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émanant des établissements d’enseignement et de
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Abstract. The description of snow microstructure in mi-

crowave models is often simplified to facilitate electro-

magnetic calculations. Within dense media radiative trans-

fer (DMRT), the microstructure is commonly described by

sticky hard spheres (SHS). An objective mapping of real

snow onto SHS is however missing which prevents measured

input parameters from being used for DMRT. In contrast, the

microwave emission model of layered snowpacks (MEMLS)

employs a conceptually different approach, based on the two-

point correlation function which is accessible by tomogra-

phy. Here we show the equivalence of both electromagnetic

approaches by reformulating their microstructural models in

a common framework. Using analytical results for the two-

point correlation function of hard spheres, we show that the

scattering coefficient in both models only differs by a factor

which is close to unity, weakly dependent on ice volume frac-

tion and independent of other microstructural details. Addi-

tionally, our analysis provides an objective retrieval method

for the SHS parameters (diameter and stickiness) from to-

mography images. For a comprehensive data set we demon-

strate the variability of stickiness and compare the SHS di-

ameter to the optical equivalent diameter. Our results confirm

the necessity of a large grain-size scaling when relating both

diameters in the non-sticky case, as previously suggested by

several authors.

1 Introduction

Microwave modeling of snow is commonly addressed within

multilayer approaches to account for the vertical layer struc-

ture of a snowpack. Examples are HUT (Pulliainen et al.,

1999), MEMLS (Wiesmann and Mätzler, 1999; Mätzler and

Wiesmann, 1999), DMRT-ML (Picard et al., 2013), and

DMRT-QMS (Chang et al., 2014). A similarity of the mod-

els is their common approach of applying a one-dimensional

radiative transfer scheme to a layered medium. Each layer is

assumed to be a statistically homogeneous chunk of snow,

in which electromagnetic properties, such as effective per-

mittivity, scattering and absorption coefficient and phase

function, are determined by the microstructure. However,

the models differ significantly in both the calculation of

the solution of the radiative transfer equation and the rela-

tion between snow microstructure and the electromagnetic

properties. In-depth comparisons of microwave models are

hampered by these fundamental differences which remain

a source of uncertainty (Tedesco and Kim, 2006). The dif-

ferences in the representation of snow microstructure led to

an open discussion about the appropriate choice of struc-

tural metrics for microwave modeling (Brucker et al., 2010).

Given the crucial role of a grain size for scattering in snow,

the difficulties in comparing different metrics of grain size

strongly hinder necessary developments to improve current

retrieval schemes (Rott et al., 2010).
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Electromagnetic properties of single snow layers can be

theoretically obtained by homogenization methods, if snow

is treated as a random, two-phase medium which is statisti-

cally homogeneous. The microwave emission model of lay-

ered snowpacks (MEMLS) is based on the improved Born

approximation (IBA) (Mätzler, 1998) which expresses the

scattering coefficient in terms of the Fourier transform of

the two-point correlation function. The characterization of

the structure in terms of the two-point correlation func-

tionC(r) is appealing for random materials, since it naturally

emerges in rigorous approaches to effective material proper-

ties (Torquato, 2002). The connection between C(r) and the

scattering coefficient dates back to the seminal work by De-

bye and Bueche (1949), which considered general aspects

of scattering in random materials. From that perspective, the

microstructure representation in IBA appears to be generic.

Practically, however, entire correlation functions can hardly

be used as “parameters” and further simplifications are com-

monly required. In MEMLS, IBA is evaluated by assuming

an exponential functional form for the correlation function

(Debye et al., 1957). As an advantage of this simplification,

the microstructure model reduces to a single parameter, the

exponential correlation length. This parameter can be conve-

niently fitted from micro-computed tomography (µCT) data

(Löwe et al., 2013). Though an exponential correlation func-

tion is a reasonable first guess, in particular for depth hoar

(Mätzler, 2002), the validity of a single length scale approach

for snow must be generally questioned (Löwe et al., 2011).

In addition, a rapid retrieval of the exponential correlation

length from field measurements is still difficult; only one

method was hitherto put forward by Proksch et al. (2015). It

is not even clear that three-dimensional microstructures with

an exponential correlation function actually exist, and how

realizations of such a medium can be generated (Yeong and

Torquato, 1998). Generating realizations of a microstructure

is however mandatory to compute the scattering from numer-

ical solutions of Maxwell’s equations in order to test the IBA

assumptions.

Advantages and disadvantages of IBA have to be discussed

at eye level of those inherent to another electromagnetic ap-

proach to scattering in snow, namely dense media radiative

transfer (DMRT). Originally DMRT was developed for ran-

dom media consisting of spheres or spheroids. Sphere mod-

els are attractive from various perspectives. First, the scat-

tering coefficient of sphere assemblies can be calculated an-

alytically in various approximation schemes, such as the

quasi-crystalline approximation (QCA), which can be op-

tionally improved by the so-called coherent potential (QCA-

CP) (Tsang and Kong, 2001, Ch. 5). Second, microstructure

realizations of spheres can be readily generated to compute

the numerical solutions of Maxwell’s equations (Xu et al.,

2010). Third, sphere models have successfully been used for

optical properties of snow for a long time (Warren, 1982).

An equivalent sphere can always be defined from the spe-

cific surface area (SSA) via the optical equivalent diameter.

In addition, the SSA can be rapidly measured in the field

by various techniques (Matzl and Schneebeli, 2006; Painter

et al., 2007; Gallet et al., 2009; Arnaud et al., 2011). How-

ever, even for a hypothetical material consisting of perfect

spheres, the sphere diameter and the volume fraction do not

characterize the medium completely. Relevant for the scatter-

ing of waves are the relative positions of the spheres which

determine the relative phases in the superposition of the scat-

tered waves from individual scatterers. Of special importance

for snow is the sticky hard sphere (SHS) model due to its abil-

ity to change relative particle positions while leaving diam-

eter and volume fraction constant. The concept of SHS was

introduced in the context of molecular fluids (Baxter, 1968)

and consists of spherical particles interacting via hard-core

repulsion and an attractive surface adhesion. In the thermo-

dynamic framework, this competition of attractive and repul-

sive forces gives rise to a minimal model for a liquid-gas

phase transition. For other applications it is appealing to use

the thermodynamic equilibrium states for the particle posi-

tions as a means of generating microstructures with interest-

ing structural properties; the contact adhesion, which is in-

versely proportional to the so-called stickiness parameter τ

(Baxter, 1968), gives rise to clustering of the spheres. The

relevance of clustering can be directly observed for some

snow types, e.g., clustered rounded grains (Fierz et al., 2009).

For other snow types the strength of the adhesion must be re-

garded as a parametric approach to subsume effects of sinter-

ing which causes ice crystals to be sticky. The relevance of

sticking and the implication on structural properties for new

snow has been demonstrated by Löwe et al. (2007). The po-

tential of stickiness for snow microwave modeling to account

for relevant length scales beyond a “grain size” was initiated

for DMRT by Tsang et al. (2007).

