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Efficient Motion Planning of Highly Articulated Chains using Physics-based
Sampling

Russell Gayle1, Stephane Redon2, Avneesh Sud1, Ming C. Lin1, and Dinesh Manocha1

(Video Included)

Abstract— We present a novel motion planning algorithm
that efficiently generates physics-based samples in a kinemati-
cally and dynamically constrained space of a highly articulated
chain. Similar to prior kinodynamic planning methods, the
sampled nodes in our roadmaps are generated based on
dynamic simulation. Moreover, we bias these samples by using
constraint forces designed to avoid collisions while moving
toward the goal configuration. We adaptively reduce the com-
plexity of the state space by determining a subset of joints
that contribute most towards the motion and only simulate
these joints. Based on these configurations, we compute a valid
path that satisfies non-penetration, kinematic, and dynamics
constraints. Our approach can be easily combined with a
variety of motion planning algorithms including probabilistic
roadmaps (PRMs) and rapidly-exploring random trees (RRTs)
and applied to articulated robots with hundreds of joints.
We demonstrate the performance of our algorithm on several
challenging benchmarks.

I. I NTRODUCTION

Highly articulated robots, such as snake or serpentine
robots, with many degrees of freedom (DoFs) have received
considerable attention recently [1], [2], [3]. Chirikjian and
Burdick first introduced the term hyper-redundant robots to
describe such robots with a very high number of DoFs [4],
[5]. Snake-like robots can serve as suitable alternatives over
traditional robotic systems for difficult terrains and challeng-
ing scenarios. These include search and rescue missions in
complex urban environments, planetary surface exploration,
minimally invasive surgery, or inspection of piping and
cabling. Highly articulated robots also have many applica-
tions in homeland security and national defense, as well as
enabling inspection of ships, containers and other structures
with narrow, tight workspace. Many computational biology
algorithms also model the molecular chains as articulated
models with hundreds or thousands of links.

Randomized motion planning research has made great
strides toward providing planning solutions in high di-
mensional configuration spaces. These include probabilis-
tic roadmaps (PRMs) and rapidly-exploring random trees
(RRTs), which can solve complex problems with dozens
of DoFs [6], [7]. However, they rely upon randomization
to map or explore the configuration space, their perfor-
mance can degrade considerably for robots with much higher
dimensionality (e.g. hundreds or thousands) [8]. First, it
would be extremely expensive to compute representative
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samples of the configuration space. Moreover, if the result-
ing motion needs to maintain other kinematic or dynamics
constraints, this requirement further complicates the problem
since many planners only consider geometric constraints like
non-penetration. For instance, consider the motion generated
by a either a PRM or RRT. In most variations of these meth-
ods, the links are typically generated asstraight-linepaths in
the configuration space using a local planner and only take
into account geometric constraints (e.g. collision avoidance).
Thus, even if the samples themselves are physically-based
and the intermediate configurations are collision-free, they
may not satisfy kinematic constraints. On the other hand, if
the motion generated was completely physically-based, the
path would be more realistic.
Main Results: We present an efficient physics-based motion
generation scheme for highly articulated robots, particularly
in a serial linkage, or chain-like configuration. We use
a dynamics-based motion planning framework to generate
samples and bias the search direction. Our framework ex-
ploits the coherence between neighboring joints to attempt to
reduce the dimensionality of the problem through the use of
“adaptive forward dynamics”. Based on motion metrics, we
prioritize the joints to determine which ones capture the ma-
jority of the motion of the chain. Adaptive forward dynam-
ics takes advantage of this formulation by only simulating
these joints which effectively produce motion in a reduced
dimension and results in improved efficiency. Moreover, we
discuss the validity and usability of the resulting solution
when compared to earlier planners for the same robots. We
demonstrate the application of our planner on several highly
articulated robots consisting of300 to 2500 single degree of
freedom joints. Each local sampling using adaptive dynamics
for these robots takes on average a few milli-seconds. We
have observed up to one order of magnitude performance
improvement using our approach as compared to sampling
with full dynamics.

