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Abstract

This paper proposes advanced signal-processing techniques to improve condi-

tion monitoring of operating machines. The proposed methods use the results

of a blind spectrum interpretation that includes harmonic and sideband series

detection. The �rst contribution of this study is an algorithm for automatic

association of harmonic and sideband series to characteristic fault frequencies

according to a kinematic con�guration. The approach proposed has the advan-

tage of taking into account a possible slip of the rolling-element bearings. In the

second part, we propose a full-band demodulation process from all sidebands

that are relevant to the spectral estimation. To do so, a multi-rate �ltering

process in an iterative schema provides satisfying precision and stability over

the targeted demodulation band, even for unsymmetrical and extremely nar-

row bands. After synchronous averaging, the �ltered signal is demodulated for

calculation of the amplitude and frequency modulation functions, and then any

features that indicate faults. Finally, the proposed algorithms are validated on

vibration signals measured on a test rig that was designed as part of the Eu-

ropean Innovation Project `KAStrion'. This rig simulates a wind turbine drive
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train at a smaller scale. The data show the robustness of the method for local-

izing and extracting a fault on the main bearing. The evolution of the proposed

features is a good indicator of the fault severity.

Keywords: signal processing, condition monitoring, characteristic fault

frequencies, kinematics, amplitude demodulation, frequency demodulation

1. Introduction

Condition monitoring systems (CMSs) are widely used in industry and can

provide considerable bene�ts for surveillance of mechanical components [1, 2].

CMSs are based on data acquisition and processing that is designed to reveal

abnormalities in the state of the investigated system. There are several tech-5

niques to perform this task, such as vibration, acoustic emission, and lubricant

analysis. This study focuses on vibration-based condition monitoring, which is

the key component of predictive maintenance as it can provide indicators that

are related to the evolution of potential faults and failures [3, 4].

The development of CMSs is an active research domain [5, 6, 7, 8, 9, 10].10

Each branch of industry where there are crucial and expensive rotating compo-

nents used, as in the oil industry during the extraction of oil , or numerous and

spread systems, as in the wind industry, could bene�t from CMSs to monitor

the state of mechanical components.

Early detection of mechanical faults requires automatic interpretation of a15

large amount of data for the surveillance to be feasible [11]. Mechanical faults in

rotating machines, and particularly those associated with rolling-element bear-

ings, create modulations in the vibration signals. These modulations are visible

on the spectrum as sidebands. Demodulation of these sidebands can provide

features that are indicative of the developing faults. This demodulation is20

a widely-used and well-proven technique in the diagnosis of vibration signals

[12, 13, 14, 15]. The diagnostics of bearing faults using demodulation analysis is

an active research area. Recent contributions include the `max-med' estimator
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for the optimal selection of the carrier frequency [16], and envelope analysis of

speed transients [17].25

This paper proposes an automatic fault detection and diagnosis method in a

fully automatic tool, known as `AStrion'. This method consists of several steps

for the detection of the most common drive-train faults, like gear and bearing

failures. The tool is based on sophisticated data validation and time-frequency

representation analysis. AStrion is particularly e�cient in the processing of30

stationary signals with a rich spectral composition.

In this paper, the spectrum analysis is based on an automatic peak detec-

tion and classi�cation method [18, 19, 20] that provides a data-driven approach

without any a-priori information on the data. The harmonic series and the

sidebands around each harmonic are then identi�ed from the peaks according35

to their frequencies and classes [21]. On the basis of the data from this sideband

identi�cation, this paper proposes two further new algorithms. The �rst is a

kinematic association method that is used to link the harmonics directly to the

mechanical components. It is an exhaustive algorithm that takes into account all

of the information available from the signal, and all of the possible combinations40

of modulations that can arise from the kinematic con�guration of the system.

The core algorithm is a data-driven method for the selection of one harmonic

series among numerous proximate ones. This automatic process features within

a new method for the selection of rolling-element bearing frequencies. The sec-

ond of these new algorithms is a sideband demodulation technique that is used45

to calculate the features directly from the modulation created by a mechanical

fault. By taking advantage of the previously identi�ed modulation sidebands,

the demodulation can be repeatedly applied to all of the identi�ed sidebands,

to investigate the entire frequency span. Such a comprehensive approach has

never been reported previously. Finally, new fault indicators are proposed that50

are based on the estimated amplitude and frequency modulation functions.

The proposed fault indicators have been compared against commonly used

indicators, including the crest factor, kurtosis, and root mean square (RMS)

ones. As [22] indicated, the listed indicators are very often used for predictive
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maintenance strategies, and are not su�cient for this task. To facilitate advances55

in predictive maintenance, the handling of other indicators is needed, and this

paper o�ers a set of advanced features for this purpose. Moreover, the proposed

approach is also compared with a narrow-band RMS approach.

The paper is organized as follows. Section 2 presents the automatic charac-

teristic fault frequency associations, and section 3 describes an original approach60

to demodulation. Section 4 presents the results of the methods applied to real-

world data, and a comparison with traditional diagnostic approaches. Section 5

draws the conclusions and indicates the future perspectives.

2. Characteristic Fault Frequency Associations

Characteristic fault frequencies arise from the geometry of the system inves-65

tigated, and they can be used to help to �nd and identify the origin of a fault.

