

were first investigated by Yu et al. [2012] and then further developed

by Zoran and Weiss [2011], yielding very good results for several im-

age restoration tasks. The probabilistic model consists of representing

the distribution of a patch x as a convex combination of p Gaussian

distributions with means µk and (often diagonal) covariance matri-

ces Σk for k = 1, . . . , p. Given a database of patches x1, . . . ,xn, the

EM-algorithm [Dempster et al., 1977] is typically used to learn means

and covariances. When displaying the means, small localized Gabor

filters typically appear when the data is whitened [Coates et al., 2011].

Finally, small oriented localized filters can also be learned from

natural image patches by using undirected graphical models such

as restricted Boltzmann machines (RBM) [see Hinton, 2002, Bengio,

2009, Coates et al., 2011], and also by using convolutional neural net-

works [LeCun et al., 1998a, Zeiler and Fergus, 2014], which have re-

cently gained some popularity for solving large-scale visual recognition

tasks.

3

Sparse Models for Image Processing

We have previously shown that natural image patches could be modeled

by using dictionary learning techniques and its variants, but we have

not presented any concrete application yet. We have indeed focused

so far on the interpretation of the visual patterns obtained by various

methods, but one may wonder whether or not these interpretable struc-

tures can be useful for prediction tasks. For quite a long time, the an-

swer to this question was uncertain, until the work of Elad and Aharon

[2006] on image denoising that achieved state-of-the-art results com-

pared to other approaches at that time.

The current section is devoted to several applications of dictionary

learning in image processing. First, we present the simple and yet

effective scheme for image denoising introduced by Elad and Aharon

[2006], and then move to more complex tasks. In general, we show

that dictionary learning can be useful for predicting missing vi-

sual information, leading to state-of-the-art results for image inpaint-

ing and demosaicking [Mairal et al., 2008c, 2009], super-resolution

and deblurring [Yang et al., 2010a, 2012a, Couzinie-Devy et al., 2011,

Dong et al., 2011b, Zeyde et al., 2012, Wang et al., 2012], face com-

pression [Bryt and Elad, 2008], or for inverting non-linear local trans-

76

3.1. Image denoising 77

formations [Mairal et al., 2012]. We also present natural extensions

of dictionary learning to video processing [Protter and Elad, 2009],

and finally, we conclude this section with a presentation of other

patch-modeling approaches [Buades et al., 2005, Awate and Whitaker,

2006, Dabov et al., 2007a, Takeda et al., 2007, Zoran and Weiss, 2011,

Yu et al., 2012, Chatterjee and Milanfar, 2012].

A small part of the material of this section is borrowed from the

PhD thesis of the first author [Mairal, 2010].

3.1 Image denoising

Let us consider the classical problem consisting of restoring a noisy

image y in R
n that has been corrupted by white Gaussian noise with

known standard deviation σ.1 In many cases, image denoising is for-

mulated with an energy to minimize [e.g., Rudin et al., 1992]:

min
x∈Rn

1

2
‖y− x‖22 + λψ(x), (3.1)

where ψ : R
n → R is a regularization function, and the quadratic

“data-fitting” term ensures that the estimate x is close to the noisy

observation y. When (3.1) is derived from a probabilistic image model,

it is often interpreted from the point of view of maximum a posteriori

estimation, where λψ(x) is related to some negative log prior distri-

bution on x. Even though (3.1) looks simple at first sight, finding a

good regularization function ψ is difficult, and in fact, it is probably

one of the most important research topic in image processing nowa-

days. In early work, various smoothness assumptions about x have led

to different functions ψ. Specifically, natural images were assumed to

have small total variation [Rudin et al., 1992], or the smoothness be-

tween adjacent pixel values was modeled with Markov random fields

(MRF) [Zhu and Mumford, 1997].

As described in Section 1.2, sparse image models based on wavelets

have also been popular for the denoising task [see Mallat, 2008]. This

line of work has inspired the method we present in this section but

1The formulations presented in this section can be also modified to handle other
types of noise, such as Poisson noise [see Giryes and Elad, 2014].

78 Sparse Models for Image Processing

the latter differs in two aspects: (i) the approach of Elad and Aharon

[2006] is patch-based like other “modern” image processing meth-

ods [Buades et al., 2005, Dabov et al., 2007a, Roth and Black, 2009];

(ii) it adapts to the image patches with dictionary learning, and thus

it does not use any pre-defined wavelet basis.

Patch denoising given a fixed dictionary. Elad and Aharon [2006]

have proposed a simple denoising procedure that treats every patch

independently. Let us consider the
√
m × √m patch yi of the noisy

image y, centered at the pixel indexed by i, and assume that an appro-

priate dictionary D in R
m×p is given.2 Then, the patch yi is denoised

by the following steps:

1. center yi (see Section 2.1),

yc
i , yi − µi1m with µi ,

1

n
1⊤

myi;

2. find a sparse linear combination of dictionary elements that ap-

proximates yc
i up to the noise level:

min
αi∈Rp

‖αi‖0 s.t. ‖yc
i −Dαi‖22 ≤ ε, (3.2)

where ε is proportional to the noise variance σ2;

3. add back the mean component to obtain the clean estimate x̂i:

x̂i , Dα⋆
i + µi1m,

where α⋆
i is the solution, or approximate solution, obtained when

addressing (3.2).

The approach we have just described yields two difficulties. First, it

is important to choose a good value for ε. Second, problem (3.2) is

unfortunately NP-hard. For patches of size m = 8 × 8 = 64 pixels,

Elad and Aharon [2006] recommend the value ε = m(1.15σ)2. Another

effective heuristic proposed by Mairal et al. [2009] assumes that the

2For simplicity, we always assume in this monograph that the patches are square,
but all approaches can be easily extended to deal with other patch shapes.

3.1. Image denoising 79

targeted residual yi − Dαi behaves as the Gaussian noise of (sup-

posedly known) variance σ2, such that the quantity ‖yi − Dαi‖22/σ2

follows a χ-square distribution with m degrees of freedom. Then, the

heuristic sets ε = σ2F−1
m (τ) where F−1

m is the inverse cumulative dis-

tribution function of the χ2
m distribution. Selecting the value τ = 0.9

leads to appropriate values of ε in practice for different patch sizes m.

For dealing with (3.2), greedy algorithms such as orthogonal matching

pursuit [Pati et al., 1993] are known to provide approximate solutions

that are good enough for the denoising task [Elad and Aharon, 2006].

Such algorithms are presented in details in Section 5.1.

After having presented a simple “patch” denoising procedure given

a fixed dictionary D, we study three questions that will explain the

different steps needed for denoising a full image:

1. how do we reconstruct the full image from the local patch models?

2. which dictionary should we choose?

3. how does ℓ1 compares with ℓ0 for image denoising?

From patches to full image estimation. The denoising scheme

proposed by Elad and Aharon [2006] processes independently every

patch yi from the noisy image y, before constructing the denoised

image by averaging the patch estimates x̂i. More precisely, since the

patches yi overlap, each pixel belongs to m different patches and thus

admits m estimates.3 Then, the denoised image x̂ in R
n is obtained as

follows:

x̂ =
1

m

n∑

i=1

R⊤
i x̂i, (3.3)

where Ri in R
n×n is a binary matrix defined as in Section 2.6—that

is, R⊤
i x̂i is a vector of size n corresponding to an image with zeroes

everywhere except for the patch indexed by i that contains x̂i. In other

words, R⊤
i is a linear operator that “positions” a patch of size m at

3For simplicity, we choose here to neglect boundary effects for pixels that are
close to the image border, which technically belong to fewer patches.

80 Sparse Models for Image Processing

the pixel i in a larger image with n > m pixels.4 As a result, Eq. (3.3)

is nothing else than an averaging procedure, which is the simplest way

of aggregating estimators of the same quantity.

We remark that this averaging strategy is related to the translation-

invariant wavelet denoising technique of Coifman and Donoho [1995],

where a clean image is reconstructed by averaging estimates obtained

by denoising several shifted versions of an input image. Even though

aggregating estimators by straight averaging might look suboptimal,

we are not aware of any other technique, in the context of local sparse

linear models, leading to better results for reconstructing the final im-

age from the estimation of overlapping patches.

Use of generic versus global versus image-adaptive dictionary. The

first baseline considered by Elad and Aharon [2006] uses a fixed over-

complete discrete cosine transform (DCT) dictionary, which was pre-

sented earlier in Figure 2.4(a). We call such an approach “generic” since

the dictionary is pre-defined. The second strategy, dubbed “global”,

consists of learning a dictionary on an external database of clean

patches, simply following the methodology of Section 2. Finally, we

also present the “adaptive” strategy of Elad and Aharon [2006], which

learns the dictionary from the pool of noisy patches:

min
D∈C,A∈Rp×n

1

n

n∑

i=1

ψ(αi) s.t. ‖yi −Dαi‖22 ≤ ε, (3.4)

where C is defined in Section 2, and ψ is a sparsity-inducing penalty.

Elad and Aharon [2006] originally use the ℓ0-penalty in place of ψ, and

optimize (3.4) with the K-SVD algorithm [Aharon et al., 2006]. Later,

additional experiments have shown that learning the dictionary with ℓ1
could bring some benefits [Mairal et al., 2009]. In fact, we experimen-

tally demonstrate in the sequel that ℓ1 consistently provides better re-

sults for the denoising task, when used for learning the dictionary only.

4Note that the original averaging scheme of Elad and Aharon [2006] slightly dif-
fers from (3.3) since their estimate x̂ is defined as x̂ = (1−λ)y+λ(1/m)

∑n

i=1
R⊤

i x̂i,
where y is the noisy image. We have empirically found that the setting λ = 1 leads
in fact to very good results and we have thus omitted the parameter λ.

3.1. Image denoising 81

Indeed, we observe that regardless of the way the dictionary is learned,

ℓ0 should always be used for the final reconstruction step in (3.2).

This conclusion is drawn from the following experiment. We con-

sider 12 classical images presented in Figure 3.1, which were used in

other benchmarks about image denoising [e.g., Mairal et al., 2009]. We

corrupt every image with white Gaussian noise of standard deviation σ

in {5, 10, 15, 20, 25, 50, 100} for pixel values in the range [0; 255], and we

measure the reconstruction quality obtained by the three approaches

by using the PSNR criterion.5 We consider dictionaries of size p = 256

elements, different patch sizes m = l × l, with l in {6, 8, 10, 12, 14, 16},
and we use the parameter τ = 0.9 suggested before for choosing the

reconstruction threshold ε. For every noise level, the parameter l is se-

lected such that it maximizes the average PSNR obtained on the last 5

images of the dataset.

We make a comparison between the six scenarios described below.

In all cases, the dictionaries are learned with the SPAMS software, by

performing 10 passes over the available training data.

1. DCT: we use an overcomplete DCT dictionary; the patches are

reconstructed by using the ℓ0-regularization (3.2).

2. ℓ0-global/ℓ0: the dictionary is learned on 400 000 natural image

patches extracted from the Kodak PhotoCD images6. Denoting

by x1, . . . ,xn these patches, we learn D by minimizing

min
D∈C,A∈Rp×n

1

n

n∑

i=1

1

2
‖xi −Dαi‖22 s.t. ‖αi‖0 ≤ s,

where s = 10 is known to approximate well clean natural image

patches [Elad and Aharon, 2006].

3. ℓ0-adapt/ℓ0: the dictionary is learned by minimizing (3.4)

with ψ = ℓ0; we initialize the learning procedure with the global

dictionary obtained in the scenario ℓ0-global/ℓ0.

5Denoting by MSE the mean squared-error for images whose intensities are be-
tween 0 and 255, the PSNR is defined as PSNR = 10 log10(2552/MSE) and is mea-
sured in dB. A gain of 1 dB reduces the MSE by approximately 20%.

6The dataset is available here: http://r0k.us/graphics/kodak/.

http://r0k.us/graphics/kodak/

82 Sparse Models for Image Processing

(a) house (b) peppers (c) Cameraman (d) lena

(e) barbara (f) boat (g) hill (h) couple

(i) man (j) fingerprint (k) bridge (l) flintstones

Figure 3.1: Dataset of 12 standard images used in the image denoising benchmarks.

3.1. Image denoising 83

4. ℓ1-global/ℓ0: the scenario is the same as ℓ0-global/ℓ0, except that

the dictionary is learned with the ℓ1-penalty, following exactly the

methodology of Section 2.4. The final reconstruction is obtained

with ℓ0 as in (3.2).

5. ℓ1-adapt/ℓ0: same as ℓ1-adapt/ℓ0, except that the dictionary is

learned by minimizing (3.4) with ψ = ℓ1; we use the dictio-

nary obtained in the scenario ℓ1-global for initializing the learning

procedure. The final reconstruction is still obtained with the ℓ0-

penalty.

6. ℓ1-adapt/ℓ1: same as ℓ1-adapt/ℓ0, but the patches yc
i in the final

reconstruction are denoised by replacing the ℓ0-penalty by the

ℓ1-norm in (3.2).

We report the mean PSNR obtained by the different scenarios in Ta-

ble 3.1, along with the performance achieved by other state-of-the-art

approaches of the literature. The conclusions are the following:

• the simple denoising scheme that we have presented performs

slightly worse than more recent methods such as Dabov et al.

[2007a], Mairal et al. [2009], Chatterjee and Milanfar [2012] in

terms of PSNR;

• adaptive dictionaries yield better results than global ones, as al-

ready observed by Elad and Aharon [2006];

• learning the dictionary with ℓ1 consistently yields better results

than ℓ0, even though the ℓ0-penalty is used for the final image

reconstruction step in (3.2);

• ℓ0 yields better results than ℓ1 in the final image reconstruction

step, regardless of the way the dictionary was learned.

Even though the conclusion that one should “first learn the dic-

tionary with ℓ1, before using ℓ0 for denoising the image” might seem

counterintuitive, we believe that the reason of the good performance

of ℓ1 for dictionary learning might be a better stability of the spar-

sity patterns than the ones obtained with ℓ0. This may subsequently

84 Sparse Models for Image Processing

σ

5 10 15 20 25 50 100

DCT 37.30 33.38 31.24 29.75 28.66 25.24 22.00

ℓ0-global/ℓ0 37.21 33.37 31.41 30.01 28.95 25.65 22.44

ℓ1-global/ℓ0 37.22 33.50 31.56 30.17 29.13 25.77 22.53

ℓ0-adapt/ℓ0 37.49 33.75 31.70 30.40 29.33 26.04 22.64

ℓ1-adapt/ℓ0 37.60 33.90 31.90 30.51 29.43 26.20 22.72

ℓ1-adapt/ℓ1 36.58 32.85 30.77 29.29 28.14 24.47 21.83

GSM 37.05 33.34 31.31 29.91 28.84 25.66 22.80

K-SVD 37.42 33.62 31.58 30.18 29.10 25.61 22.10

BM3D 37.62 34.00 32.05 30.73 29.72 26.38 23.25

LSSC 37.67 34.06 32.12 30.78 29.74 26.57 23.39

Plow 37.38 32.98 31.38 30.13 29.30 26.38 23.24

EPLL 37.36 33.64 31.67 30.32 29.29 26.12 23.03

CSR 37.61 34.00 32.05 30.72 29.70 26.53 23.45

BM3D-PCA 37.79 34.20 32.27 30.94 29.92 26.75 23.16

Table 3.1: Denoising performance in PSNR for various methods on the 12 stan-
dard images of Figure 3.1 for various levels of noise σ. GSM refers to the Gaus-
sian scale mixture model of Portilla et al. [2003]; K-SVD refers to the original
method of Elad and Aharon [2006]; BM3D refers to the state-of-the-art denois-
ing approach of Dabov et al. [2007a]; LSSC refers to Mairal et al. [2009], Plow
refers to Chatterjee and Milanfar [2012], EPLL to Zoran and Weiss [2011], CSR
to Dong et al. [2013], and BM3D-SAPCA to an extension of BM3D with better re-
sults [Dabov et al., 2009, Katkovnik et al., 2010]. For all these approaches, publicly
available software is available on the corresponding authors’ web pages.

yield a better behavior in terms of optimization. Whereas the ℓ1-scheme

guarantees us to obtain a stationary point of the dictionary learning

formulation, the ℓ0-counterpart does not. A similar experimented was

conducted by Mairal [2010, chapter 1.6], with similar conclusions.

3.2 Image inpainting

Dictionary learning is well adapted to the presence of missing data—

that is, it is appropriate for inpainting [Bertalmio et al., 2000] when

the missing pixels form small holes that are smaller than the patch

3.2. Image inpainting 85

sizes. To deal with unobserved information, the dictionary learning

formulation can be modified by introducing a binary mask Mi for every

patch indexed by i [Mairal et al., 2008c,e]. Formally, we define Mi as a

diagonal matrix in R
m×m whose value on the j-th entry of the diagonal

is 1 if the pixel yi[j] is observed and 0 otherwise. Then, the dictionary

learning formulation becomes

min
D∈C,A∈Rp×n

1

n

n∑

i=1

1

2
‖Mi(yi −Dαi)‖22 + λψ(αi),

where ψ is a sparsity-inducing penalty, Miyi represents the observed

pixels from the i-th patch of the image y and Dαi is the estimate of the

full patch i. In practice, the binary mask does not drastically change

the optimization procedure, and one can still use classical optimization

techniques for dictionary learning, e.g., alternating between the opti-

mization of D and A, as described in Section 5. When the image y is

only corrupted by missing pixels and not by other noise source, it is

also possible to enforce hard reconstruction constraints, leading to the

formulation

min
D∈C,A∈Rp×n

n∑

i=1

ψ(αi) s.t. Miyi = MiDαi. (3.5)

Similarly to the denoising problem, once the dictionary is learned, we

need to sparsely encode all overlapping patches, e.g., by approximately

minimizing (3.5) with a greedy algorithm when ψ is the ℓ0-penalty.

Then, the full image is obtained by averaging using (3.3).

Before showing any inpainting result, we shall comment on when the

formulation described here is supposed to work. Our first remark is that

it can only handle holes that are smaller than the patch size. Dealing

with larger holes might be possible, but with a different formulation

that would be able to synthesize new information in empty patches [see,

e.g. Criminisi et al., 2004, Peyré, 2009, Roth and Black, 2009]. Second,

one assumes that the noise pattern is unstructured, such that no noise

patterns are learned by the dictionary. The demosaicking task from the

next section is a typical example with very structured missing patterns,

and where an alternative strategy needs to be used.

86 Sparse Models for Image Processing

Finally, we show inpainting results in Figure 3.2. For both images,

the noise structure is relatively random when seen at the patch level,

and the dictionary learning approach performs well at recovering the

missing pixels. In particular, the brick texture in the image house is

hardly visible for the human eye, but it is well recovered by the algo-

rithm.

3.3 Image demosaicking

The problem of demosaicking consists of reconstructing a color image

from the raw information provided by colored-filtered sensors from dig-

ital cameras [Kimmel, 1999]. Most consumer-grade cameras use a grid

of sensors; for every pixel, one sensor records the amount of light it

receives for a short period of time. A color filter, red, green, or blue, is

placed in front of the sensor such that only one color channel is mea-

sured for each pixel. Reconstructing the missing channels for the full

image is a task called demosaicking. It is usually performed on-the-fly

by digital cameras, but can also be achieved with a better quality by

professional software on a desktop computer.

A typical pattern of filters, called the “Bayer” pattern, is displayed

in Figure 3.3. Every row alternates between red and green, or green

and blue filters. As a result, information captured by digital sensors

in the green channel is twice more important than in the red or blue

channels, even though the final post-processed color image observed by

the user does not reflect this fact. An example of a mosaicked image

with the Bayer pattern is presented in Figure 3.4(a). Reconstructing

the color image without producing any visual artifact is difficult since it

requires recovering frequencies in ever channel that are greater than the

sampling rate. Specifically, the resolution in the red and blue channels

needs to be doubled.

Since demosaicking consists of recovering missing information for

every pixel, it can be cast as an inpainting problem, but the inpainting

procedure described in the previous section cannot be directly applied

because the noise pattern is strongly structured. An effective two-step

strategy proposed by Mairal et al. [2008c] to overcome the shortcoming

3.3. Image demosaicking 87

(a) Example A, Damaged (b) Example A, Restored

(c) Example B, Damaged (d) Example B, Restored

Figure 3.2: Top: inpainting result obtained by using the source code of Mairal et al.
[2008c], where the text is automatically removed on the restored image. Bottom: in-
painting result from Mairal et al. [2008e], where 80% of the pixels are randomly
missing from the original image. The algorithm is able to reconstruct the brick tex-
ture on the right, by adapting the dictionary to the available information displayed
on the left. The bottom images are under “copyright c©2008 Society for Industrial
and Applied Mathematics. Reprinted with permission. All rights reserved”. Best seen
by zooming on a computer screen.

88 Sparse Models for Image Processing

G R G R G R

GB GB GB

G R G R G R

GB GB GB

G R G R G R

GB GB GB

Figure 3.3: Common Bayer pattern used for digital camera sensors.

of the original inpainting formulation consists of the following steps:

1. learn a dictionary D0 on an external database of color patches;

2. use D0 to obtain a first estimate of the color image, following the

image reconstruction procedure of the previous section;

3. retrain the dictionary on the first image estimate, leading to a

new dictionary D1 adapted to the image content.

4. use D1 to obtain the final estimate of the color image as in 2.

In addition, the patches should also be centered according to the rec-

ommendations of Section 2.1. The results achieved by this method can

be were shown by Mairal et al. [2008c] to outperform the state of the

art in terms of PSNR on the 24 images from the Kodak PhotoCD

benchmark, even though some visual artifacts remain visible in areas

that are particularly difficult to reconstruct, as shown in Figure 3.4(b).

The demosaicking approach based on dictionary learning has been

improved later by Mairal et al. [2009] by combining sparse estimation

with image self-similarities [Buades et al., 2009]. The resulting method

yields a higher PSNR, but more importantly it seems to significantly

reduce visual artifacts (see Figure 3.4(c)), and achieves state-of-the-art

results in terms of PSNR [Menon and Calvagno, 2011].

3.3. Image demosaicking 89

(a) Mosaicked image (b) Demosaicked image A (c) Demosaicked image B

(d) Zoom on (a) (e) Zoom on (b) (f) Zoom on (c)

Figure 3.4: (a): Mosaicked image; (b): image demosaicked with the approach
of Mairal et al. [2008c] presented in Section 3.3. (c): image demosaicked with the
non-local sparse image models of Mairal et al. [2009]. Note that the part of the
image displayed here in known to be particularly difficult to reconstruct. Other re-
constructions obtained from the database of 24 images is artifact-free in general.
Best seen in color by zooming on a computer screen.

90 Sparse Models for Image Processing

3.4 Image up-scaling

Dictionary learning has also gained important success for reconstruct-

ing high-resolution images from low-resolution ones, a problem called

image up-scaling or digital zooming.7 The technique originally pro-

posed by Yang et al. [2010a] consists of learning a pair of dictionar-

ies (Dl,Dh) that can respectively reconstruct low- and high-resolution

patches with the same sparse decomposition coefficients. Then, the re-

lation between Dl and Dh is exploited for processing new low-resolution

images and turn them into high-resolution ones.

Similar to the “example-based” approach of Freeman et al. [2002],

the method requires a database of pairs of training patches (xl
i,x

h
i)n

i=1,

where xl
i in R

ml is a low-resolution version of the patch xh
i in R

mh ,

and mh > ml. The database is built from training images that are

generic enough to represent well the variety of natural images. Then,

the pairs of patches are used offline to train the dictionaries Dl in R
ml×p

and Dh in R
mh×p, which are subsequently used for image up-scaling in

a way that will be described in the sequel. The methodology is related

to the global approach for image denoising from Section 3.1, where

the dictionary is not adapted to the image at hand that needs to be

processed, but is adapted instead to a generic database of images.

The image upscaling method of Yang et al. [2010a] has received a

significant amount of attention because of the quality of its results, and

has been improved recently in various ways [Couzinie-Devy et al., 2011,

Zeyde et al., 2012, Dong et al., 2011b, Wang et al., 2012, Yang et al.,

2012a]. In this section, we briefly review some of the ideas that have

appeared in this line of work, but refer to the corresponding papers

for more details. We start with the original approach of Yang et al.

[2010a], before moving to two natural variants.

The original approach of Yang et al. [2010a]. The dictionary learn-

ing formulation of Yang et al. [2010a] for image up-scaling consists of

7The terminology of super-resolution is sometimes used but leads to some con-
fusion. “Super-resolution” traditionally means synthesizing high-resolution images
from a sequence of low-resolution ones [see the discussion in Elad, 2010, page 341].
Here, we are dealing with a single input image.

3.4. Image up-scaling 91

learning Dl and Dh with the following joint minimization problem:

min
Dl∈Cl

Dh∈R
mh×p

A∈Rp×n

1

n

n∑

i=1

1

2ml

∥
∥
∥xl

i −Dlαi

∥
∥
∥

2

2
+

1

2mh

∥
∥
∥xh

i −Dhαi

∥
∥
∥

2

2
+ λ ‖αi‖1 ,

(3.6)

where A = [α1, . . . ,αn] is the matrix of sparse coefficients, and Cl is the

set of matrices in R
ml×p whose columns have less than unit ℓ2-norm.

The formulation encourages the dictionaries to provide a common

sparse representation αi for the pair of patches xl
i and xh

i . Note that,

to simplify, we have omitted pre-processing steps for the patches xl
i,

which lead to substantially improved results in practice [see Yang et al.,

2010a, Zeyde et al., 2012], and we have preferred to focus on the main

principles of the method.

Once the dictionaries are trained, they can be used for turning

new low-resolution images into high-resolution ones. Specifically, let

us consider an image yl of size
√
nl ×

√
nl, which is independent from

the training database, and assume that the goal is to synthesize a high-

resolution image yh of larger size
√
nh×

√
nh—say, for instance,

√
nh =

2
√
nl when one wishes to double the resolution.

According to (3.6), the main underlying assumption is that high-

resolution and low-resolution variants of the same patch admit a com-

mon sparse decomposition onto Dh and Dl, respectively. Then, given a

patch yl
i in R

ml centered at pixel i in the low-resolution image yl, the

method of Yang et al. [2010a] computes a sparse vector βi in R
p such

that yl
i ≈ Dlβi, and the high-resolution estimate of the patch is sim-

ply Dhβi. Such an approach is however not fully satisfactory regarding

the formulation (3.6), where each sparse decomposition is obtained by

using both the low- and high-resolution patches. In other words, βi

should be ideally computed by minimizing

min
βi∈Rp

1

2ml

∥
∥
∥yl

i −Dlβi

∥
∥
∥

2

2
+

1

2mh

∥
∥
∥yh

i −Dhβi

∥
∥
∥

2

2
+ λ ‖βi‖1 , (3.7)

but unfortunately only yl
i is available at test time since yh

i is

the unknown quantity to estimate. Such a discrepancy is addressed

by Yang et al. [2010a] with a heuristic, where yh
i in (3.7) is replaced by

92 Sparse Models for Image Processing

an auxiliary variable representing the current prediction of the high-

resolution patches given previously processed neighbors. Finally, re-

constructing the full image from the local patch estimates can be done

as usual by straight averaging, even though other possibilities yielding

good results have also been proposed [see Zeyde et al., 2012].

