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émanant des établissements d’enseignement et de
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Abstract

Motivation: Docking prediction algorithms aim to find the native conformation of a complex of pro-

teins from knowledge of their unbound structures. They rely on a combination of sampling and

scoring methods, adapted to different scales. Polynomial Expansion of Protein Structures and

Interactions for Docking (PEPSI-Dock) improves the accuracy of the first stage of the docking pipe-

line, which will sharpen up the final predictions. Indeed, PEPSI-Dock benefits from the precision of

a very detailed data-driven model of the binding free energy used with a global and exhaustive

rigid-body search space. As well as being accurate, our computations are among the fastest by vir-

tue of the sparse representation of the pre-computed potentials and FFT-accelerated sampling

techniques. Overall, this is the first demonstration of a FFT-accelerated docking method coupled

with an arbitrary-shaped distance-dependent interaction potential.

Results: First, we present a novel learning process to compute data-driven distant-dependent pair-

wise potentials, adapted from our previous method used for rescoring of putative protein–protein

binding poses. The potential coefficients are learned by combining machine-learning techniques

with physically interpretable descriptors. Then, we describe the integration of the deduced poten-

tials into a FFT-accelerated spherical sampling provided by the Hex library. Overall, on a training

set of 163 heterodimers, PEPSI-Dock achieves a success rate of 91% mid-quality predictions in the

top-10 solutions. On a subset of the protein docking benchmark v5, it achieves 44.4% mid-quality

predictions in the top-10 solutions when starting from bound structures and 20.5% when starting

from unbound structures. The method runs in 5–15 min on a modern laptop and can easily be ex-

tended to other types of interactions.

Availability and Implementation: https://team.inria.fr/nano-d/software/PEPSI-Dock.

Contact: sergei.grudinin@inria.fr

1 Introduction

Protein–protein interactions (PPIs) can provide useful targets for the

development of novel antiviral and antibacterial therapeutic agents.

PPIs are also of particular interest for cancer treatments where there

is a growing need to target more precisely unhealthy cells and to

avoid unnecessary damage to healthy cells. However, such

approaches require knowledge of the three-dimensional (3D) struc-

ture of the target complex. Exploiting existing protein structures in

the Protein Data Bank (PDB) can help, but only a small fraction of

these structures are complexes (Berman et al., 2000). Therefore, com-

putational protein docking predictions, being low-cost and easy to

perform, would be very attractive if they could reliably identify the

most probable binding conformation of a pair of interacting proteins.

Currently, many algorithms can produce high quality predictions

of molecular complexes (Janin, 2005; Méndez et al., 2003), but

identifying the correct binding mode from amongst those predictions

remains a difficult problem, especially when the proteins are large or

when they exhibit large conformational changes on binding

(Bonvin, 2006). Generally, existing docking techniques use combin-

ations of methods to cover the conformational search space and to

score each candidate conformation. They often decompose the

docking problem into stages using different degrees of accuracy. A

common approach is to start with a simple scoring model describing

the large scale movements of the proteins in order to restrict the 3D

global space to a few promising binding sites that will be further

explored with a more precise scoring model which takes into ac-

count smaller scale effects such as steric clashes.
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The work we present here focuses on improving the first stage of

the docking pipeline. We believe it will also improve the subsequent

pose refinement calculation because important 3D solutions may be

missed if the low resolution model is too crude. We therefore de-

veloped an original learning process that combines robust machine

learning techniques with physically interpretable descriptors and we

adapted this to the fast Fourier transform (FFT) accelerated spher-

ical sampling provided by the Hex library (Ritchie et al., 2008).

Thus the present work is the first attempt to introduce an arbitrary

interaction potential into a FFT-engine.

While it is not possible to list all the docking algorithms here, we

will give a brief overview of the existing sampling and scoring meth-

ods that share the same objectives as our approach. Such a variety of

methods exists because predicting the structures of a complex of

proteins is not only about how well two shapes will fit together.

Proteins are chains of amino acids with more or less freedom in their

movements. Placed in a solvent, they may bind to each other to

reach a more stable arrangement of atoms that corresponds to the

state where the difference of the Gibbs free energy upon binding is

minimum. This state depends on physical processes such as electro-

static interactions, hydrogen bonds, side chain and backbone flexi-

bility, rearrangements of solvent molecules and entropic interactions

between flexible proteins and their environment. In theory, predict-

ing the stable conformation of the complex can be performed by

running molecular dynamics (MD) simulations, where atomic tra-

jectories are subject to a mechanical force field that aims to describe

the potential energy of the system through Newton’s equations of

motion. (Brooks et al., 1983; Case et al., 2005; Hess et al., 2008).

Thus, MD methods can be referred to as physics-based methods.

Currently, extending MD force-field models with quantum

mechanical parameters and better solvation models is an active field

of research (Kuhn et al., 2005; Chaskar et al., 2014). In any case,

whether they rely on strong physics theory or not, such computa-

tions imply many unknowns to find from ill-conditioned systems of

equations and parameters. Typically, MD-based approaches cannot

be used at the first stage of the docking pipeline. Instead, more prac-

tical approaches have been developed which have both advantages

and disadvantages in the way that they deal with the challenge of

combining physical laws with observed data.