These frequencies are easy to identify for components such as gears, shafts, and

rolling-element bearings, which are important parts of the rotating machinery.

When the kinematic information is known, the proposed method gives additional

value to the AStrion methodology by highlighting the vibration patterns that70

can arise from the mechanical con�guration of the system. However, AStrion

can also operate without any information relating to the investigated system,

and can perform all of the other analyses.

This section proposes a method to automatically associate characteristic

fault frequencies with the harmonic series and modulation sideband series that75

were previously detected using the algorithm proposed by [21]. These data are

then used as the input for the proposed association method. In this context,

the association is made critical as more than one series is often close to the

theoretical value of the fault frequency. This issue has to be overcome.

2.1. Characteristic Fault Frequencies80

The well-known characteristic fault frequencies in rotating machinery depend

on the geometry and speed of the components. The commonly used formulae
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Table 1: Selected formulae for the calculation of characteristic fault frequencies [23].

Fault frequency name Formula

Shaft speed frequency SSF = Vr

Gear mesh frequency GMF = Vr · z

Ball-pass frequency of outer race BPFO =
nrVr

2

{
1− dr

dp
cos(φ)

}
Ball-pass frequency of inner race BPFI =

nrVr
2

{
1 +

dr
dp
cos(φ)

}
Fundamental train frequency FTF =

Vr
2

{
1− dr

dp
cos(φ)

}
Ball spin frequency BSF =

Vr · dcr
2dr

{
1−

(
dr
dp
cos(φ)

)2
}

are presented in Table 1, where z is the number of teeth in a gear, Vr is the

shaft speed, nr is the number of rolling elements, dr is the diameter of the rolling

elements, dp is the pitch diameter, and φ is the angle of the load from the radial85

plane.

Usually, Vr is measured only on one shaft, e.g. the high-speed shaft of a

wind turbine. In such a situation, it is necessary to recalculate Vr for each shaft

in the system, which can be achieved using the speed ratio between each stage

of the gearbox.90

Table 1 presents the formulae based on theoretical models for calculation

of the characteristic frequencies of rotating machinery components [23]. These

frequencies are referred to as the theoretical values. It is important to note

that in the case of rolling-element bearings, the characteristic fault frequencies

assume no slippage, whereas this must occur when a bearing is running. This95

will apply to the ball-pass frequency of the outer race (BPFO), the ball-pass

frequency of the inner race (BPFI), the fundamental train frequency (FTF ),

and the ball spin frequency (BSF ). This is why the estimated characteristic

frequencies vary slightly when real-word applications are compared to theoretical

values. Generally, it is normal to observe random variations within the range100
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of 1% to 2% [24]. The next subsection presents the proposed method that is

designed to overcome this e�ect.

2.2. Proposed Method for the Association

The proposed method for the use of kinematic information is a data-driven

approach. This requires a-priori interpretation of the spectral content of a sig-105

nal. This interpretation is provided by the AStrion steps, which include spectral

component identi�cation [19] and harmonic series and modulation sideband se-

ries detection [21]. The proposed algorithm associates the characteristic fault

frequencies with the previously detected harmonic and sidebands series. Fig-

ure 1 shows a �owchart of the proposed method.110

First, the characteristic fault frequencies have to be calculated. For this

operation, the proposed method uses the rotational speed and the list of the

theoretical characteristic fault frequencies expressed as orders. This list is com-

puted according to the formulae of Table 1, although the rotational speed Vr

is assumed to be 1 Hz. This value is commonly used as a reference, as it can115

be directly applied to a signal after angular resampling, which is also known

as order tracking. More details on the resampling can be found in [25, 23, 26].

Moreover, the speed can be measured only on one shaft in the system, provided

that the list of frequencies as orders is recalculated with the use of gear ratios

for a speed of each shaft that ensures that the speed of the shaft that carries a120

component is taken into account. This procedure is adapted for more complex

systems composed of multiple shafts operating at a di�erent rotational speed.

The association of the characteristic fault frequencies is then performed in

two steps. First, the harmonic series that meets a criterion for the theoreti-

cal values are selected as possible candidates. These are followed by the �nal125

selection, which provides the association of a single harmonic series with one

theoretical characteristic frequency. In a second step, the same set of operations

is performed on the modulation sideband series. The di�erence with the har-

monic series is that one characteristic fault frequency can be associated with a
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List of harmonic
series and sidebands

Rotational speed value
List of characteristic

fault frequencies in orders

Selection of
harmonic series with frequecny

close to theoretical value

Calculation of charac-
teristic fault frequencies

Clearing of results – selection
of a single harmonic series for
each characteristic frequency

Selection of sidebands series
with modulation frequecny
close to theoretical value

Clearing of results – selection
of a single sidebands series
for each carrier frequency

Harmonics & sidebands series labeled by associated kinematic component

Figure 1: Flowchart of the characteristic fault frequency association algorithm.

single harmonic series, whereas it can be associated with numerous modulation130

series, which have a di�erent carrier frequency.