First variation with a regression formulation. A strategy for over-

coming the discrepancy between training and testing in the pre-

vious approach has been independently proposed by several au-

thors [Zeyde et al., 2012, Couzinie-Devy et al., 2011, Yang et al.,

2012a]. In all these approaches, the sparse coefficients αi and βi are

always computed by using low-resolution patches only. This motivates

the following two-step training approach:

1. compute Dl and A with a classical dictionary learning formula-

tion, for instance:

min
Dl∈Cl,A∈Rp×n

1

n

n∑

i=1

1

2

∥
∥
∥xl

i −Dlαi

∥
∥
∥

2

2
+ λ‖αi‖1.

2. obtain Dh by solving a multivariate regression problem:

min
Dh∈R

mh×p

1

n

n∑

i=1

1

2

∥
∥
∥xh

i −Dhαi

∥
∥
∥

2

2
,

where the αi’s are fixed after the first step. See also Zeyde et al.

[2012] for other variants.

Once the dictionaries are learned, a new low-resolution image yl is pro-

cessed by decomposing its patches yl
i onto Dl, yielding sparse coeffi-

cients βi, and the estimate of the corresponding high resolution patches

are again the quantities Dhβi.

Second variation with bilevel optimization. The previous variant ad-

dresses one shortcoming of the original approach of Yang et al. [2010a],

but unfortunately loses the ability of jointly learning Dl and Dh. The

variant presented in this paragraph is motivated by that issue. It was

independently proposed by Couzinie-Devy et al. [2011] and Yang et al.

3.5. Inverting nonlinear local transformations 93

[2012a] and allows learning Dl and Dh at the same time. As we shall

see, it raises a challenging bilevel optimization problem.

Let us first introduce a notation describing the solution of the Lasso

for any vector x and dictionary D:

α⋆(x,D) , arg min
α∈Rp

[
1

2
‖x−Dα‖22 + λ‖α‖1

]

,

where we assume the solution of the Lasso problem to be unique.8

Then, the joint dictionary learning formulation consists of minimizing

min
Dl∈Cl

Dh∈R
mh×p

1

n

n∑

i=1

1

2

∥
∥
∥xh

i −Dhα⋆(xl
i,Dl)

∥
∥
∥

2

2
. (3.8)

The problem is challenging since it is non-convex, non-differentiable,

and the dependency of the objective with respect to Dl goes through

the argmin of the Lasso formulation. Such a setting is sometimes re-

ferred to as “bilevel optimization” problems and is known to be diffi-

cult. Eq. (3.8) appears under the name of “coupled dictionary learn-

ing” in [Yang et al., 2012a], and is in fact a particular case of the more

general “task-driven dictionary learning” formulation of Mairal et al.

[2012], which we will present in more details in Section 4.5 about visual

recognition. It is possible to show that in the asymptotic regime where n

grows to infinity, the cost function to optimize becomes differentiable

and that its gradient can be estimated. Based upon this observation, a

stochastic gradient descent algorithm can be used as an effective heuris-

tic for finding an approximate solution [see Couzinie-Devy et al., 2011,

Mairal et al., 2012]. We conclude this section with a few visual results,

which we present in Figure 3.5.

3.5 Inverting nonlinear local transformations

Interestingly, the image up-scaling formulations that we have presented

previously do not explicitly take into account the type of transforma-

tion between the patches xh
i and xl

i. In other words, they only assume

8When the solution is not unique, the elastic-net regularization [Zou and Hastie,
2005] can be used instead of the ℓ1-norm. It consists of replacing the penalty ‖α‖1

by ‖α‖1 + (µ/2)‖α‖2
2. The resulting penalty still enjoy sparsity-inducing properties,

but is strongly convex and thus yields a unique solution.

94 Sparse Models for Image Processing

(a) Original (b) Bicubic interpolation (c) With sparse coding

(d) Zoom on (a) (e) Zoom on (b) (f) Zoom on (c)

(g) Original (h) Bicubic interpolation (i) With sparse coding

(j) Zoom on (g) (k) Zoom on (h) (l) Zoom on (i)

Figure 3.5: Image upscaling results obtained with the dictionary learning technique
of Couzinie-Devy et al. [2011]. Images produced by Florent Couzinie-Devy.

3.5. Inverting nonlinear local transformations 95

that the pairs of patches xh
i and xl

i admit a common sparse representa-

tion onto two different dictionaries, but they do not make any a priori

assumption on the relation between the patches. For this reason, it is

appealing to try similar formulations for other problems than image

upscaling.

Several extensions have been developed along this line of work.

Couzinie-Devy et al. [2011] and Dong et al. [2011b] have for instance

developed image deblurring techniques that are effective when the blur

is local. Other less-standard applications also appear in the literature.

Dong et al. [2011b] propose indeed to learn a mapping between face

photographs and hand-drawn sketches. They use a database of images

called CUFS [Wang and Tang, 2009] of about 600 subjects. For each

subject, a grayscale photograph is provided, along with a sketch drawn

by an artist. The dataset can be used to create pairs of photograph-

sketch patches and a nonlinear mapping is learned between the two

patch spaces, providing convincing visual results.

Finally, we illustrate the ability of the previous formulations

for learning nonlinear mappings with the problem of reconstructing

grayscale images from binary ones, a task called “inverse halftoning”.

With the use of binary display and printing technologies in the 70’s,

converting a grayscale continuous-tone image into a binary one that

looks perceptually similar to the original one (“halftoning”) was of ut-

most importance. A classical algorithm was developed for that purpose

by Floyd and Steinberg [1976]. The goal of “inverse halftoning” is to re-

store these binary images and estimate the original ones. Since building

a large database of pairs of grayscale-halftoned image patches is easy,

the methodology of the previous section can be used for learning a map-

ping between binary and grayscale patches. In Figure 3.6, we display

a few visual results obtained with the approach of Mairal et al. [2012].

The dictionaries were trained on an external database build with the

Floyd-Steinberg algorithm.

96 Sparse Models for Image Processing

(a) Original (b) Halftoned image (c) Reconstructed image

(d) Zoom on (a) (e) Zoom on (b) (f) Zoom on (c)

(g) Binary image (h) Restored image

Figure 3.6: Inverse halftoning results obtained by Mairal et al. [2012]. The last row
presents a result on a binary image publicly available on the Internet. No ground
truth is available for this binary image from an old computer game. Despite the fact
that the algorithm that has generated this image is unknown and probably different
than the Floyd-Steinberg algorithm, the result is visually convincing. Best seen by
zooming on a computer screen.

3.6. Video processing 97

3.6 Video processing

Extensions of dictionary learning techniques for dealing with videos

have been proposed by Protter and Elad [2009]. Given a noisy video

sequence, the most naive approach consists of processing each frame

independently. However, significantly better results can be obtained

by exploiting the temporal consistency that exists among consecutive

frames. To do so, a few modifications to the classical denoising formu-

lation are sufficient:

• several frames can be processed at the same time by considering

three-dimensional patches that involve one temporal dimension.

For instance, a video patch can be of size m = e×e×T , where T

is the number of frames in the patch, e.g., e = 10 pixels and

T = 5 frames.

• After processing T frames starting at time t, we obtain a dic-

tionary Dt adapted to the set of three-dimensional patches at

time t. When moving to the next block of T frames at time t+ 1

(considering that the blocks overlap in time), we can learn a dic-

tionary Dt+1 adapted to the information available a time t + 1,

using Dt as an initialization to the learning algorithm.

In Figures 3.7 and 3.8, we present two video processing re-

sults from [Mairal et al., 2008e], where the original video extension

of Protter and Elad [2009] has been adapted to the inpainting and

color video denoising tasks. The results of the “video processing” ap-

proach are significantly better than those obtained by processing inde-

pendently each frame.

3.7 Face compression

We have shown so far that dictionary learning was appropriate for

many restoration tasks, but an intuitive use of sparsity is for com-

pression. Following this insight, Bryt and Elad [2008] have proposed a

technique for encoding photographs of human faces. They achieve im-

pressive compression results, where each image is represented with less

98 Sparse Models for Image Processing

(a) Original (b) Damaged (c) Image denoising (d) Video denoising

(e) Zoom on (a) (f) Zoom on (b) (g) Zoom on (c) (h) Zoom on (d)

Figure 3.7: Color video denoising result from Mairal et al. [2008e]. The third col-
umn shows the result when each frame is processed independently from the others.
Last column shows the result of the video processing approach. Best seen by zoom-
ing on a computer screen. “Copyright c©2008 Society for Industrial and Applied
Mathematics. Reprinted with permission. All rights reserved”.

3.7. Face compression 99

(a) Original (b) Damaged (c) Image inpaint. (d) Video inpaint.

(e) Zoom on (a) (f) Zoom on (b) (g) Zoom on (c) (h) Zoom on (d)

Figure 3.8: Video inpainting result from Mairal et al. [2008e]. The third column
shows the result when each frame is processed independently from the others. Last
column shows the result of the video processing approach. Best seen by zooming on
a computer screen. “Copyright c©2008 Society for Industrial and Applied Mathe-
matics. Reprinted with permission. All rights reserved”.

100 Sparse Models for Image Processing

than 1 000 bytes while suffering from minor loss only in visual qual-

ity. The algorithm requires a database of training face images that are

processed as follows:

1. input images are geometrically aligned and downsampled to the

same size. As a result, all the main face features are at the same

position across images. This step is automatically performed by

first detecting 13 face features and warping the images to achieve

the desired alignment [see Bryt and Elad, 2008];

2. the images are sliced into 15× 15 non-overlapping patches;

3. for each patch position, a dictionary of size p = 512 elements

is learned by using all patches available at the same posi-

tion from the training images. The K-SVD algorithm is chosen

by Bryt and Elad [2008] for that purpose.

After this training phase, a new test image can be encoded as follows:

1. the test image goes through the same geometrical alignment pro-

cess as for the training images. Encoding the inverse transforma-

tion requires 20 bytes;

2. the image is sliced into non-overlapping patches that encoded

using orthogonal matching pursuit (see Section 5.1) with a few

number s of non-zero coefficients (typically s = 4);

3. the indices of the sparse coefficients are encoded with a Huffman

table [see MacKay, 2003]; the weights are quantized into 7 bits.

Once encoded, each patch can be decoded with a simple matrix vec-

tor multiplication, and the inverse geometrical warping is applied to

obtain an approximation of the original image. Visual results are pre-

sented in Figure 3.9 for face images represented by 550 bytes only.

Unlike generic approaches such as JPEG and JPEG2000, the approach

of Bryt and Elad [2008] can exploit the fact that each patch repre-

sent a specific information, e.g., eye, mouth, which can be learned by

using adaptive dictionaries. Since the patches do not overlap, the re-

constructed images suffer from blocking artifacts, which can be signif-

icantly reduced by using a deblocking post-processing algorithm.

3.7. Face compression 101

(a) Original (b) JPEG
(14.15)

(c) JPEG2000
(12.15)

(d) KSVD
(6.89)

(e) KSVD+
(6.55)

(f) Original (g) JPEG
(15.17)

(h) JPEG2000
(13.53)

(i) KSVD
(8.23)

(j) KSVD+
(7.83)

(k) Original (l) JPEG
(14.54)

(m) JPEG2000
(11.42)

(n) KSVD
(6.69)

(o) KSVD+
(6.30)

Figure 3.9: Results of the face compression method of Bryt and Elad [2008] com-
pared to two classical image compression algorithms. All images are compressed
into 550 bytes representations. The raw output of the method, denoted by KSVD, is
presented in the penultimate column. The last column KSVD+ is a post-processed
result obtained by processing the output of KSVD with a deblocking algorithm that
reduces visual artifacts. The numbers in parenthesis are the square root of the mean
squared errors (RMSE), obtained by comparing the compressed images with the
original one (first column). Images kindly provided to us by Ori Bryt and Michael
Elad. Best seen by zooming on a computer screen.

102 Sparse Models for Image Processing

3.8 Other patch modeling approaches

Dictionary learning was successful in many image processing tasks be-

cause of its ability to model well natural image patches. Other patch-

based methods can be used for that purpose, and have also shown

impressive results for image restoration. For the sake of completeness,

we briefly present a few of them that have gained some success, but we

refer the reader to the corresponding papers for more details.

Non-local means and non-parametric approaches. Efros and Leung

[1999] showed that self-similarities inherent to natural images could

be used effectively in texture synthesis tasks. Following their insight,

Buades et al. [2005] have introduced the non-local means approach to

image denoising, where the prominence of self-similarities is used as

a prior on natural images.9 Concretely, let us consider a noisy image

written as a column vector y in R
n, and denote by y[i] the i-th pixel

and, as usual, by yi the patch of size m centered on this pixel for some

appropriate size m. This approach exploits the simple but very effective

idea that two pixels associated with similar patches yi and yj should

have similar values y[i] and y[j]. Using yi as an explanatory variable

for y[i] leads to the non-local means formulation, where the denoised

pixel x̂[i] is obtained by a weighted average:

x̂[i] =
n∑

j=1

Kh(yi − yj)
∑n

l=1Kh(yi − yl)
y[j], (3.9)

and Kh is a Gaussian kernel of bandwidth h. The estimator (3.9) is in

fact classical in the non-parametric statistics literature, even though

it was never applied to image denoising with natural image patches

before; it is usually called Nadaraya-Watson estimator [see Nadaraya,

1964, Watson, 1964, Wasserman, 2006].10

9This idea has in fact appeared in the literature in various guises and under
different equivalent interpretations, e.g., kernel density estimation, mean-shift itera-
tions [Awate and Whitaker, 2006], diffusion processes on graphs [Szlam et al., 2007],
and long-range random fields [Li and Huttenlocher, 2008].

10Interestingly, the same class of non-parametric estimators have also been used
independently by Takeda et al. [2007], where the explanatory variables are not full

3.8. Other patch modeling approaches 103

Later, several extensions have been proposed along this line of

work. First attempts have focused on improving the computational

speed [Mahmoudi and Sapiro, 2005], or on automatically adapting the

kernel bandwidth h to the pixel of interest [Kervrann and Boulanger,

2006]. Extensions of the non-local principle for other tasks than denois-

ing have also been developed, e.g., for image upscaling [Glasner et al.,

2009], or demosaicking [Buades et al., 2009]. Later, other estimators

exploiting image self-similarities and based on nonparametric density

estimation have been proposed and analyzed by Levin et al. [2012],

Chatterjee and Milanfar [2012].

BM3D. Dabov et al. [2007a] proposed a patch-based procedure called

BM3D for image denoising. The method exploits several ideas, includ-

ing image self-similarities and sparse wavelet estimation, and provides

outstanding results at a reasonable computational cost. Several years

after it was developed, it remains considered as the state of the art.

BM3D proceeds with the following pipeline for denoising an image y:

• block matching: like non-local means, BM3D exploits self-

similarity; it processes all patches by first matching them with

similar ones in the noisy image y, stacking them together into a

3D signal block;

• 3D filtering: each block is denoised by using hard or soft-

thresholding with a 3D orthogonal DCT dictionary, following the

wavelet thresholding tradition;

• patch averaging: as in Section 3.1, a denoised image x̂0 is ob-

tained by averaging the estimates of the overlapping patches;11

• refinement with Wiener filtering: the previous steps are re-

fined by using the intermediate estimate x̂0. First, block matching

is applied to x̂0 instead of y in order to obtain a more reliable

image patches, but neighbor pixels. It results in Nadaraya-Watson estimators that
exploit local information, as opposed to the non-local one of Buades et al. [2005].

11More precisely, a weighted average is performed. We omit this detail here for
simplicity, and refer to [Dabov et al., 2007a] for more details.

104 Sparse Models for Image Processing

matching of noisy patches from y; weights are obtained for the

3D-filtering by using a Wiener filter. After a new patch averaging

step, a final estimate x̂1 is obtained.

A few additional heuristics are also used to further boost the denoising

performance [see Dabov et al., 2007a]. Finally, the scheme has proven

to be very efficient and gives substantially better results than regu-

lar non-local means. Later, it was improved by Dabov et al. [2009] by

adding other components: (i) shape-adaptive patches that are non nec-

essarily rectangular; (ii) 3D filtering with adaptive dictionaries obtained

with PCA inside each block instead of using simple DCT.

Non-local sparse models. Since BM3D was successful in combining

image self-similarities and wavelet/DCT denoising on blocks of similar

patches, Mairal et al. [2009] have proposed to exploit further this idea

and combine the non-local means principle with dictionary learning.

One motivation is that non-local means approach has proven to be

effective in general, but it fails in some cases. In the extreme, when a

patch does not look like any other one in the image, it is impossible

to exploit self-similarities to estimate the corresponding pixel value.

To some extent, sparse image models based on dictionary learning can

handle such situations when the patch at hand admits a sparse de-

composition, but they suffer from another drawback: similar patches

sometimes admit very different estimates due to the potential insta-

bility of sparsity patterns, which can result in practice in noticeable

reconstruction artifacts. The idea of the non-local sparse model is that

similar patches should admit similar sparse decompositions. By enforc-

ing this principle, one hopes to obtain more stable decompositions and

subsequently a better estimation.

Concretely, let us define for each patch yi the set Si:

Si ,
{

j = 1, . . . , n s.t. ‖yi − yj‖22 ≤ ξ
}

,

where ξ is some threshold. The block Si is essentially constructed by

following the block matching step of BM3D. What differs is the way Si

is subsequently processed. Whereas BM3D performs some wavelet fil-

tering, the non-local sparse model jointly decomposes the patches onto

3.8. Other patch modeling approaches 105

a previously learned dictionary D in R
m×p.

To encourage the decompositions to be similar, the patches from the

set Si are forced to share a joint sparsity pattern—that is, they should

share a common set of nonzero coefficients. Fortunately, this can be

achieved with a group-sparsity penalty. Denoting by Ai , [αij]j∈Si

the matrix of coefficient in R
p×|Si| corresponding to the group Si, the

regularizer encourages the matrix Ai to have a small number of non-

zero rows, yielding a type of sparsity patterns that is illustrated in

Figure 3.10.

Formally, the penalty can be written for a matrix A in R
p×k as

Ψq(A) ,
p
∑

j=1

‖αj‖q2,

where αj denotes the j-th row of A. When q = 1, we obtain the

group-Lasso norm already presented in Section 1.3. When q = 0, the

penalty simply counts the number of non-zero rows in A and thus

plays the same role as the ℓ0-penalty in the context of group spar-

sity [Tropp et al., 2006]. Then, decomposing the patch yi with the

penalty Ψq on the set Si amounts to solving

min
Ai∈Rp×|Si|

Ψq(Ai) s.t.
∑

j∈Si

‖yj −Dαij‖22 ≤ εi.

As for the classical denoising approach based on dictionary learning

presented in Section 3.1, the following ingredients are used to ulti-

mately reconstruct the denoised image: (i) εi is chosen according to

some effective heuristics; (ii) the non-convex penalty Ψ0 with greedy al-

gorithms [Tropp, 2004] is preferred to Ψ1 for the final image reconstruc-

tion task once the dictionary has been learned; (iii) since the patches

overlap, the final step of the algorithm averages the estimates of every

pixel. A few additional heuristics are also used to improve the speed or

quality of the algorithm [see Mairal et al., 2009], including a refinement

step as in BM3D.

The non-local sparse principle was also successfully applied

by Mairal et al. [2009] to image demosaicking (see Figure 3.4), and

more generally to image interpolation [Romano et al., 2014].

106 Sparse Models for Image Processing

Figure 3.10: Sparsity vs. joint sparsity: Grey squares represents non-zeros values
in vectors (left) or matrix (right).

Later, other variants of non-local sparse models have been proposed,

notably the centralized sparse representation technique of Dong et al.

[2011a, 2013]. There, input patches are clustered and an orthogonal

dictionary is learned for each cluster with PCA. Then, patches are

sparsely encoded on the PCA dictionaries, and the decompositions co-

efficients inside each cluster are encouraged to be close to a per-cluster

mean representation. As shown in Sections 3.1 and 3.3, the performance

achieved by non-local sparse models is in general competitive with the

state of the art for different tasks, e.g., denoising or demosaicking.

Gaussian mixture models. We have already mentioned in Section 2.7

that Gaussian mixture models have been successful for modeling nat-

ural image patches [Zoran and Weiss, 2011, Yu et al., 2012]. Not sur-

prisingly, such approaches also lead to impressive results for image de-

noising and other image reconstructions tasks such as image upscal-

ing [Yu et al., 2012]. Given a database of image patches, the model

parameters are usually learned by using the EM-algorithm or one of

its variants, and denoising can be achieved with classical estimators for

probabilistic models, e.g., maximum a posteriori estimation.

4

Sparse Coding for Visual Recognition

Because of its ability to model well natural image patches and au-

tomatically discover interpretable visual patterns, one may wonder

whether dictionary learning can be useful for visual recognition or

not. Patches are indeed often used as lowest-level features in im-

age analysis pipelines. For instance, this is the case of popular ap-

proaches based on bags of words [Csurka et al., 2004, Lazebnik et al.,

2006], which exploit image descriptors that are nothing else than pre-

processed natural image patches [Lowe, 2004, Dalal and Triggs, 2005,

Mikolajczyk and Schmid, 2005, Tola et al., 2010]. This is also the case

of convolutional neural networks [LeCun et al., 1998a], whose first layer

performs local convolutions on raw pixel values.

It is thus tempting to believe that modeling patches is an important

step for automatic image understanding and that dictionary learning

can be a key component of recognition architectures. The different ap-

proaches that we review in this section seem to confirm this fact, even

though recognition requires other properties that are not originally pro-

vided by sparse coding models, such as invariance or stability of image

representations to local perturbations.

In Section 4.1, we show how dictionary learning has been used for

107

108 Sparse Coding for Visual Recognition

image classification as an alternative to clustering techniques in bag-

of-words models, before reviewing in Section 4.2 numerous variants

that have been proposed in the literature. Then, we present different

approaches where sparse models are used as a classification tool for

face recognition (Section 4.3), patch classification, and edge detection

(Section 4.4). Finally, we draw some links between dictionary learn-

ing and neural networks in Section 4.5 with backpropagation rules and

networks for approximating sparse models, before reviewing a few ad-

ditional computer vision applications in Section 4.6.

We show that dictionary learning has been successfully used in var-

ious guises for different recognition tasks.

4.1 A coding and pooling approach to image modeling

Following Boureau et al. [2010], we show in this section that inter-

leaved steps of (nonlinear) feature coding and pooling are a very

simple but common approach to image modeling in visual recogni-

tion tasks such as retrieval and categorization. It is, implicitly or ex-

plicitly, used in SIFT [Lowe, 2004], bags of features [Csurka et al.,

2004, Sivic and Zisserman, 2003], HOG [Dalal and Triggs, 2005], the

pyramid match kernel [Grauman and Darrell, 2005], spatial pyramids

[Lazebnik et al., 2006], soft quantization [van Gemert et al., 2010], and

most importantly for this presentation, sparse coding approaches to

recognition [Yang et al., 2009, Boureau et al., 2010, Wang et al., 2010,

Yang et al., 2010b].

We also show that the coding/pooling approach can often be intu-

itively justified in terms of (approximate) feature matching. We first

consider global pooling approaches that discard all spatial information

for every feature, before moving to local pooling that keeps part of it.

4.1.1 Global pooling

Bags of features and sparse coding. This paragraph largely fol-

lows Boureau et al. [2010]. Let us consider an image with its associ-

ated local image features, represented by (and identified with) a finite

set X = [x1, . . . ,xn] of n vectors in R
m. For instance, each xi may

4.1. A coding and pooling approach to image modeling 109

represent a non-rotationally invariant SIFT descriptor computed at lo-

cation i in the image, but it may as well represent another feature type,

e.g., local binary pattern [Ojala et al., 2002] or a color histogram.

Let us also assume that we are given a coding operator, that is a

function α : Rm → A mapping features in R
m onto the corresponding

codes in some space A, and a pooling operator β mapping finite subsets

of A onto elements of Rp. The simplest version of the coding/pooling

approach is to model an image represented by a set of descriptors X

in R
m×n by the vector γ(X) = β[α(X)], where α(X) denotes the set of

points [α(xi)]
n
i=1 in An. We dub this approach global pooling because

it summarizes the codes of all features in the image by a single vector

in R
p.

The best known example of global pooling is the bag-of-features

model inherited from text processing and popularized in computer vi-

sion by Sivic and Zisserman [2003] and Csurka et al. [2004]: let us con-

sider a quantizer ξ : Rm → {1, . . . , p}, constructed (for example) using

the algorithm K-means on the elements of X. We can use ξ to encode

each feature x as the binary vector α(x) of dimension p with all zero

entries except for entry number ξ(x), which is equal to one. Note that

the code space A is {0, 1}p in this case.

We can now use mean pooling (also called average pooling) to sum-

marize the feature codes α(xi) of the whole image by their average—

that is, a single vector of dimension p:1

γ(X) = β[α(X)], where β[α(X)] =
1

n

n∑

i=1

α(xi).

The vector γ(X) is called the bag of features associated with the image.

Two images respectively represented by the local descriptors X =

[x1, . . . ,xn] in R
m×n and Y = [y1, . . . ,yn′] in R

m×n′
can now be com-

pared by computing the dot product of their bags of features, that is,

their similarity is computed as s(X,Y) = γ(X)⊤γ(Y). This approach

1Note that the tf-idf renormalization common in image retrieval
[Sivic and Zisserman, 2003] can be achieved by reweighting the components
of γ(X): let γi denote the i-th component of γ(X), i.e., the frequency of the
corresponding bin in X, replace γi by γi log(N/nγi), where N is the total number
of features in the database being queried.

110 Sparse Coding for Visual Recognition

is commonly used in both image retrieval (where s is used for rank-

ing) [Sivic and Zisserman, 2003] and categorization (where s is used as

a kernel) [Csurka et al., 2004]. In both cases, the similarity function

can be computed efficiently due to the fact that bags of features are

typically very sparse for large values of p.

When the quantizer ξ is obtained using the K-means algorithm, the

centroids dj (j = 1, . . . , p) of the corresponding clusters can be seen as

the elements (“atoms”, or “words”) of some visual dictionary, and the

codes α(x) tell us what atom a given feature is associated with.