Setting aside the above physics-based methods, many scoring

methods are hybrids which may be categorized into three groups,

namely empirical scoring functions, data-driven potentials and

descriptor-based scoring functions (Liu and Wang, 2015). Empirical

scoring functions consist of a linear combination of terms that re-

flect important factors such as hydrophobic contacts, hydrogen

bonding, accessible and buried surface area (e.g. Böhm, 1994;

Eldridge et al., 1997; Friesner et al., 2004; Wang et al., 2002).

Multivariate regression analysis is used to determine the weights of

the different terms such that scoring provides good agreement with

a training set of complexes. These scoring methods can be easily

adapted to a specific type of interaction (Korb et al., 2009).

However, they strongly depend on the dataset.

Data-driven potentials are typically a sum of pairwise statistical

potentials calculated from structural information from databases of

molecular complexes (Chuang et al., 2008; Huang and Zou, 2011;

Mooij and Verdonk, 2005; Muegge and Martin, 1999; Popov and

Grudinin, 2015; Zhou and Skolnick, 2011). These methods rely on

the assumption that interactions are more frequently observed if

they induce stability and that native molecular complexes will pos-

sess distinct structural features compared to non-native structures.

Data-driven potentials are often derived from the inverse Boltzmann

statistics with respect to a known reference state (Koppensteiner and

Sippl, 1998), and can be combined with entropic terms (Gohlke

et al., 2000; Huang and Zou, 2010). Scoring with these potentials is

generally more computationally efficient. Hence, data-driven poten-

tials are very suitable for fast docking and virtual screening

protocols.

On the other hand, descriptor-based methods use machine learn-

ing techniques such as neural networks, random forest or support

vector machines (SVMs) to learn from a large set of data (Kinnings

et al., 2011; Li et al., 2013; Zilian and Sotriffer, 2013). The training

process provides a relationship between the observed data and the

molecular descriptors that can be of any nature, e.g. geometrical,

topological or electronic structure-based. However, the use of

descriptor-based methods raises some important questions. First, the

reasons for selecting a certain combination of descriptors are gener-

ally not clearly specified. Second, the not necessarily linear relation-

ship between the descriptors is not physically interpretable (Gabel

et al., 2014).

In many docking methods, scoring and sampling are closely

linked because the choice of scoring function strongly affects the

shape of the energy landscape to explore. In general, sampling algo-

rithms can be grouped into three categories, exhaustive search, de-

terministic search and random sampling search methods. An

exhaustive search spans the entire discretized search space and com-

putes the energy at each point—the finer the discretization, the more

it is precise. Obviously, exhaustive search algorithms are the most

robust algorithms, but their cost is typically very high, especially in

high-dimensional search spaces. Indeed, the cost increases exponen-

tially with the number of degrees of freedoms. To reduce the compu-

tational cost of exhaustive sampling, FFT-based techniques are used

(Katchalski-Katzir et al., 1992; Kozakov et al., 2006; Ritchie et al.,

2008). They take advantage of the fast computations of correlations

in Fourier space.

Deterministic search algorithms rely on optimization theory to

find extremes in the energy landscape using knowledge of its first

and second derivatives. These methods are very powerful and effi-

cient when the problem can be defined as a convex optimization

(Nocedal and Wright, 2000) where only one solution exists.

Unfortunately, in blind docking searches, the optimization problem

is strongly non-convex. Thus, deterministic algorithms are generally

only used in the refinement stage of a docking protocol. Instead, ran-

dom sampling algorithms such as simulated annealing or Monte

Carlo searches are used (Gray et al., 2003). These stochastic meth-

ods are less likely to converge to local minima, and their conver-

gence towards a global minimum is not guaranteed.

Here, we aim to improve the first stage of the docking pipeline

by performing FFT-accelerated exhaustive search calculations with

an accurate approximation of the binding free energy expressed as a

linear combination of distance dependent potentials. For this pur-

pose, we developed the PEPSI-Dock method, where PEPSI stands for

Polynomial Expansion of Protein Structures and Interactions.

PEPSI-Dock predicts 3D PPIs using a simple to compute but detailed

expression of physical laws in conjunction with a very fast FFT-

accelerated exhaustive search. More precisely, we adapted the com-

putation of the data-driven potentials from our previous work

(Grudinin et al., 2015; Popov and Grudinin, 2015) to the 3D

Spherical Polar Fourier basis. This allows us to use spherical polar

Fourier transforms, as implemented in Hex (Ritchie and

Venkatraman, 2010), to rapidly compute energy overlap integrals

during the exhaustive search for putative docking poses.

The main novelty of the work presented here consists of the ap-

plication of an arbitrary-shaped data-driven potential to an exhaust-

ive FFT search algorithm and the validation of its efficiency for
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blind docking predictions. The PESPI-Dock scoring function is

mainly inspired by the SVM technique, but it combines physically

interpretable descriptors. We deduce the potentials using a convex

optimization of a well-defined problem. Our potentials represent

210 types of distance-dependent pairwise interactions of free func-

tional form. We optimize the shapes of the potentials such that the

ability of the scoring function to discriminate native from non-

native poses is maximized. While our potential still depends on the

dataset, its expression is simpler than a physics-based potential and

does not depend on a reference state. Once learned, the potentials

can be stored and used later for docking predictions, almost with no

cost. The only current limitation is the linearity with respect to co-

ordinates of atoms and the rigid-body assumption.

