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Abstract 

This paper reports the development and optimisation of a glucose/O2 biofuel cell. At the 

anode, the glucose oxidation was performed by glucose oxidase (GOx) co-immobilised with a 

phenanthrenequinone mediator. At the cathode, the catalysis of O2 using tetrathiafulvalene 

and polyphenol oxidase (PPO) has been demonstrated for the first time. The open circuit 

voltage (OCV) of the optimised biofuel cell reached 0.32 V, and the maximum power density 

achieved was 40.8 µW cm-2 at 0.2 V. This original new GBFC showed quasi-stability in both 

OCV and power density for more than 25 days.  
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1. Introduction 

Throughout the last decade, the development of biofuel cells (BFC) that convert 

chemical energy into electrochemical energy via biochemical reactions has attracted great 

research attention [1-6]. The production of electricity is obtained via the oxidation of a fuel at 

the anode and the reduction of an oxidant at the cathode. For the glucose/O2 biofuel cell, the 

oxidisable substrate is glucose and the oxidant is dioxygen. Enzymes are well-adapted to play 

the role of biocatalysts in biofuel cells. Due to the deep localisation of the redox active site of 

enzymes, the electron transfer from enzymes to electrodes can be achieved by direct electron 

transfer communication (DET) by using very specific materials [7-11] such as carbon 

nanotubes [9]. Another approach to insure the electron transfer is the introduction of artificial 

redox mediator molecules [12] such as osmium complexes [13, 14] and 2,2’-azino-bis(3-

ethylbenzothiazoline)-6-sulfonic acid [15, 16]. 

Glucose-O2 biofuel cells are interesting devices because of their in vivo availability, allowing 

their implantation in living organisms [17]. Since the first example reported about glucose-O2 

biofuel implanted in the abdomen of a rat [17], different strategies regarding the method of 

implantation have been reported [18-21]. New implantable systems have been tested in 

cockroaches [20] and molluscs, in snails [18] and clams [19]. Nevertheless, for implantation, 

the activity of bioelectrodes must be stable in physiological fluids. The vast majority of BFC 

is based on the combination of glucose oxidase and laccase or bilirubin oxidase (BOD) for 

oxygen reduction. Although GOx is well-adapted for working at physiological pH, the use of 

laccase or BOD is compromised in physiological fluids. Laccase operates mainly in acidic 

conditions and is inhibited in the presence of chloride while BOD is inhibited by urate [22]. 

An alternative consists of using polyphenol oxidase (PPO) to reduce oxygen, as we firstly 

reported for a PPO-based BFC implanted in rats. However, PPO was electrically wired by a 

water soluble redox mediator (quinhydrone) requiring the use of a dialysis bag to prevent in 

vivo quinhydrone release. The use of water-insoluble compounds should enhance the 
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electrical connection with the enzyme and pave the way for a wider range of redox mediators 

for the enzyme wiring. In this context, we report here the original screening of various poorly 

soluble redox mediators for PPO and for GOx via the use of a carbon cavity microelectrode 

(CME). It is a rapid and simple way to determine if a mediator is suitable for enzymatic 

electrocatalysis. It consists of using CME, filling the cavity with both the mediator and the 

associated enzyme and looking at the catalytic effect by electrochemical methods in presence 

of  substrate.   

The optimum mediated enzyme systems were then employed for the fabrication of a BFC by 

mechanical compression with graphite particles. We further investigated the optimisation of 

the BFC performance under physiological conditions. 

 

2. Experimental section 

2.1. Material and reagents 

GOx type VII (Aspergillus niger, ≥168,800 U g-1 solid), catalase (from Bovine Liver, 1610 U 

mg-1), PPO (from mushroom 3933 U mg-1), syringaldazine, ferrocene, 9,10-

phenanthrenequinone, 1,4-naphtoquinone, duroquinone and graphite flakes (GF) were 

purchased from Sigma-Aldrich. Tetrathiafluvalene (TTF) was purchased from Alfa Aesar, 

HEPES from Euromedex and NaCl from Carlo Erba. All chemicals were used as received. 