This approach readily generalizes to other types of feature coding.

In particular, it is possible to replace the vector-quantized binary codes

of the features x in X by their sparse code relative to some (given or

learned) dictionary D [Yang et al., 2009, Boureau et al., 2010], that is

α(x) ∈ arg min
α′∈Rp

1

2

∥
∥x−Dα′∥∥2

2 + λ‖α′‖1,

then use mean pooling as before.

Feature matching interpretation. Here, we follow Jégou et al. [2010],

and show that, in the case of bags of features constructed with a quan-

tifier, the similarity function s(X,Y) can be justified intuitively by the

fact that it measures the proportion of pairs of features in X and Y

that match each other [Jégou et al., 2010]. Maximizing s(X,Y) can

thus be thought of as some (approximate) feature matching process.

Indeed, given a quantizer ξ, let us define the functions δj : Rm → {0, 1}
(j = 1, . . . , p) and δ : Rm × R

m → {0, 1} by

δj(x) =

1 when ξ(x) = j,

0 otherwise,
and δ(x,y) =

1 when ξ(y) = ξ(x),

0 otherwise.

(4.1)

We can now rewrite our similarity function as

s(X,Y) =
p
∑

j=1

[

1

n

n∑

i=1

δj(xi)

] [

1

n′

n∑

i′=1

δj(yi′)

]

=
1

nn′

n∑

i=1

n′
∑

i′=1

δ(xi,yi′),

which indeed measures the fraction of pairs of features in the two images

that are deemed to match when they admit the same code.

4.1. A coding and pooling approach to image modeling 111

When the quantizer ξ is obtained by running the K-means algo-

rithm, δ(x,y) is nonzero when the features x and y both lie in the

same cell of the Voronoi diagram of the p centroids of the correspond-

ing clusters. Related approaches explicitly phrased in term of feature

correspondences have been used in both image matching and retrieval

using some nearest-neighbor (or NN) decision rule such as ε-search or

K-NN. Concretely, one measures again the fraction of matching fea-

tures as

s(X,Y) =
1

nn′

n∑

i=1

n′
∑

i′=1

δ(xi,yi′),

but, this time the function δ is defined by

δ(x,y) =

1 when ‖y− x‖2 < ε,

0 otherwise,
(4.2)

in the ε-search case, or, in the K-NN case, by

δ(x,y) =

1 when y is one of the K nearest neighbors of x,

1 when x is one of the K nearest neighbors of y,

0 otherwise.

(4.3)

This approach is the basis of the classical image retrieval and image

matching techniques of Schmid and Mohr [1997] and Lowe [2004]. As

in the case of bags of features [Sivic and Zisserman, 2003], the match-

ing step if often complemented by some geometrical verification stage

in practice. Similar schemes have also been used in image categoriza-

tion [Wallraven et al., 2003].

It should be noted that the coding/pooling models also admits a

feature-matching interpretation when images are encoded using sparse

coding instead of a quantifier: we can write in this case the similarity

s(X,Y) of two images, respectively represented by the sets of descrip-

tors X and Y, as

s(X,Y) =
p
∑

j=1

[

1

n

n∑

i=1

αj(xi)

]

1

n′

n′
∑

i′=1

αj(yi′)

 =
1

nn′

n∑

i=1

n′
∑

i′=1

δ(xi,yi′),

where α(x) = [α1(x), . . . , αp(x)] and δ(x,y) = α(x)⊤α(y). Note that

by analogy, δ(x,y) can be rewritten in a similar form to the previous

112 Sparse Coding for Visual Recognition

cases (4.1), (4.3), or (4.2):

δ(x,y) =

α(x)⊤α(y) when ∃j, αj(x)αj(y) 6= 0,

0 otherwise.

The function δ encodes in this case the fact that two feature vectors

are deemed to match when they both have at least one nonzero code

element for some dictionary atom, the contribution of each matching

feature pair being proportional to the dot product of their codes.

Max pooling. The construction of the vector γ(X) associated with

an image can be seen as pooling the code vectors [α(xi)]
n
i=1 associ-

ated with the image features and summarizing them by a single vector

γ(X) which is their average. As noted before, this process is thus of-

ten dubbed mean, or average pooling. A simple variant is sum pooling,

where the vectors γ(X) are not normalized and simply sum up the

vectors α(xi).

It has proven useful in several classification tasks to replace mean

pooling by max pooling [Serre et al., 2005], where

γj(X) = max
i=1,...,n

αj(xi),

and γ(X) = [γ1(X), . . . , γp(X)]. In the case of bags of features, the vec-

tors α(xi) are binary, and computing the similarity s(X,Y) amounts

to counting the number of bins in the quantization associated with at

least one feature in each image. Intuitively, this may be justified in

an application such as Video Google Sivic and Zisserman [2003], where

the query image (typically a box drawn around an object of interest

such as a tie or a plate) is normally much smaller than the database

images (typically depicting an entire scene) so that features occurring

often in the scene are not given too much importance.

Max pooling is also used with sparse coding. This is a priori prob-

lematic because of the sign ambiguity of dictionary learning discussed

in Section 1.6. Indeed, as noted by Murray and Perronnin [2014], max

pooling should only be used (or perhaps more accurately, is only intu-

itively justified) when the individual vector entries encode a strength

of association between a descriptor and a codeword, and are thus all

4.1. A coding and pooling approach to image modeling 113

positive. This is the case for bags of features but not for sparse coding,

with max pooling resulting potentially in 2p different pooled features.

The construction of Section 1.6 can be used to remove this ambiguity,

but does not provide an intuitive justification of max pooling in this

setting. It may then make sense to use a variant of dictionary learn-

ing that enforces non-negativity constraints on the sparse codes, or to

duplicate the entries of α(x) into negative and positive components,

resulting in a vector of size 2p, before applying max pooling. Specifi-

cally, each entry αj(x) will be duplicated into two values max(αj(x), 0)

and max(−αj(x), 0).

Finally, other nonlinear pooling technique have also been studied in

the literature [see Koniusz et al., 2013]; for simplicity, we restrict our

presentation to the average and max-pooling strategies, which are the

most popular ones.

4.1.2 Local pooling

Spatial pooling: spatial pyramids and their cousins The

global coding/pooling approach yields “orderless” image models

Koenderink and Van Doorn [1999], where all spatial information has

been discarded. While this affords a great deal of robustness (including

a total invariance to image transformations as long as they leave

the local features invariant),2 it seems wasteful to discard all spatial

information.

The spatial pyramid of Lazebnik et al. [2006] addresses this prob-

lem by overlaying a coarse pyramid with L levels over the image (the

HOG model of Dalal and Triggs [2005] is based on a similar idea us-

ing a coarse grid instead of a pyramid). There are 22l cells at level l

(l = 0, . . . , L − 1) of the pyramid, and the features falling in each cell

of the pyramid are binned separately. Let us define by Skl the indices

of features in {1, . . . , n} falling into cell number k at level l; the spa-

tial pyramid image descriptor γ(X) is obtained by concatenating the

2One should keep in mind that being invariant to within-image transformations
does not imply being invariant to, say, rotations in depth since (at least) some
features will become occluded, or will be revealed, as the observed object rotates
relative to the camera.

114 Sparse Coding for Visual Recognition

unnormalized histograms (sum pooling) γkl(X) =
∑

i∈Skl
α(xi) associ-

ated with all cells at all levels of the pyramid to form a vector in R
pd,

where d = 1+ . . .+dL−1 = (22L−1)/3, and dl = 22l for l = 0, . . . , L−1.

Note that the case L = 1 corresponds to the global pooling model,

as used in its bag of features or sparse coding instances, except for the

fact that it uses sum pooling instead of mean or max pooling, that is,

the sum of the features is used instead of their mean or max value. As

explained in the next section, the spatial pyramids associated with two

images can be compared using their dot product or the pyramid match-

ing kernel of Grauman and Darrell [2005], and they can be interpreted

in terms of feature matching in both cases.

Feature matching interpretation. Given again two set of descrip-

tors X and Y and a spatial pyramid structure leading to respective

sets of indices Skl and S ′
kl for the cell k at level l, we can compute the

similarity

s(X,Y) = γ(X)⊤γ(Y) =
L−1∑

l=0

dl∑

k=1

∑

i∈Skl

∑

i′∈S′
kl

α(xi)
⊤α(yi′).

This similarity function measures the number of matches between the

two images, where matches are found at different spatial scales as pairs

of features falling in the same cell.

As shown by Lazebnik et al. [2006], an alternative is provided by

the pyramid match kernel, defined as follows. Let us first define the

histogram intersection function as

Il(X,Y) =
dl∑

k=1

min[γkl(X), γkl(Y)],

where γkl(Y) =
∑

i∈S′
kl

α(yi), γkl(X) =
∑

i∈Skl
α(xi), and where the

min operator is applied componentwise. The j-th coordinate of Il(X,Y)

measures the number of matches between X and Y corresponding to

the atom dj of the dictionary, measured as the number of points from X

and Y that have nonzero codes, and fall in the same cell. These points

match in the code space because they have a nonzero element in the

4.1. A coding and pooling approach to image modeling 115

same spot, and they also match spatially, because they fall into the

same cell.

By construction, the matches found at level l of the pyramid also in-

clude the matches found at level l+1. The number of new matches found

at level l is thus Il(X,Y) − Il+1(X,Y) for l = 0, . . . , L − 1. This sug-

gests the following pyramid match kernel [Grauman and Darrell, 2005]

to compare two images:

K(X,Y) = IL(X,Y) +
L−1∑

l=0

1

2L−l
[Il(X,Y)− Il+1(X,Y)]

=
1

2L
I0(X,Y) +

L∑

l=0

1

2L−l+1
Il(X,Y),

where the weight 1
2L−l , which is inversely proportional to the cell

width at level l is used to penalize matches found in larger cells

because they involve increasingly dissimilar features. It is easily

shown that K is a positive-definite kernel, which allows using

the machinery of kernel methods and reproducing kernel Hilbert

spaces [Shawe-Taylor and Cristianini, 2004].

Like the histogram intersection function, the pyramid match kernel

can be interpreted as measuring the number of matches between X

and Y in both feature space and the spatial domain. Contrary to the

previous cases discussed in this presentation, where all pairs of match-

ing features were counted, a point of X may only match a unique point

of Y in this case.

Feature space pooling. The pyramid match kernel was originally pro-

posed by Grauman and Darrell [2005] as a method for matching im-

ages (or equivalently counting approximate correspondences) in feature

space, without retaining any spatial information. With spatial pyra-

mids, Lazebnik et al. [2006] argued that it might be better suited to

encoding spatial information in the two-dimensional image, using in-

stead traditional vector quantization based on the K-means algorithm

to handle matching in the high-dimensional feature space.

The two approaches can be thought of as performing a local form

of pooling, over bins defined in feature space in Grauman and Darrell

116 Sparse Coding for Visual Recognition

[2005], or over cells defined in image space in Lazebnik et al. [2006].

In practice, the latter method usually gives better results for image

categorization, but it may be interesting to combine the two when

the feature codes are obtained using sparse coding. This is precisely

what Boureau et al. [2011] have proposed to do [see also Gao et al.,

2010, 2013, Wang et al., 2010, Yang et al., 2012b, Zhou et al., 2010,

Koniusz and Mikolajczyk, 2011, for related work that will be partly

detailed in the next section]. In this approach, a dictionary is learned on

the training data, and the corresponding sparse codes are then clustered

using K-means. Let Sklj now denote the index set of features that

fall in cell number k of the image at level l of the pyramid, and in

the Voronoi cell number j of the sparse code space, the unnormalized

histogram γkl(X) of spatial pyramid is simply replaced by γklj(X) =
∑

i∈Sklj
α(xi), resulting in a final descriptor γ(X) of size pdK where K

is the number of centroids used by the K-means algorithm. Combined

with max pooling, this method indeed gives very good results for image

categorization on standard benchmarks such as Caltech 101.

4.2 The botany of sparse feature coding

To address the limitations of the original dictionary learning formu-

lation of Olshausen and Field [1996, 1997] for feature encoding, many

different variants have been proposed in the literature. In this section,

we go through a few of them that have gained a significant amount of

attention and have been reported to improve upon the original code-

book learning approach presented in the previous section.

Local coordinate coding. Yu et al. [2009] have proposed a signifi-

cantly different view of the dictionary learning problem than the one

presented so far in this monograph, where the learned dictionary el-

ements are interpreted as anchor points on a nonlinear smooth man-

ifold.3 More precisely, these anchor points define a local coordinate

system to represent data points, e.g., natural image patches or local

3Note that the definition of “manifold” from Yu et al. [2009] slightly differs from
the traditional one. More precisely, they define a “manifold” M as a subset of Rm

such there exists a constant C and “dimension” p such that for all x in M, there

4.2. The botany of sparse feature coding 117

descriptors. To make this interpretation relevant, Yu et al. [2009] have

introduced the concept of locality for the dictionary elements, encour-

aging them to be close to data points. In practice, the resulting for-

mulation, called “local coordinate coding”, consists of optimizing the

following cost function:

min
D∈Rm×p,A∈Rp×n

1

n

n∑

i=1

1

2
‖xi −Dαi‖22 + λ

p
∑

j=1

‖xi − dj‖22 |αi[j]|

 ,

(4.4)

where, as usual, X = [x1, . . . ,xn] in R
m×n is the database of train-

ing signals, A = [α1, . . . ,αn] is the matrix of sparse coefficients,

and D = [d1, . . . ,dp] is the dictionary. In contrast to the classical dic-

tionary learning formulation, the regularization function is a weighted

ℓ1-norm, where the quadratic weights ‖xi − dj‖22 encourage the selec-

tion of dictionary elements that are close to the signal xi in Euclidean

norm. Optimizing (4.4), meaning finding a stationary point since the

problem is nonconvex, can be achieved with alternate minimization

between D and A, which is a classical strategy for dictionary learning

(see Section 5).

Note that the link between (4.4) and the manifold assumption is

not obvious at first sight. In fact, Yu et al. [2009] show that (4.4) can

be interpreted as a practical heuristic for a slightly different formula-

tion that has precise theoretical guarantees, namely an approximation

bound for modeling the supposedly existing manifold. Later, the local-

ity principle was revisited by Yu and Zhang [2010] with an improved

approximation scheme, and by Wang et al. [2010] with a practical fea-

ture encoding scheme.

The latter approach, dubbed “locality-constrained linear coding

(LLC)”, exploits the locality principle in a simple way to select a pre-

defined number K < p of non-zero coefficients for the codes αi in-

stead of using the ℓ1-regularization. Given a fixed dictionary D and

a signal xi, the LLC scheme forces the support of αi to correspond

exists p vectors D(x) = [d1(x), . . . ,dp(x)] in R
m×p such that for all x′ in R

m,

min
α∈Rp

∥
∥x

′ − x − D(x)α
∥
∥

2
≤ C‖x

′ − x‖2
2.

118 Sparse Coding for Visual Recognition

to the K-nearest dictionary elements to xi. The value of the non-zero

coefficients are then computed in analytical form without having to

solve a sparse regression problem. Recent reviews and benchmarks have

shown that such a coding scheme is competitive for image classification

tasks [Sánchez et al., 2013].

Laplacian sparse coding. We have seen in Section 3.8 with the non-

local sparse models that a successful idea for image restoration is to

encourage similar signals to share similar sparse decomposition pat-

terns. For visual recognition, Gao et al. [2010, 2013] have shown that

such a principle can be also useful. Given a training set X = [x1, . . . ,xn]

of local descriptors, their formulation called “Laplacian sparse coding”

consists of minimizing a regularized dictionary learning objective func-

tion

min
D∈C,A∈Rp×n

1

n

n∑

i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1

)

+ µ
∑

i,j

Wij‖αi −αj‖22,

where W = [Wij] in R
n×n is a similarity matrix; Wij should be typi-

cally large when xi and xj are similar according to some appropriate

metric, encouraging therefore αi to be close to αj in Euclidean norm.

The terminology of “Laplacian” comes from the machine learning lit-

erature about semi-supervised learning where model variables sit on a

graph [Belkin and Niyogi, 2003, 2004] and where such regularization

functions are used. Gao et al. [2010, 2013] further discuss the choice of

a good similarity matrix W when the signals xi are local descriptors,

and experimentally show that the additional regularization yields bet-

ter classification results than the traditional sparse coding approach

of Yang et al. [2009].

Convolutional sparse coding. In Section 2.6, we have presented the

convolutional sparse coding model applied to natural images with-

out any concrete application. Zeiler et al. [2011] have applied such a

formulation for visual recognition with a multilayer scheme inspired

from convolutional neural networks and from other hierarchical mod-

els [Serre et al., 2005].

4.2. The botany of sparse feature coding 119

For each layer of the network, the formulation leverages the concept

of “feature maps”—that is, a set of two-dimensional spatial maps that

carry coefficients corresponding to a particular feature type at differ-

ent locations. A feature map x has typically three dimensions, e.g., x is

in R

√
l×

√
l×p for a square feature map of spatial size

√
l×
√
l and p dif-

ferent feature types, but it is sometimes more convenient to represent x

as a vector of size pl. It is also convenient to consider three-dimensional

spatial patches in the feature maps, e.g., a patch of size
√
e×√e×p that

contains all information across feature maps from a spatial window of

size
√
e×√e centered at a particular location.

Assuming that the parameters of the network have been already

learned, one layer of the hierarchical model processes input feature

maps produced by the previous layer (the first input feature map at

the bottom of the hierarchy being the image itself), and produces an

output feature map. Each layer performs successively two operations,

which are illustrated in Figure 4.1:

1. convolutional sparse coding: the input feature map x is en-

coded by using the convolutional sparse coding formulation al-

ready presented in Section 2.6, which we recall now. Assuming

that a dictionary D in R
m×p has been previously learned, the

feature map x—represented as a vector in R
l here—is encoded as

follows:

min
A∈Rp×l

1

2

∥
∥
∥
∥
∥
x−

l∑

k=1

R⊤
k Dαk

∥
∥
∥
∥
∥

2

2

+ λ
l∑

k=1

‖αk‖1,

where Rk is the linear operator that extracts the patch centered

at the k-th location from x and R⊤
k positions a small patch at

a location k in a larger feature map, using a similar notation as

in (3.3). This operation produces sparse codes A = [α1, . . . ,αl]

in R
p×l, with p different coefficients for each position k. Then,

the matrix A can be interpreted as an intermediate feature map

of size
√
l ×
√
l with p channels, as shown in Figure 4.1.

2. three-dimensional max pooling: The spatial resolution and

the number of channels of A is typically reduced by 2 with a max-

120 Sparse Coding for Visual Recognition

input maps x
patch Rkx

convolutional sparse coding

sparse vector αk

sparse codes A

3D max pooling
output maps B

pooled code βj

Figure 4.1: Illustration representing one layer of the hierarchical convolutional
sparse coding model of Zeiler et al. [2011]. The vector x denotes the input feature
maps, which are encoded into sparse codes A = [αk]lk=1 with the convolutional

sparse coding formulation. The output feature maps B = [βj]l
′

j=1 are obtained after a
three-dimensional max pooling step, reducing the spatial resolution and the number
of maps from p to p′.

pooling operation already presented in Section 4.1 with three-

dimensional pooling regions.

Separable sparse coding. A variant of the convolutional sparse cod-

ing model has also been investigated by Rigamonti et al. [2013], where

the dictionary elements are spatially separable, or partially separable.

More precisely, since a dictionary element dj in R
m represents a two-

dimensional square patch, it is possible to reorganize its entries as a

matrix Mat(dj) in R
√

m×√
m. Then, a dictionary element dj is said to

be separable when there exist some vectors uj and vj in R
√

m such that

Mat(dj) = ujv⊤
j . In other words, separability simply means that the

matrix Mat(dj) is rank one.

4.2. The botany of sparse feature coding 121

The motivation for looking for separable dictionary elements is

to accelerate the computation of the inner products d⊤
j Rkx for

all overlapping patches Rkx from an input image x in R
l. This

step indeed dominates the computational cost of reconstruction al-

gorithms for the convolutional sparse coding model, and thus it

is critical to make it efficient. The key observation is that com-

puting all products d⊤
j Rkx is equivalent to performing a convolu-

tion of the two-dimensional filter Mat(dj) on the input image x,

which naively requires O(ml) operations.4 In the separable case,

we remark that we have d⊤
j Rkx = trace(Mat(dj)⊤ Mat(Rkx)) =

trace(vju⊤
j Mat(Rkx)) = u⊤

j Mat(Rkx)vj . It is then easy to see that

the inner products can be obtained by convolving twice the input im-

age x: first with the filter uj along the vertical direction, then with v⊤
j

along the horizontal direction. As a result, the complexity drops to

O(
√
ml) operations.

Rigamonti et al. [2013] further study these filters for three-

dimensional data, where the gain in complexity is even more important

than in the two-dimensional case. They also show how to learn partially

separable filters by using the following regularization function for the

dictionary:

ϕ(D) ,
p
∑

j=1

‖Mat(dj)‖∗,

where ‖.‖∗ is the trace norm presented in Section 1.3 As a result, the

penalty ϕ encourages the matrices Mat(dj) to be low-rank instead of

exactly rank one, meaning that they can be expressed by a sum of a

few rank-one matrices.

Another variant of “separable dictionary learning” has also been

proposed at the same time by Hawe et al. [2013] in a non-convolutional

setting, where the dictionary is assumed to be the Kronecker product

of two smaller dictionaries:

D = B⊗C,

4Note that the fast Fourier transform (FFT) could be used to reduce this theo-
retical complexity. Unfortunately, the FFT induces a computational overhead that
make it inefficient in practice when convolving a large image with a small filter,
which is the case here.

122 Sparse Coding for Visual Recognition

where B is in R
mb×pb and C is in R

mc×pc . In other words, the ma-

trix D is in R
mbmc×pbpc and is a block matrix with mb×pb blocks, such

that the i, j-th block is B[i, j]C. Similar to Rigamonti et al. [2013], the

motivation of Hawe et al. [2013] is to make the matrix-vector multipli-

cations Dα or D⊤x more efficient by exploiting the properties of Kro-

necker products [see Golub and Van Loan, 2012]. However, it is worth

noticing that the concepts of “separability” used by Rigamonti et al.

[2013] and Hawe et al. [2013] are not equivalent to each other.

Multipath sparse coding and hierarchical matching pursuit. Fi-

nally, another model called hierarchical matching pursuit and intro-

duced by Bo et al. [2011, 2013] has recently obtained state-of-the-art

results in various recognition tasks. Similar to the convolutional ap-

proach of Zeiler et al. [2011], the scheme of Bo et al. [2011] produces

for each image a sequence of feature maps organized in a multilayer

fashion, but the coding scheme is somewhat simpler than in the con-

volutional sparse coding model. In a nutshell, the main differences are

the following:

• sparse coding of independent patches: instead of using the

convolutional model, all patches from an input feature map are

coded independently;

• orthogonal matching pursuit: instead of using the ℓ1-

regularization, the coding algorithm is a greedy method, which is

presented in Section 5.1;

• contrast normalization: after each pooling step, patches are

contrast-normalized, following the procedure described in Sec-

tion 2.1.

Later, the multilayer scheme was improved by Bo et al. [2013] by com-

bining several networks that have a different number of layers and thus

that have different invariant properties. A simpler version of this scheme

with a single layer has also been shown to be effective for replacing low-

level features such as histograms of gradients [Dalal and Triggs, 2005]

for object detection tasks [Ren and Ramanan, 2013].

4.3. Face recognition 123

4.3 Face recognition

One important success of sparse estimation for classification tasks is

face recognition. Wright et al. [2009] have indeed proposed a state-of-

the-art classifier for this task; as we will see, however, even though it

was first evaluated on face datasets, the classifier is generic and can

be applied to other modalities. More specifically, let us first consider

a set of training signals from k different classes, represented by the

matrix D = [D1, . . . ,Dk] in R
m×p where the columns of each sub-

matrix Dj are signals from the j-th class. In order to classify a new

test signal x in R
m, Wright et al. [2009] have proposed to sparsely

decompose x onto the matrix D, and then measure which one of the

sub-matrix Dj is the most “used” in the decomposition. The precise

procedure is given in Algorithm 1.

Interestingly, this approach called “sparse-representation based

classifier (SRC)” is related to other non-parametric machine learning

techniques such as nearest neighbor classifiers that look for the most

similar training samples to x before choosing the class label with a vot-

ing scheme [see, e.g., Hastie et al., 2009], or methods looking for the

nearest subspace [Naseem et al., 2010], which project the data x onto

each span of the submatrices Dj , before selecting the subspace that

best reconstructs the input data.

For the problem of face recognition, each matrix Dj contains face

samples of the same subject, and the method of Wright et al. [2009]

has gained a lot of popularity. However, this approach may suffer from

several issues, which have been addressed by various extensions:

• occlusion: face images in realistic environments often contain

unwanted sources of variations. Subjects may indeed wear clothes,

scarves, glasses, which occlude part of the face, and which are

not necessarily present in the training data. To improve the ro-

bustness of the formulation, Wright et al. [2009] have introduced

an auxiliary variable e in R
p whose purpose is to model occluded

parts. Then, Eq. (4.5) is replaced by the following linear program:

(α⋆, e⋆) ∈ arg min
α∈Rp,e∈Rm

[‖α‖1 + ‖e‖1 s.t. x = Dα + e] ,

124 Sparse Coding for Visual Recognition

Algorithm 1 Sparse-representation based Classifier (SRC).

Require: training instances D = [D1, . . . ,Dk] in R
m×p, each Dj rep-

resents signals from class j; One test signal x in R
m.

1: normalization: make each column of X of unit ℓ2-norm;

2: sparse decomposition:

α⋆ ∈ arg min
α∈Rp

[‖α‖1 s.t. x = Dα] ; (4.5)

3: classification:

̂ ∈ arg min
j∈{1,...,k}

‖x−Djδj(α⋆)‖22, (4.6)

where δj selects the entries of α⋆ corresponding to the class j; in

other words, Dα⋆ =
∑k

j=1 Djδj(α
⋆);

4: return the estimated class ̂ for the signal x.

where the ℓ1-norm encourages the variable e to be sparse. Thus,

one hopes the variable e to have non-zero coefficients correspond-

ing to occluded areas that are difficult to reconstruct with the

training data D. The selection rule (4.6) needs also to be modi-

fied, and becomes

̂ ∈ arg min
j∈{1,...,k}

‖x−Djδj(α
⋆)− e⋆‖22.

