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Abstract

We present a Scanning Hall Probe Microscope operating in ambient conditions. One of the unique

features of this microscope is the use of the same stepper motors for both sample positioning as

well as scanning, which makes it possible to have a large scan range (few mm) in x and y directions,

with a scan resolution of 0.1 µm. Protocols have been implemented to enable scanning at different

heights from the sample surface. The z range is 35 mm. Microstructured Hall probes of size

1-5 µm have been developed. A minimum probe-sample distance < 2 µm has been obtained by

the combination of new Hall probes and probe-sample distance regulation using a tuning fork

based force detection technique. The system is also capable of recording local B(z) profiles. We

discuss the application of the microscope for the study of micro-magnet arrays being developed for

applications in micro-systems.
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I. INTRODUCTION

Scanning Hall Probe Microscopy (SHPM) is a popular local magnetic characterization

technique [1–5]. Among common non-invasive magnetic imaging techniques, SHPM is par-

ticularly useful due to a number of advantages. In comparison to Magnetic Force Microscopy

(MFM) and Magneto-Optical Imaging (MOI), SHPM enables direct quantitative mapping of

magnetic field. MFM is more challenging for quantitative measurements as characterization

and modeling of the magnetization of the tip are rather difficult [6]. In comparison to MOI,

SHPM works in a much larger magnetic field range, and offers better spatial resolution in

the case when the sample is not completely flat [7]. Though SHPM involves longer image

acquisition time than MOI unlike in a scanning probe system, in MOI the whole image is ac-

quired at one time, and involves acquisition times of a few seconds at most) and offers worse

spatial resolution compared to MFM, the unique compromise between spatial resolution

and field sensitivity makes it a very useful tool for convenient non-destructive quantitative

characterization over wide temperature and field ranges. Over the years, efforts have been

made to improve the spatial resolution and scan range [8–11], temperature range [12], and

magnetic field resolution [13] of SHPM.

In this paper we report on a room temperature SHPM system developed to characterize

arrays of micro-magnets. SHPM is the tool of choice for quantifying the stray fields pro-

duced by micro-magnets, which have many applications in bio-medical studies [14–16] and

MEMS [17]. The present SHPM system demonstrates the usefulness of a combination of

concepts, tuning fork feedback based height control, monolithic electronics for regulation

and Hall signal read out, scanning with stepper motors, compared to microscopes presented

before[8–13, 18]. Microstructured Hall probes with active area of size 1-5 µm have been

fabricated for use in the microscope. The characteristics of the microscope include: large

in-plane scan range (up to a few mm, limited by sample topography) with fine scan resolu-

tion (step resolution of the motors is 0.1 µm, which is, in principle, the minimum possible

scan resolution. However, the spatial resolution of the magnetic field distribution obtained

in this technique is limited by the size of the Hall probes as the detected magnetic field is

the average field over the active area of the probe) and large z range, allowing sample-probe

distances from < 2 µm to 35 mm, with a step resolution of 0.2 µm, as well as large magnetic

field detection (fields up to ∼ 1 T have been measured) with high field resolution (100 µT).
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Apart from scanning, the system is also capable of fast recording of local B(z) profiles. In

the following sections, we first describe the microscope. This is followed by some results

showcasing the capabilities of the microscope.

II. THE SHPM SYSTEM

A. The Microscope

Figures 1(a) and 1(b) show a schematic and an optical image, respectively, of the mi-

croscope. The microscope is mounted on a vibration-isolation table. Vibrations from the

floor are filtered by a concrete block supported by rubber dampers filled with compressed

air flowing viscously between the dampers and air reservoirs. The microscope is mounted

on a copper block that rests on the concrete block. The microscope consists of two separate

parts, viz., a mobile part which consists of a sample holder placed on an XYZ stage, and a

fixed part which consists of the probe mounted on a tuning fork. This second part includes

piezoelectric elements for z-regulation, tuning fork excitation, and all electrical connections

involved in the measurement. Note that it is important that both of these parts rest on

the same base (in this case the copper block) as otherwise additional and uncontrolled tilt

between the sample and probe planes would arise which would lead to unnecessary com-

plications in sample-probe distance regulation. The microscope is covered with a 50 × 50

× 60 cm3 opaque enclosure to minimize the influence of ambient light. Figure 2 shows a

schematic of the complete setup. A fast lockin-amplifier (Zurich Instruments HF2LI, hence-

forth referred to as ‘the HF2LI’) [19] serves as the primary electronics component of the

microscope. It is used to provide the excitation signal as well as to measure the current

from the tuning fork. It is also used to provide the Hall probe excitation current as well

as to measure the generated Hall voltage. Finally, it also provides the PID control for the

z-piezo stack mentioned (explained below). All control and measurement operations are

performed through custom-built reliable and user-friendly LabVIEW programs developed

specifically for the setup.
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FIG. 1. (a) Schematic of the microscope. (b) Optical image of the microscope showing the probe

and sample stages. (c) The sample stage showing the Micos motors.

