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Abstract Hyperspectral images have a higher spectral resolution (i.e., a larger
number of bands covering the electromagnetic spectrum), but a lower spatial
resolution with respect to multispectral or panchromatic acquisitions. For in-
creasing the capabilities of the data in terms of utilization and interpretation,
hyperspectral images having both high spectral and spatial resolution are de-
sired. This can be achieved by combining the hyperspectral image with a high
spatial resolution panchromatic image. These techniques are generally known
as pansharpening and can be divided into component substitution (CS) and
multi-resolution analysis (MRA) based methods. In general, the CS methods
result in fused images having high spatial quality but the fused images suffer
from spectral distortions. On the other hand, images obtained using MRA
techniques are not as sharp as CS methods but they are spectrally consistent.
Both substitution and filtering approaches are considered adequate when ap-
plied to multispectral and PAN images, but have many drawbacks when the
low-resolution image is a hyperspectral image. Thus, one of the main challenges
in hyperspectral pansharpening is to improve the spatial resolution while pre-
serving as much as possible of the original spectral information.
An effective solution to these problems has been found in the use of hybrid
approaches, combining the better spatial information of CS and the more accu-
rate spectral information of MRA techniques. In general, in a hybrid approach
a CS technique is used to project the original data into a low dimensionality
space. Thus, the PAN image is fused with one or more features by means of
MRA approach. Finally the inverse projection is used to obtain the enhanced
image in the original data space. These methods, permit to effectively enhance
the spatial resolution of the hyperspectral image without relevant spectral dis-
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tortions and on the same time to reduce the computational load of the entire
process. In particular, in this paper we focus our attention on the use of Non-
linear Principal Component Analysis (NLPCA) for the projection of the image
into a low dimensionality feature space. However, if on one hand the NLPCA
has been proved to better represent the intrinsic information of hyperspectral
images in the feature space, on the other hand, an analysis of the impact of
different fusion techniques applied to the nonlinear principal components in
order to define the optimal framework for the hybrid pansharpening has not
been carried out yet. More in particular, in this paper we analyze the overall
impact of several widely used MRA pansharpening algorithms applied in the
nonlinear feature space. The results obtained on both synthetic and real data
demonstrate that, an accurate selection of the pansharpening method can lead
to an effective improvement of the enhanced hyperspectral image in terms of
spectral quality and spatial consistency, as well as a strong reduction in the
computational time.

Keywords Nonlinear PCA · Hyperspectral image · hybrid pansharpening ·
Image fusion

