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COMPENDIUM ON ATRIAL FIBRILLATION

Genetics of Atrial Fibrillation in 2020
GWAS, Genome Sequencing, Polygenic Risk, and Beyond

Carolina Roselli , Michiel Rienstra , Patrick T. Ellinor

ABSTRACT: Atrial fibrillation is a common heart rhythm disorder that leads to an increased risk for stroke and heart failure. 
Atrial fibrillation is a complex disease with both environmental and genetic risk factors that contribute to the arrhythmia. Over 
the last decade, rapid progress has been made in identifying the genetic basis for this common condition. In this review, 
we provide an overview of the primary types of genetic analyses performed for atrial fibrillation, including linkage studies, 
genome-wide association studies, and studies of rare coding variation. With these results in mind, we aim to highlighting the 
existing knowledge gaps and future directions for atrial fibrillation genetics research.

Key Words:  atrial fibrillation ◼ exome ◼ genetics ◼ genome-wide association study ◼ mutation

Atrial fibrillation (AF) is a common heart rhythm dis-
order with an estimated 33 million people affected 
worldwide.1 Reported risk factors for AF include 

advancing age, obesity, hypertension, diabetes mellitus, 
and cardiovascular diseases.2 Studies have also shown 
an increased risk for men to develop AF, compared with 
women.3 As discussed in the accompanying article in 
this Compendium,4 AF can lead to many serious medical 
consequences, including stroke, heart failure, cognitive 
impairment, and increased mortality.

The treatment of AF remains challenging. Although 
there are effective medications for anticoagulation to 
reduce the risk of stroke, antiarrhythmic medications 
are limited by a lack of efficacy to reduce symptoms and 
have potential side effects. Alternatively, catheter abla-
tion procedures can be effective in reducing the burden 
of AF, but these procedures are invasive, can be associ-
ated with complications, and may require a repeat proce-
dure for the long-term management of AF. Thus, there is 
a pressing need to develop new therapies for AF.

Similar to other common cardiovascular diseases, 
such as hypertension and myocardial infarction, AF is a 
complex disease with shared environmental and genetic 
factors that contribute to disease pathogenesis. Over 
the last decade, multiple studies have observed familial 
aggregation of individuals with lone AF.5 Similarly, the 

heritability of AF has been elegantly demonstrated in 
the Icelandic population.6 Based on a study on monozy-
gotic twins, the heritability of AF has been estimated as 
high as 62%, indicating a strong genetic component.7 In 
aggregate, these studies have consistently observed an 
increased risk of AF particularly when a first-degree fam-
ily member is affected and among individuals with early-
onset forms of arrhythmia.8 In more recent work, Weng et 
al9 used genetic data to estimate that the heritability of 
AF based on common genetic variants in individuals of 
European ancestry is ≈22%.

In the current review, we will provide an overview of 
multiple approaches used to examine the genetic basis of 
AF. We will present the most relevant results from these 
analyses and discuss emerging technological advances 
that could be leveraged to expand our understanding of 
the field. We discuss 3 broad genetic approaches applied 
to AF including (1) linkage analysis using families with 
Mendelian forms of AF, (2) genome-wide association 
studies (GWAS) using genotyping array data, and (3) 
coding variation from genome sequence data (Figure 1). 
These approaches are not mutually exclusive but are 
helpful as a framework to consider when reviewing the 
genetic studies of AF published to date. We will subse-
quently describe the application of GWAS data to clini-
cal risk prediction. Finally, we will discuss the knowledge 
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gaps in the field of AF genetics and describe emerging 
technologies that may shape the future of the field.

THREE BROAD GENETIC APPROACHES 
APPLIED TO AF
Familial AF and Linkage Analysis
Linkage analysis is typically performed in families with 
many affected individuals and a clear hereditary pattern. 
The analytic approach leverages genetic linkage or the 
tendency for a genetic marker near a disease-causing 
gene to be inherited together. The earliest application 
of this approach used a few hundred highly informative 
markers scattered throughout the genome. By matching 
transmission of the genetic marker with disease status 
in the family, a disease-causing region or locus can be 
linked to a given marker. In turn, the genes in this region 
can be sequenced to identify mutations that associate 
with disease. This approach has been elegantly used to 
identify many of the early genes implicated in hypertro-
phic cardiomyopathy and long-QT syndrome. As summa-
rized in Figure  2, a number of causative mutations for 
AF have been identified in large families or populations. 
Specific examples include mutations in the ion channel 
KCNQ1, the cardiac peptide NPPA, the transcription fac-
tor TBX5, and a motor protein MYL4.