Some of the main characteristics of our motion generation
method are:
• Physically-based: We take into account forward dy-

namics of articulated joints during motion planning, in
addition to the geometric constraints including collision
detection, contact handling, kinematic constraints, etc.

• Efficiency: We perform lazy dynamics update and
achievesub-linear running time performance in terms
of DoFs when some of the joints do not move much.

• High DoF robots: Our algorithm can simulate the
forward dynamics and plan the path for a robot with



very high DoFs in nearly real time, using a progressive
refinement framework.

The remainder of the paper is organized as follows.
Section II briefly surveys prior work in this area. Section
III introduces our notation and gives an overview of our
approach. Section IV gives details of our motion planning
algorithm. We describe our results and highlight its perfor-
mance on different benchmarks in Section V.

II. RELATED WORK

There is a rich body of literature on both motion planning
for highly articulated (or hyper-redundant robots) and on
sampling methods to improve the quality and performance
of sample-based planners. We briefly discuss related work
here.

A. Articulated Body Motion Planning

In general, much of the existing work in motion planning
can be applied to articulated chains. In fact, this is a special
case of the more general planning problem for branched or
closed loop articulated bodies. For an overview on robot
motion planning, we refer the readers to [9], [10], [11].

The simplest algorithms for articulated models are based
on randomized motion planning. Most notably, Probabilistic
Roadmaps (PRMs) have achieved a great deal of success
in solving multiple-query motion planning problems [6].
For single-shot, or single-query, problems, Rapidly-exploring
Random Trees (RRTs) have the potential to grow into
unexplored regions of space [7]. These have been extended
in a number of ways to perform well for objects that are
similar to articulated chains, such as pipes, cables, ropes,
and flexible wires [12], [13], [14], [15], [16], [17]. Another
approach is to determine the principal components using
statistical methods to reduce the dimensionality of such a
high DoF configuration space [18]. Also, Barraquand et.
al used potential fields with random walks for high-dof
articulated robots [19]. However, many of these algorithms
do not consider the kinematic or dynamics constraints related
to these types of structures.

Several algorithms take into account kinematics informa-
tion to aid in generating samples for PRM-based planners
[20], [21], [22]. However, these approaches are targeted to-
wards closed loop linkages and do not take contact responses
such as friction into account.

B. Kinodynamic Planning

While more deterministic solutions have been proposed for
kinodynamic motion planning, these approaches typically do
not scale well to high DOF robots [23]. Many authors have
also proposed randomized kinodynamic planners based on
PRMs [24] and RRTs [25]. Like their C-space analogues,
the performance depends upon the dimensionality of the
state space. Alternatively, Ladd and Kavraki pose a tree-
based kinodynamic solution where the path segments are the
samples rather than states [26].

C. Sampling Strategies for Motion Planning

The problem of sample generation for various planning
strategies has received a considerable amount of attention.
Several extensions have been proposed for PRMs. For in-
stance, visibility information can be used to generate and
store fewer samples [28]; medial-axis based sampling [29],
[30], [31] and sampling near the obstacle boundaries [32] can
help in dealing with narrow passages. Gaussian weighting
can aid to place samples where they would reveal most
information about an environment [33].

With respect to RRTs, the standard algorithm already
performs extra biasing [7] or try to build more optimal trees
[34]. Dynamic domains are used to improve expansions in
RRT [36].

III. OVERVIEW

In this section, we formalize the notation used throughout
the paper and introduce the main ideas behind our work.

A. Dynamics Simulation

Our intended application of this work is an articulated
chain, where actuators may exist to control the internal joints.
However, the ideas presented in this paper are also applicable
to rigid as well as branching articulated structures.