1 Introduction

A large literature exist on pansharpening and in the last years the number
of contributions has grown significantly. The great interest of the community
on this topic is proved by dedicated sessions in the most important Remote
Sensing and Earth Observation conferences, as well as by the launch of public
contests, as the one sponsored by the Data Fusion Committee of the IEEE
Geoscience and Remote Sensing Community in 2006 [1]. A taxonomy of pan-
sharpening methods can be found in the literature [2][3]. They can be mainly
divided in two groups: the MultiResolution Analysis (MRA) based, and the
Component Substitution (CS) methods.
In the MRA framework each image is decomposed, by iterative applications
of a given operator, into a sequence of signals (or pyramid) with decreasingly
informative content. Moreover, MRA methods can also be divided accord-
ing to the transformations used for the detail extraction and their injection.
The use of pyramidal decomposition as an efficient image representation tool
was proposed in [4] by performing a decomposition of the original image via
successive lowpass Gaussian filterings and decimations (Laplacian pyramid).
The suitability of this method for pansharpening has been shown in [5] espe-
cially when an adequate knowledge of the sensor Modulation Transfer Func-
tion (MTF) is available [6]. One widely investigated MRA tool relies on the
wavelet/contourlet decomposition [7], [8] and yields to notable performances
[1]. Both decimated Mallat’s method [9], [10] and undecimated approaches
(realized through the ”à trous” method [11]) have been employed to perform
the Discrete Wavelet Transform (DWT). The latter can be easily matched to
the sensor MTF [6], but, in principle, the non-orthogonality could compromise
the spectral quality of the image [12].
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In the CS techniques, the low resolution image is projected into a feature space,
where one of the obtained features is substituted with the PAN image. The
enhanced image is then obtained by reprojecting the features back into the
data space. This approach is well represented by the Intensity-Hue-Saturation
(IHS) and the Principal Component Analysis methods. The IHS transforma-
tion has the ability to separate effectively spatial information (the so-called
Intensity component) and spectral information (the Hue and the Saturation
components). The fused product is obtained by substitution (after histogram
matching) of the panchromatic image with the Intensity component [13]. The
application of this method is clearly limited to MS images with only three
bands but an extension to any multispectral image has been proposed by Tu
et al. [14]. The PCA [15][3], which is widely used in signal processing, statistics
and many other domains, transform the original MS/HS bands into a new set
of spectral uncorrelated components. The amount of the data variance is the
greatest in the first component, and decreases in the following ones. In gen-
eral, the first principal component collects the information that is common to
all bands used as input data to the PCA, i.e., the spatial information, while
the spectral information that is specific to each band is captured in the other
principal components. This makes the principal component substitution an
adequate technique when merging MS and PAN images. It is worth to under-
line that, both in the case of IHS and PCA, some spatial information may not
be mapped to the first component, depending on the degree of correlation and
spectral contrast existing among the MS bands.
In general, the CS methods result in fused images having high spatial quality
but with possible spectral distortions [16]. The images fused using methods
based on the MRA approach are not usually as sharp as the ones obtained CS
but they are spectrally consistent [16]. Moreover, the application of pansharp-
ening techniques designed for multispectral images to hyperspectral images
can lead to an increase of spectral distortion. This can be explained with the
following example. Let us consider an image with two objects in the scene,
one colored in red and one in blue. In a panchromatic image, both objects
will differ only in terms of intensity, while in a multispectral image, the two
objects will be represented separately in two different bands. This means that
inserting spatial information from the panchromatic image into the red band
will result in an enhanced red band that have also spatial information from the
blue. From this point of view, considering that in a hyperspectral image the
number of different spectral bands is higher than in a MS image, it is possible
that the injection of the same spatial details in each hyperspectral band may
lead to an increase of the spectral distortion to unacceptable values.
Another relevant issue concerning the pansharpening of hyperspectral data is
related to the high number of bands that characterizes this imagery. In fact, the
application of a pan-sharpening technique to hundreds of bands may result in
a not sustainable increase of the computational load and complexity. For this
reason a dimensionality reduction preprocessing technique is desired to reduce
the computational complexity of the complete process. In the literature, the
most used techniques for dimensionality reduction are based on linear trans-
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formations, such as Principal Component Analysis (PCA), Minimum Noise
Fraction (MNF) or Independent Component Analysis (ICA). In each of these
techniques, the obtained components are ranked in order of relevant infor-
mation content (cumulative variance, noise, etc...). For instance, in the PCA
transformation, most of the original information is projected in the first few
components while the remaining ones represent only uncorrelated noise. The
dimensionality reduction is then performed by discarding these last compo-
nents. Based on this assumption, by discarding the last components will then
result only in noise removal. However, this approach is effective based on the
assumption that in the original data the relevant information is mainly char-
acterized by linear correlations. Unfortunately, many hyperspectral images are
not only characterized by linear correlations, consequently, a linear transforma-
tion is not able to completely project all the relevant information into the first
few components, but part of it could be found also in the other components.
A dimensionality reduction performed by discarding the last components of a
linear transformation may result in a loss of information and consequently in
a spectral distortion as a result of the inverse transformation. Moreover, the
first PCA component usually retains information from all the original spectral
bands. This means that it may include objects not visible in the spectrum of
the PAN image and the fusion process will lead to a further spectral distortion.
Therefore a nonlinear approach able to preserve the spectral information of
the original image and at the same time reduce the computational load of the
process is advisable.
A possible solution to overcome mutual limitations of both CS and MRA
approaches, is to use hybrid approaches, combining the different classes of
methods in order to find an appropriate balance between spectral and spatial
preservation. In the general framework of the hybrid pansharpening, the HS
image is firstly projected into a feature space by means of a linear or nonlinear
transform, as in CS. Then, according to a MRA approach, spatial filters are
applied to the PAN image in order to extract spatial details that will be in-
jected in one or more features obtained in the previous step. Finally an inverse
transform is applied in order to obtain the enhanced image. In this way it is
possible to reduce the spectral distortion produced by the substitution process.
On the other hand, the spatial enhanced image may present less spatial details
than the image obtained using a classic CS technique. Thus, depending on the
selected filtering method, the final image may result in an optimal tradeoff
between spectral and spatial quality. Few examples of hybrid pansharpening
approaches have been proposed in the literature. A hybrid approach has been
proposed in [5], where GS and gaussian filters have been combined to enhance
the quality of MS images. An alternative solution has been proposed in [17]
exploiting the synergic combination of NonLinear Principal Component Anal-
ysis (NLPCA) [18] and INDUSION [19]. In particular, the NLPCA has been
used to project the low resolution HS image into a reduced dimensionality fea-
ture space. Then, the spatial information from the high resolution PAN image
has been injected into the obtained nonlinear principal components (NLPCs)
by means of INDUSION. Finally, the enhanced features have been reprojected
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back to the original data space using the inverse NLPCA function in order to
obtain the enhanced HS image. The obtained results demonstrated that the
use of NLPCA can effectively improve the quality of the enhanced hyperspec-
tral if compared with the results obtained applying the INDUSION directly to
the original image. While it has been demonstrated that, compared to other
similar approaches, the NLPCA is able to retain more relevant information in
less components [20], an in deep analysis of the most suitable MRA techniques
for the pansharpening of NLPCs is still missing. Moreover, in [21] it has been
pointed out that the NLPCs may be more related to different parts of the
spectrum, thus suggesting the fusion of the PAN image with only a subset of
NLPCs. For these reasons in this paper we propose an extensive analysis in
terms of pansharpening technique as well as the method to select the features
to be used.
The remainder of this paper is the following. Nonlinear transformations and
the NLPCA method, are is described in Section 2, while Section 3 reports the
validity of the proposed technique in two test cases: The first one is a syn-
thetic dataset obtained from by the ROSIS sensor. In the second case a real
HS image acquired by the CHRIS-Proba sensor will be enhanced by using the
spatial information coming from a QuickBird Panchromatic image. Finally,
the conclusions and perspectives are given in Section 4.