The first mutation linked to familial AF was found in 
the ion channel KCNQ1, a gene that encodes the α sub-
unit of the IKs current. The AF-related mutations result in 
a gain of channel function and likely shortening of the 
atrial refractory period, a finding that would make it eas-
ier for reentry to continue and increase the susceptibility 
to AF.10 In a distinct family, a mutation was identified in 
NPPA, the gene encoding the atrial natriuretic peptide, a 
protein that is highly expressed in the heart.11 A frame-
shift mutation was found to remove a stop codon and 
lead to an extended mutant protein that had appeared to 
be protected from degradation resulting in greater circu-
lating levels and increased activity.12 In vivo experiments 
from the same study have shown that mutations in NPPA 
lead to a shortening of the monophasic action potential 
duration as well as the effective refractory period. These 
changes on atrial electrophysiology could increase sus-
ceptibility to AF.

A gain-of-function mutation in the transcription fac-
tor, TBX5, was associated with familial AF in the setting 
of Holt-Oram syndrome,13 a developmental disorder that 
leads to heart and limb malformations.14 In vitro studies 
demonstrated that the mutated TBX5 had enhanced 
binding to DNA and could lead to upregulation of down-
stream targets, such as NPPA and CX40.13,15 In a large-
scale study of Icelanders, autosomal recessive mutations 
in MYL4 were identified among individuals with early-
onset AF.16 This atrial-specific myosin light chain was 
found to have a mutation in an F-actin binding region, 
and modeling the mutation in zebrafish resulted in dis-
ruption of the sarcomere and atrial enlargement.

Thus, individual families with hereditary forms of AF 
can be incredibly helpful in informing disease biology. 
However, the mutations identified to date are by nature 
rare and therefore have a small impact on the overall 
scope of this common arrhythmia.

Genome-Wide Association Studies for AF
In contrast to studies in families, GWAS permit the 
analysis of entire populations by comparing individuals 
with and without AF at a large scale. Each individual is 
genetically fingerprinted using a low cost, high through-
put genotyping array. These arrays are used to determine 
the status of hundreds of thousands of genetic variants 
or single-nucleotide polymorphisms (SNPs) throughout 
the genome. While individual SNPs contain relatively 
little information, in aggregate, the use of hundreds of 
thousands of markers can capture the majority of the 
genetic diversity between individuals. To compare the 
data from one genotyping platform to another, the data 
are imputed or harmonized to a common reference panel 
consisting of millions of genetic markers.17 Comparisons 
of all the genetic markers are then made between cases 
and controls to identify regions associated with disease 
(Figure 1, middle). Importantly, unlike the analysis in fami-
lies in which a single causative mutation is identified, in 
GWAS a region or locus is linked to disease. This region 
may or may not contain any genes. Many causative vari-
ants identified by GWAS are in noncoding regions of the 
genome and have an effect on the regulation of a nearby 
gene. In recent years, the cost of genotyping arrays 
has fallen to <$50 per individual so it is now feasible 
undertake large-scale studies of common diseases and 
studies with >100 000 cases are increasingly common. 
Large sample sizes help to both ensure the validity of the 
results and to define the full extent of the genetic basis 
of the disease.

The first GWAS for AF was reported in 2007 and 
remarkably started with only a few hundred AF cases 
in the initial discovery.18 The small number of individu-
als needed in this first report was a reflection of the 
strength of the genetic association which is considerably 
greater than that observed for most other genome-wide 

Nonstandard Abbreviations and Acronyms

AF	 atrial fibrillation
eQTL	 expression quantitative trait locus
GWAS	 genome-wide association studies
LOF	 loss-of-function
PRS	 polygenic risk score
SNP	 single-nucleotide polymorphism
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studies. Carrying a single variant at this 4q25 locus near 
the gene PITX2 conferred over a 60% increased risk of 
disease in the general population and an even greater 
risk in younger individuals. As with many disease-asso-
ciated regions identified by GWAS, the association with 
AF at the PITX2 locus is in a noncoding region of the 

genome. As reviewed in other articles in this issue,19 the 
AF risk variants modulate the expression of PITX2 and 
loss of this region or the PITX2 gene itself can results 
in AF.20,21 In the ensuing years, many other GWAS for AF 
have been completed in predominantly European ances-
try participants.22–26 Initially novel loci were identified at 

Figure 1. Three primary types of genetic analyses for atrial fibrillation (AF).
Linkage analyses primarily focus on large families with hereditary forms of AF. The disease-linked regions can include multiple candidate genes 
one of which will contain a disease-causing mutation. Genome-wide association studies (GWAS) analyses are based on genotype array data that 
consists largely of noncoding variants that are presumed to regulate genes in the region or locus. Analyses of coding variation are derived from 
whole-exome or whole-genome sequencing data. Rare coding or loss-of-function variants are grouped and jointly tested in AF cases vs controls 
to identify specific disease-causing genes. Please note that these approaches are not mutually exclusive and are often combined depending upon 
the study design. LOF indicates loss-of-function; SNP, single-nucleotide polymorphism; and STR, short tandem repeat.