The selection criterion is based on the relative di�erence between the theoret-

ical and estimated values of the characteristic fault frequency, which is referred

to as RFDi

RFDi =
fd,i − ft,i

ft,i
· 100%, (1)

where i is the index of a series, fd,i is the fundamental frequency of the estimated

series, and ft,i is the theoretical frequency. The series with an absolute value of

RFDi lower than a threshold η are selected as potential candidates

|RFDi| < η. (2)

Moreover, due to the slippage phenomenon mentioned earlier, the threshold for

the rolling-element bearings should be bigger than for all of the other mechanical

components, and it is equal to η + δη. We propose to use η and δη as 1%.
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The next step is to select only one series for the �nal association. The135

association of series with the characteristic fault frequencies corresponding to

shafts and gearboxes is intuitive. The correct series is selected as the one with

the lowest RFDi.

In the case of rolling bearings, the lowest RFDi is not a su�cient indica-

tor, because of the slippage phenomenon. Thus, an additional parameter is

proposed, which is the bearing series indicator, which is de�ned as

BSIi =

Ei
Emax,i

+ deni

2
, (3)

where Ei is the energy of the series under investigation, Emax,i is the energy

of the series with the highest energy among the series selected in the �rst step,140

and deni is the density of the series. These features are computed using the

algorithm used for harmonic series and sideband detection. The energy E is

computed as a square sum of the amplitudes of the peaks in the series, and the

density of a series den describes the number of gaps in it, knowing that for a

series without any gap den = 1, which is the maximal value. For a detailed145

de�nition of these parameters, please refer to [21]. BSIi varies from 0 to 1,

where the highest value describes a series with the highest energy among the

selected candidates and without gaps. Therefore, the series i with the highest

BSIi among the selected series in the �rst step is associated with the theoretical

characteristic fault frequencies of a rolling-element bearing.150

3. Sideband Demodulation

A number of methods exist for selecting the carrier frequency and spectral

bands of a modulated signal [16, 27, 24, 28]. The need for these techniques

arises as for bearing diagnosis it is recommended to separately select the appro-

priate resonance frequency of a bearing for each investigated case. Contrary to155

the methodologies described in the literature, this paper proposes to perform

the demodulation not just for one selected frequency band, but for the entire
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spectrum. As a result of the demodulation, we propose to calculate a list of

sideband features, which can describe the system health.

3.1. Signal Model and Method Overview160

A discrete signal y[n] is considered as the sum of a band-limited deterministic

part s[n] and a wide-band random part e[n]

y[n] = s[n] + e[n]. (4)

s[n] can be expressed as

s[n] = A[n] cos (Φ[n]) , (5)

where A[n] is the amplitude modulation, and Φ[n] is the instantaneous phase

modulation.

The amplitude modulation can be written as

A[n] = A0 (1− α cos(2πfan)) , (6)

where A0 is the average amplitude, α is the amplitude modulation index, and

fa is the frequency of the amplitude modulation function. The instantaneous

phase Φ[n] and instantaneous frequency F [n] modulation functions are written

as

Φ[n] = 2πf0n+ β sin(2πfΦn),

F [n] = f0 + βfΦ cos(2πfΦn).
(7)

where f0 is the carrier frequency, which depends on the rotational speed and

the resolution of the tachometer, β is the frequency modulation index, and fΦ is

the frequency of the phase modulation function. Since the signal is modulated

simultaneously in the amplitude and frequency, the Fourier series expansion s[n]

of Equation (5) is

s[n] = A0

+∞∑
k=0

(Jk(β) + αJk±1(β)) cos (2π(f0 ± kfΦ)n) , (8)

where k is the order of the sideband, k = 0 corresponds to the carrier, and Jk(·)

is the Jacobian polynomial of order k. β is determined by

β =
f0

fΦ
· rFM ·

2π

∆φ
, (9)
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where 2π
∆φ is the tachometer resolution that speci�es the number of tachometer

samples per revolution, and rFM is the frequency modulation rate, which rarely

exceeds 10% for a rotating shaft. As the frequency modulation yields an in�nite165

number of sidebands, the Bedrosian theorem is not respected. However, under

the hypotheses [29] that

• the carrier frequency f0 is signi�cantly higher than the frequency modu-

lation frequency fΦ;

• the sideband power becomes negligible at the maximum frequency of A[n];170

the amplitude modulation A[n] and the phase modulation Φ[n] can be recovered

from the signal s[n] using the Hilbert transform. The instantaneous frequency

modulation F [n] can be obtained from the phase signal Φ[n].

The demodulation algorithm can be decomposed into two steps. In the �rst

step, the signal is band-pass �ltered around the carrier frequency f0, to isolate175

the spectral components that are not relevant to the phenomena to be analyzed.

In the second step, the amplitude and frequency modulation functions are calcu-

lated after synchronous averaging. Hereinafter, we introduce the di�erent steps

of the algorithm.

Firstly, we propose to isolate the sidebands from the other spectral content180

using a multi-rate �ltering method, described in Section 3.2. Then, as presented

in Section 3.3, the �ltered signal is processed with the time synchronous aver-

aging to remove the information irrelevant to the modulation frequency. After-

wards the demodulation is performed, as explained in Section 3.4. Finally, some

sideband features which characterize the amplitude and the frequency modula-185

tion functions are calculated from the averaged signal as shown in Section 3.5.