FIG. 2. Schematic diagram of the SHPM setup.

1. Sample stage

The mobile sample stage consists of the sample holder base mounted on the primary

scanning component which is a Micos stepper motor stage as shown in Figure 1(c). The

sample can be moved in all three directions (X, Y, Z) by virtue of the stepper motors. The

three Micos motors used are: two linear Stages “Precision Linear Stage PLS-85”[20] for X

and Y motion, and one linear stage “Linear Stage LS-65”[21] for Z motion.The travel range

in X and Y directions is 50 mm and the minimum step size is 0.1 µm. This minimum

step size is precise enough for the primary purposes the microscope is built for. In our
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microscope, the stepper motors themselves perform the scanning, additional piezo scanners

are superfluous. As a result, in principle, the maximum achievable scan range is the same

as the travel range of the X/Y motors = 50 mm. However, in practice, the effective scan

range is limited by the properties of the sample being measured. Most often, irregularities

of the sample surface mean that the probe-sample distance regulation (discussed in Section

II A 3) can be maintained only over a smaller distance, thus limiting the scan range. We

have been able to perform scans over areas as large as 2.5 mm × 2.5 mm (cf. results of

our measurements on bulk magnets in Section III C showing 2 mm × 2 mm images). For

comparison, minimum step size and maximum possible scan range at room temperature of

some other reported stepper motor based long-range SHPM systems are as follows: 1.25 µm

and 25 mm × 25 mm in Ref. 8, 0.2 µm and 1 cm × 4 cm in Ref. 9, 5 µm and 7 mm × 25

mm in Ref. 10, and 0.1 µm and 1 mm × 1 mm in Ref.11. All three motors in our setup are

characterized by very reliable repeatability (negligible backlash error). The linear stages are

controlled by a “SMC Corvus PCI”controller [22] installed in the PC. The system has a fast

response, allowing stepping at 50 ms intervals. At this stepping interval, a typical scan (200

× 200 pixel) takes about two hours with additional overheads (cf. Section II C 2 for details

on the scan protocol). In comparison, in the SHPM system described in Ref. 9, a 200 ×

200 pixel scan takes several hours, and in Ref. 8 a 60 µm × 60 µm scan with pixel size 1.25

µm takes about 90 minutes.

2. Probe stage

The fixed probe stage consists of the Hall probe glued to a commercial quartz tuning

fork [23] which is in turn glued to a probe plate (Cu coated fibre glass plate). Electrical

connections to the Hall probe and tuning fork are anchored on the probe plate. The tuning

fork is mechanically excited through a ‘thickness-mode’ piezoceramic element below the

tuning fork (labelled ‘Excitation piezo’ in Fig. 1(a)) [24, 25]. The excitation signal is

provided from the first output of the HF2LI (cf. Figure 2). This assembly is attached to a

‘z-piezo stack’ extension piezoelectric element [26] which is used for regulation of the probe-

sample distance. The z-piezo stack has a vertical extension range ∼ 32 µm (with input

voltage range 0-120 V). Voltage on the z-piezo stack is applied through one of the auxiliary

outputs of the HF2LI via a low noise voltage amplifier with 10x amplification (cf. Figure 2).
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FIG. 3. (a) and (b) Frequency response of a tuning fork glued to a probe plate, without and with

a probe mounted, respectively. (c)Approach curve of a tuning fork with a probe mounted on it (cf.

text for details).

The piezo stack is mounted on a base block that can be tilted in order to adjust the angle

between the Hall probe and the sample surface.

3. Probe-sample distance regulation

One of the primary challenges in a scanning probe setup is the ability to approach the

probe as close as possible to the sample surface without crashing the probe into the sample.

This is achieved by real-time control of the probe-sample distance by regulating the extension

of the z-piezo stack during a scan using the amplitude of vibration of the tuning fork for

feedback. Tuning fork feedback based probe-sample distance control was first proposed by

Khaled Karrai and Robert D. Grober [27, 28] and has since been widely used in near-field
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scanning optical microscopy (NSOM). This technique has been implemented in Scanning

SQUID [24, 25] and Scanning Hall probe [29] Microscopes. The voltage on the z-piezo stack is

regulated by a fast closed-loop Proportional-Integral-Derivative (PID) control in the HF2LI

PID settings have been optimized based primarily on the sample surface type. Typical values

for samples with hard surfaces (e.g., thermomagnetically patterned micromagnets) are: P

= −0.05, I = −50 s−1, D = +1 µs. For samples with soft surfaces (e.g., topographically

patterned micromagnets embedded in polymer) typical values of the parameters are: P =

−0.5, I = −500 s−1, D = +4 µs. These settings correspond to an integral time constant (P/I)

= 1 ms. The PID output is updated at 100 kHz. The input of the PID is the amplitude

of vibration of the tuning fork (cf. Figure 2). Current proportional to the amplitude of

vibration is generated in the tuning fork, which is amplified with a current/voltage converter

of gain 107 V/A, and passed through a high-pass filter (cut-off frequency 8 kHz). The

amplified voltage is demodulated by the HF2LI and the phase signal is fed into a phase locked

loop (PLL). The PLL ensures that the tuning fork oscillation frequency always remains in

the vicinity of the resonance frequency. The excitation frequency is adjusted in order to

maintain the tuning fork at resonance (cf. Figure 2). The resonance frequency fR of the

free tuning fork is ∼ 32.768 kHz. However, it depends strongly on environmental conditions.

