
Memory repair architectures for high defect densities

Panagiota Papavramidou

To cite this version:

Panagiota Papavramidou. Memory repair architectures for high defect densities. Micro
and nanotechnologies/Microelectronics. Université Grenoble Alpes, 2014. English. <NNT
: 2014GRENT090>. <tel-01149045>

HAL Id: tel-01149045

https://tel.archives-ouvertes.fr/tel-01149045

Submitted on 6 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01149045

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE

Spécialité : Nano-Électronique et Nano-Technologies

Arrêté ministériel : 7 août 2006

Présentée par

Panagiota PAPAVRAMIDOU

Thèse dirigée par Michael NICOLAIDIS

préparée au sein du Laboratoire TIMA, Équipe ARIS
dans l'École Doctorale Électronique, Électrotechnique,
Automatique et Traitement du Signal

Architectures de réparation
des mémoires pour des hautes
densités des défauts

Thèse soutenue publiquement le 19 Novembre 2014,
devant le jury composé de :

Michel RENOVELL,
Directeur de Recherche CNRS, LIRMM, Président

Paolo, PRINETTO
Professeur, Politecnico di Torino, Rapporteur

Yervant, ZORIAN
Chief Architect, Synopsys US, Rapporteur

Emmanuel, SIMEU
Maître de conférences, Invité

Michel, NICOLAIDIS
Directeur de Recherche CNRS, TIMA, Directeur de thèse







ςς







i

Resumé

I Introduction, Stratégie, et Motivation

A cause d’une miniaturisation extrême, les technologies CMOS ultimes et post-CMOS seront

impactées par des densités des fautes de fabrication et de vieillissement très élevées, et seront en même

temps affectées par des densités de puissance dissipé et par de températures très élevées, nécessitant ainsi

des techniques de réparation, de tolérance aux fautes en ligne, et de faible consommation, très poussées.

Dans ce contexte, le développement d’une solution efficace pour l’autoréparation des grandes densités des

défauts devient d’importance capitale car elle permettra :

i. Réparer les grands nombres des fautes induites par la fabrication, et améliorer ainsi le

rendement de fabrication.

ii. Prolonger la vie du circuit en réparant les grands nombres de fautes induites par le

vieillissement au fur et à mesure de leur apparition.

iii. Disposant une technique d’autoréparation pour des densités des défauts bien plus élevées que

celles requises pour les fautes de fabrication et les fautes du vieillissement, permettra aussi de

réduire de façon drastique la puissance dissipée. En effet, dans ce cas nous allons pouvoir

réduire de façon agressive le niveau de la tension d’alimentation (Vdd) et réparer les cellules

qui deviendront défaillantes à cause de cette réduction. Grace à cette réparation, la mémoire

fonctionnera correctement à ce niveau de tension très bas, qui pourra être utilisé pendant

l’exécution de l’application afin d’obtenir une réduction drastique de la consommation (i.e.

proportionnelle au carrée de la réduction du Vdd).

iv. Restent finalement les problèmes de fiabilité induites par les fautes du vieillissement

survenant pendant l’exécution d’une application, lesquelles, à partir de leur apparition et

jusqu’à la prochaine séance de test/réparation, affecteront l’exécution correcte de

l’application. Disposant une technique d’autoréparation pour des densités des défauts encore

plus élevées que celles requises pour les trois classes des fautes prises en compte ci-dessous

(points i, ii, et iii), permettra de résoudre ce problème de fiabilité en testant la mémoire sous

des conditions bien plus contraignantes que les pires conditions (niveau de la tension

d’alimentation et vitesse de fonctionnement) pouvant être utilisées pendant l’exécution des

applications. En effet, ce test permettra de détecter et réparer préventivement (i.e. avant

qu’elles commencent à induire des erreurs dans l’application) les cellules qui ne sont pas

encore défaillantes mais pourraient potentiellement le devenir avant la prochaine séance de

test et réparation.

 ii

Les techniques d’autoréparation des mémoires sont utilisées actuellement pour l’amélioration du

rendement de fabrication, et accessoirement de la durée de vie. Ainsi, un premier apport de cette thèse

consiste à l’extension décrite ci-dessus des domaines d’application de réparation des mémoires, de façon à

résoudre un ensemble de problèmes plus vaste que d’habitude (i.e. pas seulement l’amélioration du

rendement de fabrication et l’augmentation de la durée de vie, mais aussi la réduction de la puissance

dissipée et l’amélioration de la fiabilité). Cette stratégie originale ouvre la possibilité de régler l’ensemble

des problèmes induits par la miniaturisation nanométrique par le seul biais de la réparation des mémoires

pour des grandes densités des défauts, et procure de cette façon une importance capitale aux efforts de

développement des techniques efficaces permettant ce type de réparation. Ceci et la motivation

fondamentale des travaux présentés dans cette thèse.

La seule technique connue permettant une réparation à faible coût des mémoires affectées par des

grandes densités des défauts, combine l’utilisation des codes ECC avec la réparation des mots contenant

des fautes multiples (« ECC-based memory repair » en anglais). Un deuxième apport de cette thèse consiste

à avoir montré que la technique de «ECC-based memory repair» perdait son intérêt à cause du coût très

élevé de la circuiterie de diagnostic des fautes. Nous mettons aussi en évidence un autre problème de

l’autoréparation qui se manifeste dans le cas des grandes densités des fautes. En effet, dans une mémoire

utilisant l’autoréparation, à chaque accès mémoire l’adresse courante est comparée avec toutes les adresses

nécessitant réparation. Pour des très grandes densités des défauts le nombre des cites défaillants devient très

grand, induisant un nombre de comparaisons très grand, et par conséquent une consommation importante

même dans le cas du «ECC-based memory repair» qui réduit de façon drastique le nombre des cites

nécessitant réparation.

Suite au constat de ces problèmes, mis en évidence par une analyse préliminaire présentée dans le

Chapitre 1 de cette thèse, les contributions de la thèse, présentées dans les Chapitres 2, 3, 4, 5, et 6,

consistent au développement d’une panoplie des solutions permettant leur résolution.

II Contributions

II.1 Algorithmes de Test des Mémoires pour l’approche de ECC-Based Repair

Le premier problème que nous avons traité concerne le coût élevé induit par la circuiterie de

diagnostic, nécessaire dans le cadre du ECC-based repair. Ce problème est du au fait que, l’approche du

ECC-based repair nécessite la localisation des mots mémoire contenant plus d’une cellule défaillante.

Néanmoins, les algorithmes existants de test des mémoires garantissent la détection de tous les fautes du

modèle cible, mais en cas de fautes multiples affectant le même mot mémoire, la détection de ces fautes

peut se faire dans des séquencés différentes de l’algorithme de test. Ainsi, au moment de chaque détection

d’une faute, il n’est pas certain qu’il n’y a pas d’autres fautes dans le même mot. Il devient ainsi nécessaire

de mémoriser dans une CAM les adresses de tous les mots défaillants et les positions de cellules

défaillantes, afin de pouvoir par la suite déterminer quels mots contiennent des fautes multiples. Mémoriser

tous les mots défaillants nécessite une CAM de diagnostic très large. Ainsi, la taille élevée de la CAM de

 iii

diagnostic élimine les gains en surface obtenus grâce à la forte réduction de la taille de la CAM de

réparation obtenue grâce au ECC-based repair.

Afin d’éliminer la CAM du diagnostic, dans le Chapitre 2 nous proposons une nouvelle famille

d’algorithmes de test que nous avons nommé SRDF (pour Single-Read Double-Fault detection), qui

garantissent la détection dans la même opération de lecture d’au moins deux des fautes affectant le même

mot mémoire. Ainsi il n’est plus nécessaire de mémoriser tous les mots défaillantes afin d’identifier les

mots comportant plusieurs cellules défaillantes, car chacun de ces mots est reconnu immédiatement lors

d’une opération de lecture. Grace à cette propriété, la CAM de diagnostic est complètement éliminée,

permettant la réduction drastique du coût en surface de ECC-based memory repair. Néanmoins, cette

propriété augmente exponentiellement le nombre des états défaillants qui doivent être pris en compte par

l’algorithme de test de la mémoire, et rend extrêmement complexe le développement de ce type

d’algorithmes. Malgré ces difficultés de taille, nous avons réussie notre pari en développant une approche

théorique (de loin la plus complexe dans toute l’histoire des algorithmes de test pour mémoires), permettant

de proposer des algorithmes de test vérifiant cette propriété et prouver leur validité.

Pour illustrer notre approche, nous avons considéré le model étendu des fautes de mémoire,

comprenant les fautes qui ne mettent pas en jeux des interactions entre cellules (single–cell FFMs), ainsi

que les fautes mettant en jeux des interactions entre deux cellules (double–cell FFMs), présentées dans les

tableaux I, et II suivant leur classification systématique proposée en [29]. Pour des raisons de compacité,

dans ces tableaux nous avons remplacé : l’état de la cellule «agresseur» (qu’il soit 0 ou 1) par a; et l’état de

la cellule «victime» (qu’il soit 0 ou 1) par v; et le symbole de transition de la cellule «victime» (qu’il soit 

or ) par .

Tableau I. Liste de single-cell FFMs Tableau II. Liste de two-cell FFMs

FFM Fault

Primitives

 # FFM Fault

Primitives

1 SF < v/



v /-> 1 CFst <a; v/



v /->

2 TF <



v wv/



v /-> 2 CFds:

3 WDF <vwv//-> 2.1 CFds(ra) <ra; v//->

4 RDF <rv//



v > 2.2 CFds(aw



a) <aw



a ; v//->

5 DRDF <rv//v> 2.3 CFds(awa) <awa; v//->

6 IRF rv/v/



v > 3 CFtr <a; vw



v /v/ - >

 4 CFwd <a; vwv // - >

 5 CFrd <a; rv//



v >

 6 CFdrd <a; rv//v >

 7 CFir < a; rv /v/



v >

Afin d’assurer la propriété SRDF nous avons développé plusieurs algorithmes de test. Pour ces

développements nous avons considéré des algorithmes de type March, car ils sont moins complexes en

termes de longueur du test, et aussi très réguliers et permettent ainsi une implémentation BIST (Built-In

Self-Test) peu couteuse.

Dans un premier temps nous avons développé l’algorithme March SRDF1, présenté dans la figure I,

et nous avons démontré qu’en exécutant cet algorithme pour chaque vecteur Vi d’un ensemble de vecteurs

 iv

“2-covering”
1
, assure cette propriété pour chaque faute double [f1, f2] telle que f1 et f2 appartiennent à

l’ensemble des fautes comprenant les single-cell FFMs et les two-cell FFMs des types CFst and CFds.

Figure I. March SRDF1

Dans le cas de nombreuses applications cette couverture de fautes sera insuffisante. Ainsi nous

avons aussi développé les algorithmes March SRDF3, March SRDF4, et March SRDF5 (montés dans le

figures II, III, et IV), et nous avons démontré que l’exécution de March SRDF3 pour un ensemble de

vecteurs “2-covering”, March SRDF4 pour un ensemble de vecteurs “4-covering”
2
, et March SRDF5 pour

un ensemble de vecteurs “3-covering”
3
, assure la propriété SRDF pour :

- 100% des fautes de multiplicité plus grande que 2.

- 99,97% des fautes de multiplicité égale à 2.

Figure B. March SRDF3

Figure C: March SRDF4

1
 Un ensemble de vecteurs binaires est appelé “2-covering” s’il applique sur chaque pair des positions tous les

combinaisons des valeurs binaires (c’est à dire les combinaisons 00, 01, 10, et 11).
2
 Un ensemble de vecteurs binaires est appelé “4-covering” s’il applique sur chaque combinaison de 4 positions

toutes les 16 combinaisons des valeurs binaires de 4 bits.
3
 Un ensemble de vecteurs binaires est appelé “3-covering” s’il applique sur chaque combinaison de 3 positions

toutes les 8 combinaisons des valeurs binaires de 3 bits.

M0 {(WVi);

M1 (RVi, W



V i , W



V i , R



V i , WVi, WVi);

 M11 M12 M13 M14 M15 M16

M2 (RVi, RVi, W



V i , W



V i , R iV , WVi, WVi) };

 M21 M22 M23 M24 M25 M26 M27

{(WVi);

 M0

(RVi, W iV , WVi, WVi, W iV , W iV , R iV);

 M11 M12 M13 M14 M15 M16 M17

(R iV , R iV , WVi, RVi, W iV , W iV , WVi, WVi)};

 M21 M22 M23 M24 M25 M26 M27 M28

(RVi, W iV , WVi, WVi, W iV , W iV , R iV);

 M11’ M12’ M13’ M14’ M15’ M16’ M17’

(R iV , R iV , WVi, RVi, W iV , W iV , WVi, WVi)}

 M21’ M22’ M23’ M24’ M25’ M26’ M27’ M28’

{(WVi);

(W iV , W iV ,

R iV);

 M11 M12 M13

 v

Figure IV: March SRDF5

Cette couverture de fautes est très élevée et devrait satisfaire la grande majorité d’applications.

Néanmoins, si une application exige une couverture de fautes plus élevée, nous avons proposé l’approche

suivante afin de protéger l’application pour le 0,03% des fautes doubles non-couvertes.

 Cette approche exploite le fait que les fautes non-couvertes sont doubles. Par consequent, ils

produisent des erreurs qui sont toujours détectables par le code ECC. Ainsi nous pouvons utiliser la

stratégie suivante : Si une des ces fautes affecte un mot de la mémoire et ce mot n’est pas identifiée de

contenir deux fautes par les algorithmes de test il reste non-réparée. Dans la suite si cette faute produite une

erreur double pendant l’exécution de l’application, elle sera détectée par le code ECC et sera réparée.

Néanmoins, cette stratégie pose le problème de fiabilité suivant. Si un “soft-error” affecte le mot contenant

le double faute avant que ce mot aurait produit une erreur double et soit détectée et réparée, une erreur

triple pourrait se produire. Comme cette erreur dépassé la capacité de détection du code ECC elle pourra

induire une défaillance dans l’application. Néanmoins, pour un produit qui contient une très large mémoire

de capacité de 100 Gbit et qui est affecté par une très grande densité de fautes de l’ordre de 10-3, nous

avons montré que la probabilité d’occurrence de ce type d’évènement pour l’ensemble de la durée de vie de

ce produit est égale à 7.1X10-8, et ceci est valable aussi grande qu’elle soit la durée de sa vie. Ainsi, sur 10

millions de ces produits, moins d’un produira une défaillance dans l’application pendant la totalité de la

durée de sa vie. Ce qui reste extrêmement faible.

 Les résultats d’évaluation de l’approche utimisant les algorithmes SRDF sont présentés dans les

tableaux III et IV.

 Le tableau III compare les coûts en surface et en consommation de la technique de réparation

conventionnelle avec les coûts de la technique du ECC-based repair utilisant des algorithmes de test de type

SRDF. Dans ce tableau, nous considérons un SOC ayant une capacité totale de mémoire de 9,75 Gbit. La

colonne 1 du tableau donne la densité des défauts considérée (correspondant à la probabilité d’une cellule

mémoire d’être défaillante), et la colonne 2 donne le nombre des SRAM embarquées sur lesquelles est

distribuée la capacité totale de mémoire de 9,75 Gbit. Les colonnes 3, 4, et 5 donnent les résultats pour la

réparation conventionnelle : la colonne 3 donne le nombre des mots de CAM nécessaires pour obtenir le

succès de réparation visé (i.e. 90%), et les colonnes 4 and 5 donnent les coûts en surface et en

consommation de puissance. Les colonnes 6, 7, tet 8 donnent les résultats pour l’approche de ECC-based

repair employant des algorithmes de test SRDF: la colonne 6 présente le nombre des mots CAM

nécessaires pour obtenir le succès de réparation visé (i.e. 90%), et les colonnes 7 et 8 donnent les coûts en

surface et en consommation de puissance.

Ces résultats montrent que l’approche proposée permet une réduction drastique coûts en surface et en

consommation de puissance.

{(WVi);

(W iV , W iV ,

R iV);

(WVi, WVi, RVi)}

 vi

Tableau III. Comparaison des coûts en surface et en puissance

Pf
Embed.

Mem

Conventional Repair ECC-based Repair

NCW %A %P NCW %A %P

10-4
300 3466 1.32 185.3 16 0.008 1.267

3000 402 1.27 67.90 6 0.028 1.297

3x10

-4

300 10285 3.93 532.9 83 0.036 5.337

3000 1121 3.46 177.9 17 0.078 3.676

10-3
300 35325 12.75 1629 720 0.249 39.56
3000 3693 13.49 581.5 98 0.344 17.56

Concernant la durée du test, pour une mémoire ayant des mots de 39-bits (32 bits des donnés et 7

bits de codage ECC), nous trouvons que la longueur des algorithmes SRDF (en nombre d’opérations de

lecture et d’écriture) est égale à 873 Nw, où Nw est le nombre des mots de la mémoire. Cette longueur est

46 fois plus large que la durée de l’algorithme de test conventionnel (i.e. non-SRDF) proposé à [31], qui est

un algorithme optimale pour les fautes données dans les tableaux I et II. Néanmoins, une comparaison

pertinente doit considérer la durée du test plutôt que sa longueur en nombre d’opérations. Cette durée

dépend aussi de la consommation des mémoires sous test.

Comme la consommation de puissance pendant une session de test et de réparation est plus grande

pour l’approche de réparation conventionnelle, sa durée de test est augmentée proportionnellement, car la

puissance maximale permissible dans le SoC va permettre de tester simultanément un nombre de mémoires

proportionnellement moindre. Ainsi, en utilisant les résultats de la consommation de puissance présentés

dans le tableau III, nous trouvons pour les algorithmes de test SRDF l’augmentation du temps de test

effectif présentée dans le tableau IV.

Dans ce tableau, la colonne 1 présente la densité des défauts, la colonne 2 présente le nombre des SRAM

embarquées sur lesquelles est repartie la capacité de mémoire totale de 9,75 Gbit; la colonne 3 donne la

consommation de puissance totale de ces mémoires embarquées pour l’approche de réparation

conventionnelle (i.e. la consommation de la SRAM sous réparation plus la consommation de la CAM de

réparation utilisée dans l’approche de réparation conventionnelle) divisée par la puissance de la SRAM; la

colonne 4 donne la consommation de puissance totale pour l’approche de ECC-based repair utilisant les

algorithmes de test SRDF (i.e . la consommation de la SRAM sous réparation plus la consommation de la

CAM de réparation utilisée dans l’approche de ECC-based repair) divisée par la consommation de la

SRAM; et la colonne 5 donne l’augmentation de la durée de test correspondante à l’approche de ECC-

based repair utilisant les algorithmes de test SRDF. Cette augmentation est déterminée par

46x(consommation de puissance totale dans l’approche de ECC-based repair)/(consommation de puissance

totale dans l’approche de réparation conventionnelle).

Tableau IV. Augmentation de la durée du test

Pf
#Embedded

Memories

Conventional

Repair

ECC-based

Repair

Total Power
Total

Power

Test-time

increase

10-4
300 2.85 1.013 16.35

3000 1.68 1.013 27.7

3x10-4
300 6.33 1.053 7.65

3000 2.78 1.037 17.15

10-3
300 17.29 1.395 3.71
3000 6.81 1.175 7.94

 vii

Nous observons que même dans le scenario de pire cas (i.e. pour Pf = 10-4 et pour 3000 mémoires

embarquées), dans lequel l’augmentation de la durée de test dans le tableau IV prend sa plus grande valeur

(27.7) et l’augmentation de la consommation de puissance pour l’approche de réparation conventionnelle

prend sa plus petite valeur (67.9% dans le tableau III), l’approche proposée est clairement plus attractive

étant donné que cette augmentation de puissance est complètement inacceptable. De plus, l’avantage de

l’approche proposée devient décisif pour des densités de défauts plus élevées. Ainsi, pour Pf = 10-3 et 300

mémoires embarquées, la durée de test est augmentée d’un facteur 3.71, qui est nettement préférable que

l’énorme augmentation de la consommation de puissance induite par l’approche de réparation

conventionnelle, qui est dans ce cas égale à 1629%. Aussi, l’augmentation en surface de 12.75% induite

dans ce cas par l’approche conventionnelle est très pénalisante. En effet, comme les mémoires occupent la

plus grande partie des SoCs modernes (plus que 90% de la surface du SoC dans la plupart des cas),

l’augmentation en surface de 12.75% induite par l’approche conventionnelle représente plus que 11.5% de

la surface totale du SoC.

II.2 Algorithm de Diagnostic Itérative pour ECC-based Memory Repair

Les algorithmes SRDF, présentés dans la section précédente, éliminent complètement la circuiterie

du diagnostic et réduisent ainsi drastiquement le coût en surface de l’approche de ECC-based repair.

Néanmoins, ces algorithmes augmentent la durée de test, car ils sont plus complexes que les algorithmes

conventionnels de test des mémoires. Ainsi, nous avons développé une approche alternative, décrite dans le

Chapitre 3, qui consiste à une technique originale de diagnostic itérative. Au lieu d’éliminer complètement

la CAM de diagnostic, comme le fait l’approche décrite dans la section précédente, cette technique réduit la

taille de cette CAM de la façon suivante : l’algorithme de test conventionnel est exécuté itérativement

plusieurs fois ; à chaque itération on diagnostique un sous-ensemble des mots mémoire défaillants (ceux

qu’ils sont stockées dans la CAM jusqu’au moment où elle est complètement remplie) ; à la fin de

l’itération courante on efface certains mots défaillants stockés dan la CAM afin de libérer de l’espace CAM

et pouvoir traiter des nouveaux mots défaillants lors de l’itération suivante.

Le premier défi de cette approche est le suivant : quand un mot défaillant est éliminée de la CAM

lors d’une itération, et il est détecté à nouveau lors d’une prochaine itération, des informations perdues lors

de son effacement peuvent induire un diagnostic erroné. Pour résoudre ce problème nous avons développé

un algorithme de diagnostic qui finalise le diagnostic de l’ensemble des mots défaillants mémorisés dans la

CAM lors de chaque itération, avant les effacer. Ainsi, nous effaçons des mots défaillants pour lesquels

nous avons vérifié de façon certaine qu’elles comportent une seule cellule défaillante.

Le deuxième défi de cette approche est le suivant : comment ignorer lors d’une itération les mots

défaillants effacés lors des itérations précédentes, étant donné que nous ne les connaissons pas (car nous ne

possédons plus des informations les concernant). Pour résoudre ce problème nous avons développé un

algorithme de diagnostic, qui commence à mémoriser des mots défaillants dans la CAM à partir du cycle

du test dans lequel nous avons stoppé d’ajouter dans la CAM des nouveaux mots défaillants lors de

l’itération précédente.

Finalement, afin de réduire la durée du test, nous n’exécutons pas à chaque nouvelle itération

l’algorithme de test depuis son début. Mais cette approche risque de masquer certaines fautes qui seraient

sensibilisées par des opérations appartenant à la partie non exécutée de l’algorithme de test. Pour résoudre

ce problème, nous montrons que la sensibilisation des fautes détectés lors d’une séquence d’un algorithme

 viii

de test peut être réalisée uniquement pendant cette séquence elle même ou pendant la séquence qui la

précède. Ainsi, à chaque nouvelle itération nous commençons l’exécution de l’algorithme de test à partir

de la séquence qui précède la séquence dans laquelle nous commençons à mémoriser des mots défaillants

dans la CAM. De cette façon nous réduisons la durée de test sans masquer des fautes.

Un autre défi majeur concerne l'évaluation de cette approche. Cette évaluation nécessite d'effectuer

un grand nombre d'injections de fautes, afin d'obtenir des résultats statistiquement significatifs, et simuler,

pour chacune de ces injections, la mémoire défaillante et le circuit de diagnostic en exécutant l'algorithme

du test et du diagnostic. Comme la simulation des fautes est un processus très gourmant en temps de calcul

(et c’est aussi le cas pour la simulation algorithmique des CAM), nous avons développé une approche

originale que nous appelons « pseudo-simulation de fautes », qui réduit considérablement le temps de

simulation tout en fournissant des résultats identiques à la simulation des fautes classique. Dans cette

approche, au lieu d’injecter des fautes dans la mémoire, nous injectons ce que nous avons appelé des

profiles de détection. Cette approche consiste à :

- Identifier les emplacements de détection de chaque faute dans l’algorithme de test (profile de

détection de la faute).

- Injecter de façon probabiliste ces profiles de détection dans les cellules de la mémoire, et créer

un tableau qui contient le résultat de cette injection.

- Développer un algorithme de «pseudo-simulation» qui simule le processus du diagnostique en

utilisant ce tableau. Afin d’éviter l’effort de développement de l’algorithme de «pseudo-

simulation» pour chaque algorithme de test des mémoires, nous avons développé un algorithme

générique qui prend en entrée l’algorithme de test de la mémoire et génère l’algorithme de

«pseudo-simulation» dédié à cet algorithme de test.

Comme l’approche de pseudo-simulation réduit le temps de simulation de façon drastique, nous

avons pu effectuer des campagnes intensives d’injection et simulation des fautes statistiques, permettant

d’obtenir des résultats statistiquement significatifs. En effet, pour chaque cas d’étude (capacité de SRAM,

de taille de CAM, et de densité des défauts) nous avons effectué 1000 campagnes d’injection des fautes et

de simulation. Les résultats sont présentés dans le tableau V.

Tableau V. Coûts en surface, en consommation, et en longueur de test

Pf #Emb Mem

Appr. 1

Non-ECC Repair

All

ECC Repair

Appr. 2
ECC-

Rep

Separate

CAM

Appr. 3
ECC-Rep.

CAM/2

Appr. 4
ECC-Rep

CAM/4

Appr. 5
ECC-Rep

CAM/6

%A %P %P %A %A #It %A #It %A #It

10-4

300 1.317 185.4 1.267 1.326 0.696 3.00 0.313 6.00 0.215 9.00

1000 1.195 96.06 1.185 1.211 0.619 3.00 0.330 6.05 0.236 9.01

3000 1.237 67.90 1.297 1.265 0.675 2.89 0.382 5.26 0.279 7.73

3x 10-4

300 3.933 533.0 5.337 3.969 2.158 3.00 1.029 6.00 0.703 9.00

1000 3.873 283.3 4.431 3.936 2.054 3.00 0.939 6.10 0.647 9.19

3000 3.459 177.9 3.676 3.537 1.818 3.00 0.967 5.90 0.679 8.39

10-3

300 12.75 1629 39.56 13.00 6.836 3.00 3.695 7.00 2.65 10.00

1000 13.07 913.9 24.18 13.36 7.337 3.00 3.586 6.88 2.50 10.00

3000 13.50 581.5 17.56 13.84 6.505 3.00 3.146 6.01 2.24 9.16

 ix

 Dans le tableau V, la colonne 1 donne les densités des défauts Pf que nous avons expérimenté.

Toutes les cas présentés concernent une capacité totale de 9,75 Gbit de SRAM, correspondant à un nombre

total de 250M mots x 39 bits par mot (32 data bits et 7 Hamming code bits). La capacité totale de 9,75 Gbit

est partitionnée en plusieurs mémoires embarquées distribuées dans un SoC. Nous avons considéré 3 cas

pour cette distribution : 300 mémoires embarquées ; 1000 mémoires embarquées; and 3000 mémoires

embarquées ; comme reporté dans la colonne 2 du tableau. Les colonnes 3 et 4 montrent les coûts en

surface et en puissance dissipée (en pourcentage de la surface et de la puissance de la mémoire sous-

réparation) pour la réparation conventionnelle.

Dans tous les cas du ECC-based repair, nous utilisons une CAM de réparation séparée de la CAM du

diagnostic. Ainsi, comme pendant l’exécution de l’application nous utilisons uniquement la CAM de

réparation qui est identique pour tous les cas de ECC-based repair, nous obtenons pour tous ces cas la

même consommation de puissance lors de l’exécution des applications. Ainsi, la colonne 5 donne le coût en

puissance dissipé pour tous les cas de ECC-based repair.

La colonne 6 donne le coût en surface pour l'approche utilisant une CAM de diagnostic de taille maximale

(i.e. sans les réductions obtenues quand on utilise l’approche du diagnostic itératif). Les colonnes 7 et 8

donnent le coût en surface et le nombre moyen des itérations de test, lorsque nous utilisons une CAM de

diagnostic ayant la moitié de la taille maximale. Les colonnes 9 et 10 donnent les mêmes paramètres

lorsque la CAM du diagnostic est un quart de la taille maximale. Les colonnes 11 et 12 donnent les mêmes

paramètres lorsque la CAM du diagnostic est un sixième de la taille maximale.

Dans le tableau V, nous observons que les coûts en surface et en puissance dissipée de la réparation

conventionnelle (appelée «Appr 1» dans le tableau), augmentent à peu près linéairement avec la densité de

défauts. Toutefois, le coût en surface est important mais pas énorme, alors que le coût en puissance dissipée

devient excessif.

 Notre approche utilisant une CAM de diagnostic séparée de la CAM de réparation (mentionnée

comme «Appr. 1» dans le tableau), mais qui n’utilise pas l’approche du diagnostic itératif (ce qui maximise

la taille de cette CAM), permet la réduction drastique de la consommation de puissance pendant l’exécution

des applications en comparaison avec l’approche de réparation conventionnelle. Aussi, cette approche

n’augmente pas la longueur du test (quoi que sa durée est quand même augmenté par cause de

l’augmentation de la puissance dissipée pendant la phase de test et réparation), mais son coût en surface est

élevé (similaire au cout de la réparation conventionnelle).

Le deuxième ensemble de nos approches (celles utilisant le diagnostic itératif – mentionnées «Appr.

3», «Appr. 4», et «Appr. 5» dans le tableau V), réalise la même réduction de la puissance dissipée pendant

la phase d’exécution des applications que l’approche mentionnée comme «Appr. 1» dans le tableau V. En

outre, il permet une réduction significative du coût en surface (en particulier pour les densités de défauts

élevées). Cette amélioration se fait au détriment de la longueur de test, puisque l'algorithme de test devra

être exécutée environ 3 fois pour le cas «ECC-repair CAM/2», 5 à 7 fois pour le cas «ECC-repair CAM/2»,

et 8 à 12 fois pour le cas «ECC-repair CAM/6», comme indiqué dans les colonnes étiquetées par #It, dont

les résultats sont obtenus par le biais de notre algorithme d’injection des fautes et de pseudo-simulation.

Notons cependant que, ces approches utilisent une CAM de diagnostic bien plus petite par rapport à

l’approche de réparation conventionnelle («Appr. 1» dans le tableau V), et par rapport à l’approche de

ECC-based repair utilisant un CAM de diagnostic séparée mais sans diagnostic itératif («Appr. 2» dans le

tableau V). Ainsi, pendant la phase du test et de diagnostic elles auront une dissipation de puissance

réduite.

 x

Tableau VI. Augmentation de la durée du test

Pf
#Embedded

Memories

Conventional

Repair

Appr. 3 ECC-

Rep. CAM/2

Appr. 4 ECC-Rep.

CAM/4

Appr. 5 ECC-Rep.

CAM/6

Test Power
Test

Power

Test-time

increase

Test

Power

Test-time

increase

Test

Power

Test-time

increase

10-4

300 2.85 1.99 2.01 1.47 3.09 1.33 4.20

1000 1.96 1.51 2.31 1.27 3.92 1.19 5.47

3000 1.68 1.36 2.34 1.18 3.69 1.13 5.20

3x10-4

300 6.33 3.92 1.86 2.43 2.30 1.99 2.83

1000 3.83 2.53 1.98 1.71 2.72 1.49 3.57

3000 2.78 1.93 2.01 1.49 3.16 1.33 4.01

10-3
300 17.29 9.74 1.69 5.69 2.30 4.32 2.50
1000 10.14 6.01 1.78 3.44 2.33 2.69 2.65
3000 6.81 4.07 1.79 2.47 2.18 2.01 2.70

Ce constat peut être exploitée afin de tester en parallèle dans le SoC un plus grand nombre de

mémoires et de réduire l'impact sur la durée du test. Ainsi, comme nous pouvons constater dans le tableau

VI, l'augmentation de la durée du test est plus petite que l'augmentation de sa longueur. En outre, comme le

coût en surface augmente linéairement avec la densité des défauts et comme les mémoires embarquées

occupent la plus grande partie des SoC modernes (plus de 90% de la surface dans la plupart des cas), le

coût en surface des approches «Appr. 1» et «Appr. 2» devient tout à fait indésirable. Par exemple, pour la

densité de défauts 10-3 le coût en surface est d'environ 13%, ce qui, dans un SoC dans lequel les mémoires

embarquées occupent plus de 90% de sa surface, entraîne un coût supérieur à 11,7% de la surface totale du

SoC. Ainsi, la réduction du le coût en surface obtenue par l'approche de diagnostic itérative est hautement

souhaitable.

L’approche du diagnostic itératif (présentée dans cette section), complémente l’approche décrite

dans la section précédente (utilisant des algorithmes de test du type SRDF), afin d’offrir au concepteur la

possibilité de faire des compromis entre le coût de test, le coût en surface, et le coût en puissance, et

pouvoir satisfaire au mieux ses contraintes en termes de ces coûts. En particulier nos résultats présentés

dans les tableaux III, IV, V et VI, montrent que l’approche utilisant les algorithmes de test du type SRDF

offre des meilleurs compromis des couts pour les plus grandes densités des défauts, tandis que l’approche

utilisant le diagnostic itératif offre des meilleurs compromis des couts pour des densités des défauts plus

modérées.

II.3 Architectures de Réparation à Basse Consommation

Les approches décrites dans les sections précédentes permettent des gains importants concernant les

coûts en surface et en puissance dissipée. Néanmoins, malgré sa réduction drastique, le coût en surface et

en consommation reste non négligeable. Ainsi, dans un contexte où la réduction de la puissance dissipée est

très recherchée, il devient important de réduire encore plus la consommation de puissance de nos

approches. Pour satisfaire ce prorogatif, nous proposons dans le chapitre 4 des architectures de réparation

originales qui permettent une réduction encore plus substantielle de la puissance dissipée.

 xi

Figure V. Architecture de réparation à basse consommation utilisant une mémoire Cache.

Dans les architectures de réparation conventionnelles, les mots nécessitant réparation (i.e. les mots

contenant plus qu’une cellule défaillante dans le cas du ECC-based repair) sont stockés dans une CAM, et

lors de chaque accès mémoire l’adresse courant est comparée avec l’ensemble des adresses stockées dans la

CAM. L’approche de ECC-based repair réduit drastiquement le nombre des mots stockés dans la CAM,

mais pour des grandes densités de défauts ce nombre reste non-négligeable. Ainsi, à chaque accès mémoire

un nombre de comparaisons non-négligeable est effectué, induisant une augmentation significative de la

Word 0

Word 1

Word T-1

Word T

Word T+1

Word 2T-1

Word N-T

Word N-T+1

Word N-1

Data 0
Data 1

Data K-1

Data R-1

Data K

Data K+1

Data 2K-1

Tag R-1

Tag K+1

Tag 2K-1

Tag 1

d + t address bits

d + t d

Memory to Repair Repair CACHE

t

Data BUS (m bits)

MUX

Data R-K+1

Data R-K

Tag R-K+1

Tag K-1

Tag K

Tag 0

Tag R-K

MB(0)

MB(1)

MB(V-1)

CB(0)

CB(1)

CB(V-1)

 xii

puissance dissipée. Pour faire face à ce problème, nous avons proposé une architecture de réparation

originale, qui partage l’espace d’adressage de la mémoire en plusieurs sous-espaces traités séparément.

Ainsi, à chaque accès mémoire, l’adresse courant est comparée avec un sous-ensemble des adresses

mémoire contenant des fautes multiples, réduisant de façon significative le nombre des comparaisons et la

consommation dissipée correspondante. De cette façon, en utilisant un découpage très fin, la consommation

de puissance est réduite de façon drastique. Cette architecture est présentée dans la figure V, et consiste en

l’utilisation d’une mémoire CACHE (set-associative Cache), à la place de la CAM de réparation, et serra

référée dans la suite comme architecture à Cache.

Figure VI. Architecture de réparation utilisant une CAM de débordement

Memory to Repair Repair CACHE

Data 0

Overflow

CAM

Data Q-1 Tag Q-1

Data 1

Tag 0

Data BUS (m bits)

MUX

t

hit t+d

hit

CB(V-1)

Tag R-K+1 Data R-

K+1

Tag R-1 Data R-1

Tag R-K Data R-K

CB(0)

Tag 1 Data 1

Tag K-1 Data K-1

Tag 0 Data 0

CB(1)

Tag K+1 Data K+1

Tag 2K-1 Data 2K-1

Tag K Data K

d + t address bits

d + t d

MB(1)

MB(V-1)

Word N-T

Word N-T+1

Word N-1

Word T
Word T+1

Word 2T-1

MB(0)

Word 0

Word 1

Word T-1

Tag 1

 xiii

Le découpage de l’espace d’adressage réalisé par l’architecture de la figure V, réduit la puissance

dissipée de façon significative. Néanmoins, comme le montre notre analyse, un tel découpage pourra aussi

augmenter de façon significative le coût en surface. Nous avons alors proposé une architecture à plusieurs

niveaux, qui permet de réduire de façon drastique la consommation toute en maintenant un coût en surface

faible. Cette architecture est montrée dans la figure VI. En effet, pour réparer la mémoire, l’architecture de

la figure V doit réparer tous les sous-ensembles dans lesquelles on partitionne l’espace d’adressage de la

mémoire. Comme la distribution des mots défaillantes n’est pas uniforme, certains de ces sous-ensembles

contiendrons plus des mots défaillantes que d’autres. Comme nous ne savons pas au moment de la

conception du système quels sous-ensembles contiendrons plus des fautes que d’autres, nous seront obligés

d’augmenter le nombre des mots utilisés dans chaque set de la Cache. Ceci augmente le coût en surface,

mais aussi accessoirement la puissance dissipée. Ces augmentations des coûts sont encore plus prononcées

si nous augmentons le nombre des sous-ensembles de l’espace d’adressage, pour : réduire le nombre des

mots de chaque set de la Cache afin de réduire lors de chaque accès mémoire le nombre des comparaisons

d’adresses, et réduire ainsi la puissance dissipée. Ainsi, afin de réduire ces coûts, nous avons proposé

l’architecture de réparation présentée dans la figure VI. Cette architecture réduit le nombre des mots utilisés

dans chaque set de la Cache, et utilise une CAM de débordement (architecture à CAM de débordement)

afin de réparer de façon complet les quelques sous-ensembles de l’espace d’adressage qui excédent la

capacité des sets correspondants de la Cache.

Finalement, afin de réduire la puissance dissipée de la CAM de débordement, nous avons aussi

proposé une variante de l’architecture de la figure VI, dans laquelle nous remplaçons la CAM de

débordement par une Cache de débordement (architecture à Cache de débordement).

Les résultats de l’évaluation des architectures décrites précédemment sont présentés dans les tableaux

VII et VIII. Le tableau VII présente l’évaluation des nouvelles architectures dans le contexte de réparation

conventionnelle, tandis que le tableau VIII présente l’évaluation des nouvelles architectures dans le

contexte de ECC-based repair. Dans les deux tableaux, la colonne 1 donne la densité des défauts. Toutes les

cas présentés dans ces tableaux concernent une capacité totale de 9,75 Gbit de SRAM, correspondant à un

nombre total de 250M mots x 39 bits par mot (32 data bits et 7 Hamming code bits). La capacité totale de

9,75 Gbit est partitionnée en plusieurs mémoires embarquées dans un SoC. Nous avons considéré 3 cas

pour cette distribution : 300 mémoires embarquées; 1000 mémoires embarquées; et 3000 mémoires

embarquées ; comme reporté dans la colonne 2 des deux tableaux. Aussi les résultats présentés dans ces

tableaux sont obtenus pour une efficacité de réparation (rendement) de 90% pour la totalité de la capacité

mémoire du SoC (i.e. pour 9,75 Gbit de SRAM).

Tableau VII. Evaluation des nouvelles architectures dans le contexte de réparation conventionnelle

Pf
#Emb

Mem

Non-ECC Repair

CAM

Non-ECC Repair

CACHE-1 / CACHE-2

NCW %A %P NS1 NW1 NS2 NW2 %A %P

10-4
300 3466 1.32 185.3 64 63 2 39 1.879 22.73

3000 402 1.27 67.90 32 18 1 13 2.376 23.94

3x

10-4

300 10285 3.93 532.9 128 99 2 30 4.548 33.23

3000 1121 3.46 177.9 64 24 2 20 6.251 42.33

10-3
300 35325 12.75 1629 512 85 64 32 15.20 65.16

3000 3693 13.49 581.5 128 39 2 27 15.19 70.33

 xiv

 Dans le tableau VII, les colonnes 3, 4, et 5 donnent les résultats pour l’approche de réparation

conventionnelle utilisant une CAM de réparation : la colonne 3 présente le nombre des mots CAM

nécessaires pour obtenir le rendement de 90%, les colonnes 4 et 5 donnent les coûts en surface et en

puissance dissipée. Les colonnes 6 à 11 donnent les résultats pour l’architecture à Cache de débordement,

laquelle emploie deux Caches (CACHE 1 and CACHE 2): les colonnes 6 et 7 donnent le nombre des sets et

le nombre des ways de la CACHE 1; les colonnes 8 et 9 donnent les mêmes paramètres pour la CACHE 2;

les colonnes 10 et 11 donnent les coûts en surface et en puissance dissipée.

 Dans le tableau VII, nous observons que pour l’approche de réparation conventionnelle, la nouvelle

architecture permet une réduction drastique du coût de la puissance dissipée en contrepartie d’une légère

augmentation du coût en surface.

Tableau VIII. Evaluation des nouvelles architectures dans le contexte de ECC-based repair.

Pf
#Emb

Mem

ECC Repair

CAM

ECC Repair

CACHE-1 / CACHE-2

NCW %A %P NS1 NW1 NS2 NW2 %A %P

10-4
300 16 0.008 1.267 4 8 - - 1.201 0.017

3000 6 0.028 1.297 - - - - - -

3x

10-4

300 83 0.036 5.337 16 6 1 12 0.069 3.723

3000 17 0.078 3.676 - - - - - -

10-3
300 720 0.249 39.56 64 14 2 30 0.544 9.68

3000 98 0.344 17.56 16 8 1 10 0.646 9.93

 Dans le tableau VIII, qui présente les résultats des nouvelles architectures dans le contexte de ECC-

based repair, nous ne donnons pas des résultats dans les cas où l’architecture traditionnelle utilise une CAM

de réparation de petit taille (car dans ces cas les améliorations obtenues par les nouvelles architectures de

réparation restent marginales). Nous observons que l’architecture à Cache de débordement (référée comme

CACHE-1 / CACHE-2 dans le tableau VIII) permet dans la plupart des cas une réduction significative du

coût en puissance dissipée. Ainsi, on obtient un coût en puissance dissipée faible pour les densités des

défauts élevées (Pf = 10-4 and Pf = 3x10-4), et un coût en puissance dissipée modéré (moins de 10%) pour

les densités des défauts très élevées (Pf = 10-3). De plus, une technique prometteuse présentée dans le

chapitre 4 - section 4.4 (mais pas encore évalué), devrait permettre une réduction supplémentaire de la

puissance dissipée.

II.4 Mathématiques de Calcul du Rendement pour les Architectures de

Réparation des Mémoires

Dans le chapitre 5 nous présentons les expressions analytiques et les algorithmes que nous avons

développé afin de pouvoir calculer les rendements obtenus par nos nouvelles approches et architectures de

réparation.

Nous pouvons calculer les rendements obtenus par l’approche de réparation conventionnelle ainsi

que par l’approche de ECC-based repair en utilisant l'expression analytique suivante :

 xv



Y 
Nw!Pwg

(Nw t)

(Nw  t)! t!
(1 Pwg)t

Nwc!Pwcg

Nwcr

(Nwc  r)!r!
(1 Pwcg)r

r0

Nwct
















t0

Nwc

 (1) .

Dans cette expression, Nw est le nombre des mots de la mémoire ; Nwc est le nombre des mots de la

CAM ; Pwg donne la probabilité qu’un mot mémoire n’a pas besoin d’être réparé (good word) ; Pwcg

donne la probabilité qu’un mot de la CAM peut être utilisé pour réparer un mot défaillant de la mémoire

(good CAM word). Dans l’approche de réparation conventionnelle, Pwg est égal à la probabilité que le mot

mémoire n’est pas défaillant et peut être calculé par Pwg = (1 – Pf)
N

, où N est le nombre des bits du mot

mémoire et Pf est la probabilité qu’une cellule mémoire est défaillante. Dans l’approche de ECC-based

repair Pwg donne la probabilité que le mot mémoire n’est pas défaillant ou qu’il contient une cellule

défaillante. Ainsi, dans cette approche, Pwg peut être calculé par Pwg = (1 – Pf)
N

 + N(1 – Pf)
N-1

Pf. Pwcg

est calculé d’une façon similaire (voir chapitre 5).

Comme déterminé dans le chapitre 5, le nombre d'opérations nécessaire pour calculer le rendement au

moyen de l’expression (1) est : Nw(Nwc + 1) + (Nwc
2
 - 1)(5Nwc + 12)/6 + 1 multiplications; (Nwc +

1)(Nwc + 4)/2 divisions; et NWC(NWC + 3)/2 additions, où Nw est le nombre de mots de la mémoire, et Nwc

est le nombre de mots de la CAM de réparation.

Pour les grandes densités des défauts, la complexité du calcul est beaucoup plus élevée par rapport au

calcul du rendement pour des faibles densités de défauts, car, dans ce dernier cas, les défauts affectant la

CAM ont un impact insignifiant sur le rendement et sont ignorés, ce qui donne une expression pour le

calcul du rendement beaucoup plus simple. En outre, comme nous considérons des futures technologies très

avancées, permettant la fabrication de puces très complexes, nous devons être en mesure de faire face à des

mémoires de très grande taille. Aussi, comme nous considérons des grandes densités de défauts, nous

dévons aussi être capables de traiter des grandes CAM de réparation. Dans ce contexte, les nombres des

opérations donnés ci-dessus deviennent trop grands. De plus, ces opérations doivent manipuler de très

grands nombres ainsi que de très petits nombres, nécessitant l’utilisation d’une arithmétique de haute

précision. Ainsi, le calcul du rendement par le biais de l'expression (1) devient infaisable dans de temps

réalistes. Pour accélérer ce calcul, nous avons découvert certaines relations récursives inédites, décrites

dans le chapitre 5, qui réduisent le nombre d'opérations à une complexité linéaire, nécessitant seulement :

NW + 8NWC - 1 multiplications, 2NWC divisions, 2NWC additions, et NWC soustractions. Ces nombres

d’opérations sont drastiquement plus petits que les nombres d'opérations nécessaires pour calculer

l'expression (1) de manière directe.

La nouvelle approche de calcul de rendement récursif a été implémentée en C ++, et nous avons pu

calculer dans des temps très courts les rendements de réparation pour les architectures utilisant une CAM

de réparation.

L’expression (1) utilisée pour calculer le rendement dans le cas des architectures utilisant une CAM

de réparation (architecture à CAM), peut être aussi utilisée dans le cas des architectures utilisant une Cache

de réparation (architecture à Cache) montrée dans la figure V. En effet, dans ce cas, nous pouvons

considérer que nous avons un système comportant M mémoires (où M est le nombre des sous-ensembles

dans lesquelles est partitionné l’espace d’adressage de la mémoire), et chacune de ces mémoires est réparée

par le set correspondant de la set-associative Cache. Ainsi, nous pouvons calculer le rendement Y pour

chacune des M mémoires en la considérant comme une mémoire réparé par un CAM ayant un nombre des

mots égal au nombre K des mots (ways) de chaque set de la set-associative Cache. Ensuite, le rendement

global de la mémoire sera donnée par YMEM = Y
M

.

 xvi

Malheureusement le calcul du rendement pour l’architecture à CAM de débordement et nécessite le

développement d’une nouvelle approche analytique. Cette approche pourra aussi être utilisée pour calculer

le rendement de l’architecture à Cache de débordement, en considérant que nous avons un système

comportant M mémoires (où M est le nombre des sets de la Cache de débordement), et en employant à

chacune de ces mémoires l’approche du calcul du rendement développée pour l’architecture à CAM de

débordement. Ainsi, dans la suite nous présentons l’approche de calcul du rendement pour l’architecture à

CAM de débordement.

Soit NS le nombre des sets (Set(1), Set(2), … Set(NS)) de la set-associative Cache utilisée dans

l’architecture à CAM de débordement. Dans cette architecture, la mémoire est partitionnée virtuellement

dans NS blocks MB(1), MB(2), … MB(NS) réparés respectivement par les sets Set(1), Set(2), … Set(NS) de

la set-associative Cache.

Soit : NWS le nombre des mots de chaque set de la set-associative Cache (i.e. le nombre des ways de

cette Cache) ; NWB le nombre des mots de chacun des NS blocks de la mémoire ; Nd le nombre des bits des

données de chaque mot de la mémoire (qui est aussi le nombre des bits des données de chaque mot de la

set-associative Cache et de la CAM de débordement).

Soit Nt1 le nombre des bits du champ de tag de la set-associative Cache; Nt2 le nombre des bits du

champ de tag de la CAM de débordement ; et Nf le nombre des flag bits des mots de la set-associative

Cache et de la CAM de débordement.

Dans le ECC-based repair, la probabilité qu’un mot mémoire n’a pas besoin d’être réparé (good

word) est égale à la probabilité que le mot n’est pas défaillant ou qu’il contient une cellule défaillante.