Objective means of estimating the stickiness parameter for

a given snow sample are hitherto missing. However, simply

resorting to the non-sticky case causes other difficulties. Re-

cent DMRT-based microwave emission modeling (Brucker

et al., 2010; Roy et al., 2013; Dupont et al., 2014) and com-

parison with measurements indicate that the measured op-

tical equivalent diameter can only be used directly as in-

put, if either a “grain-size scaling” (with a factor ranging

from 1 to 3) is introduced in the non-sticky case or if the

stickiness is used as a free, unknown parameter (Roy et al.,

2013). This issue could not be further investigated as long

as the stickiness parameter τ remains inaccessible from field

measurements. In the absence of objective parameter esti-

mates, a single value is commonly used for all snow types

in the simulations (Picard et al., 2013; Tsang et al., 2007),

although a large sensitivity of scattering properties on τ was

acknowledged. Due to the lack of interpretation of stickiness

for snow, attempts to intercompare DMRT-ML with MEMLS

such as Tian et al. (2010) remain challenging, since different

microstructural models are in fact used in the respective mi-

crowave models.
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It is the aim of the present paper to advance the under-

standing of microstructural models in different electromag-

netic models for microwave modeling of snow by establish-

ing a rigorous link between the scattering formulations used

in DMRT-ML and MEMLS. More precisely, for the DMRT

theory we consider the QCA-CP approximation as used in

DMRT-ML (Picard et al., 2013). For IBA, we follow the

derivation based on the internal field factor for spherical scat-

terers (Mätzler, 1998) which slightly differs from the default

implementation in MEMLS that is based on an empirical fac-

tor (Mätzler and Wiesmann, 1999). In addition, for both the-

ories we restrict ourselves to small sizes of scatterers relative

to the wavelength, which is referred to as a low frequency

assumption in the following. By restating the scattering co-

efficient in both electromagnetic theories and applying es-

tablished theoretical results for correlation functions in ran-

dom media, we obtain a rigorous relation between IBA and

QCA-CP for arbitrary hard sphere models. On the one hand,

this yields an objective method of estimating the stickiness

parameter τ of the SHS model from µCT images of snow.

On the other hand, the procedure allows exactly the same

microstructural model to be used, namely SHS, in IBA and

QCA-CP, and compares the scattering coefficient quantita-

tively using realistic values for the parameters.

The paper is organized as follows. In Sect. 2 we rederive

the scattering coefficient of IBA and QCA-CP to contrast

their representation of snow microstructure in terms of dif-

ferent correlation functions. In Sect. 3 we give an explicit

expression for the two-point correlation function for SHS

which allows the IBA theory to be expressed in terms of the

microstructure representation traditionally used by DMRT.

In addition, an objective retrieval method of the SHS pa-

rameters (diameter and stickiness) from measurements of

the two-point correlation function of snow is presented. In

Sect. 4 we use existing µCT images to derive the SHS pa-

rameters and explore their behavior for different snow types.

We discuss our findings in Sect. 5 in view of the relevance

of the results for the scattering coefficient in their host mod-

els, MEMLS and DMRT-ML. As an application of our work

besides the microwave context, we also discuss implications

of the present results in view of the discrete element mod-

eling (DEM) of snow for mechanical applications (John-

son and Hopkins, 2005). Presently, DEM also lacks efficient

means of objectively reconstructing snow samples in terms

of particle models. The reconstruction of snow microstruc-

ture in terms of SHS provides a new link to such a granular

viewpoint.

2 Scattering coefficient and relation to microstructure

2.1 Two-phase media and two-point correlation

functions

Random two-phase media are a natural starting point to char-

acterize the morphology of air and ice in snow. We consider

a two-phase medium in a region � where phases 1 and 2

occupy the subregions �1⊂V with volume V1 and �2⊂V

with volume V2, respectively. Both subvolumes add up to the

total volume V1+V2=V . We assume phase 1 to be the void

phase (i.e., air) and phase 2 the inclusion phase (i.e., ice).

Following Torquato (2002), a single realization of the mi-

crostructure can be fully described by the phase indicator

function of either phase j = 1, 2:

φj (x)=

{
1 if x ∈�j
0 otherwise,

(1)

which provides the complete information if a point x ∈� is

covered by ice or air. A binary image obtained by processing

µCT data is actually a discrete form of indicator function.

From a theoretical point of view, individual realizations are

not of particular interest for random media. It is rather the

statistical properties which emerge in the analytical deriva-

tion of effective physical properties. Volume fractions φj of

either phase j = 1, 2 are the simplest statistical properties

which are first-order quantities, i.e., they just contain the first

moment of the indicator function

φj (x)=
1

V

∫
V

drφj (x)=
Vj

V
= φj , (2)

where volume averaging is denoted by •. Snow density is di-

rectly related to φj . In contrast, higher-order moments of the

indicator function, i.e., averages of certain products of φj (x)

for j = 1, 2, characterize spatial fluctuations of the phases.

The simplest moments are the two-point correlation func-

tions

Sj (r)= φj (x+ r)φj (x) (3)

of either phase. A closely related, second-order quantity is

the phase covariance

C(r)= S1(r)−φ
2
1 = S2(r)−φ

2
2 , (4)

which is symmetric under the exchange of ice and air. Equa-

tions (3) and (4) provide comparable information about a

random field that the second moment and the variance pro-

vide for a random variable. In practice, second-order mo-

ments contain information about the size of heterogeneities

at the microscopic scale which can be used to define different

“grain sizes” for a given microstructure.

Though snow is known to be anisotropic (Löwe et al.,

2013), the IBA and QCA-CP theory have only considered

isotropic correlation functions and randomly oriented snow

particles up to now. In the following we thus focus on

isotropic media, where C(r)=C(r) with r = |r|.
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2.2 Scattering coefficient in MEMLS: improved Born

approximation

2.2.1 Scattering coefficient and phase function

Below we state the governing equations for the scattering

coefficient in the improved Born approximation (Mätzler,

1998). We slightly adapt the notation and terminology to es-

tablish the connection to DMRT.

Within the improved Born approximation, the scattering

coefficient is derived from the phase function (or bistatic

scattering function) (Mätzler, 1998, cf. Eq. 25) which is

given by

γ (k̂s, k̂i)= φ2 (1−φ2)(ε2− ε1)
2K2k4

0sin2(χ)I (|kd|) , (5)

where the dielectric constants of the two phases are denoted

by ε1 and ε2. The vectors k̂i, k̂s are the propagation directions

of the incident and scattered waves, respectively. The angle

between the incident electric field and the scattering direc-

tion k̂s is denoted by χ . The wavevector difference of in-

coming and scattered waves is denoted by kd= keff(k̂s− k̂i)

with magnitude

kd = 2keff sin(2/2); (6)

hence the angle2 denotes the scattering angle, i.e., the angle

between k̂s and k̂i. In Eq. (6), keff is the effective propagation

constant of the wave in the medium which is related to the

effective dielectric constant εeff by

keff = k0ε
1/2

eff , (7)

where k0 is the vacuum wavenumber. The remaining quan-

tities in Eq. (5) to be specified are K and I . K denotes the

mean squared magnitude ratio of incident and internal field

in the ice phase. Various formulations for K are given by

Mätzler (1998). To make contact with hard spheres later, we

focus on spherical heterogeneities, for which K is given by

K2
=

∣∣∣∣∣2ε
IBA
eff,0+ ε1

2εIBA
eff,0+ ε2

∣∣∣∣∣
2

. (8)

Here εIBA
eff,0 is an approximation to the effective dielectric con-

stant. It represents the dielectric constant of the effective

medium in the absence of scattering in the very low fre-

quency limit. It is assumed to be given by the Polder–van

Santen mixing formula

εIBA
eff,0 =

2ε1− ε2+ 3φ2 (ε2− ε1)

4

+

√
(2ε1− ε2+ 3φ2 (ε2− ε1))

2
+ 8ε1ε2

4
. (9)

The most relevant quantity in Eq. (5) for the purpose of this

paper is I (|kd|) which contains the entire information about

the microstructure entering the scattering coefficient in IBA.

From the definition of I (|kd|) in Mätzler (1998), we can

rewrite it in terms of the Fourier transform of the correlation

function Eq. (4) according to

I (|kd|)=
1

4π

C̃(|kd|)

φ2 (1−φ2)
. (10)

Here and throughout we use the shorthand notation f̃ to indi-

cate the three-dimensional Fourier transform of a function f

which is defined by

f̃ (k)=

∫
R3

dxf (x)exp(−ix · k), (11)

which implies the inverse transform

f (x)= (2π)−3

∫
R3

dkf̃ (k)exp(ix · k).