Figure 3(a) shows a typical frequency response of a tuning fork glued to the probe plate.

Note that fR is reduced to ∼ 31.45 kHz. Figure 3(b) shows the frequency response after

a probe is glued to the tuning fork. In this case fR is further reduced to ∼ 22.76 kHz.

fR for a tuning fork with a probe attached varies in the range 14-23 kHz. Note that the

amplitude of oscillation of the tuning fork also reduces with increase in load. This is not

obvious from Figures 3(a) and 3(b) as the excitation voltage in each case is adjusted such

that the amplitude at resonance is always ∼ 1 V.

Further, the amplitude of oscillation monotonically decreases on approaching the sample

surface. This is the basis of the probe-sample distance regulation [27, 28]. Figure 3(c) shows

a typical approach curve for a loaded tuning fork (i.e., after a probe is mounted on the

tuning fork glued to a probe plate). The x-axis shows the distance of the tuning fork from

the sample surface (sample surface at z = 0). Note from Figure 3(c) that as the probe

approaches the sample surface, the resonance frequency increases before decreasing, while

the amplitude of oscillation decreases monotonically. Hence it is possible to maintain a

fixed desired probe-sample distance if the amplitude of oscillation can be regulated. This is
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FIG. 4. (a) Optical image of a Hall bar. (b) Optical image of a Hall bar showing the region of

the Hall bar marked by the red rectangle in (a). The Hall cross is indicated by the red arrow. (c)

SEM image of the Hall bar showing the Hall cross and leads. The Hall cross is indicated by the

red lines. The distances of the Hall cross from the edges of the Hall bar are labelled as L1 and L2.

(d) Typical calibration curve of a Hall probe showing B vs. RHall data and linear fit of the data.

(e) and (f) Side and front views, respectively, of the probe, showing the angles α and β the probe

makes with the sample surface.

implemented via the PID control of the extension of the z-piezo stack using the amplitude

of oscillation of the tuning fork as input as discussed above. In general, 70% of amplitude

of oscillation of the tuning fork when it is far away from the sample surface is used as the

desired set-point for probe-sample contact. For samples with rough and/or soft surfaces,

75-80% is set. From Figure 3(c), z ≈ 470 nm for 70% and 500 nm for 80%. This is the

probe-sample distance which is maintained during a scan in the regulation mode (cf. Section

II C 2).

B. Magnetic field detection

1. Hall probes

The Hall probes consist of heterostructures of GaAs/AlGaAs two-dimensional electron

gas (2DEG) materials. The two dimensional electron gas is about 50 nm below the surface.

The mesa is first etched with a chemical etch by 100 nm in order to structure the Hall cross.

Then a multilayer of Ni/Au/Ge is evaporated with an e-gun evaporator (Plassys). Rapid
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thermal annealing allows the diffusion of the AuGe to the two-dimensional electron gas, thus

forming the Ohmic contacts with the 2DEG. An additional deep etch ∼ 10 µm is made in

order to place the Hall cross exactly at the corner of the wafer. Finally, the Hall probes

are cut with a diamond dicing machine. The electron sheet density n is ∼ 3 × 1012 cm−2

(calculated from the relation n = 1/(ke), where e is the electronic charge and k is the Hall

sensitivity = 200 Ω/T, cf. Section II B 2 below). The mobility of the electron gas measured

at 4.2 K is ∼ 30000 cm2/(Vs). Figure 4(a) shows an optical image of a typical Hall bar. The

optical image in Figure 4(b) shows a close-up of the Hall bar with the Hall cross indicated

by the red arrow. Figure 4(c) shows an SEM image of the Hall bar showing the Hall cross

and contact leads. The Hall cross is identified by the red lines drawn on the image. The

four edges of the Hall cross are marked as 1, 2, 3 and 4. The distances of the Hall cross from

the edges of the Hall bar are shown as L1 and L2. Hall probes of size 1-5 µm have been

prepared. The particular probe shown here is of size ∼ 4 µm. Resistance values through the

probes were found to be ∼ 15-17 kΩ for the smaller probes and 5-6 kΩ for the larger probes.