Ainsi cette probabilité est donnée par :



PWMG  (1Pf)Nd Nd(1Pf)Nd1Pf

Par des considérations similaires, et en considérant que la surface d’une cellule tag est q fois plus

large que la surface de la cellule mémoire et que la surface d’une cellule flag est r fois plus large que la

surface de la cellule mémoire, nous trouvons que la probabilité qu’un mot de la set-associative Cache peut

être utilisé pour réparer un mot défaillant de la mémoire (good Cache word), est donnée par :

 La probabilité qu’un mot de la CAM de débordement peut être utilisé pour réparer un mot défaillant

de la mémoire (good CAM word), est donnée par :

La probabilité qu’un set de la set-associative Cache répare tous les mots nécessitant réparation dans

le block correspondant de la mémoire est :

(2)

La probabilité qu’un set de la set-associative Cache laisse non-réparés exactement k mots

nécessitant réparation dans le block correspondant de la mémoire est :

(3)

Soit k(1), k(2), … k(NS) le nombre des mots des NS blocks MB(1), MB(2), …MB(NS) de la

mémoire qui sont laissés non-réparés respectivement par les sets Set(1), Set(2), … Set(NS) de la set-

associative Cache. La probabilité que k(1) mots de MB1 et k(2) mots de MB2 … et k(NS) mots de MBNS



PWSG  (1Pf)(qNt1rNf)((1Pf)Nd Nd(1Pf)Nd1Pf).



PWOG  (1Pf)(qNt2rNf)((1Pf)Nd Nd(1Pf)Nd1Pf).

 xvii

sont laissés non-réparés est égale à: Pk(1)UFPk(2)UF…Pk(Ns)UF, où les valeurs des probabilités Pk(i)UF, sont

calculés par l’expression (2) pour k(i) = 0 et par l’expression (3) pour k(i) > 0.

Pour réparer ces mots, la CAM de débordement doit disposer au moins Q = k(1) + k(2) + … k(NS) mots

correctes (good words).

Soit NWO le nombre des mots de la CAM de débordement. La probabilité que la CAM de débordement

dispose au moins Q mots corrects est :

 (4)

où est la probabilité qu’un mot de la CAM

de débordement es correcte, comme déterminer plutôt.

 Alors, la probabilité que la mémoire est réparée quand k(1) mots de MB1, k(2) mots de MB2, … k(NS)

mots de MBNS (avec 0 ≤ k(i)  i  {0, 1, … NS},) sont laissés non-réparés par la set-associative Cache est

donnée par :

PRk(1),k(2),…k(Ns) = PQCOPk(1)UFPk(2)UF…Pk(Ns)UF (5)

où k(1) + k(2) + … k(NS) = Q, et PQCO est calculé par l’expression (4).

Pour Q = k(1) + k(2) + … k(NS) > NWO nous avons PQCO = 0. Ainsi, on doit considérer seulement les cas

où Q = k(1) + k(2) + … k(NS)  NWO. Par conséquent, pour calculer la probabilité totale que la mémoire

soit réparée, nous devons prendre la somme des probabilités PRk(1),k(2),…k(Ns) pour toutes les combinaisons

des valeurs possibles de NS entiers positifs k(1), k(2), … k(NS) dont la somme est égale à Q, et pour tout

entier Q  NWO.

Dans la théorie des nombres, les combinaisons de Ns entiers positives ayant une somme égale à Q

sont connues comme les compositions de Q dans NS parts. Ce nombre de compositions est égal à C’Ns(Q) =

(Q+ NS-1)!/Q!(NS -1)!, et donne une valeur énorme dans la plupart des cas d’intérêt pratique dans le cadre

de cette thèse. Par exemple, pour NS = 64 et Q = 32 (qui sont nécessaires quand on utilise une set-

associative Cache ayant 64 sets et 32 ways), nous trouvons un nombre énorme de compositions (C’Ns(Q) ≈

1,9801165182011x10
25

), qui ne permet pas de calculer toutes les probabilités PRk(1),k(2),…k(Ns)

correspondantes dans un temps de calcul réaliste. Ainsi, nous avons besoin d'une approche plus efficace. La

solution à ce problème complexe est obtenue dans le chapitre 5 en exploitant le théorème des nombres

pentagonaux de Leonard Euler. Le développement des algorithmes rapides de calcul du rendement pour

l’architecture à CAM de débordement, utilisant cette solution, est aussi présenté dans le chapitre 5.

 Ces algorithmes ont étaient été implémentée en C ++, et nous ont permit de calculer dans des temps

courts les rendements de réparation pour l’architecture à CAM de débordement ainsi que pour

l’architecture à Cache de débordement.

II.5 BIST Transparent pour ECC-Based Memory Repair

Comme le test des mémoires effectue des opérations de lecture et d’écriture sur tous les mots de la

mémoire, il détruit leur contenu. Ainsi, il n’est pas permissible de tester une mémoire pendant l’exécution

d’une application car il détruirait le contexte de l’application. Le BIST transparent des mémoires a était

proposé afin de faire face à cette contrainte. Cette technique utilise comme données de test le contenu des

mots de la mémoire en les transformant de manière réversible de façon à restaurer leur contenu à la fin du

test.

Les prévisions estiment que les technologies CMOS ultimes et post-CMOS devraient accélérer le

vieillissement des circuits, entraînant une augmentation importante de la fréquence d’occurrence des fautes.

Ainsi, des sessions de test de mémoire fréquentes doivent être activées même lors de l'exécution des



PWOG  (1Pf)(2.8Nt22Nf)((1Pf)Nd Nd(1Pf)Nd1Pf)



PQCO
NWO!PWOG

(Nwou)

(NWOu)!u!
(1PWOG)u

u0

N
WO

Q



 xviii

applications. Ainsi, ces tests exigent l'utilisation de l’approche du BIST transparent. Mais cette approche

utilise l’analyse de signature pour vérifier les données lues dans la mémoire pendant la phase du test.

Cependant, l'analyse de signature ne peut pas distinguer les mots de mémoire comprenant une cellule

défectueuse de ceux comprenant plusieurs cellules défectueuses, comme l'exige l’approche de ECC-based

repair. Ainsi, les techniques de BIST transparent existantes ne sont pas compatibles avec le ECC-based

repair. Une possibilité qui pourrait être utilisée pour résoudre ce problème serait d’utiliser le code ECC

pour vérifier les données lues dans la mémoire pendant la phase du test. Mais comme le code ECC peut de

façon incorrecte identifier des mots contenant des erreurs multiples pour des mots contenant des erreurs

simples, et parfois pour des mots corrects, cette approche ne permet pas de résoudre le problème.

Pour faire face à ces difficultés, le chapitre 6 propose une approche de diagnostic hybride pour BIST

transparent, capable de diagnostiquer l'existence de mots mémoire contenant plusieurs cellules défaillantes.

Dans le chapitre 6 nous avons en effet proposé une variante de cette approche compatible avec l’approche

de ECC-based repair utilisant les algorithmes de test du type SRDF, et une deuxième variante compatible

avec l’approche de ECC-based repair utilisant une CAM dédiée au diagnostic.

Pour rentre compatible le BIST transparent avec l’approche du ECC-based repair nous devons

s’assurer que : en utilisant l’analyse de signature et le code ECC comme moyens de vérification des

données lue par la pendant l’exécution de l’algorithme de test, nous serons capables de déterminer si la

mémoire contient des mots comportant plus d’une cellule défaillante. Mais comme mentionné

précédemment, l’analyse de signature ne peut pas distinguer les mots de mémoire comprenant une cellule

défectueuse de ceux comprenant plusieurs cellules défectueuses, et de l’autre coté, le code ECC peut

identifier des mots contenant plus que deux erreurs comme des mots contenant des erreurs simples, ou pour

des mots corrects. Ainsi, l’analyse de signature et le code ECC peuvent produire un faut diagnostic. Pour

relever ce problème nous avons proposé deux principes illustrés dans la figure VII :

Principe 1 : Au lieu d’injecter dans l’analyseur de signature les données brutes lues dans la mémoire nous

injecterons les données corrigées par le code ECC. Comme le ECC corrige toutes les erreurs à multiplicité

égale à 1, si lors de l’exécution du test il n’y a pas des données erronées ou si tous les données erronées

contiennent au maximum une erreur, la signature serra correcte. De l’autre coté, comme le ECC ne peut pas

corriger des erreurs à multiplicité supérieure à 1, si lors de l’exécution du test il y a des données erronées

contenant plus d’une erreur la signature serra erronée.

Principe 2 : Si l’approche de ECC-based repair utilise une CAM de diagnostic, alors, au lieu d’écrire dans

cette CAM les données brutes lues dans la mémoire nous écrirons leurs syndromes calculés par le code

ECC. Comme le ECC identifie correctement les positions des erreurs quand un mot contient une seul

erreur, ce principe écrira dans la CAM du diagnostic les positions correctes des erreurs si un mot lues dans

la mémoire contient une ou aucune erreur.

 xix

Figure VII. Principes permettant de rentre compatible le BIST transparent avec le ECC-based repair

COMPATIBILITE AVEC L’APPROCHE DE ECC-BASED REPAIR UTILISANT DES ALGORITHMES DE TEST DU TYPE

SRDF

 En utilisant le principe 1, nous pouvons rendre compatible le BIST transparent avec l’approche de

ECC-based repair utilisant des algorithmes de test du type SRDF, comme illustré dans la figure VIII. En

effet :

- Si la mémoire ne contient pas des mots comportant plus d’une cellule défaillante, aucun mot lu lors

du test ne contiendra plus d’une erreur. Ainsi, selon le principe 1, l’injection dans l’analyseur de

signature des données corrigées produira une signature correcte, et la mémoire sera correctement

diagnostiquée comme ne contenant aucun mot comportant plus d’une cellule défaillante.

- Si la mémoire contient des mots comportant plus d’une cellule défaillante, alors pour chacun de ces

mots l’algorithme de test du type SRDF garantira qu’il y aura au moins une opération de lecture de

l’algorithme qui produira au moins deux erreurs. Dans ce cas : si une de ces lectures produit une

erreur double, le signal de détection d’erreur du code ECC va signaler cette erreur double, et la

mémoire sera correctement diagnostiquée comme contenant des mots comportant plus d’une cellule

défaillante. Si toutes ces lectures produisent des erreurs de multiplicité supérieure à deux, selon le

principe 1 l’injection dans l’analyseur de signature des données corrigées produira une signature

erronée, et la mémoire sera correctement diagnostiquée comme contenant des mots comportant plus

d’une cellule défaillante.

 xx

Figure VIII. Principe utilisée dans le BIST transparent compatible avec le ECC-based repair utilisant des

algorithmes de test du type SRDF.

COMPATIBILITE AVEC L’APPROCHE DE ECC-BASED REPAIR UTILISANT UNE CAM DE DIAGNOSTIC

 En utilisant le principe 2, nous pouvons rendre compatible le BIST transparent avec l’approche de

ECC-based repair utilisant une CAM de diagnostic, comme illustré dans la figure IX. En effet :

- Si une opération de lecture de l’algorithme de test produit une erreur double, le signal de détection

d’erreur du code ECC va signaler cette erreur double, et la mémoire sera correctement

diagnostiquée comme contenant des mots comportant plus d’une cellule défaillante.

- Si une ou plusieurs opérations de lecture de l’algorithme de test produisent des erreurs de

multiplicité supérieure à deux, selon le principe 1 l’injection dans l’analyseur de signature des

données corrigées produira une signature erronée, et la mémoire sera correctement diagnostiquée

comme contenant des mots comportant plus d’une cellule défaillante.

- Si aucune opération de lecture de l’algorithme de test ne produit plus d’une erreur, l’analyseur de

signature produira une signature correcte, même si la mémoire contient des mots comportant plus

d’une cellule défaillante, Ainsi, dans ce cas l’analyse de signature ne permettra un diagnostique

correcte si la mémoire contient des mots comportant plus d’une cellule défaillante. Néanmoins,

l’écriture dans la CAM du diagnostic des syndromes calculés par le code ECC selon le principe 2,

garantira que la CAM mémorisera les positions correctes des erreurs. Ainsi, le contenu de la CAM

permettra de diagnostiquer correctement la mémoire quel qu’il soit le cas (i.e. qu’elle contient ou

qu’elle ne contient pas des mots comportant plus d’une cellule défaillante). Notons que s’il y a des

mots comportant plus d’une cellule défaillante, l’utilisation d’un algorithme de test du type SRDF

garantie l’existence d’opérations des lectures détectant au moins deux erreurs. Ainsi, l’emploie de

ces algorithmes garanti un diagnostic correct par la seule utilisation du principe 1. Mais ceci n’est

pas le cas pour les algorithmes conventionnels qui sont employés quand on utilise une CAM de

diagnostic. Ainsi dans ce cas il était nécessaire d’utiliser aussi le principe 2.

 xxi

 Figure IX. Principe utilisée dans le BIST transparent compatible avec le ECC-based repair utilisant une

CAM de diagnostic.

III Conclusion

L’objectif de cette thèse concerne la réparation des mémoires affectées par des grandes densités des

défauts. La seule technique réaliste pour la réparation des mémoires affectées par des grandes densités des

défauts (connue comme «ECC-based memory repair»), mais dans le chapitre 1 de cette thèse nous

montrons que cette technique souffrait d’un handicap de taille : pour des grandes densités des défauts les

circuits de diagnostic des fautes deviennent très complexes et ajoutent un coût matériel très élevé, qui,

malgré le faible coût en circuit de réparation de la technique «ECC-based memory repair», induit un coût

total très élevé. Dans le chapitre 1 nous montrons aussi que malgré la réduction drastique des coûts en

surface et en consommation de puissance par rapport aux techniques classiques, le cout en consommation

de puissance reste non négligeable. Pour remédier à ces problèmes nous avons développé une panoplie de

solutions.

La première solution, décrite dans le 2ème chapitre, propose une nouvelle famille d’algorithmes de

test permettant d’éliminer complètement la circuiterie de diagnostic des fautes. En éliminant complètement

les circuits de diagnostic, ces algorithmes permettent l’implémentation de l’approche «ECC-based memory

repair» à coût minimal, ce qui représente un avantage décisif. Le seul inconvénient de cette approche est

une augmentation sensible de la durée du test.

Afin de proposer une solution de diagnostique alternative, le 3ème chapitre propose une architecture

de diagnostic itératif, qui permet des compromis entre les coûts en surface et les durées du test. Ainsi, en

combinaison avec l’approche des algorithmes de test développés au deuxième chapitre, le concepteur

dispose une panoplie de solutions permettant un vaste champ de compromis (partant d’un coût en surface

minimal et un coût en durée de test maximal, à un coût en surface maximal et un coût en durée de test

minimal).

Afin de réduire aussi la puissance consommée, le 4ème chapitre propose une architecture de

réparation innovante, qui réduit de façon drastique la puissance de la circuiterie de réparation. La nouvelle

 xxii

architecture utilise une combinaison d’une mémoire Cache associative et d’une mémoire CAM de très

petite taille, dite de débordement, qui permet de réparer le faible nombre des mots mémoires qui risquent

d’être laissées irréparables par la mémoire Cache. Grace à cette architecture le coût de consommation est

réduit drastiquement, tandis que le cout en surface reste toujours très faible.

La considération des mémoires de très grand taille, des grandes densités des défauts et des

architectures de réparation combinant des codes ECC, des CAMs, et des Caches, rend le calcul du

rendement infaisable dans des temps réalistes. Pour remédier à ce problème, le 5ème chapitre propose des

nouvelles approches mathématiques pour le calcul du rendement, qui réduit la complexité de ce calcul d’un

grand nombre d’ordres de grandeur et permet de calculer le rendement en des temps très courts.

Les derniers développements de cette thèse concernent l’utilisation de l’approche de «ECC-based

repair», pour détecter et réparer les fautes en phase d’utilisation du circuit. Ceci devient possible par

l’approche dite de BIST transparent, qui teste une mémoire sans altérer son contenu. Cette approche

semblait incompatible avec le «ECC-based repair». Pour contourner ce problème le 6ème chapitre propose

une injection astucieuse des syndromes du code correcteur dans le CAM du diagnostique et les données

corrigées par le ECC dans l’analyseur de signature, et aboutit à une architecture de BIST transparent

compatible avec l’approche de «ECC-based repair».

Ainsi, les travaux présentés dans cette thèse aboutissent pour la première fois à une plateforme

permettant la réparation des mémoires pour des grandes densités des défauts à des faibles couts de surface

et puissance, et ouvrent la voie à une miniaturisation agressive, laquelle, sans ce type d’approche, serra

prématurément bloquée pour des raisons de rendement, de fiabilité, et de puissance dissipée.

 xxiii

CONTENTS

1 Introduction 1

1.1 DfX Reuse Strategy 2

1.2 Area, Power, and Diagnosis Issues 4

2 Memory Test Algorithms for ECC-Based Repair 7

2.1 Functional Fault Models and Test Conditions 8

2.2 SRDF Test Algorithms 10

2.3 Faults of Multiplicity Higher than 2 27

2.4 Treatment of SRDF deceptive faults 29

2.5 Evaluations 31

2.6 Conclusion 33

3 Iterative Diagnosis Approach for ECC-based Memory Repair 35

3.1 Separate-CAMs Scheme for Runtime Power Reduction 35

3.2 Iterative Diagnosis for Diagnosis-CAM Reduction 37

3.3 Automation 42

3.3.1 Yield and CAM Size Computation 42

3.3.2 Test-length Computation 43

3.3.2.1 Detection profiles 44

3.3.2.2 Pseudo-simulation 48

3.4 Evaluation 52

3.5 Conclusion 54

4 Low-Power Memory Repair Arcitectures 56

4.1 Partitioning-Based Memory Repair 56

4.1.1 Cache-Based Repair 56

4.1.2 Overflow Repair Architecture 58

4.2 Yield Computation 61

4.2.1 Yield Computation for Overflow CAM Repair 61

4.3 Evaluations 63

4.4 Overflow CAM/Cache Conditional Selection 65

4.5 Conclusion 69

5 Yield Computation Mathematics for Memory Repair Architectures 70

5.1 Fast Yield Computation For CAM-Based Repair, and Set-Associative

 Cache Repair 70

5.2 Fast Yield Computation for the Separate-CAMs Architecture 74

 xxiv

5.3 Fast Yield Computation for the Overflow CAM Architecture 76

5.4 Conclusion 83

6 Transparent BIST for ECC-Based Memory Repair 84

6.1 Transparent BIST Versus ECC-based Repair: Issues and Cooperation

 Strategy 84

6.2 Transparent BIST for ECC-based Repair 86

6.2.1 Block-based Test and Diagnosis Strategy 86

6.2.2 Transparent BIST Architecture for ECC-based Repair 88

6.2.3 Fault Coverage, Transparent Test Algorithm, Signature

 Prediction, and ECC-Consistency 90

6.2.4 Transparent BIST for SRDF Test Algorithms 94

6.3 CAM Test and Repair 95

6.4 Conclusion 96

7 Conclusion and Further Developments 97

7.1 Goals’ Accomplishment and Further Developments 99

List of Publications 101

Bibliography 102

 1

CHAPTER 1

INTRODUCTION

Embedded memories occupy the largest part of modern SoCs and include even larger proportions of

transistors. As memories are designed very tightly to the technology limits, they are more prone to failures

than other circuits. Thus, they concentrate the large majority of fabrication defects affecting yield adversely.

Hence, memory Built-In Self-Repair [1-10][54-55] became early mandatory for maintaining acceptable

fabrication yield. Also, it was early predicted [11] that achieving acceptable reliability levels is one of the

most critical issues for late CMOS. Indeed, soft-errors caused by neutrons and alpha particles and other field

failures are critical concerns in memories. Thus, during the last decade, ECC became mandatory for

maintaining acceptable reliability levels [12-18].

Late-CMOS and beyond-CMOS technologies hold the promise of integrating trillions of devices in a single

chip, enabling unprecedented computing power and may have profound impact on all computer application

domains (embedded systems, telecommunication networks, internet infrastructure, cloud computing, …),

and ultimately on science, technology and the society as a whole. These benefits will become reality if we

are able to aggressively push technology scaling towards extremely small feature dimensions. However,

technology scaling has adverse impact on: (1) process, voltage and temperature (PVT) variations; (2)

sensitivity to radiations; (3) circuit aging and wearout [14]; and (4) power dissipation and thermal

constraints. The resulting high defect levels, heterogeneous behavior of identical designs, circuit

degradation over time, and integrated circuits complexity, affect fabrication yield and make the production

of chips with acceptable yield, reliability, and power density, increasingly challenging. These issues are

exacerbated as we move towards the ultimate CMOS and beyond-CMOS technologies, and, whatever are

the future improvements of fabrication technologies, sooner or later they will stop the technology scaling

and its beneficial impact on most other technological domains and economic activities. Thus, disposing

techniques able to cope with as high fault rates as possible, is increasingly suitable as it will allow pushing

the limits of technology scaling much farther than what could be done by the sole improvement of

fabrication technologies.

The aim of this thesis is to provide a framework enabling low-cost memory repair for very high

defect densities, and exploit it for ensuring high yield and high reliability in the context of: very high

fabrication-fault rates induced by fabrication defects and exacerbated process variations; high field-failure

rates produced by exacerbated circuit degradation over time due to aging, very-low voltage operation, and

also soft errors; and at the same time meet stringent low-power constraints. Our work is developed in the

context of Cells [23-26]: a framework addressing the design of high yield, high reliability, and low-power

tera-device systems affected by high-defect densities. This is a non-trivial task as fault-tolerance induces

 2

both: high area penalty (drastically reducing the available computing resources), and high power penalty

(which is incompatible with stringent low power constraints). Furthermore, even the most robust fault-

tolerant techniques using massive redundancy (e.g. duplication or TMR) do not work under high fault rates,

where several copies of a TMR or duplicated component can be defective. To address this challenge, Cells

employs innovative approaches at all levels of system design, enabling the mitigation of very high defect

densities and the reduction of power dissipation at low cost.

 In this challenging context, our work concerns the development of an important component of Cells,

addressing the design of robust memories. To address this challenge, we developed a low-cost memory

repair framework for very high defect densities, as well as a simple DfX strategy described in section 1.1,

which employs this memory repair framework for achieving high yield, high reliability, and low power

dissipation at low cost. This memory repair framework is based on the so-called ECC-based repair [19].

This scheme, which is based on the combination of ECC codes with word repair, is highly efficient for

repairing memories affected by high defect densities:

- As shown in [19], combining word repair and ECC is the only cost-effective solution (in terms of area

cost) for achieving acceptable fabrication yield for high defect rates.

- As stated in [20] and confirmed in [21] “the number of repairable faults dramatically increases by

combining the ECC and redundancy techniques together”.

However, as we show in section 1.2, previous work on ECC-based memory repair has neglected one

important issue: the hardware cost reduction gained by using ECC-based repair can be lost due to diagnosis

requirements. To cope with this problem, in this manuscript we propose and develop various solutions for

tackling this task at low area and power cost, as well as new word-repair architectures for further reducing

power dissipation, as well as new yield computation mathematics and related algorithms for tackling the

yield computation complexity related with very large memory systems and very high fault rates.

1.1 DFX REUSE STRATEGY

During the last decade, soft-errors caused by atmospheric neutrons and alpha particles became a major

reliability concern in modern electronic systems [12][13][22]. This trend has led to the systematic protection

of memories by means of ECC, most often implemented as single-error correction - double-error detection

(SEC-DED) codes. As process scaling has increased the susceptibility to multi-cell upsets MCUs), that

outperform the capabilities of SEC-DED codes, interleaving is also used to guaranty that at most one cell

upset can affect the same memory word (single-bit-upset – SBU). The typical soft-error rate (SER) per Mbit

SRAM at 28nm planar bulk CMOS is about 180 FIT for single-cell upsets (SCUs) and 10 FIT for MCUs.

The introduction of finFET is accompanied by sharp SER reduction (SER in 14nm finFET process is about

12 FIT for SCUs, and 0,6 FIT for MCUs), but memory soft-error protection remains necessary as increasing

chip complexities maintain significant SER at chip level. Process scaling is accompanied by sharp critical

charge reduction, increasing soft error sensitivity, but this trend is counterbalanced by the reduction of

sensitive volume. Thus, the SER per Mbit SRAM in future finFET nodes is expected to be constant or

slightly reduced. However, the SER per chip will be increased significantly, making memory soft-error

mitigation increasingly mandatory.

As DfX techniques are proliferating (Design for Test, Design for Debug, Design for Yield, Design for

Low-Power, Design for Reliability …), the amount of hardware dedicated to non-computational purposes

grows substantially. It is therefore mandatory to combine different DfX techniques to moderate their impact

on area, power and/or performance. As ECC is already implemented in memories for mitigating soft-errors,

it may be reused to reduce the cost of ECC-based repair. The critical issue for this kind of reuse is however

the potential reduction of soft-error mitigation efficiency. As words containing one faulty cell are not

repaired in ECC based repair, upsets affecting such words may invalidate SEC-DED protection. In this

work we consider high fault rates ranging from 10
-5

 to 10
-3

 probability for a memory cell to be faulty. In the

 3

less favourable case (10
-3

 faulty-cell probability), corresponding to 2 or 3 orders of magnitude higher faulty-

cell rates than in current technologies, considering memory words of 32 data bits and 7 SEC-DED check

bits, gives a probability for a memory word to contain one faulty cell equal to 39x10
-3

x0.999
38

. In a very

large SRAM of 100 Gbit capacity, this gives an average of 39x10
-3

x0.999
38

x10
11

/39 words containing a

single faulty cell. As the SER per Mbit is slightly reduced with process scaling but MCU rate increases,

considering 8 FIT for SCUs and 2 FIT for MCUs per Mbit SRAM after several finFET process generations

is a reasonable projection. Considering a mean number of 6 cells hit by an MCU and also that interleaving is

employed as usually to ensure that an MCU affects only a single cell of the same memory word, we find

that the per year rate of single-cell upsets affecting a memory word containing a single faulty cell is equal to

(0.999
38

x10
-3

x39x10
11

/39)(8+2x6)(38/10
6
)(10

-9
x365.25x24) = 0.641, where: the first parenthesis gives the

average number of words in the 100 Gbit SRAM containing one faulty cell; the second parenthesis gives the

mean number of cells in a 1 Mbit SRAM affected by upsets in 10
9
 hours (1 FIT = 1 event in 10

9
 hours),

considering 8 FIT per Mbit for SCUs, 2 FIT per Mbit for MCUs, and a mean of 6 cells affected by an

MCU; the third parenthesis gives the number of fault free cells of a word containing one faulty cell (as only

hits affecting a fault-free cell of the word can produce double errors), divided by the number of cells of a 1

Mbit memory; and the fourth parenthesis gives the number of events per year per FIT. Hence, for a very

large memory (100 Gbit capacity), 0.641 events per year can produce a double error, which is not corrected

but it is detected by the ECC. Thus, it can be fixed by check-point based rollback recovery employed in

most cross-layer reliability approaches under development for addressing the reliability of upcoming

process generations. Therefore, in the worst-case scenario of a 10
-3

 faulty-cell probability, the reuse of the

ECC for ECC-based repair in a large SRAM of 100 Gbit capacity will induce about two error-recovery

interruptions at every 3 years, which is insignificant. If we consider a still high but less excessive faulty-cell

probability equal to 10
-4

, reusing ECC for ECC-based repair in a 100 Gbit SRAM will induce one error-

recovery interruption at every 15 years. In a future single-chip massively-parallel tera-device processor

consisting in 4000 processing nodes using 250 Mbit memory per node (a total of 1 Terabit memory), and

employing ECC-based repair as envisioned in the CELLS framework [23-26], for the 10
-3

 faulty-cell

probability each node will experience 1 interruptions for error recovery at every 625 years, while for the 10
-

4
 faulty-cell probability each node will experience 1 interruptions for error recovery at every 6000 years.

Furthermore, as the CELLS framework performs check-point-free error recovery by means of an innovative

approach exploiting hierarchical task allocation in the multiprocessor grid [27], performance lost induced by

check-pointing is also eliminated. Thus, ECC-based repair reusing ECC implemented for soft-error

mitigation is a winning strategy in all above scenarios.

Due to the aggressive process scaling, ultimate CMOS and post-CMOS technologies are expected to be

affected by high densities of manufacturing and aging-induced faults, as well as high power and temperature

densities. Thus, they will require powerful techniques for off-line repair, runtime fault tolerance, and low

power. Our developments of efficient memory repair for high fault-densities are motivated by the goal to

reuse the hardware resources of ECC-based repair in order to address all the above critical issues. First, the

expectation of steadily worsening process variability and aging-induced circuit degradation in upcoming

process nodes makes mandatory the development of efficient memory self-repair for high fault-densities, in

order to improve manufacturing yield after fabrication and subsequently extend the life of the circuit by

repairing aging-induced faults. Furthermore, disposing a self-repair technique for fault densities much

higher than those required for manufacturing and aging-induced faults, will also allow drastically reducing

power dissipation. Indeed, in this case we can reduce aggressively the operating voltage (Vdd) in order to

achieve drastic reduction of power dissipation (i.e proportional to the square of the reduction of Vdd), and

repair the memory cells that exhibit faulty behavior due to the reduced Vdd. Ultimately, reliability issues

can also be caused by aging-induced faults that occur during the execution of an application. Such faults

may affect the correct execution of the application during the time that elapses between their instant of

 4

occurrence and the next test and repair session. Disposing a self-repair technique for fault densities even

higher than those required for the three classes of faults considered above, will allow solving this reliability

issue by testing the memory under more stringent conditions (lower voltage and/or higher speed) than the

worst conditions used during the execution of any application. This is because such tests can detect and

proactively repair those memory cells that do not yet exhibit faulty behavior, but are already weakened and

have increased chances to become faulty before the next test and repair session.

1.2 AREA, POWER, AND DIAGNOSIS ISSUES

Area and Power Issues

RAMs are repaired by replacing faulty regular units by fault-free spare units. The resulting cost corresponds

to the cost of the spare units and of the circuitry used to control the unit replacement. For low defect

densities, the principal cost source is the spare units. However, in some repair schemes, as defect densities

increase the cost of the circuitry controlling the replacement can become more important. Indeed, there are

two schemes for replacing regular units by spare units.

 The first stores into dedicated registers the positions of the faulty units gathered during the test phase.

Then, dedicated circuitry decodes this information to generate the control signals of a set of MUXes used to

disconnect faulty regular units and connect in their place fault-free spare units. However, for high defect

densities, we need to use a large number of small spare units to repair an even larger number of small

regular units
 4

. As both the number R of regular units and the number S of spare units increase, the

complexity of the hardware implementing the MUXes increases exponentially, since we need R MUXes of

S+1 inputs and 1 output each. The circuitry controlling the MUXes also increases exponentially as it has to

generate Rx(S+1) signals. In addition, the hardware cost increases more rapidly than the exponential

increase of the number Rx(S+1) of the generated signals, as the complexity of the combinational function

generating each of these signals is not constant but increases as Rx(S+1) increases. Thus, the exponential

increase of the hardware cost and power dissipation is of higher order than Rx(S+1), and MUX-based repair

is not scalable to high defect densities.

 The second scheme uses a CAM for storing the addresses and data of faulty units. This approach is

scalable in size for increasing defect densities, as the CAM size is proportional to the number of faulty units,

resulting in linear area increase. Thus, CAM based repair is preferable for high defect densities. However,

another critical issue is power, as CAMs are power hungry. Using ECC-based repair reduces drastically the

size of the CAM (as we only repair words containing more than one faulty cells), resulting in drastic

reduction of area and even more drastic reduction of power penalties.

Diagnosis Issues

For implementing ECC-based memory repair it is necessary to identify after fabrication the words that

comprise more than one faulty cells. It is also important to identify such words in the field, in order to cope

with faults occurring during circuit life due to aging-induced circuit degradation. However, if a word

contains more than one faulty cells, then, memory test algorithms do not guaranty that all of them are

detected within the same read operation. Indeed, one fault can be detected by a read belonging to a march

element and another fault can be detected by a read belonging to another march element. Thus, with existing

memory test algorithms, each time a read detects a faulty cell we need to store the address of the faulty

word as well as the position(s) of the faulty cell(s), and then, use an algorithm for determining the words

containing several faulty cells detected at different instants of the test algorithm. The most efficient solution

4
 The probability of a unit to be faulty is proportional to its size. Thus, large units have large probability to be faulty. In high

defect densities, to avoid that most of the spare and regular units are faulty, we must use small spare and regular units. Thus, we

have a very large number of regular units (the size of the memory divided by the size of a regular unit). We also have to use a

large number of spare units (large numbers of faults should be repaired in high defect densities).

 5

for storing this information and identifying the words containing multiple faulty cells is to use a CAM in

which we store the faulty addresses in the tag-fields and the positions of the faulty bits in the associated data

fields. As at the instant we detect one faulty cell in a memory word we don’t know if this word contains also

other faulty cells that will be detected later, then, each time we detect a faulty word we are obliged to store

it in the CAM, whether it contains one or more faulty cells. Thus, we need a CAM of the same size as in the

case where we do not exploit ECC for repair purposes. Therefore the benefits expected by the use of ECC-

based repair are lost due to diagnosis requirements. Of course, it is possible to eliminate the diagnosis CAM

if we shift out of the chip the faulty addresses and faulty cell positions and use the intelligence of an

external tester for performing the diagnosis. However, current and future chip complexities make this

approach inefficient. Furthermore, using an external tester will prevent test and repair for field failures,

which is necessary as the rate of aging-induced faults is becoming high in advanced process nodes.

Proposed Schemes for Power and Area reduction

As we have illustrated above, diagnosis requirements in ECC-based memory repair imply using a CAM of

the same size as in conventional (i.e. non-ECC-based repair). In high defect densities, the area and power

cost of this CAM will be very high. To cope with these issues, we developed various schemes:

- The first scheme eliminates altogether the need of diagnosis hardware by introducing a new kind of test

algorithms. These algorithms have the property that if a memory word contains two or more faulty cells,

there is a read operation in the algorithm that detects at least two of them: single-read double-fault

detection (SRDF) property. Thus, we store a memory word in the CAM only when a single read detects

two or more faulty cells in this word. Hence, no memory word containing only one faulty cell is stored. As

a consequence, there is no CAM size increase due to diagnosis issues. Algorithms exhibiting this property

will be referred as SRDF test algorithms.

- The second scheme employs two separate CAMs. A large diagnosis CAM is used during each test and

diagnosis session to determine the memory words that comprise multiple faulty cells, and at the end of this

session the memory words are transferred to a second small CAM (the runtime-repair CAM). At run-time,

only the latter CAM is used and powered. As it is drastically smaller than the diagnosis CAM (which has

the same size as the CAM used in conventional repair), runtime power is drastically lower than in

conventional Built-Self-Repair.

- In the third scheme, to reduce the high hardware cost of the diagnosis CAM used in the second approach,

we employ a smaller diagnosis CAM, which could not store the addresses of all faulty memory words. To

compensate the missing CAM capacity, we execute the test algorithm several times. After each iteration of

the test algorithm, we free a part of the CAM to create space for treating new faults. This process could

reduce fault coverage. A dedicated iterative diagnosis algorithm was developed to cope with this issue.

Both the SRDF algorithms and the iterative-test-and-diagnosis approach reduce hardware cost at the

expense of test length. The test length in the case of the SRDF algorithms is constant regardless of the kind

of faults and the failure rate of the target process. On the other hand, for a given hardware cost (i.e. a given

CAM size), the number of test iterations used by the second approach (and thus the test time) depends on

the number of fault detections occurring during the test algorithm. It also depends on the type of faults as

the number of detection instances may differ from one fault type to another. For instance, in the March SS

algorithm [28]: ({ (W0) ; (R0, R0, W0, R0, W1) ;  (R1, R1, W1, R1, W0) ; (R0, R0, W0, R0, W1) ;

(R1, R1, W1, R1, W0) ;  (R0) }), a state fault SF < 0/1/- > affecting a memory cell will be detected at 7

different instances of the algorithm. Other faults are detected in a different number of instances. Thus, test

length increases with the increase of the fault rates and may also increase for certain fault types. As a matter

of fact, the two approaches are complementary and offer to the designer efficient trade-offs in terms of test

length and hardware cost. The iterative-test-and-diagnosis approach could be used for lower fault rates and

 6

after a certain level of fault rates (depending on memory size and target yield) the approach using SRDF test

algorithms could be selected as more efficient. Thus, the interest of the SRDF test algorithms increases as

we move towards ultimate CMOS and post-CMOS technologies, which are expected to be affected by high

defect densities.

The rest of this manuscript is organized in the following manner.

Chapter 2 addresses the highly challenging task related with the development of SRDF test algorithms,

which, due to the SRDF constraint, are substantially more difficult to develop with respect to any existing

test algorithm.

Chapter 3 addresses the separate-CAM scheme and proposes an iterative diagnosis algorithm enabling

trade-offs in terms of test duration and hardware cost. It also proposes a pseudo-simulation approach that

accelerates drastically the fault injection experiments required for evaluating the new iterative diagnosis

algorithms.

Chapter 4 presents and evaluates new word repair architectures, which reduce drastically runtime power

dissipation.

Chapter 5 addresses the yield evaluation issue, which is becoming very complex due to the consideration

of very large memories, very high defect densities, and sophisticated repair architectures. To address this

challenge, chapter 5 presents new yield computation mathematics and the related yield computation

algorithms, which were used in the previous sections for evaluating the different solutions proposed in these

chapters.

Chapter 6 addresses testing the memories during application execution by preserving their content. So, it

proposes a hybrid diagnosis scheme which combines signature analysis with ECC error detection and

correction and allows the smooth cooperation between the transparent BIST and ECC-based repair.

 7

CHAPTER 2

MEMORY TEST ALGORITHMS FOR ECC-BASED REPAIR

As highlighted in the previous chapter, the benefits gained by using ECC-based repair can be lost due to

diagnosis issues. Here we address the development of SRDF test algorithms enabling eliminating this issue.

These algorithms guaranty the single-read double fault detection property. That is: if a memory word

contains two or more faults, there is a read operation in the algorithm that detects at least two of them. We

first treat the case of words affected by two faults (propositions 1 to 8), and then the case of words affected

by three or more faults (proposition 9). We start with an illustration of the approach for state faults [29].

Then, we propose algorithms for more complex faults.

Let us consider a simple march test algorithm detecting state faults: {(W0); (R0);  (W1) ;  (R1)}.

Here W0 means that a write is performed using the all 0’s vector as data, and R0 means that a read is

performed with expected value the all 0’s vector. In this algorithm a state fault SF < 0/1/- > affecting a cell

of any memory word is detected in the 2
nd

 march element, while SF < 1/0/- > affecting a cell of any memory

word is detected in the 4
th

 march element. If two SF < 0/1/- > faults affect the same memory word both are

detected by a single read (i.e. when this word is read in the 2
nd

 march element). Similarly, if two SF < 1/0/-
> faults affect the same memory word both are detected in a single read (i.e. when the word is read in the 4

th

march element). However, if a SF < 0/1/- > and a SF < 1/0/- > affect the same word, then, the first fault is

detected in the 2
nd

 march test sequence and the second fault is detected in the 4
th

 march test sequence. But

we need to detect in the same read any two state faults affecting any two cells of the same memory word.

The solution is to use the algorithm {(WVi); (RVi);  (W iV);  (R iV)}, obtained by replacing in the

algorithm described above the all 0’s vector by a vector Vi and the all 1’s vector by iV . Then, we execute

this algorithm k times using each time a different vector Vi, i{0, 1, ... k}. This set of binary vectors is

selected such that, for any two bit-positions, there is a vector in the set supplying 00 in these positions and

another vector in the set supplying 01 in these positions. Let us now consider a memory word comprising

two faulty cells. In the above-defined set there is a vector V00 such that the bit positions corresponding to the

faulty cells take the values 00. Let us execute the test algorithm using V00 as test data. Then, if the two

faults are SF<0/1/-> both of them are detected when the faulty word is read in the 2
nd

 march element of the

algorithm; and if the two faults are SF <1/0/->, both are detected when the faulty word is read in the 4
th

march element of the test algorithm. Furthermore, in the above-defined set there is a vector V01 such that the

bit positions corresponding to the faulty cells take the values 01. Let us execute the test algorithm using V01

as test data. Then, if the one fault is SF<0/1/-> and the other is SF<1/0/->, both are detected when the faulty

word is read in the 2
nd

 march element; and if the one fault is SF<1/0/-> and the other is SF<0/1/->, both are

detected when the faulty word is read in the 4
th

 march element. Thus, executing the algorithm for the above-

defined set of vectors Vi guaranties the single-read double-fault detection property for all double state faults

 8

affecting the same word.

Such a set consists of k= log
2
m +1 vectors Vi (m being the size of the memory word) [30], and its

creation is simple:

- We generate the set of all 2
k
 binary numbers of k bits. This set contains 2

k-1
 pairs of complementary

binary numbers.

- We eliminate any one of the two numbers of each pair, to obtain 2
k-1

 binary numbers.

- We eliminate 2
k-1

 – m of these numbers to obtain m binary numbers of k= log
2
m +1 bits.

- We create a kxm matrix having each of these numbers as a column. The k rows of this matrix give the set

of vectors Vi we are looking for.

As an example, for m = 8 the number of vectors Vi is k = 4. The rows of the 4x8 matrix given bellow and

created as described above, provide a set of 4 vectors Vi having the above described property.

0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

The aim of the sections 2.1, 2.2, and 2.3, is twofold: present a methodology enabling achieving the single-

read double-fault detection property for faults more complex than state faults in order to pave the way for

further developments in this domain; propose test algorithms achieving this property for a comprehensive

set of faults.

2.1 FUNCTIONAL FAULT MODELS AND TEST CONDITIONS

Unlinked faults (also known as simple faults) are considered, since the treatment of linked faults is still an

open question in the memory test literature. Indeed, as noted in [28] “the fault space for linked faults as well

as the required tests remain still to be worked out”. First, we consider single-cell unlinked faults. As

concerning multi-cell faults, similarly to [28] in this work we restrict our analysis to two-cell faults, because

they are considered to be the most important class of multi-cell faults. Furthermore, we restrict our analysis

to static faults. However, the approach developed hereafter can be used to extend the analysis to dynamic

faults too. A systematic classification of all static unlinked functional fault models (FFMs) involving one

memory cell (single-cell FFMs) and two memory cells (two-cell FFMs) is presented in [29]. These FFMs

are reported in tables 1 and 2. For compactness purposes, in these tables we replaced: the value of the

aggressor cell (whether it is 0 or 1) by a; the value of the victim cell (whether it is 0 or 1) by v; the symbol

of the transition of the victim cell (whether it is  or ) by .

Table 1. List of single-cell FFMs

FFM Fault

Primitives

FFM Fault

Primitives

1 SF < v/



v /-> 4 RDF <rv//



v >

2 TF <



v wv/



v /-> 5 DRDF <rv//v>

3 WDF <vwv//-> 6 IRF rv/v/



v >

 9

Table 2. List of two-cell FFMs

FFM Fault Primitive # FFM Fault

Primitive

1 CFst <a; v/



v /-> 3 CFtr <a; vw



v /v/ - >

2

2.1

2.2

2.3

CFds:

 CFds(ra)

CFds(aw



a)

CFds(awa)

<ra; v//->

<aw



a ; v//->

<awa; v//->

4 CFwd <a; vwv // - >

5 CFrd <a; rv//



v >

6 CFdrd <a; rv//v >

7 CFir < a; rv /v/



v >

 Memory test algorithms covering various combinations of the above faults are presented in [28]. The

detection of all of them is achieved at 22n complexity (March SS algorithm [28]). Optimal tests for these

FFMs are given in [31], requiring 19n complexity. In the following, we address test algorithms satisfying

the single-read double-fault detection (SRDF) property for these FFMs. That is: if any combination of the

above faults affects two or more cells of the same memory word, then, there is always a read operation in

the test algorithm that detects at least two of them (single-read double-fault detection property).

The theoretical challenge in developing test algorithms satisfying the SRDF property is far more complex in

comparison with the development of conventional test algorithms. Indeed, detecting in a single read two

FFMs affecting two cells of the same memory word is equivalent to testing a duplex FFM consisting in the

combination of these two FFMs. Thus, while for the fault models of tables 1 and 2 a conventional test

algorithm will have to test 6 single-cell and 9 two-cell FFMs (considering read CFds, transition CFds, and

non-transition CFds as 3 cases), the SRDF test algorithm will have to test 225 duplex FFMs (all possible

combinations of two of the above FFMs). The increase of fault cases is ever sharper if we consider the

number of sensitizing states involved in each double fault (e.g. from 4 states related to the values of the

victim and aggressor cells in a single two-cell FFM to 16 states for a duplex FFM composed of two two-cell

FFMs). The increase of the number of faults is yet sharper as, in a memory word comprising 39 cells (32

data bits plus 7 ECC bits) each FFM can affect any of the 39 cells, while for the same word size each duplex

FFM can affect any of the 741 pairs of cells. Furthermore, as the two FFMs composing a duplex FFM affect

the same memory word, sensitizing the one FFM may desensitize the other FFM, making even more

complex the simultaneous detection of both FFMs. For instance, a write of the faulty memory word

sensitizing the one FFM will destroy the sensitization of the other FFM. To cope with these complexities we

developed a formal framework comprising numerous lemmas (16) and propositions (8).

We start with a trivial lemma listing a set of conditions that guaranty detecting the set of all single-cell

FFMS (SF, TF, WDF, RDF, DRDF, IRF), and the two-cell FFMs CFst and CFds.

Lemma 1: A test algorithm that satisfies each of the conditions i to x given bellow, guaranties detecting

each of the single-cell faults (SF, TF, WDF, RDF, DRDF, IRF) and the two-cell faults of types CFst and

CFds, by some of its read operations performed over the victim cell (referred hereafter as victim-detection

read or more simply as detection read):

i. The victim cell is at state v during the victim-detection read (SF faults related condition).

ii. The operations vwv (for WDF faults) or rv (for DRDF faults) is performed over the victim cell before

the victim-detection read, and no write is performed over the victim cell between these operations.

iii. The victim-detection read is performed when the victim is at state v (RDF and IRF faults).

iv. The operations



v wv is performed over the victim cell before the victim-detection read and no write is

performed over the victim cell between these operations (TF faults).

v. There is an instant of the test algorithm preceding the instant of the victim-detection read such that: the

aggressor cell is at state a; the victim cell is at state v; and no write is performed over the victim

between these two instants (CFst fault).

 10

vi. The operation ra is performed over the aggressor cell at some instant preceding the victim-detection

read during which the victim cell has a particular value v, and no write is performed over the victim cell

between these instants (CFds(ra) faults).

vii. Same as vi with ra replaced by awa (CFds(awa) faults).

viii. Same as vi with ra replaced by aw



a (CFds(aw



a) faults).

ix. Conditions v, vi, vii, and viii are realized for both a=0 and a=1.

x. The test is executed several times using test data that supply to the victim cell both values v=0 and v=1

during the realization of each of the above conditions.

Lemma 1 can be proven trivially.

As mentioned earlier, the analysis and derivation of test algorithms achieving the single-read double-

fault detection property is far more complex than for conventional tests. Thanks to the unlinked property of

the fault models, some simplification of this task can be done by means of a lemma described next. Let us

consider a memory word W in which k distinct cells (to be referred as victim cell) are affected by faults, and

let k≥2. A victim cell can be affected by multiple FFMs. Thus, a number of FFMs larger than k can affect

the k victim cells of W. Let Wf be the set of FFMs affecting the word W.

Lemma 2: If a test algorithm TA detects in the same read the faults of any subset Wf’ of the set of faults

Wf affecting a memory word W, such that the faults of Wf’ affect at least two victim cells of W, then, TA

achieves the single-read double-fault detection property when word W is affected by the set of faults Wf.

Proof: Since the faults are unlinked, the detection of a fault is not masked by the presence of other faults.

Thus, if TA detects in a single read the faults of Wf’, it will also detect these faults in the presence of all

faults of Wf. As there are at least two victim cells in Wf’, this read will detect at least two errors, identifying

W as a word affected by at least two faults. QED

 Thanks to this lemma, we only need to treat double faults [f1, f2], such that f1 and f2 affect two distinct

cells of the same memory word, and each of them is a FFM of the table 1 or 2. Thus, all our proofs will

demonstrate the single-read double-fault detection property for double faults only.

2.2 SRDF TEST ALGORITHMS

Based on lemma 1 we propose the March SRDF1 algorithm (shown in figure 1) that satisfies the single-

read double-fault detection property for all single-cell FFMs (SF, TF, WDF, RDF, DRDF, IRF), and two

important classes of two-cell FFMs (CFst and CFds). March SRDF1 comprises three march elements (M0,

M1, M2). M0 has one operation. M1 has six operations (M11 through to M16). M2 has seven operations (M21

through to M27).

Figure 1. March SRDF1

Let m be the number of bits of a memory word. A march element uses the same m-bit binary vector Vi (in

direct Vi and complementary iV form) as test data in all memory addresses. We can execute a march test

several times using each time a different binary vector Vi. A set of m-bit binary vectors Vi is a two-

covering set of m-bit binary vectors if: for any pair of bit positions each of the values 00, 01, 10, and 11 -

appears in some vector Vi of the set. Using such a set is useful as, for a pair of faulty cells belonging to a

M0 {(WVi);

M1 (RVi, W



V i , W



V i , R



V i , WVi, WVi);

 M11 M12 M13 M14 M15 M16

M2 (RVi, RVi, W



V i , W



V i , R iV , WVi, WVi) };

 M21 M22 M23 M24 M25 M26 M27

 11

memory word, it can allow applying on the victim and/or aggressor cells the value combinations required

for satisfying the single-read double-fault detection property. Attention has to be paid to the case where

some aggressor and victim cells occupy the same bit positions in their respective memory words. This is

because in this case the vectors Vi will supply the identical values to these cells and this could invalidate

the test. The possible coincidences of the bit positions of the victim and aggressor cells are: the bit

position(s) of the aggressor cell(s) coincide(s) with the bit position(s) of the victim cell(s) and/or the two

aggressor cells are in the same bit position (including the case where the aggressor cells of the two faults are

identical - same bit position and same word).