2 NLPCA-based hybrid pansharpening method

In the literature many methods have been proposed to extract component in a
nonlinear manner, e.g., Locally linear embedding (LLE) [22] and Isomap [23]
visualize high dimensional data by projecting (embedding) them into a two or
three-dimensional space. Principal curves and self organizing maps (SOM) [24]
describe data by nonlinear curves and nonlinear planes up to two dimensions.
The main limitation of these methods is related to obtaining low number of
features, that may be not sufficient to describe the inherent information of
the data. An alternative solution to NLPCA can be offered by the Kernel
Principal Components Analysis (KPCA) [25]. In KPCA the original data is
firstly mapped into a higher dimensional feature space F , and then PCA is
performed in F to extract nonlinear principal components of the input data.
Due to the high computational complexity, the mapping into a higher feature
space can be exploited by applying the kernel trick method. The kernel trick
in machine learning is a way to easily adapt linear algorithms to nonlinear
situations. In the case of KPCA, the kernel trick permits to projects the in-
put data into a higher dimensional implicit feature space F without having
to compute the mapping explicitly. Similarly to PCA, the dimensionality re-
duction is performed by discarding the less relevant components. Both KPCA
and NLPCA methods could be considered as a nonlinear generalization of the
standard PCA and tend to produce similar results in terms of feature space.
However, being the feature space F implicit and unknown, is not always pos-
sible to find the exact demapping function from F to the original data space.
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The reconstructed data can be obtained by minimizing the reconstruction er-
ror in F with gradient descent method. Thus, the results obtained with this
approach are quite far form the optimal solution, presenting high amount of
spectral distortion. For these reasons in this paper we analyze the NonLinear
Principal Component Analysis and its application to the hybrid pansharpen-
ing framework.

2.1 NonLinear Principal Component Analysis

Let us consider a set of n observations of m dimensionality, denoted as X =
[x1, . . . ,xi, . . . ,xm] with xi the column vector correspondent to the i-th vari-
able for the n observations. In NLPCA, the mapping into a feature space of
lower dimensionality is performed through arbitrary nonlinear functions in the
form:

Y = g(X), (1)

where the n×f resulting matrix Y = [y1, . . . ,yj , . . . ,yf ] represents the set of
the f < m NonLinear Principal Components (NLPCs) and g = [g1, . . . , gf ] is
the set of f nonlinear functions. The j-th NLPC is obtained by applying the
j-th mapping to X, i.e.:

yj = gj(X), ∀ j = 1, . . . , f. (2)

The inverse transformation, which aims at re-mapping the data from f -
back to the original m-dimensionality, can be performed with a set of m non-
linear transformations h = [h1, . . . , hm]:

X̂ = h(Y) (3)

where the n×m matrix X̂ is the reconstruction of X. The i-th reconstructed
variable x̂i is given by:

x̂i = hi(Y), ∀ i = 1, . . . ,m (4)

The loss of information between the original and reconstructed data can
be measured by computing the error matrix E = X− X̂.

2.2 AutoAssociative Neural Network

In [26] it was shown that any nonlinear function can be approximated by a
superposition of a set of σ(x) transformations that are functions continuous
and monotonically increasing, with σ(x) → 1 as x → +∞ and σ(x) → 0 as
x → −∞. This property is often called universal fitting. Sigmoidal functions
are an example of transformations fulfilling these constraints [27]. The ap-
proximation of a nonlinear function can be obtained by an Artificial Neural
Networks (ANNs) using one layer of nodes with sigmoidal activation function
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and two layers of weighted connections [27]. In practice, sigmoidal nonlinear-
ities are often included in the nodes of the output layer so that the network
produces outputs in a fixed and finite range. The ability of the NN to fit ar-
bitrary nonlinear functions depends on the presence of a hidden layer with
nonlinear nodes. Without the hidden layer (or with linear nodes in the hidden
layer), the network is only capable of producing linear combinations of the
inputs, given linear nodes in the output layer. A network lacking a hidden
layer but including sigmoidal nonlinearities in the output layer is only capable
of generating multivariable sigmoidal functions.
Starting from these considerations, the NLPCA can be implemented by two
ANNs approximating the nonlinear functions g and h, as depicted in Fig. 1.
The ANN approximating g, called coding subnet, has as an input layer m nodes
followed by the hidden layer (often called mapping layer) with M1 > f nodes
and sigmoidal transfer functions (to verify the universal fitting property). The
output layer of this subnet contains f < m nodes and for this reason it is often
called bottleneck. The second ANN (also called decoding subnet) approximates
the h function. Its input layer has f nodes followed by the hidden layer (often
called demapping layer) with M2 > f nodes and sigmoidal transfer functions
(to verify the universal fitting property). The output layer yields the recon-
structed data and thus contains m nodes. The nodes of the output layers can
be linear or sigmoidal. ANNs require supervised training which translates in
tuning the network in order to obtain the desired output for each training ex-
ample. However, the outputs of the coding subnet, and hence the inputs of the
following decoding subnet, are unknown. Conversely, the input and the out-
puts of the coding and decoding networks, respectively are known. Therefore,
direct supervised training of these networks is not feasible. To circumvent this
problem, one can observe that combining in series the two ANNs or equiva-
lently defining a composite function z(·) = (h ◦ g)(·) = h(g(·)) that links the

original data X with their reconstruction version X̂:

X̂ = z(X) (5)

the combined network can be trained to produce the identity mapping. This
means that the parameters of the network representing z are optimized so
that the reconstructed outputs match the inputs as closely as possible. The
training aimed at learning the identity mapping has been called self-supervised
backpropagation or autoassociation [28] leading to the definition of AutoAsso-
ciative NNs (AANNs). For AANNs the training phase is an iterative process
and is completed when the sum of squared errors is minimized:

E =

n∑
p=1

m∑
i=1

(x̂i − xi)p
2

(6)

or equivalently when the matrix error norm ‖E‖ is minimized (as for the case
of the PCA).