We close this section by commenting on the ambiguous

notion of “particles” in the original derivation of IBA. The

field ratio matrix K (Mätzler, 1998, Eq. 7) does not fol-

low on from the theory but needs to be given a priori. As

explained by Mätzler and Wiesmann (1999), it depends on

snow density and grain shape, stating “the shape dependence

is relatively weak; therefore, the real situation can be well-

modeled with idealized particles.” It is however question-

able that the signature of local shape (K) and the correlation

function C(x) can be chosen independently, as suggested in

IBA, since both quantities are related. A potential impact of

shape is however irrelevant for the present isotropic consider-

ations, where we choose K corresponding to spherical parti-

cles (Mätzler, 1998, Eq. 28) to be consistent with the DMRT

description.

2.2.2 Scattering coefficient in the low frequency limit

The scattering coefficient κ IBA
s for IBA in Mätzler (1998) is

obtained by integrating the phase function Eq. (5) over the

scattering directions k̂s, viz

κ IBA
s =

1

4π

∫
4π

d�sγ (k̂s, k̂i), (12)

where d�s is the solid angle element in the scattering direc-

tion k̂s. In general, not only sin2χ but also I (|kd|) depends

on the scattering angle in Eq. (5) which requires numerical

integration of Eq. (12) as done in MEMLS. In the following,

we focus on the low frequency limit which allows I (|kd|) to

be replaced by I (0) in Eq. (5) as also done by Mätzler (1998).

It follows that the only dependence of the bistatic scattering

coefficient Eq. (5) on k̂s remains in the term sin2χ . Without

loss of generality, choosing a coordinate system where the

z axis is aligned with the local field, the average Eq. (12) of

sin χ yields 2/3. In summary, the scattering coefficient is

The Cryosphere, 9, 2101–2117, 2015 www.the-cryosphere.net/9/2101/2015/
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κ IBA
s =

2

3
k4

0

∣∣∣∣∣∣
(ε2− ε1)

(
2εIBA

eff,0+ ε1

)
(

2εIBA
eff,0+ ε2

)
∣∣∣∣∣∣
2

C̃(0)

4π
, (13)

where we used Eq. (10) to obtain an expression in terms of

the correlation function.

2.3 Particle-based media and pair correlation functions

The original versions of DMRT assume that the microstruc-

ture comprises N discrete particles of a given shape and size

in a container of volume V . A particular realization of the

particle configuration can be specified in terms of the particle

centers {r i}i=1...N . In contrast to IBA, which describes the

microstructure in terms of the phase indicator function con-

taining implicit information about shapes and sizes, DMRT

requires explicit information about particle shape and size

of a particle at locations {r i}. Often a fixed shape is chosen

(e.g., sphere) and the size is either left constant (referred to as

monodisperse) or drawn from a probability distribution (re-

ferred to as polydisperse). Thus for a given shape and size, a

particular realization of the microstructure can be described

by the number density field

n(x)=

N∑
i=1

δ (x− r i) . (14)

The first moment is the mean number density

n(x)=
1

V

∫
V

dxn(x)=
N

V
= n. (15)

From the number density field we define a second-order cor-

relation function by

c(r)= (n(x)− n)(n(x+ r)− n), (16)

which characterizes local fluctuation of the number density.

The well-known pair correlation function g(r) of a particle

assembly is then essentially a modified version of Eq. (16),

viz

c(r)= n2
[g(r)− 1] + nδ(r). (17)

The structure factor S(k) is the Fourier transform of the pair

correlation function and given by

S(k)= 1+ n

∫
V

dr[g(r)− 1]exp(−ir · k). (18)

2.4 Scattering coefficient in DMRT-ML:

quasi-crystalline approximation – coherent

potential and low frequency limit

Several flavors of DMRT have been developed over the years

(Tsang, 1992; Tsang et al., 2000, 2007; Liang et al., 2008).

Here we consider dense packings of spheres in the low fre-

quency limit, in accordance with the approximations made in

the derivation of IBA. The response of a sphere on an electric

field is well-known. To obtain the scattering coefficient the

main task is to estimate the collective excitation of all spheres

upon an incident plane wave. This can be stated in terms of

an integral equation (Tsang and Kong, 2001, Ch. 5) which

allows the effective dielectric constant εeff of the medium to

be computed. In the quasi-crystalline approximation (QCA)

with coherent potential (CP), the result for the effective di-

electric constant is given by

εeff = ε1+ 3εeffφ23(εeff)

{
1+ i

2

3
ε

3/2

eff a
33(εeff)S(0)

}
. (19)

Equation (19) is a nonlinear equation for the complex-valued

effective dielectric constant εeff. It involves the structure fac-

tor S(k) from Eq. (18) in the low frequency limit k→ 0, the

sphere radius a and the auxiliary function

3(εeff)=
ε2− ε1

3εeff+ (ε2− ε1)(1−φ2)
. (20)

Different strategies are possible to solve Eq. (19). The sim-

plest strategy is to replace εeff on the right-hand side by ε1.

This approximation is known as QCA (without coherent po-

tential) (Tsang and Kong, 2001, Eq. 5.3.113a). The solution

strategy followed by Picard et al. (2013) is instead iterative.

First, Eq. (19) is solved in the non-scattering limit, i.e., for

a= 0. This yields a quadratic equation, cf. (Tsang and Kong,

2001, Eq. 5.3.125) or (Picard et al., 2013, Eq. (5)). We denote

the solution of the equation by ε
QCA-CP
eff,0 which is given by

ε
QCA-CP
eff,0 =

ε1−
(ε2−ε1)

3
(1− 4φ2)

2

+

√(
ε1−

(ε2−ε1)
3

(1− 4φ2)
)2

+ 4ε1
(ε2−ε1)

3
(1−φ2)

2
. (21)

The extinction coefficient can be derived from Eq. (19) via

κe= k0 I(ε1/2

eff ). Following Tsang (1992, Eqs. 46 and 90), the

scattering coefficient is given by

κQCA-CP
s =

2

9
k4

0a
3φ2

∣∣∣∣∣ 3ε
QCA-CP
eff,0 (ε2− ε1)

3ε
QCA-CP
eff,0 + (ε2− ε1)(1−φ2)

∣∣∣∣∣
2

S(0). (22)

The expression Eq. (22) for the scattering coefficient is

generic since it involves the microstructure in terms of the

structure factor at low frequency S(0). This can be speci-

fied to arbitrary particle systems as long as the structure fac-

tor S(0) can be computed.

3 Link between IBA and QCA-CP

The statistical characterization of particle systems by the

number density field Eq. (14) has a long tradition in the sta-

tistical physics of liquids. A comparison with Sect. 2 reveals

www.the-cryosphere.net/9/2101/2015/ The Cryosphere, 9, 2101–2117, 2015
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that particle-based media and two-phase media are described

by similar, though slightly different formalisms: Both are mi-

croscopically defined by a microscopic quantity characteriz-

ing the local density – local number density Eq. (14) vs. local

volume fraction Eq. (1) – and moments of the microscopic

quantities (Eqs. 15, 16 vs. Eqs. 2, 3) for the mean and fluctu-

ations of the microscopic quantities. Differences emerge due

to the mathematical properties of the microscopic quantities.

While in the two-phase case, products φj (r)
2 of the indica-

tor function with itself are well-defined, products of the form

δ(r)2 are mathematically meaningless. This requires some

caution when computing moments.

The interrelation of the statistical description of two-phase

media and particle-based media in terms of correlation func-

tions was detailed by Torquato and Stell (1982). To relate

the scattering coefficient from IBA and QCA-CP, Eqs. (22)

and (13) respectively, we note that one is determined by the

low frequency limit of the structure factor S(0), while the

other is determined by the low frequency limit C(0) of the

Fourier transform of the correlation function. While the for-

mer is only defined for particle systems, the latter can be

specified to arbitrary two-phase media. Thus for particle-

based media, both correlation functions can be defined. The

pair correlation function of the particle centers and the two-

point correlation function are not independent, since knowl-

edge of particle positions together with the particle shape

uniquely determines the spatial region which is covered by

the particle phase (phase 2). This is exactly the information

contained in the indicator function.