Please note that, the case where the bit positions of the two victim cells coincide is not an issue. This is

because such a double fault can only produce single errors in the faulty memory word, while we are

tracking double faults that could produce double-errors in the same memory word.

Proposition 1: The test produced by executing March SRDF1 for each vector Vi of a two-covering set

satisfies the single-read double-fault detection property for any double fault [f1, f2] such that f1 and f2

belong to the set of faults comprising the single-cell FFMs and the CFst and CFds two-cell FFMs.

Proof: Our challenge is to detect in the same read any pair of FFMs affecting two cells of the same memory

word. We designed March SRDF1 in a manner that this is accomplished in the M22 read operation. Table 3

presents the sensitizing operation/condition that enables detecting in M22 each FFM considered in the

statement of the proposition. The first column of table 3 lists these FFMs. The second column specifies the

relation between the address @a of the aggressor and the address @v of the victim. The third column shows

the sensitizing operation/condition enabling detecting the fault in M22. Note that, the second column is

empty for all single-cell FFMs (there is no aggressor cell for such faults).

Table 3. Conditions for detecting FFMs in M22

FFMs
Relation

@a/@v
Sensitization

SF < v/



v /-> - M22

TF <



v wv/



v /-> - M15

WDF <vwv//-> - M16

RDF <rv//



v > - M21

DRDF <rv//v> - M21

IRF rv/v/



v > - M22

CFst <a; v/



v /- > @a>@v M1: a=0 & a=1 Vi

CFst <a; v/



v /- > @a<@v M2: a=0 & a=1 Vi

CFds <ra; v//-> @a>@v M11; M14: r0 & r1 Vi

CFds <ra; v//-> @a<@v M21; M25: r0 & r1 Vi

CFds <aw



a ; v//-

>
@a>@v M12; M15: 0w1 & 1w0 Vi

CFds <aw



a ; v//-

>
@a<@v M23; M26: 0w1 & 1w0 Vi

CFds <awa; v//-> @a>@v M13; M16: 0w0 & 1w1 Vi

CFds <awa; v//-> @a<@v M24; M27: 0w0 & 1w1 Vi

For CFst faults: march element M1 writes on the aggressor cell both the 0 and the 1 values regardless to

the value of vector Vi. Furthermore, for @a>@v no write operation is performed over the victim cell

between these writes and the M22 read of the victim cell. Thus, condition v of lemma 1 is met in M1 for

@a>@v and for both values a=0 and a=1 of the aggressor cell. For @a<@v, the same holds true for the

 12

writes performed on the aggressor cell in M2. Thus, condition v of lemma 1 is satisfied for both values a=0

and a=1 also for @a<@v. The third column of the table reports these facts for CFst faults. For all other

faults, the operations realizing the conditions i, ii, iii, iv, vi, vii, and viii for @a>@v and for @a<@v are

also reported in the third column. As reported in this column, these operations realize the conditions i, ii, iii,

iv, vi, vii, viii for both a =0 and a= 1, regardless of the value of vector Vi. Thus condition ix of lemma 1 is

also satisfied. Hence, according to lemma 1, executing SRDF1 for a vector Vi will detect in the read

operation M22 of a victim word any fault of the type SF, TF, WDF, RDF, DRDF, IRF, CFst, or CFds for the

value v supplied by Vi to the victim cell of this fault. As the set of vectors Vi is a two-covering set, each of

the values 00, 01, 10 and 11 is applied to any pair of bit positions by some vector Vi. Thus, if any two cells

of a memory word are affected by any pair of faults of the types SF, TF, WDF, RDF, DRDF, IRF, CFst, or

CFds, there is a vector Vi that enables detecting both faults in operation M22, provided that there are no bit

positions coincidences. Furthermore, bit-positions coincidences are not an issue because: on the one hand,

as justified earlier this issue does not concern the coincidence of the positions of the victim cells, and on the

other hand, all sensitizing operations/states of the aggressor cells are supplied by the test algorithm

regardless of the value of vector Vi. Thus, supplying the same value by vector Vi to coinciding aggressor

cells or to coinciding aggressor and victim cells is not an issue. QED

Note that, a 2-covering set of vectors Vi can be obtained easily by taking the set of vectors used in the

beginning of this chapter (in order to achieve the single-read double-fault detection property for state

faults), and adding their complements. For instance for m = 8 (8-bit words) a 2-covering set is given in the

matrix below (the rows of this matrix are the vectors of the 2-covering set, and are obtained by adding the

complements of the 4 rows of the matrix generated the beginning of this chapter.

0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

The cardinality of the covering set of vectors Vi generated by the above method is k = 2log
2
m + 2

(which is the minimal cardinality for a covering set). For 22-bits word size (16 data bits and 6 code bits) we

have k = 12. For 39-bits word size (32 data bits and 7 code bits) we have k = 14. For 72-bits word size (64

data bits and 8 code bits) we have k = 16. Thus, to satisfy the single-read double-fault detection property for

a memory using words of 32 data bits and 7 check bits, we have to execute March SRDF1 for 14 vectors Vi.

March SRDF1 was designed to meet the single-read double-fault detection property for SF, TF, WDF,

RDF, DRDF, IRF, CFst or CFds faults, but no consideration of the remaining two-cell faults has been taken

during its construction. Thus, in fig. 2 and 3, we introduce two slightly more lengthy algorithms (March

SRDF2 and March SRDF2’), which are more convenient for covering the remaining FFMs. Before

addressing the remaining FFMs, we establish in corollary 1 the validity of March SRDF2 and March

SRDF2’ for SF, TF, WDF, RDF, DRDF, IRF, CFst or CFds faults. Then, we use them to design test

algorithms that also cover the missed two-cell FFMs.

Corollary 1: The test produced when March SRDF2 is executed for each vector Vi of a two-covering- set

satisfies the single-read double-fault detection property for SF, TF, WDF, RDF, DRDF, IRF, CFst or CFds

faults. This is also true for March SRDF2’.

Short proof: Considering M22 as victim-detection read, March SRDF2 is designed similarly to SRDF1 to

provide all sensitizing states/operations for the faults SF, TF, WDF, RDF, DRDF, IRF, CFst, and CFds, as

 13

well as, for the sensitizing states/operations of the two-cell faults CFst and CFds, to provide both the a = 0

and the a =1 values of the aggressor cell. Thus, the corollary is proven similarly to proposition 1. This also

holds true for SDRF2’, which is identical to SDRF2 but uses inverse addressing order. QED

Figure 2. March SRDF2

Figure 3. March SRDF2’

Since a two-cell FFM involves a victim cell and an aggressor cell, if two two-cell FFMs affect two cells

of a memory word, four cells will be involved, requiring all value combinations in four bit positions for

detecting all combinations of such FFMs. Applying all value combinations in any 4-bit positions requires

using a 4-bit covering set of vectors Vi. Nevertheless in proposition 1 and corollary 1 we were able to cope

with two important classes of two-cell FFMs (CFst and CFds) by using a two-covering set of binary vectors

Vi. This was possible because CFst and CFds faults are sensitized when the victim cell is in a particular

state. Thus, we can employ a march element (like element M1 or element M2 in SRDF1), which performs

all possible operations (RVi ; R iV ; ViWVi; iV W iV ; ViW iV ; ViW iV). These operations enable the march

element to sensitize the fault for both the 0 and the 1 states of each aggressor cell, as well as for all possible

operations performed over each aggressor cell (0W0, 0W1, 1W1, 1W0, R0, R1), regardless of the value of

Vi. As a matter of fact, we only need to use a set of binary vectors Vi that provides to the two victim cells all

state combinations (00, 01, 10, 11), which can be done by using a 2-covering set of binary vectors Vi.

However, for the remaining two-cell faults (CFtr, CFwd, CFrd, CFdrd, and CFir), the situation is more

difficult as stated bellow.

Remark 1: To sensitize a CFtr, CFwd, CFrd, CFdrd, or CFir fault the aggressor cell should have a

particular value at an instant at which the victim cell undergoes a particular read or write operation. Thus,

contrary to CFst and CFds, a march element cannot sensitize a CFtr, CFwd, CFrd, CFdrd, or CFir fault for

both states of the aggressor cell, since the aggressor cell will have a precise (unique) value when the march

element performs the required operation over the victim cell.

Remark 2: For CFtr, CFwd, CFrd, CFdrd, or CFir the sensitizing operations are performed over the victim

cells. Thus, a march element cannot perform all sensitizing operations because a sensitizing write can mask

the sensitization of a fault produced by a previous operation.

From these remarks, achieving the single-read double-fault detection property for the remaining two-cell

faults is more difficult, and using a 2-covering sets of vectors Vi may not be sufficient for achieving this

{(WVi);

 M0

(RVi, W iV , WVi, WVi, W iV , W iV , R iV);

 M11 M12 M13 M14 M15 M16 M17

(R iV , R iV , WVi, RVi, W iV , W iV , WVi, WVi)};

 M21 M22

 M23 M24 M25 M26 M27 M28

{(WVi);

(RVi, W iV , WVi, WVi, W iV , W iV , R iV);

 M11 M12 M13 M14 M15 M16 M17

(R iV , R iV , WVi, RVi, W iV , W iV , WVi, WVi)};

 M21 M22 M23 M24 M25 M26 M27 M28

 14

property for all of them. In the following we analyse in more details this issue in order to determine all

faults that can be addressed by means of 2-covering sets and propose the related algorithms.

For CFtr, CFwd, CFrd, CFdrd, and CFir faults, the operation vwv, vw



v or rv performed over the victim

cell for sensitizing the fault is referred hereafter as victim sensitizing operation, and the associated value v

as victim sensitizing-state. The value a that has the aggressor cell during the victim sensitizing operation is

referred as aggressor sensitizing-state.

Lemma 3: The following conditions are sufficient and necessary for detecting the following FFMs: CFtr

<a; vw



v /v/->, CFwd <a; vwv//- >, CFrd <a; rv// v >, CFdrd <a; rv//v>, CFir <a; rv/v/



v > by a given read

operation performed over the victim cell (victim detection read):

i.a Detection Conditions for CFtr <a;



vwv / v / - >: the operation



vwv has to be performed over the victim

cell (victim-sensitizing operation) before the victim detection read; no wv write is performed over the

victim cell between these operations; and no



wv write is performed over the victim cell between these

operations if, in the meantime, the state of the aggressor has been changed.

i.b Detection Conditions for CFwd <a; vwv / / - >: the operation vwv has to be performed over the

victim cell (victim-sensitizing operation) before the victim-detection read, and no write is performed

over the victim cell between these operations.

i.c Detection Conditions for CFrd < a; rv / /



v >: the victim-sensitizing operation can be the victim-

detection read itself or a read preceding it; and, in the latter case no write operation is performed over

the victim cell between these operations.

i.d Detection Conditions for CFdrd < a; rv / / v >: the operation rv has to be performed over the victim

cell (victim-sensitizing operation) before the victim-detection read and no write is performed over the

victim cell between these reads.

i.e Detection Conditions for CFir < a; rv / v /



v >: the victim-sensitizing operation is (necessarily) the

victim-detection read itself.

ii. In all cases: the state of the aggressor cell during the victim-sensitizing operation is equal to a.

Lemma 3 can be proven trivially from the definitions of CFtr, CFwd, CFrd, CFdrd, and CFir faults. Also,

we check trivially that if the conditions of lemma 3 are met for all value combinations 00, 01, 10 and 11 of a

and v, then all CFtr, CFwd, CFrd, CFdrd, or CFir faults are detected by the victim-detection read.

Remark 3: From Lemma 3, any number of reads over the victim cell can be performed between the

victim-sensitizing operation and the victim-detection read.

Remark 4: Generally, a write performed over the victim after a fault-sensitizing operation will destroy

the fault sensitization. However, for CFtr < a;



vwv / v / - >, if the aggressor state is a and the victim state is

v, performing the operation



wv leaves the victim at the state v (which is erroneous). Thus, if the aggressor

state is still a and we perform again



wv , it will again leave the victim at the state v. Hence the second



wv

does not desensitize the CFtr fault. Consequently, we can perform the two operations



wv ;



wv , in order to

both: sensitize the CFtr < a;



vwv / v / - > with the first



wv , and sensitize CFwd < a;



v wv / v / - > with the

second



wv , without affecting the sensitization of CFtr by the second



wv .

Based on remarks 1, 2, 3, 4 and lemma 3, let us determine how march test algorithms can sensitize and

detect CFtr, CFwd, CFrd, CFdrd, and CFir faults.

Lemma 4:
i. A read operation (victim-detection read) can detect a CFtr, CFwd, or CFir fault for only one state of the

aggressor cell.

ii. A read operation (victim-detection read) can detect a CFrd or CFdrd fault for both 0 and 1 states of the

aggressor cell.

Proof of part i: In the case of CFwd faults, from condition i.b of lemma 3, no write can be performed over

the memory word containing the victim cell between the write sensitizing this fault and the read detecting it.

 15

This means that a read operation can detect a CFwd fault sensitized by a single write operation, and thus, for

only one state of the aggressor cell (the state that has the aggressor during this write).

From condition i.a of lemma 3, either no write is performed over the memory word containing the victim

cell of a CFtr fault between a



vwv transition sensitizing this fault and its detection read (hence, as above, the

fault is sensitized by a single write and thus for a single value of the aggressor cell), or a



wv is performed

but the state of the aggressor cell has not been changed in the mean time (hence the fault is sensitized by

several writes but each time the aggressor cell has the same state). In both cases the read can detect a CFtr

fault for only one state of the aggressor.

From condition i.e of lemma 3, the sensitizing read of a CFir fault coincides with its detection read. Thus

a read detects a CFir fault for only one state of the aggressor cell (i.e. for the state that has the aggressor cell

during this read). QED.

Proof of part ii: From i.c and i.d, it is not forbidden to perform a read over the victim cell between a first

read sensitizing a CFrd or a CFdrd faults and its detection read. Thus, after a first read sensitizing the fault

and performed when the aggressor cell has a value a, we can perform a write over the aggressor cell to

invert its state to



a and then perform a second read to sensitize the CFrd or the CFdrd fault for the state



a of

the aggressor cell. A third read will be able to detect each of these faults (e.g. the one having a as aggressor-

sensitizing state and the one having



a as aggressor-sensitizing state). Note that the faults detected by this

read have the same victim-sensitizing state, since no write has been performed over the victim cell between

the first and the third read. Note also that for CFrd faults the second and third reads used in the above

analysis can coincide. QED.

Figure 4: March test algorithm structure developed from lemmas 1 and 4.

Based on lemmas 3 and 4 and their proofs, we derive the march test algorithm structure shown in figure 4.

For such algorithms we can show the following lemma.

Lemma 5. Let us consider march test algorithms comprising at least 2 march elements M1 and M2

having the following characteristics: at the beginning of M1 the state of all memory words is Vi; the last

three operations of M1 (referred as M1a, M1b, M1c) are W iV , W iV , R iV ; the first two operations of M2

(referred as M2a, M2b) are R iV , R iV ; and the last operation of M2 (referred as M2c) is WVi, as shown in

figure 4. Then, for such an algorithm the following properties hold true:

i. The state of the aggressor cell is inverted between the instant in which M1 visits the word containing the

victim cell, and the instant in which M2 visits the word containing the victim cell, regardless of the

relation of the addresses of the victim and the aggressor cells.

ii. CFtr faults are sensitized by M1a and detected in M1c as well as in M2b.
5

iii. CFwd faults are sensitized by M1b and detected in M1c and M2b.

iv. CFrd faults are sensitized by M1c and detected in M1c and M2b, and also sensitized by M2b and

detected in M2b. From point i above, the aggressor-sensitizing state in M2b is the inverse of the

aggressor-sensitizing state in M1c.

5
 The fault is also detected in M2a, but this detection is not exploited hereafter. Sensitizations and detections for other faults not

exploited in our analysis are also omitted in the subsequent text.

M0: (WVi);

M1: (........ W iV , W iV , R iV);

 M1a M1b M1c

M2: (R iV , R iV , WVi) };

 M2a M2b M2c

 16

v. CFdrd faults are sensitized by M1c and detected in M2b and also sensitized by M2a and detected in M2b.

As above, the aggressor-sensitizing state in M2a is the inverse of the aggressor-sensitizing state in M1c.

vi. CFir faults are sensitized by M1c and detected in M1c, and also sensitized by M2b and detected in M2b.

The aggressor-sensitizing state in M2b is the inverse of the aggressor-sensitizing state in M1c.

Proof: Point i of lemma 5 can be proven trivially by observing that M1 inverses that states of the memory

cells and so do M2. The rest of lemma 5 can be proven trivially based on lemma 3. QED

Lemma 6: The victim sensitizing state is the same for all CFtr faults detected by an algorithm obeying the

structure described in lemma 5. This is also true for CFwd faults, CFrd faults, CFdrd faults and CFir faults.

Proof: This lemma can be proven trivially since any CFtr fault is sensitized by the same operation (M1a).

Thus, we have a unique victim-sensitizing state for CFtr faults. The same holds true for CFwd faults, which

are sensitized by operation M1b. Operations performed at several positions of the algorithm can sensitize

each of the remaining faults (e.g. operations M1c, M2a and M2b for CFir). However all these operations are

identical (R iV). Thus, all of them involve the same victim sensitizing state. QED

Lemma 7: Let us consider a double fault [f1, f2] composed of two faults f1 and f2 such that: f1 and f2 are

of the types CFtr, CFwd, CFrd, CFdrd, or CFir, and f1 and f2 affect the same memory word (victim word).

Let us partition these double faults into the 7 categories (i, ii, iii, iv, v, vi, and vii) according to the types of

faults f1 and f2, as described in table 4. Let a1 and a2 be the values that have the aggressor cells of f1 and f2

at the instant in which the march element M1 of an algorithm obeying the structure described in lemma 5

visits the victim word. Then, for the fault [f1, f2] of each category i, ii, iii, iv, v, vi, and vii, such that both f1

and f2 are detected in M1c, or in M2a, or in M2b of this algorithm, column 4 of table 4 gives the values of

the pairs of the aggressor-sensitizing states.

Table 4. Pairs of aggressor sensitizing states in algorithms obeying the structure described in lemma 5

Fault

categories
f1 f2

Pairs of Aggressor

Sensitizing States

i
CFtr or

CFwd

CFrd or

CFdrd
(a1, a2), (a1, a2)

ii
CFtr or

CFwd
CFir (a1, a2), (a1, a2)

iii CFir CFrd
(a1, a2), (a1 , a2),

(a1 , a2)

iv CFir CFdrd (a1 , a2), (a1 , a2)

v
CFrd or

CFdrd

CFrd or

CFdrd

(a1, a2), (a1, a2), (a1 ,

a2), (a1 , a2)

vi
CFtr or

CFwd

CFtr or

CFwd
(a1, a2)

vii CFir CFir (a1, a2), (a1 , a2)

Proof: To prove this lemma we need to validate the values of the aggressor sensitizing pairs reported in

column 4 of table 4. This can be done trivially by using, for each FFM in the column 2 and 3 of the table, its

sensitizing operations from lemma 5, and considering the value that has the aggressor cell during these

operations, as detailed bellow for each of the fault categories i, ii, iii, iv, v, vi:

i. If f1 is a CFtr or a CFwd fault and f2 is a CFrd or a CFdrd fault, then, from points ii, iii, iv, and v of

lemma 5, M2b detects f1 and f2 for aggressor-sensitizing states (a1, a2) as well as for aggressor-

sensitizing states (a1, a2).

 17

ii. If f1 is a CFtr or a CFwd fault and f2 is a CFir fault, then, from points ii, iii, and vi of lemma 5 we find

that M1c detects f1 and f2 for aggressor-sensitizing states (a1, a2); and M2b detects f1 and f2 for

aggressor-sensitizing states (a1, a2).

iii. If f1 is a CFir fault and f2 is a CFrd fault, then from points iv, and vi of lemma 5 we find that M1c

detects f1 and f2 for aggressor-sensitizing states (a1, a2); and M2b detects f1 and f2 for aggressor-

sensitizing states (a1 , a2) as well as for aggressor-sensitizing states (a1 , a2).

iv. If f1 is a CFir fault and f2 is a CFdrd fault, then, from points v, and vi of lemma 5 we find that M2b

detects f1 and f2 for aggressor-sensitizing states (a1 , a2), as well as for aggressor-sensitizing states (a1 ,

a2).

v. If f1 is a CFrd or a CFdrd fault and f2 is a CFrd or a CFdrd fault, then, from points iv, and v of lemma 5

we find that M2b detects f1 and f2 for aggressor-sensitizing states (a1, a2), as well as for aggressor-

sensitizing states (a1, a2), (a1 , a2), and (a1 , a2).

vi. If f1 is a CFtr or a CFwd fault and f2 is a CFtr or a CFwd fault, then, from points ii and iii of lemma 5

each of the reads M1c, M2a, and M2b detects f1 and f2 for aggressor-sensitizing states (a1, a2).

vii. If f1 is a CFir fault and f2 is a CFir fault, then, from points vi of lemma 5, M1c detects f1 and f2 for

aggressor-sensitizing states (a1, a2), and M2a as well as M2b detects f1 and f2 for aggressor-sensitizing

states (a1 , a2). QED

Lemma 8. Let us consider a test algorithm using the vector Vi as data background (i.e. the read and write

data are Vi or iV). Then, for a given victim-sensitizing operation involving the aggressor-sensitizing state a

and the victim-sensitizing state v and a given victim-detection read, there is a bijective relationship between

a and Vip and between v and Vij (where Vip and Vij are the values that vector Vi supplies to the bit positions p

and j that the aggressor and the victim cells occupy to their respective words). In particular, inverting Vip

inverts a and inverting Vij inverts v.

Proof: This lemma is proven trivially by observing that inverting the state Vik of any bit position k in vector

Vi will invert all the occurrences in the test algorithm of the state of bit position k of each memory word.

QED
Proposition 2: If we execute an algorithm obeying the structure described in lemma 5 for a 2-bit covering

set of vectors Vi, then, the single-read double-fault detection property is satisfied for any double fault of

category v.

Proof: From lemma 7, for any pair of faults f1, f2 of category v detected by the same read operation of an

algorithm having the structure described in lemma 5, the pairs of aggressor sensitizing states take all four

possible values 00, 01, 10 and 11 whatever are the values of a1 and a2 supplied by a test vector Vi. This is

because, from column 4 in the table of lemma 7, these pairs take the values (a1, a2), (a1, a2), (a1 , a2) and

(a1 , a2). From lemma 6, when executing the algorithm for a vector Vi, the value v1 of the victim sensitizing

state of fault f1 is always the same and this is also true for the value v2 of the victim sensitizing state of fault

f2. Thus, each of the pairs (a1, a2), (a1, a2), (a1 , a2) and (a1 , a2) is combined with the pair (v1, v2). Then,

from lemma 8 we find trivially that executing the algorithm for a 2-covering set of vectors Vi (which

supplies all four possible value combinations to any two bit-positions), will provide all four possible value

combinations to the victim sensitizing states of the faults f1 and f2. Thus, we obtain all 16 possible

combinations for the aggressor and victim sensitizing-states for the double faults of category v.

 Concerning bit positions coincidence issues, the same arguments as in the proof of proposition 1 are

valid. QED

 From lemma 7 (table 4), for the faults of category v, an algorithm having the structure described in

lemma 5 supplies all four pairs (a1, a2), (a1, a2), (a1 , a2), (a1 , a2) of aggressor sensitizing-states. Thus, we

can use a set of two-covered vectors to achieve the single-read double-fault detection property.

 18

Unfortunately, this is not the case for the faults of the other categories. To cope with this issue, we extend

the test algorithm in the manner described in lemma 9.

Lemma 9: If the march elements M1 and M2 of the algorithms described in lemma 5 are replaced by two

march elements M1’ and M2’, which have the same structure as M1 and M2 but use inverse address order,

then, for CFtr, CFwd, CFrd, CFdrd and CFir faults, the values of the victim-sensitizing states remain

unchanged but the values of the aggressor-sensitizing states are inverted.

Proof: The values of the victim-sensitizing states remain unchanged because the victim-detection reads

M1a’, M1b’, M1c’, M2a’, M2b’, M2c’ are identical to the victim-detection reads M1a, M1b, M1c, M2a,

M2b, M2c, including the read values. The values of the aggressor-sensitizing states for CFtr, CFwd, CFrd,

CFdrd and CFir faults are inverted because: when we visit any memory word W1 in M1’ or M2’ to perform

sensitizing operations over potential victim cells, all other memory words (hence including any word W2

that contains potential aggressor cells) have values that are inverse of the values they have when we visit

W1 in M1 or M2. This fact is established trivially by noting that:

- Due to the use of inverse address order, if a word W2 is visited in march element M1’ after another word

W1, then, W2 is visited in M1 before W1, and vice versa.

- The value of a word W2 after it is visited in M1’ is the inverse of its value before it is visited in M1, and

vice versa.

- The above two facts hold also true for M2’ and M2. QED

Lemma 10: A march test algorithm (as the one of figure 5), comprising: two march elements M1 and M2

having the structure described in Lemma 5, and two march elements M1’ and M2’ having the similar

structure but use inverse address order (as described in lemma 9); provides all the four aggressor-sensitizing

states (a1, a2), (a1, a2), (a1 , a2) and (a1 , a2) for the fault categories i, ii, iii and iv, and the two aggressor

sensitizing states (a1, a2), (a1 , a2) for the fault categories vi, and vii. Furthermore, the values v1, v2 of the

victim-sensitizing states are always the same.

Proof: The first part of this lemma comes trivially by considering the aggressor-sensitizing pairs of table 4

(from lemma 7) and also their inverses (from lemma 9). The second part of this lemma is also comes

trivially from lemma 9 (the values of the victim-sensitizing states remain unchanged) and the fact that, for

the algorithm structure described in lemma 5, we have already found in lemma 6 that the values of the

victim sensitizing states v1 and v2 are always the same for the FFMs CFtr, CFwd, CFrd, CFdrd, and CFir,

which compose the faults of categories i, ii, iii and iv. QED

Figure 5. March test algorithm structure related to lemma 10.

Proposition 3: If we execute an algorithm obeying the structure described in lemma 10 for a 2-covering set

of vectors Vi, then, the single-read double-fault detection property is satisfied for all double faults of

categories i, ii, iii, iv and v, and for the half of the faults of categories vi and vii.

Proof: For the faults of category v the proposition has been proven already (see proposition 2).

M0: (WVi);

M1: (........ W iV , W iV , R iV);

 M1a, M1b M1c

M2: (R iV , R iV ,, WVi) };

 M2a M2b M2c

M1’: (...... .. W iV , W iV , R iV);

 M1a’, M1b’ M1c’

M2’: (R iV , R iV , ... WVi) }

 M2a’ M2b’ M2c’

 19

For the categories i, ii, iii, and iv: based on the results of lemma 10, the proposition is proven similarly to

proposition 2 by exploiting the fact that the set of vectors Vi is 2-covering.

For the faults of categories vi and vii, the proof is done similarly by using the fact we use a 2-covering set of

vectors Vi, and that from lemma 10 only the half of aggressor-sensitizing states ((a1, a2), (a1 , a2)) are

supplied for categories vi and vii.

Concerning bit positions coincidence issues, the same arguments as in the proof of proposition 1 are valid.

QED
Proposition 4: If we execute the algorithm March SRDF3, (shown in figure 6) for a 2-bit covering set of

vectors Vi, then, the single-read double-fault detection property is satisfied for all double faults composed

of single-cell FFMs and two-cell FFMs, except the half of the faults of categories vi and vii.

Proof:
Case 1. Let f1 and f2 be the single faults composing a double fault [f1, f2]. March SRDF3 is composed of

March SRDF2 and March SRDF2’. From corollary 1, executing March SRDF2 (and also March SRDF2’)

for a 2-covering set of vectors Vi, satisfies the single-read double-fault detection property for any double

fault such that: f1 is a single-cell FFM or a two-cell FFM of the types CFst and CFds and the same is true

for f2.

Case 2. We check trivially that March SRDF3 satisfies the structure shown in figure 5. Thus, from

proposition 3 the single-read double-fault detection property is satisfied for all double faults such that f1

and f2 are two-cell FFMs of the types CFtr, CFwd, CFrd, CFdrd, and CFir, except the half of the double

faults of categories vi and vii.

Case 3. To complete the proof we should address the case where f1 is a single-cell FFM or a two-cell FFM

of the type CFst or CFds, and f2 is a two-cell FFM of the type CFtr, CFwd, CFrd, CFdrd, or CFir.

When f1 is a two-cell fault of type CFst or CFds, then, from the proof of corollary 1, considering M22 as

detection read, March SRDF2 provides to the aggressor cell all states/operations required to sensitize such a

fault. That is, both the 0 and the 1 states for CFst faults, both the r0 and r1 operations for CFds(ra), both the

0w1 and 1w0 for CFds(aw



a) and both the 0w0 and 1W1 for CFds(awa). Thus, two aggressors-sensitizing

states a1 and a1 are supplied for fault f1. This holds true also for March SRDF2’ when M22’ is considering

as detection read. In March SRDF2, the sensitizing operations over the aggressors are performed after the

victim is visited in march element M1 and before it is revisited in march element M2. During this period,

the value of the victim word is iV . Thus, for each fault only one sensitized value is supplied to the victim of

f1 (say value v1). We check easily that during the sensitisation of f1 in March SRDF2’ the value of the

victim word is again iV . Thus, for each fault f1, the victim sensitizing value in March SRDF2’ is the same

as in March SRDF2 (i.e. v1). Therefore, for fault f1, March SRDF2 supplies the following aggressor-

sensitizing and victim-sensitizing values pairs (a1, v1), (a1 , v1), and the same pairs are also supplied in

March SRDF2’.

Fault f2 should be detected by the same detection read as f1, that is M22 in March SRDF2 or M22’ in

March SRDF2’. Fault f2 is of the type CFtr, CFwd, CFrd, CFdrd, or CFir. Detecting CFtr, CFwd and CFir

faults in M22 of March SRDF2, implies that the sensitizing operation performed over the victim is M15 for

CFtr, M16 for CFwd, and M22 for CFir. As there is just one such operation for each of these faults, we have

just one victim-sensitizing value for each of them. For CFrd and CFdrd faults we can have two sensitizing

operations (M17 and M21) but as they are identical they provide a single victim-sensitizing value. Thus, we

have just one victim-sensitizing value for CFrd and CFdrd faults too. Let call v2 the unique victim-

sensitizing value for any fault of the type CFtr, CFwd, CFrd, CFdrd, or CFir. As operations M15’, M16’,

M17’, M21’ and M22’ are identical to M15, M16, M17, M21, and M22, we will have the same victim

sensitizing value v2 in March SRDF2 and March SRDF2’. On the other hand, the aggressor sensitizing state

for fault f2 takes inverse values in March SRDF2 and March SRDF2’ (say a2 and a2). This gives for f2 the

sensitizing pair (a2, v2) in March SRDF2 and (a2 , v2) in March SRDF2’. Thus, the sensitized pairs (a1, v1)

 20

(a1 , v1) of f1 are combined in March SRDF2 with the sensitizing pair (a2, v2) of f2, and in March SRDF2’

with the sensitizing pair (a2 , v2) of f2. We obtain the following sensitizing quadruples for the double fault

[f1, f2]: (a1, v1, a2, v2) (a1 , v1, a2, v2), (a1, v1, a2 , v2) (a1 , v1, a2 , v2). Then, executing March SRDF3 for

a 2-covering set of vectors Vi will provide all 4 values to the victim sensitizing states v1 and v2. In this case

we find trivially that, the above 4 quadruplets provide all the 16 possible sensitizing quadruples for the

double fault [f1, f2].This guaranties that each pair of faults f1 and f2 is detected by the operation M22 or the

operation M22’ in some of the executions of SRDF3.

Above we considered that f1 is a two-cell fault of the type CFst or CFds. When f1 is a single-cell FFM (i.e.

there is no aggressor cell), in the previous arguments we eliminate the aggressor cell of f1 and we obtain the

proof for this case too.

Furthermore, as the vectors Vi were used only for applying all possible values to the victim sensitizing states

v1 and v2, using similar arguments as in proposition 1 implies that bit positions coincidences do not affect

the arguments used in this proof. QED

Figure 6. March SRDF3

From tables 1 and 2 we have a total of 15 types of single-cell and two-cell FFMs, which give a total of



C
2
15 +

15 = 120 double-fault combinations. From proposition 4, March SRDF3 achieves the single-read double-

fault detection property for the large majority of them. Indeed, this is not satisfied only for 4 of these

combinations (corresponding to the categories vi and vii of table 4), and only for the half of the faults of

these categories. So, the coverage achieved by March SRDF3 could be considered satisfactory. However, if

a higher fault coverage is required, we need to cope with the double faults of categories vi and vii. That is,

when both faults are of the type CFir; or both faults are of the type CFtr; or both faults are of the type

CFwd; or the one fault is CFtr and the other is CFwd. The coverage of these faults is discussed next. First

we show that covering these faults requires using a 4-covering set of vectors Vi.

Lemma 11: For any given double fault [f1, f2] let a1, a2, v1, v2 be the values of the bit positions of a vector

Vi corresponding to the bit positions of the aggressor cells and victim cells of this fault. A test algorithm that

uses the vector Vi and its inverse iV as data in any read and write operation, could achieve the single-read

double-fault detection property for the double faults of categories vi and vii for the sensitizing quadruplets

(a1, a2, v1, v2), (a1, a2, v1 , v2), (a1 , a2 , v1, v2), and (a1 , a2 , v1 , v2), and only for these quadruplets.

Proof: We can easily check that the algorithm shown in figure 7 achieves the single-read double-fault

detecting property for the double faults of categories vi and vii corresponding to the sensitizing quadruplets:

(a1, a2, v1, v2), (a1, a2, v1 , v2), (a1 , a2 , v1, v2), and (a1 , a2 , v1 , v2). This proves the 1
st
 part of the

lemma.

{(WVi);

 M0

(RVi, W iV , WVi, WVi, W iV , W iV , R iV);

 M11 M12 M13 M14 M15 M16 M17

(R iV , R iV , WVi, RVi, W iV , W iV , WVi, WVi)};

 M21 M22 M23 M24 M25 M26 M27 M28

(RVi, W iV , WVi, WVi, W iV , W iV , R iV);

 M11’ M12’ M13’ M14’ M15’ M16’ M17’

(R iV , R iV , WVi, RVi, W iV , W iV , WVi, WVi)}

 M21’ M22’ M23’ M24’ M25’ M26’ M27’ M28’

 21

Concerning the 2
nd

 part (only faults corresponding to the quadruplets (a1, a2, v1, v2), (a1, a2, v1 , v2), (a1 ,

a2 , v1, v2), and (a1 , a2 , v1 , v2) can be detected), we first note that a test algorithm using Vi and iV as data

in its read and write operations can include only the following four operations: WVi, W iV , RVi and R iV .

Let i, j, p and q be the bit positions of the aggressor and victim cells of a double fault [f1, f2]. Let a1, a2, v1

and v2, be the values of the bit positions i, j, p and q in vector Vi. Let us consider a test algorithm that

includes a read detecting both f1 and f2 (detection read).

Let both f1 and f2 be CFtr faults. From the detection conditions of CFtr faults given earlier (lemma 3), we

have that: between the operation vw v sensitizing a CFtr fault and the read operation detecting this fault no

wv operation can be performed over the victim cell. This implies that if a CFtr fault is sensitized by the

operation ViW iV and is detected by a read, then a CFtr fault sensitized by the operation iV WVi cannot be

detected by the same read, and vice-versa. Thus, as f1 and f2 affect the same memory word, if they are

detected by the same read they are sensitized by the same operation, which is either ViW iV or iV WVi. As a

consequence, the possible combinations of victim sensitizing states are (v1, v2) and (v1 , v2). Also, as the

content of a memory word is either vector Vi or its inverse (i.e. iV), at each given instant of the test

algorithm the values of the aggressor cells are either a1 and a2, or a1 and a2 . As f1 and f2 are sensitized by

the same operation, the aggressor sensitizing states will be the values that have the aggressor cells during

this operation, yielding to two possible aggressor-sensitizing states combinations: (a1, a2), and (a1 , a2).

Thus, the test algorithm could provide only the following combinations of sensitizing quadruplets: (a1, a2,

v1, v2), (a1, a2, v1 , v2), (a1 , a2 , v1, v2), and (a1 , a2 , v1 , v2).

The proof is given in similar manner when f1 and f2 are both CFwd faults, as well as when f1 and f2 are

both CFir faults.

When the one fault is CFtr and the other is CFwd, the proof can also be done with similar arguments, while

paying attention to the fact that the remark 4 related to lemma 3 is not helpful for increasing the victim

sensitizing values:

i. The detection condition for CFtr < a; vw v / v / - > allows performing any number of w v operations

between the victim sensitizing operation vw v and the detection read;

ii. However this is allowed only if the state of the aggressor is the same during the victim sensitizing

operation vw v and the subsequent w v operations.

Thus, while point i. seems allowing performing the sensitizing operations of the CFtr and the CFwd faults at

different instants of the algorithm, which could be exploited for modifying the values of the aggressor cells

between the sensitization operation of f1 and that of f2 (introducing this way the aggressor sensitizing pair

(a1, a2)), point ii prevents us from doing it. QED

Figure 7. Algorithm structure related to lemma 11

Lemma 12: Executing march test algorithms for a 2-covering set or a 3-covering set of vectors Vi do not

guaranty satisfying the single-read double-fault detection property for all faults of categories vi and vii.

{(WVi);

(W iV , W iV ,

R iV);

(WVi, WVi, RVi);

(W iV , W iV ,

R iV);

(WVi, WVi, RVi)}

 22

Proof: Let us consider any march test algorithm using a vector Vi as data background. Such an algorithm

can perform read and write operations using Vi and iV as data. Thus, the conditions of lemma 11 are

satisfied. From this lemma, we have that executing a march test algorithm for a vector Vi can allow us

satisfying the single-read double-fault detection property for the faults of categories vi and vii

corresponding to the sensitizing quadruplets (a1, a2, v1, v2), (a1, a2, v1 , v2), (a1 , a2 , v1, v2), and (a1 , a2 ,

v1 , v2) and only to these quadruplets. Supplying the variables a1, a2, v1, v2 of these quadruplets with the

values of a 2-covering set does not guaranty producing all possible 16 values combinations. This can be

shown easily by example. For instance, if we give to the variables a1, a2, v1, v2 of the quadruplets (a1, a2,

v1, v2) (a1, a2, v1 , v2), (a1 , a2 , v1, v2), and (a1 , a2 , v1 , v2) the values of the of the following 2-covering

set of 4-bit vectors 0000; 0011; 0101; 1111; 1100; 1010, we obtain the vectors 0000; 0011; 0101; 1111;

1100; 1010, 0110; 1001, which are the half of the 16 possible quadruplet values.

The case concerning the 3-covering sets can also be proven by example. For instance, if we give to the

variables a1, a2, v1, v2 of the quadruplets (a1, a2, v1, v2) (a1, a2, v1 , v2), (a1 , a2 , v1, v2), and (a1 , a2 ,

v1 , v2) the values of the following 8 quadruplet values 0000; 0011; 0101; 0110; 1001; 1010; 1100; 1111,

which form a 3-covering set, we obtain the same set of 8 quadruplet values, which are the half of the 16

possible quadruplet values.

Thus, executing march tests for a 2-covering or a 3-covering set of vectors does not guaranty supplying all

the 16 sensitizing quadruplets for the faults of categories vi and vii. QED

From lemma 12, 2-covering and 3-covering sets do not guaranty providing the necessary values for

supplying all the 16 sensitizing quadruplets for the faults of categories vi and vii. We can supply these

values by providing on a1, a2, v1, v2 all 16 quadruplet values by means of a 4-covering set of vectors Vi. On

the other hand, this is also possible by providing only 4 selected quadruplet values on a1, a2, v1, v2. For

instance, if we provide on a1, a2, v1, v2 the 4 quadruplet values 0000, 0001, 0100, and 0101, the

quadruplets (a1, a2, v1, v2) (a1, a2, v1 , v2), (a1 , a2 , v1, v2), and (a1 , a2 , v1 , v2) give all the 16 possible

quadruplet values. We obtain the same result for any four quadruplet values obtained by inverting the two

first bits, or the two last bits, or all four bits in any of the four quadruplet values 0000, 0001, 0100, 0101.

This gives 256 sets of four quadruplet values, each of whom gives the desired result. Then, we need a set of

vectors Vi that provides at each four bits the values of one of these 256 sets of 4 quadruples. This can reduce

the number of vectors Vi with respect to a 4-covering set. However, as there are no such sets of vectors in

the literature, their creation requires intensive simulated annealing computations, as those done for creating

4-covering sets [32][33], which have to be done. Thus, in this work we use a 4-covering set of vectors Vi,

which is lengthy. So, for moderating the test length, we developed a short test algorithm that can be

combined with the 4-covering set.

Proposition 5: Executing March SRDF4 (shown in figure 8) for a 4-covering set of vectors Vi satisfies the

single read double-fault detection property for the double faults [f1, f2] of categories vi and vii, provided

that there is no coincidence of the bit position of an aggressor cell with the bit positions of the other

aggressor cell or with the bit position of a victim cell.

Proof:

Faults of category vi. In March SRDF4, operation M11 sensitizes the CFtr fault < a; vw v / v / - >, where v

is the value supplied by vector Vi to the bit position of the victim cell; a is the value supplied by Vi to the bit

position of the aggressor cell when @a > @v, or its inverse when @a < @v (where @a is the address of the

aggressor cell and @v the address of the victim cell). Then, operation M13 detects the CFtr fault for these

values of v and a.

 23

M12 sensitizes the CFwd fault < a; v w v / v / - >, where v is the value supplied by Vi to the bit position of

the victim cell; a is the value supplied by Vi to the bit position of the aggressor cell when @a > @v, or its

inverse when @a < @v. Then, operation M13 detects the sensitized CFwd fault for these values of v and a.

From the above, if f1 and f2 are CFtr or CFwd faults (double-fault of category vi), M13 will detect the

double fault corresponding to the sensitizing quadruplet (a1, a2, v1, v2) if @a > @v, or (a1 , a2 , v1, v2) if

@a < @v, determined by four different bit positions of Vi (since according to the statement of the

proposition, there are no bit position coincidences for the aggressor and the victim cells). Thus, executing

March SRDF4 for each vector Vi of a 4-covering set will produce all 16 value combinations to both the

quadruplets (a1, a2, v1, v2) and (a1 , a2 , v1, v2). Thus, each of the 16 possible double faults of category vi

will be detected by operation M13 in at least one of these executions.

Faults of category vii. M13 sensitizes and detects the CFir fault. If f1 and f2 are CFir faults (double-fault of

category vii), we find similarly a quadruplet (a1, a2, v1, v2) determined by four different bit positions of

vector Vi. Thus, executing March SRDF4 for each vector Vi of a 4-covering set, guaranties that each of the

16 possible double faults of category vii will be detected by operation M13 in at least one of these

executions. QED

Figure 8: March SRDF4

In the following, we discuss the case of faults not covered by proposition 5 due to bit positions

coincidences.

Proposition 6: Executing March SRDF5 (shown in figure 9) for a 3-covering set of vectors Vi achieves the

single-read double-fault detection property for double faults of categories vi and vii for which the bit

position of the one aggressor cell coincides with the bit position of the one victim cell and the bit position of

the other aggressor cell is different from the bit position of both victim cells.

Proof: We find easily that the March SRDF5 shown in figure 9 achieves the single-read double-fault

detection property for the double faults of categories vi and vii corresponding to sensitizing quadruplets (a1,

a2, v1, v2), and (a1, a2, v1 , v2). If the bit position of the aggressor of f2 coincides with the bit position of

the victim of f2, then, the above sensitizing quadruplets become (a1, a2, v1, a2), and (a1, a2, v1 , a2), where

a1, and v1 are the values supplied by vector Vi on the bit positions of the of the aggressor and victim cells of

fault f1, and a2 is the value supplied by Vi on the common bit position of the aggressor and victim cells of

fault f2. Using a 3-covering set of vectors Vi will produce the set of all 8 possible value combinations on

(a1, a2, v1), as well as all 8 possible value combinations on (a1, a2, v1). Then we can check trivially that the

values supplied on (a1, a2, v1, a2), and (a1, a2, v1 , a2) cover all 16 possible quadruplet values.

Obviously, the similar arguments hold when the bit position of the aggressor of f2 coincides with the bit

position of the victim of f1, as well as when the bit position of the aggressor of f1 coincides with the bit

position of the victim of f1 or with the bit position of the victim of f2. QED

Figure 9: March SRDF5

{(WVi);

(W iV , W iV ,

R iV);

 M11 M12 M13

{(WVi);

(W iV , W iV ,

R iV);

(WVi, WVi, RVi)}

 24

A particular case of faults of categories vi and vii is the case where the aggressor cell of f1 coincides with

the aggressor cell of f2. For some of these faults no test algorithm can achieve the single-read double-fault

detection property. Surprisingly, as shown in the next two lemmas, march test algorithms allow coping with

these faults in the context of the present study.

Lemma 13: Executing March SRDF4 for a 3-covering set of vectors Vi and March SRDF5 for a 2-covering

set of vectors Vi guaranties the single-read double-fault detection property for the double faults [f1, f2] of

categories vi and vii in which f1 and f2 share the same aggressor cell (common aggressor) and in which the

aggressor sensitizing value of f1 is equal to the aggressor sensitizing value of f2.

Proof: Let us first consider the case where the two aggressor cells have the same bit position but this bit

position is different from the bit position of each of the victim cells. Then, March SRDF4 supplies the

sensitizing quadruplets (a1, a1, v1, v2). Executing it with a 3-covering set of vectors Vi supplies all 8

quadruplets in which the sensitizing values of the two aggressors are equal.

Let us also consider that the common bit position of the aggressor cells coincides with the bit position of

one of the victim cells (e.g. with the bit position of the victim of f1), then, we will have a1 = a2 = v1 and

March SRDF5 supplies the sensitizing quadruplets (a1, a1, a1, v2). It will also supply (a1, a1, a1 , v2) as we

have seen in the proof of proposition 6. We check trivially that executing March SRDF5 for a 2-covering set

of vectors Vi supplies all 8 quadruplets in which the sensitizing values of the two aggressors are equal. QED

Lemma 14: No test algorithm can ensure the single-read double-fault detection property for the faults of

categories vi and vii in which f1 and f2 share the same aggressor cell (common aggressor) and in which the

aggressor sensitizing value of f1 is the inverse of the aggressor sensitizing value of f2, but these faults are

meaningless in the context of the present study because they never produce double errors.

Proof: Let us first consider the case of a fault of category vi (i.e. f1 is CFtr or CFwd and f2 is CFtr or

CFwd). Because f1 and f2 are sensitized by different states of their common aggressor cell, then, it is not

possible to sensitize both of them by the same write performed over the word comprising the two victim

cells. Then, let us suppose that during system operation or during test, one of the faults is sensitized. To

sensitize the second fault another write has to be performed with the common aggressor cell being at a

different state. As for this state the first fault is not sensitized, the new value written by the second write

over the victim cell of this fault will bring this cell in a correct state. Thus, at any time only one cell can

have erroneous value, implying that double errors cannot be produced during test, nor during system

operation.

Let us now consider the case where the fault is of category vii (i.e. f1 and f2 are both CFir). Because f1 and

f2 are sensitized by different states of the common aggressor cell, then, it is not possible to sensitize both of

them by the same write performed over the word comprising the two victim cells. Furthermore, each time

one of these faults is sensitized, the victim cell provides an erroneous read value (single-error) but its state

remains correct. Then, any subsequent read could again sensitize only one of the two faults, producing again

a single-error. It results that the two victim cells can never provide erroneous values in the same read.

Consequently, in both cases (fault of category vi sensitized by opposite states of the common aggressor cell,

or fault of category vii sensitized by opposite states of the common aggressor cell), the occurrence of a

double error is impossible during test as well as during system operation. Thus, on the one hand there is no

test algorithm able to achieve the single-read double-fault detection property for these faults, but on the

other hand, we do not need to repair the word containing such a fault because it never produces double

errors. Therefore, we do not need to achieve the single-read double-fault detection property for these faults.

QED.

Proposition 7 provides the tests enabling covering all faults of categories vi and vii treated so far and few

other cases.

 25

Proposition 7: Executing March SRDF4 for a 4-covering set of vectors Vi and March SRDF5 for a 3-

covering set of vectors Vi, achieves the single-read double-fault detection property for all faults of

categories vi and vii excepting half of the faults of the following two cases:

a. The bit positions of the two aggressor cells coincide (but the aggressor cells themselves do not

coincide).

b. The bit position of the one aggressor cell coincides with the bit position of one victim cell and the bit

position of the other aggressor cell coincides with the bit position of the other victim cell.

Proof: From proposition 5, we cover all faults of categories vi and vii for which there is no coincidence of

the bit position of the one aggressor cell with the bit positions of the other aggressor cell or with the bit

position of a victim cell. From proposition 6 we cover the cases where the bit position of the one aggressor

cell coincides with the bit position of the one victim cell and the bit position of the other aggressor cell is

different from the bit position of both victim cells.

From lemmas 13 and 14 we cover the case where the two faults share the same aggressor cell.