3.2. Multi-Rate Filtering Technique

The �ltering method aims to preserve all of the spectral information within

a frequency band B

B = [finf , fsup], (10)
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where finf and fsup are the lower and upper frequency boundaries of the �lter,

respectively, whereby both should be positive and below the Shannon frequency
Fsy

2 . The �lter bandwidth is de�ned by ∆B = fsup − finf .190

The challenge comes if the bandwidth is very small or if the �lter band is

very close to the extreme values (0 and/or
Fsy

2 ). The design of a stable �lter

that satis�es the desired performance is di�cult, as it is stable only at very

low order. As a solution, and as originally used for reduction of the amount of

data [30], use of a multi-rate �lter inspired us to propose a new �ltering technique195

that automatically decomposes a di�cult �ltering task into Nq iterations, each

of which is comprised of a chain of three essential operations, as described in

subsection Methodology of the Multi-Rate Filter.

Choice of the Filter Bandwidth

On the Fourier spectrum of a signal expressed as in Equations (5) and (8),

phase modulation will create an in�nite number of sidebands at both sides of

the carrier frequency f0, which are spaced at an even interval fΦ. The energy

of the high-order sideband is often hard to distinguish from the noise level, thus

it is decided to demodulate only the frequency bandwidth which carries enough

energy to identify the modulation sideband from the noise. The �lter bandwidth

is then selected based on the peak identi�cation [19] and harmonic and sideband

recognition [21] mentioned above. Therefore, the �lter bandwidth can be chosen

as

finf = f0 +Kinf × fΦ, Kinf ∈ Z,Kinf < 0,

fsup = f0 +Ksup × fΦ, Ksup ∈ Z,Ksup > 0,
(11)

where Kinf is the lowest order of the sidebands, and Ksup is the highest order200

of the sidebands. The �lter bandwidth is proportional to (|Ksup| − |Kinf |).

As no preliminary information is available on the modulation, �ltering by

empirically �xing Ksup and Kinf might distort the modulated signal, which

may degrade the precision and is not the case for the proposed method. The

proposed data-driven method uses an automatic algorithm presented in [21] that205

is initially applied to identify all of the harmonic series and sidebands of the
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Table 2: Speci�cation of the digital �lters used in the multi-rate �ltering

Type Butterworth Elliptic

Nature and operations involved Low-pass & high-pass Band-pass

Pass-band ripple � 0.005 dB

Stop-band ripple � −80 dB

Stability criterion on the maximum of all of the poles < 0.95 < 0.996

Lowest order 10 8

spectrum, and to calculate the important parameters for the �lter design, such

as fΦ, f0, Kinf , and Ksup, as long as the selected sidebands verify Carson's

law [31]. Through this approach, all of the detectable sideband orders are taken

into account for the demodulation.210

Methodology of the Multi-Rate Filter

The multi-rate �lter consists of three basic operations: a frequency shift that

applies a negative frequency shift −∆fq to the entire frequency contents; a �lter

that �lters over the target �lter band Bq; and a down-sampling that decimates

the signal by a factor Dq.215

For the �ltering operation, a �lter of sharp roll-o� is required, and therefore

the elliptic �lter was selected. In the down-sampling operation and the frequency

shifting step, a low-pass Butterworth �lter is used to avoid the spectrum aliasing,

considering its ripple-free feature. The speci�cations of the �lters are presented

in Table 2.220

The algorithm selects the highest order of the �lter that satis�es a stabil-

ity criterion on the maximum of all of the poles. If the selected �lter order is

below the lowest order, the �lter bandwidth is considered too narrow for the

�lter design. In this situation, the down-sampling and frequency shifting op-

erations are required. The details of the down-sampling rate selection and the225

frequency shift steps that are applied in the proposed �ltering operation are

given in Appendix A.
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The core operation is the �ltering. The other two are preliminary opera-

tions that help to carry out the �ltering operation under extreme conditions.

The down-sampling operation helps to reduce the sampling frequency, and the230

frequency shifting operation helps to increase the down-sampling ratio to the

maximum. Based on these three operations, the iterations of the algorithm are

arranged as follows:

1 q = 1, B0 = B, y0[n] = y[n], and Fs,0 = Fs,y.

2 In iteration (q):235

• Verify if the stability criterion of the elliptic �lter is satis�ed over the

target band Bq. If so, go to the next step, otherwise skip the next

step.

• Perform a �ltering operation over Bq on yq−1[n] to get the �ltered

signal yB[n], and go to step (3).240

• Perform a frequency shifting operation, which consists of:

� Calculate the negative frequency shift −∆fq. Apply a high-pass

�lter over
[
∆fq,

Fs,q−1

2

]
on yq−1[n], and carry out frequency shift-

ing to yield

yshift,q[n] = <
{
e
−2π∆fq

n
Fs,q−1 ×H{yq[n]}

}
, (12)

where < is the operator to take the real part, and H{·} is the

Hilbert transform.

� Bq = Bq−1 −∆fq.

