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Efficient Motion Planning of Highly Articulated Chains using Physics-based
Sampling

Russell Gaylé, Stephane ReddnAvneesh Sufl Ming C. Lin!, and Dinesh ManocHa
(Video Included)

Abstract—We present a novel motion planning algorithm samples of the configuration space. Moreover, if the result-
that efficiently generates physics-based samples in a kinemati- jng motion needs to maintain other kinematic or dynamics
cally and dynamically constrained space of a highly articulated  qngiraints, this requirement further complicates the problem
chain. Similar to prior kinodynamic planning methods, the . ' . . . .
sampled nodes in our roadmaps are generated based on SINCE many p_Ianners _only consider geometrlc cqnstralnts like
dynamic simulation. Moreover, we bias these samples by using NONn-penetration. For instance, consider the motion generated
constraint forces designed to avoid collisions while moving by a either a PRM or RRT. In most variations of these meth-
toward the goal configuration. We adaptively reduce the com- ods, the links are typically generatedsigight-linepaths in
plexity of the state space by determining a subset of joints e configuration space using a local planner and only take

that contribute most towards the motion and only simulate . ¢ ¢ tri traint llisi id
these joints. Based on these configurations, we compute a valid into account geometric constraints (e.g. collision avoidance).

path that satisfies non-penetration, kinematic, and dynamics Thus, even if the samples themselves are physically-based
constraints. Our approach can be easily combined with a and the intermediate configurations are collision-free, they

variety of motion planning algorithms including probabilistic  may not satisfy kinematic constraints. On the other hand, if

roadmaps (PRMs) and rapidly-exploring random trees (RRTS) ; ; _
and applied to articulated robots with hundreds of joints. the motion generated Wgs_completely physically-based, the
path would be more realistic.

We demonstrate the performance of our algorithm on several . - . .
challenging benchmarks. Main Results: We present an efficient physics-based motion

generation scheme for highly articulated robots, particularly

|. INTRODUCTION in a serial linkage, or chain-like configuration. We use
. . . a dynamics-based motion planning framework to generate
Highly _artlculated robots, such as snake or serpeny mples and bias the search direction. Our framework ex-
robots, with many degrees of freedom (DoFs) have receiv oits the coherence between neighboring joints to attempt to

;ons?dlfr?ble_ attegtiondrer::ently [ﬂ’ [2], [3c]l. (ijhirikjiark; and e qyce the dimensionality of the problem through the use of
urdic Irst introduce _t e term yper-reaun ant robots tQadaptive forward dynamics”. Based on motion metrics, we
describe such robots with a very high number of DoFs [4

51 Snake-like rob itable al ) rioritize the joints to determine which ones capture the ma-
[5]. Snake-like robots can serve as suitable alternatives o J%rrity of the motion of the chain. Adaptive forward dynam-

traditional robotic systems for difficult terrains and challengz . {o1es advantage of this formulation by only simulating
INg scenaros. Thege include search and rescue MISSIONSHRse joints which effectively produce motion in a reduced
Co_”?p'ex ur_ban gnwronments, ple_inetary_ surface _e)_(plorat'oﬁimension and results in improved efficiency. Moreover, we
wm_mally Invasive surgery, or inspection of piping a_nddiscuss the validity and usability of the resulting solution
c_ablln_g. Highly art|culatgd robots a_lso have many appllca\ivhen compared to earlier planners for the same robots. We
tions n hpmeland securlt.y and natllonal defense, as well Femonstrate the application of our planner on several highly
er_1ab|mg msp_ectlon of ships, containers and qther Strucmrg?'ticulated robots consisting 800 to 2500 single degree of
with narrow, tight workspace. Many compl_JtatlonaI b_'OI()gyfreedom joints. Each local sampling using adaptive dynamics
algorithms also model the molecular chains as articulated . \ose robots takes on average a few milli-seconds. We
models with hundreds or thousands of links. have observed up to one order of magnitude performance

Randomized motipn p'a””ing, research has_ que grﬁﬂ{provement using our approach as compared to sampling
strides toward providing planning solutions in high di- i £yl dynamics.

mensional configuration spaces. These include probabilis-gome of the main characteristics of our motion generation
tic roadmaps (PRMs) and rapidly-exploring random treeg,aothod are:

(RRTs), which can solve complex problems with dozens
of DoFs [6], [7]. However, they rely upon randomization
to map or explore the configuration space, their perfor-
mance can degrade considerably for robots with much higher
dimensionality (e.g. hundreds or thousands) [8]. First, it
would be extremely expensive to compute representative

« Physically-based: We take into account forward dy-
namics of articulated joints during motion planning, in
addition to the geometric constraints including collision
detection, contact handling, kinematic constraints, etc.