3.1 Relation between g(r) and C(r)

The link between corresponding correlation functions was

established (Torquato and Stell, 1983) under quite general

assumptions for arbitrary particle interactions. The specifi-

cation of the general result to the case of monodisperse hard

spheres can be found in Zachary and Torquato (2009, Eq. 52).

In the present notation, the result reads

C(r)= nvint(r,d)+ n
2vint(r,d)∗[g(r)− 1], (23)

where (∗) denotes the three-dimensional convolution and vint

is the volume of the intersection set of two identical spheres

with diameter d = 2a which are separated by r . The intersec-

tion volume (Torquato, 2002, Eq. 3.51) is given by

vint(r,d)= v(d)

(
1−

3

2

|r|

d
+

1

2

|r|3

d3

)
H(d − |r|), (24)

in terms of the Heaviside step function H(x) and the volume

of the sphere v(d)=π d3/6. In view of the scattering coef-

ficient derivation, we take the Fourier transform of Eq. (23)

and use the definition of the structure factor Eq. (18) to obtain

C̃(k)= nṽint(k,d)S(k). (25)

The Fourier transform of the intersection volume Eq. (24)

can be readily computed and written in the scaling form

ṽint(k,d)= v(d)
2P(kd) (26)

with

P(k d)=

[
3(sin(kd/2)− kd/2cos(kd/2))

(kd/2)3

]2

(27)

and k= |k|. The function P(kd) is known as the spherical

form factor (Pedersen, 1997, Eq. 55). The relation between

Fourier transforms of the phase covariance and correlation

function of the particle assembly, given by Eq. (25), consti-

tutes the key result to compare the scattering coefficient in

IBA and QCA-CP. In addition, this relation would allow any

particle-based model to be implemented in IBA, as long as

the structure factor S(0) and field ratio K are known. The

relation Eq. (23) is not limited to spheres; it can be gener-

alized also to anisotropic particles, provided the intersection

volume vint can be computed.

3.2 Relation between scattering coefficient in IBA and

QCA-CP

By means of the fundamental relation Eq. (25) and

φ2= nv(d) we can now express the IBA scattering coeffi-

cient Eq. (13) in terms of the structure factor, yielding

κ IBA
s =

2

9
k4

0a
3φ2

∣∣∣∣∣∣
(ε2− ε1)

(
2εIBA

eff,0+ ε1

)
(

2εIBA
eff,0+ ε2

)
∣∣∣∣∣∣
2

S(0), (28)

which is very close to the form of the QCA-CP scattering

coefficient in Eq. (22). For a comparison we define rs as the

ratio of the IBA and QCA-CP scattering coefficient which is

given by

rs (φ2)=
κ IBA

s

κ
QCA-CP
s

=

∣∣∣∣∣∣
(

2εIBA
eff,0+ ε1

)(
3ε

QCA-CP
eff,0 + (ε2− ε1)(1−φ2)

)
(

2εIBA
eff,0+ ε2

)
3ε

QCA-CP
eff,0

∣∣∣∣∣∣
2

. (29)

For the given phase permittivities ε1, ε2 the ratio is only

a function of the ice volume fraction φ2. The dependence

on the microstructure via S(0) dropped out completely in

Eq. (29) since both scattering coefficients contain exactly the

same factor. The ratio rs is also independent of the wave-

length (except implicitly through the dielectric constants)

and varies by no more than ≈ 30 % for relevant volume frac-

tions 0<φ2< 0.5 (Fig. 1). This has to be contrasted to the ra-

tio calculated and shown in Mätzler (1998, Fig. 4), in which

a strong influence of the volume fraction on rs is apparent.

The reason is the use of different microstructural models

(overlapping spheres versus SHS) in the respective scatter-

ing models. For completeness, we also show that the real and
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Figure 1. Ratio of scattering coefficient calculated with IBA and

DMRT theory as a function of ice volume fraction φ2 evaluated for

ε1= 1 and ε2= 3.17+ 0.0022 i.

imaginary parts of the dielectric constants of the effective

medium in the absence of scattering of either model, Eqs. (9)

and (21) in Fig. 2. The maximum relative difference between

the real parts is only 1.5 %, and between the imaginary parts

it is 8.8 %.

3.3 Structure factor for sticky hard spheres

The DMRT formulation used in many DMRT-based models

use the sticky hard sphere (SHS) model to represent the po-

sition of the scatterers. In IBA it is now possible to consider

the same SHS model since the scattering coefficient Eq. (28)

can be specified to an arbitrary sphere assembly as long as

the structure factor S(0) is known. To this end we give an

expression of the structure factor S(k) for SHS and its zero

k limit in order to obtain an IBA-based formulation as close

as possible to that of DMRT. We consider the monodisperse

SHS model by Baxter (1968) comprising N point particles

at positions {r i}i=1...N in a volume V interacting via a pair

potential

U(|r|)=
1

β


∞, |r|< d

− ln
[

σ
12τ(σ−d)

]
, d < |r|< σ

0, |r|> σ

. (30)

Here β is the inverse temperature and the potential consists of

a hard-core repulsion, which prevents particles from overlap

at distances smaller than the sphere diameter d, and a square

well attraction, which tends to a contact adhesion force in

the limit σ→ d. The strength of the adhesion is proportional

to the inverse of the stickiness parameter τ . In the Percus–

Yevick approximation, the structure factor of SHS can be

written in closed form (Tsang et al., 2001, Eqs. 8.4.19–

8.4.22) in terms of the particle phase volume fraction φ2, the

stickiness parameter τ , and sphere diameter d according to

Figure 2. Real and imaginary parts of dielectric constant εIBA
eff,0

and

ε
QCA-CP
eff,0

in the very low frequency limit as a function of ice volume

fraction φ2.

SSHS(k)=
[
A(X)2+B(X)2

]−1

A(X)=
φ2

1−φ2

[(
1− tφ2

3φ2

1−φ2

)
8(X)

+(3− t (1−φ2))9(X)]+ cos(X)

B(X)=
φ2

1−φ2

X8(X)+ sin(X)

8(X)= 3

[
sin(X)

X3
−

cos(X)

X2

]
9(X)=

sin(X)

X
, (31)

with X= k d/2 and the parameter t , given by the smallest

solution of the quadratic equation

φ2

12
t2−

(
τ +

φ2

1−φ2

)
t +

1+φ2/2

(1−φ2)
2
= 0 (32)

under the additional condition t < (1+ 2φ2)/(φ2(1−φ2))

which guarantees SSHS(0) to be positive (Baxter, 1968;

Tsang et al., 2001). The structure factor S(k) is thus only a

function of the scaling variable kd . Using the limiting values

9(0)=8(0)= 1 and B(0)= 0, the low frequency limit S(0)

required for the scattering coefficient can be readily com-

puted from Eq. (31) and is given by

S(0)= A(0)−2
=

[
(1−φ2)

2

1+ 2φ2− tφ2 (1−φ2)

]2

. (33)

This is in agreement with Picard et al. (2013), Tsang and

Kong (2001) and Shih et al. (1997) The structure fac-

tor for non-sticky hard spheres can be recovered by tak-

ing the limit τ→∞, corresponding to t→ 0, yielding

S(0)= (1−φ2)
4/(1+ 2φ2)

2.

In summary, the Fourier transform of the correlation func-

tion of sticky hard spheres can be written as

C̃SHS (k|φ2,d,τ )= φ2v(d)P (kd)SSHS(kd) (34)
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in terms of the sphere volume v(d)=π d3/6, the spherical

form factor P(kd) from Eq. (27) and the SHS structure fac-

tor SSHS from Eq. (31). For later purposes we made the de-

pendence of C̃SHS(k|φ2, d , τ ) on the involved parameters φ2,

d , τ explicit.