Though Hall probes of smaller size have been prepared with GaAs/AlGaAs, smaller sizes

are also associated with lower field sensitivity[1, 5, 30], hence the size of the present probes

is suitable for our purposes.

2. Probe calibration and magnetic field measurement

The Hall probe is excited with an ac signal from the second output of the HF2LI through

a 100kΩ resistor in series. The Hall excitation current is set in the range 10-50 µA (pk-pk).

The frequency of excitation is set at 522 Hz. This was chosen empirically to correspond to

minimum noise in the output signal. The amplified and filtered Hall voltage is detected at

the second input of the HF2LI (cf. Figure 2). A number of Hall probes have been used in the

measurements. All the Hall probes show remarkably consistent magnetic field sensitivity.

The Hall probes were calibrated using a pre-calibrated copper coil magnet (16.83 G/A, or

1.683 mT/A) [31]. For calibration, a Hall probe is placed at the center of the magnet and

the Hall voltage is measured for a set of values of current flowing through the solenoid

(corresponding to magnetic field values in the range -8 mT to +8 mT, in the magnet).

Figure 4(d) shows typical calibration data for one of the Hall probes. The y-axis shows the
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Hall resistance RHall.

RHall = V13/I24 (1)

Where I24 is the current applied across the sides 1 and 3 of the Hall cross and V13 is the Hall

voltage (in-phase component of the demodulated signal) measured across the sides 2 and 4.

From Figure 4(d) it is clear that the Hall resistance varies very linearly with magnetic field.

From the linear fit, the Hall sensitivity (k) = is found to be 200 ± 2 Ω/T for all the used

probes, which is consistent with the fact that Hall probe sensitivity is nearly independent

of the Hall cross area [7]. In our Hall probes the doping level is rather high which results

in the relatively lower Hall sensitivity compared to some other reported values at room

temperature (300 K) for GaAs/AlGaAs heterostructures (3000 Ω/T in Ref. 2, 2000 Ω/T in

Ref. 11, 1750 Ω/T in Ref. 29) however, it is sufficient for our purposes. We believe this also

ensures that conduction always takes place preferentially in the 2DEG as there are many

charge carriers available. Indeed, the Hall sensitivity was measured at room temperature

as well as down to 50 mK and is found to be nearly constant in this temperature range

(variation smaller than 5%).

Once the sensitivity of the Hall probe is known, the measured Hall voltage V13 can be

simply converted to magnetic field Bz as,

Bz = V13/I24/k (2)

Or,

Bz = RHall/k (3)

Note that there is always some offset voltage, i.e., a non-zero measured Hall voltage even

in zero field. This can appear due to various reasons, including misalignment of the voltage

leads and/or leakage between the leads. The offset voltage is measured before each mea-

surement and the magnetic field value is determined by subtracting this offset signal from

the measured Hall signal.

The magnetic field resolution is limited by the noise in the output signal. The noise

depends on the active area of the probe and is larger for a smaller probe. In order to

obtain understanding of the sensitivity limitations of our microscope let us compare the

observed noise level to the Johnson-Nyquist thermal noise which limits the sensitivity of

measurements [2, 32, 33]:

Vjohnson =
√

4kBTR (4)
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Where kB is the Boltzmann constant, T is the temperature and R is the resistance of

the Hall sensor. At room temperature (T = 300 K), using R = 120 kΩ (maximum contact

resistance for the smallest probe, including the series resistance 100 kΩ), Vjohnson ∼ 1.424

nV/
√

Hz. For excitation current of 10 µA, this gives a lowest possible noise in Bz of ∆Bz ∼

1 µT/
√

Hz, or a magnetic field sensitivity of 10 µT (at measurement frequency 522 Hz and

time constant 10 ms). However, the magnetic field resolution in our measurements is ∼ 100

µT. Thus additional noise sources other than the Johnson noise are at the origin of this

field resolution. A noise floor of ∼ 16 nV/
√

Hz is measured when the Hall probe is not

excited. It increases to ∼ 18 nV/
√

Hz when the probe is excited. The measured noise level

is thus essentially due to the wiring of the probe, capturing ambient electrical noise, as the

microscope operates in an unshielded environment. The field sensitivity in our system is in

between values reported for SHPM systems operating at room temperature (300 K): 0.08

µT/
√

Hz in Ref. 8 (InSb Hall probes), 350 µT/
√

Hz in Ref. 11 (GaAs/AlGaAs Hall probes).