• Perform a down-sampling operation.245

� Calculate the down-sampling rate Dq. Apply a low-pass �lter

over [0,
Fs,q−1

2Dq
] on yq−1[n], and down-sample the signal as

ydown,q[n] = Decimate
{
yshift,q[n];Dq

}
, (13)

� Fs,q =
Fs,q−1

Dq

• Update the signal for the next iteration yq+1[n] = ydown,q[n]. Incre-

ment the iteration index q ← q + 1, and perform step (2) again.

13



3 Fs = Fs,q, de�ne the �ltered signals as yB[n].

The great advantage of the proposed method is that it is a data-driven250

approach. The multi-rate �lter can automatically choose the optimal number

of iterations and the optimal con�gurations of the operations.

3.3. Time Synchronous Averaging

The time synchronous averaging calculates a period-wise average of a period-

ical signal. It also helps to eliminate all of the spectral content that is incoherent255

with the period. A review on the available methods for time synchronous aver-

aging is presented in [32].

Assuming that the period of the signal obtained by the multi-rate �lter is

sampled at TyB = Fs/fΦ points per period, which is often not an integer number,

the signal yB has to be a-priori resampled with an interpolation, to contain an

integer number TZ of points per period, which is a classical method [33]. The

interpolated signal yTZ [n] is further processed by

yTZ [τ ] =

NT−1∑
t=0

yTZ [tTZ + τ ]× w[t]

NT−1∑
t=0

w[t]

. (14)

where τ is the discrete time index, yTZ [τ ] is the averaged signal, NT is the total

number of periods of yTZ , and w[t], t = 0, . . . , NT − 1 is a window of NT points.

To reduce the border e�ects of the �ltering, we propose to use a Hann window.260

3.4. Demodulation Based on the Synchronous Averaged Signal

The averaged signal yTZ [τ ] obtained from Equation (14) after the multi-rate

�ltering can be regarded as band-limited and mono-component, as it contains

only one carrier and its associated sidebands. Therefore, a Hilbert transform

can be applied to yield an analytical signal [34]

yH [τ ] = yTZ [τ ] + j · H{yTZ [τ ]}, (15)
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where j is the imaginary unit, and H{·} is the Hilbert transform. yH [τ ] can be

represented by

yH [τ ] = Â[τ ]ejΦ̂[τ ], (16)

where Â[τ ] and Φ̂[τ ] are estimations of the demodulated amplitude A[τ ] and the

phase Φ[τ ], respectively, de�ned in Equations (6) and (7), and can be calculated

from the modulus and the argument of yH [τ ]

Â[τ ] = |yH [τ ]| , (17)

Φ̂[τ ] = arctan

(
imag(yH [τ ])

real(yH [τ ])

)
. (18)

The demodulated frequency F̂ [τ ] can be obtained by di�erentiating Φ[τ ] [35]

F̂ [τ ] =
1

2π

Φ̂[tau]− Φ̂[tau− 1]

FS
. (19)

3.5. Features of Modulation Sidebands

We propose to use the demodulated signals in the time domain to also com-

pute the statistical health indicators. Table 3 shows the scalar features we

derived from the demodulated functions Â[τ ] and F̂ [τ ] as mechanical fault in-265

dicators.

A further run of AStrion [19, 21] on Â[τ ] and F̂ [τ ] yields the number of

peaks and the energy of the harmonic series on the spectrum. These numbers

contribute to two additional features for Â[τ ] and F̂ [τ ].

4. Case Study270

This section presents the results of the above-proposed algorithms. The

section starts with a description of the test rig where the vibration data are

collected. The following subsections present the results of the kinematic as-

sociation, the demodulation on one sample, and the �nal outcome of the de-

modulation step through the lifetime of the rolling-element bearing. Finally,275

a comparison with standard features, such as RMS, crest factor, kurtosis, and

narrow-band RMS, is presented as a validation of the proposed method.
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Table 3: Features calculated from the demodulated amplitude Â[τ ] and frequency F̂ [τ ]

Mean Ā =

T∑
τ=1

Â[τ ]

T
F̄ =

T∑
τ=1

F̂ [τ ]

T

Peak-to-Peak PPA = maxÂ[τ ]−minÂ[τ ] PPF = maxF̂ [τ ]−minF̂ [τ ]

Kurtosis KurtA =

(
T∑
τ=1

Â4[τ ]

)
/T[(

T∑
τ=1

Â2[τ ]

)
/T

]2 KurtF =

(
T∑
τ=1

F̂ 4[τ ]

)
/T[(

T∑
τ=1

F̂ 2[τ ]

)
/T

]2

Modulation
MIA =

max{Â[τ ]} −min{Â[τ ]}
Ā

MIF =
max{F̂ [τ ]} −min{F̂ [τ ]}

F̄index

Table 4: Selected characteristic frequencies expressed in Hz � SSF of the low-speed shaft,

and the main bearing related frequencies.

SSF BPFO BPFI FTF BSF2

0.333 2.543 3.457 0.140 1.057

4.1. Test Rig Description

On behalf of the European Innovation Project `KAStrion' (more details can

be found on-line at http://www.gipsa-lab.fr/projet/KASTRION/), a test rig280

was designed and installed at CETIM, France (http://www.cetim.fr). This test

rig simulates a wind turbine drive train con�guration at a smaller scale, with a

10-kW generator. Also, hydraulic cylinders were installed to enable control of

the external forces on the bearings. This provides the possibility for accelerated

deterioration of the main bearing and the high-speed shaft bearings. Such a285

deterioration test allows us to observe changes in the vibrations of a new and

healthy bearing, up to those of the bearing with a naturally generated fault.

