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Abstract 

 The time for an event to take place in an individual is called a survival time. 

Examples include the time that an individual survives after being diagnosed with a 

terminal illness or the time that an electronic component functions before failing. A 

popular parametric model for this type of data is the Weibull model, which is a flexible 

model that allows for the inclusion of covariates of the survival times.  If distributional 

assumptions are not met or cannot be verified, researchers may turn to the semi-

parametric Cox proportional hazards model.  This model also allows for the inclusion of 

covariates of survival times but with less restrictive assumptions. This report compares 

estimates of the slope of the covariate in the proportional hazards model using the 

parametric Weibull model and the semi-parametric Cox proportional hazards model to 

estimate the slope.  Properties of these models are discussed in Chapter 1.  Numerical 

examples and a comparison of the mean square errors of the estimates of the slope of the 

covariate for various sample sizes and for uncensored and censored data are discussed in 

Chapter 2. When the shape parameter is known, the Weibull model far out performs the 

Cox proportional hazards model, but when the shape parameter is unknown, the Cox 

proportional hazards model and the Weibull model give comparable results.     
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Chapter 1 - Weibull and Cox Proportional Hazard Models 

This chapter will introduce parametric and semi-parametric models for survival 

data analysis. 

 Survival Time and Censoring   

To begin a discussion on survival or life data analysis, one must first 

conceptualize the basic definitions and explanations of survival time and censoring.  

Survival time is the time it takes for a certain event to take place in a given individual. 

This could include the survival time for terminally ill patients, amount of time of a 

treatment before an illness is cured, and length of remission. Survival data analysis has 

typically been used to study the survival times of human patients with an illness or 

disease and the survival times of animals in an experiment, but with the rapid influx of 

technological knowledge, it has many applications in the industrial and business world as 

well.  Some examples of life data analysis in non-medical fields include the amount of 

time before a malfunction of a mechanical component, lifetime of the battery in a laptop, 

and the employment time of employees for a certain company. 

 The analysis of these survival times is best done when all the survival times are 

known. However there are many instances when this is not the case.  Observations in this 

category are said to be censored data.  A terminally ill patient may live to end of the 

study, or a mechanical component may not malfunction during the times it is being 

observed.  In these cases, the survival times of the observations are not known, but it is 

known to be at least as long as the time of the study.  This is called Type I censoring 

when all censored data have the same length (Lee, 1992).  For example, suppose a 

company has 9 copy machines in their building.  All 9 copiers are observed for 6 months 
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and the time until a repair is needed is recorded.  As Figure 1 shows, copiers 1, 2, 3, 4, 6, 

7, and 9 needed repairs after 14, 21, 19, 15, 17, 19, and 20 weeks, respectively while 

copiers 5 and 8 did not need repairs during this time of observation. Hence copiers 5 and 

8 are the censored data and the remaining copiers are the uncensored data. The survival 

data would be 14, 21, 19, 15, 24+, 17, 19, 24+, 20, where the plus sign symbolizes a 

censored observation.  

Figure 1 Example of Type I Right Censored Data 
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 Type II censoring is a type of censoring in which all individuals begin at the same 

time and the study is terminated once a specified number of failures is reached.  The 

remaining observations are then censored to the point at which the longest uncensored 

observation failed (Lawless, 2003).  Using the data from the previous example, consider 

the situation where the company is interested in the failure times until 6 failures is 
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reached.  The uncensored observations would be copiers 1, 3, 4, 6, 7, and 9 and the 

survival data would then be 14, 20+, 19, 15, 20+, 17, 19, 20+, 20, shown in Figure 2.   

Figure 2 Example of Type II Right Censoring 

 

Type I and II censoring are both types of right censoring.  Another, less common, type of 

censoring is left censoring in which all individuals do not begin simultaneously.  A fourth 

type of censoring is random censoring, also called non-informative. This is when a 

subject has a censoring time that is statistically independent of its failure time, so the 

observed value is the minimum of the censoring and failure times.  Examples of random 

censoring are common in medical studies where patients may leave the study for reasons 

unrelated to the treatment such as a family emergency or a change of residence. Those 

with failure times greater than their censoring time are right-censored.   
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 Survival and Hazard Functions   

Two important functions for describing survival data are the survival function and the 

hazard function.  The survival function is the probability that an observation survives 

longer than t, that is 

    S(t) = P ( T > t ).     

In terms of the cumulative distribution function F(t), the survival function can be written 

as      

  S(t)   = 1 – P ( an individual fails before time t )  

 = 1 – F(t). 