Figure 2. Major atrial fibrillation (AF)-associated genes and lines of evidence.
The figure illustrates AF-associated genes that were discovered through family based or gene-based studies. For each gene the lines of evidence 
are listed. The table includes the evidence from familial AF genetic analysis, whether coding variants in the gene are associated with AF, if the 
gene lies within an AF genome-wide association studies (GWAS) locus, whether loss-of-function variation is associated with AF, and functional 
evidence that has been reported for the gene in the context of AF. TF indicates transcription factor.
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16q22 close to the gene ZFHX3 and 1q21 close to the 
KCNN3.27–29 In 2 recent studies that both included over 
60 000 cases,30,31 nearly 140 AF loci have been identi-
fied to date (Table 1). Although rapid progress has been 
made in AF genetics, it is important to note that the vast 
majority of participants are of European descent (Fig-
ure  3). The 2 largest non-European GWAS were pub-
lished in 2017 and report results from Korean32 and 
Japanese33 cohorts. At least 3 variants for AF show 
significant heterogeneity across different ancestries 
(rs2129977 at PITX2, rs11598047 at NEURL, and 
rs2359171 at ZFHX3). Additionally, while a signal at the 
PITX2 locus can be found across ancestries, the top vari-
ant is not always the same nor strongly correlated.30 Two 
AF loci from a GWAS in Japanese ancestry, at the genes 
NEBL and SH3PXD2A, do not replicate in European 
ancestry and may be ancestry specific.33

Identifying Genes at AF Loci
Genetic variants identified in GWAS studies are largely 
located in noncoding regions of the genome. These non-
coding variants are presumed to alter the activity of a 
transcriptional regulatory element such as an enhancer 
or repressor that, in turn, results in modifying the tran-
scription of a nearby gene. Importantly, for most GWAS 
variants there is usually no straightforward path from an 
association by GWAS to a gene and a disease mecha-
nism. A recent study used STARR-seq (self-transcribing 
active regulatory region sequencing)  to identify regula-
tory elements and their target genes at multiple GWAS 
loci for AF. Furthermore, they found that the loss of a 
regulatory element at the HCN4 locus led to reduced 
gene expression.34 A myriad of analyses can follow a 
large-scale GWAS ranging from computational analy-
ses to the derivation of polygenic risk scores (PRSs) for 
AF risk prediction and the incorporation of GWAS data 
into other analyses (Table 2). In the subsequent sections, 
we will touch on a few helpful approaches with respect 
to AF, but for other potential directions please also see 
these recent reviews.47–49 One straightforward applica-
tion of GWAS data is to perform a pathway analysis to 
evaluate the collective effect of the genetic associa-
tion on different biological functions. Globally the AF-
associated genes represent distinct functional groups, 
including those underlying cardiac development, cellular 
electrophysiology, cardiomyocyte contractility, and struc-
ture.26,30,31 A similar approach was taken in a GWAS of 
the Japanese population and implicated suppression of 
the mTOR (mammalian target of rapamycin)  signaling 
pathway in AF.50

As noted above, a major challenge with GWAS is that 
the analyses usually identify a region of interest rather 
than a specific causative gene. Bridging the gap from vari-
ants to genes remains a major challenge in disease genet-
ics, particularly for complex polygenic traits such as AF. 
One common and helpful approach is to use expression 

quantitative trait loci (eQTL) mapping. An eQTL analysis 
links the genotype of a SNP at an AF locus to the expres-
sion of genes in the region. If an AF-associated SNP is 
strongly linked to the expression of a single gene that gene 
is likely to be the causative gene at the locus. While this 
approach is simple in theory, practically there are 2 primary 
limitations. First, eQTL analyses are often tissue specific. 
Although there are terrific publicly available resources 
such as GTEx or the Genotype-Tissue Expression project 
(https://gtexportal.org) that includes gene expression pro-
files from many tissues, unfortunately the cardiac analyses 
were limited to the left ventricle and right atrial append-
age.11 Recent work in the Cleveland Clinic Atrial Tissue 
Bank24,51 and the Myocardial Applied Genomics Network30 
have addressed this limitation by investigating the gene 
expression profiles of left atrial tissue. A second limitation 
of using eQTLs is that it requires large sample sizes and 
this is not always possible when tissues are hard to obtain 
such as the left atrium or the pulmonary veins in the case 
of AF. Finally, while eQTLs are powerful, they only explain 
a fraction of the disease loci. For example, in the latest 2 
GWAS of AF only 13% of the variants at AF loci could be 
linked to the expression of a single gene, and at 22% of 
AF loci the variants linked to one or more genes. These 
results are summarized in Table 1.

A complimentary approach to eQTL analyses is to use 
the 3-dimensional architecture of the genome to identify 
causative AF genes. Since many AF SNPs are in noncod-
ing regions of the genome, they are presumed to alter 
regulatory elements such as enhancers or repressors 
that, in turn, bind to the promoter of a nearby gene to 
regulate its expression. The contact points between AF-
associated regulatory elements and gene promoters can 
be assessed using chromosome conformation capture 
technologies. For example, Hi-C is a genome-wide chro-
mosome conformation capture technique that allows the 
unbiased detection of chromatin interactions across the 
entire genome. Similar to eQTL analyses, enhancer-pro-
moter contacts can be tissue specific and a recent Hi-C 
study from the human heart roughly doubled the number 
of AF-associated genes derived from GWAS data.52 Other 
analyses of AF GWAS data such as the incorporation of 
multi-omic data sets53 or epigenetic analyses including 
STARR-seq54 are described in detail in the accompany-
ing review by van Ouwerkerk and colleagues.55 Ultimately, 
although any gene implicated by these methods will 
require further validation in vitro and in vivo.