C. Measurement protocol

1. Estimate of distance of probe from sample surface

For proper interpretation of experimental data, it is important to reliably estimate the

distance between the Hall cross and the sample surface. To avoid contact of the wires

micro-bonded to the Hall probe with the sample surface and for safety of the probe against

damage by hitting the sample surface, the probe is kept at a slight inclination w.r.t. the

sample stage. Figures 4(e) and 4(f) show side and front views, respectively, of a probe

mounted on a tuning fork with a sample below, indicating the angles α and β the probe

makes with the sample surface. Note that the Hall cross is not exactly at the edge of the

bar but at a distance from it. In Figure 4(c) the distances of the Hall cross from the Hall

bar edges are indicated as L1 and L2. For the smallest probes (1 µm size), L1 = L2 = 8

µm. For the largest probes (5 µm size), L1 = L2 = 15 µm. The angle α ensures that the

probe does not hit the sample surface and the angle β ensures that the edge of the Hall bar

closer to the Hall cross touches the sample surface. The angle α is generally set at ∼ 9-10◦

(± 0.5◦, measured optically), which is small enough to assume that the measured signal the

component of the magnetic field is perpendicular to the sample surface [31]. Note that α ∼
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5◦ is usually good enough to ensure that the micro-bonded wires do not touch the sample

surface. However, a larger angle is needed for safety of the probe itself. Since the Hall cross

is rather close to the edge of the Hall bar, scanning over large areas of samples with large

topographic variations leads to significant bruising of the probe. While scanning with a

smaller angle α, in a number of probes, the contact closest to the edge got disconnected due

to scratches induced during scanning, rendering the probe unusable. The angle β is kept as

small as possible (∼ 1◦). The distance h of the Hall cross from the sample surface is then

given by,

h = L1sinα + L2sinβcosα (5)

Using L1 = L2 = 8 µm (15 µm), α = 9◦ and β = 1◦ in Equation 5, we get, h ≈ 1.4 µm (2.6

µm) for the smallest (largest) probe, which is the minimum possible probe-sample distance

that can be achieved without endangering the probe.

The distances of the Hall cross from the Hall bar edge are comparable to some other

reported SHPM systems (13 µm[2], 20 µm[11]) and are significantly smaller than that in

the probes used in the previous setup[18] (100 µm). As evident from the discussion above,

the smaller distance in the present Hall probes has allowed achieving a much smaller probe-

sample distance in the present setup ∼ 2 µm as compared to ∼ 25 µm in the previous

setup).

2. Scan protocol: regulation and flyover modes

The scanning plane is designated as the (x, y) plane and hence the measured magnetic

field component is along the z-axis (Bz). As discussed in Section II A 3, the probe is mounted

on a quartz tuning fork allowing topographic feedback to maintain constant probe - sample

distance during a scan. After setting the desired starting (x, y) position, the sample is

approached towards the probe with active topographic feedback via the PID control, till the

desired probe-sample distance is reached (< 500 nm, determined by the set amplitude of

oscillation of the tuning fork, usually 70% of the amplitude of oscillation when the tuning

fork is far away from the sample surface, cf. Section II A 3). The fast scan direction is

along the y-axis, i.e., the long side of the Hall bar (cf. Figure 4). Scans are performed in

the y-direction after setting the desired x before each scan in y. While making a step in

y during the scan, the probe - sample distance is continuously regulated through the fast
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PID control. At each y-step, the magnetic field signal and sample topography information

are recorded simultaneously. Measurements are always made while scanning in the same

direction, i.e., positive y (y+) direction in order to avoid any appearance of effects of the

backlash of the motors. While returning in y (y−), PID control is turned off and the z-piezo

is fully retracted for safety. The next x-step is also made with the z-piezo fully retracted

and PID control off. Then the PID control is turned on again and the next scan along y+ is

performed. In the resulting SHPM images, the (x+) direction is from left to right and (y+)

direction is from top to bottom. Note that it is the sample which is moved during the scan

while the probe remains stationary.

In our setup, apart from this ‘regulation mode’, scanning at a fixed height from the sample

surface in ‘flyover mode’, without such feedback, is also possible. Typically, in a particular

measurement, a first scan is performed in the regulation mode, with the probe close to the

sample surface. Next, the probe is retracted to the desired height from the sample surface

and a scan is performed without topographic feedback for regulation of the extension of

the z-piezo stack. Instead, the extension is determined from the topography information

recorded earlier in the regulation mode. In this way, a set of scans can be performed at

various heights from the sample surface. Note that this flyover mode of scanning allows to

follow the topography and tilt of the sample. This is unlike standard lift-off mode scanning

where the probe is lifted to a fixed height above the sample surface and scanning is performed

in a flat plane without taking into account the sample topography and tilt. Standard lift-off

mode scanning in a flat horizontal or tilted plane is also possible in our microscope. It is

possible to perform scans at a height of up to 35 mm from the sample surface (range of the

Z-motor).