Distilled water (18.5 M cm-1) was used for all aqueous solutions. 

 

2.2. Electrode fabrication  

The carbon cavity microelectrode consists of a cylindrical cavity (about 45µm in diameter and 

25µm in depth) which was filled with different mixtures of enzyme and redox mediator 

powders (1:1 weight ratio), using the electrode as a pestle [23]. Composite graphite discs 

containing enzyme and redox mediator were designed by mechanical compression with 
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graphite particles [17]. Electrical contact was made through a platinum wire stuck by carbon 

paste glue. 

 

2.3. Electrochemical measurements 

All measurements were performed using an Autolab PGSTAT 30. A platinum wire and a SCE 

were used as counter and reference electrodes, respectively. Electrochemical measurements 

were performed at 25°C in HEPES buffer (0.025 mol L-1, pH 7.2) containing NaCl 

(0.15 mol L-1) and glucose (5.5 10-3 mol L-1). Solutions of D-glucose were prepared 24 h 

before experiments. The performance of the BFCs was examined by immersing the two 

bioelectrodes in a one-compartment cell. The BFC power (Pcell) was measured using linear 

sweep voltammetry at 1 mVs-1. 

 

3. Results and discussion 

3.1. Electrocatalytic evidence of O2 reduction at TTF/PPO-based electrodes 

With the aim of suppressing the release of redox mediators and hence the use of an additional 

membrane at the biocathode surface, the electrical wiring of PPO, which has a formal 

potential of 0.30 V/ SCE [24], by poorly soluble redox mediators as ferrocene, syringaldazine, 

and tetrathiafulvalene (TTF) was examined. Firstly, the electrochemical behavior of these 

three mediators was evaluated by cyclic voltammetry with CME filled with redox mediator 

(Fig. 1A) by scanning the positive region first. As shown on Figure 1, the E1/2 values of these 

mediators are 0.203 V/SCE (ΔEp = 0.153V), 0.208 V/SCE (ΔEp = 0.065 V), and 

0.165 V/SCE (ΔEp = 0.273 V) for ferrocene, syringaldazine, and TTF, respectively. The E1/2 

value of syringaldazine is close to the potential of syringaldazine immobilised onto a 

hydrophobic porous silicate-carbon heterogeneous structure [25]. These results show the 

possibility of using poorly soluble mediators to insure the connection of PPO to electrode the 
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TTF giving the larger currents even if its half wave potential is slightly lower than that of the 

other two.  

The efficiency of the PPO connection to syringaldine, ferrocene and TTF was then 

investigated with CME filled with enzyme–redox mediator mixtures. Cyclic voltammograms 

were recorded with these modified CMEs in the presence and the absence of oxygen. For 

instance, Fig. 1B displays the electrochemical behaviour of a CME filled with a TTF/PPO 

mixture (ratio 1:1). Under argon, a peak system composed of an anodic peak at 0.25 V/SCE 

associated to a cathodic peak at 0.06 V/SCE was attributed to the reversible oxidation of TTF 

to TTF+. In O2-saturated condition, the anodic peak relative to the TTF oxidation decreases 

while the cathodic peak increases. This catalytic phenomenon was ascribed to the formation 

of TTF+ generated during the electro-enzymatic reduction of O2 highlighting thus the efficient 

electrical wiring of PPO. The comparison of the different electrochemical behaviours 

indicates that TTF was the best candidate for establishing a stable electrical communication 

between PPO and the electrode. The PPO/TTF system was therefore investigated for the 

fabrication of compressed graphite electrodes. 

On the linear sweep voltammogram from 0.15 V/SCE to -0.25 V/SCE for a compressed 

graphite-TTF-PPO electrode, a cathodic peak appears at -0.12 V/SCE (Fig. 2A). It was 

attributed to the reduction of TTF+ generated during the enzymatic reduction of O2. In 

addition, the same experiments performed with pressed graphite electrodes containing PPO or 

TTF show no reduction peak in this potential range, thus corroborating the efficient PPO 

wiring by TTF inside the graphite disc.  