4 SHS analysis of snow from µCT images

4.1 Micro-computed tomography data

For the following analysis we employ the data set of µCT

images described in Löwe et al. (2013) which was used

therein in a different context. The entire data set comprises

167 snow samples which are divided into several series of

data: two time series of isothermal experiments (ISO-1, ISO-

5), four time series of temperature gradient metamorphism

experiments (TGM-2, TGM-17, DH-1, DH-2) and a set of

37 uncorrelated samples (DIV) comprising various snow

types. A detailed characterization including the IACS inter-

national classification of seasonal snow on the ground (Fierz

et al., 2009) of the snow samples is given in the supplement

to Löwe et al. (2013). In summary, the data sets contains

62 samples of depth hoar (DH), 54 of rounded grains (RG),

33 of faceted crystals (FC), 10 of decomposing and frag-

mented precipitation particles (DF), 5 of melt forms (MF)

and 3 of precipitation particles (PP).

4.2 Data processing and Fourier transform

Computing correlation functions as convolutions of µCT im-

ages is commonly done using fast Fourier transform (FFT) of

the indicator function Eq. (1). Fourier transforms of the data

are thus naturally available.

Snow is known to be anisotropic which was explicitly an-

alyzed for the present data set in Löwe et al. (2013). To in-

terpret the anisotropic µCT data in terms of the isotropic

SHS model, orientational averaging of the experimental data

is required. To this end we cut out maximal cubic subsets

of linear size L from the original µCT images to obtain a

wavevector spacing 1k= 2π/L which is independent of co-

ordinate direction in Fourier space. Sample sizes L of the

cubic images vary from 4.8 to 10.7 mm, and voxelsizes lvox

from 10 to 54 µm, respectively. An a posteriori inspection

will confirm that L is approximately an order of magnitude

larger than the optical diameter for all samples. The angu-

lar average C̃(k) is obtained by radially binning the three-

dimensional Fourier transform and averaging over points in

concentric wavevector shells. The angular average C̃(k) con-

stitutes the experimental data that will be compared to the

SHS model C̃SHS(k|φ2, d, τ) from Eq. (34).

4.3 Properties of the SHS correlation function

Before turning to the parameter estimation, we illustrate the

parametric behavior of C̃SHS(k|φ2, d, τ) for sticky hard

Figure 3. Comparison of measured and fitted Fourier transforms of

the correlation function for one snow sample (blue curves). Depen-

dence of sticky hard sphere model C̃SHS(k|φ2, d , τ) on stickiness τ

(cyan curves) and volume fraction φ2 (red curves) around a refer-

ence (black dashed line). The dependence of C̃SHS(k|φ2, d , τ ) on

sphere diameter d is captured by using the dimensionless variable

kd and normalizing with the sphere volume v(d).

spheres. To this end we picked one snow sample of rounded

grains and show the experimental data C̃(k) together with the

best fit of the model in Fig. 3. We also indicated the behavior

for large k as a guide to the eye. The Fourier transform of the

correlation function must asymptotically decay as ∼ s k−4,

where the prefactor s is the surface area per unit volume of

the sample (Torquato, 2002).

To further demonstrate the impact of the parameters (φ2,

τ , d) on the SHS model C̃SHS(k|φ2, d , τ), we additionally

varied the parameters around some reference values d = 1,

τ = 1 and φ2= 0.15 (black dashed line in Fig. 3). One fam-

ily of curves (red colors) illustrates the impact of increasing

volume fraction φ2 by plotting the curves d = 1, τ = 1 and

φ2= [0.2, 0.25, 0.3, 0.35, 0.4]. The other family of curves

(cyan colors) illustrates the impact of increasing stickiness

τ−1 by plotting the curves d = 1, τ = [0.5, 0.3, 0.25, 0.2,

0.15] and φ2= 0.15. The dependence on sphere diameter is

fully captured by using a non-dimensionalized scaling plot

C̃(k)/v(d) vs. k d as predicted by Eq. (34). The red and cyan

curves were multiplied by an arbitrary factor to vertically

translate the curves for better visibility.

4.4 SHS parameter estimation for snow

Using the closed form expression C̃SHS(k|φ2, d , τ) for the

correlation function from Eq. (34) we are now able to ob-

jectively estimate optimal SHS parameters d̂ and τ̂ for a

given snow sample by fitting the expression to the angular-

averaged experimental data C̃(k). The volume fraction φ2

is prescribed by the value obtained from the µCT image.

We used the same fit interval k= [0, kmax/3] for all sam-

ples. The number of points in this interval and the maximum

wavevector kmax= 2π/lvox however varies from sample to
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Figure 4. Estimated parameter pairs (d̂, τ̂ ) for all 167 samples.

Experiment series are indicated by colors (TGM-17: red, TGM-

2: green, DIV: blue, DH-1: magenta, DH-2: cyan, ISO-1: black,

ISO-5: brown) and snow types by markers (PP: C, DF: B, RG: ◦,

FC: �, DH: ∨, MF: �).

sample due to variations in voxelsize lvox and sample size L

of the cubic µCT image. The regression on d, τ was carried

out using MATLAB’s nonlinear, least-squares fitting tools to

minimize the sum of squared differences between model and

measurement. Thereby, we maximize the quality of fit in the

low k regime, since the scattering depends only on the value

at the origin k d = 0. First we present overview results for the

optimal parameters; further details such as goodness of fits

and characteristics of the cost function are explored in the

subsequent section.

For an overview, we show the optimal parameters (d̂ , τ̂ )

for all samples in Fig. 4. The fit parameters are apparently

unrelated; a linear regression τ̂ = 0.15d̂ + 0.10 as an attempt

to predict stickiness from the sphere diameter (black line)

yields a coefficient of determination of R2
= 0.23.

Next we plot the optimal stickiness values τ̂ for all

167 samples in Fig. 5 as a function of ice volume fraction.

This plot corresponds to the thermodynamic phase diagram

of the original SHS model which completely determines the

physical behavior of the system. It allows the distribution of

pairs (φ2, τ̂ ) to be assessed further. Two additional lines are

added in the Fig. 5. The dashed line indicates the lower limit

of physically admissible values of τ for a given volume frac-

tion. The line is given by

τmin (φ2)=
1

12

14φ2
2 − 4φ2− 1

2φ2
2 −φ2− 1

(35)

as an implication of the condition on t in Eq. (32).

The second (full) line in Fig. 5, which separates the pa-

rameter space into a white and a gray part, corresponds to

the underlying percolation transition of the SHS model. The

percolation line is given by

τperc (φ2)=
1

12

19φ2
2 − 2φ2+ 1

(1−φ2)
2

(36)

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

φ2

τ̂

 

 

Non−percolating
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Eq.(36)
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Figure 5. Estimated stickiness values τ̂ as a function of ice vol-

ume fraction φ2. Experiment series are indicated by colors (TGM-

17: red, TGM-2: green, DIV: blue, DH-1: magenta, DH-2: cyan,

ISO-1: black, ISO-5: brown) and snow types by markers (PP: C,

DF: B, RG: ◦, FC: �, DH: ∨, MF: �).

cf. Chiew and Glandt (1983). The relevance of both lines in

view of the present application is further detailed in the dis-

cussion.

Finally we compare the estimated SHS diameter d̂ with the

optical diameter dopt. The optical diameter of a snow sample

is defined by

dopt =
6

SSAρice

(37)

in terms of the SSA which was obtained from the µCT im-

age. The results are shown in Fig. 6. The relation between

both diameters will be further analyzed in the context of

grain-size scaling below.

4.5 Goodness of fits

To illustrate differences in the performance of the fit for the

SHS model, we show the coefficient of determination R2 for

the optimal values τ̂ , d̂. The results are shown in Fig. 7 (open

symbols) and illustrate that the performance of the fit dif-

fers significantly. For the discussion below, we also fitted the

µCT data in the same range to the Fourier transform of the

exponential correlation function

C̃exp(k)= 4πφ2 (1−φ2)
2ξ3[

1+ (kξ)2
]2 (38)

which is a single parameter form which involves the expo-

nential correlation length ξ . The results are also shown in

Fig. 7 (filled symbols). For all time series of temperature gra-

dient metamorphism (TGM-17, TGM-2, DH-1, DH-2), an

intermediate drop in R2 for both models is observed. The

worst performance of the SHS model (FC sample from the

DIV series) is the sample with the highest density; however,

no obvious trend of R2 with snow type or density was found.
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Figure 6. Scatter plot of the SHS diameter estimate d̂ and the opti-

cal diameter dopt. Experiment series are indicated by colors (TGM-

17: red, TGM-2: green, DIV: blue, DH-1: magenta, DH-2: cyan,

ISO-1: black, ISO-5: brown) and snow types by markers (PP: C,

DF: B, RG: ◦, FC: �, DH: ∨, MF: �). The black solid line indi-

cates the 1 : 1 relation.

