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Abstract—Plug-in electric vehicles (PEVs) are one of the solu-
tions to reduce transportation dependency on oil. Nevertheless,
uncoordinated charging in distribution low voltage (LV) networks
can lead to local grid problems such as current unbalance and
consequently voltage unbalance. In this paper, a combinatorial
method based on Ant System (AS) optimization is proposed
in order to minimize the current unbalance factor (CUF) by
controlling the connection and disconnection of PEVs. The CUF
is generated by PHEVs and neighboring residential loads. In
addition a simulation environment is implemented to validate
the performance of the AS method by benchmarking it against
an Exhaustive Search approach. Results show that AS method
gives satisfactory optimal solutions reducing the computation cost
for scenarios having several hundred of PEVs,

Index Terms—Ant System, plug-in electric vehicles, current
unbalance, stochastic combinatorial optimization

I. INTRODUCTION

Voltage and current unbalances will be significantly affected
by a high penetration of PEVs as single-phase loads of the
residential network. According to [1], for different scenarios
of a low voltage network, an increasing number of PEVs in
vehicle-to-grid (V2G) scenario would increase by more than
20 %, the probability of exceeding maximum standard ratings
of the voltage unbalance factor (VUF). Since the current
unbalance is one of the causes of voltage unbalance [2], the
current unbalance, generated by the variable number of PEVs
connecting and disconnecting at random times, is an important
issue to be addressed.
Current and voltage unbalances, similar to other power-quality
issues, are regulated by the distribution system manager by
sending operators to execute maintenance on medium-voltage
to low-voltage (MV/LV) transformers and distribution lines. In
the context of the smartgrids, this procedure could be part of a
portfolio of support services where active and intelligent loads,
such as PEVs, could participate. Examples of such portfolio of
services PEVs would be able to provide are ancillary services
[3]–[6] and smart charging strategies to reduce PEVs’s impact
on the MV/LV transformer [7], [8].
Several papers have studied this subject. In [9], authors
propose a solution for voltage unbalance consisting in a
static transfer switch installed on every LV load where it is

controlled by a rule-based algorithm that commutes loads from
high loaded lines towards low loaded ones. In [10], current
unbalance factor is reduced by controlling rooftop PVs as
varying capacitors. Concerning PEVs, in [11], a rule-based
method is proposed in order to reduce the current unbalance
factor by controlling only reactive power of a charging station
without interfering with the active power.
In this paper, a new strategy based on combinatorial opti-
mization is proposed in order to minimize the current unbal-
ance factor by controlling the connection and disconnection
of PEVs available in a LV residential network. PEVs are
considered binary (ON/OFF) controllable loads charging at a
constant rate. The problem, as it will be shown, has a com-
binatorial nature whose complexity grows exponentially with
the number of controllable PEVs. For combinatorial problems
the optimal solution exists and the complexity depends on the
time it would take to find the optimum by enumerating and
comparing all possible solutions.
The combinatorial optimization method chosen is the Ant
system (AS). AS is a computation paradigm based on stochas-
tic combinatorial optimization [12]. This method is part of
the family of bio-inspired optimization called Ant Colony
Optimization (ACO) [13]. The objective is to find an optimal
solution to a complex problem, or the closest acceptable
solution by “randomly” searching through an space of solu-
tions without enumerating all of them. In addition, Exhaustive
Search (ES) method is used to benchmark the AS method. ES
or brut-force search, is the method that enumerates all possible
solutions of an optimization problem in order to rank them for
after, finally, choosing the best. ACO has been used in different
power system optimization problems [14], [15].
This paper is organized as follows: In section II, the current
unbalance factor problem is formulated. An Ant system frame-
work is presented as well as its adaptation to the optimization
problem in section III. In section IV, the simulation environ-
ment focusing in the comparison of the AS and the ES method
is described. In section V, results are analyzed. The paper ends
with some conclusions and future work.



II. PROBLEM FORMULATION

A. PEV charging stations

The charging stations considered, is a level two single-phase
installation that provides 3 kW, or a charging current, ICh,
equal to 13 A, to the PEV charger. Let’s assume that the
charging stations receive orders to connect or disconnect the
PEV available from the distribution system operator through
a perfect communication channel.