« Efficiency: We performlazy dynamics update and
achievesub-linearrunning time performance in terms
1 . - _ of DoFs when some of the joints do not move much.

Department of Computer Science, University of North Carolina at . . . .

Chapel Hill, {rgayle,sud.lin,dr@cs.unc.edu « High DoF robo_ts. Our algorithm can simulate thg

2 INRIA Rhone-Alpes, France, stephane.redon@inria.fr forward dynamics and plan the path for a robot with



very high DoFs in nearly real time, using a progressiv€. Sampling Strategies for Motion Planning

refinement framework. The problem of sample generation for various planning
The remainder of the paper is organized as fonowss_trategies has _received a considerable amount of attentipn.
Section |l briefly surveys prior work in this area. Sectionsever":1I e_Xt.en.S'OnS have.been proposed for PRMs. For in-
[l introduces our notation and gives an overview of outance, visibility information can be. used to gener_ate and
approach. Section IV gives details of our motion plannin tore fewer sampleg [28]; medial-axis based Sa”.‘p"”g [29],
algorithm. We describe our results and highlight its perfor 30], [_31] anq sampllng near the obstacle bound_arles [3.2] can
mance on different benchmarks in Section V. help in dealing with narrow passages. Gaussian weighting

can aid to place samples where they would reveal most

information about an environment [33].

With respect to RRTs, the standard algorithm already

There is a rich body of literature on both motion planningyerforms extra biasing [7] or try to build more optimal trees
for highly articulated (or hyper-redundant robots) and of34]. Dynamic domains are used to improve expansions in
sampling methods to improve the quality and performancrRT [36].
of sample-based planners. We briefly discuss related work

Il. RELATED WORK

here. 1. OVERVIEW
In this section, we formalize the notation used throughout
A. Articulated Body Motion Planning the paper and introduce the main ideas behind our work.

In general, much of the existing work in motion planninga. Dynamics Simulation
can be applied to articulated chains. In fact, this is a special Our intended application of this work is an articulated

case of the more general planning problem for branched 8F1ain, where actuators may exist to control the internal joints.

clos-ed loop grtlculated bodies. For an overview on rObqllowever, the ideas presented in this paper are also applicable
motion planning, we refer the readers to [9], [10], [11]. rigid as well as branching articulated structures.

. . . t
The simplest algorithms for articulated models are base8 Multi-body systems and forward dynamics are central
on randomized motion planning. Most notably, Probablllstuf0 simulation of an articulated robot. We make use of a

_Roadm_aps (PR.MS) have achi_eved a gTeat deal of SUCCGé%plified articulated model, much like that proposed by
n sqlvmg mulhple-_query motion planning pr_oblems [6_]' 38], in order to reduce the dimensionality of the con-
For single-shot, or single-query, problems, Rapldly-explonnéguraﬂon space. An impulse-based contact determination

Randolm ;’reeg (RR1f's) have7th_(|a_hpoteﬂtial LO grow int nd response algorithm for adaptive forward dynamics was
unexplored regions of space [7]. These have been exten cribed by [39]. Other physical constraints on the joints

in @ number of ways to perform well for objects that ar&an be efficiently simulated througdnalytical constraints

Sm;”:r t_(t))laru(_:ulateldz chiusns, 1S4UCh1§S TGpes,l;:ak;I\es, hrOpE{ﬁO]. These are the necessary components to ensure realistic
and fiexi ?W“es[ ] .[ J [14], [ ] [16], [17]. Another samples for our algorithm. Due to space limitations, we refer
- : . ) "We reader to a recent survey on multi-body simulation [41]
statistical methods to reduce the dimensionality of such Rr more details

h:gh D(;’F ctonf'{l'gl[lr?tlizjn sp'?rc]:e [12]' AIso,IkBafrraqu‘J.arrlld deft. Our articulated robot is represented using Featherstone’s
al used potential Tields with rahdom walks 1or nigh-0okq ., rsive definition of an articulated body; an articulated
articulated robots [19]. However, many of these algorithm