This approach is very versatile and can be readily adjusted to

other types of interactions. Indeed, we have already used the same

methodology to derive potentials for the refinement step of protein–

ligand docking (Grudinin et al., 2015) and ab initio protein–protein

docking (Popov and Grudinin, 2015) (since we did not use any hom-

ology knowledge or MD refinement). The latter proved to be very

successful in a recent CAPRI/CASP docking assessment exercise

(Lensink et al., 2016), where our methodology was ranked sixth

overall and the top template-free ab initio approach.

2 Approach

Figure 1 illustrates the PEPSI-Dock method, which consists of two

main stages. The first stage is the learning phase (steps 1–4 in

Fig. 1), where starting from a set of native and non-native com-

plexes, we deduce 210 atomic one-dimensional (1D) distance-

dependent interaction potentials. These potentials are based on

commonly used physical assumptions accounting for 210 different

types of interactions that depend on the atom characteristics (chem-

ical element, aromaticity, polarity, etc.). They are constructed with

the specific objective of discriminating native structures from the

non-native ones, thanks to the use of a rigorous learning optimiza-

tion algorithm inspired by the SVM method. The feature space for

the optimization problem consists of the geometrical and chemical

properties extracted from interfaces between proteins. The second

stage is the docking prediction phase (steps 5–7 in Fig. 1), where

starting from a pair of proteins, a list of putative binding poses with

low binding free energy conformations is computed. The possible

conformations are explored using a global exhaustive search algo-

rithm. It represents the protein geometry through 20 3D Gauss-

Laguerre expansion coefficients and uses the Spherical Polar Fourier

transform to rapidly compute the energy overlap integrals. The main

contribution of the paper is the combination of these two stages.

More exactly, we combine the arbitrary-shaped data-driven poten-

tials with a FFT-exhaustive search algorithm. To do so, we define

the potentials in the Gauss-Laguerre basis. Thanks to the spherical

symmetry of an individual potential, we analytically convert 1D

pairwise contributions to 3D potential maps expressed in the Gauss-

Laguerre basis (see Fig. 3).

3 Methods

3.1 Learning from known interfaces
The PEPSI-Dock scoring ranks the docking predictions using 1D

atomistic distance-dependent data-driven interaction potentials. We

distinguish the atoms according to their types. These types are spe-

cific for protein–protein interactions and take into account chemical

properties of the corresponding atoms such as their chemical elem-

ent, aromaticity, polarity and hybridization. We adapted these types

from Huang and Zou (2008), having in total 20 different atom

types. Due to the symmetry of the interactions, we thus need to de-

fine 210 (i.e. 20� 21=2) different interaction potentials. Each of

these potentials approximates atom–atom pairwise interaction as a

function of the distance between the atoms. The first step of the

learning process is the extraction of geometric features from the

structural data of native protein complexes and their generated non-

native structures (decoys). These features are encoded using the

number density of the interactions of a certain type at a certain dis-

tance (step 1 in Fig. 1). Then, the densities are projected onto a trun-

cated Laguerre polynomial basis (step 2 in Fig. 1) and finally, an

optimization algorithm computes the potentials such that the

derived scoring function can correctly discriminate the native con-

formations from the non-native ones (step 3 in Fig. 1).

3.1.1 Physical model

Let us consider P native protein–protein complexes Ci0; i ¼ ½1;P�.
For each native configuration, we generate D non-native configur-

ations (decoys) by applying rigid transformations to the smaller mol-

ecule (the ligand) and obtain Cij with j 2 ½1;D�, where the first index

indicates the protein complex and the second index indicates the

generated decoys. Thus, for each complex, we have Dþ1 conform-

ations, 1 native and D non-native. Our aim is to find a scoring func-

tional E such that the following inequalities hold,

EðCi0Þ < EðCijÞ; 8i 2 ½1;P�; 8j 2 ½1;D� (1)

In order to solve this problem, we need to make some assump-

tions. First, we represent the proteins as a set of discrete interaction

sites located at the centres of the atomic nuclei. Each interaction site

Fig. 1. Schematic representation of the PEPSI-Dock method. The first stage is

learning the interaction potentials from the geometry and chemistry of pro-

tein–protein interfaces. The second, docking stage, uses the 1D distance-de-

pendent interaction potentials to exhaustively score a list of generated

conformations, which are produced by the Hex library on a 6D spherical grid

PEPSI-Dock: a data-driven FFT-accelerated potential for protein docking i695
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is defined according to the properties of its atom, such as the chemical

element, its aromaticity, hybridization state and polarity. Thus, an

interaction between two sites can be regarded as an interaction be-

tween two types of atoms. This results in a total of M� ðMþ 1Þ=2
pairs of interactions, with M being the total number of interaction

sites. Second, we assume that E depends only on the distribution of

the distances between two interaction sites, i.e. the number of site

pairs at a certain distance, one site being located on the receptor (the

larger protein) and the other on the ligand (the smaller protein),

EðCijÞ ¼ Eðn11
ij ðrÞ; ::; nkl

ij ðrÞ; ::; nMM
ij ðrÞÞ ¼ EðnijðrÞÞ; (2)

where, for each decoy, Cij, nkl
ij ðrÞ is the number density of site-site

pairs at a distance r between two sites k and l, with site k located on

the receptor and site l located on the ligand. Third, we assume that

interactions are short-range, and may be neglected if the distance be-

tween two interaction sites is larger than a certain cutoff distance

rmax. This allows us to restrict the information extracted from the

complexes to their interfaces. We use a cutoff distance value of 10

Å, which has been widely used in previous approaches (Chae et al.,

2010;Chuang et al., 2008; Huang and Zou, 2008; Maiorov and

Grippen, 1992; Qiu and Elber, 2005; Tobi and Bahar, 2006), and

which gave good results in our earlier experiments (Grudinin et al.,

2015). Finally, we assume that E is a linear functional,

EðnijðrÞÞ ¼
XM
k¼1

XM
l¼k

ðrmax

0

nklðrÞf klðrÞ dr; (3)