Remember that the case where the two victim cells coincide is not of interest in this study (because in this

case no double error is produced as the errors occur in the same cell). Note also that if the victim cell of a

fault coincides with the aggressor cell of another fault, then, the sensitization of the first fault modifies the

state of its victim cell, which is also the state of the aggressor of the second fault. Thus, the sensitization of

the first fault can mask the second fault, meaning that the faults are linked. Therefore, as the FFMs of tables

1 and 2 are unlinked, we do not need to consider the case where the aggressor cell of a fault coincides with

the victim cell of another fault.

Thus, the only cases of faults of categories vi and vii not yet treated are the following:

a. The bit positions of the two aggressor cells coincide (but the aggressor cells themselves do not coincide).

b. The bit position of the one aggressor cell coincides with the bit position of one victim cell, but these cells

do not coincide; and the bit position of the other aggressor cell coincides with the bit position of the other

victim cell, but these cells do not coincide.

In the proof of proposition 6 we found that March SRDF5 achieves the single-read double-fault detection

property for the double faults of categories vi and vii corresponding to the sensitizing quadruplets (a1, a2,

v1, v2), and (a1, a2, v1 , v2).

Case a: in this case the above quadruplets become (a1, a1, v1, v2), and (a1, a1, v1 , v2). As March

SRDF5 is executed for a 3-covering set of vectors Vi, all 8 values combinations are supplied on a1, v1, and

v2. Then, (a1, a1, v1, v2) gives 8 sensitizing quadruplets, and (a1, a1, v1 , v2) gives the same quadruplets (all

8 quadruplets in which the sensitizing values of the two aggressor cells are equal). As all possible sensitized

quadruplets are 16, the single-read double-fault detection property is satisfied for the half of the faults of

case a).

In case b we have two possible situations:

b.i. a1 = v1 and a2 = v2; giving the sensitizing quadruplets (a1, a2, a1, a2), and (a1, a2, a1 , a2).

b.ii. a1 = v2 and a2 = v1; giving the sensitizing quadruplets (a1, a2, a2, a1), and (a1, a2, a2 , a1).

Case b.i: as March SRDF5 is executed for a 3-covering set of vectors Vi, all 4 value combinations are

supplied on a1 and a2. Then, (a1, a2, a1, a2), and (a1, a2, a1 , a2) give 8 sensitizing quadruplets: all 4

quadruplets in which the sensitizing states of the aggressors of f1 and f2 are equal respectively to the

sensitizing states of the victims of f1 and f2; and all 4 quadruplets in which the sensitizing states of the

aggressors of f1 and f2 are equal respectively to the inverse of the sensitizing states of the victims of f1 and

f2.

Case b.ii: As all 4 value combinations are supplied on a1 and a2 we obtain 8 sensitizing quadruplets: all 4

quadruplets in which the sensitizing states of the aggressors of f1 and f2 are equal respectively to the

 26

sensitizing states of the victims of f2 and f1; and all 4 quadruplets in which the sensitizing states of the

aggressors of f1 and f2 are equal respectively to the inverse of the sensitizing states of the victims of f2 and

f1.

Thus, the single-read double-fault detection property is also satisfied for the half of the faults in the cases

b.i and b.ii.

 QED

From propositions 4 and 7, we find that executing March SRDF3 for a 2-bit covering set of vectors Vi;

March SRDF4 for a 4-covering set of vectors Vi; and March SRDF5 for a 3-covering set of vectors Vi

achieves the single-read double-fault detection property for all double-faults composed of single-cell FFMS

and/or double-cell FFMS (tables 1 and 2), except a very small subset of the faults of categories vi and vii

specified in proposition 7 and its proof. Lemma 15 shows that these faults cannot be covered by march test

algorithms and will be referred as march-SRDF-deceptive faults.

Lemma 15. For the faults of categories vi and vii that are not covered in proposition 7, it is impossible to

satisfy the single-read double-fault detection property by means of march test algorithms.

Proof. The read and write operations in any march test algorithm use Vi and iV as data (where Vi is the

vector used as data background). Thus, the conditions of lemma 11 are satisfied. Hence, based on this

lemma, a march test algorithm can achieve the single-read double-fault detection property for the double

faults of categories vi and vii corresponding to the sensitizing quadruplets (a1, a2, v1, v2), (a1, a2, v1 , v2),

(a1 , a2 , v1, v2), and (a1 , a2 , v1 , v2), and only to these quadruplets (where a1, a2, v1, v2 are the values

that vector Vi supplies to the bit positions of the two aggressor and the two victim cells). Thus, for

quadruplets different from the above (the “only” part of lemma 11), no march test algorithm can satisfy the

single-read double-fault detection property.

For the faults of case a. of proposition 7, the bit positions of the two aggressor cells coincide. Thus, the

above quadruplets become (a1, a1, v1, v2), (a1, a1, v1 , v2), (a1 ,



a1, v1, v2), and (a1 ,



a1, v1 , v2). If we

assume a set of vectors Vi supplying all possible 8 value combinations on the variables a1, v1 and v2, we

check easily that each of these quadruplets gives the same 8 value combinations (all the 8 quadruplets in

which the sensitizing values of the two aggressor cells are equal). These quadruplets are the same as those

covered in case a. of the proof of proposition 7. As the single-read double-fault detection property cannot

be satisfied for the remaining 8 quadruplets (the “only” part of lemma 11), proposition 7 is shown for the

faults of case a.

For the faults of case b.i (see proof of proposition 7), we set a1 = v1 and a2 = v2. In this case the four

quadruplets of lemma 11 become (a1, a2, a1, a2), (a1, a2, a1 , a2), (a1 , a2 , a1, a2), and (a1 , a2 , a1 , a2).

Using a set of vectors Vi supplying all possible 4 value combinations on the variables a1 and a2 gives 8

sensitizing quadruplets: all 4 quadruplets in which the sensitizing states of the aggressors of f1 and f2 are

equal respectively to the sensitizing states of the victims of f1 and f2; and all 4 quadruplets in which the

sensitizing states of the aggressors of f1 and f2 are equal respectively to the inverse of the sensitizing states

of the victims of f1 and f2, which are the same as those covered in case b.i. of proposition 7. As the single-

read double-fault detection property cannot be satisfied for the remaining 8 quadruplets (the “only” part of

lemma 11), proposition 7 is shown for the faults of case b.i.

For the faults of case b.ii (see proof of proposition 7), we set a1 = v2 and a2 = v1. In this case four

quadruplets of lemma 11 become (a1, a2, a2, a1), (a1, a2, a2 , a1), (a1 , a2 , a2, a1), and (a1 , a2 , a2 , a1).

Using a set of vectors Vi supplying all possible 4 value combinations on the variables a1 and a2 gives 8

sensitizing quadruplets: all 4 quadruplets in which the sensitizing states of the aggressors of f1 and f2 are

equal respectively to the sensitizing states of the victims of f2 and f1; and all 4 quadruplets in which the

sensitizing states of the aggressors of f1 and f2 are equal respectively to the inverse of the sensitizing states

of the victims of f2 and f1, which are the same as those covered in case b.ii. of proposition 7. As the single-

 27

read double-fault detection property cannot be satisfied for the remaining 8 quadruplets (the “only” part of

lemma 11), proposition 7 is shown for the faults of case b.ii. QED

From Lemma 15, the fault cases that are not covered by the proposed march test algorithms cannot be

covered by any march tests. The case of these faults is further discussed in section 2.4.

2.3 FAULTS OF MULTIPLICITY HIGHER THAN 2

Lemma 16: Executing March SRDF3 for a 2-bit covering set of vectors Vi, guaranties achieving the single-

read double-fault detection property for all faults of multiplicity higher than 2, which are not composed

exclusively of FFMs of the types CFtr and CFwd nor exclusively of FFMs of the type CFir.

Proof: If a multiple fault is not composed exclusively of FFMs of the types CFtr and CFwd, or exclusively

of FFMs of the type CFir, then, there are at least two single faults fi and fj belonging to the single faults

composing the multiple fault, such that the double fault [fi, fj] is neither of category vi nor of category vii.

Thus, proposition 4 guaranties the detection of [fi, fj] and lemma 2 the detection of the multiple fault. QED

As we have shown that we cannot achieve the single-read double-fault detection property for all the faults

of multiplicity 2 (lemma 15) by means of march test algorithms, one can consider that this is also the case

for faults of multiplicity higher than 2. Surprisingly, the following proposition shows that the march test

algorithms proposed in the previous sections cover all faults of multiplicity higher than 2. The reason for

this outcome is that faults of multiplicity higher than 2 comprise several double faults, and, as we show in

the following proposition, it is not possible for all of them to satisfy the conditions that classify them as of

march-SRDF-deceptive faults. Due to lemma 2, this implies that all the faults of multiplicity higher than 2

are covered by march tests, and in particular by our march tests that cover all double faults except the

march-SRDF-deceptive ones.

Proposition 8: Executing March SRDF3 for a 2-bit covering set of vectors Vi, March SRDF4 for a 4-

covering set of vectors Vi, and March SRDF5 for a 3-covering set of vectors Vi, achieves the single-read

double-fault detection property for all faults of multiplicity higher than 2.

Proof: We will represent the bit positions of the aggressor and the victim cell of a fault fi as ap(fi) and

vp(fi).

Let us consider a memory word W in which k cells c1, c2, …, ck (k≥3) are affected by faults.

Thanks to lemma 2 it is sufficient to prove the proposition for multiple faults [f1, f2, … fk] affecting k

distinct cells of the same memory word (with k ≥ 3), such that each of the faults f1, f2, … fk is a single

FFM. Furthermore, thanks to the same lemma, for a fault [f1, f2, … fk] it is sufficient to prove the

proposition just for two of the faults f1, f2, … fk. Let fi, fj be such two faults. From the above: fi is a single

FFM; fj is a single FFM; fi and fj affect distinct victim cells. As the victim cells of fi, and fj are distinct and

belong to the same memory word, they have different bit positions. This condition can be written as: vp(fi)

≠ vp(fj) (1)

Thanks to lemma 16 we only need to prove the proposition 8 for: the multiple faults that are composed

exclusively of FFMs of the types CFtr and CFwd (in which case, all the double faults comprised in the

multiple fault will belong to the category vi); and the multiple faults that are composed exclusively of FFMs

of the type CFir (in which case, all the double faults comprised in the multiple fault will belong to the

category vii).

In proposition 7, for a pair of faults [fi, fj] we can:

- write condition a as:

a) ap(fi) = ap(fj),

- split condition b in two cases written as:

 28

b1) ap(fi) = vp(fi) and ap(fj) = vp(fj)

b2) ap(fi) = vp(fj) and ap(fj) = vp(fi).

From proposition 7, the single-read double-fault detection property is guaranteed to be satisfied for [fi, fj] if

[fi, fj] does not satisfy condition a, neither condition b1, nor condition b2. Thus, it is sufficient to show that,

for at least one double fault comprised in a multiple fault [f1, f2, … fk], none of these conditions is satisfied.

Let us consider the following conditions concerning the bit positions of the aggressor and victim cells of

[f1, f2, … fk]:

c.1) The aggressor cell of each fault has the same bit position as the victim cell of the fault.

c.2) All aggressor cells have the same bit position.

 There are three possible cases concerning the validity of these conditions: both c.1 and c.2 are false,

which can be represented as !c.1 and !c.2; c.1 is true, which can be represented as c.1; c.2 is true, which can

be represented as c.2. Below we discuss each of them.

[f1, f2 … fk] satisfies !c.1 and !c.2: In this case we find trivially that the following two conditions hold:

!c.1: For at least one of the faults f1, f,2 … fk the bit position of its aggressor cell is different from the bit

position of its victim cell. Let f1 be such a fault.

!c.2: Since c.2 is false, the bit position of the aggressor cell of f1 is different from the bit position of the

aggressor cell of at least one of the faults f2 … fk. Let f2 be this fault.

Thus, conditions !c.1 and !c.2 can be written as:

!c.1 ap(f1) ≠ vp(f1)

!c.2 ap(f1) ≠ ap(f2).

For the double fault [f1, f2], !c.2) excludes the condition a) of proposition 7 and !c.1) excludes condition

b1). Thus, in the case !c.1 and !c.2 we just need to exclude condition b2).

There are two possible relationships concerning ap(f1) and vp(f2):

- either ap(f1) ≠ vp(f2) (2)

- or ap(f1) = vp(f2) (3)

If ap(f1) ≠ vp(f2) condition b2) is excluded for [f1, f2]. Thus, proposition 8 is proven for case (2).

Hence, we only need to treat the case (3). This can be combined with two possible cases concerning

ap(f2) and vp(f1): ap(f2) ≠ vp(f1) and ap(f2) = vp(f1), giving:

- ap(f1) = vp(f2) and ap(f2) ≠ vp(f1) (3.1)

- ap(f1) = vp(f2) and ap(f2) = vp(f1) (3.2)

The relation ap(f2) ≠ vp(f1) in (3.1) excludes b2) for the fault [f1, f2]. Thus, proposition 8 is proven for

case (3.1).

Hence, we only need to treat case (3.2). Since we analyze faults of multiplicity higher than 2, we can

consider a third fault in the list f1, f2 … fk (e.g. fk). Then, (3.2) can be combined with two possible cases

concerning ap(f1) and ap(fk): ap(f1) = ap(fk) and ap(f1) ≠ ap(fk), giving::

ap(f1) = vp(f2), ap(f2) = vp(f1), ap(f1) = ap(fk) (3.2.1) ap(f1) = vp(f2), ap(f2) = vp(f1), ap(f1) ≠ ap(fk)

 (3.2.2)

In case of (3.2.1), considering the relation ap(f1) ≠ ap(f2) from condition !c.2) gives ap(f2) ≠ ap(fk),

which excludes condition a) of proposition 7 for the fault [f2, fk]. From (1) we obtain vp(f1) ≠ vp(f2) and

vp(f1) ≠ vp(fk). Thus, ap(f2) = vp(f1) in (3.2.1) gives ap(f2) ≠ vp(f2) and ap(f2) ≠ vp(fk). For the fault [f2,

fk], these relations exclude the conditions b.1) and b.2).

 29

In case (3.2.2), ap(f1) ≠ ap(fk) invalidates condition a) of proposition 7 for the fault [f1, fk]. From (1) we

obtain vp(f1) ≠ vp(f2) and vp(f2) ≠ vp(fk). Thus, ap(f1) = vp(f2) in (3.2.2) gives ap(f1) ≠ vp(f1) and ap(f1)

≠ vp(fk). For the fault [f1, fk], these relations exclude the condition b.1) and b.2).

Therefore, in all possible situations concerning the case !c.1 and !c.2, there is at least a double fault ([f1,

f2], [f2, fk], or [f1, fk]), which does not satisfy neither condition a) nor condition b) of proposition 7. Thus,

proposition 8 is proven for the case !c.1 and !c.2.

[f1, f2, … fk] satisfies c.2: Let us consider the double faults [f1, f2], [f1, fk], and [f2, fk]. Let a1, a2, and ak

be respectively the aggressor-sensitizing states of f1, f2, and fk. Since a1, a2, and a3 take binary values (0

or 1), two of them will necessarily have equal values. Let, for instance a1 = ak. Furthermore, since condition

c.2 is satisfied, the aggressors of f1 and fk have the same bit positions. Then, from the proof of proposition

7, f1 and fk will be detected by a single read. This implies that the single-read double-fault detection

property is satisfied when condition c.2 is true.

[f1, f2, … fk] satisfies c.1. Let us consider the double faults [f1, f2], [f1, fk], and [f2, fk]. Let a1, a2, ak be

respectively the aggressor-sensitizing states of f1, f2, fk and v1, v2, vk be their victim-sensitizing states.

Since a1, a2, ak, v1, v2, and vk take binary values (0 or 1), then, all possible cases concerning the variables

a1, v1, a2 and v2 are:

- a1= v1 and a2=v2. As in case c.1 the aggressor cell of each fault has the same bit position as the victim

cell of the fault, then, from the proof of proposition 7 f1 and f2 will be detected by a single read.

- a1 v1 and a2v2. In this case again, from the proof of proposition 7, f1 and f2 will be detected by a

single read.

- a1= v1 and a2v2. Then we can have either ak = vk or ak vk. From the proof of proposition 7, in the

first case f1 and fk will be detected by a single read, and in the second case f2 and fk will be detected by

a single read.

- a1 v1 and a2=v2. This case is treated similarly to the previous one.

Therefore in all possible cases of condition c.1, f1 and f2, or f1 and fk, or f2 and fk are detected by a single

read. Thus, from lemma 2 the single-read double-fault detection property is satisfied when condition c.1 is

true. QED

The outcome of lemma 16 is important as it shows a 100% coverage for faults of multiplicity higher than

2. Its impact is even wider, as it enables 100% coverage for faults of any multiplicity by means of a simple

and low-cost approach proposed next.

2.4 TREATMENT OF SRDF DECEPTIVE FAULTS

The proposed march tests achieve the single-read double-fault detection property for all faults of

multiplicity higher than two, as well as for the vast majority of faults of multiplicity 2. We have also shown

(Lemma 15), that these faults cannot be covered by any march tests (march-SRDF-deceptive faults). The

non-covered faults consist in double faults [f1, f2] having the following characteristics:

- f1 and f2 are of the type CFtr or CFwd (giving 4 double fault combinations), or f1 and f2 are of the type

CFir (giving 1 double fault combination). Considering that there are 15 single-cell and two-cells FFMs,

which give 225 possible double faults combinations (15 options for f1 x 15 options for f2), the non-

covered double faults represent 2.2% of all possible double faults combinations (5/225).

- The bit positions of the two aggressor cells coincide, or the bit positions of the two aggressor cells

coincide with the bit positions of the two victim cells. For a memory using m-bits words, there are m
4

distributions of the bit positions of the aggressor and victim cells. The distributions in which the bit

positions of the aggressor cells coincide are m
3
. The distributions in which the bit positions of the

aggressor cells coincide with the bit positions of the victim cells are 2m
2
. Thus, the proportion of bit-

positions distributions leading to non-covered faults is (m
3
 + 2 m

2
)/ m

4
 = (m+2)/m

2

 30

- The sensitizing quadruplets leading to non-covered faults correspond to the half of the total number of

sensitizing quadruplets.

From this analysis, the percentage of double faults that are not covered by the march test algorithms

proposed in this chapter (and by any march test - march-SRDF-deceptive faults) is equal to

(5/225)x(m+2)/m
2
x0.5x100% = 10(m+2)/9(m

2
)%. For memory word size of 22-bits (16 data bits and 6

SECDED check bits), and 39-bits (32 data bits and 7 SECDED check bits), this percentage is respectively

equal to 0.055%, and 0.03%. Thus, they represent a very small fraction of a particular case of faults

(double-faults affecting the same memory word), and may be ignored in many applications. However, if the

application requires covering them, we can employ one of the following approaches.

A first approach consists in developing test algorithms dedicated to this small fraction of faults. To cover

these faults we need to supply different values to the same bit positions of different words (in order to

address the issue of bit positions coincidences), which is not possible with march tests. To cope with this

issue we can use non-march algorithms that have the same simple structure as march algorithms (to preserve

simple BIST implementation), but instead of using inside each march element the same vector Vi for all

memory words, we can use shifted versions of Vi. The design of such algorithms is the subject of future

developments.

A second approach exploits the fact that, as shown in proposition 8, all faults affecting the same memory

word and having multiplicity higher than 2, are covered by the proposed algorithms. Thus, as all non-

covered faults produce errors that are detectable by ECC, we can employ the following strategy: These

faults are not detected during the test and repair phase and are left unrepaired. Then, each time a double

error is detected by the ECC during system operation, the affected memory word is replaced by a good word

of the repair CAM. This strategy is challenged by two potential problems:

o Repairing the memory words producing double errors during system operation will imply repairing not

only those comprising double faults but also those containing a single faulty cell and are affected by an

SEU. This will result in wasting spare resources. However, from the analysis in the section 1.1 of chapter

1, in a very large memory of 100 Gbit and for a very high defect density of 10-3, this will happen for less

than 2 times per three years. Thus, in a ten years life of a 100 Gbit SRAM, the wasted spare words will be

less than 7. Adding 7 extra words in the CAM used for repair, represents an insignificant percentage of

area and power cost with respect to a 100 Gbit SRAM.

o If a soft error affects such a memory word W before it is detected by the ECC, (and hence repaired as

proposed above), it may induce a triple error, which is not detected by the ECC. However, the probability

of this kind of event is extremely low. Indeed, such an event will occur if an SEU affects at runtime the

word W during an opportunity-time-window [t1 t2] such that:

i. At t2 word W is read.

ii. At t1 a write operation is performed over W and no other write is performed over W between t1 and

t2.

iii. The double fault affecting W is sensitized during the time-window [t1, t2].

iv. [t1, t2] is the very first time-window satisfying conditions i., ii., and iii., and happening after the

occurrence of the double fault (which can occur during manufacturing or in the field). This is because,

if no SEU occurs on W during this very first opportunity-time-window, then, as the double fault is

sensitized during [t1, t2], the read operation at t2 will detect a double error and the faulty word W will

be repaired.

The duration of [t1, t2] determines the occurrence probability of the triple error. This duration depends on

the application program, and can be evaluated through application simulations (e.g. of benchmark software

applications), by taking into account the sensitizing conditions of the march-SRDF-deceptive faults.

However this kind of evaluation is not in the scope of this work. Instead we will consider a very pessimistic

 31

value for the mean duration of [t1, t2], such as one week! Considering this pessimistic value for [t1, t2], and

a very large memory of 100 Gbit capacity, using words of 32 data bits and 7 SECDED check bits, and

affected by a high defect density 10-3, we find that the number of triple undetectable errors that will occur

during the full life of a product is equal to (0.99937x10-3x10-3x19x39)x(0,0003)x(37/39)x(1011/106)

x(8+2x6)x(109x7 x24). This gives 7.1X10-8 events for the full circuit life, which is extremely low!

2.5 EVALUATIONS

CAM size, area and power penalties

To evaluate the power and area improvements of the proposed approach, we determine the size of the

CAM required for conventional repair and for ECC-based repair, in order to achieve 97% yield. Then, we

use CACTI [34][56][57] to evaluate the area and power cost of the SRAMs under repair and the repair

CAMs.

We can compute the yield for both conventional repair and ECC-based repair by using the following

analytical expression (see chapter 5 for a more detailed explanation):



Y 
Nw!Pwg

(Nw t)

(Nw  t)! t!
(1 Pwg)t

Nwc!Pwcg

Nwcr

(Nwc  r)!r!
(1 Pwcg)r

r0

Nwct
















t0

Nwc

 (1) .

As determined in chapter 5, the number of operations required to compute the yield by means of (1) is:

Nw(Nwc + 1) + (Nwc
2
 - 1)(5Nwc + 12)/6 + 1 multiplications; (Nwc + 1)(Nwc + 4)/2 divisions; and

NWC(NWC + 3)/2 additions, where Nw is the number of words of the memory under repair, and Nwc is the

number of words of the repair CAM. The computation complexity is much higher with respect to the yield

computation for low defect densities, where faults affecting the CAM have insignificant impact to the yield

and are ignored, resulting in much simpler yield computation expression. Also, as we deal with future very

advanced technologies allowing producing very complex chips, we should be able to deal with very large

memories. Moreover, as we deal with high defect densities we must be able to deal with large repair CAMs.

In this context, the above numbers of operations are too large. Furthermore, these operations have to

manipulate very large numbers as well as very small numbers, requiring high precision arithmetic. Thus,

computing the yield by means of expression (1) becomes computationally intractable. To accelerate these

computations we discovered certain recursive relations described in chapter 5, which reduce the number of

operations at linear complexity, resulting in only: NW + 8NWC - 1 multiplications, 2NWC divisions, 2NWC

additions, and NWC subtractions. This is dramatically shorter with respect to the number of operations

required for computing expression (1) in direct manner.

The new recursive yield computation approach was implemented in C++, and we used this tool to determine

the size of the repair CAM, for several defect densities and for two SoCs comprising each a total of 9,75

Gbit SRAM capacity (i.e. a total of 250M words x 39 bits per word, corresponding to 32 data bits and 7

Hamming code bits). In the one SoC this memory capacity is distributed over 300 embedded memories, and

in the other SoC this memory capacity is distributed over 3000 embedded memories. We also used CACTI

to evaluate the area and power penalties for non-ECC repair and the ECC-based repair approaches. The

results are presented in table 5, where the target yield for the total memory capacity of each SoC is 90%.

In this table, column 1 gives the considered defect density (expressed as the probability of a memory cell to

be faulty), and column 2 gives the number of the embedded memories over which the total SRAM capacity

of 9,75 Gbit is distributed.

Columns 3, 4, and 5 provide the results for conventional (i.e. Non-ECC) repair: column 3 presents the

number of CAM words required to reach the target yield (i.e. 90%), columns 4 and 5 give the area and the

power penalties.

Columns 6 to 8 provide the results for ECC-based repair: column 6 presents the number of CAM words

 32

required to reach the target yield (i.e. 90%), columns 7 and 8 give the area and the power penalties.

From these results we observe that ECC-based repair achieves drastic reduction of both area and power

penalties.

Table 5. Area and power cost comparison

Pf
Embed.

Mem

Conventional Repair ECC-based Repair

NCW %A %P NCW %A %P

10-4
300 3466 1.32 185.3 16 0.008 1.267

3000 402 1.27 67.90 6 0.028 1.297

3x10

-4

300 10285 3.93 532.9 83 0.036 5.337

3000 1121 3.46 177.9 17 0.078 3.676

10-3
300 35325 12.75 1629 720 0.249 39.56

3000 3693 13.49 581.5 98 0.344 17.56

Test Duration

The length of the march tests proposed in section 2.2 is equal to 31x(size of the 2-covering set) + 7x(size of

the 3-covering set) + 4x(size of the 4-covering set). For 39-bits memory words (32 data bits and 7 ECC

check bits), the size of a 2-covering sets is 14, and the size of the 3-covering and 4-covering sets proposed

in [32][33][58] is respectively 25 and 66. Thus, for memories employing 32-bit words plus 7 check bits, the

test length is equal to 31x14 + 7x25 + 4x66 = 434 + 175 + 264 = 873 Nw, where Nw is the number of

memory words. This is 46 times longer than the length of the conventional (i.e. non-SRDF) test algorithm

proposed in [31], which is an optimal algorithm covering the FFMs of tables 1 and 2. However, the

comparison of the discussed approaches should consider the test cost, which is determined by the test

duration rather than the length of the test algorithm.

As the power dissipation during the test and repair sessions is larger for the conventional repair approach, its

test duration is increased proportionally, because the permitted power dissipation will allow testing a

proportionally lower number of memory blocks. The conventional test algorithm is used in the case of the

conventional repair, while the SRDF test algorithm is used in the case of the ECC-based repair. Then, using

the power dissipation results of table 5 we find the test time increase for the SRDF algorithm. The results

are presented in table 6.

In this table, column 1 gives the defect density, column 2 gives the number of embedded memories over

which the total SRAM capacity of 9,75 Gbit is distributed; column 3 gives the total power of the memory

system for conventional repair (i.e. the power of the SRAM under repair plus the power of the repair CAM

used for conventional repair) divided by the power of the SRAM; column 4 gives the total power of the

memory system for ECC-based repair (i.e. power of the SRAM under repair plus power of the repair CAM

used for ECC-based repair) divided by the power of the SRAM; and column 5 gives the increase of test time

for the ECC-based repair, determined as 46x(total power of ECC-based repair)/(total power of conventional

repair), that is 46x(column 4)/(column 3), where 46 is the number of times the SRDF algorithm is larger

than the conventional test algorithm.

Table 6. Test-time increase

Pf
#Embedded

Memories

Conventional

Repair

ECC-based

Repair

Total Power
Total

Power

Test-time

increase

10-4 300 2.85 1.013 16.35

 33

3000 1.68 1.013 27.7

3x10-4
300 6.33 1.053 7.65

3000 2.78 1.037 17.15

10-3
300 17.29 1.395 3.71
3000 6.81 1.175 7.94

We observe that even in the worst case scenario for the proposed approach, i.e. for Pf = 10-4 and for 3000

embedded memories - where the test-time increase in table 6 takes its largest value (27.7) and the power

penalty of the conventional repair takes its smallest value (67.9%) - the proposed approach is clearly more

attractive as this power penalty is totally inacceptable. Furthermore the situation turns in the decisive

advantage of the proposed approach as the defect density increases. Thus, for Pf = 10-3 and 300 embedded

memories the test time is increased by a factor of 3.71, which is clearly preferable than the huge 1629%

power increase induced by the conventional repair approach. Also, the 12.75% area penalty induced by the

conventional approach is totally undesirable. Indeed, as memories occupy the largest part of modern SoCs

(more than 90% of the SoC area in most cases), the 12.75% area penalty induced by the conventional repair

approach represents more than 11.5% of the total SoC area.

2.6 CONCLUSION

ECC-based repair is the only known solution that can cope with high defect densities at reasonable cost.

However, in chapter 1 we have found that, due to fault-diagnosis issues, ECC-based repair may lose its

advantages (the fault-diagnosis process requires a CAM of the same size as the CAM used in conventional

repair). In chapter 1 we have also proposed 3 approaches for solving this problem. One of them introduces a

new family of memory test algorithms (referred to as single-read double-fault detection – SRDF –

algorithms), which detect in a single read at least two faulty cells in any memory word containing more than

one faulty cell. Thanks to this property, SRDF test algorithms completely eliminate the diagnosis hardware,

leading in dramatic cost reduction. Thus, the aim of this chapter is the development of SRDF test algorithms

for a comprehensive fault model including all single-cell and all two-cell static unlinked faults. However,

developing test algorithms satisfying the SRDF property is far more complex in comparison with the

development of conventional test algorithms, because the number of fault cases and their complexity

increase dramatically.

In this chapter we addressed successfully this highly complex theoretical challenge. In particular, we

developed a theoretical framework for treating this challenge, and based on this framework, we derived

march tests for all static unlinked functional fault models (FFMs) involving one memory cell (single-cell

FFMs) and two memory cells (two-cell FFMs). For this comprehensive fault model, the proposed march

tests achieve the single-read double-fault detection property for all faults of multiplicity higher than two, as

well as for the vast majority of faults of multiplicity 2. We have also shown that, the few double faults that

are not covered by our test algorithms cannot be covered by any march test algorithms. However, based on

the results of our theoretical analysis of the fault coverage of the SRDF test algorithms, we also proposed a

simple and low-cost protection for the non-covered faults, allowing 100% protection for any fault

multiplicity.

To evaluate the proposed approach at reasonable computation time, we used a yield computation tool

developed in chapter 5, which achieves dramatic acceleration of the yield computation and enables us

coping computing the yield for large memories and high defect densities. Thanks to this tool, we determined

the CAM size for conventional repair and for ECC-based repair using SRDF test algorithms, by considering

various fault densities and SRAM systems. Then, we used CACTI to estimate the area and power penalties

 34

of these approaches.

These evaluations show that the proposed approach based on SRDF test algorithms achieves dramatic

reduction of area and power penalties with respect to conventional repair. This reduction fully justifies an

extra cost in test duration. These results are completed in chapters 3 and 4 with:

- An approach using separate diagnosis CAM and runtime CAM, to reduce runtime-power penalty with

respect to the conventional repair (i.e. the same as ECC-based repair using SRDF test algorithms), but

as this scheme induces very high area penalty (similar as conventional repair), we also developed and

iterative diagnosis scheme that reduces the size of the diagnosis CAM at the expense of extra test time.

- A low-power word-repair architecture, further reducing runtime power.

These developments provide a comprehensive framework enabling very low power penalty and efficient

trade-offs in terms of test time and hardware cost.

 35

CHAPTER 3

ITERATIVE DIAGNOSIS APPROACH FOR ECC-BASED MEMORY REPAIR

As highlighted in chapter 1, ECC-based memory repair reduces dramatically the repair area and power costs

in technologies affected by high defect densities, but these gains can be lost as the diagnosis hardware can

be as complex as the hardware of conventional repair. To resolve this problem, in chapter 2 we proposed

and developed a new family of test algorithms that exhibit the single-read double-fault detection (SRDF)

property. These algorithms eliminate completely the diagnosis hardware, leading in dramatic reduction of

area and power cost. However, this is achieved at the expense of significant extra test time. In order to

dispose a second alternative, in this chapter we propose and explore a scheme using two separate CAMs: a

small CAM used for ECC-based repair (repair-CAM), and a large CAM used for diagnosis (diagnosis-

CAM). This scheme uses conventional test algorithms. Thus, the test length is much smaller than in the case

of SRDF test algorithms. Also, as only the small repair-CAM is used at runtime, runtime power is reduced

dramatically with respect to conventional repair. However, the area cost is very high as the diagnosis-CAM

is as large as the CAM of conventional repair. Then, to reduce this cost, we also propose an approach,

which uses smaller diagnosis-CAM and compensates the reduced CAM space by executing the test

algorithm multiple times and diagnosing at each iteration a subset of the faulty memory words. This

iterative approach allows trade-offs between the diagnosis-CAM size and the test length (number of

iterations). Thus, together with the SRDF test algorithms, which achieve the lowest area and power cost but

maximum test length, it provides a comprehensive framework for area, power, and test length trade-offs.

The rest of this chapter deals with the separate-CAMs scheme and the iterative diagnosis approach.

3.1 SEPARATE-CAMS SCHEME FOR RUNTIME POWER REDUCTION

 As highlighted in chapter 1, if we do not employ SRDF test algorithms we need to store in the CAM

during diagnosis all faulty memory words, in order to determine those comprising more than one faulty cell.

On the other hand, for repair purposes we need to store in the CAM only the words comprising more than

one faulty cell. Thus, to reduce runtime power we use a large CAM for diagnosis purposes (diagnosis-

CAM). Then, at the end of the test and diagnosis phase we transfer the memory words comprising multiple

faulty cells in a separate small CAM (runtime-CAM). At runtime, only this CAM is used and powered. As it

is drastically smaller than the diagnosis-CAM (which has the same size as the CAM used in conventional

repair), it consumes drastically lower power than conventional repair. Note also that, though the diagnosis-

 36

CAM of this scheme has the same size as the CAM used in conventional repair, it may also allow

significant area reduction with respect to conventional self-repair. Indeed, after fabrication, the diagnosis

information has to be stored in non-volatile embedded memory, to guarantee that faulty memory locations

detected and diagnosed by thorough fabrication tests are permanently stored in the chip after power

shutdown. Conventional self-repair will save in non-volatile memory all faulty memory words, while, in

ECC-based repair, only words comprising multiple faulty cells will be stored in non-volatile memory. Thus,

drastically smaller non-volatile memory is required.

 Let us now describe the operation of the separate-CAMs scheme.

Each location of the diagnosis-CAM and the runtime-CAM is composed of a tag field in which we store the

addresses of faulty words of the memory under repair, and a data field in which we store the positions of the

faulty cells of these words. Each CAM location also possesses a flag cell (flag1) used to indicate bad CAM

locations. In both, the diagnosis-CAM and the runtime-CAM the flag1 cells are initialized to 0, and during

the test sessions of these CAMs, flag1 is set to 1 in each bad CAM location (i.e. a CAM location that cannot

be used for repair because it contains faults in the tag field or in the flag cells, or more than one faulty data

cells). If a flag1 cell is faulty, it may indicate as good for performing repair a bad CAM word. To avoid this

problem, a second flag cell (flag1’) can be added in each CAM location [19]. Another flag cell (flag2) is

used to indicate that the CAM location is not free (i.e. it is occupied by information concerning a faulty

memory word).

Let us now discuss the operation of the diagnosis-CAM during the test and diagnosis of the memory under

repair. When the current read operation of the test algorithm detects a faulty memory word, the contents of

the diagnosis-CAM have to be updated. Thus, the address of the faulty memory word is compared with all

the tag fields of this CAM. This comparison is performed by a comparator integrated in each tag field. The

tag field also includes circuitry that deactivates the match signal if flag1 = 1 or flag2 = 1. Thus, a hit occurs

only if: the tag comparison matches (meaning that the faulty address is already stored in the tag field of a

CAM location); flag1 = 0 (meaning that the CAM location is good); and flag2 = 0 (meaning that the CAM

location is occupied by diagnosis information of a faulty memory word). Then, two CAM-updating

mechanisms are used (Hit-updating and Miss-updating).

- Hit-updating: In case of hit, the activated match line selects the data field of the hit CAM location, in

which we update the positions of the faulty cells of the memory word. This update is done by:

reading the content of the selected data field; bit-wise ORing it with a vector containing the faulty-

cell positions of the faulty memory word; and writing the result back to the selected data field. Note

that the vector containing the faulty-cell positions of the faulty memory word is obtained from the

current outputs of the XOR gates of the BIST comparator.

- Miss-updating. In case of miss, a free CAM location has to be selected for storing the faulty address

and the positions of the faulty cells. This selection mechanism uses a counter (to be referred as FLC

– free-locations counter), whose content identify a free CAM location. The content of FLC is

decoded to activate the word-line selecting the tag field and the data field of this location
6
. Then, the

address of the faulty word is written in the selected tag field, the vector containing the faulty-cell

positions is written in the data field, and the value 0 is written in the flag2 cell to indicate that the

CAM location is occupied (it contains diagnosis information of a faulty memory word).

 Before starting the test and diagnosis phase of the memory under repair, the tag fields and the data fields

of the diagnosis CAM are set to 0, and the flag2 cells are set to 1. The FLC counter is also reset. If the first

CAM location selected by FLC has flag1 = 1 FLC increments, and this is repeated each time the next

location has flag = 1.

6
 Alternatively a shift-register containing 1 in one position and 0 in all other positions can be used instead of the counter FLC

and the decoder. Each output of this register activates one word-line of the CAM.

 37

Test and diagnosis process:

During the test and diagnosis phase of the memory under repair, each time a fault is detected in this

memory, the diagnosis-CAM is updated by means of the Hit-updating or the Miss-updating mechanism as

described above. In addition, when Miss-updating is activated, FLC is incremented. If the new location

pointed by FLC has flag1 = 1, then FLC increments again. Thus, FLC always points a good CAM location

(which is also unoccupied because diagnosis information is stored only in locations already visited by FLC).

 At the end of the test and diagnosis phase, FLC is used to visit and read each location of the diagnosis-

CAM. For each diagnosis-CAM location having flag1= 0, flag2 = 0, and containing multiple 1’s in the data

field, the tag field is transferred to a good location of the runtime-CAM
7
 (and to the non-volatile memory if

any), and the flag2 cell of this location of the runtime CAM is set to 1. To select sequentially the locations

of the runtime-CAM during this transfer, we employ a mechanism using a counter similar to FLC.

Runtime operation:

Similarly to the diagnosis-CAM, each location of the runtime-CAM includes a comparator and extra

circuitry that deactivates the match signal if flag1 = 1 or flag2 = 1. Thus, a hit occurs in the runtime-CAM

only if the tag comparison matches, flag1 = 0 (meaning that the CAM location is good), and flag2 = 0

(meaning that the CAM location is occupied by a faulty memory word). At runtime, reads and writes are

performed over the memory, but, at the same time the runtime-CAM compares in parallel the address of the

current memory operation with its tag fields. In case of hit: if the memory operation is a write, the data are

also written in the data field of the hit CAM location; if the memory operation is a read, the data field of the

hit CAM location is read and the read data are supplied to the data bus of the system. To do this, the hit

signal controls a multiplexer. Then, each time this signal is active it disconnects the memory from the data

bus and connects instead the runtime-CAM. As the runtime-CAM is small even for high defect densities,

and it is accessed in parallel with the memory, it will not induce performance penalty. Thus, the only

performance penalty is due to the MUX added in the data bus. On the contrary, conventional repair in high

defect densities will require very large CAM, which will induce non-negligible performance penalty.

3.2 ITERATIVE DIAGNOSIS FOR DIAGNOSIS-CAM REDUCTION

To reduce the cost of the diagnosis hardware we will use a smaller diagnosis-CAM, which could not store

the addresses of all faulty memory words. To compensate the missing diagnosis-CAM capacity, we will

execute the test algorithm several times. After each iteration of the test algorithm we will free a part of the

CAM to create space for treating new faults. This process could reduce fault coverage. Taking into account

this issue, the proposed approach works as follows.

 At each iteration I of the test algorithm:

i. Associative search followed by Hit-updating or Miss-updating is performed each time a read

operation of the test algorithm detects a faulty memory word, as described in section 3.1.

ii. If there are not available good CAM locations
8
 and a new miss occurs due to a read detecting a faulty

memory word , not yet stored in the CAM, then, the updating of this miss cannot be realized (aborted

Miss-updating). In this case, we store in a register (to be referred as CR register) the read cycle of the

test algorithm in which the aborted Miss-updating occurs (say test cycle ci). This cycle can be

7
 In the field, after the first test and diagnosis phase the tag fields and the data and fields of the runtime-CAM are set to 0, and

its flag2 cells are set to 1. Subsequently this may not be done if we wish to maintain in the runtime CAM faulty words stored

during the previous test and repair phases.
8
 This means that: a read operation has detected a faulty memory word not yet stored in the diagnosis-CAM; the Miss-updating

was realized for this word by storing it in the available fault-free CAM location pointed by FLC; and FLC was incremented until

the last diagnosis-CAM location but no location with flag1=0 was found due to insufficient CAM space.

 38

identified by using a counter that is incremented at each read operation performed by the test

algorithm, or by the states of the BIST-hardware counters (e.g. in the case of march test algorithms,

the counter identifying the current march element, the address counter, and the counter identifying the

current operation executed in the address pointed by the address counter).

iii. After the aborted Miss-updating we continue executing the current iteration of the test algorithm and

performing Hit-updatings, but we stop performing Miss-updatings. Thus, starting at cycle ci and until

the end of the test algorithm, we only update the faulty-cell positions of faulty memory words already

stored in the diagnosis-CAM, but we do not store (due to lack of CAM space) the addresses and the

faulty-cell positions of any other faulty words (i.e. faulty words that are detected for first time at cycle

ci or after it).

iv. At the end of the current iteration of the test-algorithm, each good diagnosis-CAM location whose

data field contains exactly one “1” is cleared to create available CAM locations for the next test-

algorithm iteration, while the good CAM locations containing multiple “1”s in their data field are

rearranged to occupy the lower addresses of the CAM. To realize these arrangements we use two

counters: the counter FLC used above and a second counter FLC2. First we reset both FLC and FLC2.

Then, FLC and FLC2 are incremented until finding the first CAM location storing a word having

flag1=0 and containing exactly one “1” in its data field. At this location FLC stops incrementing,

while FLC2 increments until finding a CAM location having flag1=0 and containing more than one

“1” in its data field. The contents of the latter location are transferred to the former location. Then,

FLC increments until the next location storing a word having flag1=0 and containing exactly one “1”

in its data field, while FLC2 increments until the next location having flag1=0 and containing more

than one “1” in its data field. Again, the contents of the latter location are transferred to the former

location, and so on until FLC2 reaches the last location of the diagnosis-CAM. FLC increments to

select the subsequent CAM locations and each selected location is cleared (i.e. its tag and data fields

are set to 0, and the flag2 cells are set to 1). This process stops when the last CAM location is cleared.

If at test cycle ci the CAM stores r words that contain multiple faulty cells, at the end of this process

these words will be stored in the first q CAM locations comprising r good locations, and the

remaining locations (i.e. those identified by states of FLC larger than q-1), will be either faulty (flag1

= 1) or free to use in the next test iteration (flag1 = 0 and flag2 = 1).

In the next iteration I+1 we re-execute the whole test algorithm (i.e. from its beginning until its end), but we

do not update the CAM until reaching the test cycle ci (saved in the CR register as stated earlier). Starting

from the test cycle ci we update the CAM in the similar way as before, except that in this iteration the

address counter FLC starts incrementing from state q. The iterations of the test algorithm are repeated until

one of the following stop conditions occurs:

S.1 In some iteration the end of the test algorithm is reached and no aborted Miss-updating has occurred

(the iterative diagnosis process ends successfully).

S.2 In some iteration an aborted Miss-updating has occurred and no CAM location having flag1=0 and

containing exactly one “1” in its data field, has been found in step iv by FLC2 (the iterative diagnosis

process fails).

The following propositions demonstrate the pertinence of our iterative diagnosis approach.

Proposition 1: The proposed iterative diagnosis approach finishes within a finite number of iterations.

Proof: The following statement is always true: the iterative diagnosis approach fails within a finite number

of iterations, or the iterative diagnosis approach never fails. Let us consider each of the two possible cases

of this true statement.

1st case of the true statement: the iterative diagnosis approach fails within a finite number of iterations. This

means that, within a finite number of iterations, an aborted Miss-updating occurs and no CAM location

 39

having flag1=0 and containing one “1” in its data field has been found in step iv. In this case, the stop

condition S2 is reached in a finite number of iterations. Thus, the iterative diagnosis algorithm stops in a

finite number of iterations.

2nd case of the true statement: the iterative diagnosis approach never fails. This case implies that one of the

cases a or b is true:

a. Aborted Miss-updating never occurs, or

b. Each time an aborted Miss-updating occurs, there is at least a CAM location having flag1=0 and

containing exactly one “1” in its data field.

If case a is true then: as the memory test algorithm has finite length, we reach its end in finite time.

Furthermore, as none of the Miss-updatings is aborted, the stop condition S1 is reached at the end of the test

algorithm.

If case b is true then, let us consider an aborted Miss-updating occurring at a test cycle ci of iteration I. In

this situation, case b implies that at the test cycle ci there are some CAM locations having flag1=0 and

containing exactly one “1” in their data field. Then, one of the following two cases concerning these

locations will occur:

b.1 When the test algorithm reaches its end during iteration I, the data fields of all these locations

have been updated and contain more than one “1” in their data fields. This also implies that no

CAM location is cleared at the end of iteration I, so that there are not available CAM locations.

b.2 When the test algorithm reaches its end during iteration I, one or more of these locations

contain(s) exactly one ‘1” and is (are) cleared after the end of the test algorithm of iteration I.

Furthermore, the occurrence of an aborted Miss-updating at a test cycle ci of an iteration I means that a

faulty memory word (Wn) not yet stored in the CAM is detected at the test cycle ci of iteration I, and there

is not available CAM location for storing it. Thus, in case b.1, when we reach the test cycle ci at the next

iteration (I+1) all the following conditions are realized:

i. The faulty word Wn is not stored in the CAM.

ii. There are not unoccupied locations in the CAM.

iii. There are not CAM locations having flag1=0 and containing exactly one “1” in their data fields.

Conditions i and ii imply that the detection of the faulty word Wn in the test cycle ci of iteration I+1 will

lead to an aborted Miss-updating. But as at the same time condition iii implies that there are no CAM

locations having flag1=0 and containing exactly one “1” in their data fields, case b is contradicted. Thus

case b always implies b.2, which means that case b always implies that one or more CAM locations are

cleared at the end of iteration I. By the construction of our iterative diagnosis process, in the next iteration

(I+1) we start updating the CAM at the test cycle ci. As one or more CAM locations were cleared at the end

of iteration I, and at iteration I+1 we start updating the CAM at the test cycle ci, then, when the faulty word

Wn is detected again at the test cycle ci of iteration I+1, there is at least one available CAM location, and

the faulty word Wn is stored in such a location. Thus, in iteration I+1 aborted Miss-updating can occur only

after the test cycle ci. Therefore, case b implies that: if an aborted Miss-updating occurs in any test cycle ci

of any iteration I, then in the next iteration I+1, aborted Miss-updating can occur only after the test cycle ci.

Therefore, in any iteration J subsequent to I: either no aborted Miss-updating occurs, and in this case at the

end of iteration J the stop condition S1 is realized; or in iteration J an aborted Miss-updating occurs in a

test cycle cj, and in iteration J+1 aborted Miss-updating can occur only after the test cycle cj. Thus, as long

as the iterative diagnosis process does reach the stop condition S1, the test cycle in which aborted Miss-

updating is occurring, increases. As the number of the test cycles is finite (finite test algorithm length), then,

within a finite number of steps we will reach an iteration in which no aborted Miss-updating occurs,

 40

implying the realization of the stop condition S1.

Thus, in all possible cases, the stop condition S1 or the stop condition S2 is reached in a finite number of

iterations. QED

 An important question concerns the condition, which ensures that our iterative diagnosis finishes

successfully. This question is addressed in the following proposition.

Proposition 2: If the number r of good CAM locations is larger than the number t of memory words

containing multiple faults (i.e. r > t), the diagnosis process ends successfully and in finite time.

Proof: Let us suppose that condition S2 occurs in some iteration I. This means that two conditions are

realized at test cycle ci of the iteration I:

i. an aborted Miss-updating has occurred, and

ii. there is not CAM location having flag1=0 and containing exactly one “1” in its data field.

Since an aborted Miss-updating has occurred (point i), then all the r good CAM locations are occupied by

faulty memory words. As an occupied good CAM location contains in its data field either exactly one “1” or

more than one “1”, we have r = na + nb (where na is the number of good CAM locations containing exactly

one “1” in their data field, and nb is the number of good CAM locations containing more than one “1” in

their data field). In addition, each good CAM location containing more than one “1’ in its data field

corresponds to a faulty memory word containing multiple faults. Thus, nb can never exceed t (i.e. nb ≤ t).

From r = na + nb and nb ≤ t we have na ≥ r - t. From the statement of the proposition we also have r > t.

Thus we obtain na > 0. This means that there is at least one good CAM location containing exactly one “1”

in its data field, and contradicts condition ii. Thus, conditions i, and ii cannot both be realized in an iteration.