Multi-body systems and forward dynamics are central
to simulation of an articulated robot. We make use of a
simplified articulated model, much like that proposed by
[38], in order to reduce the dimensionality of the con-
figuration space. An impulse-based contact determination
and response algorithm for adaptive forward dynamics was
described by [39]. Other physical constraints on the joints
can be efficiently simulated throughanalytical constraints
[40]. These are the necessary components to ensure realistic
samples for our algorithm. Due to space limitations, we refer
the reader to a recent survey on multi-body simulation [41]
for more details.

Our articulated robot is represented using Featherstone’s
recursive definition of an articulated body; an articulated
body is composed of two other articulated bodies that are
connected through aprincipal joint (See Fig 1).

At the base level, we have a set ofn rigid bodies. For
simplicity, we define our joint primitives to be 1-degree of
freedom (DoF) revolute joints. More complex 2-DoF revolute
joints can be added in a standard way. A rigid body,bthin ,
with zero (or sufficiently small) width is placed between each
pair of bodies,bi and bi+1. A standard 1-DoF joint will
connectbi and bthin , and another 1-DoF joint rotated90
degrees about the center of the chain will connectbi+1 and
bthin .

We then represent the entire articulated body and its
state at time t as A(t) = {B,J ,q(t), q̇(t)}, where
B = {b1, b2, . . . , b2n−1} are the rigid bodies,J =
{j1, j2, . . . , j2n−2} are the joints,q(t) is a vector of length
2n − 2 of joint positions, andq̇(t) is a vector of length
2n− 2 of joint velocities at timet. To build the articulated
body, pairs of bodies are connected via principal joints from
the bottom up, following the recursive definition. The robot’s



Fig. 1: Construction of an articulated body. An articulated body
A is connected to bodyB at the principal joint,j2, to form body
C. The assembly tree forC is shown beneath the body. Forces and
accelerations which governC’s motion are shown.

principal joint is then the middle joint along the linkage. This
process forms anassembly tree(See Fig. 1).

Given this construction, Featherstone derives motions of
equations that have the same recursive structure, given an
external force acting upon the body. Most importantly,

â1

â2

...
âm

 =


Φ1 Φ12 · · · Φ1m

Φ21 Φ2 · · · Φ2m

...
...

. . .
...

Φm1 Φm2 · · · Φm




f̂1
f̂2
...

f̂m

 +


b̂1

b̂2

...
b̂m

 ,

(1)
where âi is the 6 × 1 spatial acceleration of linki, f̂i is

the 6× 1 spatial force applied to linki, b̂i is the6× 1 bias
acceleration of linki (the acceleration linki would have if
all link forces were zero),Φi is the6×6 inverse articulated-
body inertia of link i, andΦij is the 6 × 6 cross-coupling
inverse inertia between linksi and j.

With these motion equations, standard numerical integra-
tion techniques such as Euler’s method or various Runge-
Kutta schemes can be used to determine the next state of the
system. For complete dynamics simulation, it is necessary
to determine how the body responds to interactions with the
environment. Standard techniques use analytical constraints
and impulse-based dynamics [42], [40].

B. Articulated Chain Planning

Randomized planning algorithms such as PRMs and RRTs
have recently been popular due to their success in a wide
range of applications and in high-dimensional configuration
spaces, orC-spaces. For highly articulated robots, the per-
formance of these planners is dictated by the dimensionality
of the configuration space; a large number of samples are
needed to adequately cover or explore the space.

C. Planning in state-space

We use kinodynamic planning which generates realistic
motions and paths. Specifically, we incorporate both the
kinematic and dynamics constraints directly into planning;
by working in a state space, or phase space. This state
space maintains the physical state of the robot, often its
configuration augmented by trajectory information. However,

the kinodynamic planning problem is often considered much
more difficult since state spaces are typically at least twice
the dimensionality of configuration spaces; for each element
in configuration space, at least an associated velocity is
typically required. Like configuration-space planners, the
complexity for the problem lies mainly in the dimensionality
of this space.