• image misalignment: the main assumption of the face recog-

nition system of Wright et al. [2009] is that a new test image

can be sparsely decomposed as a linear combination of train-

ing images. Of course, such an assumption does not hold when

the training images are not perfectly aligned—that is, when the

face features for a subject are not localized at the same positions

across training samples. To deal with that issue, Wagner et al.

[2012] have proposed dedicated solutions, which jointly optimize

the variables α and e, along with a deformation variable whose

purpose is to automatically “realign images”.

Among other variants, it is worth mentioning some work using dictio-

4.4. Patch classification and edge detection 125

nary learning to build the matrices Dj [see,e.g., Zhang and Li, 2010],

and also the use of random projection features [Wright et al., 2009].

4.4 Patch classification and edge detection

The capability of dictionary learning for modeling particular types of

signals has been exploited for classification tasks in several ways. Specif-

ically, there are two main successful strategies; the first one learns one

dictionary per class of signal and compare reconstruction errors ob-

tained by the dictionaries in the same vein as the SRC classifier of the

previous section does. The other direction uses sparse codes produced

by a single dictionary as a high-level representation of signals for a

subsequent classification procedure. We successively present these two

lines of research, along with some successful applications.

Finding the dictionary that best represents a class of signals. Let

us consider a training set of signals X = [X1, . . . ,Xk] in R
m×n where

the columns of each sub-matrix Xj in R
m×nj correspond to signals

of the j-th class. Even though dictionary learning is an unsupervised

learning technique, it can be used to model each class independently

by learning a dictionary Dj “adapted” to the data Xj . For instance,

it is possible to define Dj as the output of a learning algorithm for

optimizing

min
Dj∈C,Aj∈R

p×nj

1

2
‖Xj −DjAj‖2F + λ

nj∑

i=1

‖αi‖1,

where Aj = [α1, . . . ,αnj]. Then, a new test signal x in R
m is classified

according to the rule

̂ = arg min
j∈{1,...,k}

[

min
α∈Rp

1

2
‖x−Djα‖22 + λ‖α‖1

]

. (4.7)

This simple rule was proposed by Ramirez et al. [2010], following ear-

lier work of Mairal et al. [2008a] that focused on the ℓ0-penalty and

discriminative formulations. Even though the dictionaries are learned

in an unsupervised manner, (4.7) performs surprisingly well for data

that is well modeled by dictionary learning. For instance, the approach

126 Sparse Coding for Visual Recognition

of Ramirez et al. [2010] essentially builds upon (4.7) while also en-

couraging the dictionaries Dj to be mutually incoherent, and obtains

competitive results for digit recognition, namely about 1.2% error rate

on the MNIST dataset. In contrast, a nonlinear support vector ma-

chine (SVM) with a Gaussian kernel achieves 1.4% and a K-nearest

neighbor approach 3.9% [LeCun et al., 1998a]. Of course, better re-

sults have been obtained by other techniques on the MNIST dataset,

but they are in general not based on generic classifiers. More precisely,

state-of-the-art algorithms typically encode invariance to image defor-

mations [Ranzato et al., 2007, Bruna and Mallat, 2013].

Since dictionary learning is supposed to be well adapted to natural

image patches, the classification rule (4.7) can naturally be applied to

model the local appearance of particular object classes. For instance,

we show in Figure 4.2 some results obtained with a formulation that

is closely related to (4.7) for a weakly supervised learning task [see

Mairal et al., 2008a, for more details]. Because the local appearance of

bicycles is highly discriminative, the method performs well at detecting

patches that overlap with bicycles in the test images.

Figure 4.2: Results of pixelwise classification of test images from Mairal et al.
[2008a]. Two dictionaries are learned beforehand, one from images containing a
bicycle, and one from images corresponding to background only. For each of the
four test images displayed here, we also display a confidence map for the presence
of a bicycle. For each pixel, a confidence value is computed for a patch centered at
the pixel, by comparing the residual of the reconstruction errors obtained with the
two dictionaries; yellow bright pixel values represent high confidence, whereas dark
red pixel values represent low confidence.

4.4. Patch classification and edge detection 127

Another successful application of dictionary learning is edge detec-

tion. A first attempt by Mairal et al. [2008d] is based on the principles

described in this paragraph, and consists of learning two dictionaries,

one on patches centered on edges, and one centered on background.

The method was trained on the manually annotated Berkeley segmen-

tation dataset [Martin et al., 2001] and was shown to perform as well as

the dedicated approach called “Pb” [Martin et al., 2004]. Later, state-

of-the-art results have been obtained by Xiaofeng and Bo [2012] by

essentially combining two main ideas: (i) learning a single dictionary

and exploiting the sparse codes for classification, a paradigm that will

be the focus of the next paragraph, (ii) a dedicated way of performing

multiscale feature pooling, giving more stability and some invariance

to the sparse representations. We refer to Xiaofeng and Bo [2012] for

all details and we present some results obtained with their software

package in Figure 4.3.5 In the next paragraph, we now move to the

second paradigm, namely exploiting the sparse codes as a nonlinear

transformation of the input data for a subsequent linear classifier.

Figure 4.3: Edge detection results obtained with the software package
of Xiaofeng and Bo [2012] on the Berkeley segmentation dataset BSD500
[Martin et al., 2001]. Four pairs of images are presented. The left ones represent
input images and the right ones confidence maps for the presence of edges. Dark
values represent high confidence. Best seen by zooming on a computer screen.

Using sparse codes for classification. Given a signal x in R
m, the

sparse coding principle produces a sparse vector α⋆ such that x ≈ Dα⋆

5The software package is available here: http://homes.cs.washington.edu/~xren.

http://homes.cs.washington.edu/~xren

128 Sparse Coding for Visual Recognition

for some dictionary D in R
m×p. The process transforming x into α⋆ is

highly nonlinear, and the entries of the vector α⋆ can be interpreted

as the “contributions” of the corresponding columns of D to the recon-

struction of x.

When the dictionary atoms represent discriminative features for

a classification task, it becomes appealing to use the vectors α⋆ as

new inputs to a classifier, e.g., linear SVM or logistic regression.

The strategy is thus significantly different than the one presented

in the previous paragraph. The proof of concept was first demon-

strated by Huang and Aviyente [2006] with a pre-defined fixed dictio-

nary and a cost function inspired from linear discriminant analysis [see

Hastie et al., 2009]. Later, dictionary learning was successfully used

by Raina et al. [2007] for unsupervised feature learning as an effective

way of exploiting unlabeled data for various classification tasks with

image and text modalities.

Then, joint cost functions that involve both a discriminative term

and a classical dictionary learning formulation have been proposed sev-

eral times in the literature [Rodriguez and Sapiro, 2008, Mairal et al.,

2008b, Pham and Venkatesh, 2008, Yang et al., 2011]. Let us consider

a training set (xi, yi)
n
i=1, where the vectors xi in R

m are input signals

and the scalars yi are associated labels. The simplest cost functions

that combine sparse coding and classification have the following form

min
D∈C,W∈Rp×k

A∈Rp×n

1

n

n∑

i=1

[
1

2
‖xi −Dαi‖22+λ‖αi‖1+γL(yi,W,αi)

]

+
µ

2
‖W‖2F,

(4.8)

where the loss function L measures how far a prediction based on αi is

from the correct label yi. The matrix W represents model parameters

for the classifier and the quadratic term (µ/2)‖W‖2F is a regularizer.

Typically, L is a convex function and the prediction model is linear. For

example, when the labels yi are in {−1,+1} for a binary classification

problem, we may want to learn a linear decision rule parameterized by

a vector w (meaning the matrix W has a single column), and use one

4.4. Patch classification and edge detection 129

u

L(u)

y = 1

Figure 4.4: Visualization of three loss functions for a positive label y = 1. The
plain red curve represents the square loss L(u) = (1/2)(y−u)2, the dotted blue one
represents the logistic loss L(u) = log(1−e−yu), and the green dotted one represents
the hinge loss L(u) = max(0, 1 − yu).

of the following loss functions

L(y,w,α) ,

log
(

1 + e−yw⊤α
)

(logistic loss),

max
(

0, 1− yw⊤α
)

(hinge loss),

1
2

(

y −w⊤α
)2

(square loss).

(4.9)

For simplicity, we omit the fact that the loss function may involve an

intercept—that is a constant term b in R such that the linear model is

y ≈ sign(w⊤α+b) instead of simply y ≈ sign(w⊤α). Depending on the

chosen loss function L, the formulation (4.8) can combine dictionary

learning with a linear SVM, or a logistic regression classifier. We present

the three loss functions (4.9) in Figure 4.4. The logistic and hinge loss

are very similar; both of them are asymptotically linear and encourage

the signs of the products w⊤αi to be the same as yi. In all cases, it

is possible to iteratively decrease the value of the cost function (4.8)

and obtain a stationary point by alternate minimization between the

variables D,A,W. As for the classical dictionary learning formulation,

it is in fact impossible to find the global optimum; the problem is indeed

convex with respect to each variable when keeping the other variables

fixed, but it is not jointly convex.

The motivation of the formulation (4.8) is to encourage the dic-

tionary to provide sparse decomposition vectors α that are good for

discrimination. It does so by encouraging them to have a small classi-

fication error on the training set measured by a convex loss function

130 Sparse Coding for Visual Recognition

from machine learning. There are however two possible caveats with

such an approach, which we discuss now.

The sparse decomposition patterns may be unstable. The first

caveat is the lack of stability of the estimator provided by sparse de-

composition algorithms. For instance, the solution of the Lasso can

significantly change after a small perturbation of the input data—that

is, the vector

α⋆(x,D) , arg min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1, (4.10)

assuming the optimization problem has a unique solution, can drasti-

cally change for small variations of x, or even small variations of λ in

pathological cases [Meinshausen and Bühlmann, 2010, Mairal and Yu,

2012]. For classification tasks, it is unfortunately often desirable to have

stable representations, and thus improving this aspect may be impor-

tant [Bruna and Mallat, 2013]. Several strategies have been proposed

to deal with such an issue:

• promoting incoherent dictionaries: when D⊤D is close to

the identity matrix, the dictionary is called “incoherent”. When

it is the case, sparse reconstruction algorithms may benefit from

support recovery guarantees (see Section 1.5). Following this

insight, Ramirez et al. [2009] have shown that promoting inco-

herent dictionaries may lead to better generalization proper-

ties. Later, this idea was also found useful in other classification

schemes [Bo et al., 2013].

• pooling features: when a set of signals that are close to each

other are available, e.g., a set patches that significantly overlap

with each other, feature pooling on the set of corresponding sparse

codes can lead to more stable, but less sparse representations. For

instance, Ren and Ramanan [2013], Bo et al. [2013] adopts such a

strategy in an effective image representation for object detection.

• replacing ℓ1 by the elastic-net: when replacing the ℓ1-norm

in (4.10) by the Elastic-net penalty ‖α‖1 +(γ/2)‖α‖22, it is possi-

ble to show that α⋆ is Lipschitz continuous [Mairal et al., 2012],

4.4. Patch classification and edge detection 131

with a Lipschitz constant proportional to (1/γ)2. Here, the pa-

rameter γ controls a trade-off between sparsity and stability. As

a side effect, it also leads to a unique solution of the sparse re-

construction problem due to the strong convexity of the penalty.

The label y is not available at test time. Interestingly, the for-

mulation (4.8) is related to the super-resolution approach described

in Section 3.4. even though the relation is only clear from hindsight.

Indeed, the goal of classification is to map an input signal x to an

output label y. In contrast, super-resolution can be seen as a multivari-

ate regression problem, whose goal is to learn a mapping between x

and a high-resolution signal—say, a signal y. It is then not surprising

that the classification formulation (4.8) is very similar to the regression

one (3.6). In both cases, learning the mapping involves a dictionary D

for representing the input signals x and a model that maps sparse

codes α to the variable to predict. In (4.8), the parameters W play for

instance the same role as the parameters Dh in (3.6).

In Section 3.4, we have discussed some limitations of the super-

resolution formulation (3.6), which are in fact also relevant for the

classification task. Given some fixed D and W, we remark that the

sparse codes αi for the training data may be obtained as follows

αi ∈ arg min
α∈Rp

1

2
‖xi −Dα‖22+λ‖α‖1+γL(yi,W,α). (4.11)

Unfortunately, given a new test signal x, the label y is not available

and the formulation (4.10) has to be used instead to obtain the corre-

sponding sparse code α. Therefore, there is a discrepancy in the way

the signals are encoded during the training and test phases.

In Section 3.4, we have addressed that issue by presenting an ex-

tension involving a bilevel optimization problem. It is also possible to

follow the same strategy for the classification task, but we develop this

method in the next section since it draws a strong connection between

dictionary learning and neural networks.

132 Sparse Coding for Visual Recognition

4.5 Connections with neural networks

There are obvious connections between dictionary learning and neural

networks. Some of them have already appeared in this monograph with

multilayer schemes involving feature maps, which are typical architec-

tures of convolutional neural networks and related work [LeCun et al.,

1998a, Serre et al., 2005]. In this section, we present two other impor-

tant connections. First, we introduce the concept of “backpropagation”

for dictionary learning, which is directly borrowed from neural net-

works [LeCun et al., 1998b], and which addresses an issue that was left

opened at the end of the previous section. Then, we focus on particular

networks whose purpose is to approximate efficiently the solution of

sparse coding problems [Gregor and LeCun, 2010].

Backpropagation rules for dictionary learning. In Figure 4.5, we

present two paradigms for dictionary learning coupled with a prediction

task, e.g., regression or classification. In the first one, the dictionary

is obtained without supervision and the prediction model is learned in

a subsequent step. In the latter paradigm, all parameters, including

the dictionary, are learned jointly for the prediction task. This requires

a similar concept as “backpropagation” [LeCun et al., 1998b], which

consists of using the chain rule in neural networks.

Formally, let us consider a training set of signals X = [x1, . . . ,xn]

in R
m×n associated to measurements Y = [y1, . . . ,yn] in R

k×n rep-

resenting the variables to predict at test time. Such a setting is quite

general on purpose: the vectors yi may represent for instance the high-

resolution patches from Section 3.4 or the half-toned patches from Sec-

tion 3.5, but they may also represent a label for the classification tasks

of Section 4.4. In this last case, k = 1 and the yi’s are simply scalars.

In the formulation of interest, the signals xi are encoded with D:

α⋆(x,D) = arg min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1 +

µ

2
‖α‖22, (4.12)

where the use of the elastic-net penalty instead of ℓ1 will be made clear

in the sequel. Then, we consider a similar prediction model as in the

previous section; following the same methodology, we introduce a loss

4.5. Connections with neural networks 133

function L, and the corresponding empirical risk minimization problem

min
D∈C,W∈Rp×k

1

n

n∑

i=1

L (yi,W,α⋆(xi,D)) +
γ

2
‖W‖2F, (4.13)

Specifically, any loss from the previous section is considered to be ap-

propriate here. The advantage of (4.12) over (4.11) is that the encod-

ing scheme remains the same between training and testing, and yet D

and W can be learned jointly for the final prediction task in (4.13).

Moreover (4.13) extends the super-resolution formulation of (3.8) to

more general problems such as classification.

Even though (4.13) seems appealing, it is unfortunately particu-

larly difficult to solve. In addition to being nonconvex, the relation

between D and the objective function goes through the argmin of a

nonsmooth optimization problem. As a consequence, the cost function

is also nonsmooth with respect to D and it is not clear how to obtain

a descent direction.

In an asymptotic regime where enough training data is available,

Mairal et al. [2012] show that the cost function becomes differentiable,

and they derive a stochastic gradient descent algorithm from this theo-

retical result. They call this approach “task-driven dictionary learning”.

More precisely, consider the expected cost

f(D,W) , E(y,x) [L (y,W,α⋆(x,D))] ,

where the expectation is taken to the unknown probability distribution

of the data pairs (y,x). Under mild assumptions on the data distribu-

tion and when µ > 0, it is possible to show that f is differentiable and

that its gradient admits a closed form:

∇Wf(D,W) = E(y,x)

[

∇L(y,W,α⋆)⊤
]

,

∇Df(D,W) = E(y,x)

[

−Dβ⋆α⋆⊤ + (x−Dα⋆)β⋆⊤
]

,
(4.14)

where α⋆ is short for α⋆(x,D),

β⋆[Γc] = 0, and β⋆[Γ] ,
(

D⊤
Γ DΓ + µI

)−1
∇α[Γ]L(y,W,α⋆),

where Γ is the set of nonzero entries of α⋆. Here, the role of pa-

rameter µ is to ensure that the matrix to be inverted is well condi-

tioned. Since the gradient has the form of an expectation, it is nat-

ural to use a stochastic gradient descent algorithm to optimize the

134 Sparse Coding for Visual Recognition

cost function [Bottou and Bousquet, 2008]. Even though the noncon-

vexity makes it impossible to find the global optimum, it was shown

by Mairal et al. [2012] that following heuristics from the neural net-

work literature [LeCun et al., 1998b], this strategy yields sufficiently

good results for many prediction tasks.

The concept of learning D to be good for prediction is similar

to the backpropagation principle in neural networks where all the

parameters of the network are learned for a prediction task using

the chain rule [LeCun et al., 1998b]. To the best of our knowledge,

Bradley and Bagnell [2008] were the first to use such a terminology

for dictionary learning; they proposed indeed a a different super-

vised dictionary learning formulation with smoothed approximations of

sparsity-inducing penalties. In a heuristic fashion, similar rules as (4.14)

have also been derived by Boureau et al. [2010] and Yang et al. [2010b]

in the context of classification and by Yang et al. [2012a] for super-

resolution (see Section 3.4).

Fast approximations of sparse coding. Another link between

neural networks and dictionary learning has been established

by Kavukcuoglu et al. [2010b] and Gregor and LeCun [2010], who have

trained neural networks to approximate sparse codes. Given some fixed

dictionary D and a training set X, their idea is to learn a simple non-

linear function g(W,x) that approximates α⋆(x,D) for any signal x

of interest. By using similar notation as in the previous paragraphs,

the general formulation proposed by Gregor and LeCun [2010] is the

following

min
W∈W

1

n

n∑

i=1

‖α⋆(xi,D)− g(W,xi)‖22,

where W is a set of parameters for the prediction function g optimized

with stochastic gradient descent andW is an optimization domain. The

basic prediction function g introduced by Kavukcuoglu et al. [2010b]

is the composition of a linear transformation and a pointwise non-

linearity, which can be interpreted as a one-layer neural network:

g(W,x)[j] , γj tanh(w⊤
j x + bj), (4.15)

4.5. Connections with neural networks 135

Output y

Sparse codes αDictionary D

Weights W

Input vector x

Stage 1: sparse

coding layer

Stage 2: supervised

learning layer

(a) Without backprogagation.

Output y

Sparse codes αDictionary D

Weights W

Input vector x

Supervised

Dictionary Learning

(b) With backpropagation.

Figure 4.5: Two paradigms for dictionary learning are illustrated in the figure.
An input signal x is sparsely encoded by using a dictionary D, producing sparse
codes α. Then, a second model with parameters W makes a prediction y based
on α. In (a), the dictionary D is learned unsupervised in a first layer—that is,
without exploiting output information y. Then, the parameters W of the prediction
model are learned afterwards in the second layer. In (b), we illustrate the concept of
supervised dictionary learning, where D and W are jointly learned for the prediction
task; this requires “backpropagating” information, represented by the red arrow,
from the top layer to the bottom one.

136 Sparse Coding for Visual Recognition

where the scalars γj and bj are some weights that can be also optimized.

The motivation for such an approach is to reduce the cost of comput-

ing sparse codes at test time. Whereas obtaining α⋆(x,D) requires

solving an optimization problem that can be costly (see Section 5),

the complexity of computing g(W,w) is the same as a matrix-vector

multiplication, making it possible to develop real-time applications.

However, there are two major shortcomings to the original approach

of Kavukcuoglu et al. [2010b], as noted by Gregor and LeCun [2010].

First, the choice of the non-linearity tanh does not yield exactly sparse

vectors, but it can be replaced by more appropriate shrinkage func-

tions. Second, the scheme (4.15) encodes each entry of the output vec-

tor g(W,x) independently and cannot possibly take into account the

fact that there exists correlation among the dictionary elements. To

address this issue, Gregor and LeCun [2010] have proposed an itera-

tive approach with a higher complexity than (4.15), but with a better

approximation (see their paper for more details).

4.6 Other applications

Because the research topic has been very active in the last decade,

sparse estimation and dictionary learning have been used in numerous

ways in computer vision; unfortunately, writing an exhaustive review

would be an endless exercise, and we have instead focused so far on a

few approaches related to visual recognition in images. In the remaining

paragraphs, we aim to be slightly more exhaustive and briefly mention

a few other successful applications.

Action recognition in videos. We start with natural extensions to

videos of visual recognition pipelines originally developed for images.

Castrodad and Sapiro [2012] and Guha and Ward [2012] have proposed

two related approaches for action classification in movies. We present

here the main principles from the method of Castrodad and Sapiro

[2012], which has shown competitive results in several standard evalu-

ation benchmarks.

Let us consider n training video sequences represented by vectors

4.6. Other applications 137

x1,x2, . . . ,xn in R
lT , where T is the number of frames in the sequence

and l is the number of pixels in each frame. Each sequence contains a

subject performing a particular action and the goal is to predict the

type of action in subsequent test videos. We assume that there are k

different possible actions.

To address this classification problem, Castrodad and Sapiro [2012]

have introduced a two-layer dictionary learning scheme, after pre-

processing the videos to replace the raw pixels by temporal gradients.

Then, the two layers of the pipeline can be described as follows:

• local model of actions: it is common in videos to work with

three-dimensional patches with a time dimension to describe the

local appearance of actions [Laptev, 2005]. For each class j, one

dictionary Dj is learned on the training data to represent the

appearance of such patches within the action class j. This step is

particularly useful when some actions are locally discriminative.

• encoding of full sequences: once the dictionaries Dj are

learned, a train or test video is processed by extracting its over-

lapping three-dimensional patches, and by encoding them with

the concatenated dictionary D = [D1, . . . ,Dk], say with p dic-

tionary elements. This produces a representation αi for every

patch i of the sequence. These patches are pooled into a single

vector β in R
p for the sequence.

• global model of actions: the first layer provides a high-

dimensional vector for each video. The second layer is exploit-

ing these nonlinear representations of the sequences as inputs to

the classification scheme (4.7). As a result, the layer is learning

a global model for each action class, by learning again one dic-

tionary per class. The difference with the first layer is that the

dictionaries model the appearance of full sequences instead of

local three-dimensional patches.

Note that, to simplify, we have also omitted some useful heuristics such

as the removing of three-dimensional patches with low energy, corre-

sponding to motionless regions. We have also not provided all math-

ematical details such as the chosen dictionary learning formulations

138 Sparse Coding for Visual Recognition

and algorithms. We refer to Castrodad and Sapiro [2012] for a more

exhaustive description of the method.

Visual tracking. We now move to a technique for visual tracking in-

troduced by Mei and Ling [2009], which relies on the sparsity-inducing

effect of the ℓ1-norm and on some ideas from the robust face recogni-

tion system of Wright et al. [2009]. Given a stream of images x1,x2, . . .,

the goal of tracking is to find a bounding box around a moving object

in the sequence. Typically, the bounding box is annotated for the first

image, and the task is to find the boxes in the subsequent frames by

exploiting temporally consistency.

The approach of Mei and Ling [2009] is inspired by template match-

ing techniques [Lucas and Kanade, 1981, Matthews et al., 2004]. It as-

sumes that at time t, a set of p templates D = [d1, . . . ,dp] in R
m×p is

available, where each column dj is a small image filled by the object of

interest—in other words, a bounding box. Typically, each dj has been

either obtained by a ground truth annotation at the beginning of the

sequence, or is one of the estimated boxes in the previous frames. Then,

estimating the position of the object in frame t consists of scanning all

possible bounding boxes in that frame, and comparing how well they

can be reconstructed by the templates D.

Concretely, let us assume that there are l possible boxes, and let us

denote by Rk the linear operator that extracts the k-th box from the

image and subsamples it to make a representation with m parameters.

Then, the optimization problem is simply

k̂ ∈ arg min
k∈{1,...,l}

 min
α∈R

p
+,e∈Rm

1

2
‖Rkxt −Dα− e‖22 + λ‖e‖1 +

p
∑

j=1

ηj |α[j]|

 ,

(4.16)

where e models the occlusion as in the face recognition formulation

of Wright et al. [2009] presented in Section 4.3. The ℓ1-norm encour-

ages e to be sparse, whereas the weighted-ℓ1-norm also promotes the

selection of a few templates from D. The role of the weights ηj is to

give more importance to some templates, especially the ones that have

been selected recently in the previous frames.

Overall, the tracking scheme performs two successive operations

4.6. Other applications 139

for each frame. It selects the new bounding box with (4.16), and then

updates the dictionary D and the weights ηj , according to an ad-hoc

procedure [see Mei and Ling, 2009, for the details]. According to a re-

cent survey [Wu et al., 2013], trackers based on sparse representations,

which are essentially improved versions of Mei and Ling [2009], per-

form well compared to the state of the art, and are able to deal with

occlusion effectively.

Data visualization. Finally, we deviates from visual recognition by

presenting applications of sparse estimation to data visualization in

computer vision [Elhamifar et al., 2012, Chen et al., 2014]. The first ap-

proach proposed by Elhamifar et al. [2012] can be viewed as an exten-

sion of the sparse subspace clustering method of Elhamifar and Vidal

[2009], and was successfully applied to the problem of video summa-

rization.

More precisely, consider a video sequence X = [x1, . . . ,xT] in R
l×T

where each xt in R
l is the t-th frame. The goal of video summarization

is to find a set of s ≪ T frames that best “represents” the video. The

selection problem is formulated as follows

min
A∈RT ×T

‖X−XA‖2F s.t. Ψ0(A) ≤ s and ∀i,
T∑

j=1

αi[j] = 1, (4.17)

where A = [α1, . . . ,αT] and Ψ0(A) counts the number of rows of A

that are non-zero. The constraints have two simultaneous effects: first,

they encourage every frame xt to be close to a linear combination Xαt

of other frames with coefficients αt that sum to one; second, since A has

at most s non-zero rows, only s frames from X can be used in the ap-

proximations Xαt. The video sequence is consequently “summarized”

by these s frames.

To visualize large image collections, Chen et al. [2014] has used

related ideas by exploiting an older unsupervised learning technique

called archetypal analysis, which is presented in Section 2.6. Specif-

ically, let us consider a collection of images, denoted again by X =

[x1, . . . ,xn], but which do not necessarily form a video sequence.