Once the complete AANN z is trained, it is possible to use the coding
subnet to project the original data into a lower dimensional space. Thus, the
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f NLPCs can be obtained from the output layer of the coding subnet, which
is also called the bottleneck. The obtained NLPCs can be subsequently used
as input to the decoding subnet in order to obtain the reconstructed original
data.

As it can be seen, the main difference between PCA and NLPCA is that
the latter is able to map nonlinear relations between variables, while PCA is
only able to deal with linear ones. This means that, NLPCA has the relevant
advantage to retain most of the variance of the data in fewer components with
respect to PCA.

One of the main difficulties in designing the AANN relies in the selection
of the correct number of nodes that minimizes the loss of information pro-
duced in the three hidden layers, and in particular in the bottleneck layer.
Being the AANN designed in order to minimize the reconstruction error, the
best NN topology can be retrieved by using a simple grid search algorithm
that varies recursively the number of nodes of the hidden layers and evaluated
the respective error. Then, the topology presenting the lowest error is selected
[17]. However, without a starting point, this approach can be extremely time
consuming and a different solution should be found. Starting from n that
represents the number of samples in the training set, a separate constraint
is imposed by each output node, so that the total number of the possible ad-
justable parameters (weights and biases for all network connections and nodes,
respectively) must be less than n ·m. Moreover, analyzing the structure of the
AANN used here, it can be found that the number of adjustable parameters
is (M1 +M2)(m+ f + 1) +m+ f that implies the following inequality:

M1 +M2 �
m(n− 1)− f
m+ f + 1

. (7)

The aim of a dimensionality reduction method is to reduce the original
spectral dimension into a lower dimensional space. This can be translated into
the AANN structure as a condition on f , i.e. f � m,n. Then, eq. (7) becomes:

M1 +M2 � n. (8)

Assuming a balanced structure of the AANN, M1 and M2 should have the
same dimensions (M1 = M2 = M), we have:

2M � n. (9)

It is worth to note that eq. (9) is effective only if the number of map-
ping/demapping nodes M is greater then the number of nodes in the bottle-
neck layer f . Otherwise, there will not be enough data to effectively extract f
NLPCs. It has to be noted that, since the output has to simply replicate the
input, there is no need to have an a priori knowledge for the implementation
of the learning phase. This implies that the AANN training can be performed
in a fully automatic way and that all pixels in the image can be considered for
this task, which has actually been the technique adopted in this paper.
To reduce the distortions and enhance the spatial information we propose a
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hybrid approach that combines both the advantages of substitution and fil-
tering based methods. In particular, it has been noted that, similarly to the
classical PCA approach, each NLPC seems to be polarized to different types
in the scene. In particular, in [29] it has been demonstrated that the nonlinear
components retain information about different parts of the spectrum. For this
reason we propose to enhance spatially not all the nonlinear components, but
only to those components presenting most similarities with the PAN image.

2.3 Proposed pansharpening technique based on NLPCA

Entering in more detail, we call the hyperspectral low spatial resolution image
HSLR. Let us define the vectorized form of the panchromatic image P as
p = vec(P), where vec is the operator that transforms the original image in
its vectorized form (i.e., concatenating the pixels of the image column- or row-
wise). Then the interpolated version of HSLR (in order to have the same pixel

number of p for each band) is defined as ˜HSLR = [h̃slr1, . . . , h̃slri, . . . , h̃slrB ]

where h̃slri is the vectorized form of the i-th band of the interpolated hy-
perspectral image and B represents the band number. The first step of the

approach is to train the AANN using the whole data set ˜HSLR in order
to obtain the functions g and h for the coding and decoding phases, re-
spectively. Then, we can exploit eq. (1) to get the set of f NLPCs called
NLPC = [nlpc1, . . . ,nlpcf ] from now on. In eq. (1), the role of X is played

by ˜HSLR.
Since the NLPCs tends to be represent different characteristics of the spec-
tra, the injection of the spatial details of the PAN indiscriminately into each
component would not lead to an acceptable result. To solve this problem it
has been decided to select the NLPCs in which inject the spatial details by
evaluating the correlation with the PAN image. If the result is higher than
a given threshold θ, the fusion between the specific high correlated NLPC
and the panchromatic image is done, otherwise the original NLPC is held. In
particular, a MultiResolution Analysis (MRA) fusion approach is exploited to
reduce the spectral distortion w.r.t. the classical substitution of the NLPC
with a histogram matched version of the panchromatic image. Therefore, only
the details of the histogram matched panchromatic image are injected into the
NLPC to get the fusion product. Several fusion approaches have been tested
in this paper and these will be described in Sec.3.2. At the end, the subset of
NLPCs fused with the panchromatic image and the subset of NLPCs which
did not exceed the threshold for the fusion are used in eq. (3) to obtain the

final fused product ̂HSHR. The complete processing proposed in this paper
is resumed in Algorithm 1 and Fig. 2.
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Algorithm 1 NLPCA-based hybrid PansharpeninĝHSHR = NLPCA[H̃SLR, p, θ]