B. Current Unbalance Factor

Fig.1 illustrates a common scenario of a LV network feeding
a common-connection-point (CCP) that gathers residential
loads including PEVs. It is a three-phase three-wire system
with single-phase phase-to-neutral loads with Ia, Ib and Ic
as the line currents. Each phase-to-neutral voltages is repre-
sented by VaN , VbN and VcN respectively. According to
the standard IEEE 1159-2009 [16], the samples of the current
unbalance factor (CUF) in a three-phase CCP has to be less
30% in steady state. The CUF is defined by:

CUF =

∣∣∣∣I2I1
∣∣∣∣ (1)

With I2 and I1 represent the negative and the positive sym-
metrical sequence currents respectively, both calculated using
the line currents at a CCP. A CUF measure is an average over
10 minutes of the CUF sampled every 30 seconds.
Fortescue symmetrical sequence currents are defined as fol-
lows: I1

I2
I0

 =

(
1

3

)
F−1

Ia
Ib
Ic

 (2)

where F =

 1 1 1
a2 a 1
a a2 1

 with a = e2πi/3.

Each line current is the summation of the currents of the
loads connected to it. As a result eq. (2) can be rewritten
in a compact form (eq.(3)), where NPEV a, NPEV b and
NPEV c are the number of PEVs available at the residencies
connected either to phase a or b or c. IaPEV j , IbPEV j and

LV

CCP

Ia

Ib

Ic

MV
VaN

VbN

VcN

Fig. 1: Common connection point (CCP) in a LV network

IcPEV j are the currents of the j-th PEV connected either to
phase a or b or c. NHa, NHb and NHc is the number
of residences connected either to phase a or b or c. Finally,
IaHk, IbHk and IcHk are the currents of the k-th householder
connected either to phase a or b or c.I1

I2
I0

 =

(
1

3

)
F−1


∑NPEV a

j=1 IaPEV j +
∑NHa

k=1 IaHk∑NPEV b

j=1 IbPEV j +
∑NHb

k=1 IbHk∑NPEV c

j=1 IcPEV j +
∑NHc

k=1 IcHk


(3)

In this paper, PEVs are considered as binary loads loads
(ON/OFF). Assuming that, in total, N PEVS are connected
to the CCP and each one of the charging stations have the
same charging current magnitude, ICh. Eq.(4) shows the
symmetrical sequences as a function of the PEVs currents.
Negative and positive sequence currents in eq.(4) will be
used to modify the CUF as a function of the connection and
disconnection of the PEVs.I1

I2
I0

 =

(
1

3

)
.F−1

.



NPEV a∑
l=1

ICh.dl +
NHa∑
k=1

IaHk

NPEV b+NPEV a∑
l=NPEV a+1

ICh.dl +
NHb∑
k=1

IbHk

NPEV b+NPEV a+NPEV c∑
l=NPEV b+NPEV a+1

ICh.dl +
NHc∑
k=1

IcHk


(4)

where dl is the control signal of the l-th PEV. Thus, a solution
that minimize the CUF at the CCP is given by :

d = [d1, d2, ..., dl, ..., dN ]

dl =

{
0 PEVl disconnected
1 PEVl connected (5)

∀l = 1, ..., N

III. ANT SYSTEM FRAMEWORK

Ant System (AS) algorithms imitates the behavior of real
ants. It is well known that real ants are able to find the shortest
path between food sources and the nest without using visual
support. Real ants are also capable of adapting to changes
in the environment, such as new obstacles on shortest path.
Ants cooperate to find the shortest path, by communicating
through a medium called ”pheromone“. The pheromone is
deposited by the ants as they move through paths between
different locations and, at the same time, ants keep track of the
pheromone already left on the path. Trials richer in pheromone
will become preferred paths. Finally after many itineraries, the
path that has been walked over the most will be the shortest
path.
Fig.2 is a representation of real ants behavior. In Fig.2(a), ants
move from the food source, located at point A, towards the
nest located at point B. Once an obstacle blocks the path,
like in Fig.2(b), the ants are not able to follow the same
trial. At locations C and D, ants face the same probability to
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Fig. 2: An exemple of real ants behavior

either take the long path (C-F-D) or the short path (C-E-D).
Nevertheless, after several travels the shortest path will collect
pheromone faster than the longest path and as it is illustrated
in Fig.2(c), more ants will follow this trial leaving even more
pheromone. Thanks to this positive feedback, after a few
itineraries, all ants will choose the shortest path. This behavior
is the fundamental paradigm of the AS algorithms. The main
characteristics of this framework are positive feedback, for
rapid discovery of solutions, distributed computation, to avoid
premature convergence and greedy heuristic helping to find
acceptable solutions at the first stages of the algorithm.

A. Search Space Representation

Fig.3 illustrates the search space suitable to apply the AS
method to the CUF minimization problem. The number of
stages is equal to the number of phases. The number of
locations or states per stage is equal to the number of PEVs
connected among the PEVs available. The number of PEVs
connected to each phase, CPEV a, CPEV b and CPEV c, is given
by eq.(6).