Thus, the stop condition S2 is never realized. As from proposition 1 in our iterative diagnosis process either

the stop condition S1 or the stop condition S2 is realized within a finite number of iterations, the stop

condition S1 will be realized within a finite number of iterations. QED

 When the diagnosis-CAM is full we liberate good CAM locations in which the data field contains only

one “1” (corresponding to one faulty cell), in order to create free space for storing subsequently memory

words containing more than one faulty cell. However, a memory word in which one faulty cell was detected

until a test cycle ci, may also contain faulty cells that are detected at a later test cycle. Thus, CAM-locations

clearing may lead in misdiagnosing certain memory words containing more than one faulty cell. The

following proposition shows that our iterative diagnosis process does not lead to misdiagnosis. In addition,

its proof highlights the reasons leading to the proposed iterative diagnosis process.

Proposition 3: Let us suppose that the number of good locations of the diagnosis-CAM is larger than the

number of memory words containing more than one faulty cell. Then, the quality of the diagnosis is not

affected by the proposed iterative diagnosis process.

Proof: From proposition 1, the test algorithm stops successfully in finite number of iterations. Then, there

are two issues that could affect diagnosis quality: reduction of fault coverage; loss of diagnosis-sensitive

information.

 Fault coverage reduction: In any iteration I+1, faults detected by the test algorithm are not used to update

the CAM until the test cycle ci in which an aborted Miss-updating has occurred in the previous iteration I.

Then, starting in iteration I+1 the execution of the test algorithm at test cycle ci would help reducing test

time. However, fault sensitizations produced during the non-executed test cycles (i.e. the ones preceding

cycle ci) would be lost. This will prevent the detection of faults that could be detected at test cycle ci or after

it, but are sensitized by operations performed before this cycle. As at each iteration our approach executes

the test algorithm from its beginning, we do not experience fault sensitization reduction
9
.

 Loss of diagnosis-sensitive information: For faulty words never evicted from the diagnosis-CAM loss of

9
 This part of the proof explains also why at each iteration we start the test algorithm from its beginning.

 41

diagnosis-sensitive information cannot occur. However, this could happen for faulty words that are evicted

from the CAM. Such loss may occur only if:

i. The test algorithm detects a faulty cell C1 and stores the related information in a CAM location.

ii. This CAM location is cleared later.

iii. Another faulty cell C2 affecting the same memory word is detected by the test algorithm after this

clearing.

If event ii occurs after i, and event iii occurs after ii, then, the CAM will not contain simultaneously the

information concerning both faulty cells, and the memory word could not be identified to contain multiple

cells. However, our approach avoids this issue as each of the events i, ii, and iii can occur but: each time the

CAM is full (say at cycle ci of the test algorithm), we continue executing the test algorithm until its end, and

we also update the data field of the words detected as faulty until the test cycle ci. Thus, for any word

detected as faulty before the test cycle ci we collect information concerning the positions of its faulty cells

until the end of the test algorithm, guarantying that all faulty cells of this word will be detected before the

CAM location containing this faulty word is cleared (i.e. event iii will occur between events i and ii). Thus,

each word detected as faulty before the test cycle ci will be diagnosed correctly
10

. On the other hand, as the

next iteration starts updating the CAM from cycle ci, then, any word detected as faulty for first time at the

test cycle ci or after this cycle and until the next test cycle at which the CAM is again full (say test cycle ck),

is correctly diagnosed for the same reasons as for the faults detected before cycle ci. The same reasoning

holds for the words detected as faulty for first time at cycle ck or after this cycle and until the subsequent

cycle at which the CAM is full, and so on until covering all faulty memory words. QED

From the proof of proposition 3, re-executing at each iteration the test algorithm from its beginning

guaranties in all situations that there is no fault coverage reduction due to fault sensitization issues.

However, corollary 1 allows reducing the length of certain iterations of the test algorithm.

Corollary 1: If an iteration I starts updating the diagnosis-CAM from an operation belonging to a test

sequence S(i), then, iteration I can skip each sequence S(j) with j < i, which is not necessary for sensitizing

the faults detected in S(i).

From corollary 1, with a dedicated analysis of the target test algorithm, it is possible to reduce the length of

the iterative diagnosis approach. For instance, for the MSS1 algorithm presented in section 3.3, figure 2, if

in an iteration I the aborted Miss-updating occurs in the sequence S(1), then, using proposition 3 we will

have to start the next iteration I+1 from the beginning of the test algorithm. However, no-fault detected in

sequence S(2) can be sensitized in sequence S(0). Thus, thanks to corollary 1, if in I the aborted Miss-

updating occurs in the sequence S(2), we can start I+1 from the beginning of sequence S(1). Similarly, if in

I the aborted Miss-updating occurs in the sequence S(3) (resp. S(4) or S(5)), we can start I+1 from the

beginning of sequence S(2) (resp. S(3) or S(4)). Note however that, when we start iteration I+1 from the

beginning of S(2) (resp. S(4)), we should pay attention before starting I+1 to initialize the memory by

performing a W1 at each memory word (because as iteration I ends with the sequence S(5) the memory

state is not compatible for starting executing S(2) nor S(4)).

 Based on these observations, for the test algorithm MSS1 shown in figure 1, subsection 3.3.2.1, the

reduction rl(i) of the number of operations for any iteration that starts updating the CAM at sequence S(i), i

 {1, 2, 3, 4, 5} is: rl(1) = 0; rl(2) = N; rl(3) = 4N; rl(4) = 9N; rl(5) = 12N, where N is the number of

memory words. We note that, the later an iteration starts updating the CAM, the higher the reduction of the

10

 This part of the proof explains also why after the occurrence of an aborted Miss-updating in any iteration of the diagnosis

process, we continue the execution of test algorithm until its end, and we also continue updating until this end the faulty-cells

positions of faulty memory words already stored in the CAM.

 42

number of operations. Thus, for iterations starting updating the CAM at sequence S5 we have a 12N

reduction, meaning that the length of these iterations will be 6N instead of 18N for the whole algorithm

MSS1. This is advantageous because, as we progress towards the end of the iterative diagnosis process, the

CAM locations are increasingly occupied leading in more frequent iterations that could have high impact on

the diagnosis length. Fortunately, thanks to corollary 1, these iterations will have short duration.

3.3 AUTOMATION

3.3.1 Yield and CAM Size Computation

As discussed in chapter 2, we can compute the yield for both conventional repair and ECC-based repair

by using the following analytical expression derived in chapter 5.



Y 
NW!PWg

(Nw t)

(NW  t)!t!
(1PWg)t

NWC!PWCg
Nwcr

(NWC  r)!r!
(1PWCg)r

r0

Nwct
















t0

Nwc

 (1)

where NW is the number of memory words and NWC is the number of the locations of the repair CAM, PWg

is the probability that a memory word does not need to be repaired (good word), and PWCg is the probability

that a CAM location is good for repairing a faulty memory word (good CAM location).

Expression (1) is computed as the probability for a memory to be repaired successfully at runtime. For this

repair to be successful, the runtime-CAM must contain at least as many good locations as the number of

memory words that need to be repaired.

On the other hand, when we use separate diagnosis-CAM, we should also consider the probability for the

diagnosis process to finish successfully. According to proposition 2, for the diagnosis process to finish

successfully the diagnosis-CAM must contain at least as many good locations as the number of memory

words that need to be repaired .We observe that the conditions for a memory to be repaired successfully at

runtime and for the diagnosis process to finish successfully are identical. Thus, the expression (1) used to

compute the memory yield as the probability for the memory to be repaired successfully, can also be used

for computing the probability for the diagnosis process to finish successfully. However, what we are

looking for is the joint probability for the memory to be repaired successfully and to be diagnosed

successfully. This probability is given by the following expression:



Y 
NW!PWg

(Nw t)

(NW  t)!t!
(1PWg)t

NWC!PWCg
Nwcr

(NWC  r)!r!
(1PWCg)r

NWDC!PWDCg
NwDc r

(NWDC  r)!r!
(1PWDCg)r

r0

NwDc t


r0

Nwct
















t0

Nwc

 (2)

Where



NW!P
Wg

(Nw t)

(NW  t)!t!
(1PWg)t gives the probability that the memory contains Nw – t good words and t

non-good words.



NWC!P
WCg
Nwcr

(NWC  r)!r!
(1PWCg)r

r0

Nwct

 (3) gives the probability that the runtime-CAM contains at least t good

locations, and



NWDC!P
WDCg
NwDc r

(NWDC  r)!r!
(1PWDCg)r

r0

NwDc t

 (4) gives the probability that the diagnosis-CAM contains

at least t good locations, and expression (2) gives the sum from t = 0 to t = NWC of the product of these three

probabilities, which provides the joint probability for the memory to be repaired successfully and to be

diagnosed successfully.

Note that, as the number NWDC of the locations of the diagnosis-CAM is larger than NWC, the memory can

be diagnosed successfully even if it contains more than t = NWC non-good words. But in expression 2 the

external sum is taken until the value t = NWC. Hence, expression 2 does not consider the cases of successful

 43

diagnosis in which the memory contains more than NWC non-good words. However this is correct as: on the

one hand expression (2) gives the joint probability for the memory to be repaired successfully and to be

diagnosed successfully, and on the other hand if the memory contains more than NWC non-good words, this

joint probability is equal to 0 even though the memory can be diagnosed successfully (because the memory

cannot be repaired when it contains more than NWC non-good words).

We find that the number of operations required computing the yield by means of (2) is:

NWDC(NWC +1)(NWC +2)/2 + NW(NWC +1) + (NWC +1)(7NWC
2
 + 2NWC - 6)/6 – 3 multiplications; (NWC

+1)(NWC +3) divisions; and NWC(NWC +2) additions. Thus the number of operations increases exponentially

with the memory and the CAM sizes. In addition, we will have to deal with large values of NW (as we have

to deal with future very advanced technologies allowing producing very complex chips, which will include

very large memories), as well as large values of NWDC and NWC (due to the high defect densities), leading to

huge numbers of operations. Furthermore, these operations have to manipulate very large numbers such as

Nw!/(Nw-t)!t!, as well as very small numbers such as PWCg
Nw

, requiring high precision arithmetic. Thus,

computing the yield by means of expression (1) becomes computationally intractable.

To accelerate the computations, similarly as for expression (1), in chapter 5 we derive recursive relations for

expression 5, which allow computing expression (2) in linear time.

Thus, thanks to the derived recursive relations, the computation of the yield is accelerated drastically, but its

complexity is still non-linear. However, we observe that in expression (2) the terms



Br 
Nwc!Pwcg

Nwcr

(Nwc  r)!r!
(1Pwcg)r

 and



C t 
Nw!Pwg

(Nw t)

(Nw  t)!t!
(1Pwg)t

are used intensively. Thus, we compute them just once and we store them in two look-up tables for reuse

during the computations. Then, we find that the yield computation can be done in linear complexity with

respect to the memory size: NW + 9NWC + 4NWDC - 1 multiplications, 2NWC + NWDC divisions, 2NWC + NWDC

additions, and NWC + NWDC subtractions. This is dramatically shorter with respect to the number of

operations required for computing expression (2) in direct manner.

Furthermore, using the recursive relations derived in chapter 5, allows also fast computation of expression

(1), by means of NW + 8NWC - 1 multiplications, 2NWC divisions, 2NWC additions, and NWC subtractions.

Based on these developments, we implemented a tool enabling fast computation of the size of the runtime-

CAM and the diagnosis-CAM required for achieving a target yield. In particular, we use the fast

computation of expression (1) to compute the size of the runtime-CAM for conventional repair and ECC-

based repair using SRDF algorithms. As concerning the ECC-based repair approach using separate CAMs,

we use the fast computation of expression (2) to compute the size of the runtime-CAM and the diagnosis-

CAM.

Concerning the ECC-based repair approach using separate CAMs and iterative diagnosis, using a diagnosis-

CAM slightly larger than the runtime-CAM will require very large numbers of iterations, affecting test

length adversely. Thus, we use diagnosis-CAMs several times larger than the runtime CAM. From

proposition 2, the diagnosis is guaranteed to be successful if the number of good CAM locations is larger

than the number of memory words affected by two or more faults. As the diagnosis-CAM is much larger

than the runtime-CAM (which has sufficient size for repairing all memory words containing two or more

faulty cells), the probability that the diagnosis-CAM comprises a number of good locations lower than the

number of memory words containing two or more faulty cells is extremely low. Thus, the impact of the

diagnosis-CAM on the yield will be extremely low, and we can use expression (1) instead of expression of

(2). Then, the challenging issue concerning the iterative diagnosis approach concerns the computation of the

number of iterations for any target size of the diagnosis-CAM. The automation of this task is addressed in

the next section.

 44

3.3.2 Test-length Computation

This section proposes algorithms for determining the increase of test length induced by the iterative

diagnosis approach. This is a challenging task as the number of iterations of the test algorithm depends on

the distribution of faults within the memory. This distribution concerns the distribution of faulty cells in the

memory as well as the type of the fault affecting each faulty cell. The latter is necessary, as the number of

iterations is determined by the number of errors produced during the execution of the test algorithm and

their distribution. Thus, to determine the number of iterations for a fault distribution, we need to simulate

the faulty memory together with the diagnosis circuitry for several iterations of the test algorithm (i.e. until

an iteration of the test algorithm, which does not aborts the diagnosis of detected faults due to the saturation

of the diagnosis-CAM). For large memories this is extremely time-consuming. In addition, to obtain

statistically significant results, we need to repeat this process for a large number of times (up to 1000 times

were used in our experiments). Furthermore, we evaluated the approach for 162 cases (3 different defect

densities x 9 memory sizes x 6 diagnosis-CAM sizes). All these make the computation unfeasible. To

address this challenge, we developed an innovative approach termed hereafter as pseudo-simulation (and a

software platform implementing it), which provides the same result as conventional simulation but

dramatically faster. This approach is described next.

3.3.2.1 Detection profiles
The distribution of the faults over the memory and their type, determine the positions within the test

algorithm in which fault detections occur. Ultimately, the behavior of the iterative diagnosis scheme

depends on these positions. Thus, to avoid performing fault injection experiments, and performing time

consuming conventional fault simulation for each experiment, we adopted a much faster solution consisting

in:

- Determining the detection profiles of the target set of faults for the target algorithm (i.e. the sequences

of the test algorithm in which each fault of the target set is detected). For instance, if a fault is detected

in sequences S1, S2, and S5 of a test algorithm, its detection profile is (S1; S2; S5).

- Associating the conditional
11

 occurrence probability of each fault to its detection profile.

- Collapsing the obtained list of detection profiles and their probabilities by adding the probabilities of

identical detection profiles. For instance, if two faults f1 and f2 have both the detection profile (S1; S3)

and the conditional occurrence probabilities of f1 and f2 are P1 and P2, then we associate the

probability P1+P2 to the detection profile (S1; S3).

- Performing detection-profiles injection experiments, and performing fast pseudo-simulation for each

experiment.

For illustrating our approach let us consider a comprehensive set of fault models consisting in all static

unlinked functional fault models (FFMs) involving one memory cell (single-cell FFMs) and two memory

cells (two-cell FFMs) [29]. We also consider the march test algorithm MSS1 [31] shown in figure 1, which

is an optimal test algorithm detecting all of them.

S(0): (W0); S(1): (R0, R0, W1, W1); S(2): (R1, R1, W0,

W0);
 M01; M11; M12; M13; M14 M21; M22; M23; M24

S(3): (R0, R0, W1, W1); S(4): (R1, R1, W0, W0); S(5): (R0);
 M31; M32; M33; M34 M41; M42; M43; M44 M51

Figure 1: MSS1 test algorithm

11

 The occurrence probability of each fault divided by the total probability that a fault of any kind occurs

 45

To generate the detection profile for each fault, we need to identify which operations of the test algorithm

detect it. Considering the target test algorithm, these operations can be generated manually, but this is a time

consuming and error prone operation. Thus, using fault simulation is preferable because it is error-free and

is very fast, as it requires simulating only one cell for each single-cell fault and only three cells for each

two-cell fault (a victim cell, an aggressor cell with higher address than the victim cell, and an aggressor cell

with lower address than the victim cell). Table 1 concerns the single-cell FFMs. The fourth column of this

table presents the operations of MSS1 detecting each fault primitive, and the fifth column presents the list of

sequences detecting each fault primitive. For instance, from the fourth column, the fault primitive < 0 / 1 / -

> is detected by the operations (M11; M12) (M31; M32) and M51. Thus, the list of sequences in the fifth

column is (S1; S3; S5). In the context of the iterative diagnosis approach, the detection sequences rather

than the detection operations are of interest. Thus, in the following we are deriving sequence-based

detection profiles. However, in applications where detection-operations are of importance (as for instance

for determining the masking probability of the transparent BIST scheme proposed in section 6), the

proposed pseudo-simulation approach can also be employed to reduce simulation time, but in this case we

will use the detection operations shown in the fourth column of the table for creating the detection profiles.

Using detection operations instead of detection sequences will result in a larger number of detection

profiles. Hence, using sequence-based detection profiles, as allowed in the context of the present study,

reduces computation time.

For the two-cell FFMs, the similar results are presented in table 2.

Note that, for all two-cell FFMs except the CFst <0; 0/1/- > and <1; 1/0/- >, the detecting sequence depends

on the relation between the addresses of the victim and the aggressor cells. This is reported in the fifth

column of table 2 as “half in Si the other half in Sj”.

Note also that, all FFMS are detected by MSS1 regardless to the state of the memory before the initializing

sequence S0. However, depending on the state of each memory cell before S0, some faults can be

additionally detected in S1. Such additional detections may saturate the diagnosis-CAM earlier and increase

the diagnosis length. Thus, we also take into account such detections. Starting from the second iteration of

the test algorithm the states of the memory cells before S0 are known (they are equal to their states at the

last sequence of the test algorithm - the state 0 in MSS1 as determined from sequence S5). Thus, in tables 1

and 2 we have normally reported the detection operations and sequences as determined by these states. In

addition at the end of these tables we have reported the detection operations and sequences concerning the

first iteration of the test algorithm. As the state of each cell before S0 is unknown, we consider that each cell

has 0.5 probability to be at the 0 state and another 0.5 probability to be in the 1 state before S0. For single-

cell FFMS, this issue concerns TF <1w0/1/- > and WDF <0w0//- >. Thus, in the last two rows of table 1

we report again the detection operations and sequences for these fault primitives, considering this time that

before the sequence S0 of the first iteration of the test algorithm, the memory cells have 0.5 probability to

be 1 and 0.5 probability to be 0. It results in the situations where certain detections have “50% chances”, as

reported in the last two rows of the table. Note however that, as reported in the 4
th

 and 6
th

 rows of table 1,

after the first iteration TF <1w0/1/- > gives the detection profile (S3; S5), and WDF <0w0//- > gives the

detection profile (S1; S3; S5). On the other hand, as reported in the last two rows of table 1, during the first

iteration of the test algorithm TF <1w0/1/- > gives the detection profiles (S3; S5) and (S1; S3; S5), each

with occurrence probability equal to the half of the occurrence probability of TF <1w0/1/- >. This is also the

case for WDF <0w0//- >. Then we find that, if the occurrence probabilities of the fault primitives TF

<1w0/1/- > and WDF <0w0//- > are equal, the occurrence probabilities of the detection profiles (S3; S5)

and (S1; S3; S5) obtained from the fault primitives TF <1w0/1/- > and WDF <0w0//- > are the same in all

the iterations of the test algorithm. As for two-cell FFMS, the fault primitives concerned by these issue are

CFdsxw!x <1w0; 0//- > and CFdsxwx <0w0; 0//- >. Thus, in table 2 we have reported their detection

operations and sequences for both the first iteration and the subsequent ones. Again, if the fault primitives

 46

CFdsxw!x <1w0; 0//- > and CFdsxwx <0w0; 0//- > have equal occurrence probabilities, we find that the

detection profiles and their probabilities are the same in all iterations. The case where these probabilities are

equal is easier to treat, as we treat identically all iterations. On the other hand, if these probabilities differ,

we can apply our approach, but we need to create a specific detection profile for TF <1w0/1/- >

differentiating the first iteration from the other iterations. That is: to all iterations except the first, we will

associate the detection profile (S3; S5) with probability equal to the occurrence probability of TF <1w0/1/-

>; while to the first iteration we will associate the detection profile (S1; S3; S5) with probability equal to the

half of the occurrence probability of TF <1w0/1/- >, and the detection profile (S3; S5) with probability

equal to the other half. We also treat similarly WDF <0w0//- >, CFdsxw!x <1w0; 0//- >, and CFdsxwx

<0w0; 0//- >.

Table 1: Detection operations and detection sequences for single-cell FFMs

FFM
Fault

Primitives
Detected in operations:

Detection

sequences

1 SF
< 0 / 1 / - > (M11; M12); (M31; M32); M51 (S1; S3; S5)

< 1 / 0 / - > (M21; M22); (M41; M42) (S2; S4)

2 TF
<1w0/1/- > (M31; M32); M51 (S3; S5)

<0w1/0/- > (M21; M22); (M41; M42) (S2; S4)

3 WDF
<0w0//- > (M31; M32); M51; (S3; S5)

<1w1//- > (M21 ; M22) ; (M41 ; M42) (S2; S4)

4 RDF
< r0 / /1 > (M11; M12); (M31; M32); M51 (S1; S3; S5)

< r1 / /0 > (M21; M22); (M41; M42) (S2; S4)

5 DRDF
< r0 / /0 > M12 ; M32 (S1 ; S3)

< r1 / /1 > M22; M42 (S2; S4)

6 IRF
< r0 / 0 / 1> (M11; M12); (M31; M32); M51 (S1; S3; S5)

< r1 / 1 / 0> (M21; M22); (M41; M42) (S2; S4)

2’ TF
<1w0/1/- >

(M31; M32); M51; 50% chances

to be detected in (M11; M12).

(S3; S5), 50%

in S1

3’ WDF <0w0//- >
(M31; M32); M51; 50% chances

to be detected in (M11; M12).

(S3; S5), 50%

in S1

Table 2: Detection operations and detection sequences for two-cell FFMs

FFM
Fault

Primitive
Detected in operations:

of detection

sequences

1.a CFst

<0; 0/1/- > (M11; M12); (M31; M32); M51 (S1; S3; S5)

<0; 1/0/- >
half in (M21; M22); the other half

in (M41; M42)

(half in S2 the other

half in S4)

1.b CFst

<1; 0/1/- >

half in (M11; M12; M51); the

other half in (M31; M32)..

(half in S1 and S5, the

other half in S3)

<1; 1/0/- > M(21; M22); (M41; M42) (S2 ; S4)

2.1.

a

CFdsrx

<r0; 0//- >

half in (M11; M12); the other

half in (M31; M32)

(half in S1 the other

half in S3)

<r0; 1//- >
half in (M21; M22); the other

half in (M41; M42)

(half in S2 the other

half in S4).

2.1.

b
CFdsrx

<r1; 0//- >

half in (M31; M32); the other

half in M51

(half in S3 the other

half in S5)

<r1; 1//- >
half in (M21; M22); the other

half in (M41; M42)

(half in S2 the other

half in S4)

2.2.

a
CFdsxw!x

<0w1; 0//- >

half in (M11; M12); the other

half in (M31; M32)

(half in S1 the other

half in S3)

<0w1; 1//- >
half in (M21; M22); the other

half in (M41; M42)

(half in S2 the other

half in S4)

2.2.

b
CFdsxw!x

<1w0; 0//- >

half in (M31; M32); the other

half in M51.

(half in S3 the other

half in S5)

<1w0; 1//- >
half in (M21; M22); the other

half in (M41; M42)

(half in S2 the other

half in S4)

2.3.

a
CFdsxwx

<0w0; 0//- >

half in (M31; M32); the other

half in M51. All in (M11; M12).

(half in S3 the other

half in S5)

 47

<0w0; 1//- >
half in (M21; M22); the other

half in (M41; M42)

(half in S2 the other

half in S4)

2.3.

b
CFdsxwx

<1w1; 0//- >

half in (M11; M12); the other

half in (M31; M32)

(half in S1 the other

half in S3).

<1w1; 1//- >
half in (M21; M22); the other

half in (M41; M42)

(half in S2 the other

half in S4)

3.a CFtr

<0; 1w0/1/- >

half in (M31; M32); the other

half in M51

(half in S3 the other

half in S5)

<0; 0w1/0/- >
half in (M21; M22); the other

half in (M41; M42)

(half in S2 the other

half in S4).

3.b CFtr

<1; 1w0/1/- >

half in (M31; M32); the other

half in M51

(half in S3 the other

half in S5)

<1; 0w1/0/- >
half in (M21; M22); the other

half in (M41; M42)

(half in S2 the other

half in S4)

4.a CFwd

<0; 0w0//- >

half in (M31; M32); the other

half in M51

(half in S3 the other

half in S5)

<0; 1w1//- >
half in (M21; M22); the other

half in (M41; M42)

(half in S2 the other

half in S4)

4.b CFwd

<1; 0w0//- >

half in (M31; M32); the other

half in M51

(half in S3 the other

half in S5)

<1; 1w1//- >
half in (M21; M22); the other

half in (M41; M42)

(half in S2 the other

half in S4)

5.a CFrd

<0; r0//1 >

half in (M11; M12); the other

half in (M31; M32). Also 100% in

M51.

(half in S1 the other

half in S3) plus all in

S5

<0; r1//0 >
half in (M21; M22); the other

half in (M41; M42)

(half in S2 the other

half in S4)

5.b CFrd

<1; r0//1 >

half in (M11; M12); the other

half in (M31; M32).

(half in S1 the other

half in S3).

<1; r1//0 >
half in (M21; M22); the other

half in (M41; M42)

(half in S2 the other

half in S4)

6.a CFdrd

<0; r0//0 >

half in M12; the other half in M32

(half in S1 the other

half in S3)

<0; r1//1 > half in M22; the other half in M42
(half in S2 the other

half in S4)

6.b CFdrd

<1; r0//0 >

half in M12; the other half in M32

(half in S1 the other

half in S3)

<1; r1//1 > half in M22; the other half in M42
(half in S2 the other

half in S4)

7.a CFir

<0; r0/0/1 >

half in (M11; M12); the other

half in (M31; M32). Also always

in M51.

(half in S1 the other

half in S3) plus all in

S5

<0; r1/1/0 >
half in (M21; M22); the other

half in (M41; M42)

(half in S2 the other

half in S4)

7.b CFir

<1; r0/0/1 >

half in (M11; M12); the other

half in (M31; M32).

(half in S1 the other

half in S3)

<1; r1/1/0 >
half in (M21; M22); the other

half in (M41; M42)

(half in S2 the other

half in S4)

2.2.

b’
CFdsxw!x

<1w0; 0//- >

half in (M31; M32); the other

half in M51. Also 50% chances to

be detected in (M11; M12).

(half in S3 the other

half in S5). 50% in S1

2.3.

a’
CFdsxwx

<0w0; 0//- >

half in (M31; M32); the other

half in M51. Also 50% chances to

be detected in (M11; M12).

(half in S3 the other

half in S5). 50% in S1

To create the detection profiles with their occurrence probability we need to know the occurrence

probabilities of the fault-primitives. As these probabilities are fab-sensitive data and are not available, to

illustrate our approach we consider that all fault primitives have the same conditional occurrence

probability. Thus, as we have 48 fault primitives, the conditional occurrence probability of each of them is

taken as 1/48. Thus, the occurrence probability of each fault primitive is equal to Pf/48, where Pf is the

probability that a cell is affected by a fault of any kind. Also, as mentioned earlier, for most of the two-cell

FFMs the detecting sequence depends on the relation between the addresses of the victim and the aggressor

 48

cells (this was reported in the fifth column of table 2 as “half in Si the other half in Sj”). Then, the

occurrence probability of these faults has to be split in two parts, the one to be associated with Si and the

other with Sj. This split may depend on the potential distribution of the aggressor cells in two groups: those

having addresses that are lower than the address of the victim cell, and those having addresses that are

higher than the address of the victim cell. One option is to consider that the number of victim cells of the

first group is proportional to the number of memory cells that have lower addresses than the victim cell, and

consider the similar for the second group. In this case, during fault injection, we will adapt the fault

occurrence probability to the position of the cell in which we inject the fault. That is, for a memory bank

comprising N words, there are @v - 1 addresses lower than the address @v of the victim cell, and N - @v

addresses higher that the address of the victim cell. Thus, in this case the occurrence probability of the two-

cell fault will be split in two parts (Pf/48)(@v - 1)/(N – 1) and (Pf/48)(N - @v)/(N – 1). However, it is more

realistic to consider that the victim cells are distributed in the close proximity of the aggressor cell [37]. In

this case we will have similar probabilities for the two groups. This approach was adopted in the case study

considered here, but the different approach can also be implemented trivially.

 Using the above considerations, we associate the corresponding probabilities to the different

detection profiles defined by the detection-sequences instances reported in the fifth column of the tables 1

and 2. For example, as reported in the second row-fifth column of table 1 (detection sequence (S1; S3; S5)),

the fault primitive < 0 / 1 / - > is always detected in the sequences S1, S3, and S5. Thus, we associate the

probability Pf/48 of the fault primitive < 0 / 1 / - > to the detection profile (S1; S3; S5). On the other hand,

as reported in the fourth row-fifth column of table 1 (detection sequence (S3; S5), 50% in S1), the primitive

<1w0/1/- > is always detected in the sequences S3 and S5, and has 0.5 probability (50% chances in the

table) to be detected in sequence S1. Thus, the Pf/48 occurrence probability of the primitive <1w0/1/- > is

split in two detection profiles: Pf/96 for the detection profile (S3; S5), and Pf/96 for the detection profile

(S1; S3; S5). Finally, as reported in the fourth row-fifth column of table 2 (detection sequence (half in S1

and S5, the other half in S3)), depending on the relation of the addresses of the aggressor cell and of victim

cell, half of the faults corresponding to the primitive <1; 0/1/- > is always detected in S1 and S5, and the

other half is always detected in S3. Thus, the Pf/48 occurrence probability of primitive <1; 0/1/- > is split in

two detection profiles: Pf/96 for the detection profile (S1; S5), and Pf/96 for the detection profile (S3). This

way, from tables 1 and 2 we obtain the detection profiles and their probabilities.

Then we get the identical detection profiles by adding their probabilities. The result is the 10 detection

profiles reported in table 3, together with their occurrence probabilities.

Table 3: Statistical distribution of detection profiles.

Detection

Profile

Probability

(S1) Pf x 0.072916

(S2) Pf x 0.17708333

(S3) Pf x 0.14583333

(S4) Pf x 0.17708333

(S5) Pf x 0.0625

(S1; S3) Pf x 0.03125

(S1; S5) Pf x 0.04166666

(S2; S4) Pf x 0.14583333

(S3; S5) Pf x 0.04166666

(S1; S3; S5) Pf x 0.10416667

 49

3.3.2.2 Pseudo-simulation

To perform fault-injections over the memory we create a Nxm array DP[N, m] corresponding to the Nxm

cells of the memory (N being the number of memory words and m the number of bits per word):

- The Nxm elements of this array (to be referred hereafter as cells) are visited one after the other.

- For each cell the rand function of MATLAB is used to generate discrete event sampling for the 10

detection profiles of the first column 1 of Table 3, following their probabilities given in the second

column of the table.

- The resulting event (i.e. one of the 10 detection profiles or the empty detection profile corresponding

to a fault-free cell) is written in the cell.

- Then another cell is visited and so on …

Each time we execute an injection experiment as described above, we need to determine the number of test

iterations required to diagnose the faulty memory described by the array DP[N, m]. Using conventional

memory-fault simulation this is extremely time consuming. Fortunately, our detection-profiles-based

approach avoids simulating the faults injected in the memory during the execution of the test algorithm. It

also avoids the simulation of the diagnosis hardware, and more particular of the diagnosis-CAM, which is

very time consuming. Indeed:

i. As during the fault injection process we stored in each element of DP[N, m] the test sequences in which

the injected fault is detected (detection profile), we do not need to perform the time-consuming task of

conventional fault simulation during the execution of the test algorithm.

ii. In the real diagnosis circuit, we save in a CAM the address of each faulty cell. Simulating algorithmically

the operation of a CAM requires time-consuming searches. In our case, we are able to obtain the

expected result by using the detection profiles to count the number of occupied CAM locations, reducing

drastically the computation time.

iii. In the real diagnosis circuit, after an aborted Miss-updating we need to execute the algorithm until its

end, in order to check if after the aborted Miss-updating the test algorithm detects faulty cells, which

belong to faulty words that were detected by the test algorithm and stored in the CAM before the aborted

Miss-updating. As each row of DP[N, m] stores all faults affecting the corresponding memory word, we

do not need to execute the test algorithm until its end for checking this characteristic. Thus, in the

pseudo-simulation, each iteration of the test algorithm ends when an aborted Miss-updating occurs.

iv. As the sensitization of the faults was already considered during the creation of the detection profiles.

Then, in the pseudo-simulation, after an aborted Miss-updating occurring during an iteration I we can

start the next iteration I+1 of the test algorithm from the test operation in which the aborted Miss-

updating has occurred.

From the points i and ii, the proposed approach avoids the very time-consuming conventional fault

simulation. It also avoids the algorithmic simulation of CAM searches, which is less time consuming than

the fault simulation, but it is also infeasible in reasonable computation time
12

. In addition from points iii

12

 Each time a memory address is visited by the iterative diagnosis process it has to be compared serially with all CAM

contents. This results in NwxNcwxNmsxNixNfi, where Nw is the number of memory words, Ncw is the number of CAM words,

Nms of march sequences of the test algorithm, Ni is the number of iterations of the diagnosis algorithm, and Nfi is the number of

fault injections required to reach statistical significance. Thus, for a memory comprising 250x10
6
 words, a defect density Nf =10

-3

(which will require a full diagnosis CAM of about 10x10
6
 words), a reduced CAM having size equal to the one fourth of the full

diagnosis-CAM (i.e. 2.5x10
6
 words), the MSS1 test algorithm (which employs 5 march elements), a diagnosis process requiring 7

 50

and iv, the simulation length is reduced significantly. Indeed, as at each iteration I the pseudo simulation

ends the execution of the test algorithm at the test operation during which an aborted Miss-updating occurs,

and at the next iteration I+1 starts the execution of the test algorithm from the same test operation, then,

none of the operations of the test algorithm is executed twice except the operations corresponding to an

aborted Miss-updating. Thus, if the length of the test algorithm is tl and the number of iterations required by

the diagnosis process is ni, the length of the pseudo-simulation will be only ni + tl – 1 instead of nixtl,

resulting in non-negligible time reduction. The number of iterations depends on the diagnosis-CAM size

and the number of faulty words. Using small diagnosis-CAM to reduce cost increases the number of

iterations and the length of the conventional simulation. This also happens for constant CAM size and

increasing defect densities. However, the length of the pseudo-simulation is roughly constant (equal to the

test algorithm length plus one extra operation per test algorithm iteration). Thus, the execution time remains

low in all situations.

 To simplify the pseudo-simulation we perform a pretreatment of the DP[N, m] array, to create a NxS

array BS[N, S], where S = q + 1, and q is the number of sequences of the test algorithm (e.g. for MSS1 we

will obtain a Nx6 array BS[N, 6]). The elements of each row MA of BS[N, S] are S Boolean variables:

BS1(MA), BS2(MA), … BSq(MA), and BM(MA) computed from the elements of the row MA of DP(N, m)

by means of the following process:

BS-create

- BS1(MA) is set to 1 if the detection profile of some cell in the row MA of DP[N, m] includes S1.

BS2(MA), BS2(MA), … BSq(MA), are set similarly.

- BM(MA) is set to 1 if more than one of the cells in row MA have nonempty detection profile (i.e.

BM(MA) = 1 means that the memory word corresponding to row MA contains two or more faulty cells).

 In the pseudo-simulation algorithm, we also need to know the number of good CAM locations. From

section 3.1.1, the probability that a CAM location is good is given by Pwcg = (1 – Pf)
rN@+qNf+N

. We create a

NWDCx1 array (where NWDC is the number of the locations of the diagnosis-CAM). We initialize all

elements of this array to 0 and for each element of this array we perform fault injection with probability

equal Pwcg. If the outcome of the fault injection is the faulty-state we write 1 in the current element of the

array. Then we count the elements of the array containing 0, and we allocate the outcome k to the integer

variable cg (representing the number of good locations of the diagnosis-CAM).

 Next we present the pseudo-simulation algorithm, but instead of presenting an algorithm dedicated to

MSS1, we present a generic algorithm because:

- It can be used with any memory test algorithm.

- It is more compact as it comprises a single generic subroutine valid for any test sequence, instead of a

5 distinct subroutines corresponding to the 5 test sequences of MSS1.

- For any iteration starting updating the CAM in sequence S(i), a Boolean condition c(i) has to be

computed to indicate that a new CAM location is occupied. These Boolean conditions become very

complex as i increases and their manual generation is very time consuming and prone to errors. For

instance, for an iteration starting updating the CAM in sequence S(2) of MSS1 we find:
-

c(2) = ((PS(ma,2)==1) & ((PS(ma,1) == 0) or ((PS(ma,6)==0) & (((sr==1) & (ma < ar)) or (sr==2)))))

This increases quickly with i, and for i=3, i = 4, and i = 5, we find:

c(3) = ((PS(ma,3)==1) & (((PS(ma,1) == 0) & (PS(ma,2) == 0)) or ((PS(ma,6)==0) & (((PS(ma,1) == 1) &

(PS(ma,2) == 0) & (((sr==1) & (ma < ar)) or (sr==2) or (sr==3))) or ((PS(ma,2) == 1) & (((sr==2) & (ma <

ar)) or (sr==3)))))))

iterations, and 1000 fault injections (as used in our experiments to guaranty statistically significant results), the number of

comparisons required for the algorithmic simulation of the CAM will be 250x10
6
x2.5x10

6
x5x7x1000 = 2.2x10

19
 comparisons!

 51

c(4) = ((PS(ma,4)==1) & (((PS(ma,1) == 0) & (PS(ma,2) == 0) & (PS(ma,3) == 0)) or ((PS(ma,6)==0) &

(((PS(ma,1) == 1) & (PS(ma,2) == 0) & (PS(ma,3) == 0) & (((sr==1) & (ma < ar)) or (sr==2) or (sr==3) or

(sr==4))) or ((PS(ma,2) == 1) & (PS(ma,3) == 0) & (((sr==2) & (ma < ar)) or (sr==3) or (sr==4))) or

((PS(ma,3) == 1) & (((sr==3) & (ma > ar)) or (sr==4)))))))

c(5) = ((PS(ma,5)==1) & (((PS(ma,1) == 0) & (PS(ma,2) == 0) & (PS(ma,3) == 0) & (PS(ma,4) == 0)) or

((PS(ma,6)==0) & (((PS(ma,1) == 1) & (PS(ma,2) == 0) & (PS(ma,3) == 0) & (PS(ma,4) == 0) & (((sr==1)

& (ma < ar)) or (sr==2) or (sr==3) or (sr==4) or (sr==5))) or ((PS(ma,2) == 1) & (PS(ma,3) == 0) &

(PS(ma,4) == 0) & (((sr==2) & (ma < ar)) or (sr==3) or (sr==4) or (sr==5))) or ((PS(ma,3) == 1) &

(PS(ma,4) == 0) & (((sr==3) & (ma > ar)) or (sr==4) or (sr==5))) or ((PS(ma,4) == 1) & (((sr==4) & (ma >

ar)) or (sr==5)))))))

 The generic pseudo-simulation algorithm is presented below. It uses the Boolean function c(i), and

another Boolean function V(i), computed by dedicated subroutines presented later.

Note also that, for more intuitive reading, the symbol “|” of the logic OR operator is replaced by “or”.

% Generic simulation algorithm for any march test composed

% of q test sequences S(1), S(2), … S(q)

S = q + 1; r = q; cg = k;

ni = 1; dl = 0; % ni and dl will count respectively the number of iterations of the diagnosis

 % process and its number of operations (diagnosis length);

co = 0; cmo = 0; % co; and cmo; will count respectively the number of occupied CAM locations

 % and the number of CAM locations occupied by words containing one or more

 % faulty cells;

sr = 0; ar = 0; % sr and ar indicate respectively the sequence and the memory address

 % at which the latest aborted Miss-updating has occurred.

PS[N,S] = BS[N,S]; % BS[N,S] is generated by process BS-create

for i = 1 : q

 ud(i) = si; % si = 1 if test sequence S(i) uses up addressing, si = -1 otherwise.

 tl(i) = tl – rl(i) % tl is the length of the test algorithm and rl(i) is the reduction of the test-algorithm for

 % an iteration starting updating the CAM at sequence S(i), as allowed by corollary 1

 % rl(1) = 0; rl(2) = N; rl(3) = 4N; rl(4) = 9N; rl(5) = 12N

end

for i = 1 : r

 % Simulation of any test sequence S(i)

 if (ud(i) == 1)

 for ma = 1 : N

 if c(i)

 co = co + 1;

 end

 if co == cg+1

 co = cmo +1; sr = i; ar = ma; dl = dl + tl(i); ni = ni +1;

 end

 if ((PS(ma,S) == 1) & (PS(ma, i) == 1) & (V(i)))

 cmo = cmo + 1;

 end

 end

 else

 52

 for ma = N : (-1) : 1

 if c(i)

 co = co + 1;

 end

 if co == cg+1

 co = cmo +1; sr = i; ar = ma; dl = dl + tl(i); ni = ni +1;

 end

 if ((PS(ma,S) == 1) & (PS(ma, i) == 1) & (V(i)))

 cmo = cmo + 1;

 end

 end

 end

end

% Computation of condition c(i)

c(i) = ((PS(ma,i)==1) &(V(i) or ((PS(ma,S)==0) & W(i))))

% Computation of V(i)

V(i) = 1;

for j = 1:i-1

 V(i) = (V(i) & (PS(ma, j) == 0));

end

% Computation of W(i)

W(i) = 0;

for p = 1:i-1

 if (ud(p) == 1)

 W(i)= (W(i) or ((PS(ma,p) == 1) & T(p,i) & (((sr==p)

 & (ma < ar)) or U(p,i))));

 else (ud(p) = -1)

 W(i)= (W(i) or ((PS(ma,p) == 1) & T(p,i) & (((sr==p)

 & (ma > ar))or U(p,i))));

 end

end

% Computation of T(p,i)

T(p,i) = 1;

for j = (p+1):i-1

 T(p,i) = T(p,i) & (PS(ma,j) == 0);

end

% Computation of U(p,i)

U(p,i) = 0;

for j = p+1:i

 U(p,i) = U(p,i) or (sr==j);

end

3.4 EVALUATION

The size of the CAMs required for achieving 90% yield for the three repair schemes, is estimated by the

analytical expressions presented in chapter 5. The area, power, and performance of the embedded SRAMs

and of the CAMs are estimated by using CACTI [[34] for 45nm process. The mean number of test iterations

 53

was evaluated by the approach presented in sub-section 3.3.2. This approach is very fast compared with

conventional fault simulation and allowed us performing intensive statistical fault injection experiments

(1000 fault injection campaigns and simulations for each SRAM case, defect density and diagnosis-CAM

size). The results are presented in Table 4.

 Column 1 in Table 4 gives the fault occurrence probabilities Pf that we experimented. All cases

presented in this table concern a total of 9,75 Gbit SRAM capacity embedded in a SoC, corresponding to a

total of 250M words x 39 bits per word (32 data bits and 7 Hamming code bits). The 9,75 Gbit total

memory capacity is split in numerous embedded memories distributed over the SoC. We have considered 3

cases for this distribution: 300 embedded memories; 1000 embedded memories; and 3000 embedded

memories, as reported in Column 2. Columns 3 and 4 show the area and power penalties (as a percentage of

area and power of the memory under repair) for conventional (non-ECC) repair. Column 5 gives the

runtime power penalty for all cases of ECC-based repair. In fact, in all these cases we use separate runtime-

CAM, which stores the words comprising multiple faults. Thus, the runtime-CAM is the same for all these

cases, resulting in the same runtime power. Column 6 gives the area penalty for the approach using full-size

diagnosis-CAM and separate runtime-CAM. Columns 7 and 8 give the area penalty and the mean number of

test iterations, when we use a diagnosis-CAM having the half size of the full-size diagnosis-CAM. Columns

9 and 10 give the same metrics when the diagnosis-CAM is one fourth of the full-size diagnosis-CAM.

Columns 11 and 12 give the same metrics when diagnosis-CAM is one sixth of the full-size diagnosis-

CAM.

In Table 4 we observe that: The area and power penalties for the conventional repair (referred as Appr. 1 in

the Table) grows roughly linearly with the defect density. However, the area penalty is significant but not

huge while the power penalty becomes excessive.

The first of our proposed approaches (ECC-based repair using separate runtime-CAM and full-size

diagnosis-CAM – Appr. 2), allows dramatic reduction of runtime power, which now increases sub-linearly

with respect to the defect density. This approach does not affect test time, but its area penalty is similar to

the conventional repair scheme.

Table 4. Results.

Pf #Emb Mem

Appr. 1

Non-ECC Repair

All

ECC Rep.

Appr. 2
ECC-

Rep

Separate

CAM

Appr. 3
ECC-Rep.

CAM/2

Appr. 4
ECC-Rep

CAM/4

Appr. 5
ECC-Rep

CAM/6

%A %P %P %A %A #It %A #It %A #It

10-4

300 1.317 185.4 1.267 1.326 0.696 3.00 0.313 6.00 0.215 9.00

1000 1.195 96.06 1.185 1.211 0.619 3.00 0.330 6.05 0.236 9.01

3000 1.237 67.90 1.297 1.265 0.675 2.89 0.382 5.26 0.279 7.73

3x 10-4

300 3.933 533.0 5.337 3.969 2.158 3.00 1.029 6.00 0.703 9.00

1000 3.873 283.3 4.431 3.936 2.054 3.00 0.939 6.10 0.647 9.19

3000 3.459 177.9 3.676 3.537 1.818 3.00 0.967 5.90 0.679 8.39

10-3

300 12.75 1629 39.56 13.00 6.836 3.00 3.695 7.00 2.65 10.00

1000 13.07 913.9 24.18 13.36 7.337 3.00 3.586 6.88 2.50 10.00

3000 13.50 581.5 17.56 13.84 6.505 3.00 3.146 6.01 2.24 9.16

The second set of our proposed approaches (ECC-based repair using separate runtime-CAM and reduced

diagnosis-CAM – Appr. 3, 4, and 5), achieves the same runtime power reduction as the first approach. In

 54

addition, it allows significant area penalty reduction (especially for the higher defect densities). This benefit

comes at the expense of extra test length, since the test algorithm will have to be executed about 3 times for

the CAM/2 case, 5 to 7 times for CAM/4, and 8 to 12 times for the CAM/6 case, as indicated in the #It

columns computed by our statistical injection and simulation tool. Note however that, these approaches use

much smaller diagnosis-CAM with respect to the non-ECC repair approaches (Appr. 1) and the approach

using a full-length separate CAM (Appr. 2). Thus, they will have lower power dissipation during the test

and diagnosis phase. This fact can be exploited to test in parallel a larger number of memories and reduce

the impact on test time. Then, as shown in table 5, the test time increase is much smaller than the test length

increase. Furthermore, as the area penalty increases linearly with the defect density and embedded

memories occupy the largest part of modern SoCs (more than 90% of the SoC area in most cases), this

penalty becomes totally undesirable. For instance, for the 10-3 defect density the area penalty is about 13%,

which in a SoC in which embedded memories occupy more 90% results in an area penalty exceeding 11.7%

of the total SoC area. Thus, the area penalty reduction achieved by the iterative diagnosis approach is highly

desirable.

Table 5. Test-time increase

Pf
#Embedded

Memories

Conventional

Repair

Appr. 3 ECC-

Rep. CAM/2

Appr. 4 ECC-Rep.

CAM/4

Appr. 5 ECC-Rep.

CAM/6

Test Power
Test

Power

Test-time

increase

Test

Power

Test-time

increase

Test

Power

Test-time

increase

10-4

300 2.85 1.99 2.01 1.47 3.09 1.33 4.20

1000 1.96 1.51 2.31 1.27 3.92 1.19 5.47

3000 1.68 1.36 2.34 1.18 3.69 1.13 5.20

3x10-4

300 6.33 3.92 1.86 2.43 2.30 1.99 2.83

1000 3.83 2.53 1.98 1.71 2.72 1.49 3.57

3000 2.78 1.93 2.01 1.49 3.16 1.33 4.01

10-3

300 17.29 9.74 1.69 5.69 2.30 4.32 2.50

1000 10.14 6.01 1.78 3.44 2.33 2.69 2.65

3000 6.81 4.07 1.79 2.47 2.18 2.01 2.70

 These techniques, complement the approach proposed in [35], which completely eliminates the

diagnosis-CAM at the expense of significant increase in test time. They, result in a comprehensive

framework enabling:

- Repairing memories affected by high defect densities at low area and power costs;

- Trading area penalty with test time.

- Dealing at the same time with high defect densities and aggressive voltage reduction, to aggressively

reduce power.

3.5 CONCLUSION

In chapter 2 we proposed and developed a new family of memory test algorithms (SRDF test algorithms),

which eliminate the diagnosis circuit in ECC-based memory repair. In high defect densities it results in

dramatic reduction of the area and power penalties with respect to conventional memory repair. However,

the length of SRDF test algorithms is increased significantly with respect to conventional test algorithms.

To reduce this length, in this chapter we proposed two solutions. The first, instead of employing a single

CAM for both diagnosis and repair purposes (as do existing repair schemes), it employs a diagnosis-CAM

used during the test and diagnosis phase, and a repair CAM used at runtime. Thus, this scheme reduces

 55

drastically runtime power and also uses conventional test algorithms. However, area penalty may become

very high, as the size of the diagnosis CAM is the same as the size of the CAM used in conventional

memory repair. As memories occupy a very large amount of the SoC area (usually more than 90%), this

high area penalty is very penalizing, since it will represent a high percentage of the total area of the SoC).