Assessing Polygenic Risk From GWAS
Since we now have very dense GWAS data sets for 
AF, it is natural to wonder whether this data could be 
used in a clinical setting to identify high risk individuals, 
stratify screening efforts or look for differential treat-
ment outcomes. The polygenic nature of AF as captured 
in GWAS can be transformed into a genetic risk score for 
each individual. An AF PRS summarizes the cumulative 
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Table 1.  To Date, There Are at Least 138 AF Loci Identified in Single Variant Testing With P<5×10−8

Rsid Nearest Gene(s) or eGene* Rsid Nearest Gene(s) or eGene* Rsid Nearest Gene(s) or eGene*

rs187585530 UBE4B rs716845 KCNN2 rs1822273 NAV2

rs880315 CASZ1 rs2012809 FBN2, SLC27A6 rs949078 SORL1, MIR100HG

rs7529220 HSPG2, CELA3B rs34750263 WNT8A, NME5 rs76097649 KCNJ5

rs2885697 SCMH1* rs174048 ARHGAP26, NR3C1 rs6490029 CUX2

rs11590635 AGBL4 rs12188351 SLIT3 rs10842383 LINC00477, BCAT1

rs56202902 FAF1 rs6882776 NKX2-5 rs113819537 SSPN*

rs146518726 C1orf185 rs73366713 ATXN1 rs12809354 PKP2

rs12044963 KCND3 rs34969716 KDM1B rs7978685 NACA

rs4484922 CASQ2* rs1307274 C6orf1, NUDT3 rs35349325 BEST3

rs79187193 GJA5 rs3176326 CDKN1A rs11180703 KRR1, PHLDA1

rs11264280 KCNN3, PMVK rs6907805 CGA, ZNF292 rs883079 TBX5

rs72700114 METTL11B, LINC01142 rs210632 GOPC rs12810346 TBX5-AS1, TBX3

rs608930 GORAB, PRRX1 rs17079881 SLC35F1 rs10773657 HIP1R

rs10753933 PPFIA4* rs13191450 GJA1, HSF2 rs12298484 DNAH10

rs4951261 NUCKS1 rs12208899 LINC00326, EYA4 rs6560886 FBRSL1

rs6546620 KIF3C rs117984853 UST rs9580438 LINC00540, BASP1P1

rs6742276 XPO1 rs11768850 SUN1 rs35569628 CUL4A

rs2540949 CEP68* rs55734480 DGKB rs28631169 MYH7

rs10165883 SNRNP27 rs6462078 CREB5 rs2145587 AKAP6

rs72926475 REEP1, KDM3A rs74910854 PMS2P2* rs73241997 SNX6, CFL2

rs28387148 GYPC* rs11773884 CDK6 rs2738413 SYNE2

rs67969609 TEX41 rs62483627 COG5 rs74884082 DPF3

rs12992412 MBD5 rs11773845 CAV1 rs10873299 LRRC74, IRF2BPL

rs56181519 WIPF1* rs55985730 OPN1SW rs147301839 MYZAP

rs2288327 FKBP7* rs7789146 KCNH2 rs62011291 USP3

rs3820888 SPATS2L* rs35620480 LINC00208, GATA4 rs12591736 TLE3, UACA

rs35544454 ERBB4 rs7508 ASAH1* rs74022964 HCN4, REC114

rs6810325 MKRN2* rs7846485 XPO7 rs12908004 LINC00927, ARNT2

rs73032363 THRB rs62521286 FBXO32 rs12908437 IGF1R*

rs6790396 SCN10A rs35006907 MTSS1, LINC00964 rs2286466 RPL3L*

rs34080181 SLC25A26* rs7460121 MIR30B rs2359171 ZFHX3

rs17005647 FRMD4B rs6993266 PTK2 rs7225165 YWHAE, CRK

rs7632427 EPHA3 rs4977397 SLC24A2, MLLT3 rs8073937 POLR2A, TNFSF12

rs17490701 PHLDB2 rs4385527 C9orf3 rs72811294 MYOCD

rs1278493 PPP2R3A rs4743034 ZNF462 rs11658278 ZPBP2

rs4855075 GNB4 rs10760361 PSMB7 rs242557 MAPT

rs60902112 XXYLT1 rs2274115 LHX3 rs76774446 GOSR2

rs9872035 PAK2 rs2296610 NEBL rs7219869 KCNJ2, CASC17

rs3822259 WDR1 rs7919685 NRBF2* rs12604076 CYTH1

rs1458038 PRDM8, FGF5 rs7096385 SIRT1 rs9953366 SMAD7

rs3960788 UBE2D3* rs60212594 SYNPO2L rs8088085 MEX3C

rs2129977 PITX2, C4orf32 rs11001667 C10orf11 rs2145274 CASC20, BMP2

rs55754224 CAMK2D rs1044258 C10orf76 rs7269123 C20orf166

rs10213171 ARHGAP10 rs11598047 NEURL rs2834618 LOC100506385

rs10520260 HAND2-AS1* rs2047036 SH3PXD2A rs465276 TUBA8

rs6596717 LOC102467213, EFNA5 rs10749053 RBM20 rs133902 MYO18B

The table above includes the sentinel variant at each locus from AF GWAS publications. The listed genes are either the nearest gene(s) or the eGene. The eGene is 
listed when it is the only eGene at that locus reported by Roselli et al30 or Nielsen et al.31 Notably, only 18 out of 138 variants are associated with only one eGene. AF 
indicates atrial fibrillation; eQTL, expression quantitative trait locus; and GWAS, genome-wide association studies.

*The eGene is defined as a gene with an eQTL to the variant at an AF GWAS locus.