Archetypal analysis looks for a dictionary D in R
m×p that “represents”

140 Sparse Coding for Visual Recognition

well the data,

min
αi∈∆p for 1≤i≤n
βj∈∆n for 1≤j≤p

n∑

i=1

‖xi −Dαi‖22 s.t. ∀j,dj = Xβj ,

where ∆p and ∆n are simplex sets—that is, sets of vectors with non-

negative entries that sum to one. In contrast to the original dictionary

learning formulation, the dictionary elements, called archetypes, are

convex combinations of data points and admit a simple interpretation.

In Figure 4.6, we present a result obtained by Chen et al. [2014] on

a database of images downloaded on the Flickr website with the re-

quest “Paris”. Each image is encoded using the Fisher vector represen-

tation [Perronnin et al., 2010] and p = 256 archetypes are learned. Each

archetype dj is a convex combination Xβj of a few input images with

a sparse vector βj due to the simplicial constraint. For each archetype,

it is the natural to visualize images that are used in the sparse com-

bination, as well as the corresponding non-zero coefficients βj [i]. To

some extent, the resulting figure “summarizes” the image collection.

4.6. Other applications 141

(a) Expected landmarks. (b) Unexpected ones. (c) Scene composition.

Figure 4.6: A few archetypes learned from 36 600 pictures corresponding to the
request “Paris” downloaded from Flickr and sorted by “relevance”. The figure is
produced by Chen et al. [2014] with the software package SPAMS available at
http://spams-devel.gforge.inria.fr/ The numbers in red represent the values
of the non-zero coefficients βj [i] for each image. In (a), we obtain expected land-
marks such as the Eiffel tower or Notre Dame; in (b), we display some unexpected
archetypes corresponding to soccer, graffitis, food, flowers and social gatherings;
in (c), we see some archetypes that do not seem to have some semantic meaning,
but that capture some scene compositions or texture present in the dataset. Best
seen by zooming on a computer screen.

http://spams-devel.gforge.inria.fr/

5

Optimization Algorithms

In the previous parts of the monograph, many formulations for dealing

with image processing and computer vision tasks have been introduced,

leading in general to cost functions to optimize. However, we have not

presented yet in great details how the corresponding algorithms should

be implemented in practice. The purpose of this section is to introduce

basic optimization tools to address sparse estimation and dictionary

learning problems. Because the literature is vast [see Bach et al., 2012a,

for a review], we focus on a few techniques that we consider to be easy

to use and efficient enough.

Specifically, we mostly present algorithms that are parameter-free.

This means that in addition to model parameters that are inherent to

the formulation, they do not require tuning any input value to converge;

they should at most require choosing a number of iterations or a stop-

ping criterion. We also put the emphasis on algorithms that are easy to

implement: a few lines of a high-level language, e.g., Matlab or Python,

are in general sufficient to obtain an effective prototype, even though

cutting-edge implementations may be more involved to develop—that

is, they may require a low-level language such as C/C++ and optimized

142

5.1. Sparse reconstruction with the ℓ0-penalty 143

third-party libraries for linear algebra such as BLAS and LAPACK.1

First, we address classical ℓ0-regularized problems, before treating

the case of the ℓ1-penalty. Then, we present iterative reweighted ℓ1
and ℓ2 techniques, and conclude with dictionary learning algorithms.

Many of these methods have been used for the experiments conducted

in this monograph, and are available in the SPAMS toolbox.2

5.1 Sparse reconstruction with the ℓ0-penalty

We start our review of optimization techniques with least square prob-

lems that are regularized with the ℓ0-penalty. More precisely, we are

interested in finding approximate solutions of

min
α∈Rp

‖x−Dα‖22 s.t. ‖α‖0 ≤ k, (5.1)

or

min
α∈Rp

‖α‖0 s.t. ‖x−Dα‖22 ≤ ε, (5.2)

where x is an input signal in R
m and D is a dictionary in R

m×p. There

are mainly two classes of algorithms for dealing with such NP-hard

problems: greedy algorithms and iterative hard-thresholding methods.

We start with algorithms of the first kind, which are designed for deal-

ing with both formulations. They are commonly known as matching

pursuit and orthogonal matching pursuit in signal processing, and for-

ward selection techniques in statistics.

Coordinate descent algorithm: matching pursuit (MP). Introduced

by Mallat and Zhang [1993], matching pursuit is a coordinate descent

algorithm that iteratively selects one entry of the current estimate α

at a time and updates it. It is closely related to projection pursuit al-

gorithms from the statistics literature [Friedman and Stuetzle, 1981],

and is presented in Algorithm 2, where D = [d1, . . . ,dp] is a dictionary

with unit-norm columns. Each iteration performs in fact a one dimen-

sional minimization of the residual with respect to the ̂-th entry of α

1see http://www.netlib.org/blas/.
2http://spams-devel.gforge.inria.fr/.

http://www.netlib.org/blas/
http://spams-devel.gforge.inria.fr/

144 Optimization Algorithms

Algorithm 2 Matching pursuit algorithm.

Require: Signal x in R
m, dictionary D in R

m×p with unit-norm

columns, and stopping criterion k or ε.

1: Initialize α← 0;

2: while ‖α‖0 < k if k is provided or ‖x−Dα‖22 > ε if ε is provided

do

3: select the coordinate with maximum partial derivative:

̂ ∈ arg max
j=1...p

|d⊤
j (x−Dα)|;

4: update the coordinate

α[̂]← α[̂] + d⊤
̂ (x−Dα); (5.3)

5: end while

6: return the sparse decomposition α in R
p.

when keeping the other entries fixed. The update (5.3) can indeed be

interpreted as

α[̂]← arg min
α∈R

∥
∥
∥
∥
∥
∥

x−
∑

l 6=̂

α[l]dl − αd̂

∥
∥
∥
∥
∥
∥

2

2

. (5.4)

Therefore, the residual monotonically decreases during the optimiza-

tion, whereas the model sparsity ‖α‖0 increases or remains constant

until the stopping criterion is satisfied. One drawback of matching pur-

suit is that the same entry ̂ can be selected several times during the

optimization, possibly leading to a large number of iterations. The next

algorithm, called “orthogonal matching pursuit”, does not suffer from

this issue, and usually provides a better sparse approximation with

additional computational cost.

Active-set algorithm: orthogonal matching pursuit (OMP). The al-

gorithm is similar in spirit to matching pursuit, but enforces the resid-

ual to be always orthogonal to all previously selected variables, which

is equivalent to saying that the algorithm reoptimizes the value of all

5.1. Sparse reconstruction with the ℓ0-penalty 145

non-zero coefficients once it selects a new variable. As a result, each

iteration of OMP is more costly than those of MP, but the procedure is

guaranteed to converge in a finite number of iterations. The algorithm

appears in the signal processing literature [Pati et al., 1993], and is

called “forward selection” in statistics (see Section 1.1).

Several variants of OMP have been proposed that essentially

differ in the way a new variable is selected at each iteration.

In this monograph, we focus on an effective variant introduced

by Gharavi-Alkhansari and Huang [1998], Cotter et al. [1999], which

is called “order recursive orthogonal matching pursuit”. To simplify, we

simply use the terminology “OMP” to denote this variant and omit

the term “order recursive” in the rest of the monograph. The proce-

dure is presented in Algorithm 3, where DΓ represents the matrix of

size R
m×|Γ| whose columns are those of D indexed by Γ, and Γc denotes

the complement set of Γ in {1, . . . , p}. The classical OMP algorithm

(not the order recursive variant) chooses ̂ exactly as in the MP algo-

rithm. Through our experience, we have found that the order recursive

variant provides a slightly better sparse approximation in practice, even

though it may seem more complicated to implement at first sight.

Unlike MP, the set Γ of non-zero variables of α strictly increases by

one unit after each iteration, and it is easy to show that the residual is

always orthogonal to the matrix DΓ of previously selected dictionary

elements. Indeed, we have at each step of the algorithm:

αΓ =
(

D⊤
Γ DΓ

)−1
D⊤

Γ x,

(assuming DΓ to be full-rank), and thus

D⊤
Γ (x−Dα) = D⊤

Γ (x−DΓαΓ) = 0.

It is interesting to note that efficient implementations of Algorithm 3

exist, despite the fact that the algorithm naively requires to mini-

mize |Γc| quadratic functions—equivalently solve |Γc| linear systems—

at each iteration. The main ingredients for a fast implementation have

been discussed by Cotter et al. [1999], and are summarized below:

1. if the Cholesky factorization of (D⊤
Γ DΓ) is already computed at

the beginning of an iteration, finding the index ̂ to select in

146 Optimization Algorithms

Algorithm 3 Orthogonal matching pursuit - order recursive variant.

Require: Signal x in R
m, dictionary D in R

m×p, and stopping crite-

rion k or ε.

1: Initialize the active set Γ = ∅ and α← 0;

2: while |Γ| < k if k is provided or ‖x −Dα‖22 > ε if ε is provided

do

3: select a new coordinate ̂ that leads to the smallest residual:

(̂, β̂) ∈ arg min
j∈Γc,β∈R|Γ|+1

∥
∥
∥x−DΓ∪{j}β

∥
∥
∥

2

2
; (5.5)

4: update the active set and the solution α:

Γ← Γ ∪ {̂};
αΓ ← β̂ and αΓc ← 0;

5: end while

6: return the sparse decomposition α in R
p.

the update (5.5) can be found with very few operations by using

simple linear algebra relations [Cotter et al., 1999].

2. given some index ̂, we have

β̂ = (D′⊤
Γ D′

Γ)−1D′⊤
Γ x,

where Γ′ = Γ ∪ {̂}. Whereas the matrix inversion naively

costs O(|Γ′|3) operations, it can be obtained in O(|Γ|2) operations

if the Cholesky factorization (D⊤
Γ DΓ)−1 is already computed.

3. if Q , D⊤D is precomputed, a significant gain in terms of speed

can be obtained by exploiting the fact that the quadratic func-

tion ‖x − Dα‖22 expands as ‖x‖22 − 2q⊤α + α⊤Qα. This triv-

ial reformulation leads to an implementation that never explic-

itly computes the residual r = x −Dα, but instead works with

the quantity D⊤r, initialized with q, and updated at every it-

eration. This simple strategy may be useful when large set of

signals x1, . . . ,xn needs to be encoded in parallel with the same

5.1. Sparse reconstruction with the ℓ0-penalty 147

dictionary. Then, it is worth computing Q once for all, before pro-

cessing all signals. It is then possible to obtain an implementation

of Algorithm 3 whose complexity for encoding these n signals is

O(mp2)
︸ ︷︷ ︸

compute D⊤D once

+ nO(k3)
︸ ︷︷ ︸

Cholesky factorizations

+nO(pm+ pk2)
︸ ︷︷ ︸

update of D⊤r

.

A similar strategy for the classical OMP algorithm that in-

volves a simpler selection rule of the variable ̂ is discussed

by Rubinstein et al. [2008].

Even though the algorithm only provides an approximate solution of

the ℓ0-regularized least square problem in general, OMP was shown

by Tropp and Gilbert [2007] to be able to reliably recover a sparse

signal from random measurements. Interestingly, the conditions that

are required on the dictionary are similar to the ones for sparse recovery

in the compressed sensing literature (see Section 1.5).

Gradient-descent technique: iterative hard-thresholding. A sig-

nificantly different approach than the previous greedy algorithms

consists of using a gradient descent principle, an approach called

iterative hard-thresholding [Starck et al., 2003, Herrity et al., 2006,

Blumensath and Davies, 2009], designed to find an approximate so-

lution of either (5.1) or

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖0, (5.6)

for some penalty parameter λ. The method is presented in Algorithm 4

and is an instance of the more general proximal gradient descent algo-

rithms [see Bach et al., 2012a, for a review].

As we will see, when η is smaller than the inverse of the largest

eigenvalue of D⊤D, the algorithm monotonically decreases the value

of the objective function. To see this, we can interpret the it-

erative hard-thresholding algorithm as a majorization-minimization

scheme [Lange et al., 2000], which consists of minimizing at each it-

eration a locally tight upper-bound of the objective. This principle is

illustrated in Figure 5.1.

148 Optimization Algorithms

Algorithm 4 Iterative hard thresholding.

Require: Signal x in R
m, dictionary D in R

m×p, target sparsity k or

penalty parameter λ, step size η, number of iterations T , initial

solution α0 in R
p (with ‖α0‖0 ≤ k if k is provided).

1: Initialize α← α0;

2: for t = 1, . . . , T do

3: perform one step of gradient descent:

α← α + ηD⊤(x−Dα);

4: choose threshold τ to be the k-th largest magnitude among the

entries of α if k is provided, or τ =
√

2λ if λ is provided;

5: for j = 1, . . . , p do

6: hard-thresholding:

α[j]←
{

α[j] if |α[j]| ≥ τ,
0 otherwise.

7: end for

8: end for

9: return the sparse decomposition α in R
p.

f(α)

gβ(α)

b

b

β = αold

αnew
f(α) ≤ gβ(α)

Figure 5.1: Illustration of the basic majorization-minimization principle. The ob-
jective function f (in blue) needs to be minimized. At the current iteration, a ma-
jorizing surrogate gβ (in red) is computed that is locally tight at the previous es-
timate αold. After minimizing the surrogate, we obtain a new estimate αnew such
that f(αnew) ≤ f(αold).

5.1. Sparse reconstruction with the ℓ0-penalty 149

The majorizing surrogate can be obtained from the following in-

equality that holds for all α and β in R
p:

1

2
‖x−Dα‖22 =

1

2
‖x−Dβ −D(α− β)‖22

=
1

2
‖x−Dβ‖22 − (α−β)⊤D⊤(x−Dβ) +

1

2
‖D(α− β)‖22

≤ 1

2
‖x−Dβ‖22 − (α−β)⊤D⊤(x−Dβ) +

1

2η
‖α− β‖22

= Cβ +
1

2η

∥
∥
∥α−

(

β + ηD⊤(x−Dβ)
)∥
∥
∥

2

2
︸ ︷︷ ︸

gβ(α)

,

(5.7)

where Cβ is a term independent of α. All equalities are simple linear al-

gebra relations and the inequality comes from the fact that z⊤D⊤Dz ≤
1
η z⊤z for all z in R

p, since 1/η is assumed to be larger than the

largest eigenvalue of D⊤D. Under this assumption, we have the rela-

tion 1
2‖x−Dα‖22 ≤ gβ(α) for all α in R

p, with an equality for α = β.

Then, we have two possible cases:

• if the problem of interest is (5.1), k is provided to Algorithm 4,

and it is easy to show that the value of α at the end of one

iteration is the solution of

min
α∈Rp

gβ(α) s.t. ‖α‖0 ≤ k,

where β is the value of α at the beginning of the iteration.

• if one is interested in the penalized problem (5.6), the value of α

after each iteration of Algorithm 4 is instead the solution of

min
α∈Rp

gβ(α) + λ‖α‖0,

and the function α 7→ gβ(α) + λ‖α‖0 is a majorizing surrogate

of the objective 1
2‖x−Dα‖22 + λ‖α‖0.

In both cases, Algorithm 4 can be interpreted as a majorization-

minimization scheme and the value of the objective function mono-

tonically decreases.

150 Optimization Algorithms

5.2 Sparse reconstruction with the ℓ1-norm

In the previous section, we have studied three optimization prob-

lems (5.1), (5.2) and (5.6). Similarly, we consider three formulations

of interest involving the ℓ1-norm:

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1, (5.8)

and

min
α∈Rp

‖α‖1 s.t. ‖x−Dα‖22 ≤ ε, (5.9)

and

min
α∈Rp

‖x−Dα‖22 s.t. ‖α‖1 ≤ µ. (5.10)

We have also presented three optimization strategies to deal with the ℓ0-

penalty, namely: matching pursuit, orthogonal matching pursuit, and

iterative hard-thresholding algorithms. Interestingly, it is possible to

deal with the ℓ1-penalty by following similar techniques, even though

the links between ℓ1-approaches and ℓ0-ones are only clear from hind-

sight.

Coordinate descent. The counterpart of matching pursuit for ℓ1-

regularized problems is probably the coordinate descent method. Even

though the general scheme is classical in optimization [see Bertsekas,

1999], it was first proposed by Fu [1998] for minimizing the Lasso (5.8).

Its convergence to the exact solution of the convex non-smooth prob-

lem such as (5.8) was shown by Tseng and Yun [2009], and its empirical

efficiency was demonstrated by Wu and Lange [2008]. The coordinate

descent approach is presented in Algorithm 5, where Sλ denotes the

soft-thresholding operator already introduced in Section 1.2:

Sλ : θ 7→ sign(θ) max(|θ| − λ, 0),

and the selection rule for choosing ̂ can be on the following strategies:

• cycle in {1, . . . , p} (the most typical choice);

• pick up ̂ uniformly at random in {1, . . . , p};

5.2. Sparse reconstruction with the ℓ1-norm 151

Algorithm 5 Coordinate descent algorithm for the Lasso (5.8).

Require: Signal x in R
m, dictionary D in R

m×p, penalty parameter λ,

number of iterations T , initial solution α0 in R
p.

1: Initialize α← α0;

2: for t = 1, . . . , T do

3: select one coordinate ̂, e.g., by cycling or at random;

4: update the coordinate by soft-thresholding:

α[̂]← Sλ

(

α[̂] +
d⊤

̂ (x−Dα)

‖d̂‖22

)

; (5.11)

5: end for

6: return the sparse decomposition α in R
p.

• choose the entry ̂ exactly as in the matching pursuit algorithm.

It is relatively easy to show that the update (5.11) is in fact min-

imizing the objective (5.8) with respect to the ̂-th entry of α when

keeping the others fixed. More precisely, (5.11) is equivalent to

α[̂]← arg min
α∈R

∥
∥
∥
∥
∥
∥

x−
∑

l 6=̂

α[l]dl − αd̂

∥
∥
∥
∥
∥
∥

2

2

+ λ|α|,

which is very similar to the matching pursuit update (5.4) but with

the ℓ1-penalty in the formulation. The benefits of the coordinate de-

scent scheme are three-fold: (i) it is extremely simple to implement;

(ii) it has no parameter; (iii) it can be very efficient in practice [see

Bach et al., 2012a, Section 8, for a benchmark].

Assuming that one chooses the cycling selection rule, the complexity

of a naive update of α[j] is O(mp) for computing the matrix-vector

multiplication Dα. Fortunately, better complexities can be obtained

by adopting one of the two following alternative strategies:

1. during the algorithm, we choose to update an auxiliary variable

representing the residual r such that we always have r = x−Dα.

Given r, updating α[̂] only cost O(m) operations because of

the inner-product d⊤
̂ r. Then, updating r either has zero cost

152 Optimization Algorithms

if α[̂] does not change, or cost O(m) otherwise. Finally, the per-

iteration complexity of this strategy is always O(m);

2. assuming that the matrix D⊤D is pre-computed, it is possible

to obtain an even better per-iteration complexity by updating an

auxiliary variable z instead of r such that we always have z =

D⊤(x−Dα). Given z, updating α[j] only cost O(1) operations.

Updating z has either zero cost if α[j] does not change, or cost

O(p) operations. As a result, the per-iteration complexity is at

most O(p), but more interestingly, each time a variable α[j] is

equal to zero before its update and remains equal to zero after

the update (a typical scenario for very sparse solutions), the cost

per iteration is O(1).

Extensions of coordinate descent to deal with more general

smooth loss functions and group-Lasso penalties have also been pro-

posed [Tseng and Yun, 2009]. These variants are also easy to imple-

ment, and exhibit good performance in practice [see Bach et al., 2012a].

Proximal gradient algorithm - iterative soft-thresholding. The

second approach that we consider is the ℓ1-counterpart of

the iterative hard-thresholding algorithm called “iterative soft-

thresholding” [Nowak and Figueiredo, 2001, Figueiredo and Nowak,

2003, Starck et al., 2003, Daubechies et al., 2004]. Originally designed

to address (5.8), it can be easily modified to deal with (5.10). It is

similar to the hard-thresholding technique of the previous section and

is presented in Algorithm 6, where η satisfies the same property as in

the previous section—that is, 1/η is larger than the largest eigenvalue

of D⊤D. Note that the orthogonal projection (5.12) onto the ℓ1-ball

can be done efficiently in linear time [Brucker, 1984, Duchi et al., 2008].

Then, the method can also be interpreted under the majorization-

minimization point of view illustrated in Figure 5.1. Indeed, let us

consider the two cases:

• if the problem of interest is (5.8), the user provides the parame-

ter λ, and it is easy to show that the value of α at the end of one

5.2. Sparse reconstruction with the ℓ1-norm 153

Algorithm 6 Proximal gradient algorithm for (5.8) or (5.10).

Require: Signal x in R
m, dictionary D in R

m×p, regularization param-

eter λ or µ, gradient descent step size η, number of iterations T ,

initial solution α0 in R
p (with ‖α0‖1 ≤ T if T is provided).

1: Initialize α← α0;

2: for t = 1, . . . , T do

3: perform one step of gradient descent:

α← α + ηD⊤(x−Dα);

4: if λ is provided then

5: soft-thresholding: for all j = 1, . . . , p,

α[j]← Sλ(α[j]);

6: else

7: µ is provided and one performs the orthogonal projection

α← arg min
β∈Rp

[
1

2
‖α− β‖22 s.t. ‖β‖1 ≤ µ

]

; (5.12)

8: end if

9: end for

10: return the sparse decomposition α in R
p.

154 Optimization Algorithms

iteration is the solution of

min
α∈Rp

gβ(α) + λ‖α‖1,

where gβ is defined in (5.7), and the function α 7→ gβ(α)+λ‖α‖1
is a majorizing surrogate of the objective (1/2)‖x−Dα‖22+λ‖α‖1.

• if one is interested instead in the penalized problem (5.10), the

value of α after each iteration of Algorithm 4 is the solution of

min
α∈Rp

gβ(α) s.t. ‖α‖1 ≤ µ,

where β is the value of α at the beginning of the iteration.

The majorization-minimization principle explains why the algorithm

monotonically decreases the value of the objective function, but a more

refined analysis can provide convergence rates. In general, we know

that the objective function value converges to the optimal one with

the convergence rate O(1/t), and that some variants such as FISTA

admit a better rate O(1/t2), as shown by Beck and Teboulle [2009],

Nesterov [2013]. These methods are relatively easy to implement, and

choosing η is not an issue in practice. When an appropriate value for η

is not available beforehand, it is possible to automatically find a good

one with a line-search scheme.

Similarly as coordinate descent, extensions to more general prob-

lems than ℓ1-regularized least squares are possible. In general proximal

gradient methods are indeed adapted to solving convex problems of the

form

min
α∈A

f(α) + ψ(α),

where A is a convex set in R
p, f is differentiable and its gradient is

uniformly Lipschitz continuous, and ψ is a convex nonsmooth function

such that the so-called proximal operator of ψ

arg min
α∈A

1

2
‖α− β‖22 + ψ(α),

can be efficiently computed for all β in R
p. As a result, proximal gradi-

ent methods have been successfully used with the Group Lasso penalty

including the hierarchical and structured variants of Section 1.3 [see

Jenatton et al., 2011b, Mairal et al., 2010b].

5.2. Sparse reconstruction with the ℓ1-norm 155

Homotopy and LARS algorithms Finally, the homotopy method

[Osborne et al., 2000, Efron et al., 2004] is related to orthogonal match-

ing pursuit, but for solving the ℓ1-regularized problems (5.8), (5.9), and

(5.10). Similarly to OMP, the algorithm maintains an active-set of vari-

ables Γ, initialized with the empty set, and iteratively updates it by

one variable at a time.

The homotopy method follows in fact the regularization path of the

Lasso—that is, it finds the set of all solutions of (5.8) for all values of

the regularization parameter λ, formally defined as

P , {α⋆(λ) : λ > 0},

where α⋆(λ) is the solution of (5.8), which is assumed to be

unique under a small technical assumption [see Osborne et al., 2000,

Mairal and Yu, 2012]. A remarkable property of the path is that it can

be shown to be piecewise linear. In other words, it can be described by

a finite number k of linear segments, as illustrated earlier in Figure 1.4:

P =
k⋃

l=1

{θα⋆(λl) + (1− θ)α⋆(λl+1) : θ ∈ [0, 1]} . (5.13)

The homotopy method finds a point on the path, computes the direc-

tion of the current linear segment, and follows it until the direction

of the path changes. The algorithm either returns the full regulariza-

tion path—that is, the sequence of α⋆(λl) from Eq. (5.13), or stops if

it reaches a solution for a target λ, a target residual ǫ, or ℓ1-norm µ.

Thus, it can be used for solving the three variants (5.8), (5.9), or (5.10).

The piecewise linearity of the path was discovered by Markowitz

[1952] in the context of portfolio selection, and was turned into

an effective algorithm for solving the Lasso by Osborne et al. [2000]

and Efron et al. [2004]. It should be also noted that solving (5.8) for

all values of λ is in fact an instance of parametric quadratic program-

ming, for which path following algorithm encompassing the homotopy

method appear early in the optimization literature [Ritter, 1962]. The

homotopy turns out to be extremely efficient for solving very sparse

medium-scale problems [see Bach et al., 2012a], even though its worst-

case complexity has been shown to be exponential [Mairal and Yu,

156 Optimization Algorithms

2012]. Similar to the simplex algorithm for solving linear programs,

the empirical complexity is therefore extremely bad in the worst-case

scenario, but it is most often very good in practical ones.

Following the presentation of Mairal and Yu [2012], we describe

the method in Algorithm 7. The formula for the direction of the

path is given in Eq. (5.14), where the quantity η is defined as η ,

sign(D⊤(x −Dα⋆)) in {−1, 0, 1}p. This relation can be derived from

optimality conditions of the Lasso presented in Section 1.3, but the

derivation requires technical developments that are beyond the scope

of the monograph. We refer instead to Mairal and Yu [2012] for more

details. Interestingly, implementing efficiently Algorithm 7 raises sim-

ilar difficulties as for implementing orthogonal matching pursuit. We

need indeed to be able to update the inverse matrices (D⊤
Γ DΓ)−1 at

each iteration when the active-set Γ changes. The Cholesky decompo-

sition or the Woodbury formula [see Golub and Van Loan, 2012] can

be used for that purpose.

For example, let us give a few details on how the Woodbury formula

can be useful. Denoting by Γ′ , Γ ∪ {̂}, we have the classical relation

(

D⊤
Γ′DΓ′

)−1
=

[

(D⊤
Γ DΓ)−1 + 1

s zz⊤ −1
s z

−1
s z⊤ 1

s

]

,

where s , d⊤
̂ d̂ − d⊤

̂ (D⊤
Γ DΓ)−1d̂ is called the Schur complement,

and z , (D⊤
Γ DΓ)−1d̂. Thus, computing (D⊤

Γ′DΓ′)−1 given (D⊤
Γ DΓ)−1

from the previous iteration can be done by a few matrix-vector multipli-

cations only. In the same vein, obtaining (D⊤
Γ DΓ)−1 from (D⊤

Γ′DΓ′)−1

is also a matter of manipulating a few linear algebra relations.