Figure 2 presents the most important kinematic components of the test rig,

including the motor, gearbox, generator, and the main bearing that is inves-

tigated here. The motor has the possibility of controlling the input speed as290

constant or variable in the tests conducted. The speed ratio of the low-speed

shaft over the high-speed shaft is 1:100.75.
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Motor

Main bearing

Generator

High speed shaft

Low speed shaft

Parallel gearbox

Two-stage planetary gearbox

Figure 2: Schematic representation of the test rig designed as a wind turbine.

The relevant components with their theoretical characteristic fault frequen-

cies are given in Table 4, which gives the low-speed shaft frequency SSF and

the main bearing fault frequencies, as de�ned in Table 1.295

All of the results presented in this paper originate from vibration signals

of 150 s, sampled at 39, 062.5 Hz, and acquired by the vertically oriented ac-

celerometer placed on the main bearing, where the fault occurred. The acquisi-

tion is carried out under the same load conditions, as 60 kN of radial force and

15 kN of axial force, and at the same speed of the low-speed shaft, at 20 rpm.300

During the time between the measurements, the test rig was working with the

settings that caused deterioration of the main bearings.

4.2. Characteristic Frequency Association Results

An example of the results of the association step of the characteristic fault

frequencies, as described in section 2, is presented in Table 5.305

The �rst four columns of Table 5 give the parameters obtained by the pro-

cessing of the signal: type of the series, fundamental frequency of the harmonic

series, and carrier frequency and modulation frequency of the sideband series.

The last three columns give the theoretical frequencies of the corresponding

characteristic fault frequencies, and the relative frequency di�erences (RFDi �310

see Equation 1) computed in the association process. It is common that for real-

world signals large numbers of harmonic and sideband series are left without

association, and this step serves also for the selection of the more interesting
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Table 5: Example of a harmonic and modulation sideband series association on the test rig

data.

Type Frequency Carrier Modulation Associated Theoretical RFDi

(Hz) frequency frequency component frequency

(Hz) (Hz) name (Hz)

Harmonic 2.565 � �
Main Bearing

2.543 0.845
BPFO

Harmonic 3.435 � �
Main Bearing

3.457 -0.623
BPFI

Sidebands � 3.435 1.003 Planetary Gear 1.000 0.271

Sidebands � 3.435 0.334 Low-Speed Shaft 0.333 0.271

Sidebands � 6.870 0.333 Low-Speed Shaft 0.333 -0.034

series for further analyses. As described in section 3, the demodulation is per-

formed according to the results of the characteristic frequency association. All of315

the detected sidebands are demodulated automatically by the method proposed

in section 3. The following subsections show only the results associated with

the modulation of the main bearing characteristic frequencies by the low-speed

shaft, where the main bearing was mounted.

4.3. Feature Set of the Sideband Demodulation320

Over the sidebands with carrier frequency f0 = 3.435 Hz, the modula-

tion frequency fΦ = 0.334 Hz, the highest sideband on the left-hand side

Kinf = −4, and the highest sideband on the right-hand side Ksup = 6 identi�ed

by the harmonic and sideband detection algorithm [21], the kinematic associ-

ation algorithm proposed in this paper deduces that the frequency bandwidth325

B = [2.099 Hz, 5.439 Hz] contains the sidebands corresponding to the low-

speed shaft frequency 0.333 Hz around the carrier frequency associated with

the main bearing BPFI 3.457 Hz. Thus, the frequency bandwidth B is chosen

as the �lter bandwidth for the multi-rate �lter. This frequency bandwidth is

unsymmetrical around the carrier frequency and is extremely narrow (the nor-330

malized bandwidth ∆B = 0.017), which implies a very di�cult �ltering step.

As presented in section 3.2, the multi-rate �lter accomplished the �ltering in
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Table 6: Features calculated from the demodulated amplitude and frequency that describe

a vibration signal that corresponds to the main bearing BPFI frequency modulated by the

low-speed shaft.

Mean Ā Peak-to-Peak PPA Kurtosis KurA Modulation index MIA

0.0013 0.0018 1.9134 0.7138

Mean F̄ Peak-to-Peak PPF Kurtosis KurF Modulation index MIF

3.435 2.725 6.773 0.397

four iterations, which included the automatic selection of the frequency shift

and the signal decimation. Finally, the down-sampled signal is sampled with a

frequency of 13.58 Hz. Figure 3 presents the results of the multi-rate �ltering.335
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Figure 3: Spectrum of the original signal and the signal �ltered by the proposed multi-rate

�lter over the bandwidth B = [2.099 Hz, 5.439 Hz] � zoom of the interesting range.

Following the synchronous averaging carried out as speci�ed in section 3.3

and the demodulation as in section 3.4, the features calculated from the demod-

ulated amplitude and frequency as de�ned in section 3.5 are listed in Table 6.
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4.4. Feature Tracking over a Sequence of Signals

The above-presented feature calculation was applied for 16 vibration mea-340

surements that covered the time span of the main bearing degradation test,

from the new main bearing condition up to its spread fault in the 190th hour.