D. Sample Generation

The goal of our sampling algorithm is to improve sampling
quality, as well as planning performance, when compared to
prior approaches. We create a system which efficiently gen-
erates joint samples in a directed search direction. Samples
are built off one another using integration methods like that
of state-space RRTs [25]. Rather than randomly sampling
in state or configuration space and moving in that direction,
we use workspace distance information in order to generate
forces which direct the growth. The ideas behind biasing
forces are similar to potential field method for a high-DoF
robot. This approach could also be used as the local planner
in a PRM or RRT situation, providing solutions even when
the configurations or states are relatively far apart. Each
step in the algorithm would require running time linear in
the number of joints. For extremely high-DoF robots (with
thousands of joints), this is a limiting factor.

To improve performance, we use an observation about the
robot. In highly articulated chains, it is known that added de-
grees of freedom actuallyconstrainthe configuration space.
For instance, in a “smooth” configuration, the position of
one joint has an influence on the position of the next joint
in the chain. Rather than treat every joint as an independent
degree of freedom, we allow certain joint angles to be fixed;
the bodies connected by this joint effectively become a rigid
body. Redon et al. [38] have shown how such ideas can be
applied to efficient, error-bounded simulation of multi-body
systems, calledadaptive forward dynamics. Gayle et al. 2006
[39] extended this model to include contacts and collisions.
We use this dynamics framework as the core of our sampling
algorithm.

IV. PHYSICS-BASED SAMPLING AND PATH

COMPUTATION

We seek to determine the usefulness of a biased physics-
based sampling strategy in the case of highly articulated
robots. We consider a “highly” articulated body that contains
hundreds to thousands of joints. For efficiency, we exploit
the coherence between joint angles via the adaptive foward
dynamics framework. Joints are first prioritized based upon
well-defined motion metrics. Then, only the most important
joints are simulated which effectively reduces the dimension-
ality of the search space. Potential bias forces are applied
to encourage movement towards a goal. In this section, we
describe our path generation and sampling algorithm.

A. Adaptive Forward Dynamics

Adaptive Forward Dynamics is used for computing the
new state given the current state and a set of forces and



torques acting upon the body. It is necessary for physically-
based motion and interactions with the environment.

1) Reduced Articulated Body Simulation:The simulation
is based on ideas from Adaptive Forward Dynamics [38] and
efficient impulse-based response [39]. Both methods utilize
joint coherence to simplify the problem. Depending on the
amount of motion a joint, or its associated subbody, generates
with respect to the entire body, adaptive foward dynamics
selects a subset of joints which to simulate. The remaining
joints are simulated with zero joint velocity; their joint angle
does not change and they are consideredrigidified. Once
a joint is rigidified, its entire subtree on the assembly tree
(described in Section III-A) behaves like a rigid body. With
respect to planning, this reduction is equivalent to planning
through state spaces of reduced dimensionality. Additionally,
the overall performance improves since the number of joints
to simulate is less than the total number of joints.

Forward dynamics of the reduced body mimics the steps
provided for Featherstone’s recursive Divide-And-Conquer
articulated body method [43]. The primary difference is
that the equations of motion have been modified to allow
rigidified subtrees. Since the subtrees behave like a rigid link,
recursion terminates at the root of a rigidified subtree nodes
in the subtree are not visited. This ensures a run-time that
is sub-linear in the number of joints. Due to the space limit,
we refer readers to [38] for the detailed approach.

2) Motion Metrics: Adaptive forward dynamics tracks
motion deviationthroughout the simulation. Motion devia-
tion metrics are defined as a function of the joint accelera-
tions,q̈, and joint velocitieṡq for a subtree. For an articulated
body,C, theacceleration metric valueand thevelocity metric
valueare given by

A(C) =
∑
i∈C

q̈T
i Aiq̈i V(C) =

∑
i∈C

q̇T
i Viq̇i.

whereAi and Vi, i ∈ C, are symmetric, positive definite
(SPD) weight matrices whose dimension isdJi

×dJi
, where

dJi is the number of degrees of freedom of jointJi. By using
1-DoF revolute joints, these result in simple scalar values.
The simplest choice of such matrices is the identity matrix.