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genetic risk and can be computed using anywhere from 
just a few variants at the top loci or the data from millions 
of SNPs across the entire genome (Figure 4).

An initial AF PRS used the top 12 genome-wide sig-
nificant genetic variants,56 while more contemporary itera-
tions incorporate over 6.6 million variants.57 In the latter 
approach, the top 1.5% individuals with a high PRS had a 
more than a 4-fold increased risk for AF. The variants and 
weights included in the latest AF PRS are publicly avail-
able (http://www.broadcvdi.org). In one interesting appli-
cation of an AF PRS, Weng et al58 found that individuals 
in the highest tertile of polygenic risk had a higher lifetime 
risk for AF (47%) compared with the individuals in the low-
est tertile (26%). The combination of clinical and genetic 
data permitted additional refinement of risk. For example, 
individuals with a low clinical risk but a high genetic risk 
had an overall lifetime risk for AF of 44%. A complemen-
tary review in this Compendium focuses on the potential 
clinical applications of AF genetics and PRSs.59 

Exome and Genome Sequencing to Identify AF 
Genes
While GWAS has been deployed at great scale, a major 
limitation of the method is that it is only able to capture 

known variants in the genome. Yet many diseases arise 
from unique mutations in the coding region of genes that 
emerge spontaneously in an individual of family. Although 
these mutations can be identified using a targeted 
approach of a single or small number of genes, the avail-
ability of genome-wide approaches has largely replaced 
these earlier studies. Currently, it is possible to sequence 
the entire protein-coding region of the genome for about 
$200 or the entire genome for <$800, and prices are 
continuing to fall. These technological advancements 
and price reductions have started to enable the applica-
tion of large-scale sequencing studies for AF.

Once a population of cases and controls has been 
sequenced, common genetic variants are analyzed using 
the approach previously described for GWAS. In contrast, 
rare coding genetic markers, often defined as present 
in <1% of the population, are analyzed in gene-based 
tests. For a gene-based test, coding variants are analyzed 
jointly across a gene unit for an association with dis-
ease, as depicted in Figure 1. The most commonly used 
approach restricts the analysis to variants predicted to 
lead to a loss-of-function (LOF) of the encoded protein. A 
considerable advantage of testing rare LOF variants over 
GWAS is establishing a direct link from gene function to 
disease. In addition, this analysis provides a clear direction 

Figure 3. Ancestry of the cases in genome-wide association studies (GWAS) for atrial fibrillation (AF).
European ancestry sample is plotted towards the left in white and non-European ancestry is plotted towards the right highlighted in different 
colors. Plotted is the number of cases included in each published AF GWAS study or meta-analysis. Eleven out of 13 studies include 
predominantly European ancestry samples, shown in white. Two studies are Japanese only and Korean only. Within the multi-ancestry meta-
analyses Roselli et al30 included the largest proportion of non-European cases, including Japanese, Brazilian, African American, and Hispanic 
samples. AFR indicates African-American; BRA, Brazilian; EUR, European; HISP, Hispanic; JAP, Japanese; and KOR, Korean.
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of effect between LOF of the encoded protein and dis-
ease. Although many sequencing analyses focus on LOF 
variants, it is important to note that gain-of-function muta-
tions such as those identified in families with TBX5 or 
KCNQ1 would not be identified with this approach.