3. B(z) profiles

Apart from performing scanning measurements, the system is also capable of, and has

been extensively used for, fast recording of local B(z) profiles. For these measurements,

the probe is approached close to the sample surface at the desired (x, y) location. Then

the sample is retracted to a set probe-sample distance while the Hall signal is recorded at

specified z intervals. In this way, local B(z) profiles at different desired (x, y) locations can

be obtained.
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FIG. 5. (a)-(g) SHPM showing the Bz distribution in a 1D array of topographically patterned

Fe-Co soft micro-magnet pillar structures embedded in a polymer (cf. text for details). The image

in (a) is obtained in the regulation mode and those in (b)-(g) are obtained in the flyover mode (cf.

text for details). The height of the probe from the sample surface corresponding to each image is

indicated in the respective panels. The inset in (g) shows the common scale bar. (h) Image showing

topography of the sample. It is obtained simultaneously along with the SHPM image during the

regulation mode scan.

III. MEASUREMENTS

The SHPM setup has been extensively used for quantitative characterization of a variety

of magnetic structures, both hard and soft magnetic materials, topographically as well as

thermomagnetically patterned micro-magnetic structures, and bulk permanent magnets.

Discussed in the following sections are some of the experimental results highlighting the

various capabilities of the microscope.

A. 1D array of topographically patterned soft micro-magnets

Figures 5(a)-(g) show a set of SHPM images showing the z-component of the stray field

pattern (Bz) in a 1D array of topographically patterned Fe-Co soft micro-magnet pillar
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FIG. 6. (a) and (b) Bz(y) profiles at different scan heights along the red lines shown in Figure 5(a),

one profile along a region with high field gradients and one along a region with low field gradients.

(c) Bz(z) profiles at different locations on the image as indicated by numbers in Figure 5(a).

structures positioned above a bulk permanent magnet. Details of the preparation and char-

acterization of the samples can be found in Ref. [34]. The scan resolution in Figures 5(a)-(g)

is 0.5 µm and the scan area = 400 × 200 pixel = 200 µm × 100 µm. The Bz color scale in the

images is indicated by the common scale bar in the inset of Figure 5(g). Each micro-pillar is

10 µm wide and the separation is 30 µm (center-to-center). The pillars are 40 µm tall. For

these measurements, the sample is placed on top of a bulk magnet which produces a field

of ∼ 320 mT normal to the sample plane at the sample surface. The first image in Figure

5(a) was obtained in the regulation mode with the probe-sample distance estimated at h ∼

2 µm (± 0.5 µm). Then successive images were obtained at different probe-sample distances
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in the flyover mode up to h ∼ 68 µm. The h corresponding to each image is indicated in

the respective panels. The topography recorded in the regulation mode is shown in Figure

5(h). The Fe-Co pillars are coated with a layer of PDMS that smoothens the large topo-

graphical variations in the sample due to the micro-pillars and hence enables safe scanning

of the Hall probe over the sample surface. In Figure 5(h) modulations in the PDMS layer

due to the underlying micro-pillars, along with an overall tilt in the sample plane w.r.t. the

scanning plane, can be observed. From Figures 5(a)-(g), strong field modulation, with large

flux concentration at the micro-pillars can be clearly observed, with Bz as high as 713 mT

measured 2 µm above the sample surface at the position of the pillars (cf. Figure 5(a) and

scale bar in inset of Figure 5(g)). In Figure 5(a), a corresponding decrease in flux density

in the vicinity of the pillars can also be observed. With increasing probe-sample distance

h, the field modulation due to the micro-pillars can be seen to reduce. Finally, at h ∼ 68

µm, modulations completely disappear, and a uniform field distribution across the image,

corresponding to the underlying bulk magnet, is observed.

These observations are further elaborated in Figure 6. Figures 6(a) and 6(b) show Bz(y)

profiles obtained from the set of images shown in Figure 5 along the two red lines drawn

over the image in Figure 5(a), through the center of a pillar and in between two pillars,

respectively.The height h corresponding to each Bz(y) profile is indicated in both panels.

The strong flux concentration at the micro-pillars is very clear from Figure 6(a). Figure

6(b) clearly shows the dip in Bz close to the pillars. Further, Bz(z) profiles were recorded

at various locations of the image area as indicated by numbers in Figure 5(a). The Bz(z)

profiles are shown in Figure 6(c). From Figure 6(c), the strong flux concentration at the

micro-pillars (> 700 mT near the sample surface at positions 2 and 3, on top of micro-

pillars) over and above the field due to the bulk magnet (∼ 320 mT near the sample surface

at positions 1 and 7, far from the micro-pillars) is very clear. Further, the Bz(z) profiles

show that the field modulation effect of the pillars completely disappears beyond z ∼ 0.1

mm, where all the profiles merge into the profile expected for the bulk magnet only.