where f klðrÞ are the unknown interaction potentials that we need to

determine. In order to determine unknown potentials f klðrÞ, we de-

compose them along with the number densities nklðrÞ in a Laguerre

polynomial basis,

f klðrÞ ¼
X1
q¼0

wkl
q wqðrÞ; r 2 ½0;1�

nklðrÞ ¼
X1
q¼0

xkl
q wqðrÞ; r 2 ½0;1�;

(4)

where wqðrÞ are the Laguerre basis functions orthogonal on ½0;1�,
and wkl

q and xkl
q are the expansion coefficients of f klðrÞ and nklðrÞ,

respectively.

To have a sparse representation, the scoring functional E can be

truncated up to the order Q as

EðnijðrÞÞ �
XM
k¼1

XM
l¼k

XQ
q¼0

wkl
q xkl

q ¼ ðw � xÞ; w; x 2 RQ�M�ðMþ1Þ=2 (5)

Looking again at Figure 1, we can see that x represents the ex-

pansion coefficients of the sum of number densities of site–site pairs

observed at the interface of the decoy Cij. These are our geometric

features, whereas w is the set of expansion coefficients of the learned

interaction potentials, computed solving an optimization problem.

We will refer to the vector w as to the scoring vector, whose value is

to be determined, and to the vector x as to the structure vector that

is computed from the structural data.

3.1.2 Optimization algorithm

Here we briefly explain the optimization algorithm used to deter-

mine the scoring vector w. This will be used to define a scoring func-

tion that discriminates native protein–protein interfaces from non-

native ones. We will start by defining a rigorous optimization

algorithm inspired by the SVM method that interprets each complex

Cij as a structure vector xij, with the corresponding label yij, which

indicates whether the complex is native or not. More precisely,

Equation (5) allows us to rewrite the set of inequalities (1) as a con-

vex optimization problem, which consists in finding w that minim-

izes the empirical risk with a regularization penalty (Scholkopf and

Smola, 2001) as

min
w

k
2

XðwÞ þ LðX; wÞ; (6)

where X ¼ ðxij; yijÞ is the training set of labeled structure vectors,

LðX; wÞ is the empirical risk function, and XðwÞ is the regulariza-

tion penalty, which aims to prevent over-fitting and compensates

the lack of statistics for rare events. We use the log-loss function

to describe the empirical risk as a smooth approximation to the

hinge-loss function and the two-norm for the regularization

(Popov and Grudinin, 2015). We should mention that parameter

k is the only adjustable parameter in our model that determines

the importance of the regularization term with respect to the em-

pirical risk. Its value is determined using a cross validation pro-

cedure such that the corresponding potential gives the best

prediction on complexes that have not been used during the learn-

ing process.

We solve Equation (6) using a quasi-Newton optimization in pri-

mal (Boyd and Vandenberghe, 2004). This is a general and robust

convex optimization procedure that has been proved to converge to-

wards the optimum independently of the starting configuration.

Since our problem is convex by construction, this guarantees the ex-

istence of a single minimum (Boyd and Vandenberghe, 2004;

Nocedal and Wright, 2000).

3.2 Predicting unknown structures
To be able to apply FFT acceleration of the energy calculation of dif-

ferent conformations, we assume E to be a linear sum of overlap in-

tegrals of the receptor potentials f ðxÞ with ligand densities gðxÞ,

E ¼
X

atom type k

ððð
V

X
Lk

gðx� xLk
Þ
X

atom type l

X
Rl

f klðx� xRl
ÞdV; (7)

where indices k and l run from 1 to the number of atom types M.

Rl runs over the receptor atoms of type l, and Lk over the ligand

atoms of type k. With M equal to 20, the scoring function E is a sum

of 20 different 3D overlap integrals. We define the density of ligand

atoms
X

Lk
gðx� xLk

Þ to be a sum of spherical Gaussians centered

at each atom with coordinates of xLk
. Finally, f klðxÞ is a 3D spheric-

ally symmetric interaction potential. Thus,
X

Rl
f klðx� xRl

Þ is a

sum of pairwise spherically symmetric interaction potentials cen-

tered at receptor atoms of coordinates xRl
. From now on, we will

use f k to refer to
X

l

X
Rl

f klðx� xRl
Þ, and gk to refer toX

Lk
gðx� xLk

Þ. Thus, the scoring energy E is given as a sum of 20

overlap integrals of the densities gk, with potentials f k. For practical

purposes, we represent both functions gk and f k as spherical grids in

the Laguerre polynomial basis.

Knowing the general form of the scoring function E, we now

refer to the lower part of Figure 1 to describe the different steps of

the docking process. Below, we will first explain the fast exploration

of the docking search space that makes reference to the Hex sam-

pling algorithm and its efficient way to compute the overlap inte-

grals between functions gk and f k.