In 2017, Thorolfsdottir et al60 analyzed whole-genome 
sequencing data from the Icelandic population including 
14 255 AF cases and 374 939 controls. The Icelandic 
population provides a unique resource for genetic discov-
ery, because it is a relatively homogeneous and geneti-
cally isolated population that is enriched with rare LOF 
coding variants. The study identified a low-frequency 
missense mutation in the gene PLEC that encodes the 
cytoskeletal protein plectin. The missense mutation in 
PLEC is associated with increased risk for AF. Addition-
ally, a missense mutation in the myosin gene MYH6 was 
significantly associated with AF, a gene that has previ-
ously been associated with sick sinus syndrome.61

Within the past 2 years, at least 4 studies have iden-
tified LOF mutations in  the gene TTN among individu-
als with AF. Ahlberg et al62 found an enrichment of LOF 
mutations in TTN among families and individuals in Den-
mark with early-onset AF. Shortly thereafter, Choi et al63 
observed a similar finding among unrelated individuals 
with early-onset AF. Using nearly 2800 AF cases and 
5000 controls, they found that TTN LOF mutations were 
present in ≈2% of individuals with an onset of AF before 
65 years of age. With younger ages of onset, the fre-
quency of TTN mutations rose to a high of over 7% of 
individuals younger than 30 years of age. As with dilated 
cardiomyopathy, the association between TTN and AF 
had a stronger effect when the analysis was restricted to 
TTN exons that were highly expressed in cardiac tissue.

Although these studies pointed to an increased fre-
quency of TTN mutations in individuals with early-onset 

AF, the question then arose whether TTN mutations were 
detectable in the general population with AF. To address 
this, Choi et al64 used exome sequencing data in 1400 
AF cases and >40 000 controls from the UK Biobank. 
They observed a similar strong association between LOF 
variation in TTN and AF.64 Furthermore, the penetrance 
of AF among TTN mutation carriers was markedly higher 
among individuals with an increased AF polygenic risk.

FUTURE DIRECTIONS IN AF GENETICS
While rapid progress has been made in our understand-
ing of the genetic basis of AF over the last decade, it is 
important to realize that we are currently in the midst of 
an explosive growth in the scale of genetic data available 
worldwide. In the following sections, we have sought to put 
these emerging resources in the context of future poten-
tial studies in AF genetic research (Figure 5). While there 
are many other potential avenues of exploration, hopefully 
this will serve as a broad framework for the reader.

Expanding Genetic Studies in Non-Europeans
As poignantly illustrated in Figure 3, the vast majority of 
genetic analyses for AF have been performed in individuals 
of European descent. The historical tendency to focus on 
European populations has led to a nonrepresentative dis-
tribution of ancestries in genetic studies compared with the 
real-world diversity. As we move forward, it will be critical 
to expand our genetic resources throughout the world, not 
only for AF but for all common diseases. Expanding beyond 
Europeans has 2 primary advantages. First, it is clear that 
there are unique lessons that can be learned about com-
mon diseases among different races and ethnicities. For 
example, in a large Japanese GWAS for AF, only 85% of 
the top hits overlapped with the results from individuals of 
European ancestry. Second, as we think about applying 
genetic risk scores to clinical care, it will be important that 
we do not blindly apply a score developed in Europeans to 
other races and ethnicities. Such an approach may further 
exacerbate health care disparities.65 Multiple programs in 
the United States are trying to address some of the dispar-
ity in genetic research including the NHLBI TOPMed Pro-
gram (https://www.nhlbiwgs.org), Million Veteran Program 
(https://www.mvp.va.gov), and All of Us (https://www.
allofus.nih.gov). The All of Us project is an ongoing longi-
tudinal collection of over 1 million individuals and is being 
intentionally structured to ensure ethnic and racial diversity. 
The expansion of biobanks throughout the world including 
in China (https://www.ckbiobank.org), India66 and Africa 
(https://h3africa.org) will also be essential to this effort.

Sequencing, Sequencing, and More Sequencing
An exciting development in AF genetics has been the 
continued expansion of the availability of exome and 

Table 2.  Overview of Studies That Integrated AF GWAS 
Data With Other Clinical, Epigenetic or Genetic Data Sets

Study Type Description and Reference

Mendelian randomization Obesity35

Thyroid function36

Serum albumin37

Body mass index/body composition and 
cardiovascular conditions including AF38

Body composition39

Methylation Genome-wide DNA methylation analysis40

Methylome-Wide Association Study41

Heritability Heritability of AF9

Ancestry-specific analyses European ancestry as a risk factor for AF42

AF recurrence after ablation Common variants predict AF recurrence43

Genetic interaction Gene-gene interactions44

Genetic interactions with risk factors45

Associations with 
mitochondrial DNA

Mitochondrial DNA and incident AF46

AF indicates atrial fibrillation; and GWAS, genome-wide association studies.
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genome sequencing. As discussed above, the major 
advantage of sequencing over GWAS is that sequenc-
ing directly implicates the gene as causally related to 
AF. There are multiple international efforts that will 
coalesce to enhance our understanding of common 
disease genetics. These include ongoing work in the 
UK Biobank, deCODE, Estonia, Finland, Japanese Bio-
bank, Million Veterans Program, the NHGRI CCDG, and 
NHLBI TOPMed Programs among many others. As a 
result, within the next 2 years, we can anticipate having 
data sets for AF consisting of >50 000 cases with either 
exome or genome sequencing. The power of such large 
data sets was nicely illustrated for autism where many 
additional disease-causing genes were identified with 
the enhanced power of these large-scale studies.67