B. Hard magnetic powder based micro-flux sources

We have characterized hard magnetic powder (NdFeB) based micro-flux sources prepared

using the micro-magnetic imprinting (µMI) technique [35]. More details on the µMI tech-
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nique and preparation and characterization of micro-flux sources by this method can be

found in Ref. 35. The images in Figures 7(a)-(c) show the z-component of the stray field

distribution (Bz) produced at heights h = (a) 5 µm, (b) 20 µm, and (c) 50 µm (± 1 µm)

above a µMI structure of an array of 100 µm × 100 µm squares of NdFeB powder (average

NdFeB particle size = 5 µm). For each image, the scan resolution = 2.5 µm and the scan

area = 160 × 400 pixel = 400 µm × 1000 µm. Figure 7(d) shows Bz(x) profiles across the

dashed lines shown on each image. Close to the sample surface, the SHPM technique is able

to clearly resolve the well-defined individual square structures and large stray field values

are detected (cf. image in Figure 7(a) at h = 5 µm and peak-to-peak value of ∼ 40 mT

in the corresponding Bz(x) profile in Figure 7(d)). Further, smaller agglomerations of pow-

ders across the sample surface are also clearly observed in the image. With increasing scan

height, as expected, the individual structures become less resolved and the detected stray

fields also decrease. The measurements have been shown to agree very well with simulations

of the z-component of the stray magnetic field produced above such structures made with

isotropic hard magnetic spheres [35].

C. Bulk magnets

A SHPM system is a potentially attractive tool for characterization of bulk magnets, as

on one hand it can detect large magnetic fields, and on the other hand, it can reveal local

inhomogeneities that could affect the magnet performance. Our setup has been utilized

for characterization of a number of mm sized bulk magnets. Figure 8 shows a summary

of measurements on a cubic magnet (5 mm side length). SHPM images in Figures 8(a)

and 8(b) show the Bz distribution across a 2 mm × 2 mm area centered near the center

of the magnet, at scan height h = 100 µm and 500 µm (± 1 µm), respectively. Note that

these mentioned heights are the heights of the probe from the sample surface at the location

(x, y) = (0, 0), i.e., the top-left of the image. The actual height at each point would vary

according to the roughness of the magnet surface as in these sets the scans are performed in

smooth horizontal planes (in flyover mode, using an artificial flat topography for reference).

This ensures surface corrugations do not affect the measured Bz profiles. The scan resolution

is 2.5 µm (image area 800 × 800 pixel). Figure 8(a) demonstrates inhomogeneities in the

magnetic field distribution across the surface of the bulk magnet. The Bz value is seen to
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FIG. 7. (a)-(c) SHPM images showing the Bz distribution above a µMI structure of an array of

100 µm × 100 µm squares of NdFeB powder at height h = 5, 10 and 20 µm, respectively. The

individual color bars are shown alongside each image. (d) Bz(x) profiles across the dashed lines

shown on each image.

vary in the large range of 360 mT < Bz < 540 mT over the image area. Moreover, pockets of

low Bz (e.g., cf. dark blue region labelled 2 in Figure 8(a)) are observed. These observations

are useful because these bulk magnets are used for a variety of purposes, e.g., to magnetize

the soft magnetic microstructures discussed in Section III A. In view of the inhomogeneous

Bz distribution over the magnet surface, when such bulk magnets are used to characterize

flux concentration in soft micro-magnets, it becomes important to take care in choosing the

region of the surface onto which the micro-magnet array is placed. However, the image

in Figure 8(b) at a larger height of 500 µm from the magnet surface shows that the Bz

distribution is largely smoothened out at this height from the magnet surface. This means

at these heights, the issue of magnetic field inhomogeneity is not as crucial as in the earlier

case.

This is further clarified from local Bz(z) profiles at different locations on the magnet.
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FIG. 8. (a) and (b) SHPM images showing the Bz distribution above a 5 mm cubic bulk magnet

at scan height 100 and 500 µm, respectively. The individual color bars are shown alongside each

image. (c) Bz(z) profiles at different locations on the image as indicated by numbers in (a).

Figure 8(c) shows Bz(z) profiles obtained at five different locations on the image as indicated

by the numbers in Figure 8(a). Interestingly, while the profiles at the corners (locations 1,

3 and 4) and center of the image (location 5) show expected monotonic decrease in Bz with

increasing z, in the profile at the center of the low Bz region (location 2), the Bz value

initially increases with increasing z. This continues till z ∼ 0.4 mm, beyond which the

curve reverses and follows the same trend as the others. With increasing z, the difference

in local Bz values at different locations decreases. This is because the detected ‘local’ field

really is an average of field lines emanating from the area surrounding a given location.

With increasing z, the area over which the averaging occurs increases, and hence local
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‘anomalies’ are averaged out. In general at a distance of ∼ 1-2 mm the Bz distribution

becomes homogeneous over an image size corresponding to the height, though there is still

noticeable difference between the local Bz values even at heights as large as 5 mm (cf. Figure

8). Beyond z ∼ 10 mm, all the curves merge into a single one, indicating uniform Bz(z)

across the magnet surface over the 2 mm × 2 mm area at these heights. Note that in both

images in Figures 8(a) and 8(b), there is an overall gradient in the Bz distribution along the

y-direction (top-to-bottom of the images). This is attributed to the fact that the Hall probe

is kept at a tilt of α ∼ 10◦ w.r.t. the sample surface, the angle being in the yz-plane. Hence

the effective measured component of Bz changes as the probe is scanned along the y-axis.