Figure 4 presents the selected results of the AStrion methodology. Figure 4a

shows the changes in the energy of the harmonic series associated with the main

bearing BPFI. The details of the computing of this indicator can be found in [21],345

and here it serves to demonstrate the robustness of the algorithm. There are two

features of the proposed sideband demodulation method shown in Figure 4b, c,

which show the average Ā and the modulation index MIA, respectively, of the

estimated amplitude modulation function (see Table 3). Both of these indicators

are non-zero when the modulation sidebands are detected. Among all of the350

modulation sidebands revealed, the only ones shown are the series with the

carrier frequency corresponding to the fundamental frequency, the 2nd, and the

3rd harmonics of the main bearing BPFI, and the modulation frequency linked

to the low-speed shaft frequency.

It is important to note that the value is computed only in the case of the355

detection of the investigated frequency. The �rst available sample of the data is

acquired in the 44th hour, but the �rst non-zero value of the indicators presented

in Figure 4a corresponds to the 129th hour. Figure 4b, c has the �rst values

in the 134th hour. This is because from the 129th hour it is possible to detect

harmonic series associated with the main bearing BPFI, whereas from the360

134th hour, detection of the modulation associated with the low-speed shaft is

possible. The 129th hour is considered as the �rst warning of the investigated

fault, and the 134th hour is considered as the time of the fault detection by the

method presented.

The average Ā presented in Figure 4b shows an abrupt increase at the be-365

ginning that is the largest for the fundamental frequency of the main bearing

BPFI. This rapid jump corresponds to the increasing dimension of the fault on

the inner ring of the rolling-element bearing. The impact caused by the rolling

elements passing the local fault on the inner race of the main bearing gener-
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Figure 4: Evolution of (a) the energy of the harmonic series associated with the main bearing

BPFI, (b) the mean value of the amplitude demodulation function Ā, and (c) the modulation

index MIA over the detected modulation around the fundamental frequency, 2nd harmonic,

and 3rd harmonic of the main bearing BPFI through the lifetime of the main bearing tested

in the KAStrion test rig.

ates more energy from sample to sample. Most of this energy is present in the370

fundamental frequency, and its harmonics have less and less energy, which can

also be observed in Figure 4b. After the 149th hour, the value of the indicator

�uctuates, and it changes more abruptly in the 182nd hour.

The modulation index MIA in Figure 4c shows a steady trend from the

beginning of the sideband detection. The values of MIA are on a similar level375

for the fundamental frequency, 2nd, and 3rd harmonics of main bearing BPFI.

In the 182nd hour, the indicators start to drop. We interpret this as a change in
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the fault nature of the bearing under investigation. The weakening modulation

corresponds to a more and more distributed fault, as the impacts caused by the

rolling elements in motion are no longer as periodic as in the case of a local380

fault. The fault becomes spread over the inner race of the main bearing.

Through simultaneous interpretation of the Ā and MIA indicators, it is

possible to trace the nature of the fault. This is con�rmed by visual inspection

of the main bearing after the end of the test, where the entire inner race of the

investigated bearing was covered with �aking after it was disassembled from the385

test rig. Figure 5 shows a photo of the bearing at the end of the deterioration

test.

Figure 5: Flaking over the entire inner race of the faulty bearing.

Moreover, AStrion does all of the computation fully automatically, and there

is no need for any adjustment of the parameters by the user. All of the param-

eters are estimated in the investigated signal, including the range of the side-390

bands for the demodulation. This approach gives a well-designed and robust

tool, which can also be used by a non-expert in signal-processing techniques.

4.5. Comparison to Established CMS Techniques

Figure 6 shows the results of the well-known techniques used in CMS applied

to the same vibration signals. The RMS and kurtosis in Figure 6a, c, respec-395

tively, are not su�cient for clear detection of the fault. Among the simplest

fault indicators, only the crest factor, as presented in Figure 6b, enables the

detection of the fault in the 169th hour, which is much later than the proposed

method. Furthermore, this indicator cannot identify the faulty bearing.
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Figure 6: Evolution of the (a) RMS, (b) crest factor, and (c) kurtosis values computed for

the full-length signal, and the (d) narrow-band RMS with 3% bandwidth of the fundamental

frequency, 2nd harmonic, and 3rd harmonic of the BPFI of the main bearing through the main

bearing lifetime.