The utility in harnessing sequence data for AF 
can perhaps be exemplified best by the investiga-
tors at deCODE genetics.68 The Icelandic population 
is relatively homogenous and can be traced back to a 
small set of common ancestors, making it one of the 
few bottleneck populations present in the current day 
world. The resulting enrichment for rare mutations can 

manifest in naturally occurring genetic knockouts in 
humans.69 The uniqueness of the population structure 
combined with extensive whole-genome sequencing 
has already led to the identification of multiple new 
AF genes. Similarly, in the coming years, sequencing 
of other bottleneck populations such as Finland70 and 
Sardinia71 will be a valuable resource for studying com-
mon diseases including AF.

Structural Variation From Whole-Genome 
Sequencing
Beyond gene-based tests, it is also clear that current 
whole-genome sequencing data sets have not been 
used to their fullest potential. Structural variants, such 
as inversions, duplications, translocations, as well as 
large deletions and insertions may be associated with 
AF. It has been estimated that structural variants can 
have a larger than expected impact on the genomic 
differences between individuals.72 Identification of 
these structural modifications from the raw sequenc-
ing data is more challenging than identifying single 

Figure 4. Overview of polygenic risk scores (PRS) for atrial fibrillation (AF).
A PRS is calculated for each individual as a sum of the product of genetic dosage and a weight. The weights are derived from the effect 
estimates of a genome-wide association study. The PRS of individuals in a population follows a gaussian distribution. Individuals in the highest 
percentile of the distributions show an increased risk for AF vs the remaining population. Potential applications of an AF PRS can include 
improving risk prediction, prioritizing high-risk individuals for screening, and examining differential outcomes of AF.
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variants, short insertions, or short deletions. It requires 
data reprocessing and the application of specialized 
algorithms to the sequencing data. To date, no single 
method can identify every type of structural variant 
with high confidence.73 This suggests that a combi-
nation of methods may generate the highest yield. 
Structural variants can have a large impact on the 
function of genes and have been associated with 
diseases such as cancer74 and complex diseases, 
including Crohn disease, rheumatoid arthritis, and dia-
betes mellitus.75 We can anticipate that the systematic 
assessment of structural variation will identify novel 
genetic mechanisms for AF.

Expanding Gene Expression and Epigenetic 
Analyses to Tissues Relevant to AF
To move from associations to mechanisms for the AF 
GWAS loci, it will be essential to expand our repertoire 
of disease relevant eQTL and epigenetic data sets. Cur-
rently, there are modestly sized transcriptional data sets 

from the human left atrium and very limited data from 
pulmonary venous tissues. Expanding these data from 
the 100 to 200 available samples by an order of magni-
tude will dramatically increase the availability of eQTLs 
that link AF disease variants to causative genes.

It will also be essential to move beyond the analyses 
of bulk tissues and to focus on the analyses of single-
cells for transcriptional and epigenetic profiling,76 tech-
niques which have only rarely been applied to AF to 
date. Recent work by Tucker et al77 in which they per-
formed single nucleus RNA sequencing of the healthy 
human heart provides an example of the benefit from 
this approach. In a study of nearly 280 000 single nuclei 
from the 4 chambers of the human heart, a number of 
findings emerged that are relevant to AF. They were 
able to identify at least 10 major cell types in the heart, 
chamber specific transcription in nonmyocyte popula-
tions, and an cardiomyocyte enrichment of the genes at 
AF GWAS loci.77

A logical extension of this work will be to compare the 
single-cell transcriptional and epigenetic profiles of left 

Figure 5. Future directions in atrial fibrillation (AF) genetics.
Overview of emerging technologies and analyses that could shape the field of AF genetics for the next decade. Large-scale rare coding sequence 
data: With dropping sequencing costs large-scale exome sequencing data sets will become available and accelerate the detection of rare and 
ultra rare coding variation that associate with AF. Structural genetic variation: Whole-genome sequencing data allows the detection of structural 
variation such as inversions, translocations, and large insertions and deletions. Methods to detect structural variation are improving and could 
lead to uncovering novel structural variant contributions to AF. Polygenic risk for diverse ethnicities: Increasing the contribution of non-European 
samples in AF genome-wide association studies (GWAS) will improve the polygenic risk prediction for diverse ethnicities. Functional cellular 
knockout assays: Gene knockout studies in relevant cell types, such as atrial cardiomyocytes, will enable the evaluation of AF candidate genes 
from GWAS loci in the context of functionally relevant readouts. Single-cell RNA sequencing: Next generation sequencing technologies such 
as the transcriptional profiling of individual cells from cardiac tissue will transform AF genetics and increase the resolution of gene expression 
profiles to a cell-type–specific level. Cell-type–specific expression quantitative trait loci could resolve the causal gene at AF GWAS loci. Machine 
learning on big data: Machine learning can facilitate the integration of big data sources such as gene expression profiles, proteomics data, protein-
protein interaction networks, methylation data, regulatory regions, and spatial organization of the DNA. Machine learning algorithms will support 
the goal to identify causal genes for AF, resolve regulatory mechanisms at AF GWAS loci and uncover patterns that imply disease mechanisms of 
AF. LOF indicates loss-of-function.
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atrial and pulmonary vein samples from AF cases versus 
controls. These results would also enable the discovery of 
changes of the cellular compositions, transcription, and 
cell-type–specific eQTLs in AF versus healthy individuals.