. X ) . ; dy is composed of two other articulated bodies that are
do not consider the kinematic or dynamics constraints relat% nnected through principal joint (See Fig 1)
to these types of structures. y

| alaorith ke i K L At the base level, we have a set ofrigid bodies. For
Several algorithms take into account kinematics Inform""s’implicity, we define our joint primitives to be 1-degree of

tion to aid in generating samples for PRM-based plannefs,qyom (DoF) revolute joints. More complex 2-DoF revolute
[20], [21], [22]. Hovyever, these approaches are targeted tﬂiints can be added in a standard way. A rigid boldy,.,
wards closed loop linkages and do not take contact respon§gsy, ;erq (or sufficiently small) width is placed between each
such as friction into account. pair of bodies,b; and b;,1. A standard 1-DoF joint will
connectb; and by, and another 1-DoF joint rotate@D
degrees about the center of the chain will conriect and
While more deterministic solutions have been proposed f@éx,;,, .

kinodynamic motion planning, these approaches typically do We then represent the entire articulated body and its
not scale well to high DOF robots [23]. Many authors havetate at time ¢ as A(t) = {B,J,q(t),q(t)}, where
also proposed randomized kinodynamic planners based 6n = {b1,bs,...,b2,-1} are the rigid bodies,J =
PRMs [24] and RRTs [25]. Like their C-space analogues|ji, jo, ..., jon—2} are the jointsq(t) is a vector of length
the performance depends upon the dimensionality of tt — 2 of joint positions, andq(t) is a vector of length
state space. Alternatively, Ladd and Kavraki pose a tre@n — 2 of joint velocities at timet. To build the articulated
based kinodynamic solution where the path segments are thedy, pairs of bodies are connected via principal joints from
samples rather than states [26]. the bottom up, following the recursive definition. The robot’s

B. Kinodynamic Planning



the kinodynamic planning problem is often considered much
more difficult since state spaces are typically at least twice
the dimensionality of configuration spaces; for each element
in configuration space, at least an associated velocity is
typically required. Like configuration-space planners, the
complexity for the problem lies mainly in the dimensionality
of this space.

D. Sample Generation

g The goal of our sampling algorithm is to improve sampling
@ @ @ @ quality, as well as planning performance, when compared to
Assembly TreeforC prior approaches. We create a system which efficiently gen-
erates joint samples in a directed search direction. Samples

jgls %Oﬁr?ggtté‘écig’gocg agt ?Ltécu'ﬁ‘;i? glo'ccj))i/htA‘n ?gi‘t?gr';tegogc’dyare built off one another using integration methods like that
C. The assembly tree fgt is shovr\)/n be%ee{th tHJeQi:)ody. Forces énd,Of state-space ,RRTS, [25]. Rather than. ran'domly s.amplllng
accelerations which gover@’s motion are shown. in state or configuration space and moving in that direction,
we use workspace distance information in order to generate

principal joint is then the middle joint along the linkage. Thisforces which direct the growth. The ideas behind biasing

process forms anassembly tre¢See Fig. 1). forces are similar to potential field method for a high-DoF
Given this construction, Featherstone derives motions obbot. This approach could also be used as the local planner

equations that have the same recursive structure, given gg PRM or RRT situation, providing solutions even when

external force acting upon the body. Most importantly, the configurations or states are relatively far apart. Each

a P, By - Py, £ by step in the algorithm would require running time linear in
a By Dy - By £, b the number of joints. For extremely high-DoF robots (with

: = : : ) : N . » thousands of joints), this is a limiting factor.
é;n <I>;n1 <I>;nz <I>.m f;n BI To improve performance, we use an observation about the