Determination of the number of nodes in the Coding/Decoding layers

- Set the error MSE0 to a starting value (i.e. MSE0 = 100).
for M = 1→ m do

- Train the AANN using H̃SLR with M1 = M2 =M and f = m to get the number of
nodes for the coding and decoding layers.
- Use eq. (6) to get Mean Square Error MSE.
if MSE ≤MSE0 then
MSE0 = MSE.
- Save the obtained network topology with M1 = M2 = M and f = m.

end if
end for

Determination of the number of nodes in the bottleneck layer.

while q ≥ 1 do

- Train the AANN using H̃SLR with M1 = M2 =M and f = q to get the number of
nodes for the bottleneck layer.
- Compute correlation CORR between any of the obtained NLPCs.
if CORR ≥ 0.9 then
q = q − 1.

else
- Save the trained network with M1 = M2 = M and f = q.
q = 0.

end if
end while
- Use eq. (1) with H̃SLR to get NLPC = [nlpc1, . . . ,nlpcf ].
- H = ∅. // New set of NLPCs.

Fusion of the obtained NLPCs and the PAN image.

for i ∈ {1, . . . , f} do
- Compute the correlation ρ between p and nlpci to get ρi = ρ(p,nlpci).
if ρi > θ then

- Match the histogram of p to that of nlpci.

- Inject spatial information of the stretched p into the nlpci to get n̂lpci.

- H = H ∪ {n̂lpci}.
else

- H = H ∪ {nlpci}.
end if

end for
- Use eq. (3) with H to get ̂HSHR.

3 NLPCA hybrid configuration analysis

Scope of this paper is to retrieve the optimal configuration for the proposed
NLPCA hybrid approach for the pansharpening of hyperspectral images. In
particular, in this section we analyze the impact of several well known MRA
techniques applied in the nonlinear feature space, on the spatial and spectral
qualities of final enhanced hyperspectral images. In order to retrieve the opti-
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mal configuration we tested the proposed hybrid framework using the following
MRA methods:

– CBD, Context-Based Decision and the approach proposed in[5] using ϑ =
0.3 and [9X9] window size.

– ATWT, A Trous Wavelet with additive injection model [11]
– HPF, Box window and HPF injection model [3]
– MF, Morphological Filter and High Pass Modulation (HPM) injection

model [30]
– GLP, Gaussian filter with MTF adjustment and HPF injection model [6]
– MTF-HPM, Gaussian filter with MTF adjustment and HPM injection

model [6][31]
– AWLP, Additive Wavelet Luminance Proportional [32]
– SFIM, Smoothing filter-based intensity modulation [33]

It worth to be noticed that the Indusion technique [19], used in [17], can be
considered as a special case of the AWRGB technique, so it was not considered
in this evaluation.
A further analysis has been carried out by comparing the results obtained fol-
lowing the hybrid approach with those obtained applying the MRA techniques
directly to the HS images. The following CS methods were also included in
the analysis:

– NLPCA method based on the substitution of one or more NLPCs with the
PAN image [29]

– PCA method based on the substitution of the first PCs with the PAN
image [15]

The above mentioned approaches have been applied to two hyperspectral
images, presenting different characteristics. For each test an enhancement ra-
tio of 4 has been selected because is a typical value that offers the best tradeoff
between spatial enhancement and spectral distortion [19].
The quantitative analysis of the quality of the enhanced images has been per-
formed through the use of Spectral Angle Mapper (SAM), Relative Global
Error of Synthesis (ERGAS) and spatial correlation coefficient (SCC) [3][34].
While SAM is useful for measuring the spectral quality of the fusion process,
ERGAS can measure both spectral and spatial quality. The ideal value for
SAM and ERGAS indexes, meaning no distortion between the pansharpened
and reference image, is zero. However, considering fused images, values that
are around 3 are referred to a good image enhancement. The SCC index mea-
sures the spatial correlation between two images. Ideal value for the merged
image is 1, indicating that the whole spatial information of one of the images
is present in the other one.
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3.1 ROSIS-University dataset