3.2.1 Exploration of the search space

Here we briefly describe the main components of the conform-

ational space exploration algorithm. For more detail, we refer the
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reader to the reference paper (Ritchie and Kemp, 2000), which intro-

duces the Hex docking method. The sampling algorithm defines the

potentials f ðxÞ and the densities gðxÞ attached to the proteins in

spherical coordinates (r; h;/). The search space is then explored by

computing the energies of each generated conformation using a dis-

cretized set of values for the six degrees of freedoms. These are the

distance between the proteins R and the five Euler angles, two recep-

tor angles ðbA; cAÞ and three ligand angles ðaB;bB; cBÞ.
Figure 2 schematically shows the definition of the search space.

Each ‘docking’ conformation expresses rigid transformations of the

ligand and the receptor molecules. Thus, the scoring energy defined

in Equation (7) should be rewritten as a function of these 6 degrees

of freedom,

E ¼ EðR; bA; cA;bB; cB; aBÞ

¼
X

k

ððð
V

bRð0; bA; cAÞf kðr; h;/Þ
� �

� bT zðRÞ bRðaB;bB; cBÞgkðr; h;/Þ
� �

dV: (8)

Here we assume that both proteins are initially located at the ori-

gin, and bT and bR are the translation and rotation operators,

respectively.

In order to efficiently compute integrals in Equation (8), we use

truncated polynomial expansions of the functions f k and gk in a

spherical polar Fourier (SPF) basis such that

ððð
V

f kðr; h;/Þ : gkðr; h;/ÞdV ¼
XN
nlm

fk
nlmg�knlm; (9)

where N is the expansion order, and the star sign denotes complex

conjugated coefficients. We should emphasize that the SPF represen-

tation of the functions f k and gk allows for a very fast exploration of

the rotational degrees of freedom (DOFs) during the docking search.

It is also interesting to note that spherically symmetric functions

have a sparse representation in this basis. More precisely, spherically

symmetric functions f(r) centered at the origin have only N non-zero

expansion coefficients fn00.

The SPF expansions can be seen as the extension of the Fourier

expansions into spherical coordinates. The SPF basis functions are

composed of spherical harmonics multiplied by a radial orthogonal

polynomial, which are the Gaussian-type orbitals in our case

(Ritchie and Kemp, 2000). The SPF basis functions form an ortho-

normal basis in 3D and well encode a certain spherical volume,

whose size depends on the expansion order N and on the scaling of

the radial basis functions. Both rotation and translation operators

have an analytic representation in the SPF basis (Ritchie, 2005).

Rotations are particularly fast to compute, because each group of

spherical harmonics of the same order transforms among themselves

using the Wigner rotation matrix.

The Hex sampling algorithm can evaluate energies from

Equation (8) at different values of the angular degrees of freedom

simultaneously using the multidimensional correlation theorem.

This is implemented with either 3D or 5D FFTs and allows to accel-

erate the search by up to two orders of magnitude (Ritchie et al.,

2008). The correlation procedure is then repeated for each value of

the translation degree of freedom.

At the last step, after the computation of the scoring energy E for

all the poses, we spatially cluster those that have the least energy. We

do it thanks to a simple clustering algorithm based on a constant-

time RigidRMSD library (Popov and Grudinin, 2014). This allows to

cluster together conformations have relative root mean squared

(RMS) deviations (RMSDs) below a certain threshold.

3.2.2 Shape of f kl and gkl functions

First, we will demonstrate that for any spherically symmetric func-

tions gðx� xLk
Þ and f ðx� xLk

Þ, the 3D expression of the scoring en-

ergy in Equation (7) can be reduced to a linear combination of 1D

integrals. Indeed, regrouping the summations, splitting the 3D inte-

gral into the radial and the angular part, and taking the angular inte-

grals analytically, it is easy to obtain

E ¼
XM
k;l¼1

X
Rl

ð1
0

f klðrÞ
X
Lk

gj1Dðr� jjxLk
� xRl

jj2Þdr; (10)

where gj1DðrÞ is a 1D radial projection of the function gðxÞ,

gj1DðrÞ ¼
ð2p

0

ðp

0

gðr; h;/Þ r2 sinh dh d/ (11)

This scoring energy representation has the same functional form

as our previous expression for the binding free energy in Equation

(3). However, to use this result, we need to define the precise shape

of the functions gðx� xLk
Þ and their 1D radial projections.

More specifically, we define each individual ligand density function

gðx� xLk
Þ in Equation (7) as a normalized 3D spherical Gaussian

centered at xLk
,

gðx� xLk
Þ ¼ 1

ð2pr2Þ
3
2

e�
ðx�xLk

Þ2

2r2 ; (12)

where r is a width parameter constant for all atoms. Then, we can

compute its 1D radial projection as

gj1Dðr� rLk
Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

2pr2
p e�

ðr�rLk
Þ2

2r2
r

rLk

1� e�2
r rLk
r2

� �
; (13)

where rLk
¼ jjxLk

jj2. Thus, we have demonstrated that if the number

densities nklðrÞ in Equation (3) are computed as a sum of radial

Gaussian projections,

nklðrÞ ¼
X
Lk

gj1Dðr� jjxLk
� xRl

jj2Þ; (14)

then the scoring potentials f klðrÞ obtained through the convex opti-

mization procedure Equation (6) will be valid for the evaluation of

Fig. 2. Left: the relationship between the spherical polar (r ; h;/) and Cartesian

(x, y, z) coordinate systems; right: schematic illustration of the 6D rigid body

search space in terms of one translational coordinate, R, and five Euler rota-

tional coordinates, ðbA ; cAÞ and ðaB ; bB ; cB Þ, assigned to the receptor and lig-

and, respectively. Following the usual ZYZ Euler angle convention, b

rotations refer to the y�axis, while a and c rotations refer to the z�axis.