C (d)PEV a =

NPEV a∑
l=1

dl

C (d)PEV b =

NPEV b+NPEV a∑
l=NPEV a+1

dl (6)

C (d)PEV c =

NPEV c+NPEV b+NPEV a∑
l=NPEV b+NPEV a+1

dl

B. State Transition Rule

The state transition rule for AS algorithmes, called a
random-proportional rule, is given in eq.(7), which gives the
probability of with which ant e in state i, located at the stage
x, chooses to move to state j, located at the stage y.

pxye (i, j) =


[τxy(i,j)][ηxy(i,j)]β∑

m∈Je(i)
[τxy(i,m)][ηxy(i,m)]β

, if j ∈ Je (i)

0, Otherwise
(7)

In eq.(7), τ is the pheromone deposited on the edge between
the states i and j, η is the inverse of the length of the edge;

Nest Food

Stages: # of Phases

a b c

0

1

NPEV a

0

1

NPEV b

0

1

NPEV c

States: # of
PEVs

connectedC (d)PEV a C (d)PEV c

C (d)PEV b

Fig. 3: Search Space representation

Je (i) is the set of states that remain to be visited by ant e
located in i, and finally, β is the parameter which determines
the relative importance of pheromone versus distance. Eq.(7)
indicates that the state transition rule favors transitions toward
states connected by shorter edges and with greater amount of
pheromone.

C. Global Updating Rule

Once all ants have built their tours, the pheromone is
updated on all edges according to eq.(8). Pheromone updating
is intended to allocate a greater amount of pheromone to
shorter tours. A tour is the trial taken by an ant going through
all the stages.

τxy (i, j)← (1− α) · τxy (i, j) +

Nants∑
e=1

∆τxye (i, j) (8)

∆τxye (i, j) =

{
1
Le
, if (i, j) ∈ tour done by ant e

0, Otherwise

In eq.(8), α ∈ [0, 1] is the pheromone decay, Le is the length of
the tour performed by the ant e and Nants is the total number
of ants.

D. AS method

The objective of the AS method is to minimize the CUF by
selecting the amount of PEVs to connect per phase among
those available. Therefore, the fitness function is the CUF
assessed by using the symmetrical sequences from eq.(4) and
the optimal solution will be given by eq.(6), or in other words
by the set d. The optimization problem is synthesized as
follows eq.(9).

min
I1,I2eq.(4)

CUF =

∣∣∣∣I2I1
∣∣∣∣ (9)

The computational procedure to apply the AS method is
illustrated on Fig.4 and it is detailed as follows:

Step 1 Initialization: To Initialize the procedure, fitness
function parameters, AS procedure parameters and
the search space must be defined. Fitness function
has been defined in eq.(4), therefore its parameters
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Fig. 4: AS method algorithm

are the number of PEVs available in each one of
the phases (NPEV a, NPEV b and NPEV c), the
householders currents (IaHk, IbHk and IcHk for all k
connected either to phase a, b or c) and the charging
current. The AS parameters (α, β, ρ) are determined
empirically prior. Furthermore, stages of the search
space are equal to the number of phases and states
are defined according to the number of PEVs avail-
able in each one of the phases. Matrices τxy (i, j),

∆τxye (i, j), ηxy (i, j) and Tourants (e, stage) are ini-
tialized. Tourants (e, stage) is the matrix containing
the tours for each ant, or in other words, the states
traveled by each ant through all the stages.

Step 2 Tours building: The state transition rule is assessed
using eq.(7), and next ants are dispatched based
on the from one stage to another based on the
probability of the edges available. This process is
repeated for each one of the ants until going through
all the stages.

Step 3 Pheromone updating: The length of the tour com-
pleted by each ant is assessed and the pheromone is
updated using the global updating rule (eq.(8))

Step 4 Termination criteria: The lengths of the tours of each
ant are compared and the shortest path is selected.
This value is minimum of the fitness function (CUF
assessed with eq.(4)) for the current iteration. The
states belonging to the shorthest tour define the num-
ber of PEVs connected to each phase according to
eq.(6) (CPEV a, CPEV b and CPEV c) and, as a result,
a set d is calculated. If the minimum is stable or the
maximum number of iterations have been reached,
the set d of the current iteration is the optimal set
minimizing the fitness function, otherwise a new
iteration is executed starting from step 2.