In the first experiment we tested a synthetic dataset derived from the Uni-
versity dataset [35]. The Synthetic hyperspectral image is obtained reducing
the spatial resolution of a 103 bands hyperspectral image acquired by the RO-
SIS airborne sensor, while the panchromatic image is obtained by averaging
the values of the ROSIS bands. This choice have the relevant advantage that
the resulting pansharpened image does not suffer from distortion caused by
misregistration between the HS and PAN. Moreover, both synthetic PAN and
HS images have the same spectral coverage and temporal coherence, avoiding
the insurgence of further spectral distortions. Another important issue related
with this data is the correlation between the different spectral bands that is
mainly linear. This should suggest us that based on the assumption that the
NLPCA approach is able to deal with both linear and nonlinear correlations,
the results obtained using component substitution methods on the features
obtained with PCA and NLPCA should be similar.
According to the procedure proposed by Wald [36], both the synthetic HS
image has been degraded to a lower resolution with a ratio of 4, by means of
bicubic convolution downscaling. This is done so that the resultant pansharp-
ened image is at the same resolution as the starting reference (i.e. the original
HS image), and hence statistical analysis can be made between the reference
and the pansharpened images.
According to the proposed method, the first step is to project the HS image
into a nonlinear feature space by means of NLPCA. The Pavia dataset features
103 bands, that correspond to 103 nodes in the input/output layers. Following
the procedure described in the previous section, a grid search to optimize the
number of nodes in the three hidden layers of the nonlinear AANN has been
carried out. The best topology has been found to have 50 nodes both in the
coding/decoding layers and 4 nodes in the bottleneck layer,that correspond to
4 NLPCs. In order to preserve as much as possible the spectral information
of the HS image while enhancing the spatial resolution, it could be possible
to perform the pansharpening only on a subset of components. This can be
exploited by comparing the PAN image with the 4 NLPCs in order to detect
the most similar component. As can be noted from from Fig. 3, from a quali-
tative point of view, component 3 presents characteristics very similar to the
PAN image. Also analyzing the correlation values between components and
PAN image, it can be noted that component 3 reaches the highest correlation,
as reported in Table 1. These values would suggest that components 2 and 3
presents similar characteristics with the PAN image. However, also component
4 presents a certain amount of similarity with the PAN. In order to detect the
best subset of components, in this experiments four different configurations
have been tested combining the PAN image with component 3, components 2
and 3, components 2, 3 and 4 and all the components, respectively. In each test,
the selected components have been then spatially enhanced and substituted in
the NLPC dataset in place of the original ones. The new feature datasets have
been then reprojected back to the original spectral domain using the decoding
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subnet of the AANN.
Tables 2-10 report the ERGAS, SAM and SCC quality indexes associated to
the different pansharpening techniques. As expected, among the results ob-
tained with the proposed approach, the best tradeoff between spectral and
spatial quality is obtained by fusing the PAN image with components 2 and 3,
suggesting that using only component 3 is not sufficient even if it is the most
correlated with the PAN image. Moreover, components 4 and 1, don’t improve
the quality of the enhanced images, but in most cases tend to increase the dis-
tortions. This suggests that a threshold on the correlation between PAN and
components should be defined. On a comparison of these results with those
obtained applying the same fusion techniques directly to the spectral bands
it can be noted that use of the NLPCA preprocessing improves the spectral
quality of the enhanced images preserving the spatial coherency.
As expected, comparing the results obtained using the linear (PCA) and the
nonlinear PCA (SUB), the two methods permit to produce enhanced images
that have approximately the same spectral quality, evaluated in terms of SAM.
However, on the other hand, the use of NLPCA permits to have images with
high spatial information, in terms of SCC, than the linear PCA. As for the
pansharpening techniques, MTF-HPF, applied to components 2 and 3, achieve
the best result in terms of spectral quality, while AWLP applied to the same
components presents the higher spatial consistency value. On a more general
evaluation, AWRGB, AWLP and MTF-HPF applied to NLPCs 2 and 3 present
the best tradeoff between spatial information and spectral distortion.
Also from a qualitative point of view, the enhanced images obtained perform-
ing the pansharpening on components 2 and 3 in the nonlinear feature space
appear to be sharper and more spectrally consistent than the images obtained
by performing the pansharpening in the original data space, as depicted in
Fig. 4 and 5.
A further analysis is carried out in order to evaluate the computational loads
of the different methods. Table 11 reports the required time, expressed in sec-
onds, for each technique to produce the enhanced image. The computation
time analysis has been carried out for each technique on a 2.5GHz intel Core
i7 processor with 16GB 1600MHz memory. As it can be clearly seen, the use
of NLPCA extremely improves the computational efficiency of the fusion pro-
cess. It has to be noted that these values include also an overall transformation
time of 5.0s for this image.

3.2 CHRIS-Proba dataset

On a second experiment we used real images acquired under different con-
ditions. In particular the hyperspectral image is a CHRIS mode-3 image ac-
quired by the Proba satellite, while the panchromatic image is acquires from
the Quickbird satellite. The CHRIS-Proba image presents 18 bands and a
spatial resolution of 20m, while the PAN image has 1m resolution. The two
images were acquired in different period of 2006 over the Tor Vergata area,
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southeast of Rome, Italy, presenting differences in terms of spectral coverage,
atmospheric condition and illuminations as well as small differences of the cul-
tivated areas. In this case the inter-bands correlation has been proven to be
nonlinear [37]. Thus we expect that the use of a nonlinear approach should
improve the quality of the enhanced images.
As for the previous experiment, a grid search algorithm has been used to
find the optimal number of nodes in the hidden layers of the AANN. The best
AANN topology configuration has been found to have 18 inputs/output nodes,
9 nodes both in the outer hidden layers and 3 nodes in the bottleneck layer,
corresponding to 3 NLPCs.
Being the two images acquired in different dates, with different atmospheric
conditions and with different angles of view, high correlation values between
the NLPCs and the PAN image are not expected, as can be clearly seen from
Fig. 6 and Table 12. In this case, only one component (NLPC 3) presents an
appreciable correlation characteristics with the PAN image. For this reason,
only component 3 has been taken into account to be fused with the PAN image.
For each pansharpening technique, the selected component has been spatially
enhanced and substituted in the NLPC dataset in place of the original one.
Then, each enhanced feature dataset has been reprojected back to the original
spectral domain using the demapping subnet of the nonlinear AANN.
In this experiment we decided to not apply the Wald procedure because re-
ducing the CHRIS image to a lower resolution there will be no significant
information left in the images and hence the pansharpening techniques would
return poor results [17]. Since the Wald procedure cannot be applied, the ER-
GAS index, measuring both spectral and spatial distortions, should not be
used since the reference image is at a lower resolution, thus it does not con-
tain both kind of information. For this reason we considered SAM, as spectral
quality index, evaluated between the enhanced image and the original HS im-
age, and SCC, evaluated between the enhanced image and the PAN image, for
the spatial quality. Even if the PAN image as a reference should not be used
as a general evaluation index, it is possible to use it as a term of comparison
of the ability of the different techniques to extract spatial details [2]. From
Tables 13 and ??, showing the SAM and SCC quality indexes associated to
the different approaches, it can be see that in most of the cases, independently
from the chosen pansharpening technique, the projection into the nonlinear
feature space permits to achieve better results, in terms of spectral and spatial
quality, if compared with the same fusion method applied directly to the hy-
perspectral image. In particular, the enhanced images obtained with a NLPCA
preprocessing present good tradeoffs between the SAM and SCC that in the
worst cases, is comparable to the direct approach.
As expected, the substitution of NLPC 3 with the PAN image permits to ob-
tain better quality of the enhanced image, if compared to the linear PCA. This
is also evident by qualitatively analyzing Fig. 7. In particular, it can be noted
that while the image obtained following the PCA approach presents evident
spectral distortions, the image obtained substituting NLPC3 with the PAN
image is spatially well defined and presents spectral characteristics similar to