T(”l) robot. In highly articulated chains, it is known that added de-

where 4, is the 6 x 1 spatial acceleration of link, f; is 9rees of freedom actuallgonstrainthe configuration space.
the 6 x 1 spatial force applied to link, b; is the6 x 1 bias  FOr instance, in a “smooth” configuration, the position of
acceleration of linki (the acceleration link would have if ©One joint has an influence on the position of the next joint
all link forces were zero)®; is the6 x 6 inverse articulated- N the chain. Rather than treat every joint as an independent
body inertia of linki, and ®,; is the 6 x 6 cross-coupling degree of freedom, we allow certain joint angles to be fixed;
inverse inertia between linksand ;. the bodies connected by this joint effectively become a rigid

With these motion equations, standard numerical integr@0dy. Redon et al. [38] have shown how such ideas can be
tion techniques such as Euler's method or various Rung@Pplied to efficient, error-bounded simulation of multi-body
Kutta schemes can be used to determine the next state of g¥Stems, calleddaptive forward dynamic$ayle et al. 2006
system. For complete dynamics simulation, it is necessafg9] extended this model to include contacts and collisions.
to determine how the body responds to interactions with thé/e use this dynamics framework as the core of our sampling
environment. Standard techniques use analytical constraif§orithm.

and impulse-based dynamics [42], [40]. IV. PHYSICS-BASED SAMPLING AND PATH

B. Articulated Chain Planning COMPUTATION

Randomized planning algorithms such as PRMs and RRTsWe seek to determine the usefulness of a biased physics-
have recently been popular due to their success in a widk@sed sampling strategy in the case of highly articulated
range of applications and in high-dimensional configuratiorobots. We consider a “highly” articulated body that contains
spaces, olC-spaces. For highly articulated robots, the perhundreds to thousands of joints. For efficiency, we exploit
formance of these planners is dictated by the dimensionalithe coherence between joint angles via the adaptive foward
of the configuration space; a large number of samples agéynamics framework. Joints are first prioritized based upon

needed to adequately cover or explore the space. well-defined motion metrics. Then, only the most important
o joints are simulated which effectively reduces the dimension-
C. Planning in state-space ality of the search space. Potential bias forces are applied

We use kinodynamic planning which generates realistito encourage movement towards a goal. In this section, we
motions and paths. Specifically, we incorporate both thdescribe our path generation and sampling algorithm.
kinematic and dynamics constraints directly into planning; ) )
by working in astate spaceor phase spaceThis state A Adaptive Forward Dynamics
space maintains the physical state of the robot, often its Adaptive Forward Dynamics is used for computing the
configuration augmented by trajectory information. Howevenew state given the current state and a set of forces and



torques acting upon the body. It is necessary for physicallpuch that the amount of totaémaining motion is below
based motion and interactions with the environment. e. To do this, we traverse the assembly tree in a top down
1) Reduced Articulated Body Simulatiofhe simulation manner, starting with the root of the tree. While the total
is based on ideas from Adaptive Forward Dynamics [38] anohetric value in the queue is greater thanwe pop off the
efficient impulse-based response [39]. Both methods utilieont joint, J, which will be simulated. Of the unexplored
joint coherence to simplify the problem. Depending on thgoints, this one will result in the greatest motion. The metric
amount of motion a joint, or its associated subbody, generatealues of the children of are then evaluated and placed on
with respect to the entire body, adaptive foward dynamicthe queue. This process is repeated until the total remaining
selects a subset of joints which to simulate. The remainingotion, determined by inspecting the queue, falls betow
joints are simulated with zero joint velocity; their joint angleln the case of a fixed-DoF simplification, a similar process
does not change and they are considergitified. Once is used. We evaluate the front elements in the queue antil
a joint is rigidified, its entire subtree on the assembly trepints have been popped off, each time replacing the front
(described in Section IllI-A) behaves like a rigid body. Withnode with its children.
respect to planning, this reduction is equivalent to planning 4) Collisions: In order to compute accurate physically-
through state spaces of reduced dimensionality. Additionallased responses, it is necessary to model collisions with the
the overall performance improves since the number of joinsnvironment. We use an impulse-based dynamics scheme that
to simulate is less than the total number of joints. has the same run-time complexity as the adaptive forward
Forward dynamics of the reduced body mimics the stegdyanmics algorithm, [39].
provided for Featherstone’s recursive Divide-And-Conquer The equations of motion for a robot in collision at an end
articulated body method [43]. The primary difference Effector is given by,
tha_lt _t_he equations (_)f motion have been modified t_o_all_ow i) = H ' (q(t) [Q) — Cq(t), 4(t))q(t) — G(q(t))]
rigidified subtrees. Since the subtrees behave like a rigid link, - R
recursion terminates at the root of a rigidified subtree nodes +J7 (q(t) f(1),