Finally, the operational stability of the bioelectrode was investigated by keeping the 

biocathode immersed in physiological conditions and determining its performance daily, via 

the bioelectrode polarisation. It appears that the open circuit potential (OCP) is stable for 28 

days (141  3 mV/SCE) while the Ilim value (recorded at -0.1 V/SCE) remains stable for 22 

days and then decreases to 57% of its initial value after 28 days (Fig. 2B). 
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3.2. Electrocatalytic glucose oxidation at PQ/GOx-Catalase-based electrodes 

As direct transfer between GOx and an underlying electrode is difficult or not possible 

[26,27], in a similar way, the GOx wiring by 9,10-phenanthrenequinone, 1,4-naphtoquinone, 

and duroquinone was examined by cyclic voltammetry with CME. As described before for 

cathodic mediators, the anodic mediators have been characterised by cyclic voltammetry 

(figure 3A) with CME filled with respectively 9,10-phenanthrenequinone (PQ) (curve a) 1,4-

naphtoquinone (curve b), and finally duroquinone (curve c) by cycling the negative potentials 

first. The E1/2 measured are respectively -0.208 V/SCE (ΔEp = 0.164 V), -0.22 V/SCE (ΔEp = 

0.160 V), and -0.045 V/SCE (ΔEp = 1.150 V). Currents for the three mediators are all of the 

same order of magnitude, PQ being the mediator with the lowest E1/2. To evaluate the 

electrocatalytic effect of GOx, Fig. 3B shows for example the cyclic voltammograms 

recorded at a CME filled with PQ/GOx mixture in absence and presence of glucose. Without 

substrate, an ill-defined cathodic peak appears at -0.290 V/SCE attributed to the reduction of 

PQ, combined with an anodic peak at -0.164 V/SCE. In the presence of glucose (0.03 mol L-

1), the efficient wiring of GOx by PQ is illustrated by the simultaneous decrease of the 

cathodic charge and the increase of the anodic one. The following resulting mechanism is 

suggested : 

Glucose + GOx (FAD) → gluconolactone + GOx (FADH2) 

PQ + GOx (FADH2) →PQH2 + GOx (FAD) 

In the presence of glucose (5.5 × 10-3 mol L-1), the polarisation curve for a graphite-PQ-GOx 

disc shows an OCP of -0.175 V/SCE  (figure 4A) with a maximum anodic current intensity 

(202 µA) at 0.076 V/SCE. In contrast, OCP values for graphite, graphite-GOx and graphite-

PQ were in the positive region, confirming the GOx wiring by PQ (Fig. 4A).  
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The operational stability of the bioanode was also examined by soaking the bioanode 

continuously in a 5.5 × 10-3 mol L-1 glucose solution. After an initial stabilisation period, OCP 

and Ilim (recorded at +0.1 V/SCE) values remain remarkably stable for 120 days (Fig. 4B). 

 

3.3. Optimisation of biocathode and bioanode 

In order to design the optimum BFC configuration, the influence of graphite/mediator ratio or 

enzyme/mediator ratio on the bioelectrode performance was examined. Table 1 summarises 

the OCP and Ilim values recorded for the different bioelectrode configurations. It appears that 

O2 electro-reduction and glucose electro-oxidation currents were dependent on both ratios. It 

should be noted that the optimum value for Ilim was considered to be more important than the 

OCP value to determine the optimum configuration. For the bioanode, the importance of the 

choice of the ratio between carbon graphite and the mediator is also important. The influence 

of the proportion of PQ was measured for carbon /PQ ratios ranging from 95/5 to 33/66 (for a 

total mass of 100 mg) and for 3.3 mg of GOx (Table 1). Comparing the anodic polarisation 

curves of electrodes with several different mass ratios, it appears that the best performance is 

obtained for a ratio of 75/25 with a current of 44.6 µA at a potential of 66 mV. Once this 

parameter is set, the increase of the proportion of enzymes indicates that the value of current 

measured at the catalytic oxidation potential of PQ is proportional to the amount of enzyme 

immobilised on the electrode. So, 25 mg PQ and 13.2 mg GOx for 75 mg graphite constitute 

the optimum composition that corresponds to a molecular mediator/enzyme ratio of 600 

taking into account the price of enzymes for the production of the electrodes. 