Title Suppressed Due to Excessive Length 15

the original image.
As for the pansharpening techniques, in this case, the best spectral quality
has been achieved by the CBD method, while the best spatial consistency is
obtained by substituting the PAN image to component 3. On a more general
analysis, the best tradeoff between spectral and spatial qualities have been
achieved by AWRGB, AWLP and MTF-HPF methods.
Table 15 shows the required time, expressed in seconds, for each technique to
produce the enhanced image. Also in this case the use of NLPCA improve the
computational efficiency of the image enhancement process. The overall time
to perform the NLPCA transformation has been measured to be 0.16s.

4 Conclusions

In this paper the synergic use of projection into nonlinear feature space and
different pansharpening techniques has been investigated in the framework of
image spatial enhancement. In particular, in the proposed approach the hy-
perspectral image is projected into a low dimensional feature space by means
of NLPCA. The obtained nonlinear principal components are then enhanced
spatially and reprojected back to the original data space. Several pansharp-
ening techniques have been considered and applied to the components that
present the highest correlation values. The proposed approach has been ap-
plied to both synthetic and real images, characterized by linear and nonlinear
inter-bands correlations, respectively. SAM, SCC and ERGAS indexes have
been used to evaluate the enhanced images in terms of spectral distortion and
spatial consistency. Qualitative analysis has been carried out by visual inspect-
ing the enhanced images.
Analyzing the values of the quality indexes it has been demonstrated that the
use of the NLPCA transformation permits to improve the quality of the en-
hanced images, with regard to the same pansharpening method applied in the
data space. A direct comparison of the substitution methods based on PCA
and NLPCA confirms the supposition that the nonlinear method, able to to
map both linear and nonlinear relations between variables, permits to NLPCA
to project data with greater accuracy in fewer components than PCA, if non-
linear correlations exist between input variables and consequently resulting in
better quality of the enhanced images.
As for the different fusion techniques, in both experiments, AWRGB, AWLP
and MTF-HPF applied to the NLPCs obtained from the NLPCA transforma-
tion obtained the best results in terms of spectral and spatial quality.

Tables
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NLPC 1 NLPC 2 NLPC 3 NLPC 4
PAN -0.0536 0.9064 0.9477 0.2870

Table 1 Correlation coefficients between PAN image and the 4 NLPCs obtained from the
ROSIS dataset.

NLPCs 3 2, 3 2, 3, 4 1, 2, 3, 4
CBD 6.6976 6.5437 7.4711 7.3906
ATWT 6.7157 6.5087 6.8447 6.6953
HPF 6.8376 6.6364 6.9274 6.8534
MF 7.2987 13.2843 14.0679 15.1341
GLP 6.7972 6.4943 6.8159 6.6975
MTF-HPM 6.7369 6.5685 6.9588 6.7327
AWLP 6.7157 6.5087 6.8447 6.6957
SFIM 6.8380 6.6978 7.0706 6.8425

Table 2 SAM quality index values (measured in degrees), obtained using the hybrid ap-
proach with different MRA techniques applied to the ROSIS image.

NLPC 3 NLPCs 2, 3 NLPCs 2, 3, 4 NLPCs 1, 2, 3, 4 PCA
7.0120 6.5856 9.9686 9.5204 6.6061

Table 3 SAM quality index values (measured in degrees), obtained with different CS tech-
niques applied to the ROSIS image.

CBD ATWT HPF MF GLP MTF-HPM AWLP SFIM
6.8489 6.8832 6.8021 12.1443 6.8451 8.9873 6.7253 11.1472

Table 4 SAM quality index values (measured in degrees), obtained with different MRA
techniques applied directly to the ROSIS image.

NLPCs 3 2, 3 2, 3, 4 1, 2, 3, 4
CBD 7.1653 7.1475 8.4181 8.4115
ATWT 7.1346 7.1002 7.9359 7.8999
HPF 7.1860 7.1711 8.0134 8.0237
MF 7.2591 10.7230 11.0310 10.9468
GLP 7.1406 7.0995 7.8815 7.8650
MTF-HPM 7.1325 7.0783 8.4154 8.2797
AWLP 7.1346 7.1007 7.9359 7.8997
SFIM 7.1459 7.1140 8.3495 8.2264

Table 5 ERGAS quality index values obtained using the hybrid approach with different
MRA techniques applied to the ROSIS image.