IV. COMPARISON WITH EXHAUSTIVE SEARCH

The performance of AS method to solve the CUF minimiza-
tion problem is compared with that of Exhaustive Search (ES)
method. ES method has been chosen as benchmarking because
it is a method that provides the global optimal solution to any
combinatorial problem at the expenses of costly computation
time. So compared to it, it is possible to characterized the AS
method proposed in terms of proximity to the optimal solution
and reduced computation time.
To compare these two methods, initial conditions for the
optimization problem (eq.(9)) are randomly generated based
on random selection of the fitness function parameters inside
the intervals in TABLE I. In total, 1 500 CUF initial conditions
were minimized using both methods ES and AS. The proposed
methods have been implemented in MATLAB and run on an
Intel Core i5-42000, 2.29 GHz personal computer.

TABLE I: Fitness function parameter intervals

Parameter Interval

NPEV a,b or c [0, 400]

NHa,b or c 0.7 ∗NPEV a,borc

Ia,b or c
Hk [0, 20A]

cos (ϕ) householders [0, 0.2]

ICh 13A



V. RESULTS AND DISCUSSION

The data from the simulation is illustrated on Fig.5 in
descending order of the ES method data. Initial conditions
are represented in blue, AS solutions are represented in red
and ES solutions are represented in black. It is possible
to notice that both results minimize the initial conditions
randomly generated. Furthermore, as it was expected, ES
method provides the optimal solutions and it works to compare
the quality of the AS method solutions for the same initial
conditions.

A. Computation time

In terms of computation time, Fig.6 plots the computation
time each method needs find the optimal solution starting a
initial condition as a function of the number of PEVs available
in each trial. The dashed line emphasized the trials in which
the computation time of both methods is on the same range;
these are the trials between 40 PEVs et 140 PEVs with
computation times between 0.07 s and 0.7 s. For trials having
less than 40 PEVs, the ES method has lower computation
time than the AS method; as a result, the difference between
the computation time is approximately 0.0358 s, for the trial
with the least amount of PEVs available (12 PEVs). For the
trials having more than 140 PEVs, AS method has lower
computation time; then for the trial with the biggest number
of PEVs available (365 PEVs), the difference between the
computation times is approximately 14.1 s. To conclude, it is
convenient to use the AS method proposed when the number
of PEVs available is larger than roughly 140 PEVs.

B. Comparison of optimal solutions

The ratio of the optimum value, for each method, to the
CUF initial condition is illustrated in Fig.7 and on Fig.8. For
both methods and for most of the trials, the CUF is reduced
with respect to its initial condition. Let be assume that the
number of optimal values found by the methods under a ratio
of 0.1 (red dashed line in Fig.7 and in Fig.8) is a method
performance indicator. Regarding the ES method, the CUF is

Fig. 5: Initial conditions, ES and AS data in descending order

Fig. 6: Computation time vs. the number of PEVs available

minimized more than 10 times in more than 79% of the trials.
Similarly, regarding the AS method, the CUF is minimized
more than 10 times in more than 75% of the trials. Therefore,
AS method performance indicator is 4% below that of ES
method. Considering computing time characteristics described
in the previous section, regarding the ES method, the CUF
is minimized more than 10 times in more than 42.8% of
the trials with more than 140 PEVs. Likewise, regarding the
AS method, the CUF is minimized more than 10 times in
more than 42.07% of the trials with more than 140 PEVs.
Consequently, the performance of the AS method increases
with the number of PHEVs. On Fig.9, the error between the
ratios of the two methods is presented. It is confirmed that the
optimal solutions found by the AS method are closer to the
global optimal solutions proportionally with higher number of
PEVs available.

Fig. 7: Ratio of ES solutions to CUF initial conditions
(CUFInit.) vs. the number of PEVs available. The red line
indicates a ratio of 0.1



Fig. 8: Ratio of AS solutions to CUF initial conditions
(CUFInit.) vs. the number of PEVs available. The red line
indicates a ratio of 0.1

Fig. 9: Error between ES and AS ratios to the CUFinit. vs.
the number of PEVs available

VI. CONCLUSION

Ant System method was adapted in this paper in order
to minimize the current unbalance factor formulated as a
combinatorial problem, this is PEVs are binary (ON/OFF)
controllable loads and each one is an optimization variable. A
simulation environment was implemented in order to compare
the AS method against the ES method. Results have shown
that when the number of PEVs available at a LV network, AS
method finds suitable optimal solutions at a low computational
cost.
As further work, CUF have to be addressed as a continuous
optimization problem in which the power from the PEVs could
be modified under constraints. Additionally, infrastructure and
usage constraints, such as a complete state-of-charge of bat-
teries at departure time, must be considered. Finally the profit
for PEVs as well as for the grid have to be assessed in order
to quantify the benefit of current unbalance minimization for
PEV users.
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