To further investigate goodness-of-fit differences of the

SHS model, we analyzed the behavior of the cost function

J (τ,d)=

(
n/3∑
i=0

∣∣C̃ (ki)− C̃SHS (ki |φ2,d,τ )
∣∣2)1/2

(39)

for the SHS model C̃SHS(ki |φ2, d, τ) from Eq. (34) which

is minimized in the least-squares optimization to obtain the

estimates τ̂ , d̂. The contour plot of log[J (τ , d)] is shown in

Fig. 8 for three different snow types. The three snow sam-

ples in Fig. 8 were (a) the first sample of the ISO-1 isother-

mal metamorphism time series (precipitation particles, PP),

(b) the last sample of the ISO-1 isothermal metamorphism

time series (large rounded grains, RG) and (c) the last sample

of the DH-2 temperature gradient metamorphism time series

(depth hoar, DH). The plots indicate apparent differences in

view of location and shape of the minimum with respect to

snow type. For the PP example, the minimum is located close

to the boundary of admissible τ values (cf. Eq. 35). In con-

trast, for the RG example the minimum is located well in the

interior of admissible τ , d values. It is however contained in

a valley almost parallel to the τ axis, indicating some degree

of degeneracy of the optimal values. For the DH example

the residuals are higher in magnitude and the minimum is

shallower compared to the other examples. To complete the

analysis of the three examples from Fig. 8, we finally plot

µCT data for C̃(k) together with the SHS and the exponen-

tial model evaluated for the optimal parameters in Fig. 9.

4.6 Analysis of grain-size scaling

In order to assess the relevance of the grain-size scaling

raised in Picard et al. (2013) we further elaborate the compar-

Table 1. Fit parameters and standard errors for a linear regression

between the optimal SHS diameter and the optical diameter accord-

ing to Eq. (40) carried out for subsets of the data: for individual

experiment series (top) and for individual snow types (bottom).

Subset a1 a0 (mm)

Exp. series

ISO-1 1.05± 0.13 −0.08± 0.05

ISO-5 1.04± 0.16 −0.11± 0.05

DIV 1.44± 0.11 −0.09± 0.04

TGM-2 2.40± 0.04 −0.34± 0.01

TGM-17 1.47± 0.03 −0.16± 0.01

DH-1 2.38± 0.12 −0.58± 0.05

DH-2 2.03± 0.21 −0.40± 0.09

Snow type

DF 0.11± 0.37 0.14± 0.07

RG 1.33± 0.07 −0.15± 0.02

FC 1.25± 0.04 −0.06± 0.02

DH 1.59± 0.17 −0.11± 0.06

MF 1.77± 0.19 −0.33± 0.10

50 100 150
0.5

0.6

0.7

0.8

0.9

1

Consecutive number

R
2

Figure 7. Coefficient of determination R2 for the SHS model

(open symbols). In addition, R2 for the exponential model is shown

(filled symbols). Experiment series are indicated by colors (TGM-

17: red, TGM-2: green, DIV: blue, DH-1: magenta, DH-2: cyan,

ISO-1: black, ISO-5: brown) and snow types by markers (PP: C,

DF: B, RG: ◦, FC: �, DH: ∨, MF: �).

ison of the optimal SHS diameter with the optical diameter

from Fig. 6.

As a quantitative measure, we fitted the entire data in Fig. 6

by a linear regression

d̂ = a1dopt+ a0, (40)

yielding a1= 1.50 and a0=−0.14. If the experiment series

(DIV, TGM-2, TGM-17, ISO-3, ISO-5, DH1, DH2) are in-

dividually fitted to Eq. (40) we obtain the values shown in

Table 1. We also fitted Eq. (40) to each snow type class con-

taining more than three samples. The results are also shown

in Table 1.

In addition, we conducted a numerical experiment to re-

produce the situation from Roy et al. (2013) where differ-
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Figure 8. Contour plots of the root-mean-square error surface for

different snow types. Colors show the logarithm of the sum of the

squared differences between measured and parametric SHS form

C̃(k) (cf. Eq. 39) as a function of (τ , d) for different examples.

(a) Precipitation particles (PP). (b) Large rounded grains (RG).

(c) Depth hoar (DH). The optimal values (d̂ , τ̂ ) for the respective

sample are shown as white circles.

Figure 9. Comparison of the µCT-derived C̃(k) data to the SHS

model (Eq. 34) and the exponential model (Eq. 38). To discern in-

dividual curves, the RG and DH data were displaced vertically (by

factors 102, 104, respectively).

ent, but constant stickiness values were used. To this end

we prescribed the stickiness parameters τ = 0.13, 0.44, 1,

10, 100 in the cost function Eq. (39) and conducted only a

one-dimensional regression of the SHS model, now involv-

ing only the diameter as optimization parameter. This yields

an optimal diameter d̂τ for each sample which depends on the

prescribed stickiness value τ . For each τ we obtain 167 pairs

(d̂τ , dopt) which are fitted to

d̂τ = b1dopt+ b0. (41)

The results of the fit for the entire data set as a function of

prescribed τ are shown in Table 2. The regression parameters

are identical for τ = 10 and τ = 100 which indicates conver-

gence to the non-sticky hard sphere model.

4.7 Comparison of the scattering coefficient

With the set of optimal parameters (d̂ , τ̂ ) from Figs. 5 and 6

we can compare the scattering coefficient and evaluate the

differences between IBA and QCA-CP, when both electro-

magnetic models are fed with the same microstructure of

SHS.

The results are shown in Fig. 10. Relative to the 1 : 1 line

(full black line), a small offset is observed and the scatter-

ing coefficient from IBA is always larger than the QCA-CP

counterpart. The apparent offset in the double logarithmic

plot Fig. 10 is equivalent to an overall prefactor. To assess

the prefactor and the deviation from 1 : 1, we evaluated the

theoretical result for the ratio rs of the scattering coefficients

from Eq. (29). By computing the average volume fraction

φ2= 0.265 of all 167 analyzed µCT samples, we can com-

pute an average ratio rs between IBA and QCA-CP by insert-

ing φ2 into Eq. (29), viz rs : = rs(φ2). This yields a value of

rs= 0.77. The corresponding prediction κ IBA
s = rs κ

QCA-CP
s

is shown in Fig. 10 as a dashed red line which fully explains

the offset.
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Figure 10. Scatter plot of the scattering coefficient of IBA and

QCA-CP from Eqs. (28) and (22), respectively, evaluated for the

optimal SHS parameters (τ̂ , d̂) retrieved from the µCT images.

5 Discussion

5.1 Main results

Three main implications can be drawn from the present work.

The first is related to the comparison of the electromag-

netic models IBA used in MEMLS and QCA-CP used in

DMRT-ML. By rederiving the scattering coefficient in IBA

and QCA-CP and extracting the dependence on microstruc-

ture we have shown that both electromagnetic approxima-

tions involve exactly the same microstructural characteris-

tic, namely the zero-wavevector component of the structure

factor S(0). This implies that the different metrics (correla-

tion length and sphere diameter) which hitherto limited the

comparison of DMRT-based and MEMLS models, is only

a consequence of different microstructure descriptions and

not related to fundamental differences in the respective elec-

tromagnetic theories. We derived an expression for the k-

dependent quantity C̃SHS(k|φ2, d, τ) for monodisperse SHS

in terms of the parameters φ2, d, τ which allows to im-

plement exactly the same microstructure in IBA and QCA-

CP. The theoretical analysis showed that if both electromag-

netic models are evaluated for SHS (or any other hard sphere

model), differences occur only in the zeroth-order effective

dielectric constant (i.e., in the absence of scattering). The

theoretical ratio of the scattering coefficient rs was evalu-

ated (Eq. 29, Fig. 1) and reveals only a weak dependence

(maximum 30 %) on volume fraction. The theoretical ratio

rs is well-suited to explain the scatter plot for the scatter-

ing coefficient (Fig. 10) where order-of-magnitude variations

are predominantly caused by variations of snow microstruc-

ture (via volume fraction, diameter and stickiness), and only

marginally by the difference in the electromagnetic theories.