in the subtree are not visited. This ensures a run-time thafhere 77 is the joint-space inertia matrix;’ describes the
is sub-linear in the number of joints. Due to the space limitgqyiglis forces in matrix form( describes external forces
we refer readers to [38] for the detailed approach. such as gravity,/ is the Jacobian of the end effectdf,is

2) Motion Metrics: Adaptive forward dynamics tracks he external spatial force applied to the end effector, @nd
motion deviationthroughout the simulation. Motion devia- i 5 vector of the magnitudes of forces and torques being
tion metrics are defined as a function of the joint acceleraa-pp"ed by the joint actuators. Collisions at other points can

tions,q, and joint velocitiegy for a subtree. For an articulated po computed by aggregating the forces and computing the
body,C, theacceleration metric valuand thevelocity metric  j5copian at the contact location.

valueare given by The complete impulse-based dynamics solution for this
A(C) = a7 A, 4, V(O — Vi, situation requires several passes up and down the articulated
(©) iechl 4 (©) iechl 4 chain. [39] modifies this algorithm to make use of the

. _ . . reduced articulated structure. They propose changes to the
where A; and V;, i € C, are symmetric, positive definite 5144 ithms coupled with alybrid-Body Jacobiarin order
(SP,D) weight matrices whose d|menS|ord1§.>§dJi, whgre to have a run-time asymptotically equivalent to that of
d,, is the number of degrees of freedom of joibt By using  54aptive forward dynamics. This Jacobian is equivalent to

1-DoF revolute jqints, these resu.It in .simple. scallar Va'“?%he Jacobian that would be computed if the articulated body
The simplest choice of such matrices is the identity matriX,,q rigid links in place of rigidified subtrees and is given by,
Note that the metric is defined over an articulated body,

rather than for a specific joint. Each metric value then (% aiff
describes the motion of the entire subtree rooted at that joint. _ 3y oy
X . ) Jp(q(t)) = o e
[38] shows how to evaluate the metric value without having 5 Idn
to compute the accelerations of joints@h Sq1 7 Oqa,

3) Prioritization of Joints: The metric value quantifies the where P = (z,y,z), eachg; is an active joint, andl,, is
amount of motion that would result by allowing the principalnumber of active joints. Similarly, the response computed is
joint to move. This provides two ways of reducing thecorrect for the reduced rigid body.
dimensionality, or number dctivejoints, of the articulated ]
robot. One option is to set a motion metric threshold an- Potential Forces
ensure that the remaining motion is below this threshold. Or, To encourage the system toward a goal, we generate
one can specify a desired degree-of-freedom for the chaisgveral types of constraint forces and torques. This has
and ensure that the most “important” joints are chosen ithe similar effect of a potential-field planner guiding a
sampling the configuration space. We determine this set usingbot towards a goal configuration. To avoid problems of
a prioritized search through the joints. local minima in the “potential” well, additional forces are

Consider the case when a motion threshelds specified. introduced to ensure that the robot makes progress toward
The goal would be to simulate a sufficient number of jointsts goal.



The first force is a repulsive force that helps to keep Input: RobotR, Starting configuration;,,;, Goal
the robot away from obstacles. If contact occurs with the configurationg,.,;, obstacles, ..., o,
environment, impulse-based responses are applied to ensur®utput: A path of robot statesS
no penetration with obstacles. We can create simple limited
radius repulsive force based upon the distance to the link
For each link, we apply a force

Ri-q — QStr_Lrt;
“while d(R".q, ggoa:) > GoalReachedThresholdio

Add R' to S;
Apply potential bias forces t&’;
force,, (b;) = _(d(b;?%iﬁ —1)d if d(bj, 0b;) <9 I*  Generate next sample . */
obi\%) =N o otherwise R*! — AdaptiveDynamicsSolver(R");
[*  Prioritization of Joints */