Note that the metric is defined over an articulated body,
rather than for a specific joint. Each metric value then
describes the motion of the entire subtree rooted at that joint.
[38] shows how to evaluate the metric value without having
to compute the accelerations of joints inC.

3) Prioritization of Joints:The metric value quantifies the
amount of motion that would result by allowing the principal
joint to move. This provides two ways of reducing the
dimensionality, or number ofactive joints, of the articulated
robot. One option is to set a motion metric threshold and
ensure that the remaining motion is below this threshold. Or,
one can specify a desired degree-of-freedom for the chain,
and ensure that the most “important” joints are chosen in
sampling the configuration space. We determine this set using
a prioritized search through the joints.

Consider the case when a motion threshold,ε, is specified.
The goal would be to simulate a sufficient number of joints

such that the amount of totalremaining motion is below
ε. To do this, we traverse the assembly tree in a top down
manner, starting with the root of the tree. While the total
metric value in the queue is greater thanε, we pop off the
front joint, J , which will be simulated. Of the unexplored
joints, this one will result in the greatest motion. The metric
values of the children ofJ are then evaluated and placed on
the queue. This process is repeated until the total remaining
motion, determined by inspecting the queue, falls belowε.
In the case of a fixedn-DoF simplification, a similar process
is used. We evaluate the front elements in the queue untiln
joints have been popped off, each time replacing the front
node with its children.

4) Collisions: In order to compute accurate physically-
based responses, it is necessary to model collisions with the
environment. We use an impulse-based dynamics scheme that
has the same run-time complexity as the adaptive forward
dyanmics algorithm, [39].

The equations of motion for a robot in collision at an end
effector is given by,

q̈(t) = H−1(q(t))
[
Q(t)− C(q(t), q̇(t)) ˙q(t)−G(q(t))

]
+ JT (q(t))f̂(t),

whereH is the joint-space inertia matrix,C describes the
Coriolis forces in matrix form,G describes external forces
such as gravity,J is the Jacobian of the end effector,f̂ is
the external spatial force applied to the end effector, andQ
is a vector of the magnitudes of forces and torques being
applied by the joint actuators. Collisions at other points can
be computed by aggregating the forces and computing the
Jacobian at the contact location.

The complete impulse-based dynamics solution for this
situation requires several passes up and down the articulated
chain. [39] modifies this algorithm to make use of the
reduced articulated structure. They propose changes to the
algorithms coupled with aHybrid-Body Jacobianin order
to have a run-time asymptotically equivalent to that of
adaptive forward dynamics. This Jacobian is equivalent to
the Jacobian that would be computed if the articulated body
had rigid links in place of rigidified subtrees and is given by,

JP (q(t)) =


δx
δq1

. . . δx
δqdn

δy
δq1

. . . δy
δqdn

δz
δq1

. . . δz
δqdn


where P = (x, y, z), eachqi is an active joint, anddn is
number of active joints. Similarly, the response computed is
correct for the reduced rigid body.

B. Potential Forces

To encourage the system toward a goal, we generate
several types of constraint forces and torques. This has
the similar effect of a potential-field planner guiding a
robot towards a goal configuration. To avoid problems of
local minima in the “potential” well, additional forces are
introduced to ensure that the robot makes progress toward
its goal.



The first force is a repulsive force that helps to keep
the robot away from obstacles. If contact occurs with the
environment, impulse-based responses are applied to ensure
no penetration with obstacles. We can create simple limited
radius repulsive force based upon the distance to the link.
For each link, we apply a force

forceobi
(bj) =

{
−( δ2

d(bj ,obi)2
− 1)d̂ if d(bj , obi) < δ

0 otherwise
(2)

where δ is a distance threshold,d(bj , obi) is the distance
between rigid linkbj and obstacleobi, andd̂ is the direction
from bj to obi.