The narrow-band RMS is the only indicator where the performance is com-400

parable with the AStrion methodology in the investigated case. Figure 6d shows

the narrow-band RMS computed around the fundamental frequency, 2nd har-

monic, and 3rd harmonic of the main bearing BPFI. The bandwidth of this fea-

ture is 3% of the investigated frequency, which is based on engineering practice

for CMS. The threshold for fault detection is selected as 0.0001. The disadvan-405

tage of this method is that the threshold depends on the user's experience and

on other human factors. With this selection, the detection based on narrow-

band RMS of the fundamental frequency of the main bearing BPFI is in the
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145th hour, which is shown by the vertical dash-dot line in Figure 6d. This is

late detection in comparison with the proposed method, where the 134th hour410

is achieved. The narrow-band RMS of the 2nd harmonic can detect the fault

in the 169th hour. The narrow-band RMS of the 3rd harmonic also crosses the

threshold, but only for one sample in the 180th hour, and it then drops below

the threshold. This behavior might be seen as a false alarm. Additionally, the

narrow-band RMS gives no clue about the nature of the fault.415

Moreover, it is worth mentioning that in the investigated case, a lot of well-

established methods of rolling bearing diagnosis fail because of the low rotational

speed of the main bearing. There is no e�ect of exciting the resonance frequen-

cies by a faulty bearing, so methods based on envelope analysis or cyclostation-

ary analysis of the 2nd order cannot detect the investigated fault. Examples of420

these methods are presented in [24, 22].

5. Conclusions

This paper focuses on signal-processing techniques for automatic and data-

driven CMS. The two proposed methods are automatic, and are based on the

results of harmonic and sideband series detection that is performed without any425

a-priori information on the signal. The �rst proposed algorithm is a charac-

teristic frequency association method, as a two-step approach that takes into

account the possible slip of the rolling-element bearings. The second proposed

method is an all-sideband demodulation algorithm.

The results presented here show that the kinematic frequency association430

algorithm can carry out e�cient research of the characteristic frequencies of

the mechanical components with the help of the kinematic con�guration of the

machine. The real-world results show the applicability of the sideband demodu-

lation algorithm to very di�cult situations where the �lter band is asymmetric

and extremely narrow. This allows for deeper insight into the modulations cre-435

ated by the fault, and calculates the features relative to the evolution of the

fault. The proposed method can detect a rolling-element bearing BPFI fault in
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an automatic way, and using a data-driven approach. The detection is very early

compared with the well-established techniques presented in section 4.5. More-

over, the proposed features characterise the nature of the investigated fault.440

The integration of the results obtained in the surveillance of the system is

the next step [36]. As the whole algorithm is applied in a fully automatic way,

this makes the proposed approach a good solution for CMS application. In

further studies, and in the context of the two European projects `KAStrion'

and `SUPREME', integration of these proposed algorithms into a commercial445

wind turbine CMS is scheduled.

Another interesting task in the context of the Innovation Project KAStrion,

which aims to develop an advanced CMS dedicated to o�shore wind turbine

farms, and in the context of the presented work is adding an in�uence of the

load in the investigated system. As [37] points out the load susceptibility char-450

acteristics is required in the machine condition monitoring which works in the

non-stationary operation conditions. In order to investigate this aspect it would

be interesting to demonstrate the relation between the proposed statistical fea-

tures and condition parameters, in the similar way as proposed for popular

health indicators in [38]. These issue will be addressed in a future work.455
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Appendix A. Down-sampling Rates and Frequency Shift Steps

The distribution of the down-sampling rates in all of the iterations is an im-

portant con�guration of this method, and it depends �rst on the �nal sampling

frequency Fs = C · ∆B, where C is a factor between 4 and 10 that ensures a

wide �lter band and a high sampling frequency at the same time. The overall

down-sampling rate D is factorized by D = 2L
(2)

3L
(3)

by{
L(2), L(3)

}
= arg max
{l(2),l(3)}∈Z2

{
Fsy

Fs
− 2l

(2)

3l
(3)
}

subject to
Fsy

Fs
− 2l

(2)

3l
(3) ≥ 0

(A.1)

The factors 2 and 3 are alternatively arranged in a vector d

d = {dl}L(2)+L(3) = [2, 3, 2, 3, . . . ]. (A.2)

L
(2)
q factors of 2 and L

(3)
q factors of 3 will be taken from d in each down-

sampling operation, to form the down-sampling factor Dq. At the end of all of

the iterations, d will be empty d = ∅. Therefore, the total number of iterations605

Nq cannot exceed (L(2) + L(3)).

In each iteration (q) in step (2.4.1), the algorithm calculates the down-

sampling factor Dq by selecting Lq elements from d according to Dq =
Lq+1∏
l=1

dl,

where Lq de�nes the narrowest band [0, (Fs,q−1)/ (2Dq)] where a low-passe But-

terworth �lter satis�es the stability criterion. d is then updated by removing the610

�rst Lq factors d ← d/[d1, . . . , dLq
]. If Dq = 1, the down-sampling operation

will simply be skipped.

The operations aim to down-sample the signal to a su�ciently low sampling

frequency to achieve the biggest �lter bandwidth ∆B. Hence, the frequency

shifting operations will carry the �lter band B to (B − fsup) where the lower615

frequency boundary is 0. The total frequency shift is therefore −fsup and is

divided evenly into M smaller portions. In each iteration (q), the algorithm
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takes Mq portions to shift the frequency contents of the signal by −∆fq =

−Mq

M fsup.

In each iteration (q), step (2.3.1) calculates Mq by �nding the narrowest

band
[
Mq+1
M fsup, (Fs,q−1)/2

]
where a high-pass Butterworth �lter satis�es the

stability criterion. ∆f is then updated by

∆f ← ∆f −∆fq. (A.3)

If the above process returns ∆fq = 0, the frequency shifting operation will be620

skipped.
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