)

where§ is a distance thresholdi(b;, Obil is the distance
between rigid linkb; and obstacleb;, andd is the direction
from b; to ob;.

remainingMotion— A(R**!.tree Root N ode);
PriorityQueueP.enqueueR ‘! .treeRootNode);
nodeCount = 0;

The second is an attraction force to the goal configuration. ~ While remainingMotion> motionThresholdand
This force can be applied to the entire body, a subset of links ~ nodeCount< numActiveNodeso

or joints, or alternatively to a single node or joint such as n « P.front; )
the end effector: Mark n to be simulated;

P.enqueuet.leftchild);

(dgoal — Q) ‘P.enqueuef.righchild);
force goq1(@) = Wyoar [Qgoar — remainingMotion— %,,.cp A(n;);
. . . nodeCount— nodeCount+1;
where wgoq iS a goal node weightgg.. is the goal end
configuration. Ri — RitL:
To escape local minima, we use a thipath-following end

force at the cost of generating a path for a point robot in
the workspace. This methodology works especially well in
situations where the end effector needs to reach a point
and the configuration of the remainder of the robot is lessoe feaons 1= .
important as long as it is valid. The path following force

Algorithm 1: Physically-based sampling and path computation

Active Joints Sim. Time (s) | Avg. Step Time (s)
0.0008

0.003

0.0071

0.0064

0.0059

Tunnel 600 150 72 12000 66.92
acts much like the goal attraction force, but instead uses g =2heter {259 20 Soose | Soodo Ltext
. R Pipes 2000 200 38146 40000 193.6
configuration along the path on the way to the goal. Debris | 2000 s 296 |40000 [ 1573
The fourth is a torque rather than a force. It encourages
the robot toward the desired goal configuration. This control

is implemented as a linear torsion spring acting on a joint: ) . ) o . .
configuration. With the efficient forward dynamics algorithm,

we are able to compute this in a relatively small amount of
time. Other probabilistic planners would likely require sig-
nificantly more time or do not typically take both kinematics
and dynamics constraints into account.

Fig. 2: Performance Table:

torqueji = 7k's (Qh - qgoal) - de1

wherek, is the angular spring coefficient akg is an angular
sprint damping coefficient.

C. Motion generation

The framework described here can be used in at least . . ] .
two ways; either as a local planner when coupled with We implemented this algorithm on a Dell M60 Mobile
some high-level randomized planner, or potentially as a wafforkstation, with &.1GHz Pentium M processor andB
to determine the entire path. Pseudocode for the samplif§ main memory.
algorithm is given in Algorithm 1.

The method begins by first intializing the rob@, with
the starting configurationy,.,. If the robot is sufficiently ~ We tested our algorithm on a number of benchmarks. In
close to the goal configurationy,,,;, then the planner each case, a highly articulated robot in a serial linkage must
has reached the goal. Otherwise, we apply the potentidvigate through an environment. The goal of the planning
bias forces to the robot. Next, The adaptive forward dyis for the end effector to reach a certain position in the
namics solver is used to determine the joint acceleratioféorkspace. The base links of the robot, including the thin
and perform numerical integration in order to arrive at théigid bodies as described in Section llI-A, are cylinders, each
next sample. Finally, prioritization of the joints determinedepresented by 20 triangular primitives.
which joints should be simulated; effectively reducing the « Serial Walls - This scenario is based on a benchmark
dimensionality of the problem. created by the Texas A&M Parasol Laboratory. A 300

This results in a path or path segment that maintains joint articulated chain must travel through a sequence
kinematics and dynamics constraints at every intermediate of walls with holes. (See Fig. 4(a))

V. RESULTS AND ANALYSIS

A. Planning Results



PN

(@ (b)

Fig. 4: Benchmark scenarios: (a) Serial Walls; (b) Tunnel; (c) Liver Catheterization; (d) Pipes; (e) Debris.

400 : : fourth and fifth columns give the geometric complexity of
as0l ) the robot and environment. And, the last two columns give
46 32 24 21x 1.5 / the total planning time followed by the average time it took

300F  Tunnel DCA to generate samples en route to the goal.