We also remark that the implementation of the homotopy can ben-

efit from the pre-computation of the matrix D⊤D in the exact same

way as for orthogonal matching pursuit, such that both implementa-

tions have in fact the same complexity (up to a constant factor that is

slightly larger for the homotopy method).

5.3 Iterative reweighted-ℓ1 methods

We have mentioned in the introduction of this monograph that non-

convex sparsity-inducing penalties are often used in sparse estimation.

5.3. Iterative reweighted-ℓ1 methods 157

Algorithm 7 Homotopy algorithm for the Lasso.

Require: Signal x in R
m, dictionary D in R

m×p.

1: λ← ‖D⊤x‖∞;

2: Γ← {j ∈ {1, . . . , p} : |d⊤
j x| = λ};

3: while λ > 0 or according to another stopping criterion do

4: compute the current direction of the regularization path:

α⋆
Γ(λ) = (D⊤

Γ DΓ)−1(D⊤
Γ x− ληΓ) and α⋆

Γc(λ) = 0. (5.14)

5: find the smallest τ > 0 such that one of the following events

occurs:

• there exists j in Γc such that |d⊤
j (x−Dα⋆(λ−τ))| = λ−τ ;

then, add j to Γ;

• there exists j in Γ such that α⋆(λ − τ)[j] hits zero; then,

remove j from Γ.

It is also easy to show that the value of τ can be obtained in

closed form such that one can “jump” from a kink to another;

6: update λ← λ− τ ; record the pair (λ,α⋆(λ));

7: end while

8: Return: sequence of recorded values (λ,α⋆(λ)).

158 Optimization Algorithms

These regularization functions typically have the form

ψ(α) =
p
∑

j=1

ϕ (|α[j]|) , (5.15)

where the functions ϕ are concave, non-decreasing and differentiable

on R+. A natural way of dealing with such penalties when they appear

in the objective function is to use an approach called DC-programming,

where DC stands for “difference of convex” [see Gasso et al., 2009, for

a review]. Even though the resulting optimization problems are non-

convex and impossible to solve exactly in a reasonable amount of time,

DC-programming is a simple technique to obtain a stationary point

by using the majorization-minimization principle already illustrated in

Figure 5.1. It consists of exploiting a majorizing surrogate of ψ obtained

by linearizing the function ϕ in (5.15), which is upper-bounded by its

linear approximations because of concavity, as shown in Figure 5.2.

|β|

ϕ(α) = log(|α|+ ε)

gβ(α) = |α|
|β|+ε + Cβ

b
b

Figure 5.2: Illustration of the DC-programming approach. The function ϕ (in blue)
is upper-bounded by its linear approximation (in red), which is tight at the point β.
The resulting majorizing surrogate is a weighted ℓ1-norm plus a constant Cβ .

For example, for minimizing

min
α∈Rp

1

2
‖x−Dα‖22 + λ

p
∑

j=1

log(|α[j]|+ ε),

the resulting majorization-minimization algorithm solves a sequence of

5.4. Iterative reweighted-ℓ2 methods 159

weighted Lasso problems at each iteration

αnew ← arg min
α∈Rp

1

2
‖x−Dα‖22 + λ

p
∑

j=1

|α[j]|
|αold[j]|+ ε

 , (5.16)

where αold denotes the current estimate at the beginning of the it-

eration. The update (5.16) is a reweighted-ℓ1 algorithm, which is

known to provide sparser solutions than the regular Lasso. Such

majorization-minimization approaches for non-convex sparse estima-

tion have been introduced in various contexts. For example, Fazel

[2002], Fazel et al. [2003] and then later Candès et al. [2008] use such

a principle for the regularization function ϕ : x 7→ log(x + ε),

whereas Figueiredo and Nowak [2005], Figueiredo et al. [2007] propose

majorization-minimization algorithms for dealing with the ℓq-penalty

with q < 1.

5.4 Iterative reweighted-ℓ2 methods

We now focus on another type of algorithm for dealing with convex reg-

ularizers such as the ℓ1-norm. Similar to the reweighted-ℓ1-algorithms

of the previous section, the approaches we present here consist of solv-

ing a sequence of sub-problems, each one involving a simple penalty.

The key idea is that many non-smooth convex regularizers can be seen

as minima of quadratic functions, leading to reweighted ℓ2-algorithms.

Variational formulation of the ℓ1-norm. We start with the sim-

plest case of the ℓ1-norm, which admits the following variational

form [Grandvalet and Canu, 1999, Daubechies et al., 2010]:

‖α‖1 = inf
η∈R

p
+

1

2

p
∑

j=1

{

α[j]2

η[j]
+ η[j]

}

,

with the optimal η ∈ R
p
+ obtained as η[j] = |α[j]|. The Lasso opti-

mization problem then becomes:

min
α∈Rp

min
η∈R

p
+

1

2
‖x−Dα‖22 +

λ

2

p
∑

j=1

{

α[j]2

η[j]
+ η[j]

}

.

160 Optimization Algorithms

Fortunately, this problem is jointly convex in (α,η). The minimization

with respect to η given α can be done in closed form (by taking absolute

values of the components of α); the minimization with respect to α

given η is a weighted least-squares problem, which can be solved by

the solution of a linear system as:

α =
[
D⊤D + λDiag(η)−1]−1

D⊤x.

Note that since the linear system above is ill-conditioned when some

entries of η are very small, it is better to equivalently reformulate it as

α = Diag(η)1/2[Diag(η)1/2D⊤DDiag(η)1/2 + λI
]−1

Diag(η)1/2D⊤x.

This naturally leads to alternating minimization procedures where one

alternates between minimizing with respect to η as above in closed

form, and minimizing with respect to α, which is now easier because the

regularizer has become a quadratic function. With quadratic losses, this

leads to a linear system for which many existing algorithms exist. How-

ever, because the function (α[j],η[j]) 7→ α[j]2/η[j] cannot be extended

to be continuous at (0, 0), alternating minimization does not converge

and it is customary to add a penalty term
∑p

j=1
ε

2η[j] with ε > 0 small,

which leads to an update for η[j] of the form η[j] =
√

|α[j]|2 + ε that

avoids instabilities. See more details in Bach et al. [2012a, Section 5].

Extensions to ℓq-quasi-norms. More generally, for any q ∈ (0, 2), and

‖α‖q =
(∑q

j=1 |α[j]|q)1/q
and r = q/(2 − q), we have [Jenatton et al.,

2010b]:

‖α‖q = inf
η∈R

p
+

1

2

p
∑

j=1

α[j]2

η[j]
+

1

2
‖η‖r,

with the optimal η in R
p
+ obtained as η[j] = |α[j]|2−q‖α‖q−1

q . Note

that similar variational formulations may be obtained for the squared

quasi-norms [Micchelli and Pontil, 2005]. This gives an alternative to

reweighted ℓ1-formulations presented in Section 5.3 for q < 1 (the non-

convex case).

Extensions to group norms. The various formulations above can

be extended to structured sparsity-inducing norms, such as the ones

5.5. Optimization for dictionary learning 161

presented in Section 1.3. For example, for the group-lasso norm in

Eq. (1.20), we have:

∑

g∈G
‖α[g]‖2 = inf

η∈R
p
+

1

2

∑

g∈G

{‖α[g]‖22
η[g]

+ η[g]

}

,

which also leads to a quadratic function of α and to simple algorithms

based on solving linear systems when the loss is quadratic. Note that

these quadratic variational formulations extend to all norms and lead to

multiple kernel learning formulations when used with positive-definite

kernels [see more details in Bach et al., 2012a].

5.5 Optimization for dictionary learning

Finally, we review a few dictionary learning algorithms that lever-

age the optimization algorithms for sparse estimation presented in

the previous sections. We start with the stochastic gradient de-

scent method [see Kushner and Yin, 2003, Bottou and Bousquet, 2008,

and references therein] since it is very close to the original algo-

rithm of Olshausen and Field [1997]. Then, we move to other clas-

sical approaches such as alternate minimization [Engan et al., 1999,

Lee et al., 2007], block coordinate descent, K-SVD [Aharon et al.,

2006], and then present efficient methods based on stochastic approxi-

mations [Mairal et al., 2010a, Skretting and Engan, 2010].

We consider two dictionary learning formulations. For both of them,

the goal is to learn a dictionary D in C, where C is the set of matrices

in R
m×p whose columns are constrained to have less than unit ℓ2-norm.

Then, we use a sparsity-inducing penalty ψ either as a penalty

min
D∈C,A∈Rp×n

1

n

n∑

i=1

1

2
‖xi −Dαi‖22 + λψ(αi), (5.17)

or as a constraint

min
D∈C,A∈Rp×n

1

n

n∑

i=1

1

2
‖xi −Dαi‖22 s.t. ψ(αi) ≤ µ, (5.18)

and X = [x1, . . . ,xn] in R
m×n is the training set of signals. Even though

these problems are non-convex, many algorithms have been developed

162 Optimization Algorithms

with empirical good performance for various tasks, e.g., image denois-

ing. In general, these methods have no other guarantee than providing

a stationary point (in the best case), but they have been used success-

fully in practical contexts, as shown in other parts of this monograph.

Stochastic gradient descent. The first algorithm proposed by

Olshausen and Field [1996, 1997] addresses the formulation (5.17),

where ψ is the ℓ1-norm or a smooth approximate sparsity-inducing

penalty such as ψ(α) =
∑p

j=1 log(α[j]2 + ε). The algorithm can be

described as a heuristic stochastic gradient descent, which alternates

between two stages: (i) gradient steps with a fixed step size computed

on mini-batches of the training set and (ii) rescaling heuristic that pre-

vents the norm of the columns dj to grow out of bounds—thus, taking

implicitly the constraint D ∈ C into account.

A less heuristic but very related procedure is the projected stochas-

tic gradient descent method, which is presented in Algorithm 8. This

approach relies on the following equivalent formulation to (5.17):

min
D∈C

1

n

n∑

i=1

L(xi,D), (5.19)

where

L(xi,D) , min
α∈Rp

1

2
‖xi −Dα‖22 + λ‖α‖1. (5.20)

At each iteration, the algorithm selects one signal ı̂ and performs one

gradient step D← D−ηt∇DL(xı̂,D) with a step size ηt. It can indeed

be shown that the function D→ L(xı̂,D) is differentiable according to

Danskin’s theorem [see Bertsekas, 1999, Proposition B.25] and that its

gradient admits a closed form ∇DL(xı̂,D) = −(xı̂−Dαı̂)α
⊤
ı̂ , where αı̂

is defined in (5.21). Then, the algorithm performs a Euclidean projec-

tion ΠC onto the convex set C, which corresponds to the renormalization

update dj → (1/max(‖dj‖2, 1))dj for all j in {1, . . . , p}. A practical

variant also consists of using mini-batches instead of drawing a single

data point at each iteration. For simplicity, we omit this variant in our

description of Algorithm 8.

The stochastic gradient descent approach is effective [see

Mairal et al., 2010a, for a benchmark], but it raises a few practical

5.5. Optimization for dictionary learning 163

difficulties such as choosing well the step sizes ηt in a data-independent

manner. Classical strategies use for instance step sizes of the form ηt =

η/(t + t0)γ , but finding an appropriate set of hyper-parameters η, t0,

and γ may be challenging in practice.

Algorithm 8 Stochastic gradient descent for (5.17).

Require: Signals X = [x1, . . . ,xn] in R
m×n, initial dictionary D0 in C,

penalty parameter λ, number of iterations T .

1: Initialize D← D0;

2: for t = 1, . . . , T do

3: select one signal xı̂ at random;

4: compute the sparse code:

αı̂ ∈ arg min
α∈Rp

1

2
‖xi −Dα‖22 + λψ(α); (5.21)

5: perform one projected gradient descent step:

D← ΠC
[

D− ηt(Dαı̂ − xi)α
⊤
ı̂

]

;

6: end for

7: return the sparse decomposition α in R
p.

Alternate minimization. The most classical approach for dictionary

learning is the alternate minimization scheme, which consists of opti-

mizing (5.17) or (5.18) by alternating between two minimization steps:

one with respect to D with the sparse codes A fixed, and one with

respect to A with D fixed. In practice, this approach is not as fast as a

well-tuned stochastic gradient descent algorithm, but it is parameter-

free and we subjectively find it very reliable according to our experience

for image processing and computer vision tasks.

Alternate minimization was first proposed by Engan et al. [1999]

for dealing with the ℓ0-penalty with the method of optimal direc-

tions (MOD), and was revisited later by Lee et al. [2007] with the ℓ1-

regularization. We present the MOD approach in Algorithm 9 and

its ℓ1-counterpart in Algorithm 10. As we shall see, they slightly differ in

164 Optimization Algorithms

the dictionary update step, which can be simplified for the ℓ0-penalty.

The sparse codes αi for MOD are obtained with any algorithm for

dealing approximately with ℓ0, e.g., any technique from Section 5.1.

Since all the vectors αi can be computed in parallel, it is worth men-

tioning that this sparse decomposition step can benefit from an efficient

implementation of OMP including the heuristics of Section 5.1, notably

those consisting of pre-computing D⊤D before updating all the αi’s in

parallel. For dealing with ℓ1, the homotopy method can be used simi-

larly, with the same heuristics that apply to OMP.

Algorithm 9 Method of optimal directions for ψ = ℓ0.

Require: Signals X = [x1, . . . ,xn] in R
m×n, initial dictionary D0 in C,

regularization parameter µ, number of iterations T .

1: Initialize D← D0;

2: for t = 1, . . . , T do

3: compute the sparse codes, e.g., with OMP:

4: for i = 1, . . . , n do

5:

αi ≈ arg min
α∈Rp

[
1

2
‖xi −Dα‖22 s.t. ‖α‖0 ≤ µ

]

;

6: end for

7: update the dictionary D:

D← ΠC [XA⊤(AA⊤)−1]; (5.22)

8: end for

9: return the dictionary D in C.

Moving on now to the dictionary update step, we remark that (5.22)

and (5.23) are not the same and are not equivalent to each other,

even though, at first sight, the optimization problem with respect to D

when A is fixed seems to be independent of the regularization ψ. The

MOD update indeed minimizes the least-square function (5.23) by dis-

carding the constraint D in C, yielding a solution XA⊤(AA⊤)−1 (as-

suming AA⊤ to be invertible), before projecting it onto the constraint

set C. In constrained optimization [see Bertsekas, 1999], it is usually not

5.5. Optimization for dictionary learning 165

Algorithm 10 Alternate minimization for ψ = ℓ1.

Require: Signals X = [x1, . . . ,xn] in R
m×n, initial dictionary D0 in C,

regularization parameter λ or µ, number of iterations T .

1: Initialize D← D0;

2: for t = 1, . . . , T do

3: compute the sparse codes, e.g., with the homotopy method:

4: for i = 1, . . . , n do

5: update αi by solving (5.8) with x = xi if λ is provided,

or (5.10) if µ is provided.

6: end for

7: update the dictionary D:

D ∈ arg min
D∈C

1

n

n∑

i=1

1

2
‖xi −Dαi‖22; (5.23)

8: end for

9: return the dictionary D in C.

appropriate to discard a constraint, solve the resulting unconstrained

formulation, before projecting back the solution onto the constraint

set. In general, such a procedure can be indeed arbitrarily bad regard-

ing the original constrained problem. In the context of ℓ0-regularized

dictionary learning, however, such an approach does fortunately make

sense. The objective function (5.18) when ψ = ℓ0 is indeed invariant to

a rescaling operation consisting of multiplying each column of dj by a

scalar γj and the corresponding j-th row of A by (1/γj). As a conse-

quence, the minimum value of the objective function is independent of

the scale of the columns of D; thus the constraint D ∈ C can always

be safely ignored and the normalization D← ΠC [D] can be applied at

any moment without changing the quality of the dictionary.

In the case of ℓ1, the objective function is not invariant to the previ-

ous rescaling operation and the MOD update for the dictionary should

not be used anymore. Instead, the objective function (5.23) needs to be

minimized with another approach. Since it is convex, Lee et al. [2007]

propose to use a Newton method in the dual of (5.23), which requires

166 Optimization Algorithms

solving p×p linear systems at every Newton iteration. Another easy-to-

implement choice is the block coordinate descent update of Mairal et al.

[2010a], which we present in Algorithm 11. Each step of the block co-

ordinate descent approach is guaranteed to decrease the value of the

objective function, while keeping D in the constraint set C, and ulti-

mately solve (5.23) since the problem is convex [see Bertsekas, 1999,

for convergence results of block coordinate descent methods]. In prac-

tice, (5.23) does not need to be solved exactly and performing a few

passes, say 10, over the columns of D seems to perform well in practice.

The update (5.24) can be justified as follows. Minimizing (5.23)

with respect to one column dj when keeping the other columns fixed

can be formulated as

dj ← arg min
d∈Rm,‖d‖2≤1

n∑

i=1

1

2

∥
∥
∥
∥
∥
∥

xi −
∑

l 6=j

αi[l]dl −αi[j]d

∥
∥
∥
∥
∥
∥

2

2

 .

Then, this formulation can be rewritten in a matrix form

dj ← arg min
d∈Rm,‖d‖2≤1

[
1

2

∥
∥
∥X−DA + djαj − dαj

∥
∥
∥

2

F

]

,

where dj on the right side is the value of the variable dj before the up-

date, and αj in R
1×n is the j-th row of the matrix A. After expanding

the Frobenius norm and removing the constant term, we obtain

dj ← arg min
d∈Rm,‖d‖2≤1

[

−d⊤(X−DA + djαj)αj⊤ +
1

2

∥
∥
∥dαj

∥
∥
∥

2

F

]

= arg min
d∈Rm,‖d‖2≤1

[

−d⊤(bj −Dcj + djC[j, j]) +
1

2
‖d‖22 C[j, j]

]

= arg min
d∈Rm,‖d‖2≤1

[

1

2

∥
∥
∥
∥

1

C[j, j]
(bj −Dcj) + dj − d

∥
∥
∥
∥

2

2

]

,

where the quantities B = [b1, . . . ,bp] in R
m×p and C = [c1, . . . , cp]

in R
p×p are defined in Algorithm 11. Finally, we see from the last equa-

tion that updating dj amounts to performing one orthogonal projection

of the vector (1/C[j, j])(bj −Dcj) + dj onto the unit Euclidean ball,

leading to the update (5.24).

5.5. Optimization for dictionary learning 167

Algorithm 11 Dictionary update with block coordinate descent.

Require: D0 ∈ C (input dictionary); X ∈ R
m×n (dataset); A ∈ R

p×n

(sparse codes);

1: Initialization: D← D0; B← XA⊤; C← AA⊤;

2: repeat

3: for j = 1, . . . , p do

4: update the j-th column to optimize for (5.23):

dj ←
1

C[j, j]
(bj −Dcj) + dj ,

dj ←
1

max(‖dj‖2, 1)
dj .

(5.24)

5: end for

6: until convergence;

7: return D (updated dictionary).

Block coordinate descent. We have presented in the previous para-

graph the alternate minimization method where the dictionary is up-

dated via block coordinate descent. We have also introduced in Sec-

tion 5.2 a coordinate descent algorithm for dealing with ℓ1-penalized

problems. It is then natural to combine the two approaches into a block

coordinate descent dictionary learning method for (5.17) with ψ = ℓ1.

We present it in Algorithm 12, where Sλ is the soft-thresholding op-

erator applied element-wise to a vector. The main asset of the block-

coordinate descent approach is its simplicity, and ease of implementa-

tion. In practice, it can also be very effective.

K-SVD. For ℓ0-regularized dictionary learning problems, one of the

most popular approach is the K-SVD algorithm of Aharon et al.

[2006]. The algorithm is related to the alternate minimization strat-

egy MOD [Engan et al., 1999], but the dictionary update step updates

the non-zero coefficients of the matrix A at the same time. The full

approach is detailed in Algorithm 13. The sparse encoding approach

is the same as in MOD, but the dictionary elements are updated in a

block coordinate fashion, one at a time.

168 Optimization Algorithms

Algorithm 12 Block coordinate descent for (5.17) with ψ = ℓ1.

Require: Signals X = [x1, . . . ,xn] in R
m×n, initial dictionary D0 in C,

initial sparse coefficients A0 in R
p×n (possibly equal to zero), reg-

ularization parameter λ, number of iterations T .

1: Initialize D← D0; A← A0;

2: for t = 1, . . . , T do

3: update the sparse codes, one row of A at a time; perform at least

one pass (possibly several) of the following iterations:

4: for j = 1, . . . , p do

5:

αj ← Sλ

(

αj +
1

‖dj‖22
d⊤

j (X−DA)

)

; (5.25)

6: end for

7: update the dictionary D: perform one pass or more of the inner

loop of Algorithm 11.

8: end for

9: return the dictionary D in C.

More precisely, when updating the column dj , the algorithm finds

the subset of signals Ω that use dj in their current sparse decompo-

sition. Then, the non-zero coefficients of the j-th row of A, denoted

by α
j
Ω, are updated at the same time as dj in (5.26). Such an update is

in fact equivalent to performing a rank-one singular value decomposi-

tion, which has inspired the name of the algorithm. A typical technique

for solving (5.26) is the power method [see Golub and Van Loan, 2012],

which alternates between the optimization of d with β fixed, and of β

with d fixed.

Online dictionary learning. Finally, we describe the online dictionary

learning method of Mairal et al. [2010a], which we have used in the

experiments of this monograph. The approach is based on stochastic

approximations, where the goal is to minimize the expectation

min
D∈C

Ex[L(x,D)], (5.27)

5.5. Optimization for dictionary learning 169

Algorithm 13 K-SVD for (5.18) with ψ = ℓ0.

Require: Signals X = [x1, . . . ,xn] in R
m×n, initial dictionary D0 in C,

regularization parameter µ, number of iterations T .

1: Initialize D← D0;

2: for t = 1, . . . , T do

3: compute the sparse codes, e.g., with OMP:

4: for i = 1, . . . , n do

5:

αi ≈ arg min
α∈Rp

1

2
‖xi −Dα‖22 s.t. ‖α‖0 ≤ µ;

6: end for

7: update the dictionary D:

8: for j = 1, . . . , p do

9: define the set Ω , {i ∈ {1, . . . , n} : αi[j] 6= 0};
10: update dj and the non-zero coefficients of αj :

(dj ,α
j
Ω) ∈ arg min

d∈Rm,‖d‖2≤1

β∈R|Ω|

∥
∥
∥
∥
∥
∥

XΩ −
∑

l 6=j

dlα
l
Ω − dβ⊤

∥
∥
∥
∥
∥
∥

2

F

; (5.26)

11: end for

12: end for

13: return the dictionary D in C.

170 Optimization Algorithms

where L is defined in (5.20), and the expectation is taken with respect

to the unknown probability distribution of the data x. With a discrete

probability distribution with a finite sample, (5.27) simply amounts

to (5.19).

In a nutshell, the algorithm works by using a stochastic version

of the majorization-minimization principle [Mairal, 2013]. It sequen-

tially builds a quadratic surrogate of the expected cost (5.27), which is

minimized at every iteration. It can be shown that the quality of ap-

proximation of the surrogate near the current estimate improves during

the algorithm iterates, and that the approach provides asymptotically

a stationary point of (5.27). The basic procedure is summarized in Al-

gorithm 14 and some variants that significantly improves its practical

efficiency are presented in [Mairal et al., 2010a].

Assuming that the training set is composed of i.i.d. samples of a

data distribution, the inner loop draws one element xt at a time, as in

the stochastic gradient descent algorithm, and alternates between clas-

sical sparse coding steps for computing the decomposition vector αt

of xt over the current dictionary Dt−1, and dictionary update steps.

The new dictionary Dt is computed by minimizing over C the quadratic

surrogate (5.28) where the vectors αi for i < t have been computed

during the previous steps of the algorithm. The motivation of the ap-

proach is based on two ideas:

• the quadratic surrogate aggregates the past information with a

few sufficient statistics, namely the matrices B and C. One key

component of the convergence analysis shows that the difference

between the quadratic surrogate and the objective function at the

current estimate converges to zero almost surely.

• with warm restart, the dictionary update is very efficient. In prac-

tice, one pass over the dictionary elements seems to perform em-

pirically well.

Variants to improve the efficiency of the online dictionary learning al-

gorithm include: (i) the use of mini-batches instead of drawing a single

point at every iteration, (ii) rescaling the past data by updating the

matrices B ← γtB + xtα
⊤
t , with a sequence of parameters γt that

5.5. Optimization for dictionary learning 171

converges to one. The implementation of the SPAMS software con-

tains such variants, which have proven to be important in practice [see

Mairal et al., 2010a, for additional discussions].

Algorithm 14 Online dictionary learning for (5.17 with ψ = ℓ1.

Require: i.i.d signals x1,x2, . . . ∈ R
m, regularization parameter λ,

initial dictionary D0 ∈ C, number of iterations T .

1: Initialization: B ∈ R
m×p ← 0, C ∈ R

p×p ← 0, D← D0;

2: for t = 1, . . . , T do

3: draw xt and sparsely encode it using homotopy:

αt ∈ arg min
α∈Rp

1

2
‖xt −Dα‖22 + λ‖α‖1;

4: B← B + xtα
⊤
t ;

5: C← C + αtα
⊤
t ;

6: update D using Algorithm 11 (without recomputing the matri-

ces B and C) such that

D ← arg min
D∈C

1

t

t∑

i=1

(1

2
‖xi −Dαi‖22 + λ‖αi‖1

)

,

= arg min
D∈C

1

t

(1

2
trace(D⊤DC)− trace(D⊤B)

)

; (5.28)

7: end for

8: return learned dictionary D in C.

Note that along the same lines, a similar algorithm called “recur-

sive least square dictionary learning” was independently developed by

Skretting and Engan [2010] focusing on the ℓ0-penalty.

Other extensions. Because the literature on dictionary learning algo-

rithms is vast, we have presented a few ones that address the formu-

lations (5.17) or (5.18). Extending these approaches to other settings,

such as other loss functions than the square loss, or other regulariza-

tion functions, is easy in general by replacing the sparse encoding and

dictionary update steps by ad hoc optimization techniques.

172 Optimization Algorithms

5.6 Other optimization techniques

For simplicity, we have focused on sparse estimation problems involv-

ing least-square cost functions, and have left aside structured sparsity

penalties such as the group Lasso. Some of the methods we have de-

scribed can be easily extended to these settings, in particular the prox-

imal gradient and coordinate descent algorithms are relatively flexible.

We leave these extensions to more exhaustive reviews [see Bach et al.,

2012a, for instance].