NLPC 3 NLPCs 2, 3 NLPCs 2, 3, 4 NLPCs 1, 2, 3, 4 PCA
7.0540 6.9151 16.0414 15.6749 8.8601

Table 6 ERGAS quality index values, obtained with different CS techniques applied to the
ROSIS image.
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CBD ATWT HPF MF GLP MTF-HPM AWLP SFIM
8.6790 6.6527 6.0725 7.1877 6.5513 7.2173 6.7529 7.3360

Table 7 ERGAS quality index values, obtained with different MRA techniques applied to
the ROSIS image.

NLPCs 3 2, 3 2, 3, 4 1, 2, 3, 4
CBD 0.7984 0.8144 0.7851 0.7880
ATWT 0.7985 0.8199 0.7989 0.8013
HPF 0.7911 0.8104 0.7876 0.7859
MF 0.7514 0.7558 0.6890 0.6665
GLP 0.7972 0.8178 0.7982 0.7978
MTF-HPM 0.7964 0.8140 0.8031 0.8056
AWLP 0.7985 0.8765 0.7989 0.8012
SFIM 0.7910 0.8061 0.7898 0.7903

Table 8 SCC quality index values obtained using the hybrid approach with different MRA
techniques applied to the ROSIS image.

NLPC 3 NLPCs 2, 3 NLPCs 2, 3, 4 NLPCs 1, 2, 3, 4 PCA
0.8364 0.8669 0.7565 0.7288 0.7737

Table 9 SCC quality index values obtained with different CS techniques applied to the
ROSIS image.

CBD ATWT HPF MF GLP MTF-HPM AWLP SFIM
0.8196 0.8625 0.8467 0.6953 0.8620 0.7926 0.8797 0.6928

Table 10 SCC quality index values, obtained with different MRA techniques applied to
the ROSIS image.

NLPCs 3 2, 3 2, 3, 4 1, 2, 3, 4 Original
CBD 6.25 7.16 7.97 9.66 80.48
ATWT 5.29 5.55 5.80 6.28 23.81
HPF 5.10 5.14 5.17 5.25 2.43
MF 5.26 5.36 5.49 5.64 8.86
GLP 6.33 7.37 8.86 11.59 104.99
MTF-HPM 6.15 5.37 8.51 11.33 104.75
AWLP 5.29 5.56 5.82 6.33 32.06
SFIM 5.07 5.10 5.18 5.21 2.45
NLPCA 5.11 5.15 5.15 5.20 /
PCA / / / / 8.55

Table 11 Computational time (expressed in seconds) evaluated for the different methods
applied to the ROSIS image.

NLPC 1 NLPC 2 NLPC 3
PAN -0.0906 0.2340 0.3951

Table 12 Correlation coefficients between PAN image and the 3 NLPCs obtained from the
CHRIS dataset.
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SAM SCC
CBD 2.9546 0.4678
ATWT 3.1674 0.8029
HPF 3.1074 0.7241
MF 3.3483 0.6878
GLP 3.1597 0.7973
MTF-HPM 3.2477 0.7817
AWLP 3.1674 0.8029
SFIM 3.2007 0.7019

Table 13 SAM (expressed in degrees) and SCC quality indexes values obtained using the
hybrid approach with different MRA techniques applied to the CHRIS image.

MRA techniques
SAM SCC

CBD 4.2131 0.4767
ATWT 4.0330 0.8615
HPF 3.5904 0.7869
MF 4.4187 0.2074
GLP 3.9313 0.8562
MTF-HPM 3.0438 0.1929
AWLP 5.6832 0.7924
SFIM 2.9517 0.3083
CS techniques

SAM SCC
NLPCA 3.6093 0.8893
PCA 9.9237 0.6624

Table 14 SAM (expressed in degrees) and SCC quality indexes values obtained with dif-
ferent MRA and CS techniques applied directly to the CHRIS image.

hybrid-NLPCA original
NLPCA 0.16 /
CBD 1.00 24.45
ATWT 0.36 6.81
HPF 0.23 2.69
MF 0.37 4.29
GLP 1.21 45.26
MTF-HPM 0.95 27.03
AWLP 0.37 5.40
SFIM 0.21 1.79
PCA / 0.84

Table 15 Computational time (expressed in seconds) evaluated for the different methods
applied to the CHRIS image.

Figures
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Fig. 1 General structure of the Autoassociative Neural Network.
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Fig. 2 Complete scheme of the proposed hybrid approach.

Fig. 3 ROSIS dataset: the 4 NLPCs obtained from the AANN and the original PAN image.
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Fig. 4 ROSIS dataset: RGB images obtained by combining bands 70, 50 and 20 of the
enhanced images obtained with the different methods fusing NLPCs 2 and 3.
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Fig. 5 ROSIS dataset: RGB images obtained by combining bands 70, 50 and 20 of the
enhanced images obtained with the different methods applied to the original images.
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Fig. 6 CHRIS dataset: the 3 NLPCs and the original PAN image.
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Fig. 7 CHRIS dataset: RGB images obtained by combining bands 11, 9 and 7 of the en-
hanced images obtained with the different methods.
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