Thus, in this chapter we also propose an iterative diagnosis scheme, which reduces the size of the diagnosis

CAM and compensates the reduced CAM space by: executing the test algorithm multiple times, diagnosing

at each iteration a subset of the faulty memory words, and emptying CAM space at the end of this iteration

to provide space for treating new faults at the next iteration. The first challenge of this approach is: how to

ignore during an iteration of the test algorithm faulty words eliminated from the CAM during the earlier

iterations, as this elimination erases all information concerning them. Due to this lack of information, this

elimination can result in fault-masking for some faults and in miss-diagnosis of words containing multiple

faulty cells. This issue was resolved by a dedicated iterative diagnosis algorithm, which is formally shown

to correctly diagnose all words containing more than one faulty cell. The second challenge concerns the

evaluation of this approach. This evaluation requires performing large numbers of fault injections, in order

to obtain statistically significant results, and simulating for each of these injections the faulty memory and

the diagnosis circuit by executing the diagnosis algorithm over them. As fault simulation is a very time-

consuming process (and this is also the case for the algorithmic simulation of CAMs), we have developed a

pseudo-simulation approach, which reduces dramatically simulation time while providing identical results

as conventional fault simulation.

The approaches proposed in this chapter offer a large space for trade-offs in terms of area penalty and test

time. Thus, in combination with the approach developed in chapter 2 for completely eliminating the

diagnosis CAM, and the approach developed in chapter 5 enabling drastic runtime power reduction, they

offer a comprehensive framework enabling making the most appropriate trade-offs in terms of area, power

and test time to fit the constraints of each particular design.

 56

CHAPTER 4

Low-Power Memory Repair Arcitectures

In the previous chapters we have shown that the advantages of ECC-based repair can be lost due to

diagnosis issues, and we proposed and developed innovative solutions coping with this issue by one of the

following means: using a new family of test algorithms; or using separate diagnosis-CAM and repair-CAM;

or employing an iterative diagnosis process. These solutions make practical the ECC-based repair approach,

which, for high-defect densities, reduces dramatically area and power cost with respect to conventional

repair. However, although power-dissipation is reduced dramatically with respect to conventional repair, it

remains significant as defect densities become very high. This is undesirable due to stringent low-power

constraints in advanced technologies. To cope with this issue, in this chapter we propose and develop a new

word repair architecture enabling drastic power-dissipation reduction. These architectures require new

analytical expressions for evaluating their yield. However, the computational complexity of these

expressions is very high even if we exploit the iterative relations that we developed for the yield

computation of the repair schemes developed in chapters 1 and 2. To cope with this issue, dedicated yield

computation mathematics was developed in chapter 5 and was used in this chapter for evaluating the new

repair architecture.

4.1 PARTITIONING-BASED MEMORY REPAIR

In conventional word repair the addresses of faulty memory words are stored in the tag fields of a CAM

[2][4]. Then, at each read or write operation, the memory address is compared with all tag-fields of the

CAM. In case of hit, the operation is performed over the CAM, while, in case of miss, the operation is

performed over the memory. The same word-repair architecture is used in ECC-based repair, with the

difference that the CAM stores only the words comprising two or more faulty cells. In high defect densities,

this reduces dramatically the size of the CAM, and consequently the related area and power penalties.

However, as the CAM is power hungry (during each memory operation it has to compare the current

address against the addresses of all memory words stored in the tag fields of the CAM), for high defect

densities the power dissipation is still high. Thus, in this section we propose new repair architectures

avoiding comparing the memory address against all the tag fields that store faulty memory addresses.

4.1.1 Cache-Based Repair

To reduce the power dissipation we need to reduce the number of tag comparisons. This can be done by

partitioning the memory words into several sets corresponding to the possible combinations of a subset of

address bits. Thus, by selecting d address bits we partition the memory words into 2
d
 sets, each

 57

corresponding to one of the 2
d
 value combinations of these bits. Then, we can associate a CAM to each of

these sets, and use each of these CAMs to repair words belonging to the corresponding set of memory

words. As for each value of the d address bits the potential faulty memory words are in a given CAM, we

can decode these bits and select one of these CAMs at a time. Thus, comparisons are performed in one

CAM at a time, reducing the related power dissipation.

Figure 1. Cache-based repair architecture for low-power dissipation

Word 0

Word 1

Word T-1

Word T

Word T+1

Word 2T-1

Word N-T

Word N-T+1

Word N-1

Data 0
Data 1

Data K-1

Data R-1

Data K

Data K+1

Data 2K-1

Tag R-1

Tag K+1

Tag 2K-1

Tag 1

d + t address bits

d + t d

Memory to Repair Repair CACHE

t

Data BUS (m bits)

MUX

Data R-K+1

Data R-K

Tag R-K+1

Tag K-1

Tag K

Tag 0

Tag R-K

MB(0)

MB(1)

MB(V-1)

CB(0)

CB(1)

CB(V-1)

 58

We remark that the proposed partitioned-CAM scheme corresponds to a set associative cache. Thus, as

shown in figure 1, the proposed repair architecture uses a repair cache instead of a repair CAM. In this

figure, the memory under repair has n address bits addressing N words of m bits each. The n address bits are

partitioned into two sets of d and t bits (i.e. n = d + t). The set-associative cache has V = 2
d
 sets.

Conventional address decoding is used to select at each memory access a set of the cache, by decoding the

current value of the d address bits of the memory. Each cache set has K locations known also as ways (K-

ways set-associative cache). Thus, the cache has a total of VxK locations. So, the cache in figure 1 consists

in V physical blocks CB0, CB1, … CB(V-1), which implement the V sets. Each of these blocks comprises

K locations (the K-ways). Each location comprises a tag field, a data field and at least two flag bits (the

valid bit indicating if the location contains valid data, and the fault-free bit indicating if the CAM location is

fault-free) [19]. These bits are not shown in figure 1.

 When the d address bits take a given value, a memory word is selected according to the value of the

remaining t address bits. As the t address bits can take T=2
t
 values, there are T memory words associated to

each value of the d address bits. Thus, the d address bits create a virtual partition of the memory into V = 2
d

blocks MB(0), MB(1), … MB(V-1). Each of these blocks contains T memory words. Thus, faulty words

belonging to a virtual memory block (defined by a given value of the d address bits), will be repaired by the

K locations of the cache block selected by this value of the d address bits. Therefore, each virtual memory

block (e.g. MB(i)) can be viewed as a memory which has t address bits, comprises T words of m bits, and is

repaired by a CAM having K words (block CB(i)). That is, MB(0) is repaired by CB(0), MB(1) by CB(1),

… MB(V-1) by CB(V-1). Hence, we can consider that we have V memories of N/V words each, and each

of them is repaired by a CAM of K words.

 Therefore, test and diagnosis are performed as in CAM-based repair, with the specificity that the t

address bits of a faulty word are stored in the tag field of the cache set selected by the d bits of the faulty

address (while in CAM repair faulty addresses can be stored anywhere in the CAM).

Also, run-time operation is similar to CAM-based repair. That is, each read and write operation is

performed over both the memory and the cache. Furthermore, during read, the hit signal determines which

data are transferred to the data BUS. Thus, in figure 1, for hit = 0 the MUX transfers to the BUS the read

data coming from the memory, while for hit = 1 it transfers the read data coming from the cache.

 Concerning yield estimation, from the above discussion it is also obvious that to compute the yield of a

memory repaired by means of a set-associative cache, we can employ the expression computing the yield

for V memories repaired by using CAM repair.

 This discussion also highlights the weak point of cache-based repair. In CAM repair, any CAM word

can repair any faulty memory word, but in cache repair the words of each set can repair only memory words

belonging to the corresponding virtual memory block. Thus, a memory in which the number of faulty words

is lower than the total number of good locations of the cache, may not be repaired if a virtual memory block

MB(i) comprises more faulty words than the good locations of the cache set CB(i). On the other hand, in

CAM repair, if the CAM comprises more good locations than the faulty memory words, the repair will

succeed regardless to the distribution of the faulty words within the memory. Thus, cache-based repair

requires larger number of cache locations for achieving a given yield. This increase becomes higher if we

try to reduce the number of ways of each set of the repair cache (by reducing the size of the virtual-memory

blocks, and increasing their number as well as the number of sets of the cache), in order to reduce the power

dissipation of the repair cache. An architecture coping with this additional constraint is presented next.

4.1.2 Overflow Repair Architecture

As discussed previously, trying to reduce power by increasing the number of virtual memory blocks and

decreasing their size has unfavorable impact on the cache size. Indeed, decreasing the number of words of

each virtual memory decreases the population of the words repaired by each cache set. As population

 59

reduction increases the standard deviation of a statistical distribution, we will observe an increase of the

deviation of the number of faulty memory words affecting the virtual memory blocks. This increase,

combined with the increase of the number of virtual memory blocks, will increase the probability that for

some block the number of faulty words is within the right-hand tail of the distribution curve. In other words,

the probability that some virtual memory block contains a number of faulty words that is much larger than

the mean value of faulty words affecting a virtual memory block is increased. Then, as the memory is

repaired only if all virtual blocks are repaired, we will need for each cache set a number of locations much

larger than the mean value of memory words affecting a virtual block. As a result, trying to reduce the

power dissipation by increasing the number of cache sets may adversely impact the total number of cache

locations, and therefore area and at certain extend power.

Because this issue occurs when the number of faulty memory words of a virtual block is in the tail of

their distribution, it will affect a small number of sets. Thus, the total number of unrepaired memory words

will be moderate. Hence, we can cope with this issue by adding an extra CAM of moderate size to repair

these words. Therefore, we extend the architecture proposed in section 4.1.1 by adding a CAM referred as

Overflow CAM in figure 2. This CAM will be used in the following manner.

During test and diagnosis a faulty memory address is allocated to the Overflow CAM only when the

cache set that could repair this word is saturated.

At runtime, each read and write operation is performed in parallel over the memory, the cache and the

Overflow CAM. Furthermore, as shown in figure 2, the MUX and its control logic driven by the hit signals

of the cache and of the Overflow CAM, determine which read data are transferred to the data BUS. When

the hit signal of the Overflow CAM is high, the MUX transfers to the BUS the read data coming from the

Overflow CAM. When the hit signal of the Overflow CAM is low and the hit signal of the cache is high, the

MUX transfers to the BUS the read data coming from the cache. When both hit signals are low, the MUX

transfers to the BUS the read data coming from the memory.

 60

Figure 2. Overflow CAM repair architecture

The Overflow CAM can repair memory words left unrepaired by the cache regardless to their position

within the memory. However, the CAM is power hungry, as it compares the memory address of the current

read or write operation against all tags stored in the CAM. Thus, we have interest to maintain low the

number of these comparisons. For doing so, we can replace the Overflow CAM by an Overflow Set-

Associative Cache. To avoid confusing the Overflow Set-Associative Cache with the set-associative cache

of figure 2, let us call the latter as CACHE 1 and the former as CACHE 2. The organization and operation

of the Overflow Set-Associative Cache (CACHE 2) is quite similar to the set-associative cache (CACHE 1)

Memory to Repair Repair CACHE

Data 0

Overflow

CAM

Data Q-1 Tag Q-1

Data 1

Tag 0

Data BUS (m bits)

MUX

t

hit t+d

hit

CB(V-1)

Tag R-K+1 Data R-

K+1

Tag R-1 Data R-1

Tag R-K Data R-K

CB(0)

Tag 1 Data 1

Tag K-1 Data K-1

Tag 0 Data 0

CB(1)

Tag K+1 Data K+1

Tag 2K-1 Data 2K-1

Tag K Data K

d + t address bits

d + t d

MB(1)

MB(V-1)

Word N-T

Word N-T+1

Word N-1

Word T
Word T+1

Word 2T-1

MB(0)

Word 0

Word 1

Word T-1

Tag 1

 61

of figure 2. One difference with respect to CACHE 1 is that, similarly to the Overflow CAM, during test

and diagnosis a faulty word is stored in CACHE 2 only in case of saturation of the set of CACHE 1 in

which the faulty word could be stored. Also, the hit signal of CACHE 2 is used in the similar manner as the

hit signal of the Overflow CAM.

4.2 YIELD COMPUTATION

 In our experiments we will have to compute the yield for a set of memories. This is because we may

want to consider systems comprising several memories, but also because, in the partitioning-based memory

repair architectures proposed in the previous section, the yield computation for a single memory will be

done by considering that it is composed of several smaller memories. The yield of system of M memories is,

YSYS = Y1Y2 … YM with YSYS = Y
M

 when the M memories are identical.

To evaluate all architectures discussed so far, we need to dispose yield computation approaches for two

architectures:

- The CAM-based repair architecture. This will also allow computing the yield for cache-based repair.

Indeed, in this case we can consider that we have a system of M memories, where M is the number of

virtual memory blocks. Thus, we can compute the yield Y for each virtual memory block by considering it

as a memory repaired by a CAM having a number of locations equal to the number K of locations of each

set of the set-associative cache. Then, the global yield of the memory will be given by YMEM = Y
M

.

- The Overflow CAM repair architecture. This will also allow computing the yield for the repair architecture

using the Overflow Set-Associative Cache (CACHE 2). Indeed, let N be the number of words of the

memory under repair, V1 and K1 be respectively the numbers of sets and of ways of CACHE 1, and V2

and K2 be respectively the number of sets and of ways of the Overflow Set-Associative Cache (CACHE

2). Then, the yield computation for this repair architecture can be done by considering that we have a

system of V2 memories such that: each of the V2 memories comprises N/V2 memory words, and is

repaired by means of a set-associative cache having V1/V2 sets of K1 ways each, and an Overflow CAM

of K2 locations. Thus, we can use the yield computation approach for the Overflow CAM repair

architecture to compute the yield Y of each of the V2 memories. Then, the yield of the memory will be

given by YMEM = Y
V2

.

4.2.1 Yield Computation for Overflow CAM Repair

The yield for CAM-based repair can be computed by means of the following expression used in the yield

evaluations of chapters 1 and 2 and derived in chapter 5, where NWM and NWC are respectively the number

of memory words and the number of CAM words; and PWMG and PWCG are respectively the probability of a

memory word to be good and the probability of a CAM location to be good.

(1)

As we have seen earlier, this expression can also be used to compute the yield of the set-associative cache

repair architecture.

To compute the yield of the Overflow CAM repair architecture we need to develop a new analytical

approach. Then, as discussed earlier, the same approach can be used to compute the yield for the Overflow

Set-Associative Cache repair architecture. Thus, bellow we shortly discuss the yield computation for the

Overflow CAM Repair architecture (its detailed derivation is presented in chapter 5).

Let NS be the number of sets (Set(1), Set(2), … Set(NS)) of the set-associative cache. As we have seen in

section 4.1, the memory is virtually partitioned into NS memory blocks MB(1), MB(2), … MB(NS) repaired

 62

respectively by Set(1), Set(2), … Set(NS). Let NWS be the number of locations of each set of the associative-

cache (i.e. the number of ways); NWB be the number of words of each virtual memory block; Nd the number

of data bits of each memory word (which is also the number of bits of the data field of the set-associative

cache and of the Overflow CAM). Let Nt1 be the number of bits of the tag field of the set-associative cache;

Nt2 be the number of bits of the tag field of the Overflow CAM; and Nf be the number of flag bits in each

location of the set-associative cache and of the Overflow CAM.

As we have seen earlier, in ECC-based repair, the probability for a word of the memory to be good (i.e. to

contain 0 or 1 faulty cells) is:



PWMG  (1Pf)Nd Nd(1Pf)Nd1Pf

Also, if the area of the tag cell is q times larger than the area of the SRAM cell and the area of the flag cell

is r times larger than the area of the SRAM cell, then, the probability for a location of the set-associative

cache to be good is:

The probability for a location of the Overflow CAM to be good is:

The probability that a set of the set-associative cache repairs all the faulty words in the corresponding block

of the memory (i.e. 0 words are left unrepaired) is:

(2)

The probability that a set of the set-associative cache leaves unrepaired exactly k faulty words in the

corresponding block of the memory is:

(3)

Let k(1), k(2), … k(NS) be the number of words of the NS virtual memory blocks MB(1), MB(2), …

MB(NS) that are left unrepaired respectively by sets Set(1), Set(2), … Set(NS) of the set-associative Cache.

The probability that k(1) words in MB1, k(2) words in MB2, … and k(NS) words in MBNS are unrepaired is

equal to: Pk(1)UFPk(2)UF…Pk(Ns)UF, where the values of the probabilities Pk(i)UF, are computed by the

expression (2) for k(i) = 0 and by expression (3) for k(i) > 0.

In order to repair these faults, the Overflow CAM must dispose at least Q = k(1) + k(2) + … k(NS) good

words.

Let NWO be the number of words of the Overflow CAM. The probability that the Overflow CAM has at

least Q fault-free words is:

 (4)

where is the probability for a location of

the Overflow CAM to be good, as determined earlier.
Then, the probability that the memory is repaired when k(1) words in MB1, k(2) words in MB2, … k(NS)

words in MBNS are left unrepaired by the set associative cache:



PWSG  (1Pf)(qNt1rNf)((1Pf)Nd Nd(1Pf)Nd1Pf).



PWOG  (1Pf)(qNt2rNf)((1Pf)Nd Nd(1Pf)Nd1Pf).



PWOG  (1Pf)(2.8Nt22Nf)((1Pf)Nd Nd(1Pf)Nd1Pf)



PQCO
NWO!PWOG

(Nwou)

(NWOu)!u!
(1PWOG)u

u0

N
WO

Q



 63

PRk(1),k(2),…k(Ns) = PQCOPk(1)UFPk(2)UF…Pk(Ns)UF (5)

where k(1) + k(2) + … k(NS) = Q, 0 ≤ k(i)  i  {0, 1, … NS}, and PQCO is computed from (4).

For Q = k(1) + k(2) + … k(NS) > NWO we have PQCO = 0. Thus, we only have to consider the cases where

Q = k(1) + k(2) + … k(NS)  NWO. Therefore, to compute the total probability for the memory to be

repaired, we have to sum the probabilities PRk(1),k(2),…k(Ns) for all possible value combinations of NS

positive integers k(1), k(2), … k(NS) having sum equal to Q, for all Q  NWO.

In number theory, the combinations of Ns positive integers having sum equal to Q are referred as the
compositions of Q into NS parts. The number of compositions of length NS of integer Q is known to be

equal to C’Ns(Q) = (Q+ NS-1)!/Q!(NS -1)! which will give huge numbers in many practical cases. For

instance, for NS = 64 and Q = 32, which will be required when we use a set associative cache having 64 sets

and 32 ways, we find C’Ns(Q) ≈ 1,9801165182011x10
25

, which is a huge number of compositions and

computing the corresponding probabilities cannot be done at reasonable computation time. So, we need a

more efficient approach. The solution to this complex problem, together with fast yield computation

algorithms for the Overflow CAM repair architecture is presented in chapter 5.

4.3 EVALUATIONS

In this section we evaluate the efficiency of the proposed architectures. First we use the analytical

computation approach shortly described in the previous section and developed in chapter 5, to determine the

sizes of the caches/CAM enabling significant reduction of the number of parallel comparisons. Then, we

use CACTI [34][56][57] to evaluate the area and power of each solution. The results are shown in tables 1

and 2.

In both tables, column 1 gives the defect densities (expressed as the probability of a memory cell to be

faulty). SOCs comprising a total of 9,75 Gbit SRAM capacity (i.e. a total of 250M words x 39 bits per word

corresponding to 32 data bits and 7 Hamming code bits) are considered. This memory capacity is distributed

over embedded memories 300 and 3000, as reported in column 2. In the results presented in tables 1 and 2,

the target yield for the total memory capacity is 90%.

Table 1 concerns conventional (i.e. non-ECC) repair.

Columns 3, 4, and 5 provide results for conventional repair using a CAM: column 3 presents the number of

CAM words required to reach the target yield (i.e. 90%), columns 4 and 5 give the area and the power

penalties.

Columns 6 to 11 provide results for the new repair architecture using the Overflow Set-Associative Cache

repair approach, which employs two caches (CACHE 1 and CACHE 2): columns 6 and 7 give the number

of sets and the number of ways of CACHE 1; columns 8 and 9 give the similar numbers for CACHE 2;

columns 10 and 11 give the area and power penalties.

We observe in table 1 that for conventional repair, the new repair architecture achieves drastic power

reduction at the expense of slight increase of the area penalty.

Table 1. Size, area, and power for non-ECC repair.

Pf
#Emb

Mem

Non-ECC Repair

CAM

Non-ECC Repair

CACHE-1 / CACHE-2

NCW %A %P NS1 NW1 NS2 NW2 %A %P

10-4
300 3466 1.32 185.3 64 63 2 39 1.879 22.73

3000 402 1.27 67.90 32 18 1 13 2.376 23.94

 64

3x

10-4

300 10285 3.93 532.9 128 99 2 30 4.548 33.23

3000 1121 3.46 177.9 64 24 2 20 6.251 42.33

10-3
300 35325 12.75 1629 512 85 64 32 15.20 65.16

3000 3693 13.49 581.5 128 39 2 27 15.19 70.33

Table 2 gives the similar results for ECC-based repair. In this table no results are reported for the new

architecture in the cases where a small CAM is required for the CAM-based repair architecture

(improvements are marginal in these cases).
Note that, the size of the run-time CAM used in all ECC-based repair approaches developped in chapters

2 and 3 is the same (in all cases the size of this CAM is determined in order to repair the memory words
containing two or more faulty cells). Thus, run-time power dissipation is the same for all of them. On the
other hand, the total area penalty is not the same, since the approaches proposed in chapter 3 use a diagnosis-
CAM and a runtime-CAM, while the approach proposed in chapter 2 uses only runtime CAM. As the present
paper targets the reduction of runtime power, tables 1 and 2 report the area and power penalties for the run-
time CAM/Caches, which is the same for all ECC-based repair schemes proposed in chapters 2 and 3.

We observe that, the new repair architecture (CACHE 1 / CACHE 2) achieves significant power reduction

in most cases, leading to low power penalty for high defect densities (Pf = 10-4 and Pf = 3x10-4), and

moderate power penalty (less than 10%) for very high defect densities (Pf = 10-3). In addition, a promising

technique presented in section 4.4, should enable further power reduction.

Table 2. Size, area, and power for ECC-based repair.

Pf
#Emb

Mem

ECC Repair

CAM

ECC Repair

CACHE-1 / CACHE-2

NCW %A %P NS1 NW1 NS2 NW2 %A %P

10-4
300 16 0.008 1.267 4 8 - - 1.201 0.017

3000 6 0.028 1.297 - - - - - -

3x

10-4

300 83 0.036 5.337 16 6 1 12 0.069 3.723

3000 17 0.078 3.676 - - - - - -

10-3
300 720 0.249 39.56 64 14 2 30 0.544 9.68

3000 98 0.344 17.56 16 8 1 10 0.646 9.93

Note finally that CACTI does not allow implementing each set of a K-way set-associative cache by means

of a CAM of K locations (CAM-tag architecture). Instead it uses K 1-way set associative cache blocks

(RAM-tag architecture). Search in such cache architectures requires selecting one location in each of these

K blocks, reading concurrently all of them (i.e. K locations) and comparing their tag fields with the

corresponding bits of the current address value. For highly associative CAMs (i.e. using large values of K),

this architecture is extremely power hungry [38]. Thus, in our evaluations, we used artifacts to divert

CACTI in order to estimate the area and power of the CAM-tag architectures for the set associative caches

used in our experiments. We are looking to estimate the area and power of a set-associative cache

comprising V sets of K-ways each, and implemented by employing CAM-tag architecture. This estimation

was done by using the following steps:

1. Use CACTI to evaluate the area and power of a CAM of K locations (implementing one set of the set

associative cache).

 65

2. Use CACTI to determine the number locations of a 1-way cache having the same number of data and tag

bits as the CAM in step 1, occupying the same area as this CAM, and having as closely as possible the

same form factor.

3. Use CACTI to implement a 1-way cache partitioned into V banks, with each bank being identical to the

1-way cache of step 2.

4. The searched area for the CAM-tag set-associative cache comprising V sets of K-ways is taken equal to

the area of the cache of step 3. This is because each bank used in the cache of step 3 was taken to have

the same area as each set of CAM-tag set-associative cache. In addition: the two caches have V banks of

equal size; use the same number of address bits for selecting one of these blocks; and have to route the

same number of tag and data bits to each of these blocks. Thus, the area for address-decoding and routing

will also be the same.

5. The searched power for the CAM-tag set-associative cache is obtained by subtracting from the power of

the cache of step 3 the power of the circuit of step 2 and adding the power of the CAM of step 1. This is

because, for similar reasons as in step 4, the power for address-decoding and routing of the CAM-tag set

associative cache is the same as for the cache of step 3, and the power of each set of the CAM-tag set-

associative cache is equal to the power of the CAM of step 1.

 Also, while the above approach is best suited for estimating the area and power of a CAM-tag set-

associative cache by means of CACTI, the obtained power estimations are still pessimistic due to various

implementation options used in CACTI [38]. Thus, using dedicated implementations for CAM-tag set-

associative cache architectures should allow in the future significant power reduction with respect to the

results presented in tables 1 and 2.

 Note finally that, due to the artifacts used for estimating the area and power of CAM-tag set-

associative caches by means of CACTI, and also because the number of sets is always a power of 2

(resulting in discontinuous choices in the number of sets), we cannot obtain smooth reduction of power

penalty. Thus, we may observe certain apparent anomalies concerning the evolution of the area and power

penalties for certain RAM sizes and defect densities. For instance, in table 2, for the case of Pf = 10-4 and

300 embedded memories, the new repair architecture reduces the power penalty from 1.267% to 0.017%;

while, for the case of Pf = 10-4 and 3000 embedded memories, no power reduction is obtained.

4.4 OVERFLOW CAM/CACHE CONDITIONAL SELECTION

As shown in the previous sections, the proposed partitioning-based repair architectures enable dramatic

reduction of power dissipation. Low power dissipation is however a stringent requirement in modern

technologies. Thus, additional power reduction is always welcome. In this section we present a promising

concept for additional power reduction, whose evaluation and validation was not yet realized due to time

constraints, but will represent in our future developments, one of the promising extensions of the presented

work.

In the Overflow CAM repair architecture of figure 2, in any memory operation d address bits select one set

of the set-associative cache over which the t bits of the target address are searched (where d+t = N@ are the

address bits of the memory). In addition the d+t bits of the target address are searched over the Overflow

CAM. Thus, the dynamic power dissipation of the repair circuitry has two main sources, the selected set of

the set-associative cache and the Overflow CAM. The Overflow CAM may contain any memory address.

Therefore, we are obliged to perform searches in the Overflow CAM during every memory operation.

However, with a careful distribution of the faulty memory addresses in the sets of the set-associative cache

and the Overflow CAM, we can restrict the space of addresses allocated to the Overflow CAM and use the

CAM selectively to reduce its power dissipation.

 66

This can be done by means of the “Rearrangement Process” described bellow, which swaps memory

addresses stored in the set-associative cache with memory addresses stored in the Overflow CAM, in a

manner that concentrates in the Overflow CAM the higher order addresses. By checking few address bits

this rearrangement allows disabling most of the time the Overflow CAM, reducing significantly its power

dissipation. A way for making this rearrangement is to use a sorting algorithm for organizing in ascending

order the addresses stored in sets of the set-associative cache and in the overflow CAM. However, sorting

algorithms are relatively complex in terms of: hardware (if they are implemented by dedicated hardware

rather than an existing processor core); execution time; and power dissipation. Thus, in the following we

propose a much simpler process (referred as “Rearrangement Process”), which creates a loose ordering of

the addresses in the set associative Cache and the Overflow CAM without affecting power reduction

efficiency, and requires simple hardware, short execution time, and low power dissipation.

“Rearrangement Process” employs a d-bits counter Cnt1 (where d is the number of address bits used for

selecting the sets of the set-associative cache); two binary counters Cnt3 and Cnt4 of size equal to

log2NWO; a k-bits shift-register SRk able to perform left shifts with a 0 entering its rightmost bit at each

shift, where the value of k depends on the memory size, the parameters of the partitioning-based repair

architecture, and the defect density, and in most practical situations will not exceed 7
13

; a register REG1 of

size equal to the size of the tag field of the overflow CAM, and a simple controller, which controls these

circuits, the FLC counters of the set-associative cache and the Overflow CAM (see section 3.1 about the

function of the FLC counter), and the operations of the set-associative cache and the Overflow CAM, in

order to execute the “Rearrangement Process”.

Below we describe the “Rearrangement Process”, where we consider that the d address bits used for set

selection (the set-selection bits) are the less significant address bits of the memory.

The rearrangement process tries to move in the Overflow CAM bad words having k 1’s in their k most

significant address bits, and if this does not succeed it tries for k-1 1’s in the k-1 most significant address

bits by entering a 0 on the rightmost bit of SRk, and so on.

Rearrangement Process

We set to 1 all bits of SRk, we reset Cnt1, and we go to the “Counting Part of the Rearrangement Process”.

Counting Part of the Rearrangement Process

We reset Cnt3 and Cnt4.

i. We access sequentially the locations of the Overflow CAM by incrementing its FLC counter, and we

read from each location the tag field and the flag bits.

ii. For each read CAM location in which flag1 is 0 (good CAM location) and flag2 is 0 (CAM

location occupied for storing a repaired memory word), we compare the d less significant tag

bits against the content of Cnt1, and we check if the k most significant tag bits have 1 in each

position SRk has 1.

iii. Each time the comparison against the contents of Cnt1 matches we increment counter Cnt3.

iv. Each time the comparison against the contents of Cnt1 matches and the check against SRk

succeeds, we increment counter Cnt4.

13

 The total number of bits of these counters and of the shift register will not exceed 24 in most practical applications,

representing a very low area cost.

 67

v. We use the d bits of Cnt1
14

 as set-address for selecting the corresponding set of the set-associative

cache.

vi. We access sequentially the locations of the set-associative cache by incrementing its FLC counter, and

we read from each location its tag field and flag bits.

vii. For each location in which flag1 is 0 and flag2 is 0, we check if the k most significant tag bits

have 1 in each position in which SRk has 1.

viii. Each time the check against SRk succeeds, we increment counter Cnt4.

ix. If at the end of this process the content of Cnt4 is lower than the content of Cnt3: we perform a left-

shift on SRk; and we re-execute the “Counting Part of the Rearrangement Process”.

x. When the content of Cnt4 is equal to or larger than the content of Cnt3, we go to the “Rearrangement

Part of the Rearrangement Process”.

Rearrangement Part of the Rearrangement Process

i. We access sequentially the locations of the Overflow CAM by incrementing the FLC counter of this

CAM, and we read from each location its tag field and flag bits.

ii. For each location in which flag1 is 0 and flag2 is 0 we check if the k most significant tag bits

have 1 in each position in which SRk has 1.

iii. If this check fails, we read the tag field of this location and we store it in register REG1.

iv. We use the d bits of Cnt1
15

 as address for selecting the corresponding set of the set-associative

cache.

v. We use the FLC counter of the set-associative cache to access sequentially the locations of this

set, and we read from each location its tag field and flag bits.

vi. For each location in which flag1 is 0 and flag2 is 0, we check if the k most significant tag

bits have 1 in each position in which SRk has 1.

vii. In the first location in which this check succeeds we read the tag field; we concatenate it

with the content of Cnt1 (placing this content on the right side); and we store this

concatenation in the tag field of the location of the Overflow CAM selected by the current

value of the FLC counter of this CAM;

viii. We store the (N@ – d) leftmost bits of REG1 in the tag field of the location of the set-

associative cache selected by the current value of the FLC counter of this cache, where

N@ is the number of address bits of the memory under repair.

ix. If the FLC counter of the overflow CAM is full, we increment Cnt1 and we go to the “Counting Part

of the Rearrangement Process”, to treat the next set of the set-associative cache.

x. The “Rearrangement Process” ends when we finish the treatment of the last set of the set-associative

cache (i.e. the one selected by the highest value of Cnt1, i.e. all bits of Cnt1 are equal to 1).

Let us now discuss the results of the above process.

Outcome of the “Rearrangement Process”

14

 plus the d2 bits of another counter Cnt2 in the case of the Overflow Set-Associative Cache repair architecture as described

later.
15

 Same comment as in footnote 2.

 68

Let us consider d bits and any value Vd of these bits, and the execution of “Rearrangement Process” for

Cnt1 = Vd. Then we find:

a. From the step iii of the “Counting Part of the Rearrangement Process” we find that at the end of this

process the state of Cnt3 is equal to the number of locations of the Overflow CAM storing memory

words having their d less significant bits equal to Vd.

b. From the steps iv and viii of the “Counting part of Rearrangement Process” we find that Cnt4 counts

the number of locations of the Overflow CAM and of the set-associative cache that store memory

addresses having their d less significant bits equal to Vd, and have in their k most significant bits a 1 in

each position in which the current state of SRk has 1.

c. From the steps ix and x of the “Counting part of Rearrangement Process”, we have that Cnt4 is equal to

or larger than the content of Cnt3.

d. From points a., b., and c., “The number of locations of the Overflow CAM and of the set-associative

cache that store memory words, which have their d less significant bits equal to Vd, and have in the k

most significant bits of their tag field a 1 in each position in which the current state of SRk has 1” is

equal to or larger than “the number of locations of the Overflow CAM storing memory words having

their d less significant bits equal to Vd”.

e. From the above relation, the execution of the “Rearrangement Part of the Rearrangement Process” for

each value to Vd of Cnt1, guaranties that, at the end of this execution, all memory addresses that are

stored in the Overflow CAM and have their d less significant bits equal to Vd, have also in their k most

significant bits a 1 in each position in which the current state of SRk has 1”.

f. Statement e. is valid for all possible values Vd of d bits.

g. The initial state of SRk is 111 … 11, and it is modified by means of left-shifts (step ix of the “Counting

Part of the Rearrangement Process”), which enter a 0 in the rightmost bit of SRk. Thus, any earlier state

of SRk has 1 in each position in which the final state of SRk has 1.

h. From points e., f., and g., we find that: all memory addresses stored in the Overflow CAM have in their

k most significant bits a 1 in each position in which the final state of SRk has 1.

From point h., we can use the final state of SRk to select the Overflow CAM by checking if the k most

significant bits of the address of the current memory operation have 1 in each position SRk has 1. Then, if

this check succeeds we select the Overflow CAM, and if it fails we do not select this CAM. Thus, if the

final state of SRk contains r 1s, the Overflow CAM will be selected once at every 2
r
 memory operations.

Thus, at the mean, its power dissipation will be divided by 2
r
.

This approach can also be used in the case of the Overflow Set-Associative Cache repair architecture.

Indeed, let N be the number of words of the memory under repair, V1 and K1 be respectively the numbers

of sets and of ways of CACHE 1, and V2 and K2 be respectively the number of sets and of ways of the

Overflow Set-Associative Cache (CACHE 2). Then, we can consider that we have V2 virtual memories

such that: each of these virtual memories comprises N/V2 memory words, and is repaired by means of a

virtual set-associative cache having V1/V2 sets of K1 ways each, and a virtual Overflow CAM of K2

locations (i.e. corresponding to a set of CACHE2). Thus, we can employ the approach described above, to

each of these V2 virtual memories repaired by a virtual set-associative cache and a virtual Overflow CAM,

with few modifications as described below.

 69

As we have two set-associative caches (CACHE 1 and CACHE 2), we use two groups of set-selection bits.

The one consists in the d1 leftmost bits of the memory address and is used to select the sets of CACHE1,

and the other consists in the d2 leftmost bits of the memory address and is used to select the sets of

CACHE2 (with d2 < d1 since CACHE1 has more sets than CACHE2). In correspondence with these bits,

the “Rearrangement Process” will use a d2-bits counter Cnt2 and a d-bits counter Cnt1 (with d = d1-d2).

The content of Cnt2 will be used for selecting the sets of CACHE2, while the concatenation of Cnt1 and Cnt

2 (with Cnt1 on the right of Cnt2), will be used for selecting the sets of CACHE1.

To perform the “Rearrangement” in the Overflow Set-Associative Cache repair architecture, Cnt1 will be

incremented to select successfully each set of CACHE2, and for each of these sets the “Rearrangement

Process” will be executed as described earlier, with only difference the use of the concatenation of Cnt1 and

Cnt2 for selecting the sets of CACHE1, as explained above and reported in the footnotes inserted in the

description of the “Rearrangement Process”.

At the end of the “Rearrangement Process”, for each of the V2 virtual memories and the virtual set-

associative cache and virtual Overflow CAM repairing it, we will dispose a SRk shifter for each virtual

Overflow CAM (i.e. for each set of CACHE2). Then, the content of each of these shifters will be used to

select the corresponding set of CACHE2. That is, each set of CACHE2 will be selected by decoding the d2

less significant address bits of the memory and by checking the compliance of the k most significant address

bits to the content of the corresponding SRk shifter, dividing by a significant factor the power dissipation of

CACHE 2. Note also that, as we dispose an individual SRk shifter for each set of CACHE2, we do not have

to use for each set of CACHE2 the disabling condition of the worst case set. Instead, we use for each set of

CACHE2 its optimal disabling condition, as determined by the “Rearrangement Process” in response to: the

number of faulty locations of this set of CACHE2 (virtual Overflow CAM); the number of faulty locations

of the corresponding virtual set-associative cache; and the distribution of the faulty memory words in the

address space of the corresponding virtual memory.

4.5 CONCLUSION

In the previous chapters we addressed the issue of the diagnosis CAM required in ECC-based repair. For

high defect densities, the proposed solutions enable reducing drastically area and power penalties with

respect to conventional repair. However, power penalty is still significant under the stringent requirements

for low power in advanced technologies. Thus, to achieve further power reduction, in this chapter we

propose new repair architectures using set-associative caches at multiple levels, which allow significant

additional power reduction. At the same time, yield estimation is becoming complex due to the introduction

of multiple repair-levels. Thus, in this chapter are also developed new yield estimation mathematics and

related algorithms to handle these cases. The evaluation of the new architectures by using these algorithms,

as well as the CACTI framework, shows that they can be advantageously combined with the developments

of chapters 1, 2, 3, and 4, to achieve both low area and low power penalties even in the case of very high

defect densities.

 70

CHAPTER 5

Yield Computation Mathematics for Memory Repair Architectures

To evaluate the memory repair approaches proposed in chapters 1, 2, 3, and 4, we need to determine the

size of the CAMs/Caches required for achieving a target yield for ECC-based repair and non-ECC repair

implemented by means of the proposed architectures. The analytical computation of the yield becomes

increasingly complex for multiple reasons:

- In low defect densities, the faults affecting the repair CAM have negligible impact on the yield. But

in high defect densities this impact is significant, requiring more complex yield computation.

- In high defect densities the size of the repair CAM becomes very high, increasing drastically the

number of operations required to compute the yield.

- The introduction of sophisticated memory repair architectures, as the ones presented in chapter 4,

requires very complex yield computation expressions.

Due to the above issues, we need to develop yield computation mathematics, enabling computing the yield

in reasonable time.

Note also that, the fault injection approach is an alternative to the analytical yield computation. However,

the computation time of this approach too becomes very high due to the following reasons:

- As in advanced technologies we have to consider very large memories, the duration of each fault

injection experiment also increases.

- In sophisticated repair architectures, as the set-associative cache architectures proposed in chapter 4

for reducing power dissipation, we need to reduce the size of each cache set, and thus the size of the

corresponding virtual memory. Decreasing the number of words of each virtual memory, decreases

the population of the words repaired by each cache set. As population reduction increases the

standard deviation of a statistical distribution, we will observe an increase of the deviation of the

number of faulty memory words affecting the virtual memory blocks. Thus, to obtain statistical

significance we need to perform much larger numbers of fault injections in comparison with the

classical repair architectures.

In addition, the analytical computation approach is of higher precision as it guaranties exact yield

computation. Thus, in this chapter we investigate the mathematics of yield computation, in order to achieve

exact yield computation in very short time.

5.1 FAST YIELD COMPUTATION FOR CAM-BASED REPAIR, AND SET-ASSOCIATIVE CACHE REPAIR

Among the repair architectures developed in the previous chapters, the CAM-based repair architecture

requires the simpler analytical expressions for yield computation. In addition these expressions can be used

for computing the yield for the set-associative cache repair architecture. Indeed, in this case we can

consider that we have a system of M memories, where M is the number of virtual memory blocks repaired

 71

by the corresponding sets of the set-associative cache. Thus, we can compute the yield Y for each virtual

memory block by considering it as a memory repaired by a CAM having a number of locations equal to the

number K of locations of each set of the set-associative cache. Then, the global yield of the memory will

be given by YMEM = Y
M

.

We can compute the yield for conventional repair and ECC-based repair in the following manner.

Let Pf be the probability of a memory cell to be faulty, and Pwg be the probability that a memory word

does not need to be repaired (good word). In conventional repair, Pwg is equal to the probability that the

memory word is fault-free and can be computed as Pwg = (1 – Pf)
N

, where N is the number of bits of the

memory word. In ECC-based repair Pwg will give the probability that the memory word is fault-free or it

contains one faulty cell. Thus, Pwg can be computed as Pwg = (1 – Pf)
N

 + N(1 – Pf)
N-1

Pf.

A CAM location comprises a tag field, a data field (corresponding to a memory word), and few flag

cells. The data field, the tag field, and the flag cells are implemented with SRAM cells, but the tag field

also integrates a comparator. Let the tag-cell area be r times larger than the SRAM cell and the flag cell

area be q times larger than the SRAM cell. Then, the probability that the tag field does not contain faulty

cells is equal to (1 – Pf)
rN@

, where N@ is the number of cells of the tag field, and the probability that the

flag cells are fault-free is equal to (1 – Pf)
qNf

, where Nf is the number of flag cells. Most authors consider

the value of r and q to be about 2, and this is also the case in the CACTI code. Thus we consider this value

in our computations.

Let Pwcg be the probability that a CAM location is good for repairing a faulty memory word. In

conventional repair, Pwcg is the probability that the CAM location is fault-free. Thus we have Pwcg = (1 –

Pf)
rN@ +qNf+N

. In ECC-based repair, Pwcg is the probability that the tag field and the flag bits are fault free,

and the data field is fault-free or it contains one faulty cell. Thus we have Pwcg = (1 – Pf)
rN@+qNf

((1 – Pf)
N

+ N(1 – Pf)
N-1

Pf).

Let Nw be the number of words of the memory and Nwc be the number of words of the repair CAM. Then,

considering uniform fault distribution we find easily that the sum



Nwc!Pwcg
Nwcr

(Nwc  r)!r!
(1Pwcg)r

r0

Nwct

 gives

the probability that there are at least t good CAM locations. Then, the expression



Nw!Pwg
(Nw t)

(Nw  t)!t!
(1Pwg)t

Nwc!Pwcg
Nwcr

(Nwc  r)!r!
(1Pwcg)r

r0

Nwct

 gives the probability that there are t memory words

requiring repair and at least t good CAM locations (i.e. the probability that the memory contains t faulty

words and is repaired). Then, as the number of faulty memory words that can be repaired cannot exceed the

number Nwc of the CAM words, the memory yield after repair is obtained by summing this expression

from t=0 to t=Nwc, resulting in the expression:



Y 
Nw!Pwg

(Nw t)

(Nw  t)! t!
(1 Pwg)t

Nwc!Pwcg

Nwcr

(Nwc  r)!r!
(1 Pwcg)r

r0

Nwct
















t0

Nwc

 (1)

Expression 1 is valid for both conventional repair and ECC-based repair, provided that the probabilities of

good memory word (Pwc) and good CAM word (Pwcg) are computed as discussed earlier for the

conventional repair and for the ECC-based repair.

To evaluate the computation complexity of expression (1) we need to determine the number of operations

required for its computation. To determine this number we consider that, the factorials in the nominator and

the denominator in the two fractions of expression (1) are simplified by eliminating the one factorial in the

denominator as well as all the terms of this factorial from the factorial in the nominator. The optimal

manner to simplify these factorials is to eliminate from the denominator the factorial (Nw –t)!, if (Nw –t) ≥

t, or the factorial t! otherwise, and do the similar for (Nwc –r)! and t!. Also, let k be the number of terms

 72

(without considering the term 1) of the factorial left in the denominator. In the computations we can either

perform k-1 multiplications to compute the product of these terms and then divide the value of the

nominator by the value of this product (requiring k-1 multiplications and 1 division); or divide successively

the value of the nominator by each of these terms (requiring k divisions). Next we use the former manner as

it minimizes the number of divisions.

Derivation of the number of multiplications:

The number of multiplications required for the term



C t 
Nw!Pwg

(Nw t)

(Nw  t)!t!
(1Pwg)t

 is (t-1) +(Nw-1) +

(t-2) + 1 = (Nw-3) +2t for all values of t except for t=0 for which we should add 2, and for t = 1 for which

we should add 1. Thus, summing them for t= 0 to t = Nwc gives (Nwc +1)(Nw – 3) + 2(0 + 1 + 2 + …

Nwc) + 2 + 1 (where +2 and + 1 are the corrections for t = 0 and t = 1. Thus we obtain (Nw – 3)(Nwc +1) +

Nwc(Nwc +1) + 3 multiplications.

The number of multiplications required for the term



Br 
Nwc!Pwcg

Nwcr

(Nwc  r)!r!
(1Pwcg)r

 is (r-1) +(Nwc-1) +

(r-2) + 1 = (Nwc-3) +2r for all values of r except for r=0 for which we should add 2 and for r = 1 for

which we should add 1, as well for the case r = Nwc (which can occur only once – when t = 0) for

which we should subtract 1 from the final result. Also, when t = Nwc, r takes only the value 0. Thus,

we have to subtract 1 from the final result, to compensate the + 1 added for the case r=1, which does

not occur when t = Nwc.
Thus, summing (Nwc-3) +2r for r= 0 to r = Nwc-t gives (Nwc –t +1)(Nwc – 3) + 2(0 + 1 + 2 + … + Nwc -

t) + 2 + 1 (where +2 and + 1 are the corrections for t = 0 and t = 1. Thus we obtain (Nwc -t +1)(Nwc – 3) +

(Nwc -t)(Nwc -t +1) + 3 = (Nwc +1)(2Nwc – 3) - t(3Nwc – 2) +t
2
 + 3 multiplications, where the +3 is for

the corrections of r=0 and r = 1. Then, summing for t = 0 to t = Nwc and subtracting 2 to compensate

for the cases r = Nwc, and t = Nwc for which r=1 does not occur, we obtain (Nwc +1)
2
(2Nwc – 3) -

(3Nwc – 2)Nwc(Nwc +1)/2 + Nwc(Nwc +1)(2Nwc +1)/6 + 3(Nwc +1) – 2.

Summing the multiplications required for the terms Ct and Br, plus Nwc + 1 times the multiplication of Ct

by



Br

r 0

Nwc  t

 gives: (Nw – 3)(Nwc +1) + Nwc(Nwc +1) + 3 + (Nwc +1)
2
(2Nwc – 3) - (3Nwc – 2)Nwc(Nwc

+1)/2 + Nwc(Nwc +1)(2Nwc +1)/6 + 3(Nwc +1) – 2 + (Nwc + 1) = Nw(Nwc +1) + (Nwc
2
 – 1)(5Nwc

+12)/6 +1 multiplications.

Derivation of the number of divisions:

Each term Ct requires one division, giving Nwc + 1 divisions for all terms Ct (i.e. for t = 0 to t = Nwc).

Each term Br requires 1 division. Thus, the sum



Br

r 0

Nwc  t

 requires Nwc + 1 – t divisions. Then, summing

Nwc + 1 – t for t = 0 to t = Nwc, to take into account the external sum, gives (Nwc + 1)(Nwc +1) –

Nwc(Nwc +1)/2. Adding to this number Nwc + 1 (the divisions for all terms Ct), we find a total number of

divisions equal to (Nwc + 1)(Nwc + 4)/2.

Derivation of the number of Additions:

 73

Nwc – t additions are required for summing the Nwc – t + 1 terms Br of the internal sum



Br

r 0

Nwc  t

 of

expression 1. From the external sum



t0

Nwc

 of expression 1 there are Nwc + 1 internal sums (from t = 0 to t =

Nwc). Thus, summing Nwc – t + 1 from t = 0 to t = Nwc gives Nwc(Nwc +1) - Nwc(Nwc +1)/2 additions.

Adding the Nwc additions for summing the Nwc + 1 terms of the global sum



t0

Nwc

 gives a total of

NWC(NWC +3)/2 additions.

The outcome is that the computation of expression (1) requires: Nw(Nwc + 1) + (Nwc
2
 - 1)(5Nwc +

12)/6 - 1 multiplications; (Nwc + 1)(Nwc + 4)/2 divisions; and NWC(NWC + 3)/2 additions.

This complexity is much higher with respect to the yield computation for low defect densities,

where faults affecting the CAM have insignificant impact to the yield and are ignored, resulting in much

simpler yield computation expression:



Y 
Nw!Pwg

(Nw t)

(Nw  t)! t!
(1 Pwg)t

t0

Nwc



Also, as we deal with future very advanced technologies allowing producing very complex chips, we

should be able to deal with very large memories. Moreover, as we deal with high defect densities we should

be able to deal with large repair CAMs. In this context, the above numbers of operations are too large. For

instance, for conventional repair of a 10 Gbit memory employing 32-bits words and affected by a 10
-3

 fault

density, we have Nw = 335544320, and Nwc ≈ 350000. Thus, computing the yield by means of (1) requires

3.58x10
16

 multiplications, plus 6.12x10
10

 divisions and the similar number of additions. Furthermore, these

operations have to manipulate very large numbers such as Nw!/(Nw-t)!t!, as well as very small numbers

such as Pwcg
Nw

, requiring high precision arithmetic. Thus, computing the yield by means of expression (1)

becomes computationally intractable.