The second is an attraction force to the goal configuration.
This force can be applied to the entire body, a subset of links
or joints, or alternatively to a single node or joint such as
the end effector:

forcegoal(q) = wgoal
(qgoal − q)
‖qgoal − q‖

where wgoal is a goal node weight,qgoal is the goal
configuration.

To escape local minima, we use a thirdpath-following
force at the cost of generating a path for a point robot in
the workspace. This methodology works especially well in
situations where the end effector needs to reach a point,
and the configuration of the remainder of the robot is less
important as long as it is valid. The path following force
acts much like the goal attraction force, but instead uses a
configuration along the path on the way to the goal.

The fourth is a torque rather than a force. It encourages
the robot toward the desired goal configuration. This control
is implemented as a linear torsion spring acting on a joint:

torqueji
= −ks(qi − qgoal)− kdq̇i

whereks is the angular spring coefficient andkd is an angular
sprint damping coefficient.

C. Motion generation

The framework described here can be used in at least
two ways; either as a local planner when coupled with
some high-level randomized planner, or potentially as a way
to determine the entire path. Pseudocode for the sampling
algorithm is given in Algorithm 1.

The method begins by first intializing the robot,R, with
the starting configuration,qstart . If the robot is sufficiently
close to the goal configuration,qgoal , then the planner
has reached the goal. Otherwise, we apply the potential
bias forces to the robot. Next, The adaptive forward dy-
namics solver is used to determine the joint accelerations
and perform numerical integration in order to arrive at the
next sample. Finally, prioritization of the joints determines
which joints should be simulated; effectively reducing the
dimensionality of the problem.

This results in a path or path segment that maintains
kinematics and dynamics constraints at every intermediate

Input : RobotR, Starting configurationqstart , Goal
configurationqgoal , obstacleso1, . . . , on

Output : A path of robot states,S
Ri.q ← qstart ;
while d(Ri.q, qgoal ) > GoalReachedThresholddo

Add Ri to S;
Apply potential bias forces toRi;
/* Generate next sample */
Ri+1 ← AdaptiveDynamicsSolver(Ri);
/* Prioritization of Joints */
remainingMotion← A(Ri+1.treeRootNode);
PriorityQueueP.enqueue(Ri+1.treeRootNode);
nodeCount = 0;
while remainingMotion> motionThresholdand
nodeCount< numActiveNodesdo

n← P.front;
Mark n to be simulated;
P.enqueue(n.leftchild);
P.enqueue(n.righchild);
remainingMotion← Σni∈P A(ni);
nodeCount← nodeCount+1;

end
Ri ← Ri+1;

end

Algorithm 1 : Physically-based sampling and path computation

Fig. 2: Performance Table:

configuration. With the efficient forward dynamics algorithm,
we are able to compute this in a relatively small amount of
time. Other probabilistic planners would likely require sig-
nificantly more time or do not typically take both kinematics
and dynamics constraints into account.

V. RESULTS AND ANALYSIS

We implemented this algorithm on a Dell M60 Mobile
Workstation, with a2.1GHz Pentium M processor and1GB
of main memory.

A. Planning Results

We tested our algorithm on a number of benchmarks. In
each case, a highly articulated robot in a serial linkage must
navigate through an environment. The goal of the planning
is for the end effector to reach a certain position in the
workspace. The base links of the robot, including the thin
rigid bodies as described in Section III-A, are cylinders, each
represented by 20 triangular primitives.

• Serial Walls - This scenario is based on a benchmark
created by the Texas A&M Parasol Laboratory. A 300
joint articulated chain must travel through a sequence
of walls with holes. (See Fig. 4(a))



Fig. 4: Benchmark scenarios: (a) Serial Walls; (b) Tunnel; (c) Liver Catheterization; (d) Pipes; (e) Debris.