Figure reproduced from Ritchie et al. (2008) with permission from Oxford

University Press
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3D overlap integrals with spherical Gaussians defined in Equation

(12).

Finally, for practical reasons, we decompose both nklðrÞ and f klðrÞ
functions onto a Laguerre polynomial basis, as given by Equation

(3.1.1). We do so, so that the learned scoring vector w is a set of ex-

pansion coefficients fkl
n00 from Equation (9) for each interaction type

pair kl. The structure vector xij, as we mentioned above, is a set of

Laguerre expansion coefficients of the number densities nkl
ij ðrÞ com-

puted with Equation (14) for the interfaces of decoys Cij. We should

mention that thanks to the spherical symmetry of the interaction po-

tentials, there are only N non-zero coefficients for each interaction

type pair kl, fkl
n00. These are obtained offline via the optimization pro-

cedure Equation (6), stored on the hard-drive and loaded in the

PEPSI-Dock at the beginning of the docking process.

At the pre-processing stage of our docking method (see step 5 in

Fig. 1), we position all the interaction potentials described with their

expansion coefficients to the centres of atomic nuclei. To do this, we

first centre each of spherically symmetric coefficients fkl
n00 at the ori-

gin. Then, we analytically translate these along the z-axis as it is ex-

plained in Ritchie (2005) to obtained axial-symmetric coefficients

fkl
nl0. After, we rotate fkl

nl0 with two consecutive rotation operators,

one about the y-axis by angle h, and another about the z-axis by

angle /, to obtain the final expansion coefficients fkl
nlm. Figure 3 sum-

marizes these steps.

3.3 Datasets and experimental settings
3.3.1 Training set

We used the training database of 851 non-redundant protein–protein

complex structures prepared by Huang and Zou (2008). This database

contains protein–protein complexes extracted from the PDB (Berman

et al., 2000) and includes 655 homodimers and 195 heterodimers. We

used only the structures of the heterodimers for the training.

For each native conformation of the complex from the training set,

we added 199 non-native conformations (decoys) generated by apply-

ing rigid transformations to the ligand. These are the false-positive pre-

dictions sorted by the score and generated by the default Hex shape-

complementarity function. We defined the decoys as the structures

with a ligand RMS (L-RMS) greater than 10 Å from the native pose.

L-RMS is the RMS deviation between the true and the predicted lig-

ands when the receptors are aligned. The final training set is composed

of 195 native complex structures with 38 805 decoys, resulting in a

total of 39 000 complex structures.

3.3.2 Test set

For the test set, we used the Protein Docking Benchmark, which is

the most widely used set of protein complexes collected both in the

bound and in the unbound forms. Version 5.0 of the benchmark was

released recently (Vreven et al., 2015) and consists of 230 protein

complexes. The complexes are categorized based on the structural

differences between the bound and the unbound forms of the bind-

ing partners, accounting for the fraction of non-native residues con-

tacts and the interface RMS (I-RMS) deviation. This is the RMS

deviation of Ca atoms of interface residues calculated after finding

the best superposition of bound and unbound interfaces. For ex-

ample, complexes are regarded as ‘difficult’ if their I-RMS is greater

or equal to 2.2 Å. We used the bound and the unbound sets from

this benchmark to assess the quality of PEPSI-Dock predictions.

3.3.3 Feature extraction

We extracted structural features from the interfaces in the training

set using all pairs of atoms at a distance lower than the cutoff dis-

tance rmax of 10 Å. The standard deviation of the Gaussian densities

was set to r¼1 Å. We decomposed the interaction potentials and

the number densities in the SPF basis using an expansion order of

N¼30, with the support for the radial functions of 30 Å. We used

20 atom types defined by the classification of all heavy atoms in

standard amino acids according to their element symbol, aromati-

city, hybridization and polarity (Grudinin et al., 2015). This leads to

the total number of 210 types of interactions, which defines the size

of the feature space of 6300. In this space, we solved the optimiza-

tion problem Equation (6), with the only adjustable parameter k,

which defines the weight of the regularization term. Finally, to avoid

over-fitting, we used a 2-fold cross validation procedure that deter-

mined the optimal value of the k parameter. Figure 4 shows the

deduced potentials for the interactions between guanidine nitrogen

and carboxyl oxygen on the left and two aliphatic carbons on the

right. We can see that the reconstructed potentials are very smooth

and similar to our previous potentials learned in a different polyno-

mial basis (Popov and Grudinin, 2015) and also similar to those ob-

tained with different techniques (Huang and Zou, 2008).