To accelerate the computation of expression (1) we discovered certain recursive relations described

bellow, which, to the best of our knowledge are unknown in the literature.

Setting



At 
NW!P

Wg
(Nw t)

(NW  t)!t!
(1PWg)t

,



Br 
NWC!P

WCg
Nwcr

(NWC  r)!r!
(1PWCg)r

, we can write expression (1)

as:



Y  At Br

r0

Nwct
















t0

Nwc


 (2)

We find that At and Br can be written recursively as:



A0  PWg
Nw

,



At1 
(NW  t)(1P

Wg)

(t 1)PWg

At (3)



B0  PWCg
Nwc

,



Br1 
(NWC  r)(1P

WCg)

(r 1)PWCg

Br (4)

 74

We also set



Bt
'  Br

r0

Nwc t

 (5)

and we find that B’t and can be written recursively as:



B0
'  Br

r0

Nwc

 ,



Bt1
' Bt

' BNWCt (6)

Based on these relations the computation is done in the following manner:

- The terms B0, B1, B2, …, BNwc are used intensively in the computations. Thus, to avoid recomputing

them multiple times we compute them once for ever by means of relations (4), and we store them in a

lookup table. The creation of this table requires 4NWC -1 multiplications and NWC divisions.

- For each value of t we use the relations (6) and the stored values of B0, B1, B2, …, BNwc to compute

each term B’t: The term B’0 requires NWC additions and each other term B’t one subtraction, resulting in

a total of NWC additions and NWC subtractions for computing all the terms B’t.

- For each value of t we use the relations (3) to compute each term At. A0 requires NW -1 multiplications

and each other term At three multiplications and one division, resulting in a total of NW -1 + 3NWC

multiplications and NWC divisions for computing all the terms At.

- We use relations (2), (5) and the values of At and B’t to compute the yield. This will require NWC + 1

multiplications and NWC additions.

 Note that the values of At and B’t do not need to be computed in advance and stored in look-up

tables as they are used only once and we employing them in the good order, i.e. from t = 0 to t = NWC , as

required in the recursive relations (3) and (6).

Thanks to the derived recursive relations the computation of the yield can be done in linear complexity with

respect to the memory size: NW + 8NWC - 1 multiplications, 2NWC divisions, 2NWC additions, and NWC

subtractions. This is dramatically shorter with respect to the number of operations required for computing

expression (1) in direct manner. For instance, for the above example of the 10 Gbit memory employing 32-

bits words and affected by a 10
-3

 fault density, we can compute the yield by means of 3.36x10
8

multiplications, 7x10
5
 divisions, 7x10

5
 additions, 3.5x10

5
 subtractions, resulting in a reduction of 8 orders

of magnitude. This reduction allows computing the yield in short time even for very large memories and

high fault densities.

The recursive yield computation approach for CAM-based repair was implemented in C++, and was

used in the previous chapters for evaluating the proposed repair architectures.

5.2 FAST YIELD COMPUTATION FOR THE SEPARATE-CAMS ARCHITECTURE

In this section we consider the yield computation for the architecture using two separate CAMs, a

diagnosis-CAM used during the test and diagnosis phase and a CAM used at run-time (the runtime-CAM).

In this scheme the memory is repaired only if the diagnosis-CAM is able to diagnose the memory and the

runtime CAM is able to repair all memory words requiring repair (bad memory words). Thus, to compute

the yield in this case we have to compute the joint probability that the diagnosis-CAM is successful and the

CAM is repaired.

From chapter 3 proposition 2, for the diagnosis process to finish successfully the diagnosis-CAM must

contain at least as many good locations as the number of memory words that need to be repaired. The

probability of this event is given by the expression



NWDC!P
WDCg
NwDc r

(NWDC  r)!r!
(1PWDCg)r

r0

NwDc t

 (7)

 75

On the other hand, for the repair to be successful, the runtime-CAM must contain at least as many good

locations as the number of memory words that need to be repaired. As we have seen earlier, the expression



NW!P
Wg

(Nw t)

(NW  t)!t!
(1PWg)t

NWC!P
WCg
Nwcr

(NWC  r)!r!
(1PWCg)r

r0

Nwct

 (8)

gives the probability that the memory contains t words requiring repair and the CAM contains at least t

good locations (i.e. the probability that the memory contains t words requiring repair and it is repaired).

Then, our joint probability is given by multiplying expressions (8) and (7) and taking their sum from t = 0

to t = Nwc, resulting in expression (1). as the number of memory words that can be repaired cannot exceed

the number NWC of the CAM words, the memory yield after repair is obtained by summing expression (8)

from t = 0 to t = Nwc, resulting in the following expression:



Y 
NW!PWg

(Nw t)

(NW  t)!t!
(1PWg)t

NWC!PWCg
Nwcr

(NWC  r)!r!
(1PWCg)r

NWDC!PWDCg
NwDc r

(NWDC  r)!r!
(1PWDCg)r

r0

NwDc t


r0

Nwct
















t0

Nwc

 (9)

Note that, as the number NWDC of the locations of the diagnosis-CAM is larger than NWC, the memory can

be diagnosed successfully even if it contains more than t = NWC bad words. But in expression (9) the

external sum is taken until the value t = NWC. Hence, expression (9) does not consider the cases of

successful diagnosis in which the memory contains more than NWC bad words. However this is correct as:

on the one hand expression (9) gives the joint probability for the memory to be repaired successfully and to

be diagnosed successfully, and on the other hand if the memory contains more than NWC bad words, this

joint probability is equal to 0 even though the memory can be diagnosed successfully (because the

probability that the memory is repaired becomes 0, making 0 the joint probability).

We find that the number of operations required computing the yield by means of (9) is:

NWDC(NWC +1)(NWC +2)/2 + NW(NWC +1) + (NWC +1)(7NWC
2
 + 2NWC - 6)/6 – 3 multiplications;

(NWC +1)(NWC +3) divisions; and NWC(NWC +2) additions. Thus the number of operations increases

exponentially with the memory and the CAM sizes. In addition, we will have to deal with large values of

NW (as we have to deal with future very advanced technologies allowing producing very complex chips,

which will include very large memories), as well as large values of NWDC and NWC (due to the high defect

densities), leading to huge numbers of operations. Furthermore, these operations have to manipulate very

large numbers such as Nw!/(Nw-t)!t!, as well as very small numbers such as Pwcg
Nw

, requiring high

precision arithmetic. Thus, computing the yield by means of expression (1) becomes computationally

intractable. To accelerate these computations we discovered certain recursive relations described below,

which, to the best of our knowledge are unknown in the literature. Expression (9) can be written as:



Y  At Br C r

r0

NwDc t


r0

Nwct
















t0

Nwc

 (10)

where:



At 
NW!P

Wg
(Nw t)

(NW  t)!t!
(1PWg)t

,



Br 
NWC!P

WCg
Nwcr

(NWC  r)!r!
(1PWCg)r

,



C r 
NWDC!P

WDCg
NwDc r

(NWDC  r)!r!
(1PWDCg)r

We find that At, Br, and Cr can be written recursively as:



A0  PWg
Nw

,



At1 
(NW  t)(1P

Wg)

(t 1)PWg

At (11)



B0  PWCg
Nwc

,



Br1 
(NWC  r)(1P

WCg)

(r 1)PWCg

Br ,

 76



C0  PWDCg
NwDc

,



C r1 
(NWDC  r)(1P

WDCg)

(r 1)PWDCg

C r (12)

We also set



Bt
'  Br

r0

Nwc t

 , and



C t
'  C r

r0

NwDc  t

 (13) and we find that B’t and C’t can be written recursively as:



B0
'  Br

r0

Nwc

 ,



Bt1
' Bt

' BNWCt ,



C0
'  C r

r0

NWDC

 ,



Ct1
' Ct

' CNWDCt (14)

Based on these relations the computation is done in the following manner:

- From relations (12) we compute the terms B0, B1, B2, …, BNWC and C0, C1, C2, …, CNWDC we store them

in two lookup tables. This requires 4NWC + 4NWDC - 2 multiplications and NWC + NWDC divisions.

- For each value of t we use the relations (14) and the stored values of B0, B1, B2, …, BNWC and C0, C1, C2,

…, CNWDC to compute each of the terms B’t and C’t: The term B’0 requires NWC additions and each other

term B’t one subtraction, resulting in a total of NWC additions and NWC subtractions for computing all the

terms B’t. Similarly for the terms C’t we need a total of NWDC additions and NWDC subtractions for

computing all the terms B’t.

- For each value of t we use the relations (11) to compute each term At. A0 requires NW -1 multiplications

and each other term At three multiplications and one division, resulting in a total of NW -1 + 3 NWC

multiplications and NWC divisions for computing all the terms At.

- We use relations (10), (13) and the values of At, B’t, and C’t to compute the yield. This will require

2NWC + 2 multiplications and NWC additions.

Thus, the yield computation can be done in linear complexity with respect to the memory size: NW + 9NWC

+ 4NWDC - 1 multiplications, 2NWC + NWDC divisions, 2NWC + NWDC additions, and NWC + NWDC

subtractions. This is dramatically shorter with respect to the number of operations required for computing

expression (9) in direct manner, resulting in very fast yield computation.

Note however that, in the ECC-based repair approach using separate CAMs and iterative diagnosis,

employing a diagnosis-CAM slightly larger than the runtime-CAM will require very large numbers of

iterations, affecting test length adversely. Thus, we use diagnosis-CAMs several times larger than the

runtime CAM. From chapter 3 proposition 2, the diagnosis is guaranteed to be successful if the number of

good CAM locations is larger than the number of memory words affected by two or more faults. As the

diagnosis-CAM is much larger than the runtime-CAM (which has sufficient size for repairing all memory

words containing two or more faulty cells), the probability that the diagnosis-CAM comprises a number of

good locations, which is lower than the number of memory words containing two or more faulty cells, is

extremely low. Thus, the impact of the diagnosis-CAM on the yield should be extremely low. We have

verified this expectation by comparing the results obtained by expression (1) against the results obtained by

expression (9), and they are indeed very close. Thus, in the cases of practical interest for the present study

(i.e. using diagnosis CAM much larger than the repair CAM), expression (1) can also be used for

computing the yield of the separate CAMs architecture.

5.3 FAST YIELD COMPUTATION FOR THE OVERFLOW CAM ARCHITECTURE

In this section we derive the analytical expression computing the yield for the Overflow CAM repair

architecture, and we also develop mathematics and algorithms for its fast computation. Note also that this

expression can also be used for computing the yield for the Overflow Set-Associative Cache repair

architecture. Indeed, let N be the number of words of the memory under repair, V1 and K1 be respectively

the numbers of sets and of ways of CACHE 1, and V2 and K2 be respectively the number of sets and of

ways of the Overflow Set-Associative Cache (CACHE 2). Then, the yield computation for this repair

 77

architecture can be done by considering that we have a system of V2 memories such that: each of the V2

memories comprises N/V2 memory words, and is repaired by means of a set-associative cache having

V1/V2 sets of K1 ways each, and an Overflow CAM of K2 locations. Thus, we can use the yield

computation approach for the Overflow CAM repair architecture to compute the yield Y of each of the V2

memories. Then, the yield of the memory will be given by YMEM = Y
V2

.

Let NS be the number of sets (Set(1), Set(2), … Set(NS)) of the set-associative cache. As we have seen in

section 4.1, the memory is virtually partitioned into NS memory blocks MB(1), MB(2), … MB(NS) repaired

respectively by Set(1), Set(2), … Set(NS). Let NWS be the number of locations of each set of the

associative-cache (i.e. the number of ways); NWB be the number of words of each virtual memory block;

Nd the number of data bits of each memory word (which is also the number of bits of the data field of the

set-associative cache and of the Overflow CAM). Let Nt1 be the number of bits of the tag field of the set-

associative cache; Nt2 be the number of bits of the tag field of the Overflow CAM; and Nf be the number of

flag bits in each location of the set-associative cache and of the Overflow CAM.

As we have seen earlier, in ECC-based repair, the probability for a word of the memory to be good (i.e. to

contain 0 or 1 faulty cells) is:



PWMG  (1Pf)Nd Nd(1Pf)Nd1Pf

Also, if the area of the tag cell is r times larger than the area of the SRAM cell and the area of the flag cell

is q times larger than the area of the SRAM cell, then, the probability for a location of the set-associative

cache to be good is:

The probability for a location of the Overflow CAM to be good is:

The probability that a set of the set-associative cache repairs all the faulty words in the corresponding block

of the memory (i.e. 0 words are left unrepaired) is:

(2)

The probability that a set of the set-associative cache leaves unrepaired exactly k faulty words in the

corresponding block of the memory is:

(3)

Let = k(1), k(2), … k(NS) be the number of words of the NS virtual memory blocks MB(1), MB(2), …

MB(NS) that are left unrepaired respectively by the sets Set(1), Set(2), … Set(NS) of the set-associative

CAM.

The probability that k(1) words in MB1, k(2) words in MB2, … and k(NS) words in MBNS are unrepaired

is equal to: Pk(1)UFPk(2)UF…Pk(Ns)UF, where the values of the probabilities Pk(i)UF, are computed by the

expression (2) for k(i) = 0 and by expression (3) for k(i) > 0.

In order to repair these faults, the Overflow CAM must dispose at least Q = k(1) + k(2) + … k(NS) good

words.

Let NWO be the number of words of the Overflow CAM. The probability that the Overflow CAM has at

least Q fault-free words is:



PWSG  (1Pf)(rNt1qNf)((1Pf)Nd Nd(1Pf)Nd1Pf).



PWOG  (1Pf)(rNt 2qNf)((1Pf)Nd Nd(1Pf)Nd1Pf).

 78

 (4)

where is the probability for a location of

the Overflow CAM to be good, as determined earlier.
Then, the probability that the memory is repaired when k(1) words in MB1, k(2) words in MB2, … k(NS)

words in MBNS are unrepaired is:

PRk(1),k(2),…k(Ns) = PQCOPk(1)UFPk(2)UF…Pk(Ns)UF (5)

where k(1) + k(2) + … k(NS) = Q, 0 ≤ k(i)  i  {0, 1, … NS}, and PQCO is computed from (4).

For Q = k(1) + k(2) + … k(NS) > NWO we have PQCO = 0. Thus, we only have to consider the cases where

Q = k(1) + k(2) + … k(NS)  NWO. Therefore, to compute the total probability for the memory to be

repaired, we have to sum the probabilities PRk(1),k(2),…k(Ns) for all possible value combinations of NS

positive integers k(1), k(2), … k(NS) having sum equal to Q, for all Q such that 0  Q  NWO.

In number theory, the combinations of Ns positive integers having sum equal to Q are referred as the
compositions of Q into NS parts and is noted as [Q, NS], also referred as the compositions of length NS of

integer Q). In these compositions 0 is a significant addend (for example 4 + 0 and 0 + 4 are considered

distinct compositions of length 2 of integer 4). As an example, the compositions of length 4 of integer 3

are: 3 0 0 0; 2 1 0 0; 2 0 1 0; 2 0 0 1; 1 2 0 0; 1 1 1 0; 1 1 0 1; 1 0 2 0; 1 0 1 1; 1 0 0 2; 0 3 0 0; 0 2 1 0; 0 2 0

1; 0 1 2 0; 0 1 1 1; 0 1 0 2; 0 0 3 0; 0 0 2 1; 0 0 1 2; 0 0 0 3.

The number of compositions of length NS of integer Q is known to be equal to C’Ns(Q) = (Q+ NS-1)!/Q!(

NS -1)! which will give huge numbers in many practical cases. For instance, for NS = 64 and Q = 32, which

will be required if we use a set associative cache having 64 sets and 32 ways, we find C’Ns(Q) ≈

1,9801165182011x10
25

, which is a huge number of compositions and computing the corresponding

probabilities can not be done at reasonable computation time. So, we need to search for solutions

accelerating this computation.

We observe that the probability PRk(1),k(2),…k(Ns) = PQCOPk(1)UFPk(2)UF…Pk(Ns)UF does not change if we

permute the terms of the product Pk(1)UFPk(2)UF…Pk(Ns)UF. Thus, all permutations of a set of integer values

k(1), k(2), … k(NS) will result in the same value for probability PRk(1),k(2),…k(Ns). Therefore, we need to

consider only one of the permutations for each set k(1), k(2), … k(NS). The set of strictly positive integers

k(1), k(2), … k(NS) having sum equal to Q, in which permutations of the same set of integers are

considered only once, is known in number theory as the set of partitions of integer Q. As an illustrative

example, the set of the partitions of 6 is: 6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1,

2+1+1+1+1, and 1+1+1+1+1+1.

In number theory, the cardinal of this set (i.e. the number of partitions of a positive integer n) is known as

the partition function p(n). Leonard Euler’s pentagonal number theorem implies



p(n)  
r

(1)r1 p(n  r(3r 1/2)) (6)

where r takes all positive and negative integer values +1, -1, +2, -2, +3, -3, ... The first 14 terms of this

relation are p(n) = p(n-1) + p(n-2) – p(n-5) – p(n-7) + p(n-12) + p(n-15) – p(n-22) – p(n-26) + p(n-35) +

p(n-40) - p(n-51) - p(n-57) + p(n-70) + p(n -77) - …, where p(0) = 1, p(1) = 1, and p(q) = 0 for q negative.

For our experiments, the first 8 terms are sufficient. This is because we use set associative CACHEs with

up to 32 ways. Thus we have n = 32. Then, all terms except the first 8 ones are 0. For instance for n = 32

the 9
th

 term is p(32-35) = p(-3) = 0, and so for all terms of order higher than 8. If we use 64-ways set-

associative CACHE, the 12 first terms would be sufficient. Indeed the 13th term is p(64-70) = p(-6) = 0,

and so for all terms of order higher than 12.

By using the above expression for p(n) we can recursively compute its value for any n: starting from

p(0) = 1 and p(1) = 1 we compute p(2), then using the terms computed so far we compute and p(3), and so

on. For instance, for n = 32 we find p(32) = 8349, which is dramatically lower than the



PWOG  (1Pf)(rNt2qNf)((1Pf)Nd Nd(1Pf)Nd1Pf)



PQCO
NWO!PWOG

(Nwou)

(NWOu)!u!
(1PWOG)u

u0

N
WO

Q



 79

1,9801165182011x10
25

 compositions of length 64 of number 32. Thus, an algorithm based on the set of

partitions of each integer Q in the interval 0  Q  NWO, could accelerate dramatically the computation of

the yield for the Overflow CAM repair architecture. As no algorithm generating these partitions is known

in the literature, our first step was to develop such an algorithm. This algorithm generates a p(n)xn array

PR (where p(n) is computed by means of expression (6) as described above) containing the partitions of the

target integer n. To guide the creation of this algorithm we established the following rules:

1) The construction of a partition finishes when the sum of its elements is equal to n.

2) If in partition i-1 (the one generated at step i-1 of the algorithm), the element of position j+1 is larger

than 1, then, the jth element of partition i remains the same as the jth element of partition i-1.

3) If in partition i-1 the element of position j+1 is 0 or 1, then, the jth element of partition i is obtained by

subtracting 1 from the jth element of partition i-1.

4)

a) If element j-1 of partition i is produced by rule 3, then, element j will be selected to finish the

partition i (i.e. to make the sum of the elements of i to be equal to n, except if this selection

contradicts rule 5).

b) In the latter case, element j will take the value of element j-1, and element j+1 will be selected to

finish i, except if this selection contradicts rule 5, and so on.

5) The element in the position j of a partition cannot be larger than any lower order element of the same

partition.

Based on these rules the partition generation algorithm is created easily:

% Partitions generation

n = Q; PR = [];

PR = zeros(p(n), n); % PR is the array in which we store the partitions of n. PR will have

 % p(n) rows (p(n) = #partitions of n computed by means of expression

 % (6), as described earlier). Each row of PR will have n elements.

 % All partitions of n have less than n elements, except partition

 % 1,1,1, … 1, which has n elements. Thus, we add the required

 % number of 0’s at each partition to have always a total of n elements.

PR(1, 1) = n;

i = 1;

while PR(i, n) = 0 % By construction, the last partition generated by the algorithm is

 % 1,1,1 … 1, which is the only partition of n having PR(i, n)  0.

 i = i + 1;

 j = 1; r = 0;

 while r < n % Rule 1.

 if PR(i - 1, j + 1) > 1

 PR(i, j) = PR(i-1, j) ; % Rule 2.

 r = r + PR(i , j);

 j = j + 1;

 end

 else

 PR(i , j) = PR(i-1, j) - 1; % Rule 3.

 r = r + PR(i , j);

 j = j + 1;

 while r < n

 if n - r > PR(i , j-1)

 PR(i , j) = PR(i , j-1) ; % Rule 4.b.

 end

 else

 80

 PR(i , j) = n – r; % Rule 4.a.

 end

 r = r + PR(i , j);

 j = j + 1;

 end

 end

 end

end

We will use this algorithm to generate the p(Q)xQ array PR, where Q takes all integer values 0, 1, 2, …

NWO. However, if NWO > NS (where NWO and NS are respectively the number of locations of the Overflow

CAM and the number of sets of the set-associative cache), then certain values of Q will be larger than NS.

As the rows of PR have Q elements, they will provide partitions of Q into a number of integers larger than

NS, but we are looking for partitions into NS integers k(1), k(2), … k(NS). Thus, the above algorithm

generates the required arrays PR for each Q ≤ NS. On the other hand, for each Q > NS, we transform PR by

eliminating its rows, which contain more than NS non-zero elements. In the reduced array, we eliminate all

columns of order higher than NS (in which, by the way, all elements are equal to 0). As the algorithm

realizing this transformation is trivial, it is not presented it here.

Now we can use the array PR to compute the yield for the Overflow CAM repair architecture by

means of the following algorithm:

% Yield computation for the overflow CAM repair architecture

PR = []; CP = []; CP = zero’s(p(Q), Q+1); NP = []; PKQ =;

Yield = P0UFNs; %In fact this initialization is P0CO*P0UFNs, but from (3) we find P0CO= 1.

for Q = 1 : NWO

 PKQ = 0;

 Compute PQCO %From equation 3

 Generate array PR %By calling the subroutine “Partitions generation” described above

 for i = 1 : p(Q) % Generation of an array CP, which counts the number of occurrences in

 % the row i of array PR of each integer j, 0 ≤ j ≤ Q.

 for j = 1 : Q

 h= 1;

 while PR(i, h) > 0

 if PR(i, h) = = j

 CP(i, j) = CP(i, j) + 1;

 end

 h = h+1;

 end

 CP(i, Q+1) = NS – h +1; %CP(i, Q+1) computes the number of 0’s in row

 % i of PR.

 end

 end

 for i = 1 : p(Q) % Compute PRk(1),k(2),…k(Ns) (using equation (4)) for each row i

 % of PR; Use array CP to compute the number of permutations of the

 % partition stored in row i of PR
16

. Store the results in row i of NP.

16

 As each row of PR has NS elements, there are NS! possible permutations. But, as several of these elements may take the same

value (i.e. may have multiplicity higher than 1), several of the NS! permutations will be identical. To eliminate them, we divide

NS! by the factorial of this multiplicity.

 81

 NP(i, 1) = PQCO ; NP(i, 2) = factorial(NS);

 for j = 1 : NS

 k= PR(i, j);

 compute PkUF %from equation 1 if k = 0, from equation 2 otherwise.

 NP(i, 1) = NP(i, 1)PkUF;

 If j < = Q+1

 NP(i, 2) = NP(i, 2)/factorial(CP(i, j));

 end

 end

 PKQ = PKQ+NP(i, 1)NP(i, 2); %Compute the probability that Q memory words

 % are left unrepaired by the set-associative

 % CACHE and are repaired by the overflow CAM.

 end

 Yield = Yield + PKQ;

end

For easier understanding of this algorithm the following explanation can be useful.

The algorithm explained

i. For each integer Q of interest (i.e. in the interval 0  Q  NWO), we determine its set of partitions. For

instance, for Q = 3, we obtain the following partitions: {3}; {2, 1}; {1, 1, 1}. Each of these partitions

has less than Q elements, except the partition {1, 1, … 1}, which has Q elements. We add to each

partition the necessary number of 0’s in order to obtain a row of NS elements, and store it in a row of

an array PR of size p(Q) x NS. The algorithm realizing the set of partitions of an integer Q is presented

later.

ii. We create an array CP of size p(Q) x (Q+1). The element CP(i, j) of this array is computed by counting

the number of times the value Q – j +1 appears in row i of PR. For instance, if row i of PR is 2, 1, 0, 0,

then, 3 appears 0 times, 2 appears 1 time, 1 appears 1 time and 0 appears 2 times and the row i of CP

will be equal to 0, 1, 1, 2.

iii. For each row i of the array PR we compute the probability PRk(1),k(2),…k(Ns) =

Pk(1)UFPk(2)UF…Pk(Ns)UFPQCO by setting k(1) = PR(i, 1), k(2) = PR(i, 2), … k(NS) = PR(i, NS). We store

these probabilities to the first column of an array NP.

iv. We compute the number of permutations for row i of PR as (NS!)/(CP(i, 1)!(CP(i, 2)! … CP(i, Q+1)!).

Indeed, as each row of PR has NS elements, the number of permutations the elements of the row is NS!.

However several of these NS elements take the same value. This implies that several of the NS!

permutations are identical and have to be eliminated. Thus, we have to divide NS! by the factorial of

the number of times each value appears in the row i of PR. This number is given by the elements of the

ith row of array CP. For instance, in the example used in step ii, the row i of CP is 0, 1, 1, 2. Thus, the

number of permutations is 4!/(0!1!1!2!) = 12. We store the numbers of permutations in the second

column of array NP.

v. The probability that the memory is repaired when Q memory words are left unrepaired by the set

associative CACHE is computed as



NP i,1 
i1

p(K)

 NP i,2 .

vi. We repeat the above for all Q such that 0  Q  NWO. Each time we obtain a probability from step v.

We add the resulting NWO + 1 probability, to obtain the total probability to have the memory repaired

by the combination of the associative CACHE and of the overflow CAM.

 82

As discussed earlier the above algorithm reduces dramatically the number of products that have to be

computed in order to determine the yield, reducing dramatically the computation complexity. The last

sources of computation complexity are the time-consuming computations of the terms PQCO and Pk(1)UF,

Pk(2)UF, … Pk(Ns)UF, used in the product PRk(1),k(2),…k(Ns) = PQCOPk(1)UFPk(2)UF…Pk(Ns)UF.

To accelerate the computation of these terms, we have derived recursive relations, which reduce drastically

the number of the required operations:

can be written recursively as:

These relations allow computation of each term computing each term PQCO at linear time. Concerning the

terms PkUF, we need to compute them for all integers k in the interval 0 ≤ k ≤ NWO. For k = 0, P0UF is given

by expression (2), which is identical to the expression (1) in section 5.1, and can be computed fast by using

the recursive relations derived in section 5.1 for expression (1).

For k > 0 we use expression (3) giving:



PkUF 
NWB!PWMG

(NWBt)

(NWB  t)! t!
(1 PWMG)t

NWS!PWSG
(tk)

(NWS  t  k)!(t  k)!
(1 PWSG)NWStk

tk

NWSk



Let us set:

Then, for t ≥ k



Yt
k can be written recursively as:



Y
k
k 

NWB!PWMG
(NWBk)

(NWB  k)!k!
(1PWMG)k (1PWSG)NWS



Y
t1
k  Yt

k
(NWB  t)

(t 1)

(1PWMG)

PWMG

(NWS  t k)

(t  k 1)

PWSG

(1PWSG)

From these relations, PkUF can be computing by the following fast algorithm.

%Fast computation of PkUF



Yt
k 

NWB!PWMG
(NWBk)

(NWB  k)!k!
(1PWMG)k (1PWSG)NWS; % Computation of



Y
k
k

PkUF =



Yt
k ;

for t = k+1 : NWS+ k

 r = t-1;



Yt
k  Yt

k (NWB  r)

(r 1)

(1PWMG)

PWMG

(NWS  r k)

(r k 1)

PWSG

(1PWSG)
;

 PkUF = PkUF +



Yt
k ;

end



PQCO
N WO!PWOG

(N WO u)

(N WOu)!u!
(1PWOG)u

u0

N WO Q





PQCO  Xu

u0

NWO Q





X0  PWOG
NWO , Xu1 

NWO u

u 1

(1PWOG)

PWOG

Xu



PkUF  Yt
k

tk

NWSk



 83

Using these fast computation algorithms for PQCO, P0UF, PkUF our fast yield-computation algorithm

for the Overflow CAM repair scheme is further accelerating, enabling computing in short time the yield for

the sophisticated Overflow CAM and Overflow Set-Associative Cache repair architectures.

5.4 CONCLUSION

In high defect densities the analytical computation of the yield achieved by a repair architecture

becomes increasingly complex because: while in low defect densities the faults affecting the replacement

units (e.g. the repair CAM) have negligible impact on the yield and can be neglected in the yield

computation, in high defect densities this impact is significant and requires using more complex yield

computation expressions. The numbers of operations required for computing these expressions are:

Nw(Nwc + 1) + (Nwc
2
 - 1)(5Nwc + 12)/6 - 1 high precision multiplications; (Nwc + 1)(Nwc + 4)/2 high

precision divisions; and NWC(NWC + 3)/2 additions, where Nw is the number of the words of the memory

under repair and Nwc is the number of locations of the repair CAM. Thus, the number of these operations

increases exponentially with the size of the memory under repair and of the repair CAM. This exponential

increase makes the computation of these expressions intractable, because in the technologies targeted by

the present study we have to consider very large memories under repair, as well as very large repair CAMs.

Indeed, on the one hand, ultimate CMOS and post-CMOS technologies will enable integrating in the future

much larger memories than in nowadays technologies, and on the other hand, the repair CAM becomes

very large due to the large size of the memory under repair and the high defect densities. To cope with

these issues, in this chapter we discovered several recursive relations enabling computing the analytical

expressions of the yield at linear time (NW + 8NWC - 1 multiplications, 2NWC divisions, 2NWC additions, and

NWC subtractions). This original results lead to a dramatic reduction of the yield computation complexity,

making it possible even for huge memories and very high defect densities.

Yet another yield computation issue arises with the introduction of sophisticated memory repair

architectures as the ones presented in chapter 4. The complex analytical expressions that we have derived

for computing the yield achieved by these architectures, require huge numbers of operations. For instance,

if we use a repair cache having 64 sets and 32 ways, we need to compute 1,98x10
25

 very complex terms,

requiring huge computation time. Thanks to several mathematical developments presented in section 5.3,

we succeeded to reduce these operations by more than 20 orders of magnitude, resulting in very fast yield

computation even for the most sophisticated repair architectures.

These developments can be easily adapted to other sophisticated architectures using hybrid repair

schemes. Thus, they represent significant achievements, enabling fast and high precision yield computation

for future technologies and the sophisticated hybrid repair architectures that should be used for coping with

the increased defect densities.

 84

CHAPTER 6

TRANSPARENT BIST FOR ECC-BASED MEMORY REPAIR

As highlighted in chapter 1, ECC-based repair drastically reduces area and power penalties with

respect to conventional repair, but these advantages can be lost due to diagnosis requirements, which may

lead in similar hardware cost as for conventional repair. In the previous chapters we developed a

compendium of approaches enabling resolving these issues, including: an ECC-based repair scheme using

separate diagnosis CAM and repair CAM, which reduces the runtime power dissipation with respect to

conventional repair; a new family of test algorithms completely eliminating the diagnosis hardware, hence

reducing drastically both area and power penalties with respect to conventional repair; an iterative

diagnosis approach enabling trade-offs between area penalty and test length; as well as, new fast simulation

and yield computation methods enabling evaluating these approaches in short computation time. Though

these schemes drastically reduce area and power penalties, further power reduction is welcome. Thus, the

above approaches were completed by new word repair architectures, which allow further reduction of

power dissipation, together with new yield computation mathematics enabling fast evaluation of these

architectures. Hence, the developments in chapters 1, 2, 3, and 4, result in a comprehensive framework

allowing efficient memory repair for high defect densities.

These developments consider that fault diagnosis required for performing ECC-based repair uses

conventional memory BIST. However, circuit aging is drastically accelerated as we approach ultimate

CMOS and post CMOS. In combination with aggressive voltage reduction, it will result in very frequent

occurrences of faults during application execution. This imposes testing the memories frequently during

application execution to discover such faults before the system commits faulty results. Testing the

memories during application execution often requires preserving their content. Transparent BIST,

introduced in [40][41] and further developed and used by numerous authors and fault-tolerant systems [42-

49], transforms memory test algorithms into reversible processes, which preserve the memory content.

However, while test data verification in conventional memory BIST uses test data comparison, test data

verification in transparent BIST uses signature analysis. Unfortunately, signature analysis-based test data

verification is not compatible with ECC-based repair. Thus, in this chapter, a hybrid diagnosis scheme

combining signature analysis with ECC error detection and correction is proposed, allowing smooth

cooperation between transparent BIST and ECC-based repair.

6.1 TRANSPARENT BIST VERSUS ECC-BASED REPAIR: ISSUES AND COOPERATION STRATEGY

ECC-based repair admits words containing a single faulty cell and repairs words comprising multiple

faulty cells. Thus, fault diagnosis should ignore words comprising a single faulty cell and locate words

comprising multiple faulty cells.

 85

The work presented in this chapter, as well as the work presented in the previous chapters, are developed in

the context of Cells framework [23][25][50]. This framework supports the design of massively parallel

tera-device processors affected by high defect densities. Cells employs three error recovery approaches:

instruction replay; error-recovery based on coordinated checkpoint [51]; or checkpoint-free error recovery

that exploits a parent-child hierarchy of the software tasks, to re-execute aborted child tasks [27].

Instruction replay is used only for recovering timing and transient faults in logic parts. Thus, for memory

faults, only the latter two error-recovery approaches are of interest.

Cells, activates error recovery for memory faults in three cases: ECC detects uncorrectable error during

application execution; a memory self-test detects a memory word comprising multiple faulty cells, a CAM

self-test detects a faulty tag field in the run-time CAM (described later) or a data field of this CAM

comprising multiple faulty cells.

The memory self-tests are executed in a manner that avoids the contamination of the system by errors

induced when new memory faults occur during application execution. For this purpose, in the checkpoint-

based error recovery approach, self-test is executed before the old checkpoint is aborted and new

checkpoint is taken. In the checkpoint-free error recovery approach, self-test is executed before the results

of certain child tasks are committed by their parent task and are further distributed to the system. In both

cases, the goal of the self-test is to determine if the memory contains words comprising multiple faulty-

cells that could have produced errors undetectable by the ECC, in order to:

- Initiate preventive error recovery (using fault-tolerant task scheduling and allocation for redistributing the

aborted tasks to fault-free resources of the processor array (see [27])), before unrecoverable error

contamination of the system.

- Launch a repair session to replace by spares the words comprising multiple faulty cells. Thus, the system

can again use the repaired memory.

As we describe later, to reduce test time, self-tests are executed only in physical blocks of the memory that

were used after the last checkpoint (first error recovery approach), or during the execution of child tasks

whose correctness has to be checked (second recovery approach).

Also, as these tests are performed during application execution, memory blocks may contain useful

information. Thus, transparent BIST will be used to preserve their contents.

The difficulty is that transparent BIST uses as test data the memory contents transformed by reversible

operations [40]. As these data are unknown, they cannot be verified by comparing the data read from each

memory word against their known fault-free value. Instead signature analysis is used, based on a signature

prediction scheme [40]. Signature analysis is convenient when we only need to know if the memory is

faulty or fault-free (go-no go test). But, it cannot distinguish erroneous responses coming from words

containing single-errors, from erroneous responses coming from words that may contain multiple errors.

Thus, it is not suitable for ECC-based repair. Then, instead of verifying test data by means of signature

analysis, another option would be to use the ECC for checking the result of each read operation. However,

this approach may fail for memory words producing multiple errors undetectable by the ECC (i.e. a triple

error for the SECDEC codes). To cope with this issue we propose a hybrid architecture combining

signature analysis and ECC, enabling determining if the memory contains words that comprise multiple

faulty cells, as described in the next section. To make it possible we relax the ECC-based diagnosis

requirements during transparent BIST, by adopting a two-step diagnosis process:

- First step: This step uses transparent BIST to avoid destroying the memory contents. It determines if the

memory contains not yet repaired words that comprise multiple faulty cells (due to faults occurred after

the previous self-test), but does not determine the number and location of such words. In the most

frequent case, where no such words are discovered the second step is skipped.

- Second step: This step is executed in the less frequent case where the first step has discovered that the

memory contains unrepaired words comprising multiple faulty cells. In this case, the application tasks

executed over the memory blocks that contain these words are aborted and are allocated for re-execution

to other fault-free resources of the multiprocessor array. Thus, the contents of the faulty memory can be

discarded and the memory is tested with conventional (i.e. non-transparent BIST), which allows to

 86

identify the word(s) that comprise multiple faulty cells and to repair them.

Based on the above strategy, the proposed transparent BIST architecture is described in the next section.

6.2 TRANSPARENT BIST FOR ECC-BASED REPAIR

ECC-based repair uses a CAM for storing words comprising multiple faulty cells (run-time CAM). This

CAM is much smaller than the CAM used for conventional word repair and induces small area overhead.

Its power dissipation is also drastically reduced, but it was still not negligible. Thus, a new word repair

architecture was introduced in chapter 4, which drastically reduces this power. Diagnosis for ECC-based

repair may require a large diagnosis CAM, which will induce large area penalty and also large power

dissipation during the test session. To cope with this issue, two approaches were proposed in chapters 2

and 3. The first introduces a new family of memory test algorithms (SRDF test algorithms), which

eliminates the diagnosis CAM at the expense of test time. The second uses an iterative diagnosis scheme

that enables trading test time with diagnosis CAM size.

In this chapter, we propose two transparent BIST architectures. The first one targets the approach using

SRDF test algorithms. The second, rather than using the iterative diagnosis approach (which reduces the

size of the diagnosis CAM at the expense of extra test time), uses a memory-block based diagnosis

approach introduced in the next section, which reduces both the size of the diagnosis CAM and the test

time.

6.2.1 Block-based Test and Diagnosis Strategy

A memory array is usually organized into rows and columns. A row contains several memory words

and is selected by a row line activated through the decoding of a group of address bits (row address bits). A

second group of address bits (column address bits) is used to select the target word among the words of the

selected row. Large rows and columns have large capacitances whose charging and discharging induce

large power dissipation and signal delays. Thus, to reduce power and increase speed, word-line splitting

and bit-line splitting is often used. Furthermore, memories are partitioned into several physical blocks

(banks) selected by a group of address bits (bank-address bits). This partition reduces the size of rows and

columns within each bank, reducing delay and power dissipation. In particular, as one bank is selected at

each memory access, power is reducing drastically. We exploit this organization in order to reduce the time

duration of self-tests, as well as the size of the diagnosis CAM in the repair approach using separate

diagnosis and runtime CAMs proposed in chapter 3.

Block-test scheme: For each memory we use a register (bank identification register – BIR) having a

number of bits equal to the number of the memory banks. These bits identify the memory banks that were

used between two consecutive self-tests of the RAM. The identification is performed by decoding the bank-

address bits to generate the values stored in BIR. For instance, for a memory partitioned into 32 physical

banks, BIR will have 32 bits. At the end of each self-test session, BIR is reset to the all 0’s state. Then,

during the application execution, at each memory access the 5 bank-address bits are decoded to generate a

1-out-of-32 code. The 32 bits of this code are bit-wise ORed with the contents of BIR to generate its new

contents. During the next self-test, we sequentially read the bits of BIR. Each time a bit is equal to 1, we

activate the self test of the corresponding memory bank. Thus, the tested banks are those that were used by

the application in the interval separating the previous self-test phase from the current self-test phase.

As the untested memory banks were not used since the last self-test, then, there is no risk that a word

belonging a non tested bank and containing multiple faulty cells could contaminate the system with

undetectable errors. Nevertheless, to avoid accumulating multiple faults in the words of RAM banks that

could be left untested for too long (i.e. banks that are not used for long time by the application), these tests

are complemented by self-tests, which test the banks that remain untested for more time than a given

threshold.

 87

Block-based diagnosis scheme: In this scheme we use a common diagnosis CAM for all banks of a

memory. This CAM is sized to accommodate all faulty words of the memory that comprise multiple faulty

cells, as well as the faulty words that comprise single faulty cells of one memory bank at a time. Then the

test and diagnosis process works in the following manner. We test each memory bank as described above,

and we store in the diagnosis CAM all faulty words detected in this bank (i.e. we store the address of the

faulty word in the tag field of a good location of the diagnosis CAM
17

 and the faulty-cell positions of this

word in the associated data field). At the end of this test, we clear all CAM locations that contain words

comprising only one faulty cell, and we conserve the words comprising multiple faulty cells. As the large

majority of faulty memory words will contain only one faulty cell, this approach liberates the majority of

the diagnosis CAM locations, which can be used for diagnosing the next tested bank of the memory, and so

on. Thus, the size of the diagnosis CAM is reduced significantly. For instance, for a defect density 10
-3

 (i.e.

1 out of 1000 memory cells is faulty), and 32-bit memory words, the probability for a word to contain one

faulty cell is Pw1f = n(1-Pf)
n-1

Pf = 0,03102274 (with n = 32 and Pf = 10
-3

), while the probability for a

memory word to contain more than one faulty cell is Pwmf = 1- (1-Pf)
n
 - n(1-Pf)

n-1
Pf = 0,00048618. Thus, in

a memory comprising 100K words of 32 bits, the mean number of words containing one faulty cell will be

equal to 3102 and the mean number of words containing more than one faulty cell will be equal to 48.

Thus, if we do not use the block-test and repair approach, the size of the diagnosis CAM will be roughly

equal to 3150 words (3102 + 48). More detailed probabilistic computations are required for determining the

size of the diagnosis CAM for a target success probability, which generally will be larger than 3150 words

if we target high success probability. For instance, if we require a 95% probability for the diagnosis to be

successful, we find that the size of the diagnosis CAM should be 3535 words. On the other hand, if the

memory is partitioned into 32 banks, the mean number of words in a bank comprising one faulty cell will

be equal to 98. Thus, if we apply the block-test and diagnosis scheme we will need a diagnosis CAM of

size roughly equal to 146 (98 + 48). This size will be larger if we target high success probability. For

instance for 95% success probability we will need a diagnosis CAM of 186 words. Thus, the bank test and

diagnosis scheme results in drastic reduction of the diagnosis CAM size (form 3535 down to 186 CAM

locations in the above example).

Let us now compare the block-based diagnosis scheme with the diagnosis approaches presented in chapters

2 and 3:

- With respect to the diagnosis scheme using SRDF algorithms, the block-based diagnosis scheme

induces higher area penalty. For instance, in the above example, the SRDF algorithms-based diagnosis

will employ a runtime CAM of 48 locations, while the block-based diagnosis scheme uses a runtime

CAM of the same size but also a diagnosis CAM of 146 locations. However, as the block-based

diagnosis scheme uses conventional test algorithms, it allows a significant reduction of test time with

respect to the test time required by the SRDF test algorithms.

- With respect to the diagnosis scheme using separate diagnosis CAM, the block-based diagnosis

scheme induces drastically lower area penalty. For instance, in the above example, the diagnosis

scheme using separate diagnosis CAM requires 3150 diagnosis-CAM locations, while the block-based

diagnosis scheme requires only 146 locations. Also, as both schemes employ conventional test

algorithms, they require the same test length

- With respect to the scheme combining separate diagnosis CAM with iterative diagnosis, the block-

based diagnosis scheme allows significant reduction of the size of the diagnosis CAM without

increasing test length.

Thus, the block-based test and diagnosis scheme is a promising concept for performing advantageous

trade-offs in terms of area penalty and test time, whose evaluation and validation was not yet realized due

to time constraints, and will represent in our future developments a promising extension of the work

17

 Good CAM locations are identified by dedicated flags[19].

 88

presented in this manuscript.

Further to these merits, in the context of self-tests performed during application execution in order to avoid

that undetected memory faults are propagated in the system, the block-based test using the Bank-

Identification-Register (BIR), allows significant reduction of the self-test duration.

These advantages become possible because, as shown in the following proposition, the block-test and

diagnosis scheme preserves the quality of the test and repair process.

Proposition 1: The block-test and diagnosis scheme does not affect test and diagnosis quality.

Proof: As the test algorithm is executed separately for each bank of the memory, then, if a fault affecting a

cell that belongs to a memory bank is sensitized by operations performed over cells belonging to different

banks, the block-test approach will mask this fault. However: cells belonging to different memory banks

are topologically very distant; they do not share any signal (e.g. word-lines or bit-lines), nor read or write

amplifiers; and they are activated at different times (only one bank of a memory can be accessed at a time).

Thus, couplings between cells belonging to different memory banks cannot occur. Hence, a faulty cell

belonging to a bank cannot be sensitized by operations performed over cells belonging to other banks.

Hence, the block-test scheme does not mask any fault. This also implies that: resetting at the end of the test

of a memory bank the locations of the diagnosis CAM storing one faulty-cell position (as described in the

block-based diagnosis scheme), does not compromise the diagnosis of words containing multiple faulty

cells. Indeed, as all the faulty cells of a bank are detected during the test of this bank, there is not risk that

during the test of another bank we discover new faulty-cells affecting a word stored in diagnosis CAM.

Hence, the locations of the diagnosis CAM, which store at the end of the test of a memory bank one faulty-

cell position, concern words containing only one faulty cell. Thus, resetting them at the end of the test of a

memory bank does not compromise the diagnosis of words containing multiple faulty cells. QED

6.2.2 Transparent BIST Architecture for ECC-based Repair

As mentioned in section 6.1, in the context of ECC-based repair we should be able to determine if the

memory contains words that comprise two or more faulty cells. However, transparent BIST is not able to

distinguish the case where all faulty words comprise single faulty cells from the case where some of them

comprise multiple faulty cells. This is because in contrast with conventional memory BIST, which compares

read data against their expected values, transparent BIST verifies read data by means of signature

analysis. In addition, using the ECC code to verify the read data cannot distinguish words containing

single errors from words containing certain multiple errors. It may also not at all detect certain multiple

faults. This may make transparent BIST incompatible with ECC-based repair. To resolve this issue we

introduce a new test response verification and diagnosis architecture merging signature and ECC checks.

This architecture works as described below:

i. During self-test the repair circuitry is active. Previously repaired words (i.e. replaced by spares) are not

accessed by the test algorithm. Thus, faults in already repaired words do not produce errors during self-

tests.

ii. The read data are injected into the signature analyzer after correction by the ECC code.

iii. The diagnosis CAM stores the error syndromes produced by the ECC circuitry. To do this, each CAM

location will comprise a tag field used to store the address of a faulty memory word, and a data field,

which, instead of storing the positions of the faulty cells of this word discovered by a conventional BIST

circuitry, will store the error syndrome produced by the ECC. Then, the diagnosis CAM will be updated

in the following manner. Each time the ECC circuitry detects an error, the current memory address is

compared in parallel with the contents of all tag fields. In case of miss, the current address is stored in an

unoccupied tag field and the error syndrome is stored in the corresponding data field. In case of hit, the

data field of the hit CAM location is read; its content is bit-wise ORed with the current error syndrome;

and the result of the bit-wise OR operation is written back in the data field of the hit CAM location. This

 89

way, all positions of errors detected in the same memory word during the read operations of the test

algorithm are accumulated in the data field of a single CAM location. Thus, reading the data fields of the

CAM at the end of the test phase allows discovering the cumulated syndromes of the errors detected in

each memory word.

iv. If at the end of the test phase the signature is erroneous and/or if some data field(s) of the diagnosis

CAM contain 1’s in multiple positions, and/or if at any time during the execution of the test algorithm

the ECC has indicated the detection of a double error, then, the diagnosis concludes that some memory

word(s) comprise multiple faulty cells. In all other cases the diagnosis concludes that no memory word

comprises multiple faulty cells.

Proposition 2. The test response verification and diagnosis architecture described above can determine if

the memory contains words comprising multiple faulty cells, provided that these faulty cells are detected by

the transparent test algorithm.

Proof. We consider single-error correcting, double-error detecting (SECDED) codes (e.g. Hamming or

Hsiao). More complex codes offering higher error correction and detection capabilities will have higher

diagnosis capabilities. Thus, the proof will also be valid for such codes.

Note that, since all faulty cells are detected by the transparent test algorithm, each faulty cell will produce

an error in some read operation of this algorithm. Also, if a word contains more than one faulty cell, it is

possible that the detection of these faulty cells may not occur in the same read. Thus, a word comprising

multiple faulty cells may produce only single errors in each read operation of the test algorithm.

All possible situations concerning error multiplicity affecting the data read during the test algorithm

are:

a. No read contains more than one error.

b. Some reads contain two errors.

c. Some reads contain more than two errors and no read contains two errors.

In case a, each data word injected to the signature analyzer is correct, as the ECC corrects single errors.

Thus, the signature does not detect any fault. On the other hand, as the errors affecting any read word are

always single, the error syndromes correctly identify the positions of these errors, which are stored in the

diagnosis CAM. We have also seen that for each faulty cell the test algorithm produces an error in some

read operation. Thus, the error syndromes will provide the correct position for each faulty cell, which will

be stored in the diagnosis CAM. Then:

- If no memory word contains more than one faulty cell, then the content of the diagnosis CAM will

indicate at most one faulty cell per memory word. Combined with the fact that the signature is correct,

according to the diagnosis decisions described above in point iv, we will diagnose that no memory

word contains multiple faulty cells, which is correct.