As for the cathode, the influence of the proportion of TTF was measured for carbon/TTF 

ratios ranging from 25/75 to 98/2 (for a total mass of 100 mg) and 5 mg of PPO (Table 1). 

The catalytic effect of PPO on the TTF was measured for three different concentrations of the 

enzyme. The increase in this enzyme/mediator ratio induces a small increase (10 % for the 
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current) which is negligible. Thus, the optimum biocathode configuration was 5 mg TTF and 

5 mg PPO for 95 mg graphite that corresponds to a molecular mediator/enzyme ratio of 1500. 

 

3.4. Performance of the BFC under physiological conditions 

Fig. 5A shows the dependence of the current and the power as a function of the cell voltage in 

aqueous solution (pH 7.2) containing 5.5 ×10-3 mol L-1 of glucose. OCP reached 0.32 V and 

the maximum power density, calculated from the polarization curve, was 40.8 µWcm-2 at 

0.2 V of the cell voltage. It should be noted the good correlation between the BFC 

performances determined by cyclic voltammetry at 1 mVs-1 and calculated from the 

chronopotentiometric curves (Fig. 3A) as previously reported [28]. The relatively low power 

output is due to the weak operating voltage of the cell, which is mainly due to the biocathode 

potential induced by TTF. Although the TTF potential was less positive than those used in 

other biocathodes [29, 30], its hydrophobic character reinforces the stability of the biocathode. 

As expected, the BFC stability (25 days) is in good agreement with the stability of each 

bioelectrode measured separately. 

Compared to the previously fabricated biofuel cells [17], by changing the mediators at both 

electrodes, performances of the biofuel cell have been improved; the open circuit potential 

shifted from 0.246 V to 0.320 V in association with an increase of the power output by a 

factor of 13.5. 

The operational stability of the BFC was investigated by recording the cell voltage as a 

function of time for constant current discharges from 10 to 50 µA (Fig. 5B). As expected, the 

cell voltage decreases with an increase of the discharge current. For a current of 50 µA, the 

cell voltage drops to 45 % of its initial value over 2 minutes whereas for a 10 µA discharge, 

only a slow decrease of the voltage (9%) is observed, illustrating the potentialities of this 

BFC.  
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Conclusion 

Herein, we have reported the original use of cavity microelectrodes for the choice of the redox 

mediators able to connect enzymes for BFC. The combination of PPO and TTF led to a 

biocompatible biocathode for oxygen reduction. Its association with a bioanode based on GOx 

and 9,10-phenanthrenequinone provided a BFC able to operate under physiological conditions 

and hence be used for implantation in living tissues. It is expected that this easy screening tool 

and fabrication procedure for enzyme electrodes will facilitate the development of a new 

generation of biofuel cells. 
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Table 1: Electrochemical characteristics of bioelectrodes immersed in aqueous solutions 

mimicking the physiological fluids and exhibiting various graphite/mediator/enzyme loadings. 

Mediators were 9,10-phenanthenequinone (PQ) at the anode and tetrathiafulvalene (TTF) at 

the cathode. Enzymes were GOx and catalase at the anode and PPO at the cathode.  

 

Fig. 1: A- Cyclic voltammograms recorded at 100 mV s-1 at a carbon CME filled with (a) 

ferrocene, (b) syringaldazine, (c) tetrathiafulvalene immersed in a buffered aqueous solution.  