250 As can be seen, our algorithm has very favorable perfor-

2200 mance. Aside from the complexity of the environment and
Fogg 50 34 20 14 1 Tunnel Adaptive robot, other factors that affect the performance include the
walis DCA length of the path and any velocity constraints on the robot.
100 yd Longer paths or slow speeds will increase the time it takes to
50- Walls Adaptive 1 reach a solution since the robot only travels a finite distance
O for each step. We observed upto an order of magnitude speed
0 100 200 300 400 500 600

Active Joints with 10% to 15% of the joints being active. Figure 3 shows
Fig. 3: Relationship between active joints and planning time for théhe speed-up over simply using Featherstone’s algorithm for
Serial Walls (300 DoF) and Tunnel benchmarks (600 DoF). Tha fixed number of active joints. The video associated with
horizontal line represents the time taken by using Featherstonetpis work highlights the benefits of dimensionality reduction

DCA algorithm. The values above it are the speed-ups over thg yanning performance, and demonstrates results for the
DCA algorithm when that many active joints are simulated. .
pipes benchmark.

o Tunnel - Also based on a benchmark create_d by th%. Motion Deviation Analysis
Texas A&M Parasol Laboratory, the tunnel environment . o
requires a 600 joint articulated chain to move through a The effectiveness of the state space reduction is dependent
tunnel. The tunnel has two right angle bends about hafPon the allowed motion threshold. To get an idea of how
way through the block. (See Fig. 4(b)) the motion affects dimension reduction, we tested various

« Catheterization - This scenario is based upon a medicafhreshold settings in the Serial Walls environment. We have
procedure callediver chemoembolizatiomA thin, flex- ©observed that by halving the motion metric threshold, the
ible catheter, modeled as a 2500-joint articulated roboflimensionality increases by 9% to 38%. Also, there were
must travel through a network of arteries. The goal jgertain threshold values which caused a much larger change
to find a tumor in the liver for cancer treatment. (Sedhan others. This is likely due to the fact that even though we
Fig. 4(c)) reduce motion threshold, the current motion is close enough

« Pipes- This situation represents an application of snakd® the actual motion that it requires a smaller threshold to
like robots in a pipe inspection task. The 2000-joinf@pture additional motion deviations. Since the total planning
robot supports itself by coiling around a pipe whilelime is closely related to the average dimensionality, we
searching for a leak. The coiling behavior was encodeoted that halving the threshold increased the planning time
into the goal attraction force. (See Fig. 4(d)) by about 10% to 34%.

. Debris - In this case, the 2000-joint robot aids in While accurate simulation is not a focus of this planning
a search-and-rescue operation. The goal is to find 44ork, we like to comment briefly on the kinematic and dy-
opening into the debris pile and to seek a large, opegmics differences that results from the reduction. First, we
pocket where a survivor or important item may belote that quantitatively, motion deviation metrics as defined
found, and then to plan a way out. (See Fig. 4(e)) by adaptive dynamics is very difficult to interpret. Therefore,

we consider the joint angle difference between adaptive

Our sampling method was able to complete the tastynamics and full dynamics simulation over the course

without the explicit need to perform planning in the high-of a planning situation. Fig. 5 shows the joint difference

dimensional configuration or state space. Planning perfothroughout the Serial Walls benchmark for varying amounts
mance and sampling time using adaptive dynamics simulaf motion threshold. Since the difference is bounded on a
tion is given in Figure 2. We show results for a fixed numbeper time step basis, it has a tendency to slowly accumulate
of active joints that determine the reduced dimensionalitgver the course of the planning. But, the potential forces
of the configuration space for the articulated body. Théelp to reduce the total difference by ensuring that the robot



Max Joint Angle Deviation over Time simulation, the intermediate states are likely not. Thus, the
quality of the resulting motion may not be as realistic,