Another factor contributing to this gradient could be that the scan area of 2 × 2 mm was

not exactly centered at the middle of the magnet. Note that there is no such gradient along

the x-axis. This issue is particularly noticeable in this case due to the intense fields and

large area of the magnet. In usual scenarios of smaller sized micro-magnet samples this can

be ignored, as seen in Sections III A and III B.

IV. CONCLUSION

We have developed a Scanning Hall Probe Microscope capable of performing high reso-

lution scans (step size of 0.1 µm) over large areas (few mm, limited by sample topography

and tilt). New generation of mesa etched and precision diced Hall sensors enable approach-

ing close to the sample surface (< 2 µm) resulting in images with highly resolved features

(spatial resolution of magnetic field distribution limited by the size of Hall probes, 1 µm).

These Hall probes allow detection of large magnetic fields (∼ 1 T) with high field resolution

(100 µT, limited by system noise during scanning). The AFM-like tuning fork based force

detection technique enables imaging in regulation mode (probe in contact with the sample

surface) and the microscope can be also used for imaging in flyover mode at variable heights

from the sample surface (up to 35 mm). Apart from scanning, the system is capable of

recording local B(z) profiles. A single instrument (the Zurich Instruments HF2LI Lockin

amplifier) serves as the primary electronics component of the microscope which significantly

improves system performance. New programs have been developed for reliable operation

and several enhanced functionalities such as precise sensor calibration, more efficient scan-

ning in sets, fast acquisition of B(z) profiles etc. The simple design, three large range,
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precise stepper motors and a simple piezo stack combined with a reliable tuning fork based

height control makes this microscope a very versatile tool for the control and inspection of

devices and materials. The setup is being extensively used to measure stray field patterns

of micro-magnet arrays as well as for characterization of bulk magnets.
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[1] A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe,

J. van der Ziel, and T. Y. Chang, “Scanning Hall probe microscopy,” Appl. Phys. Lett. 61,

1974 (1992).

[2] A. Oral, S. J. Bending, and M. Henini, “Real-time scanning hall probe microscopy,” Applied

Physics Letters 69, 1324 (1996).

[3] A. Oral, S. J. Bending, and M. Henini, “Scanning Hall probe microscopy of superconductors

and magnetic materials,” Journal of Vacuum Science & Technology B 14, 1202–1205 (1996).

[4] G. Howells, A. Oral, S. Bending, S. Andrews, P. Squire, P. Rice, A. de Lozanne, J. Bland,

I. Kaya, and M. Henini, “Scanning Hall probe microscopy of ferromagnetic structures,” J.

Magn. Magn. Mater. 196-197, 917919 (1999).

[5] A. Sandhu, H. Masuda, A. Oral, S. Bending, A. Yamada, and M. Konagai, “Room tem-

perature scanning Hall probe microscopy using GaAs/AlGaAs and bi micro-hall probes,”

21

http://dx.doi.org/10.1063/1.108334
http://dx.doi.org/10.1063/1.108334
http://dx.doi.org/10.1063/1.117582
http://dx.doi.org/10.1063/1.117582
http://dx.doi.org/ 10.1116/1.588514
http://dx.doi.org/10.1016/s0304-8853(98)01002-6
http://dx.doi.org/10.1016/s0304-8853(98)01002-6


Ultramicroscopy 91, 97101 (2002).

[6] S. J. Bending, “Scanning Hall probe microscopy of vortex matter,” Physica C 470, 754757

(2010).

[7] J. R. Kirtley, “Fundamental studies of superconductors using scanning magnetic imaging,”

Rep. Prog. Phys. 73, 126501 (2010).

[8] J. K. Gregory, S. J. Bending, and A. Sandhu, “A scanning Hall probe microscope for large

area magnetic imaging down to cryogenic temperatures,” Rev. Sci. Instrum. 73, 3515 (2002).

[9] R. B. Dinner, M. R. Beasley, and K. A. Moler, “Cryogenic scanning Hall-probe microscope

with centimeter scan range and submicron resolution,” Rev. Sci. Instrum. 76, 103702 (2005).

[10] V. Cambel, J. Fedor, D. Greguov, P. Kov, and I. Huek, “Large-scale high-resolution scanning

hall probe microscope used for mgb 2 filament characterization,” Supercond. Sci. Technol. 18,

417421 (2005).

[11] C.-C. Tang, H.-T. Lin, S.-L. Wu, T.-J. Chen, M. J. Wang, D. C. Ling, C. C. Chi, and

J.-C. Chen, “An interchangeable scanning hall probe/scanning squid microscope,” Review of

Scientific Instruments 85, 083707 (2014).
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