- If some memory word contains multiple faulty cells, then, the position of each of these cells will be

indicated in the error syndromes of the ECC, which are cumulated (by XORing them) in the data field

of a locations of the diagnosis CAM, and according to point iv we will diagnose that some memory

word contains multiple faulty cells, which is correct.

Case b implies that a memory word comprises at least two faulty cells (the words where some reads detect

double errors). Also, since some read(s) contain two errors, then, the ECC will detect the double error, and

according to point iv we diagnose that some memory word contains multiple faulty cells, which is correct.

Also, as the code cannot correct the double error, the signature analyzer will receive erroneous data and

will detect an error indicating that some memory word(s) contains multiple faulty cells, and according to

point iv we diagnose that some memory word contains multiple faulty cells, which is correct. Thus, in case

b two criteria announced in point iv diagnose correctly that some word(s) comprise multiple faults.

Case c implies that a memory word comprises more than two faulty cells (in the positions where the

read contains errors of multiplicity larger than two). As the ECC corrects single errors and detects double

errors, then, during a read containing more than two errors, the ECC circuitry may: incorrectly indicate that

the word does not contain any error; or indicate that the word contains uncorrectable errors; or incorrectly

 90

indicate that the word contains a single error and produce an error syndrome wrongly indicating a single

error position. In all cases, incorrect data are injected to the signature analyzer, which provides an incorrect

signature. Then, thanks to the wrong signature, according to point iv we diagnose that some memory

word(s) contains multiple faulty cells, which is correct. QED

Note that, as stated in section 6.1, if the transparent test discovers that some memory words contain

multiple faulty cells, then, a non-transparent test is executed over the concerned memory bank, in order to

precisely locate these words and to replace them by spare ones. Nevertheless, from the above analysis we

observe that the execution of non-transparent test is required only when the signature is erroneous (cases b

and c). When the signature is correct (case a), the diagnosis CAM correctly identifies these words, and the

repair is done by the transparent test. Thus, non-transparent test will be executed only in the infrequent (but

non negligible) situation where, since the last time the memory bank was tested, two new faults have

occurred in a memory word already containing one faulty cell, or more than two faults have occurred in

any memory word.

Note also that, as we address high defect densities, a large percentage of memory words will contain

one faulty cell. For instance, considering memory words of 32 data-bits plus 7 ECC check bits and a 3x10
-4

defect density, then, roughly 1.17% of memory words will contain one faulty cell. For a 10
-3

 defect density

roughly 3.9% of the memory words will contain one faulty cell. In addition, the combination of accelerated

aging with aggressive voltage reduction would drastically increase the rate of new faulty cells occurring in

the field. Thus, the probability that between two test sessions some words may accumulate more than two

faulty cells (e.g. two new faulty cells occur in a word already containing one faulty cell) is low but not

negligible. This, assumption leads to the error cases described earlier in points a, b and c, which require the

above described hybrid diagnosis scheme combining ECC-based error detection with signature analysis. If

we consider moderate defect densities and aging rates, the probability that a memory word accumulates

more than two faulty cells in the interval separating two test sessions could become negligible. Then, the

error case described earlier in point c can be neglected. In this case, the diagnosis can be performed only by

using error detections based on the ECC code, as described bellow:

In case a, as the errors affecting any read are always single, the error syndromes correctly identify their

positions. These positions are stored in the diagnosis CAM. Thus, the contents of this CAM will allow

correctly diagnose the existence or absence of words containing double faulty cells.

In case b, if a read operation contains a double error, the ECC will signal it and we will correctly diagnose

that some memory word(s) contain double faulty-cells.

Note that, this simplified diagnosis scheme eliminates the signature analysis and requires slightly less

complex FSM for controlling the diagnosis process. However, the complexity of both circuits is low, while

the more complex blocks (diagnosis CAM and run-time CAM) are identical in both diagnosis schemes.

Thus, the cost reduction will be low and in most cases may not justify the lost in diagnosis capabilities

implied by the simplified diagnosis scheme.

6.2.3 Fault Coverage, Transparent Test Algorithm, Signature Prediction, and ECC-Consistency

Fault Coverage and Signature Prediction: Proposition 2 stipulates that the proposed transparent BIST

architecture for ECC-based repair, using block-based test and diagnosis, determines if the memory contains

words comprising multiple faulty cells, provided that these faults are detectable by the transparent test

algorithm. The detection of faults is fundamentally determined by the memory test algorithm, which is used

to derive the transparent test algorithm. As an illustration we will consider the set of all static unlinked

functional fault models (FFMs) involving one memory cell (single-cell FFMs) and two memory cells (two-

cell FFMs) [29], and the optimal march test algorithm MSS1 [31] detecting all of them. Algorithm MSS1 is

presented in figure 1. It is composed of a march element S(0) used for initializing the memory to a known

state, and five march elements S(1) to S(5) used for testing the memory.

The transparent test algorithm derived from MSS1 according to the rules proposed in [40] is presented

 91

in figure 2.a. In the five march elements S(1) to S(5) of this algorithm the value 0 is replaced by v (v does

not take a fixed value but varies from a memory word to another, taking the initial value of each word), and

the value 1 is replaced by v! (representing the inverse of v). When each of the march elements S(1) to S(5)

visits a memory address, the value v or v! is read from this address. This value is stored in a register (the

transparent-test data register) and is used to produce the value v! or v employed by the subsequent writes

performed over this address. As the contents of the memory are unknown, the signature produced by the

march elements S(1) to S(5) is also unknown. Thus, the algorithm starts with a signature prediction

sequence, labelled as Pred in figure 2. It consists in five march elements obtained by removing the write

operations from march elements S(1) to S(5) of the transparent test algorithm. However, as Pred is

composed only from read operations, the data v will appear in all instances of Pred. Then, in order for the

fault-free operation to produce the same signature as march elements S(1) to S(5) (signature prediction), the

data read in the second and fourth march elements of Pred are inverted before being injected in the

signature analyzer.

Concerning fault coverage, if the fault model is complete (i.e. for each fault type the model comprises

all faults corresponding to all possible state combinations of the victim and aggressor cells), then, the

transparent test algorithm provides the same fault coverage as the conventional test algorithm from which is

derived [40]. Thus, as MSS1 covers all static unlinked single-cell and two-cell FFMs [29], which is a

complete fault model (each FFM type comprises faults corresponding to all possible value combinations of

the victim and aggressor cells [29]), the transparent test algorithm of figure 2.a will also detect all static

unlinked single-cell and two-cell FFMs. Nevertheless, masking could occur if some faults produce the

same errors in the signature prediction sequence (Pred) and in the test march elements (S(1) to S(5)). As

Pred includes only read operations, this could happen only for faults sensitized by reads [40]. As the single-

cell and two-cell FFMs include such faults [29], fault masking becomes possible. To exclude this

possibility, we propose a new kind of signature prediction shown in figure 2.b.

In figure 2.b, the march elements of sequence Pred include only one read operation, while march

elements S(1) to S(4) include two read operations. Thus, to correctly predict the signature, during the first,

second, third and fourth march elements of Pred, the value of the read operation is injected to the signature

analyser and is also stored in a register (the transparent test data register mentioned earlier for storing the

read data during the transparent march elements S(1) to S(5)). Then, this value is again injected to the

signature analyzer during the write operation following the read. This way, similarly to the march elements

S(1) to S(4), the value v or v! is twice injected to the signature analyzer in each element of Pred. We also

observe in figure 2.b, that the values read in the march elements of sequence Pred are the inverse of the

values read in the march elements S(1) to S(5). Thus, during sequence Pred we inverse the read values

before injecting them in the signature analyzer. This way, during fault-free operation, sequence Pred and

march elements S(1) to S(5) inject the same values in the signature analyzer, resulting in equal sequences

as required for signature prediction. Note finally that, in figure 2.b, at the end of march element S(5), the

contents of the memory are the inverse of its initial content. Thus, sequence Rest restores the initial content.

Proposition 3 shows that the transparent test algorithm of figure 2.b guaranties detection of all faults

detected by MSS1.

Figure 1: MSS1 test algorithm

 S(0): (W0); S(1): (R0, R0, W1, W1);

 S(2): (R1, R1, W0, W0); S(3): (R0, R0, W1, W1);

 S(4): (R1, R1, W0, W0); S(5): (R0);

 92

 (a) (b)

Figure 2: standard (a) and modified (b) transparent tests

Proposition 3: The transparent test of figure 2.b detects all static unlinked single-cell and two-cell FFMs

and eliminates any masking due to the signature prediction principle.

Proof: MSS1 detects all static unlinked single-cell and two-cell FFMs. Then, from [40], march elements

S(1) to S(5) in figure 2.a also detect these faults. From [40] this coverage does not depend on the memory

contents. March elements S(1) to S(5) in figure 2.b are identical to those in figure 2.a, except that they start

with inverse memory contents (v! versus v). Thus, they also detect all static unlinked single-cell and two-

cell FFMs. On the other hand, the signature prediction will mask a fault if it produces errors in the same

positions in Pred and in the march elements S(1) to S(5). A FFM can produce an error in a memory cell ci

when the correct value of ci has a particular value vi. Then, as in figure 2.b the correct values that take a

memory cell in the same positions of Pred and of march elements S(1) to S(5) are inverse to each other, a

FFM cannot produce errors in the same positions of Pred and of march elements S(1) to S(5). As a

consequence, the only way to have errors in the same positions of Pred and of march elements S(1) to S(5),

is that cell ci is affected by two FFMs in which the sensitizing values of the victim cell (i.e. of ci) are

inverse. However, in this case the two faults are linked and they are not part of the comprehensive set of all

static unlinked functional fault models (FFMs) involving one memory cell (single-cell FFMs) and two

memory cells (two-cell FFMs) [29], neither covered by MSS1.

QED

Corollary 1: Proposition 2 guaranties that in the case of the transparent test algorithm of figure 2a, no fault

can be masked by the signature prediction scheme except the faults that are sensitized by read operations.

This result is valid for both the conventional use of transparent test and its use in the context of ECC-based

repair.

Corollary 2: Proposition 3 guaranties that in the case of the transparent test algorithm of figure 2b, no fault

can be masked by the signature prediction scheme. This result is valid for the conventional use of

transparent test. However, in the case of its use in the context of ECC-based repair we inject in the

signature analyzer the syndromes of the detected errors rather that the errors themselves. Thus, fault

masking becomes possible if different errors produced in the core test algorithm and the signature

prediction sequence have identical syndromes.

Corollary 2 accredits that fault masking, due to the signature prediction scheme, is possible in the diagnosis

of the ECC-based repair approach even for the algorithm 2.a. However, this masking is extremely rare due

to the following reasons. First, in the proposed diagnosis scheme for ECC-based repair, if some word

contains two faulty cells, then, if the two faulty cells are detected by the same read the double error will be

detected by the ECC, leading to correct diagnosis decision: the memory contains words comprising two or

more faulty cells. Furthermore, if the two faulty cells produce errors in different reads, then, as each of

these reads will contain a single error, the ECC will produce error syndromes that correctly identify each of

 Pred: (Rv, Rv); (Rv, Rv);

 (Rv, Rv); (Rv, Rv); (Rv);

 S(1): (Rv, Rv, Wv!, Wv!);

 S(2): (Rv!, Rv!, Wv, Wv);

 S(3): (Rv, Rv, Wv!, Wv!);

 S(4): (Rv!, Rv!, Wv, Wv);

 S(5): (Rv);

 Pred: (Rv, Wv!);

 (Rv!, Wv); (Rv, Wv!);

 (Rv!, Wv); (Rv, Wv!);

 S(1): (Rv!, Rv!, Wv, Wv);

 S(2): (Rv, Rv, Wv!, Wv!);

 S(3): (Rv!, Rv!, Wv, Wv);

 S(4): (Rv, Rv, Wv!, Wv!);

 S(5): (Rv!);

 Rest: (Rv!,Wv);

 93

the faulty cells. Thus, as these syndromes are cumulated (by XORing them) in the data field of a location of

the diagnosis CAM, the word containing the two faulty cells will be identified by reading the diagnosis

CAM. Therefore, if the memory contains some word(s) comprising two faulty cells the diagnosis decision

will be correct. Then, miss-diagnosis can occur only if all the following conditions are satisfied:

a. Some faulty memory words comprise more than two faulty cells and no memory words comprise two

faulty cells: because, on the one hand, only words comprising more than two faulty cells are not

correctly diagnosed by the ECC and the diagnosis CAM, thus such faults should necessarily affect some

memory word(s), and on the other hand, as shown earlier, if some other word contains two faulty cells

correct diagnosis is also guaranteed.

b. For each word comprising more than two faulty cells (which, due to point a, should necessarily exist if

miss-diagnosis has to happen), no read detects exactly two faults: because if this happens the double

error would be detected by the ECC, signaling the presence of a word containing more than one faulty

cell.

c. For each word comprising more that two faulty cells, the case where a read detects one faulty cell and

another read detects another faulty cell does not occur: because if this happens the diagnosis CAM will

identify a word containing at least two faulty cells.

d. For each word comprising more than two faulty cells, there is at least one read of the core test

algorithm detecting more than two faulty cells. This is because as the core test algorithm covers all the

considered faults each of them will be detected by some read, and since from c at most one read detects

exactly one of them, then, there is at least one read of the core test algorithm detecting two or more

faulty cells. Then, as from b no read detects exactly two of them, there is at least one read of the core test

algorithm detecting more than two faulty cells.

e. For each read of the core test algorithm detecting more that 2 faulty cells in a word comprising more

than two faulty cells (which read, due to point d, should necessarily exist if miss-diagnosis has to

happen), the corresponding read of the signature prediction sequence detects exactly one faulty cell or

more than two faulty cells (because if no faulty cell is detected masking due to the signature prediction

could occur, and also because the detection of two faulty cells leads to correct diagnosis thanks to the

ECC), and the errors produced by these reads, which errors are necessarily different to each other

(because the faults are linked and the structure of the algorithm of figure 2.b prevents detecting the same

cell in these two reads), have identical syndromes (because as these errors are different to each other and

their syndromes are injected to the signature analyzer, the only possibility to have masking due to the

signature prediction scheme is that these different errors give identical syndromes).

We observe that, some masking due to the signature prediction scheme is possible, but it can occur only if

all the above complex conditions are satisfied. Thus, with the proposed approach, fault masking due to the

signature prediction scheme is extremely rare. Due to time limitations the masking probability was not

determined in the context of this thesis, but will be computed soon by means of analytical expressions

and/or pseudo-simulations using the approach of detection profiles developed in chapter 3. However, in the

present context, these detection profiles will be based on the detection operations presented in tables 1 and

2 of chapter 3, instead of the detection sequences used in the evaluation of the iterative diagnosis approach.

Comment 1: the above discussion concerns unlinked faults. Let us now consider the case of test algorithms

covering also the linked faults. In this case, some reduction of the fault coverage is possible due to masking

related to the signature prediction scheme. However, this masking is very improbable. Indeed, conditions a,

b, c, and d, do not depend on the linked or unlinked property of the faults. Thus all of them should be

satisfied whatever are the faults: unlinked; linked; or combinations of linked and unlinked. In addition for

words affected only by unlinked faults, condition e should also be satisfied, while for all other words, the

condition e’ described below should also be satisfied.

Condition e’. For each read operation of the core test algorithm detecting more that 2 faulty cells in a

faulty word comprising more than two faulty cells (which faulty word and read operation should

 94

necessarily exist if miss-diagnosis has to happen, due to points a and d), either all these faulty cells are

affected by linked faults having opposite victim-cell sensitizing values and produce identical errors in the

core test algorithm and in the signature prediction sequence, or different errors are produced in the read

operation of the core test algorithm and in the corresponding read of the signature prediction sequence,

and the ECC produces the same syndromes for these errors.

Comment 2: Further to the masking analyzed in proposition 3, signature analysis introduces error aliasing.

However, this is common to all signature analysis schemes, its value is very low, and can be reduced at will

by increasing the size of the signature.

Comment 3: The transparent test algorithm considered above uses only one test data (all 0’s vector) and its

inverse (all 1’s vector). However, it may be suitable to use more test data. For instance, if we desire testing

couplings between consecutive cells of a word we can execute MSS1 with the all 0’s and the all 1’s

vectors, as in figure 1, then, execute MSS1 a second time by using the 0101 …01 and the 1010 …10

vectors. The transparent test algorithm of figure 2.b can be extended to cover this case. To do this we can

execute the algorithm of figure 2.b a first time. Then, we use a march element that reads each memory

word, inverses all even positions of the read data and writes back the result in the same word. Then we start

with the new memory contents and we execute the algorithm of figure 2.b a second time, except for

sequence Rest in which we inverse only the odd positions of each memory word.

This approach can be trivially extended to algorithms using as test data any binary vector Vi and its inverse,

as described next: we use a march element that reads each memory word, inverses all positions of the read

data in which Vi is equal to 1 (i.e. we bit-wise XOR the read data with Vi) and we write back the result in

the same word. Then we start with the new memory contents and we execute the transparent test algorithm

in the conventional manner. We can repeat this as many times as the number of vectors that has to be used

as test data. At the end we restore the initial contents by considering the vector Vj used as test data in the

last write operation of the test algorithm, and adding a memory content restoring march element, which

reads each memory word, inverses all positions of the read data in which Vj is equal to 1 and writes back

the result in the same word.

ECC Consistency: To correctly test the memory, all bits in a word (data bits and ECC check bits) should

undergo the transformations of the transparent test algorithm. However, these transformations will produce

non-codewords inducing false error detections by the ECC. For instance, in the transparent test of figure

2.b, when the read value in the test algorithm is v!, injecting this value to the ECC decoder will produce

false error detections, as inverting all bits of a codeword will give a non-codeword. To ensure ECC

consistency, in the march elements S(1) and S(3) the read data are inverted before being injected to the

ECC decoder. This is extended trivially in transparent tests derived from standard tests using as test data

any subset of binary test vectors. In this case, at each instance of the transparent test algorithm, the read

data will be inverted before being injected to the ECC decoder in the bit positions that have inverse values

with respect to the initial memory content. That is, if vector Vj is the test data used in the latest write

operation before the current read, then, the read data will be bit-wise XORed with Vj and the result will be

injected in the ECC circuitry.

6.2.4 Transparent BIST for SRDF Test Algorithms

The previous developments consider the use of a diagnosis CAM. To eliminate this CAM and its associated

cost we can the use SRDF test algorithms developed in chapter 2. The transparent BIST approach

developed in the previous sections can be easily adapted to the case of SRDF test algorithms as described

next.

First, these algorithms use multiple binary vectors as test data. Thus, the transparent test algorithm can be

derived from an SRDF test algorithm as described in comment 3.

Second, SRDF algorithms guarantee that for any memory word comprising more than one faulty cell, there

is always a read operation that detects at least two of them. Then we have two possible cases:

- This read operation contains a double error. In this case the ECC will detect this error and will signal that

 95

there is a memory word containing at least two faulty cells.

- This read operation contains more than two errors. In this case the ECC may:

- Not detect the existence of an error. Then, erroneous data are injected in the signature analyzer.

- Detect the error and classify it as single. Then the ECC will miscorrect it, producing erroneous data

that will be injected in the signature analyzer.

- Detect the error and classify it as double. Then the ECC will signal that there is a memory word

containing at least two faulty cells.

All cases produce either incorrect signature, which indicates the existence of a word comprising multiple

faulty cells, or indicate by the ECC a word comprising two or more faulty cells. Thus, if a memory contains

words comprising two or more faulty cells, the ECC and/or the signature analysis will discover their

existence. In addition, if no memory word contains more than one faulty cell, only single errors will be

produced by the read operations. These errors are correctly identified by the ECC as single errors and are

also corrected. As the corrected data are injected to the signature analyzer, it will provide a correct

signature. Thus, if no memory word contains more than one faulty cell, neither the ECC nor the signature

will indicate the existence of words comprising multiple faulty cells.

Hence, for SRDF algorithms we can correctly diagnose the memory by using an approach in which:

- The ECC corrects the read data before injecting them in the signature analyzer.

- If the signature is incorrect and/or the ECC indicates the detection of more that one error in some read

operation, the diagnosis outcome is that the memory contains words comprising multiple faulty cells. In

all other cases the diagnosis outcome is that the memory does not contain words comprising multiple

faulty cells.

6.3 CAM TEST AND REPAIR

Thanks to the adoption of the ECC-repair approach, the size of the run-time CAM is very small. The

size of the diagnosis CAM is also small thanks to the block-based test and diagnosis strategy. For instance,

as mentioned in section III.A, for a SRAM comprising 100K words of 32 bits we need a run-time CAM of

only 48 locations, and if this memory is partitioned into 32 physical blocks we need a diagnosis CAM of

only 186 locations. Thus, the probability of faults occurring in the CAMs will be much lower with respect

to the probability of faults occurring in the SRAM. However, as we consider high defect densities, this

probability may not be negligible. Therefore, both the run-time and the diagnosis CAMs should also be

tested and repaired regularly.

Another issue is that there is no efficient protection against soft errors affecting the tag fields of a CAM.

Under such a fault, incorrect misses can occur in the run-time CAM. Then, reads and writes will be

performed over an SRAM word that comprises multiple faulty cells, leading to uncorrectable errors. In

addition, soft errors cannot be detected by the test session in order to initiate the error recovery process.

To cope with these issues, we use the following CAM repair scheme [19][35][36][39]: each tag field of

the runtime CAM and of the diagnosis CAM comprise a flag bit (repair-flag) used for repair purposes. This

bit is set to 1 in the CAM locations discovered to be faulty by the test algorithm. The 1 value of this bit

disables the match signal of the faulty location. Also, during memory repair, faulty addresses are stored

only in tag fields in which the repair-flag bit value is 0. In addition, to cover the case where the repair-flag

bit is faulty, two repair-flag bits can be used, guarantying that the match signal is disabled if any of them is

1 [19]. Another flag bit [36][39] is also used to indicate CAM locations occupied by faulty memory

addresses (occupation-flag). Then, we use the following CAM test and repair strategy:

i. At the end of each test and repair session, the memory addresses stored in fault-free tag fields of the

runtime CAM are transferred and stored in fault-free tag fields of the diagnosis CAM. This is feasible as

the diagnosis CAM is much larger than the run-time CAM.

ii. At the beginning of the next test session, the memory addresses stored in the tag fields of good

locations of the run-time CAM and of the diagnosis CAM are read and compared against each other. If the

 96

comparison mismatches for some of the stored addresses, then: we check for each of the two mismatched

addresses if the bank-address bits designate a memory bank that was used since the previous test session

(i.e. the corresponding bit of BIR - defined in section 6.2.1 is equal to 1). If this is the case, for any of the

two mismatched addresses, the error recovery process (described in section 6.1) is activated.

iii. In the next step, the diagnosis CAM is tested by means of CAM dedicated BIST (e.g. [52] [53]). In

this BIST we use non-transparent test data, except for the repair-flag bits, for which we use transparent test

data to preserve their values. In addition, the repair-flag bits in the locations discovered by the current test

to be faulty are set to 1.

iv. The memory addresses stored in good locations of the run-time CAM (repair-flags = 0, occupation-

flag =1), are transferred to fault-free locations of the diagnosis CAM (repair-flags = 0).

v. The run-time CAM is tested and repaired similarly to the diagnosis CAM. If some CAM location

having its repair-flags equal to 0 is found to contain faults in the tag field or in its match mechanism, error

recovery is activated (except if this process was already activated in step i). Error recovery is also activated

if such a CAM location is found to contain more than two faulty cells in the data field.

vi. The addresses transferred in the previous step to the diagnosis CAM are transferred back to good

locations of the run-time CAM.

vii. The transparent test and repair session of the SRAM (described in the previous sections) is activated.

Note that, the above strategy does not work for the approach based on the SRDF algorithms, as in this

case no diagnosis CAM exists for realizing steps i, ii, and iv. Then, a small FIFO is implemented for

supporting these steps. Each FIFO location consists into n+2 cells, where n is the number of the SRAM

address bits. The extra two cells are used as repair-flag bits to signal faulty FIFO locations.

6.4 CONCLUSION

Ultimate CMOS and post-CMOS are expected to sharply accelerate circuit aging, resulting in very low

MTBF (mean time between failures). Thus, frequent memory test sessions have to be activated during

application execution. It requires using transparent memory BIST in order to preserve the contents of the

memory. However, signature analysis cannot distinguish memory words comprising one faulty cell from

those comprising multiple faulty cells, as required by ECC-based repair. In addition, ECC can incorrectly

identify multiple errors as single errors or no errors. To cope with these issues, this chapter proposes a

hybrid diagnosis scheme for transparent BIST, able to diagnose the existence of memory words containing

multiple faulty cells. The two variants of this scheme work for ECC-based repair using diagnosis CAM as

well as for ECC-based repair using the so-called SRDF test algorithms.

The second achievement of this chapter is the elaboration of the so-called block-based test and diagnosis

scheme, which reduces both the test length and the size of the diagnosis CAM. A third achievement is the

development of a signature prediction scheme for transparent memory test, which eliminates masking also

for faults sensitized by read operations.

 97

CHAPTER 7

CONCLUSION AND FURTHER DEVELOPMENTS

In modern SoCs embedded memories should be repaired to achieve acceptable yield. They should

also be protected by ECC against field failures to achieve acceptable reliability. In technologies affected by

high defect densities, conventional repair induces very high area and power penalties. To reduce them, we

can take advantage of the ECC used for mitigating failures occurring in the field in order to also fix words

comprising a single faulty cell, and use a word-repair scheme to fix all other faulty words (ECC-based

memory repair). It was shown in previous works that ECC-based memory repair is the only repair approach

able to repair memories affected by high defect densities at reasonable area cost. However, by analyzing

the distribution of the detection instances of different faulty cells within the memory test algorithms, in this

thesis we have shown that the low-cost benefits of ECC-based repair are lost due to diagnosis issues

leading in complex diagnosis circuitry. We have also highlighted that, though ECC-based repair reduces

dramatically power dissipation with respect to conventional (i.e. non-ECC-based) repair, this power is still

significant in high defect densities. Thus, the aim of this thesis is to resolve these problems. Furthermore,

since circuit aging is accelerated as we move towards the ultimate CMOS and post-CMOS technologies,

leading to increasing field-failure rates, on-line test and repair is expected to become mandatory. Thus,

another goal of this thesis is to develop an on-line test and diagnosis approach for preventive detection and

repair of field faults may not be covered by the ECC.

In pursuing these goals, the developments accomplished in this thesis are the following.

In chapter 2, we introduced a new family of test algorithms that we coined as single-read double-fault

detection (SRDF), which guarantee to detect in a single read at least two faulty cells of each word affected

by two or more faulty cells. Then, we successfully addressed the complex theoretical challenges related

with the development of algorithms satisfying the SRDF property. These test algorithms completely

eliminate the diagnosis circuit, leading to drastic reduction of area cost. Thus, for high defect densities,

ECC-based repair combined with SRDF test algorithms enables dramatic reduction of area and power cost

with respect to conventional repair approaches. Beyond the dramatic reduction of power, which is of

strategic importance due to the low-power constraints in modern technologies, in high defect densities, the

extra area required for conventional repair but also for ECC-based repair (due to diagnosis issues),

represents a high percentage of the memory area. As memories occupy the largest part of modern SoCs,

usually more than 90%, this extra area represents a high percentage of the total chip area. Thus, its drastic

reduction achieved by the SRDF algorithms is of high importance.

The drastic reduction of area penalty (achieved by the SRDF algorithms developed in chapter 2),

allows low-cost repair of memories affected by high defect densities. However, this comes at the cost of

significant increase of test length. To reduce test length, in chapter 3 we propose an architecture that uses

 98

two separate CAMs: a large diagnosis-CAM sized to contain all faulty memory words and used during the

test and diagnosis phase (which uses conventional test algorithms); and a small repair-CAM sized to

contain only words comprising two or more faulty cells, and used at runtime for repairing bad memory

words. The small repair-CAM used at runtime achieves the expected runtime power reduction of ECC-

based repair, and the large diagnosis-CAM allows using conventional test algorithms, avoiding the test

length increase related to SRDF test algorithms. However, as mentioned earlier, in high defect densities the

large diagnosis-CAM induces inacceptable area penalty. Thus, this architecture is of practical interest for

reducing runtime power dissipation with respect to conventional repair, but only for moderate defect

densities. To allow trade-offs in terms of area and test time, in chapter 2 we also propose and formally

prove an approach that reduces the size of the diagnosis-CAM, and compensates the missed CAM space by

using an iterative diagnosis algorithm. This algorithm executes the test algorithm several times, and

diagnoses at each iteration of the test algorithm a subset of the faulty memory words. The number of

iterations depends on the size of the diagnosis-CAM and the number of faults and their distribution in the

memory cells. To evaluate this approach and obtain statistically significant results, we need to perform

large numbers of fault injections and simulations of the iterative diagnosis process. Due to the time-

consuming process of memory fault simulation and of algorithmic simulation of CAM operation, these

simulations cannot be accomplished at reasonable time. To cope with this issue, in chapter 3 we propose a

pseudo-simulation approach, which determines the detection profile of each fault and its probability, and

injects these profiles instead of the corresponding faults, avoiding performing fault simulation. This

approach, together with a dedicated fast algorithm, which eliminates from the pseudo-simulation large parts

of the iterative diagnosis process as well as the need for simulating the operation of the diagnosis CAM,

enables very fast evaluation of the iterative diagnosis scheme. The outcome is that, the iterative diagnosis

approach is of interest for low and intermediate defect densities: as the defect densities increase the number

of iterations required for a given diagnosis-CAM size increase, resulting in both higher area and higher test

length with respect to the SRDF test algorithms. Thus, the solutions developed in chapters 2 and 3 result in

a comprehensive framework enabling trading area, power, and test time, to meet the application

requirements and the defect densities of the target technology.

As mentioned earlier, though ECC-based repair reduces dramatically power dissipation with respect

to conventional (i.e. non-ECC-based) repair, this power is still significant in high defect densities. As low-

power is a stringent constraint in advanced technologies, further power reduction is a very important

objective of this thesis. To achieve it, in chapter 4 we propose new, partitioned-based, repair architectures,

which consider virtual partitions of the memory under repair (virtual memory blocks), and uses a virtual

CAM dedicated to the repair of each virtual memory block. It results in a set associative memory, in which

each set corresponds to one of these virtual CAMs. As a further improvement of this scheme, we add a

CAM block (Overflow-CAM) to repair memory words, which are left unrepaired in virtual memory blocks

that concentrate more faults than the majority of virtual memory blocks (due to the standard deviation of

the statistical distribution of the faults, which is increased because of this partitioned). Then, for further

power-dissipation reduction, we propose another architecture that replaces the Overflow-CAM by an

Overflow Set-Associative Cache. The evaluation of these architectures is done by complex analytical yield-

computation expressions, which result in intractable computation time. New yield-computation

mathematics developed in chapter 5, results in fast yield computation for these expressions, and enabled the

evaluation the new repair architectures. These evaluations show that, the developments proposed so far

make possible the repair of memories affected by high defect densities at low area and power cost.

 For the evaluation of the memory repair approaches proposed in chapters 1, 2, 3, and 4, we need to

determine the size of the CAMs/Caches required for achieving a target yield for both the ECC-based repair

and the non-ECC repair implemented by means of the proposed architectures. The analytical computation

of the yield becomes increasingly complex for multiple reasons:

- In low defect densities, the faults affecting the repair CAM have negligible impact on the yield. But

in high defect densities this impact is significant, requiring more complex yield computation.

 99

- In high defect densities the size of the repair CAM becomes very high, increasing drastically the

number of operations required to compute the yield.

- The introduction of sophisticated memory repair architectures, as the ones presented in section 4,

requires very complex yield computation expressions.

To cope with these issues, in chapter 5 we derived several recursive relations enabling reducing by many

orders of magnitude the number of operations required for computing the yield for the conventional, as well

as for the ECC-repair architectures, developed in chapters 2 and 3. The situation is more complex for the

partitioning-based repair architectures developed in chapter 4. Fortunately we discovered new yield-

computation mathematics targeting these architectures, which lead to dramatic reduction of the

computation complexity and enable fast yield computation even for the most complex of the proposed

architectures, very large memories and very high defect densities.

Finally, the use of the proposed solutions in the context of application execution requires developing

a transparent BIST approach that is compatible with the proposed ECC-based repair architectures.

However, in transparent BIST, test data are verified by means of signature analysis instead of test data

comparison. Signature analysis masks the information concerning the positions of the faulty cells, and does

not allow identifying memories containing words affected by multiple faults. At the same time, ECC may

misdiagnose memory words containing more than two faulty cells (i.e. it may identify them as containing

one faulty cell). To cope with this issue, we developed a transparent BIST approach, which injects in the

signature analyzer the error syndromes instead of the test data, and diagnoses the memory by considering at

the same time the final signature, the responses of the ECC circuitry, and the content of the diagnosis

CAM. We proved that this scheme diagnoses correctly all fault cases. Thus, the developed transparent

BIST enables activating the test, diagnosis, and repair process in the context of the application execution, in

order to cope with high rates of field-failure.

7.1 Goals’ Accomplishment and Further Developments

In addition to the solutions proposed and evaluated in this thesis, in chapters 4 and 6 we also

propose several promising solutions, which were not yet evaluated due to time limitations. These solutions

will represent in our future developments promising extensions of the presented work. They comprise:

- An Overflow Cache conditional-selection approach, which allows disabling most of the time the

Overflow Cache (CACHE2). This disabling, results in further reduction of power dissipation, whose

source will mainly consist in the power dissipations of CACHE1, that we can reduce almost at will

by increasing the number of sets and reducing their size (the number of ways).

- A block based diagnosis approach, which reduces drastically the size of the diagnosis-CAM,

without increasing test length.

In combination with the other developments accomplished in the present work, they should enable memory

repair for high-defect densities at very low area, power, and test time penalties. Thus we are close to the

achievement of the goals announced in chapter 1, consisting in providing a repair approach that can be used

for:

- Mitigating the impact of very high rates of fabrication and field faults on: fabrication yield,

reliability, and product life duration;

- Reducing aggressively the operating voltage in order to achieve drastic power reduction;

As stated earlier, a last goal of this thesis was to provide an ECC-based repair approach that can be

used in the context of application execution. This was accomplished in chapter 6, by developing a

transparent memory BIST approach compatible with ECC-repair. This approach induces some aliasing,

which was shown to be very improbable, but its exact computation was not performed in the context of the

present thesis because of time limitations. This evaluation is scheduled for the immediate future.

Last but not least, disposing an approach coping with very high failure rates in memories is certainly

of high interest. However producing systems in highly defective technologies requires mitigating high

 100

failure rates in all parts of the system (including memories, logic blocks, processors, routers,

interconnections, …). The accomplishment of this goal is the aim of the Cells project, which addresses

these issues in all levels of the system. Thus, the integration in the Cells framework of the architectures

developed in this thesis, and their validation within this framework at block and system level, is also a

major goal for our future developments, which will be accomplished by integrating these architectures

together with the other Cells components in a scalable simulation infrastructure using the state of the art

Structural Simulation Toolkit (SST).

 101

List of Publications

P. Papavramidou, M. Nicolaidis, “Test Algorithms for ECC-based Memory Repair in Nanotechnologies”,

IEEE VLSI Test Symposium (VTS), April 2012.

P. Papavramidou, M. Nicolaidis, “An Iterative Diagnosis Approach for ECC-based Memory Repair”, IEEE

VLSI Test Symposium (VTS), April 2013.

P. Papavramidou, M. Nicolaidis, “Reducing Power Dissipation in Memory Repair for High Defect

Densities”, IEEE European Test Symposiums (ETS), Mai 2013.

M. Nicolaidis P. Papavramidou, “Transparent BIST for ECC-based Memory Repair”, IEEE International

On-Line Testing Symposium (IOLTS), July 2013.

 102

Bibliography

[1] Zorian Y., “Embedded Memory Test & Repair: Infrastructure IP for SOC Yield“, 2002 IEEE

International Test Conference.

[2] Sawada K., Sakurai T., Uchino Y., Yamada K., “Built-In self repair circuit for High Density

ASMIC”, IEEE 1999 Custom Integrated Circuits Conference.

[3] Tanabe A. et al “ A 30-ns 64-Mb DRAM with Built-in Self-test and Self-Repair Function”, IEEE

Journal Solid State Circuits, pp. 1525-1533, Vol 27, No 11, Nov. 1992.

[4] Benso A. et al “A Family of Self-Repair SRAM Cores”, 2000 IEEE International Test Conference.

2000 In Proc. IEEE International On-Line Testing Workshop, July 3-5, 2000.

[5] Kim I., Zorian Y., Komoriya G., Pham H., Higgins F. P., Newandowski J.L. "Built-In self repair for

embedded high-density SRAM" Proc. Int. Test Conference, 1998, pp1112-1119

[6] V. Schober, S. Paul, O. Picot, “Memory Built-In Self-Repair using redundant words”, 2001 IEEE Intl

Test Conference.

[7] J.-F. Li, J.-C. Yeh, R.-F. Huang, and C.-W. Wu,”A built-in self-repair design for RAMs with 2-D

redundancies,” IEEE Trans. Very Large Scale Integration Systems, vol.13, no.6, pp. 742-745, June,

2005.

[8] S.-K. Lu, Y.-C. Tsai, C.-H. Hsu, K.-H. Wang, and C.-W. Wu, “Efficient built-in redundancy analysis

for embedded memories with 2-D redundancy,” IEEE Trans. on VLSI Systems, vol. 14, no. 1, pp.

34–42, Jan. 2006.

[9] C.-D. Huang, J.-F. Li, and T.-W. Tseng, ”ProTaR: an infrastructure IP for repairing RAMs in

SOCs,”, IEEE Trans. Very Large Scale Integration Systems, vol.15, no.10, pp. 1135-1143, Oct. 2007.

[10] Nicolaidis, M., Achouri, N., & Boutobza, S., “Optimal reconfiguration functions for column or data-

bit built-in self-repair”. In Design, Automation and Test in Europe Conference and Exhibition

(DATE), 2003 (pp. 590-595). IEEE.

[11] Nicolaidis, “Design for Soft-Error Robustness To Rescue Deep Submicron Scaling”, Proceedings Intl

Test Conference 1998

[12] R.C. Baumann, "Soft Errors in Advanced Computer Systems," IEEE Design and Test of Computers,

vol. 22, no. 3, pp. 258-266, May/June 2005.

[13] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, T. Toba, "Scaling Effects on Neutron-Induced Soft

Error in SRAMs Down to 22nm Process".3
rd

 Workshop on Dependable and Secure Nanocomputing,

June 2009, Lisbon, Portugal.

[14] W. Wang, V. Balakrishnan, B. Yang, Y. Cao, “Statistical prediction of NBTI-induced circuit aging”,

International Conference on Solid-State and Integrated-Circuit Technology, (ICSICT), October 23,

 103

2008, pp. 416-419.

[15] M. Y. Hsiao, "A class of optimal minimum odd-weight-column SECDED codes", IBM J. Res.

Develop., vol. 14, pp. 395-401, July 1970.

[16] K. Gray, "Adding Error-Correcting Circuitry to ASIC Memory", IEEE Spectrum, pp. 55-60, Apr.

2000.

[17] S. Ghosh, S. Basu, N.A. Touba, "Selecting Error Correcting Codes to Minimize Power in Memory

Checker Circuits", J. Low Power Electronics 1, pp.63-72 (2005).

[18] M. Nicolaidis, “Soft Errors in Modern Electronic Systems”, Springer, Frontiers in Electronic Testing,

Volume 41, 2011. ISBN 978-1-4419-6992-7

[19] M. Nicolaidis, N. Achouri, L. Anghel, ”A Diversified Memory Built In Self Repair Approach for

Nanotechnologies”, IEEE VLSI Test Symposium/Best Paper Award, April-May 2004.

[20] Horiguchi M., Itoh K., “Nanoscale Memory Repair”, Springer, Series: Integrated Circuits and

Systems, 1st Edition., 2011.

[21] Itoh K., “Adaptive Circuits for the 0.5-V Nanoscale CMOS”, Keynote ISSCC 2009.

[22] M. Nicolaidis, “Soft Errors in Modern Electronic Systems”, Springer, Frontiers in Electronic Testing,

Volume 41, 2011. ISBN 978-1-4419-6992-7; e-ISBN 978-1-4419-6993-4

[23] M. Nicolaidis, "Designing Single-Chip Massively Parallel Tera-Device Processors: Towards the

Terminator Chip", Keynote Plenary Session, 2011 IEEE VLSI Test Symposium (VTS’11, Mai 1-5,

Dana Point, California.

[24] M. Nicolaidis, “Designing Robust Single-Chip Massively-Parallel Tera-Device Processors”, Opening

Session Keynote, 4th Design for Reliability Workshop (DFR) - HiPEAC - Paris, France, January 23,

2012 - Paris, France, January 23, 2012

[25] M. Nicolaidis, “Biologically Inspired Robust Tera-Device Processors”, IEEE Design & Test of

Computers, Volume 29, No 5, September/October 2012.

[26] Nicolaidis, M. (2007, October). Graal: a new fault tolerant design paradigm for mitigating the flaws

of deep nanometric technologies. IEEE International Test Conference, 2007. ITC 2007. (pp. 1-10).

[27] G. Bizot, D. Avresky, F. Chaix, N.E. Zergainoh, M. Nicolaidis, “Self-Recovering Parallel

Applications in Multi-Core Systems”, 10
th

 IEEE International Symposium on Network Computing

and Applications (IEEE NCA11), 25 - 27 August 2011 Cambridge, MA USA

[28] S. Hamdioui, A.J. van de Goor, M. Rodgers, “March SS: A Test for All Static Simple RAM Faults”,

Proc. of the 2002 IEEE Intl Workshop on Memory Technology, Design and Testing

[29] A.J. van de Goor and Z. Al-Ars, “Functional Fault Models: A Formal Notation and Taxonomy”, In

Proc. of IEEE VLSI Test Symposium, pp. 281-289, 2000.

[30] R. Dekker et al, "Fault Modelling and test algorithm development for Static Random Access

Memories", in Proc. IEEE International Test Conference pp. 343-352, 1998

[31] G. Harutunyan V.A. Vardanian Y. Zorian, “Minimal March Tests for Unlinked Static Faults in

Random Access Memories”, Proc. of the 23rd IEEE VLSI Test Symposium, May 1-5 2005.

[32] http://www.tamps.cinvestav.mx/~jtj

[33] J. Torres-Jimenez, E. Rodriguez-Tello, “Simulated Annealing for Constructing Binary Covering

Arrays of Variable Strength”, IEEE World Congress on Computational Intelligence, July 18-23 2010,

Barcelona, Spain

[34] http://quid.hpl.hp.com:9081/cacti/

[35] P. Papavramidou, M. Nicolaidis, “Test Algorithms for ECC-based Memory Repair in

Nanotechnologies”, IEEE VLSI Test Symposium, April 2012.

[36] P. Papavramidou, M. Nicolaidis, “Reducing Power Dissipation in Memory Repair for High Defect

Densities”, IEEE European Test Symposiums (ETS), Mai 2013.

[37] Z. Al-Ars and A. van de Goor, “Static and dynamic behavior of memory cell array spot defects in

embedded drams,” IEEE Trans. on Comp., vol. 52, no. 3, pp. 293–309, 2003.

[38] M. Zhang, K. Asanovic, "Highly-Associative Caches for Low-Power Processors", Kool Chips

http://www.tamps.cinvestav.mx/~jtj
http://quid.hpl.hp.com:9081/cacti/

 104

Workshop, 33rd International Symposium on Microarchitecture, Monterey, CA, December 2000.

[39] P. Papavramidou, M. Nicolaidis, “An Iterative Diagnosis Approach for ECC-based Memory Repair”,

2013 IEEE VTS.

[40] M. Nicolaidis, "Theory of transparent BIST for RAMs", IEEE Transactions on Computers, 45.10

(1996): 1141-1156.

[41] M. Nicolaidis, “Transparent BIST for RAMs”. In : Proc. 1992 International-Test-Conference, p. 598-

607.

[42] I. Voyiatzis, "An accumulator-based compaction scheme for online BIST of RAMs", IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 16.9 (2008): 1248-1251.

[43] S. Hellebrand, H. J. Wunderlich, A. A. Ivaniuk, Y. V. Klimets, V. N. Yarmolik, “Efficient online and

offline testing of embedded drams" , IEEE Transactions on Computers, 51.7 (2002), 801-809.

[44] K. Thaller, A. Steininger. "A transparent online memory test for simultaneous detection of functional

faults and soft errors in memories", IEEE Tr. on Reliability, 52.4 (2003): 413-422. [?????]

[45] D. C. Huang, W. B. Jone. "A parallel transparent BIST method for embedded memory arrays by

tolerating redundant operations", IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 21.5 (2002): 617-628.

[46] Li, Jin-Fu. "Transparent-test methodologies for random access memories without/with ECC", IEEE

Tr. on CAD of Integrated Circuits and Systems, 26.10 (2007): 1888-1893.

[47] P. Camurati, P. Prinetto, M. S. Reorda, S. Barbagallo, A. Burri, D. Medina, “Industrial BIST of

embedded RAMs", IEEE Design & Test of Computers, 12.3 (2010), 86-95.

[48] C. Weaver, A. Todd, "A fault tolerant approach to microprocessor design." IEEE International

Conference on Dependable Systems and Networks (DSN), 2001.

[49] A. Steininger, C. Temple, "Economic online self-test in the time-triggered architecture." IEEE Design

& Test of Computers, 16.3 (1999): 81-89.

[50] M. Nicolaidis, L. Anghel, N. E. Zergainoh, D. Avresky, “Designing Single-Chip Massively Parallel

Processors Affected by Extreme Failure Rates”, Proc. Design Automation and Test in Europe

Conference, pp. 679-682, March 12 – 16, 2012, Dresden.

[51] C. Rusu, C. Grecu, L. Anghel, “Improving the scalability of checkpoint recovery for networks-on-

chip”, IEEE Intl Symp. on Circuits and Systems (ISCAS), 2008, Seattle, Washington, USA.

[52] K. J. Lin and C. W. Wu, ”Testing Content-Addressable Memories Using Functional Models and

March-Like Algorithm,” IEEE Trans. Computer-Aided Des. of Integrated Circuits and Systems, vol.

19, no. 5, May 2000. pp. 577-588.

[53] Y.S.Kang,J.C.Le,and S.Kang,“Paralel BIST architecture for CAMs,”Electronics Letters, vol. 33, no.

1, pp. 30–31, Jan. 1997.

 [54] Kim H. C. et al, “A BISR (Buil-In Self-Repair) circuit for embedded memory with multiple

redundancies”, 1999 IEEE International Conference on VLSI and CAD, Oct. 26-27, 1999.

[55] M. Nicolaidis, N. Achouri, S. Boutobza, “Dynamic Data-Bit Memory Built-In Self-Repair”, Intl

Conference on Computer Aided Design (ICCAD), November 2003, San Jose, CA, USA

[56] S. Thoziyoor, J. Ahn, M. Monchiero, J. Brockman, and N. Jouppi, “A Comprehensive Memory

Modeling Tool and its Application to the Design and Analysis of Future Memory Hierarchies”, 35th

International Symposium on Computer Architecture (ISCA), June 2008, Beijing, China

[57] S. Li, et al., “CACTI-P: Architecture-Level Modeling for SRAM-based Structures with Advanced

Leakage Reduction Techniques”, IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), November 2011, San Jose, US

[58] E. Rodriguez-Tello, J. Torres-Jimenez, “Memetic Algorithms for Constructing Binary Covering

Arrays of Strength Three” Lecture Notes in Computer Science (LNCS) 2010, Volume 5975, pp 86-97

Abstract - Nanometric scaling increases the sensitivity of integrated circuits to defects and

perturbations. Thus, each new generation of manufacturing process is accompanied by a rapid

degradation of manufacturing yield and reliability. Embedded memories occupy the largest

part of the area of SoCs and comprise the vast majority of transistors. In addition, for

increasing the integration density, they are designed very tightly to the design and electrical

rules. Hence, embedded memories concentrate the majority of the manufacturing defects

affecting a SoC, and are also more sensitive to perturbations. Thus, they are the parts of the

SoC the most affected by the deterioration of manufacturing yield and reliability. This thesis

develops repair architectures optimally combining test algorithms, BIST architectures, and

error correcting codes, in order to propose effective solutions for improving the

manufacturing yield and reliability of embedded memories affected by high defect densities.

Keywords – memory testing, memory repair, reliability, yield, high defect densities

Resumé - La miniaturisation technologique augmente la sensibilité des circuits intégrés aux

défauts et nous observons à chaque nouvelle génération technologique une dégradation rapide

du rendement de fabrication et de la fiabilité. Les mémoires occupent la plus grande partie de

la surface des SoCs et contiennent la vaste majorité des transistors. De plus, pour augmenter

leur densité elles sont conçues de façon très serrée. Elles concentrent ainsi la plus grande

partie des défauts de fabrication et représentent aussi les parties les plus sensibles face aux

perturbations. Elles sont par conséquent les parties des SoCs les plus affectées par la

dégradation du rendement de fabrication et de la fiabilité. L’objectif de cette thèse est de

proposer des architectures combinant de façon optimale : algorithmes de test, architectures

BIST, et codes correcteurs d’erreurs afin de proposer des solutions efficaces pour

l’amélioration du rendement de fabrication et de la fiabilité des mémoires embarquées.

Mots clés – test des mémoires, réparation des mémoires, fiabilité, rendement, hautes densités

de défauts

Laboratoire TIMA, 46, avenue Félix Viallet, 38031 Grenoble Cedex, France

ISBN 978-2-11-129195-9