0.5

Motion Metric Threshold though the computed solutions may be adequate to solve
0.005
oal  000s | the problem._ _
0.0001 Arguably, if the space is more completely sampled by a

random kinematics based method, then the milestones would
be quite close. In that case, the motion generated by the
resulting path would be much better. But, sufficient sampling
of this space would not be practical.
In comparison, each configuration along a path generated
by our method will follow a simplified kinematics and
0y T T T o 5000 6000 dynamics model. Thus, the resulting motion will look natural
Frame Number with respect to how the world is modeled and the biasing
Fig. 5: Joint Angle Difference over Time - Each curve shows théorCes being applied.
maximum joint error during the Serial Walls benchmark for a fixed 3) Compared to state space planneithile determinis-
motion metric threshold. tic kinodynamic solutions exist for some simple problems,
any of these will not scale to the dimensionality of our
fqllovyg rogghly the same path regardless of the amount enchmarks. Therefore, one of the randomized kinodynamic
S|mpl|f|cat|on. This accounts for some of the sharp dmpﬁlanners may be able to generate some solution. But, such
seen in the graph. an approach is likely to take an extraordinary amount of
time and not practical. For instance, it took an RRT-based
) kinodynamic planner on average over 10 minutes to compute
There are several advantages and some disadvantages, Oﬁath for just a rigid body in space (i.e. 12 DoF state
this method. It is able to perform physically-based |0ca§pace) on an 800 MHz Pentium Ill computer with 256 MB
planning in a high-DoF state space in a reasonable amoyghn [25]. While it would be much faster with current

of time. lts performance makes it a favorable choice asympuytational resources, it also was a very simple model.
a local planner for either PRM or RRTs to compute link again in our solution the kinematics and dynamics are

queries. However, as the distance between the start and gﬂﬂ!deled for a simplified model. Thus, while the resulting

configuration increases, the time to find this path decreasegyiion may not be identical to the full kinodynamic solution,

Additionally, it is possible that this method may fail to findj; \yi| not be much worse, assuming that we set a sufficiently
a path, even if one exists. Although, in practice this has n Imall motion threshold as can be seen in Fig. 5.
been a problem when adequate forces are applied to the robot

to escape local minima due to various constraints.

In the next subsections, we examine the resulting trajectory
generated by the various sampling criteria. Note that for In this work, we suggest and analyze the effectiveness
a highly articulated body of 300 joints the standard PRMf a novel sampling approach or local planner for motion
and RRT algorithms were not able to find a solution withimplanning of highly articulated chains. In particular, we see
a suitable period of time. Thus, the following discussiorthat it generates results that respect kinematic and dynamics
examines the trajectory if such a path was found. constraints in a reduced-dimension configuration space. Our

1) Path Validity: We first mention that paths generatedmethod exploits the coherence between joint angles in order
by this algorithm are completely valid. Contact constraintto determine which joints have the greatest impact on the
and forces ensure that no penetration occurs between ftheerall motion. This method results in improved perfor-
robot and obstacles. When no dimension reduction occummance, but may not be fully identical to a kinodynamic
the generated solution will clearly adhere to kinematic andolution. However, we argue that it offers better solutions
dynamics constraints and joint angle limitations will not behan a completely randomized approach in the configuration
violated. When joints are rigidified, they were already in apace. Thus, our planning results fall between the configura-
valid state and will remain that way if become active agairtion space planners and kinodynamic planners. This reduced
Therefore, at any time instant, all the joints will be in a validnodel has direct applications to modular robots in which
configuration and the resulting path is valid. certain segments simply maintain their current joint angle

2) Comparison with Configuration-Space Planneifor rather than allowing it to change.
randomized”-space planners, we compare our method with There are several directions for future research in the
solutions that might be generated via PRMs or RRTs. Hrea. Currently the planning is performed independently of
should be noted that in most common implementations, high-level planner. It would be interesting to see if this
a robot travels between milestones alongstaaight-line work would help a standard PRM or RRT planner in finding
path. While this will yield valid results, it does not takea solution within a shorter period of time, or if it would
both kinematics and dynamics into account. Even when thmprove the overall quality of the generated motion. It would
milestones themselves may be generated through kinemadiso be interesting to see if other biologically behaviors can

I
w

Maximum Deviation (rad)
o
)

o

C. Discussion

VI. CONCLUSION AND FUTURE DIRECTIONS



be encoded by our solution, such as how to get the modgel]
to move as a snake might.
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