Other classes of algorithms are also popular for solving con-

vex sparse estimation problems. For example, proximal splitting

techniques [Combettes and Pesquet, 2011, Chambolle and Pock, 2011,

Condat, 2013, Raguet et al., 2013], such as the alternating direction

method of multipliers [see Boyd et al., 2011], are often used in signal

processing. These methods are very flexible, simple to implement, and

can be applied to a large range of problems. However, they require

tuning (at least) one parameter to obtain fast convergence in practice,

which, to the best of our knowledge, cannot be done automatically.

In the context of machine learning, stochastic optimization techniques

have also been developed [e.g. Duchi et al., 2011, Xiao, 2010]. These

methods are adapted to large-scale problems; even though, they may

seem simple at first sight, they require a careful choice of a step size

parameter and thus remain a bit difficult to use.

Finally, we have also omitted quasi-Newton methods such as vari-

ants of L-BFGS [Schmidt et al., 2011], which can exploit the curvature

of the objective function to achieve fast convergence.

6

Conclusions

In this monograph, we have reviewed a large number of applications of

dictionary learning in image processing and computer vision and pre-

sented basic sparse estimation tools. We started with a historical tour

of sparse estimation in signal processing and statistics, before moving

to more recent concepts such as sparse recovery and dictionary learn-

ing. Subsequently, we have shown that dictionary learning is related to

matrix factorization techniques, and that it is particularly effective for

modeling natural image patches. As a consequence, it has been used

for tackling several image processing problems and is a key component

of many state-of-the-art methods in visual recognition. We have con-

cluded the monograph with a presentation of optimization techniques

that should make dictionary learning easy to use for researchers that

are not experts of the field.

With efficient software available, it is remarkable to see that the

interest for dictionary learning and sparse estimation is still acute to-

day, and seems to increase in other scientific communities than image

processing or computer vision. In particular, new applications of sparse

matrix factorization are found in neuroscience [Varoquaux et al., 2011],

bioinformatics for processing gene expression data [see Barillot et al.,

173

174 Conclusions

2012, Section 5.4], audio processing [Baby et al., 2014], and in astro-

physics [Vinci et al., 2014]. We have also put the emphasis on natural

images, and we have omitted the application of dictionary learning to

other domains, such as hyperspectral data, where significant success

have been obtained [Charles et al., 2011, Xing et al., 2012], or to dis-

parity maps for stereo imaging [Tosic et al., 2011].

Exploring the possible use of dictionary learning in these fields

would be of great interest and high importance, but unfortunately this

goal falls beyond the scope of this monograph.

Acknowledgements

This monograph was partially supported by the European Research

Council (SIERRA and VideoWorld projects), the project Gargantua

funded by the program Mastodons-CNRS, the Microsoft Research-

Inria joint centre, and a French grant from the Agence Nationale de la

Recherche (MACARON project, ANR-14-CE23-0003-01).

The authors would like to thank Ori Bryt and Michael Elad for pro-

viding the output of their face compression algorithm (see Figure 3.9).

Julien Mairal would also like to thank Zaid Harchaoui, Florent Per-

ronnin and Adrien Gaidon for useful discussions leading to improve-

ments of this monograph.

175

References

J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert. A new approach to collab-
orative filtering: operator estimation with spectral regularization. Journal
of Machine Learning Research, 10:803–826, 2009.

A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli, and R. Tandon. Learn-
ing sparsely used overcomplete dictionaries via alternating minimization.
preprint arXiv:1310.7991, 2013.

M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing
overcomplete dictionaries for sparse representation. IEEE Transactions on
Signal Processing, 54(11):4311–4322, 2006.

N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. IEEE
Transactions on Computers, 100(1):90–93, 1974.

H. Akaike. Information theory and an extension of the maximum likelihood
principle. In Second International Symposium on Information Theory, vol-
ume 1, pages 267–281, 1973.

S. Arora, R. Ge, and A. Moitra. New algorithms for learning incoherent
and overcomplete dictionaries. In Proceedings of the Annual Conference on
Computational Learning Theory, 2014.

S. P. Awate and R. T. Whitaker. Unsupervised, information-theoretic, adap-
tive image filtering for image restoration. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(3):364–376, 2006.

176

References 177

D. Baby, T. Virtanen, T. Barker, and H. Van hamme. Coupled dictio-
nary training for exemplar-based speech enhancement. In Proceedings of
the International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2014.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with
sparsity-inducing penalties. Foundation and Trends in Machine Learning,
4:1–106, 2012a.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Structured sparsity
through convex optimization. Statistical Science, 27(4):450–468, 2012b.

S. Bakin. Adaptive regression and model selection in data mining problems.
PhD thesis, 1999.

R. G. Baraniuk, V. Cevher, M. Duarte, and C. Hegde. Model-based compres-
sive sensing. IEEE Transactions on Information Theory, 56(4):1982–2001,
2010.

E. Barillot, L. Calzone, P. Hupe, J.-P. Vert, and A. Zinovyev. Computational
systems biology of cancer. CRC Press, 2012.

A. Barron, J. Rissanen, and B. Yu. The minimum description length principle
in coding and modeling. IEEE Transactions on Information Theory, 44(6):
2743–2760, 1998.

M. J. Bayarri and J. O Berger. The interplay of bayesian and frequentist
analysis. Statistical Science, 19(1):58–80, 2004.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202,
2009.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction
and data representation. Neural computation, 15(6):1373–1396, 2003.

M. Belkin and P. Niyogi. Semi-supervised learning on Riemannian manifolds.
Machine learning, 56(1-3):209–239, 2004.

A. J. Bell and T. J. Sejnowski. An information-maximization approach to
blind separation and blind deconvolution. Neural computation, 7(6):1129–
1159, 1995.

A. J. Bell and T. J. Sejnowski. The “independent components” of natural
scenes are edge filters. Vision Research, 37(23):3327–3338, 1997.

Y. Bengio. Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2(1):1–127, 2009.

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In
Proceedings of the ACM SIGGRAPH Conference, 2000.

178 References

D. P. Bertsekas. Nonlinear programming. Athena Scientific, 1999. 2nd edition.

P. J. Bickel. Parametric robustness: small biases can be worthwhile. The
Annals of Statistics, 12(4):864–879, 1984.

C. M. Bishop. Pattern recognition and machine learning. Springer, 2006.

T. Blumensath and M. E. Davies. Iterative hard thresholding for compressed
sensing. Applied and Computational Harmonic Analysis, 27(3):265–274,
2009.

L. Bo, X. Ren, and D. Fox. Hierarchical matching pursuit for image classifica-
tion: Architecture and fast algorithms. In Advances in Neural Information
Processing Systems (NIPS), 2011.

L. Bo, X. Ren, and D. Fox. Multipath sparse coding using hierarchical match-
ing pursuit. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2013.

J.M. Borwein and A.S. Lewis. Convex analysis and nonlinear optimization:
theory and examples. Springer, 2006.

T. Bossomaier and A. W. Snyder. Why spatial frequency processing in the
visual cortex? Vision Research, 26(8):1307–1309, 1986.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances
in Neural Information Processing Systems (NIPS), 2008.

Y-L. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-level features
for recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2010.

Y-L. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun. Ask the lo-
cals: Multi-way local pooling for image recognition. In Proceedings of the
International Conference on Computer Vision (ICCV), 2011.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multi-
pliers. Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

D. M. Bradley and J. A. Bagnell. Differential sparse coding. In Advances in
Neural Information Processing Systems (NIPS), 2008.

P. Brucker. An O(n) algorithm for quadratic knapsack problems. Operations
Research Letters, 3(3):163–166, 1984.

References 179

J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(8):1872–
1886, 2013.

O. Bryt and M. Elad. Compression of facial images using the K-SVD algo-
rithm. Journal of Visual Communication and Image Representation, 19(4):
270–282, 2008.

A. Buades, B. Coll, and J.-M. Morel. A review of image denoising algorithms,
with a new one. SIAM Journal on Multiscale Modeling and Simulation, 4
(2):490–530, 2005.

A. Buades, B. Coll, J.-M. Morel, and C. Sbert. Self-similarity driven color
demosaicking. IEEE Transactions on Image Processing, 18(6):1192–1202,
2009.

P. Bühlmann and S. Van De Geer. Statistics for high-dimensional data: meth-
ods, theory and applications. Springer, 2011.

F. Bunea, A. B. Tsybakov, and M. H. Wegkamp. Aggregation for Gaussian
regression. The Annals of Statistics, 35(4):1674–1697, 2007.

T. T. Cai. Adaptive wavelet estimation: a block thresholding and oracle
inequality approach. Annals of Statistics, 27(3):898–924, 1999.

E. J. Candès and D. L. Donoho. Recovering edges in ill-posed inverse prob-
lems: Optimality of curvelet frames. Annals of Statistics, 30(3):784–842,
2002.

E. J. Candes and T. Tao. Decoding by linear programming. IEEE Transac-
tions on Information Theory, 51(12):4203–4215, 2005.

E. J. Candès and M. B. Wakin. An introduction to compressive sampling.
IEEE Signal Processing Magazine, 25(2):21–30, 2008.

E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information. IEEE
Transactions on Information Theory, 52(2):489–509, 2006.

E.J. Candès, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted ℓ1

minimization. Journal of Fourier Analysis and Applications, 14(5):877–905,
2008.

M. Carandini, J. B. Demb, V. Mante, D. J. Tolhurst, Y. Dan, B. A. Olshausen,
J. L. Gallant, and N. C. Rust. Do we know what the early visual system
does? The Journal of Neuroscience, 25(46):10577–10597, 2005.

J.-F. Cardoso. Dependence, correlation and Gaussianity in independent com-
ponent analysis. Journal of Machine Learning Research, 4:1177–1203, 2003.

180 References

A. Castrodad and G. Sapiro. Sparse modeling of human actions from motion
imagery. International Journal of Computer Vision, 100(1):1–15, 2012.

A. Chambolle. Total variation minimization and a class of binary MRF mod-
els. In Proceedings of the 5th International Workshop on Energy Minimiza-
tion Methods in Computer Vision and Pattern Recognition, 2005.

A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. Journal of Mathematical Imaging
and Vision, 40(1):120–145, 2011.

S. G. Chang, B. Yu, and M. Vetterli. Spatially adaptive wavelet thresholding
with context modeling for image denoising. IEEE Transactions on Image
Processing, 9(9):1522–1531, 2000a.

S. G. Chang, B. Yu, and M. Vetterli. Adaptive wavelet thresholding for image
denoising and compression. IEEE Transactions on Image Processing, 9(9):
1532–1546, 2000b.

A. S. Charles, B. A. Olshausen, and C. J. Rozell. Learning sparse codes for hy-
perspectral imagery. IEEE Journal of Selected Topics in Signal Processing,
5(5):963–978, 2011.

P. Chatterjee and P. Milanfar. Patch-based near-optimal image denoising.
IEEE Transactions on Image Processing, 21(4):1635–1649, 2012.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by
basis pursuit. SIAM Journal on Scientific Computing, 20:33–61, 1999.

Y. Chen, J. Mairal, and Z. Harchaoui. Fast and robust archetypal analysis
for representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014.

E. C. Chi, H. Zhou, G. K. Chen, D. O. Del Vecchyo, and K. Lange. Genotype
imputation via matrix completion. Genome research, 23(3):509–518, 2013.

J. F. Claerbout and F. Muir. Robust modeling with erratic data. Geophysics,
38(5):826–844, 1973.

A. Coates, A. Y. Ng, and H. Lee. An analysis of single-layer networks in
unsupervised feature learning. In International Conference on Artificial
Intelligence and Statistics, 2011.

R. R. Coifman and D. L. Donoho. Translation-invariant de-noising. In Lecture
Notes in Statistics, volume 103, pages 125–150. 1995.

P. L. Combettes and J.-C. Pesquet. Fixed-Point Algorithms for Inverse Prob-
lems in Science and Engineering, chapter Proximal Splitting Methods in
Signal Processing. Springer, 2011.

References 181

L. Condat. A primal–dual splitting method for convex optimization involving
Lipschitzian, proximable and linear composite terms. Journal of Optimiza-
tion Theory and Applications, 158(2):460–479, 2013.

S. F. Cotter, J. Adler, B. Rao, and K. Kreutz-Delgado. Forward sequential
algorithms for best basis selection. In IEEE Proceedings of Vision Image
and Signal Processing, pages 235–244, 1999.

F. Couzinie-Devy, J. Mairal, F. Bach, and J. Ponce. Dictionary learning for
deblurring and digital zoom. preprint arXiv:1110.0957, 2011.

T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley
and Sons, 2006. 2nd edition.

A. Criminisi, P. Pérez, and K. Toyama. Region filling and object removal by
exemplar-based image inpainting. IEEE Transactions on Image Processing,
13(9):1200–1212, 2004.

M. S. Crouse, R. D. Nowak, and R. G. Baraniuk. Wavelet-based statisti-
cal signal processing using hidden Markov models. IEEE Transactions on
Signal Processing, 46(4):886–902, 1998.

G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categoriza-
tion with bags of keypoints. In Proceedings of the workshop on statistical
learning in computer vision, ECCV, 2004.

A. Cutler and L. Breiman. Archetypal analysis. Technometrics, 36(4):338–
347, 1994.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by
sparse 3D transform-domain collaborative filtering. IEEE Transactions on
Image Processing, 16(8):2080–2095, 2007a.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Color image denoising
via sparse 3D collaborative filtering with grouping constraint in luminance-
chrominance space. In IEEE International Conference on Image Processing
(ICIP), 2007b.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. BM3D image denoising
with shape-adaptive principal component analysis. In SPARS’09-Signal
Processing with Adaptive Sparse Structured Representations, 2009.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2005.

A. d’Aspremont and L. El Ghaoui. Testing the nullspace property using
semidefinite programming. Mathematical Programming, 127(1):123–144,
2011.

182 References

I. Daubechies. Orthonormal bases of compactly supported wavelets. Commu-
nications on pure and applied mathematics, 41(7):909–996, 1988.

I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications on
Pure and Applied Mathematics, 57(11):1413–1457, 2004.

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk. Iteratively
reweighted least squares minimization for sparse recovery. Communica-
tions on Pure and Applied Mathematics, 63(1):1–38, 2010.

J. G. Daugman. Uncertainty relation for resolution in space, spatial frequency,
and orientation optimized by two-dimensional visual cortical filters. Journal
of the Optical Society of America A, 2(7):1160–1169, 1985.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society Series B, 39(1):1–38, 1977.

M. N. Do and M. Vetterli. The contourlet transform: an efficient directional
multiresolution image representation. IEEE Transactions on Image Pro-
cessing, 14(12):2091–2106, 2005.

W. Dong, L. Zhang, and G. Shi. Centralized sparse representation for image
restoration. In Proceedings of the International Conference on Computer
Vision (ICCV), 2011a.

W. Dong, L. Zhang, G. Shi, and X. Wu. Image deblurring and super-resolution
by adaptive sparse domain selection and adaptive regularization. IEEE
Transactions on Image Processing, 20(7):1838–1857, 2011b.

W. Dong, L. Zhang, G. Shi, and X. Li. Nonlocally centralized sparse repre-
sentation for image restoration. IEEE Transactions on Image Processing,
22(4):1620–1630, 2013.

D. L. Donoho. Wedgelets: Nearly minimax estimation of edges. Annals of
Statistics, 27(3):859–897, 1999.

D. L. Donoho. Compressed sensing. IEEE Transactions on Information The-
ory, 52(4):1289–1306, 2006.

D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via
wavelet shrinkage. Journal of the American Statistical Association, 90(432):
1200–1224, 1995.

D. L. Donoho and J. M. Johnstone. Ideal spatial adaptation by wavelet
shrinkage. Biometrika, 81(3):425–455, 1994.

References 183

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections
onto the l1-ball for learning in high dimensions. In Proceedings of the
International Conference on Machine Learning (ICML), 2008.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for on-
line learning and stochastic optimization. Journal of Machine Learning
Research, 12:2121–2159, 2011.

C. Eckart and G. Young. The approximation of one matrix by another of
lower rank. Psychometrika, 1(3):211–218, 1936.

B. Efron and C. Morris. Limiting the risk of Bayes and empirical Bayes
estimators — part I: the Bayes case. Journal of the American Statistical
Association, 66(336):807–815, 1971.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression.
Annals of Statistics, 32(2):407–499, 2004.

A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sam-
pling. In Proceedings of the International Conference on Computer Vision
(ICCV), 1999.

M. A. Efroymson. Multiple regression analysis. Mathematical methods for
digital computers, 9(1):191–203, 1960.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis
and display of genome-wide expression patterns. Proceedings of the National
Academy of Sciences of the United States of America, 95(25):14863–14868,
1998.

M. Elad. Sparse and redundant representations: from theory to applications
in signal and image processing. Springer, 2010.

M. Elad and M. Aharon. Image denoising via sparse and redundant represen-
tations over learned dictionaries. IEEE Transactions on Image Processing,
15(12):3736–3745, 2006.

M. Elad and A. M. Bruckstein. A generalized uncertainty principle and sparse
representation in pairs of bases. IEEE Transactions on Information Theory,
48(9):2558–2567, 2002.

E. Elhamifar and R. Vidal. Sparse subspace clustering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2009.

E. Elhamifar, G. Sapiro, and R. Vidal. See all by looking at a few: Sparse
modeling for finding representative objects. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

184 References

K. Engan, S. O. Aase, and J. H. Husoy. Method of optimal directions for
frame design. In Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 1999.

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and
its oracle properties. Journal of the American Statistical Association, 96
(456):1348–1360, 2001.

O. D. Faugeras. Digital color image processing within the framework of a
human visual model. IEEE Transactions on Acoustics, Speech and Signal
Processing, 27(4):380–393, 1979.

M. Fazel. Matrix rank minimization with applications. PhD thesis, Stanford
University, 2002.

M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with ap-
plication to minimum order system approximation. In American Control
Conference, volume 6, pages 4734–4739, 2001.

M. Fazel, H. Hindi, and S. P. Boyd. Log-det heuristic for matrix rank mini-
mization with applications to Hankel and Euclidean distance matrices. In
Proceedings of the American Control Conference, volume 3, pages 2156–
2162, 2003.

C. Févotte, N. Bertin, and J.-L. Durrieu. Nonnegative matrix factorization
with the Itakura-Saito divergence: with application to music analysis. Neu-
ral Computation, 21(3):793–830, 2009.

D. J. Field. Relations between the statistics of natural images and the response
properties of cortical cells. Journal of the Optical Society of America A, 4
(12):2379–2394, 1987.

M. A. T. Figueiredo and R. D. Nowak. An EM algorithm for wavelet-based
image restoration. IEEE Transactions on Image Processing, 12(8):906–916,
2003.

M. A. T. Figueiredo and R. D. Nowak. A bound optimization approach to
wavelet-based image deconvolution. In Proceedings of the International
Conference on Image Processing (ICIP), 2005.

M. A. T. Figueiredo, J. M. Bioucas-Dias, and R. D. Nowak. Majorization-
minimization algorithms for wavelet-based image restoration. IEEE Trans-
actions on Image Processing, 16(12):2980–2991, 2007.

R. W. Floyd and L. Steinberg. An adaptive algorithm for spatial grey scale. In
Proceedings of the Society of Information Display, volume 17, pages 75–77,
1976.

D. A. Forsyth and J. Ponce. Computer vision: a modern approach. Prentice
Hall, 2012. 2nd edition.

References 185

I. E Frank and J. H. Friedman. A statistical view of some chemometrics
regression tools. Technometrics, 35(2):109–135, 1993.

W. T. Freeman and E. H. Adelson. The design and use of steerable filters.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9):
891–906, 1991.

W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-based super-
resolution. IEEE Computer Graphics and Applications, 22(2):56–65, 2002.

J. H. Friedman and W. Stuetzle. Projection pursuit regression. Journal of
the American Statistical Association, 76(376):817–823, 1981.

W.J. Fu. Penalized regressions: the bridge versus the lasso. Journal of Com-
putational and Graphical Statistics, 7(3):397–416, 1998.

J. J. Fuchs. Recovery of exact sparse representations in the presence of
bounded noise. IEEE Transactions on Image Processing, 51(10):3601–3608,
2005.

G. M. Furnival and R. W. Wilson. Regressions by leaps and bounds. Tech-
nometrics, 16(4):499–511, 1974.

D. Gabor. Theory of communication. Journal of the Institution of Electrical
Engineers, 93(26):429–441, 1946.

S. Gao, I. W.-H. Tsang, L.-T. Chia, and P. Zhao. Local features are not lonely–
Laplacian sparse coding for image classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2010.

S. Gao, W.-H Tsang, and L.-T. Chia. Laplacian sparse coding, hypergraph
Laplacian sparse coding, and applications. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(1):92–104, 2013.

P. Garrigues and B. A. Olshausen. Group sparse coding with a Laplacian
scale mixture prior. In Advances in Neural Information Processing Systems
(NIPS), 2010.

G. Gasso, A. Rakotomamonjy, and S. Canu. Recovering sparse signals with
non-convex penalties and DC programming. IEEE Transactions on Signal
Processing, 57(12):4686–4698, 2009.

Q. Geng, H. Wang, and J. Wright. On the local correctness of ℓ1-minimization
for dictionary learning. preprint arXiv:1101.5672, 2011.

A. Gersho and R. M. Gray. Vector quantization and signal compression.
Kluwer Academic Publishers, 1992.

M. Gharavi-Alkhansari and T. S. Huang. A fast orthogonal matching pursuit
algorithm. In Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 1998.

186 References

R. Giryes and M. Elad. Sparsity based Poisson denoising with dictionary
learning. IEEE Transactions on Image Processing, 2014. to appear.

D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In
Proceedings of the International Conference on Computer Vision (ICCV),
2009.

G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. Johns
Hopkins University Press, 2012. 4th edition.

Y. Grandvalet and S. Canu. Outcomes of the equivalence of adaptive ridge
with least absolute shrinkage. In Advances in Neural Information Process-
ing Systems (NIPS), 1999.

H. Grassmann. LXXXVII. On the theory of compound colours. Philosophical
Magazine Series 4, 7(45):254–264, 1854.

K. Grauman and T. Darrell. The pyramid match kernel: Discriminative clas-
sification with sets of image features. In Proceedings of the International
Conference on Computer Vision (ICCV), 2005.

E. Greenshtein. Best subset selection, persistence in high-dimensional statisti-
cal learning and optimization under ℓ1 constraint. The Annals of Statistics,
34(5):2367–2386, 2006.

K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In
Proceedings of the International Conference on Machine Learning (ICML),
2010.

K. Gregor, A. Szlam, and Y. LeCun. Structured sparse coding via lateral
inhibition. In Advances in Neural Information Processing Systems (NIPS),
2011.

R. Gribonval and M. Nielsen. Sparse representations in unions of bases. IEEE
Transactions on Information Theory, 49(12):3320–3325, 2003.

R. Gribonval and K. Schnass. Dictionary identification–sparse matrix-
factorization via ℓ1-minimization. IEEE Transactions on Information The-
ory, 56(7):3523–3539, 2010.

R. Gribonval, V. Cevher, and M. E. Davies. Compressible distributions for
high-dimensional statistics. IEEE Transactions on Information Theory, 58
(8):5016–5034, 2012.

R. Gribonval, R. Jenatton, F. Bach, M. Kleinsteuber, and M. Seibert. Sample
complexity of dictionary learning and other matrix factorizations. preprint
arXiv:1312.3790, 2013.

R. Gribonval, R. Jenatton, and F. Bach. Sparse and spurious: dictionary
learning with noise and outliers. preprint arXiv:1407.5155, 2014.

References 187

T. Guha and R. K. Ward. Learning sparse representations for human action
recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 34(8):1576–1588, 2012.

A. Haar. Zur theorie der orthogonalen funktionensysteme. Mathematische
Annalen, 69(3):331–371, 1910.

P. Hall, G. Kerkyacharian, and D. Picard. On the minimax optimality of
block thresholded wavelet estimators. Statistica Sinica, 9(1):33–49, 1999.

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning.
Springer, 2009. 2nd edition.

S. Hawe, M. Seibert, and M. Kleinsteuber. Separable dictionary learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2013.

J. Hérault, C. Jutten, and B. Ans. Détection de grandeurs primitives dans
un message composite par une architecture de calcul neuromimétique en
apprentissage non supervisé. In Actes du Xème Colloque GRETSI, 1985.

K. K. Herrity, A. C. Gilbert, and J. A. Tropp. Sparse approximation via
iterative thresholding. In Proceedings of the International Conference on
Acoustics, Speech and Signal Processing, (ICASSP), 2006.

G. E. Hinton. Training products of experts by minimizing contrastive diver-
gence. Neural computation, 14(8):1771–1800, 2002.

R. R. Hocking. A Biometrics invited paper. The analysis and selection of
variables in linear regression. Biometrics, 32:1–49, 1976.

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

H. Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of educational psychology, 24(6):417, 1933.

J. Huang and T. Zhang. The benefit of group sparsity. Annals of Statistics,
38(4):1978–2004, 2010.

J. Huang, Z. Zhang, and D. Metaxas. Learning with structured sparsity.
Journal of Machine Learning Research, 12:3371–3412, 2011.

K. Huang and S. Aviyente. Sparse representation for signal classification. In
Advances in Neural Information Processing Systems (NIPS), 2006.

D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture of
monkey striate cortex. The Journal of physiology, 195(1):215–243, 1968.

A. Hyvärinen, P. O. Hoyer, and M. Inki. Topographic independent component
analysis. Neural computation, 13(7):1527–1558, 2001.

188 References

A. Hyvärinen, J. Karhunen, and E. Oja. Independent component analysis.
John Wiley and Sons, 2004.

A. Hyvärinen, J. Hurri, and P. O. Hoyer. Natural Image Statistics: A Proba-
bilistic Approach to Early Computational Vision. Springer, 2009.

L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlaps and graph
Lasso. In Proceedings of the International Conference on Machine Learning
(ICML), 2009.

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best
multi-stage architecture for object recognition? In Proceedings of the In-
ternational Conference on Computer Vision (ICCV), 2009.

H. Jégou, M. Douze, and C. Schmid. Improving bag-of-features for large scale
image search. International Journal of Computer Vision, 87(3):316–336,
2010.

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for
sparse hierarchical dictionary learning. In Proceedings of the International
Conference on Machine Learning (ICML), 2010a.

R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal com-
ponent analysis. In Proceedings of International Workshop on Artificial
Intelligence and Statistics (AISTATS), 2010b.

R. Jenatton, J-Y. Audibert, and F. Bach. Structured variable selection with
sparsity-inducing norms. Journal of Machine Learning Research, 12:2777–
2824, 2011a.