Developing Large-Scale Functional Screens for 
AF Genes
Even with additional expression and epigenetic data sets, 
it will be critical to expand our throughput for the func-
tional assessment of the genes at the AF GWAS loci. The 
current state of our AF GWAS results can illustrate the 
scope of the problem. At present, there are close to 140 
genetic loci for AF and within these loci there are >1000 
genes or transcripts. Of these many loci, only a minor-
ity have a single gene that can be convincingly linked 
by eQTL or Hi-C analyses. This disconnect between our 
expansive knowledge of disease-associated variants and 
limited understanding of the mechanisms is not unique 
to AF but is present for essentially all common diseases.

To help address this challenge, the International 
Common Disease Alliance was founded in 2019. This 
partnership between academia, governments, pharma-
ceutical, and technology companies is a collaborative 
initiative with the goal to improve diagnosis, prevention, 
and treatment of disease through accelerating research 
that focuses on translating genetic findings into disease 
biology. While a lofty goal, the implementation of high 
throughput functional studies to elucidate the missing 
link between noncoding genetic variants, causal gene, 
and gene function was identified as one of the key priori-
ties by this effort (https://www.icda.bio).

How could such functional screens be implemented for 
AF? It will clearly be impossible to characterize more than a 
small number of mouse or even zebrafish models and as a 
result, we will have to turn to cell-based models as an inter-
mediate step. While cell-based models have many potential 
limitations, the scale of screening is the primary strength of 
this approach. Combining stem cell-derived cardiomyocytes 
and CRISPR-Cas9 technology will facilitate high through-
put gene knockout studies for cellular assays. Potential cell 
readouts could include electrophysiological measurements 
of calcium signaling or action potential duration,78,79 struc-
tural assessments of sarcomere assembly,80 contractility,81 
and transcription.82,83 Given that current AF GWAS loci rep-
resent a cross section of transcription factors, ion channels 
and sarcomeric proteins, cell-based screening will likely 
require multiple readouts.

It will also be important that more consideration is 
given to the development of cell models that more fully 
recapitulate the diverse etiologies of AF. For example, 
there are at least 10 major cell types in the human atria 
and the study of myocytes will not be helpful if an AF 
gene is predominantly expressed in another cell type 
such as fibroblasts84 or in a cell subtype arising from the 
conduction system or pulmonary veins.

Implementing Machine Learning to Identify 
Endophenotypes of AF
The rapid evolution in machine learning methods has 
already started to transform the medical field. The 
availability of multi-dimensional data sets ranging from 
electronic health records, imaging data, clinical measure-
ments, and genetics is providing the basis for algorithm-
based clinical research that has the power to improve 
risk prediction, response to treatment and clinical diag-
nostics for AF. Particularly exciting recent work has 
applied machine learning to the ECG to identify subclini-
cal markers or endophenotypes that predict the future 
development of AF.85,86 In the future, it will be interesting 
to study the genetics of these AF endophenotypes and 
to use machine learning to enhance the prediction of 
LOF impact of coding variants.87 Furthermore, it is clear 
that novel computational approaches will be required 
to integrate the existing and emerging data sources in 
AF genetics. Predicting the most likely causal genes at 
an AF GWAS locus or identify gene networks relevant 
for AF will require the integration of large data sources. 
The combination of GWAS results with gene expression 
profiles, proteomics data, protein-protein interaction net-
works, methylation data, regulatory regions, and spatial 
organization of the DNA requires efficient computational 
solutions that can deal with multi-dimensional data. For a 
broader discussion on this topic please see the accom-
panying review in this Compendium.88 

CONCLUSIONS
AF is a complex disease with a combination of both 
environmental and genetic factors that contribute to the 
pathogenesis of the arrhythmia. Rapid progress has been 
made in identifying many common variant loci in GWAS for 
AF, yet major challenges remain in moving from disease 
associations to specific mechanisms. Recent genome 
and exome-based sequencing studies have identified 
TTN as the gene most commonly associated with muta-
tions in individuals with AF. Future studies will seek to 
explore the application of PRSs to clinical care, build out 
genetic studies in non-European populations, and further 
expand single-cell sequencing and omic technologies in 
cells and tissues relevant to AF. Further refinement of the 
genetic basis of AF will ultimately facilitate the identifica-
tion of new therapeutic targets and enable more precise 
risk stratification for this common arrhythmia.
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