The second implication of the present work is related to

parameter estimation itself. The closed form expression of

the correlation function (or its FFT) for the monodisperse

SHS model allows parameters (d̂ , τ̂ ) to be objectively found

Table 2. Fit parameters and standard errors for a linear regression

for all samples between the optimal SHS diameter and the optical

diameter if the optimization of d̂τ is done for prescribed τ according

to Eq. (41).

τ b1 b0 (mm)

0.13 0.94± 0.07 0.04± 0.03

0.44 1.43± 0.09 0.04± 0.03

1.00 1.55± 0.10 0.03± 0.03

10.0 1.60± 0.10 0.04± 0.04

100.0 1.60± 0.10 0.04± 0.04

for a given snow sample from a µCT image. This is of con-

siderable interest for the stickiness since no other method to

estimate this quantity from measurements is presently avail-

able. The parameter estimation showed that optimal sticki-

ness values vary significantly (Fig. 5). This may be partially

explained by the weak determination of this parameter when

compared to the diameter, as illustrated by the behavior of

the least-squares cost function in Fig. 8. Nevertheless, given

the large sensitivity of the scattering coefficient on stickiness

(Picard et al., 2013), these variations have a significant im-

pact on the modeled electromagnetic response of snow. From

the present analysis, the stickiness has to be considered as

an independent parameter, which can be neither expressed in

terms of the diameter (Fig. 4) nor in terms of the ice volume

fraction (Fig. 5). The present work only suggests (Fig. 5) that

stickiness values of snow are essentially bounded from above

by the percolation line (Eq. 36) and bounded from below by

the theoretical lower bound (Eq. 35) where SHS becomes

physically meaningless. The variations in estimated parame-

ters also show that the pragmatic approach of using the same

stickiness value for the entire snowpack (Picard et al., 2013)

is questionable. This should be considered in future use of

DMRT models.

The third implication of the work is related to the applica-

bility of what has been termed the “short range limit” in mi-

crowave models (Tsang et al., 2001, e.g., p. 504). To reveal

the equivalence of the scattering coefficient between IBA and

QCA-CP (Eqs. 22,28) we followed a common, but not re-

quired assumption that all relevant length scales are small

compared to the wavelength. This allows to replace the k-

dependent structure factor S(k) by its value at the origin S(0)

in the phase function. On the other hand, the results of the

fitting procedure show (Fig. 6) that the estimated stickiness

values for some samples are close to the line τmin(φ2) from

Eq. (35). When approaching the line, the SHS structure fac-

tor diverges (Baxter, 1968). This is a consequence of the

meaning of τmin(φ2) as the coexistence line of the underlying

first-order liquid-gas-phase transition in the thermodynamic

framework of SHS near the critical point. Approaching the

critical point is accompanied by the occurrence of density

fluctuations of increasing spatial extent, causing maybe un-
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realistically large values of the scattering coefficient of IBA

and QCA-CP in the short range limit (Fig. 10). In other

words, estimating stickiness parameters close to the critical

line renders the “short range” assumption (i.e., that all rele-

vant length scales are small compared to the wavelength) in-

valid. The impact of the break-down of this assumption can

be principally analyzed, e.g., in IBA, by implementing the

SHS model in MEMLS where the integral over directions

(Eq. 12) is computed numerically. This would allow the full

k dependence of I (k) to be used in the phase function (Eq. 5)

and the results to be compared to the short range limit I (0).

Similarly, QCA expressions under the long range assumption

can also be obtained by numerical integration (Tsang et al.,

2001, Eq. 10.2.62). This is however beyond the scope of the

present work.

5.2 Using SSA measurements to run microwave models

One main motivation for the present work was the issue of

grain-size scaling raised by Brucker et al. (2011) to relate the

optical diameter of snow to microwave simulations based on

SHS.

The SSA, or optical radius, of snow can be easily mea-

sured in the field and is an appealing first guess as the size

parameter in DMRT-based sphere models. However, all sim-

ulations using d = dopt and τ =∞, i.e., non-sticky spheres

(Brucker et al., 2011), underestimated the scattering coeffi-

cient. This was rectified by scaling up the sphere diameter d

by an empirical factor ranging from 2.3 to 3.5. The scaling

was suggested to replace the unknown dependence on stick-

iness and distributions of grain sizes in snow (Roy et al.,

2013). The results from Fig. 5 clearly show that stickiness

cannot be set to τ =∞; and thus non-sticky hard spheres are

inadequate. This raises two important questions for electro-

magnetic modeling when accepting the necessity of sticki-

ness and using SSA measurements. (1) Considering τ to be

known, is d = dopt an adequate approximation? (2) Are the

parameters (τ̂ , d̂) found in the present work in agreement

with the grain-size scaling found in previous studies?

Figure 5 and Table 1 give a clear answer to question 1.

We always observed an affine relation d̂ = a1 dopt+ a0 with

a slope a1 which is (on average for the entire data set) a1≈

. 1.50. The slope, however depends on snow type exemplified

by the different subsets of snow samples used in the present

analysis. We observed that the temperature gradient exper-

iments TGM-17, TGM-2, DH-1, DH-2, which all include

the formation of depth hoar (cf. Supplement in Löwe et al.,

2013), lead to an apparently stronger dependence on the opti-

cal diameter (Table 1, top) when compared to the isothermal

experiments, where the slope is close to unity. This impact

is confirmed by restricting the relation d̂ = a1 dopt+ a0 to in-

dividual snow types (Table 1, bottom), or likewise by Fig. 6

where DH samples are predominantly located above the 1 : 1

line and RG samples below.

When stickiness is not known in advance, but set to a

fixed, prescribed value, our numerical experiment (Table 2)

has also shown that the slope between the optical diameter

and SHS diameter depends on the prescribed stickiness. A

simple scaling d̂ =8dopt with a grain-size scaling factor 8

is insufficient. In addition, the fit coefficient b1 from Eq. (41)

is always lower than the values for 8 found in Roy et al.

(2013). This is valid, even for the non-sticky case which can

be identified with τ = 10 or τ = 100 in Table 1, as signaled

by the convergence of the respective coefficients. However, a

value b1= 1.6 tends to confirm a hypothesis put forward by

Roy et al. (2013): they proposed that the polydisperse nature

of snow would justify a scaling of 1.6 based on Jin (1994),

while the stickiness would add an extra scaling by another

factor of 1.6 which is the value of b1 found here. If both ef-

fects are assumed to be independent (which is unlikely), this

yields a scaling close to 2.5 found by Brucker et al. (2011)

and Picard et al. (2014). Further quantitative analysis of the

polydisperse SHS model is required to test this hypothesis.

However, a qualitative assessment of the impact of polydis-

persity can be yet obtained from literature.