Fig. 3: Relationship between active joints and planning time for the
Serial Walls (300 DoF) and Tunnel benchmarks (600 DoF). The
horizontal line represents the time taken by using Featherstone’s
DCA algorithm. The values above it are the speed-ups over the
DCA algorithm when that many active joints are simulated.

• Tunnel - Also based on a benchmark created by the
Texas A&M Parasol Laboratory, the tunnel environment
requires a 600 joint articulated chain to move through a
tunnel. The tunnel has two right angle bends about half
way through the block. (See Fig. 4(b))

• Catheterization - This scenario is based upon a medical
procedure calledliver chemoembolization. A thin, flex-
ible catheter, modeled as a 2500-joint articulated robot,
must travel through a network of arteries. The goal is
to find a tumor in the liver for cancer treatment. (See
Fig. 4(c))

• Pipes- This situation represents an application of snake-
like robots in a pipe inspection task. The 2000-joint
robot supports itself by coiling around a pipe while
searching for a leak. The coiling behavior was encoded
into the goal attraction force. (See Fig. 4(d))

• Debris - In this case, the 2000-joint robot aids in
a search-and-rescue operation. The goal is to find an
opening into the debris pile and to seek a large, open
pocket where a survivor or important item may be
found, and then to plan a way out. (See Fig. 4(e))

Our sampling method was able to complete the task
without the explicit need to perform planning in the high-
dimensional configuration or state space. Planning perfor-
mance and sampling time using adaptive dynamics simula-
tion is given in Figure 2. We show results for a fixed number
of active joints that determine the reduced dimensionality
of the configuration space for the articulated body. The

fourth and fifth columns give the geometric complexity of
the robot and environment. And, the last two columns give
the total planning time followed by the average time it took
to generate samples en route to the goal.

As can be seen, our algorithm has very favorable perfor-
mance. Aside from the complexity of the environment and
robot, other factors that affect the performance include the
length of the path and any velocity constraints on the robot.
Longer paths or slow speeds will increase the time it takes to
reach a solution since the robot only travels a finite distance
for each step. We observed upto an order of magnitude speed
with 10% to 15% of the joints being active. Figure 3 shows
the speed-up over simply using Featherstone’s algorithm for
a fixed number of active joints. The video associated with
this work highlights the benefits of dimensionality reduction
in planning performance, and demonstrates results for the
pipes benchmark.

B. Motion Deviation Analysis

The effectiveness of the state space reduction is dependent
upon the allowed motion threshold. To get an idea of how
the motion affects dimension reduction, we tested various
threshold settings in the Serial Walls environment. We have
observed that by halving the motion metric threshold, the
dimensionality increases by 9% to 38%. Also, there were
certain threshold values which caused a much larger change
than others. This is likely due to the fact that even though we
reduce motion threshold, the current motion is close enough
to the actual motion that it requires a smaller threshold to
capture additional motion deviations. Since the total planning
time is closely related to the average dimensionality, we
noted that halving the threshold increased the planning time
by about 10% to 34%.

While accurate simulation is not a focus of this planning
work, we like to comment briefly on the kinematic and dy-
namics differences that results from the reduction. First, we
note that quantitatively, motion deviation metrics as defined
by adaptive dynamics is very difficult to interpret. Therefore,
we consider the joint angle difference between adaptive
dynamics and full dynamics simulation over the course
of a planning situation. Fig. 5 shows the joint difference
throughout the Serial Walls benchmark for varying amounts
of motion threshold. Since the difference is bounded on a
per time step basis, it has a tendency to slowly accumulate
over the course of the planning. But, the potential forces
help to reduce the total difference by ensuring that the robot



Fig. 5: Joint Angle Difference over Time - Each curve shows the
maximum joint error during the Serial Walls benchmark for a fixed
motion metric threshold.

follows roughly the same path regardless of the amount of
simplification. This accounts for some of the sharp drops
seen in the graph.