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for
hierarchical sparse coding. Journal of Machine Learning Research, 12:2297–
2334, 2011b.

A. Juditsky and A. Nemirovski. On verifiable sufficient conditions for sparse
signal recovery via ℓ1-minimization. Mathematical Programming, 127(1):
57–88, 2011.

V. Katkovnik, A. Foi, K. Egiazarian, and J. Astola. From local kernel to non-
local multiple-model image denoising. International Journal of Computer
Vision, 86(1):1–32, 2010.

K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invari-
ant features through topographic filter maps. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

K. Kavukcuoglu, M. Ranzato, and Y. LeCun. Fast inference in sparse
coding algorithms with applications to object recognition. preprint
arXiv:1010.3467, 2010a.

References 189

K. Kavukcuoglu, P. Sermanet, Y-L. Boureau, K. Gregor, M. Mathieu, and
Y. LeCun. Learning convolutional feature hierarchies for visual recognition.
In Advances in Neural Information Processing Systems (NIPS), 2010b.

K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant. Identifying natural
images from human brain activity. Nature, 452(7185):352–355, 2008.

C. Kervrann and J. Boulanger. Optimal spatial adaptation for patch-based
image denoising. IEEE Transactions on Image Processing, 15(10):2866–
2878, 2006.

R. Kimmel. Demosaicing: image reconstruction from color ccd samples. IEEE
Transactions on Image Processing, 8(9):1221–1228, 1999.

J. Koenderink and A. Van Doorn. The structure of locally orderless images.
International Journal of Computer Vision, 31(2/3):159–168, 1999.

P. Koniusz and K. Mikolajczyk. Spatial coordinate coding to reduce histogram
representations, dominant angle and colour pyramid match. In Proceedings
of the International Conference on Image Processing (ICIP), 2011.

P. Koniusz, F. Yan, and K. Mikolajczyk. Comparison of mid-level feature cod-
ing approaches and pooling strategies in visual concept detection. Computer
Vision and Image Understanding, 117(5):479–492, 2013.

H. J. Kushner and G. Yin. Stochastic approximation and recursive algorithms
and applications. Springer, 2003.

K. Lange, D. R. Hunter, and I. Yang. Optimization transfer using surrogate
objective functions. Journal of Computational and Graphical Statistics, 9
(1):1–20, 2000.

I. Laptev. On space-time interest points. International Journal of Computer
Vision, 64(2-3):107–123, 2005.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyra-
mid matching for recognizing natural scene categories. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2006.

E. Le Pennec and S. Mallat. Sparse geometric image representations with
bandelets. IEEE Transactions on Image Processing, 14(4):423–438, 2005.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998a.

Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In G. Orr and
Muller K., editors, Neural Networks: Tricks of the trade. Springer, 1998b.

190 References

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788–791, 1999.

H. Lee, A. Battle, R. Raina, and A.Y. Ng. Efficient sparse coding algorithms.
In Advances in Neural Information Processing Systems (NIPS), 2007.

A. Levin, B. Nadler, F. Durand, and W. T. Freeman. Patch complexity, finite
pixel correlations and optimal denoising. In Proceedings of the European
Conference on Computer Vision (ECCV), 2012.

M. S. Lewicki. Efficient coding of natural sounds. Nature neuroscience, 5(4):
356–363, 2002.

M. S. Lewicki and B. A. Olshausen. Probabilistic framework for the adap-
tation and comparison of image codes. Journal of the Optical Society of
America A, 16(7):1587–1601, 1999.

M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations.
Neural computation, 12(2):337–365, 2000.

C.-K. Li and W. So. Isometries of the ℓp norm. The American Mathematical
Monthly, 101(5):452–453, 1994.

Y. Li and D. P. Huttenlocher. Sparse long-range random field and its appli-
cation to image denoising. In Proceedings of the European Conference on
Computer Vision (ECCV), 2008.

M. S. Livingstone and D. H. Hubel. Anatomy and physiology of a color system
in the primate visual cortex. The Journal of Neuroscience, 4(1):309–356,
1984.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60(2):91–110, 2004.

B. D. Lucas and T. Kanade. An iterative image registration technique with
an application to stereo vision. In Proceedings of the 7th Joint Conference
on Artificial Intelligence (IJCAI), 1981.

D. J. C. MacKay. Information theory, inference, and learning algorithms.
Cambridge university press, 2003.

M. Mahmoudi and G. Sapiro. Fast image and video denoising via nonlocal
means of similar neighborhoods. IEEE Signal Processing Letters, 12(12):
839–842, 2005.

J. Mairal. Sparse coding for machine learning, image processing and com-
puter vision. PhD thesis, Ecole Normale Supérieure de Cachan, 2010.
http://tel.archives-ouvertes.fr/tel-00595312.

http://tel.archives-ouvertes.fr/tel-00595312

References 191

J. Mairal. Stochastic majorization-minimization algorithms for large-scale op-
timization. In Advances in Neural Information Processing Systems (NIPS),
2013.

J. Mairal and B. Yu. Complexity analysis of the Lasso regularization path. In
Proceedings of the International Conference on Machine Learning (ICML),
2012.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative
learned dictionaries for local image analysis. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2008a.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dic-
tionary learning. In Advances in Neural Information Processing Systems
(NIPS), 2008b.

J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image
restoration. IEEE Transactions on Image Processing, 17(1):53–69, 2008c.

J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J. Ponce. Discriminative
sparse image models for class-specific edge detection and image interpre-
tation. In Proceedings of the European Conference on Computer Vision
(ECCV), 2008d.

J. Mairal, G. Sapiro, and M. Elad. Learning multiscale sparse representations
for image and video restoration. SIAM Multiscale Modeling and Simulation,
7(1):214–241, 2008e.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse
models for image restoration. In Proceedings of the International Confer-
ence on Computer Vision (ICCV), 2009.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix
factorization and sparse coding. Journal of Machine Learning Research,
11:19–60, 2010a.

J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms
for structured sparsity. In Advances in Neural Information Processing Sys-
tems (NIPS), 2010b.

J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Convex and network
flow optimization for structured sparsity. Journal of Machine Learning
Research, 12:2681–2720, 2011.

J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 34(4):791–804,
2012.

S. Mallat. A wavelet tour of signal processing. Academic press, 2008. 3rd
edition.

192 References

S. Mallat and Z. Zhang. Matching pursuit in a time-frequency dictionary.
IEEE Transactions on Signal Processing, 41(12):3397–3415, 1993.

S. G. Mallat. A theory for multiresolution signal decomposition: the wavelet
representation. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 11(7):674–693, 1989.

C. L. Mallows. Choosing variables in a linear regression: A graphical aid. un-
published paper presented at the Central Regional Meeting of the Institute
of Mathematical Statistics, Manhattan, Kansas, 1964.

C. L. Mallows. Choosing a subset regression. unpublished paper presented at
the Joint Statistical Meeting, Los Angeles, California, 1966.

H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

D. Martin, C. Fowlkes, Doron Tal, and J. Malik. A database of human seg-
mented natural images and its application to evaluating segmentation al-
gorithms and measuring ecological statistics. In Proceedings of the Inter-
national Conference on Computer Vision (ICCV), 2001.

D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect natural image
boundaries using local brightness, color, and texture cues. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 26(5):530–549, 2004.

P. Massart. Concentration Inequalities and Model Selection: Ecole d’été de
Probabilités de Saint-Flour 23. Springer, 2003.

I. Matthews, T. Ishikawa, and S. Baker. The template update problem. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(6):810–815,
2004.

A. Maurer and M. Pontil. k-dimensional coding schemes in Hilbert spaces.
IEEE Transactions on Information Theory, 56(11):5839–5846, 2010.

J. C. Maxwell. On the theory of compound colours, and the relations of the
colours of the spectrum. Philosophical Transactions of the Royal Society of
London, pages 57–84, 1860.

X. Mei and H. Ling. Robust visual tracking using ℓ1-minimization. In Proceed-
ings of the International Conference on Computer Vision (ICCV), 2009.

N. Meinshausen and P. Bühlmann. Stability selection. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 72(4):417–473, 2010.

D. Menon and G. Calvagno. Color image demosaicking: an overview. Signal
Processing: Image Communication, 26(8):518–533, 2011.

C. A. Micchelli and M. Pontil. Learning the kernel function via regularization.
In Journal of Machine Learning Research, volume 6, pages 1099–1125, 2005.

References 193

K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):
1615–1630, 2005.

N. Murray and F. Perronnin. Generalized max pooling. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2014.

E. A. Nadaraya. On estimating regression. Theory of Probability and its
Applications, 9:141, 1964.

I. Naseem, R. Togneri, and M. Bennamoun. Linear regression for face recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
32(11):2106–2112, 2010.

N. M. Nasrabadi and R. A. King. Image coding using vector quantization: A
review. IEEE Transactions on Communications, 36(8):957–971, 1988.

B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM
Journal on Computing, 24:227–234, 1995.

J. Nathans, D. Thomas, and D. S. Hogness. Molecular genetics of human
color vision: the genes encoding blue, green, and red pigments. Science,
232(4747):193–202, 1986.

Y. Nesterov. Gradient methods for minimizing composite objective function.
Mathematical Programming, 140(1):125–161, 2013.

I. Newton. Hypothesis explaining the properties of light. In The History of
the Royal Society, volume 3, pages 247–269. T. Birch, 1675. text published
in 1757.

S. Nishimoto, A. T. Vu, T. Naselaris, Y. Benjamini, B. Yu, and J. L. Gallant.
Reconstructing visual experiences from brain activity evoked by natural
movies. Current Biology, 21(19):1641–1646, 2011.

R. D. Nowak and M. A. T. Figueiredo. Fast wavelet-based image deconvo-
lution using the EM algorithm. In Conference Record of the Thirty-Fifth
Asilomar Conference on Signals, Systems and Computers., 2001.

G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and
joint subspace selection for multiple classification problems. Statistics and
Computing, 20(2):231–252, 2009.

T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(7):971–987,
2002.

194 References

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381:607–
609, 1996.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis
set: A strategy employed by V1? Vision Research, 37(23):3311–3325, 1997.

B. A. Olshausen and D. J. Field. How close are we to understanding V1?
Neural computation, 17(8):1665–1699, 2005.

M. R. Osborne, B. Presnell, and B. A. Turlach. A new approach to variable
selection in least squares problems. IMA journal of numerical analysis, 20
(3):389–403, 2000.

P. Paatero and U. Tapper. Positive matrix factorization: a non-negative factor
model with optimal utilization of error estimates of data values. Environ-
metrics, 5(2):111–126, 1994.

T. Park and G. Casella. The Bayesian Lasso. Journal of the American Sta-
tistical Association, 103(482):681–686, 2008.

Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet de-
composition. In Proceedings of The Twenty-Seventh Asilomar Conference
on Signals, Systems and Computers, 1993.

J. Pearl. On coding and filtering stationary signals by discrete fourier trans-
forms (corresp.). IEEE Transactions on Information Theory, 19(2):229–
232, 1973.

F. Perronnin, J. Sánchez, and T. Mensink. Improving the Fisher kernel for
large-scale image classification. In Proceedings of the European Conference
on Computer Vision (ECCV), 2010.

G. Peyré. Sparse modeling of textures. Journal of Mathematical Imaging and
Vision, 34(1):17–31, 2009.

D.-S. Pham and S. Venkatesh. Joint learning and dictionary construction for
pattern recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2008.

D.-T. Pham. Fast algorithms for mutual information based independent com-
ponent analysis. IEEE Transactions on Signal Processing, 52(10):2690–
2700, 2004.

N. Pinto, D. D. Cox, and J. J. DiCarlo. Why is real-world visual object
recognition hard? PLoS computational biology, 4(1):151–156, 2008.

References 195

J. Pokrass, A. M. Bronstein, M. M. Bronstein, P. Sprechmann, and G. Sapiro.
Sparse modeling of intrinsic correspondences. In Computer Graphics Fo-
rum, volume 32, pages 459–468, 2013.

M. Pontil, A. Argyriou, and T. Evgeniou. Multi-task feature learning. In
Advances in Neural Information Processing Systems (NIPS), 2007.

J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. Image de-
noising using scale mixtures of Gaussians in the wavelet domain. IEEE
Transactions on Image Processing, 12(11):1338–1351, 2003.

W. Pratt. Spatial transform coding of color images. IEEE Transactions on
Communication Technology, 19(6):980–992, 1971.

M. Protter and M. Elad. Image sequence denoising via sparse and redun-
dant representations. IEEE Transactions on Image Processing, 18(1):27–
35, 2009.

H. Raguet, J. Fadili, and G. Peyré. A generalized forward-backward splitting.
SIAM Journal on Imaging Sciences, 6(3):1199–1226, 2013.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning:
transfer learning from unlabeled data. In Proceedings of the International
Conference on Machine Learning (ICML), 2007.

I. Ramirez, F. Lecumberry, and G. Sapiro. Sparse modeling with universal
priors and learned incoherent dictionaries. In Proceedings of the 3rd IEEE
International Workshop on Computational Advances in Multi-Sensor Adap-
tive Processing (CAMSAP), 2009.

I. Ramirez, P. Sprechmann, and G. Sapiro. Classification and clustering via
dictionary learning with structured incoherence and shared features. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2010.

M. Ranzato, F. J. Huang, Y-L. Boureau, and Y. LeCun. Unsupervised learn-
ing of invariant feature hierarchies with applications to object recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2007.

G. Raskutti, M. J. Wainwright, and B. Yu. Minimax rates of estimation
for high-dimensional linear regression over-balls. IEEE Transactions on
Information Theory, 57(10):6976–6994, 2011.

B. Recht, C. Re, J. Tropp, and V. Bittorf. Factoring nonnegative matrices with
linear programs. In Advances in Neural Information Processing Systems
(NIPS), 2012.

196 References

X. Ren and D. Ramanan. Histograms of sparse codes for object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2013.

R. Rigamonti, M. A. Brown, and V. Lepetit. Are sparse representations really
relevant for image classification? In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2011.

R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua. Learning separable filters.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2013.

J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–
471, 1978.

K. Ritter. Ein verfahren zur lösung parameterabhängiger, nichtlinearer
maximum-probleme. Mathematical Methods of Operations Research, 6(4):
149–166, 1962.

F. Rodriguez and G. Sapiro. Sparse representations for image classifica-
tion: Learning discriminative and reconstructive non-parametric dictionar-
ies. Technical report, University of Minnesota, 2008.

Y. Romano, M. Protter, and M. Elad. Single image interpolation via adaptive
non-local sparsity-based modeling. IEEE Transactions on Image Process-
ing, 23(7):3085–3098, 2014.

S. Roth and M. J. Black. Fields of experts. International Journal of Computer
Vision, 82(2):205–229, 2009.

R. Rubinstein, M. Zibulevsky, and M. Elad. Efficient implementation of the K-
SVD algorithm using batch orthogonal matching pursuit. Technical report,
Technion - Computer Science Department, 2008.

L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D: Nonlinear Phenomena, 60(1-4):259–268,
1992.

J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification
with the fisher vector: Theory and practice. International Journal of Com-
puter Vision, 105(3):222–245, 2013.

C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(5):530–535,
May 1997.

M. Schmidt, D. Kim, and S. Sra. Projected Newton-type methods in machine
learning. In S. Sra, S. Nowozin, and S.J. Wright, editors, Optimization for
Machine Learning. MIT Press, 2011.

References 197

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6(2):
461–464, 1978.

M. W. Seeger. Bayesian inference and optimal design for the sparse linear
model. Journal of Machine Learning Research, 9:759–813, 2008.

T. Serre, L. Wolf, and T. Poggio. Object recognition with features inspired by
visual cortex. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2005.

J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients.
IEEE Transactions on Signal Processing, 41(12):3445–3462, 1993.

G. Sharma and H. J. Trussell. Digital color imaging. IEEE Transactions on
Image Processing, 6(7):901–932, 1997.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

E. P. Simoncelli and B. A. Olshausen. Natural image statistics and neural
representation. Annual review of neuroscience, 24(1):1193–1216, 2001.

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger. Shiftable
multiscale transforms. IEEE Transactions on Information Theory, 38(2):
587–607, 1992.

J. Sivic and A. Zisserman. Video Google: a text retrieval approach to ob-
ject matching in videos. In Proceedings of the International Conference on
Computer Vision (ICCV), 2003.

K. Skretting and K. Engan. Recursive least squares dictionary learning algo-
rithm. IEEE Transactions on Signal Processing, 58(4):2121–2130, 2010.

H. O. Song, S. Zickler, T. Althoff, R. Girshick, M. Fritz, C. Geyer, P. Felzen-
szwalb, and T. Darrell. Sparselet models for efficient multiclass object
detection. In Proceedings of the European Conference on Computer Vision
(ECCV), 2012.

D. A. Spielman, H. Wang, and J. Wright. Exact recovery of sparsely-used dic-
tionaries. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2013.

N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix fac-
torization. In Advances in Neural Information Processing Systems (NIPS),
2005.

J.-L. Starck, D. L. Donoho, and E. J. Candès. Astronomical image repre-
sentation by the curvelet transform. Astronomy and Astrophysics, 398(2):
785–800, 2003.

198 References

A. Szlam, M. Maggioni, and R.R. Coifman. Regularization on graphs with
function-adapted diffusion processes. Journal of Machine Learning Re-
search, 2007.

H. Takeda, S. Farsiu, and P. Milanfar. Kernel regression for image processing
and reconstruction. IEEE Transactions on Image Processing, 16(2):349–
366, 2007.

H. L. Taylor, S. C. Banks, and J. F. McCoy. Deconvolution with the ℓ1 norm.
Geophysics, 44(1):39–52, 1979.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of
the Royal Statistical Society Series B, 58(1):267–288, 1996.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and
smoothness via the fused Lasso. Journal of the Royal Statistical Society
Series B, 67(1):91–108, 2005.

A. N. Tikhonov. Solution of incorrectly formulated problems and the regu-
larization method. In Soviet Math. Doklady., volume 4, pages 1035–1038,
1963.

E. Tola, V. Lepetit, and P. Fua. DAISY: An efficient dense descriptor ap-
plied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(5):815–830, 2010.

I. Tosic, B. A. Olshausen, and B. J. Culpepper. Learning sparse representa-
tions of depth. IEEE Journal of Selected Topics in Signal Processing, 5(5):
941–952, 2011.

J. A. Tropp. Greed is good: Algorithmic results for sparse approximation.
IEEE Transactions on Signal Processing, 50(10):2231–2242, 2004.

J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via
orthogonal matching pursuit. IEEE Transactions on Information Theory,
53(12):4655–4666, 2007.

J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithms for simultaneous
sparse approximation. part I: Greedy pursuit. Signal Processing, special
issue "sparse approximations in signal and image processing", 86:572–588,
2006.

P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth
separable minimization. Mathematical Programming, 117(1):387–423, 2009.

D. Y. Ts’o and C. D. Gilbert. The organization of chromatic and spatial
interactions in the primate striate cortex. The Journal of Neuroscience, 8
(5):1712–1727, 1988.

References 199

A. B. Tsybakov. Optimal rates of aggregation. In Proceedings of the Annual
Conference on Computational Learning Theory, 2003.

B. A. Turlach, W. N. Venables, and S. J. Wright. Simultaneous variable
selection. Technometrics, 47(3):349–363, 2005.

D. Vainsencher, S. Mannor, and A. M. Bruckstein. The sample complexity of
dictionary learning. Journal of Machine Learning Research, 12:3259–3281,
2011.

J. C. van Gemert, C. J. Venman, A. W. M. Smeulders, and J. M. Geuse-
brock. Visual word ambiguity. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32(7):1271–1283, 2010.

G. Varoquaux, A. Gramfort, F. Pedregosa, V. Michel, and B. Thirion. Multi-
subject dictionary learning to segment an atlas of brain spontaneous activ-
ity. In Information Processing in Medical Imaging, pages 562–573, 2011.

G. Vinci, P. Freeman, J. Newman, L. Wasserman, and C. Genovese. Esti-
mating the distribution of galaxy morphologies on a continuous space. In
Statistical Challenges in 21st Century Cosmology. Proceedings IAU Sym-
posium No. 306, 2014.

H. von Helmholtz. LXXXI. on the theory of compound colours. Philosophical
Magazine Series 4, 4(28):519–534, 1852.

A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and Y. Ma. Toward
a practical face recognition system: robust alignment and illumination by
sparse representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(2):372–386, 2012.

M.J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of
sparsity using ℓ1-constrained quadratic programming. IEEE Transactions
on Information Theory, 55(5):2183–2202, 2009.

C. Wallraven, B. Caputo, and A. Graf. Recognition with local features: the
kernel recipe. In Proceedings of the International Conference on Computer
Vision (ICCV), 2003.

J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained
linear coding for image classification. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2010.

S. Wang, D. Zhang, Y. Liang, and Q. Pan. Semi-coupled dictionary learn-
ing with applications to image super-resolution and photo-sketch synthesis.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

200 References

X. Wang and X. Tang. Face photo-sketch synthesis and recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 31(11):1955–
1967, 2009.

L. Wasserman. All of nonparametric statistics. Springer, 2006.

G. S. Watson. Smooth regression analysis. Sankhya, The Indian Journal of
Statistics, Series A, 26:359–372, 1964.

J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, and Y. Ma. Robust face recog-
nition via sparse representation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(2):210–227, 2009.

D. Wrinch and H. Jeffreys. XLII. On certain fundamental principles of scien-
tific inquiry. Philosophical Magazine Series 6, 42(249):369–390, 1921.

T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized
regression. Annals of Applied Statistics, 2(1):224–244, 2008.

Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2013.

L. Xiao. Dual averaging methods for regularized stochastic learning and online
optimization. Journal of Machine Learning Research, 9:2543–2596, 2010.

R. Xiaofeng and L. Bo. Discriminatively trained sparse code gradients for
contour detection. In Advances in Neural Information Processing Systems
(NIPS), 2012.

Z. Xing, M. Zhou, A. Castrodad, G. Sapiro, and L. Carin. Dictionary learning
for noisy and incomplete hyperspectral images. SIAM Journal on Imaging
Sciences, 5(1):33–56, 2012.

J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching
using sparse coding for image classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse
representation. IEEE Transactions on Image Processing, 19(11):2861–2873,
2010a.

J. Yang, K. Yu, and T. Huang. Supervised translation-invariant sparse coding.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2010b.

J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang. Coupled dictionary train-
ing for image super-resolution. IEEE Transactions on Image Processing,
21(8):3467–3478, 2012a.

References 201

J. Yang, K. Yu, and T. Huang. Efficient highly overcomplete sparse coming
using a mixture model. In Proceedings of the European Conference on
Computer Vision (ECCV), 2012b.

M. Yang, D. Zhang, and X. Feng. Fisher discrimination dictionary learning
for sparse representation. In Proceedings of the International Conference
on Computer Vision (ICCV), 2011.

T. Young. A course of lectures on natural philosophy and the mechanical art.
Taylor and Watson, 1845.

G. Yu, G. Sapiro, and S. Mallat. Solving inverse problems with piecewise
linear estimators: from Gaussian mixture models to structured sparsity.
IEEE Transactions on Image Processing, 21(5):2481–2499, 2012.

K. Yu and T. Zhang. Improved local coordinate coding using local tangents. In
Proceedings of the International Conference on Machine Learning (ICML),
2010.

K. Yu, T. Zhang, and Y. Gong. Nonlinear learning using local coordinate
coding. In Advances in Neural Information Processing Systems (NIPS),
2009.

M. Yuan and Y. Lin. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society Series B, 68:
49–67, 2006.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
neural networks. In Proceedings of the European Conference on Computer
Vision (ECCV), 2014.

M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. Deconvolutional
networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2010.

M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive deconvolutional networks
for mid and high level feature learning. In Proceedings of the International
Conference on Computer Vision (ICCV), 2011.

R. Zeyde, M. Elad, and M. Protter. On single image scale-up using sparse
representations. In Curves and Surfaces, pages 711–730. Springer, 2012.

Q. Zhang and B. Li. Discriminative K-SVD for dictionary learning in face
recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2010.

Y. Zhang, M. J. Wainwright, and M. I. Jordan. Lower bounds on the perfor-
mance of polynomial-time algorithms for sparse linear regression. preprint
arXiv:1402.1918, 2014.

202 References

P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for
grouped and hierarchical variable selection. Annals of Statistics, 37(6A):
3468–3497, 2009.

M. Zhou, H. Chen, L. Ren, G. Sapiro, L. Carin, and J. W. Paisley. Non-
parametric bayesian dictionary learning for sparse image representations.
In Advances in Neural Information Processing Systems (NIPS), 2009.

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro,
and L. Carin. Nonparametric Bayesian dictionary learning for analysis of
noisy and incomplete images. IEEE Transactions on Image Processing, 21
(1):130–144, 2012.

X. Zhou, K. Yu, T. Zhang, and T. Huang. Image classification using super-
vector coding. In Proceedings of the European Conference on Computer
Vision (ECCV), 2010.

S. C. Zhu and D. Mumford. Prior learning and gibbs reaction-diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(11):1236–
1250, 1997.

S.-C. Zhu, C.-E. Guo, Y. Wang, and Z. Xu. What are textons? International
Journal of Computer Vision, 62(1-2):121–143, 2005.

D. Zoran and Y. Weiss. From learning models of natural image patches to
whole image restoration. In Proceedings of the International Conference on
Computer Vision (ICCV), 2011.

H. Zou and T. Hastie. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society Series B, 67(2):301–320, 2005.

	A Short Introduction to Parsimony
	Early concepts of parsimony in statistics
	Wavelets in signal processing
	Modern parsimony: the 1-norm and other variants
	Dictionary learning
	Compressed sensing and sparse recovery
	Theoretical results about dictionary learning

	Discovering the Structure of Natural Images
	Pre-processing
	Principal component analysis
	Clustering or vector quantization
	Dictionary learning
	Structured dictionary learning
	Other matrix factorization methods
	Discussion

	Sparse Models for Image Processing
	Image denoising
	Image inpainting
	Image demosaicking
	Image up-scaling
	Inverting nonlinear local transformations
	Video processing
	Face compression
	Other patch modeling approaches

	Sparse Coding for Visual Recognition
	A coding and pooling approach to image modeling
	The botany of sparse feature coding
	Face recognition
	Patch classification and edge detection
	Connections with neural networks
	Other applications

	Optimization Algorithms
	Sparse reconstruction with the 0-penalty
	Sparse reconstruction with the 1-norm
	Iterative reweighted-1 methods
	Iterative reweighted-2 methods
	Optimization for dictionary learning
	Other optimization techniques

	Conclusions
	Acknowledgments
	References