5.3 Monodisperse vs. polydisperse SHS

A peculiar feature of the monodisperse SHS correlation func-

tion C̃(k) are the oscillations in the tail for large k (Fig. 3),

which originate from the form factor Eq. (27). These fea-

tures are clearly missing in the experimental data shown in

Fig. 9, but also for any other snow sample. The oscillations

are a manifestation of the monodisperse nature of SHS used

here. Using polydisperse SHS with a distribution of diame-

ters, these oscillatory features are smeared out as shown by

Ginoza and Yasutomi (1999), leading to a smooth tail of C̃(k)

and a more realistic appearance of the model when com-

pared to the measurements. Furthermore, a comparison of the

present results with Ginoza and Yasutomi (1999) also reveals

that an increase of stickiness (increase of τ−1 in Fig. 3) has

a similar enhancing effect on the scattering intensity for low

k as the increase of polydispersity (Fig. 4 in Ginoza and Ya-

sutomi, 1999), given that the mean sphere diameter is held

constant. This further supports the hypothesis on the super-

position of effects on grain scaling from the previous sec-

tion. This is intuitively reasonable, since both effects, poly-

dispersity and stickiness, essentially increase the variability

(i.e., fluctuations of the microscopic density) in the sample,

and thereby the scattering efficiency.

The monodisperse version of SHS bears another pecu-

liarity. In general, the Fourier transform of the correla-

tion function must reveal the SSA in its large k limit.

This is known as the Porod law (Torquato, 2002) which

relates the large k asymptotics, limk→∞ k
4 C̃(k)= s/2, to

the interfacial area per unit volume s. This is generally

valid for any two-phase system with a smooth interface,

and also present in the experimental data (Fig. 3). The

Porod law is mathematically equivalent to the existence
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of a cusp singularity of the real-space correlation function

C(r) at the origin, i.e., the existence of a small-r expan-

sion of the form C(r)/C(0)= 1− sr/4+O(r3). However

the limit limk→∞ k
4 C̃(k) does not exist for Eq. (34). This

is a known, subtle problem and a consequence of monodis-

persity (Tomita, 1986). Thus the monodisperse SHS model

bears some mathematical peculiarities which have to be ex-

amined with care.

If, however, the present method of µCT-based parameter

estimation were to be generalized to polydisperse SHS, some

additional effort would be required. In the polydisperse case,

a system of coupled quadratic equations must be solved to

calculate the structure factor S(k) according to Tsang et al.

(2001, Ch. 8.4.2). This can be done only numerically in

contrast to the closed-form solution for the single quadratic

Eq. (32) in the monodisperse case. In addition, a general-

ization of Eq. (23) would be required. A similar route was

suggested by Robertus et al. (1989) in the context of small

angle scattering.

5.4 Performance of the SHS model

To assess the goodness-of-fit of monodisperse SHS, we have

evaluated the coefficient of determination R2. Large differ-

ences are observed (Fig. 7), which poses the question for

which snow type SHS might be a suitable model. We also

included a comparison of the R2 for SHS with the R2 for

the exponential model which is commonly used in MEMLS.

At first sight, the differences between the models seem to

be smaller that sample to sample variations (Fig. 7). A dis-

cussion of small R2 differences is subject to caution, but in-

terestingly the temperature gradient time series (DH1, DH2,

TGM2, TGM17), which evolve from decomposing particles

or rounded grains into depth hoar, undergo a crossover in the

relative performance of the exponential and the SHS model;

while initially the SHS model is slightly superior or compa-

rable to the exponential model, this order changes at the end

of the time series. This crossover is absent for the isother-

mal metamorphism. This difference in performance depend-

ing on snow type is also indicated by the behavior of the cost

function in Fig. 8 or by the comparison of the µCT corre-

lation functions with both models in Fig. 9. The observed

goodness-of-fit differences, depending on correlation func-

tion models and snow types, requires a more in-depth analy-

sis in the future.

The performance of any correlation function model has to

be assessed against microwave measurements which even-

tually decide about the quality of a particular model. We

have shown that in both scattering formulations, IBA and

QCA-CP, it comes down to a single microstructural quantity

which must be well-predicted to describe scattering correctly

in the low frequency limit. This quantity is the integral of the

correlation function, or likewise, the zero-wavevector com-

ponent C̃(0) of the Fourier transform. A special name has

been coined for this type of parameter; it is referred to as the

coarseness of the medium (Torquato, 2002). The coarseness

is a single number which quantifies the residual amplitude of

volume fraction fluctuations at the largest length scales.

5.5 Reinventing the wheel: small angle scattering

In view of the future task of finding the best microstructural

model for microwave modeling, we suggest building on the

exhaustive work on small angle scattering used for molec-

ular systems. Our reanalysis has stressed that the relevant

quantity in IBA and QCA-CP in the scattering coefficient

for microwave modeling of snow is the Fourier transform of

the correlation function which must be well-matched. This

task is well-known and completely analogous to small an-

gle scattering (SAS) of molecular systems. SAS from X-

ray or neutron sources has become a standard technique to

characterize microstructures by fitting Fourier data (Peder-

sen, 1997). Indeed, the effective propagation constant and

the involved length scales in molecular systems are entirely

different, but the task of fitting the Fourier transform of the

correlation function to a parametric model to best match the

measured scattering intensity is exactly equivalent to the mi-

crowave problem in snow at low frequencies. Libraries of

microstructure models (in terms of form factors, structure

factors and generic forms of correlation functions for bi-

continuous media) are available in free software packages,

e.g., SASfit (Kohlbrecher, 2008). In principle, these pack-

ages can be applied directly to the present problem after re-

interpreting (i.e., rescaling) the length scales of the k axis.

5.6 Relevance for discrete element modeling of snow

The results about snow as a particle-based (granular) medium

gained from the present work can be exploited even beyond

the context of microwaves. As an example, discrete element

modeling (DEM) is of special interest for snow mechanics

(Johnson and Hopkins, 2005) due to the advantages in han-

dling bond failure and the formation of new contacts under

large deformations; thereby, DEM faces the same difficulty

as microwave models i.e, mapping the real snow structure

onto a particle-based microstructure which is in some sense

equivalent to snow. Deterministic approaches, which aim to

recover the exact grain structure, are very time-consuming

(Hagenmuller et al., 2014). Here DEM might also benefit

from a stochastic reconstruction of snow in terms of SHS,

where the computational effort for the parameter estimation

is in the order of seconds. For the given parameters, dif-

ferent realizations of the SHS model can be generated with

the Monte Carlo approach described in Tsang et al. (2001).

Our analysis revealed that essentially all samples lie in the

percolating regime of the SHS-phase diagram (Fig. 5). This

implies that the corresponding SHS structures have a static

stiffness (elastic modulus) due to the percolating cluster, a

prerequisite for a meaningful granular model. The interpre-

tation of snow as a granular system via the SHS model al-
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lows, for the first time, an objective definition of a coordi-

nation number for snow as e.g., employed for a long time in

snowpack models (Lehning et al., 2002). For the given pa-

rameters φ2, τ and d, we can use the Percus–Yevick result

from Chiew and Glandt (1983) to obtain an average coordi-

nation number nc= 2φ2 t (φ2, τ) in terms of the solution t of

Eq. (32). By means of the coordination number, contact with

other granular approaches, e.g., for the thermal conductivity

(Shertzer and Adams, 2011) or optical properties (Kaempfer

et al., 2007) can be made to cross-correlate different SHS-

based physical quantities.

6 Conclusions

We reformulated two relevant approaches to the microwave

scattering coefficient of snow, namely IBA used in MEMLS

and QCA-CP used in DMRT-ML, in a common microstruc-

tural framework. This revealed their quasi-equivalence when

using the same microstructural, particle-based model. As an

implication of the theoretical analysis, the stickiness parame-

ter for (monodisperse) SHS can now be objectively estimated

from µCT images and was found to be an essential parame-

ter when modeling snow as a sphere assembly. Our analysis

has confirmed a previous result, that the optical equivalent

diameter as input for microwave models based on monodis-

perse SHS must be used with caution. The potential impact

of polydispersity was outlined. Our preliminary goodness-of-

fit comparison of the SHS model with the exponential model

revealed an impact of snow type which must be further inves-

tigated in the future, in relation to microwave measurements,

and with the help of well-established ideas from small angle

scattering. Also other applications, which employ a granular

picture of snow, can now take SHS with realistic parameters

as input. This could be exploited to cross-correlate different

physical properties and further elucidate the concept of stick-

iness.
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