3.3.4 Rigid-body docking parameters

We discretized the search space using the radial step size of 1 Å and

the angular step size of 7:5
�
. We set the maximum radial separation

distance to 40 Å. We clustered the solution with a distance threshold

of 5 Å. When doing tests on bound structures of protein–protein

complexes, we randomly perturbed the initial ligand position to ex-

clude trivial rotational solutions from the results.

y

x

Fig. 3. Summary of PEPSI-Dock 3D potential set-up. We start with a vector of

1D coefficients centered at the origin. Then, we translate these along the

z-axis to obtain a matrix of 2D coefficients. Finally, we rotate this matrix with

two consecutive rotation operators to obtain the final tensor of 3D coeffi-

cients. This operation is repeated for each atom of the receptor and the ligand

Fig. 4. Two selected data-driven potentials deduced from the training set

using the convex optimization technique. Left: potential for the interactions of

guanidine nitrogen with carboxyl oxygen. Right: potential for the interactions

between two aliphatic carbons. The dashed line corresponds to y¼0
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3.3.5 Quality assessment

For each tested complex, we clustered the docking poses and com-

puted the L-RMS and I-RMS deviation between the native pose and

the lowest energy candidate of each cluster. When handling un-

bound conformations, RMS deviations were computed after having

superposed the unbound structures with bound ones. We define the

prediction to be of a high quality if L-RMS 	 1 Å. Mid-quality cor-

responds to L-RMS 	 5 Å, and low-quality to L-RMS 	 10 Å. In

case of I-RMS, threshold are adjusted to 1 Å (high qual.), 2 Å (mid)

and 4 Å (low) following to CAPRI criteria. We define the success

rate as the percentage of complexes for which a good quality predic-

tion (high, mid or low) has been found among the lowest energy

conformations.

3.4 Results and discussion
First, we validated the method on 195 protein complexes from the

training set. We should emphasize that during the training stage, we

used only 199 structures of decoys for each of the complex from this

set, whereas PEPSI-Dock exhaustively explores and ranks about 109

putative binding poses. Moreover, using weights, the native and

non-native poses are accounted for in an equal way. Thus, we be-

lieve that we do not have any significant bias or over-fitting in this

test. Figure 5 presents the results on this test. The success rates are

sufficiently high. In order to better understand the pitfalls of the

method, in Figure 6, we plotted a histogram of the top-10 mid-qual-

ity success rates as a function of the distance separating the centres

of masses between the protein and the ligand. We can clearly see

that complexes with larger separation distances are more difficult to

predict. This can be explained by two factors. First, the quality of

our polynomial approximations degrades with the distance. Since

the support of our radial functions is 30 Å, we should expect a rapid

degradation of the prediction results beyond this distance. Second,

the sampling method uses a spherical grid that makes the precision

of the search decrease with the distance to the origin of the grid. On

the other hand, Figure 6 compares the quality of prediction of

PEPSI-Dock with the original method implemented in Hex with the

shape complementarity plus electrostatics scoring function. We can

see that PEPSI-Dock achieves significantly better results than Hex,

especially for complexes with the separation distance less than 30 Å.

To better analyze the results, we now assess only the complexes

with a separation distance less or equal to 30 Å. This includes 163

complexes from the Training Set. Figure 5 also presents the success

rates for this subset with darker color. We achieve 91.4% instead of

81.5% for top-10 mid-quality predictions.

Using the same potential, we predicted putative binding poses of

the bound Test Set and the unbound Test Set (Fig. 7: unbound are

shown with lighter color). For both cases, we only show results for

the 88 complexes of separation distance less or equal to 30 Å from a

total of 230. As can be expected, the predicting accuracy of our

docking method is worse for the unbound set. For top 10, mid-qual-

ity drops from 44.4 to 20.5% and low quality from 72.2 to 34.1%.

Figure 8 shows an example of three correctly predicted complexes

from the unbound set with I-RMS < 4 Å. These complexes are clas-

sified as difficult in the Protein Docking Benchmark. Nevertheless,

PEPSI-Dock produced the correct predictions ranked first, third

and sixth. It is interesting to compare the obtained results with the

ones produced with other methods. Table 1 presents the comparison

of our method on the unbound Test Set with ZDOCK 3.0 (https://

zlab.umassmed.edu/zdock/performance.shtml, 2012) and with

SwarmDock (Torchala et al., 2013). We should note that ZDOCK

uses FFT on a 1.2 Å uniform Cartesian grid and 6
�

sampling for the

rotational DOFs. As for us, we sample the spherical grid of 7.5
�

an-

gular spacing with 1 Å translational step, which is coarser compared

to the one from ZDOCK, especially far away from the origin.

ZDOCK defines the success rate by counting the number of com-

plexes found in top 10 predictions with I-RMS 	 2.5 Å. Table 1

shows that using the same definition of the success rate, PEPSI-Dock

slightly outperforms ZDOCK and SwarmDock.

As can be seen from Figure 6, PEPSI-Dock produces significantly

better results on the bound complexes than Hex for the same angular

sampling step size. However, both methods share the same limitations

of a loss of precision due to spherical sampling and a degradation of

subset
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Fig. 5. Percentage of success rates of PEPSI-Dock on the 195 bound hetero-

dimers from the Training Set using L-RMS criteria. With darker colours, re-

sults have been restricted to the 163 bound heterodimers of the Training Set

for which the separation distance 	 30 Å
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Fig. 6. The success rates of the PEPSI-Dock and Hex methods on the Training

Set as a function of different separation distances between the receptor and

the ligand proteins. PEPSI-Dock results are plotted in blue. Hex results are

plotted in green. The success rate is defined as the percentage of structures

that have at least one solution with L-RMS 	 5 Å found in the top 10 solu-

tions. The separation distances are measured between the centres of mass of

the two proteins in the native state. The number of complexes with the cor-

responding separation distance is shown inside the brackets
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Fig. 7. Percentage of success rates of PEPSI-Dock using I-RMS criteria on the

88 complexes from the Test Set for which the separation distance 	 30 Å.