B- Cyclic voltammograms recorded at 100 mV s-1 at a carbon CME filled with a TTF/PPO 

1:1 mixture and immersed in a buffered aqueous solution under an argon (line) or O2 (dots) 

atmosphere.  

 

Fig.2: A- Polarization curves of compressed graphite electrodes: graphite (line), graphite/TTF 

(dashes), graphite/PPO (dots) and graphite /TTF/PPO (red dots) at 1 mV s-1. B- Stability of 

OCP (circles) and Ilim at -0.1 V/SCE (squares) values obtained for a biocathode. There is an 

uncertainty of ± 3 mV for E and ± 2µA for I . 0.15 mol L-1 NaCl, 0.025 mol L-1 HEPES (pH 

7.2, 20 °C). 

 

Fig. 3: A- Cyclic voltammograms recorded at 100 mV s-1 at a carbon CME filled with (a) 

9,10-phenanthenequinone (b) 1,4 naphtoquinone (c) duroquinone immersed in a buffered 

aqueous solution. B- Cyclic voltammograms recorded at 100 mV s-1 at a carbon CME filled 

with a PQ/GOx 1:1 mixture and immersed in a buffered aqueous solution in presence (dots) or 

absence (line) of glucose (0.03 mol L-1).  

 

Fig.4: A- Polarization curves of compressed graphite electrodes: graphite (line), graphite/PQ 

(dashes), graphite/GOx (dots) and graphite/PQ/GOx (blue dots) at 1 mV s-1. B- Stability of 

OCP (circles) and Ilim at +0.1 V/SCE (squares) values obtained for a bioanode. There is an 

uncertainty of ± 3 mV for E and ± 2µA for I. Buffered aqueous solution (pH 7.2, 20°C) 

containing 0.15 mol L-1 NaCl, 0.025 mol L-1 HEPES and glucose (5.5 10-3 mol L-1) for 

polarization curves and stability experiments. 

 

Fig. 5: A- Polarization curve obtained at 1 mVs-1 for a BFC (line) based on graphite 

/TTF/PPO and graphite/PQ/GOx discs and dependence of the power output as a function of 

the current. Dotted values (triangle and cross) correspond to chronopotentiometric 

determination. Potential values (cross) measured after 120 seconds of constant current 

discharges in the range 10-50 µA. B- Evolution of the BFC voltage as a function of time for 
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constant current discharges from 10 to 50µA. Experimental conditions: aqueous solution (pH 

7.2, 20°C) containing NaCl (0.15 mol L-1), HEPES (0.025 mol L-1) and glucose (5.5 × 10-3 

mol L-1). 
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Table 1  

Electrode Mediator (mg) Enzymes (mg) OCP (V) 

Value ± 
0.003 V 

Ilim (A) 

66 3.3 - 1.6 -0.059 5.0± 0.1 

50 3.3 - 1.6 -0.067 12.7± 0.2 

25 3.3 - 1.6 -0.112 44.6± 0.3 

10 3.3 - 1.6 -0.1390 34.1± 0.2 

5 3.3 - 1.6 -0.080 22.3± 0.2 

0 3.3 - 1.6 0.104 - 

25 6.6 - 3.2 -0.175 95.9± 0.8 

25 13.2 - 6.4 -0.168 191± 2 

 
 
 

bioanode 
(Mediator: PQ 

Enzymes: GOx - 
Catalase) 

25 19.8 - 9.6 -0.163 215± 2 

75 5 0.117 -35.9± 0.2 

50 5 0.111 -62.7± 0.6 

25 5 0.111 -81.2± 0.7 

10 5 0.129 -118 ± 1 

5 5 0.130 -151± 2 

2 5 0.149 -118± 1 

0 5 0.090 -4.0± 0.1 

10 10 0.129 -130± 2 

 
 
 

biocathode 
(Mediator: TTF 
Enzyme: PPO) 

10 2.5 0.124 -109± 2 
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Fig. 1 
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Fig. 2 
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Fig.3  
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Fig. 4 
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Fig. 5 
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