C. Discussion

There are several advantages and some disadvantages of
this method. It is able to perform physically-based local
planning in a high-DoF state space in a reasonable amount
of time. Its performance makes it a favorable choice as
a local planner for either PRM or RRTs to compute link
queries. However, as the distance between the start and goal
configuration increases, the time to find this path decreases.
Additionally, it is possible that this method may fail to find
a path, even if one exists. Although, in practice this has not
been a problem when adequate forces are applied to the robot
to escape local minima due to various constraints.

In the next subsections, we examine the resulting trajectory
generated by the various sampling criteria. Note that for
a highly articulated body of 300 joints the standard PRM
and RRT algorithms were not able to find a solution within
a suitable period of time. Thus, the following discussion
examines the trajectory if such a path was found.

1) Path Validity: We first mention that paths generated
by this algorithm are completely valid. Contact constraints
and forces ensure that no penetration occurs between the
robot and obstacles. When no dimension reduction occurs,
the generated solution will clearly adhere to kinematic and
dynamics constraints and joint angle limitations will not be
violated. When joints are rigidified, they were already in a
valid state and will remain that way if become active again.
Therefore, at any time instant, all the joints will be in a valid
configuration and the resulting path is valid.

2) Comparison with Configuration-Space Planners:For
randomizedC-space planners, we compare our method with
solutions that might be generated via PRMs or RRTs. It
should be noted that in most common implementations,
a robot travels between milestones along astraight-line
path. While this will yield valid results, it does not take
both kinematics and dynamics into account. Even when the
milestones themselves may be generated through kinematic

simulation, the intermediate states are likely not. Thus, the
quality of the resulting motion may not be as realistic,
though the computed solutions may be adequate to solve
the problem.

Arguably, if the space is more completely sampled by a
random kinematics based method, then the milestones would
be quite close. In that case, the motion generated by the
resulting path would be much better. But, sufficient sampling
of this space would not be practical.

In comparison, each configuration along a path generated
by our method will follow a simplified kinematics and
dynamics model. Thus, the resulting motion will look natural
with respect to how the world is modeled and the biasing
forces being applied.

3) Compared to state space planners:While determinis-
tic kinodynamic solutions exist for some simple problems,
many of these will not scale to the dimensionality of our
benchmarks. Therefore, one of the randomized kinodynamic
planners may be able to generate some solution. But, such
an approach is likely to take an extraordinary amount of
time and not practical. For instance, it took an RRT-based
kinodynamic planner on average over 10 minutes to compute
a path for just a rigid body in space (i.e. 12 DoF state
space) on an 800 MHz Pentium III computer with 256 MB
RAM [25]. While it would be much faster with current
computational resources, it also was a very simple model.

Again, in our solution the kinematics and dynamics are
modeled for a simplified model. Thus, while the resulting
motion may not be identical to the full kinodynamic solution,
it will not be much worse, assuming that we set a sufficiently
small motion threshold as can be seen in Fig. 5.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this work, we suggest and analyze the effectiveness
of a novel sampling approach or local planner for motion
planning of highly articulated chains. In particular, we see
that it generates results that respect kinematic and dynamics
constraints in a reduced-dimension configuration space. Our
method exploits the coherence between joint angles in order
to determine which joints have the greatest impact on the
overall motion. This method results in improved perfor-
mance, but may not be fully identical to a kinodynamic
solution. However, we argue that it offers better solutions
than a completely randomized approach in the configuration
space. Thus, our planning results fall between the configura-
tion space planners and kinodynamic planners. This reduced
model has direct applications to modular robots in which
certain segments simply maintain their current joint angle
rather than allowing it to change.

There are several directions for future research in the
area. Currently the planning is performed independently of
a high-level planner. It would be interesting to see if this
work would help a standard PRM or RRT planner in finding
a solution within a shorter period of time, or if it would
improve the overall quality of the generated motion. It would
also be interesting to see if other biologically behaviors can



be encoded by our solution, such as how to get the model
to move as a snake might.
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