With darker colours, results are starting from the bound conformations,

lighter colours show the unbound results
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the polynomial representation at distances larger than 30 Å. One way

to remedy such problems would be to cut large proteins into smaller

fragments and then to cross-dock the fragments, but this is beyond

the scope of the current work.

Overall, looking at the top-10 success rates on the bound com-

plexes, we can observe very good performance of our method on

both Training and Test Sets. Even though we did not train the poten-

tial to predict near-native or unbound conformations, we still achieve

fair results on the unbound Test Set, retrieving 20.5% of the 88 com-

plexes with separation distance less than 30 Å in the top 10 mid-

quality solutions. In the experiments on complexes not used for the

training, the performance is high for bound cases and much lower for

unbound complexes showing that there is a dependence on the train-

ing set but no over-fitting. Exploring several definitions of native con-

formations and the possible inclusion of near-native conformations

could improve the predictions on unbound complexes.

Our method compares favourably with Hex, SwarmDock and

ZDOCK, even though ZDOCK uses a finer grid search. It is worth

noting that PEPSI-Dock predicted three difficult complexes in the

unbound Test Set, i.e. those with large conformational changes from

the bound state, with I-RMS < 4 Å (Fig. 8). This indicates that

PEPSI-Dock provides a useful approach for complexes having large

conformational changes.

Regarding the running time of our method, we measured the

time of pre-processing computations (step 5 in Fig. 1), the time of

FFT-accelerated docking (step 6 in Fig. 1), as well, as the total run-

ning time of PEPSI-Dock for all the structures from the version 5 of

protein docking benchmark. Figure 9 shows these three timings as a

function of the total number of atoms in a complex. We can see that

for a half of the tested complexes the total running time is smaller

than 12 min. We can also see that the pre-processing time scales lin-

early with the size of the protein complex and becomes dominating

at about 8000 of atoms, whereas the docking time is approximately

constant and equals to 7 min. We should add, however, that the pre-

processing step in our calculations was not parallelized in the cur-

rent version of the code, and is subject for further improvement.

4 Conclusion

We have presented PEPSI-Dock, a new computational method that

combines a distant-dependent knowledge-based potential with FFT-

accelerated exhaustive sampling on spherical grids. Our potential

approximates the binding free energy of protein complexes. We de-

duce its polynomial expansion coefficients using a training set of

protein–protein interfaces and a novel convex optimization problem

inspired by a robust machine learning technique. Then, we insert the

obtained expansion coefficients into the Hex exhaustive sampling li-

brary. This is the first attempt to combine data-driven arbitrary-

shaped potentials with a FFT-exhaustive search.

The success rate of our method is particularly high on the bound

sets of proteins. However, a limitation of the method is the loss of

precision of the spherical sampling grid and the degradation of the

polynomial expansions at large distances. On the other hand, results

for unbound complexes from the Protein Docking Benchmark are

similar to those obtained with Hex, SwarmDock and ZDOCK, des-

pite the fact that we use a coarser sampling grid and our potentials

are not specifically trained to predict unbound conformations.

Overall, we have shown that our knowledge-based potential,

previously used for the rescoring of protein–protein docking predic-

tions (Popov and Grudinin, 2015) and of protein–ligand docking

predictions (Grudinin et al., 2015), can be adapted to exhaustively

search the rigid body docking space. Our next developments will be

to improve the prediction of unbound structures. To achieve this,

we will need to study the influence of the training set on the docking

results, and how to choose the most appropriate native and non-

native structures. It will also be interesting to construct a hybrid

method that combines our knowledge-based scoring function with

other sampling methods, particularly with the Cartesian ones, and

to develop a multi-centre sampling technique to avoid the loss of

precision on the spherical sampling grid when docking very large

proteins. Finally, we believe it will be straight-forward to extend our

approach to other types of interactions, including protein–ligand

and protein–RNA docking problems.

Fig. 8. Examples of the docking predictions for three proteins from the

Protein Docking benchmark, classified as difficult. Reference structures of the

complexes in the bound form are shown in a light colour. PEPSI-Dock predic-

tions are shown in a dark colour. Left: Pdb code 1ACB, top-1 solution has

I-RMS of 2.96 Å. Middle: Pdb code 3F1P, top-3 solution has I-RMS of 3.72 Å.

Right: Pdb code 1JK9, top-6 solution has I-RMS of 3.47 Å. For the representa-

tion, receptors of docking predictions, coloured in dark blue, were structurally

superposed with the receptors of the bound structures coloured in light blue

Table 1. Number of correct predictions for PEPSI-Dock, ZDOCK 3.0

(with 6
�

angular sampling) and SwarmDock (full blind mode) tested

on the unbound Test Set, depending on the category of the

complex

Category (Nb. of Complexes) ZDOCK. SwarmDock PEPSI-Dock

Easy (45) 12 11 13

Medium (15) 1 1 1

Difficult (15) 0 0 0

A prediction is said to be correct if a conformation with I-RMS 	 2.5 Å is

found in top 10 solutions. Comparison is made only for the complexes for

which the separation distance 	 30 Å and for the version 4 of the

benchmark.

Fig. 9. Running time of PEPSI-Dock as measured on 2� Intel(R) Xeon(R) CPU

E5640 @ 2.67GHz with eight physical cores in total. The pre-processing step

corresponds to step 5 in Figure 1. The FFT docking step corresponds to step 6

in Figure 1. The total time corresponds to steps 5–7 in Figure 1
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