From this, it is easy to see that S(t) is nonincreasing and has the following properties 

  S(t) = 1    for t = 0 

  S(t) → 0   as t → ∞. 

The survival rate can be depicted using a survival curve, in which a steep curve would 

indicate a low survival rate and a gradual curve would represent a high survival rate (Lee 

1992).   

 The hazard function is the rate of death/failure at an instant t, given that the 

individual survives up to time t.  It measures how likely an observation is to fail as a 

function of the age of the observation.  This function is also called the instantaneous 

failure rate or the force of mortality (Nelson, 1982). It is defined as 

  
)(

)(

)(1

)(
)(

tS

tf

tF

tf
th 


   

where )(tf  is the probability density function of T. 

Hence, in terms of the survival function,  
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)(log)( xS
dx

d
xh  . 

Thus,   


t

h(x)dxS(x)
0

log , 

and since S(0) = 1,   









 
t

h(x)dxS(t)
0

exp  

Therefore the pdf of the distribution can be found from the hazard and survival functions,  









 
t

h(x)dxh(t)f(t)
0

exp .   

Exponential and Weibull Distributions   

Statisticians chose the exponential distribution to model life data because the 

statistical methods for it were fairly simple (Lawless, 2003).  The exponential density 

function is 

  .00,exp)(  tandforttf   

It has a constant hazard function  

)(th   

and its survival function is  

 ttS  exp)( .  

Thus, a large λ implies a high risk and a short survival.  Conversely, a small λ indicates a 

low risk and a long survival.  This distribution has the memoryless property meaning that 

how long an individual has survived does not affect its future survival (Lee, 1992).  It is 
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used with ordered data, that is, the first individual to fail is the weakest, the second to fail 

is the second weakest, and so on (Epstein and Sobel, 1953).   

 The exponential distribution is limited in applicability because it has only one 

parameter, the scale parameter λ.  By adding a shape parameter the distribution becomes 

more flexible and can fit more kinds of data.  The generalization of the exponential 

distribution to include the shape parameter is the Weibull distribution.  The cumulative 

distribution function of the Weibull distribution is  

    0,exp1)(  tttF   

where   is the shape parameter and   is the scale parameter, and the probability density 

function of the Weibull distribution is 

    tttf   exp)( 1 ,   t > 0.  

The survival function and hazard function of the Weibull distribution are  

  ttS  exp)( ,  

and, 

  1)(   tth  

respectively.  

It is easy to see just how flexible the Weibull distribution can be.  When γ=1, the 

Weibull distribution becomes the exponential distribution with θ = λ and the hazard rate 

remains constant as time increases, and when γ=2 it is the Rayleigh distribution.  For 3 ≤ 

γ ≤ 4, it is close to the normal distribution and when γ is large, say γ ≥ 10 it is close to the 

smallest extreme value distribution (Nelson, 1982).  When γ > 1 the hazard rate increases 

as time increases, and for γ < 1 the hazard rate decreases.  Figure 3 shows the Weibull 

distribution for different values of γ.  
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Figure 3 Weibull Distribution for Different Shape Parameters 
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Because of the Weibull distribution’s flexibility, it is used for many applications 

including product life and strength/reliability testing.  It models the rate of failure as time 

increases (Nelson, 1982).  It can be shown that the mean and standard deviation are  
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see appendices for derivations. 
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 Proportional Hazards Model   

Sometimes it is helpful to add an explanatory variable, or covariate, to describe the 

effects of factors which may influence the time-to-failure of an individual. These 

variables can be continuous such as levels of radiation until remission or indicator 

variables such as gender.  In the Weibull model, covariates can be used to explain some 

of the variability in θ, the scale parameter, or γ, the shape parameter.  

Most often it is useful to consider only the scale parameter as a function of the 

covariates, that is,  

 x10exp      or     .xββ 10log      

In the engineering context where survival times are of electrical or mechanical 

components, these two regression are sometimes referred to as the accelerated failure 

regression models (Lawless, 2003).   

Recall the hazard function with no covariates is  

1)(   tth .   

Thus hazard function with covariates is 

  1

10exp)|(   txxth
 .

 

The ratio of the hazard functions of two different values of x is given by 

  
  

  2111

210

1

110

2

1 exp
exp

exp

)|(

)|(
xx

tx

tx

xth

xth



















.

 

This ratio is a constant proportion that depends only on the covariate and not on time. 

Thus it is called a proportional hazards model.  This simple regression model can easily 

be extended to a multiple regression model by letting  

 βx 0exp  , 
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where β  is a  1 x p vector of coefficients and x is a p x 1 vector of explanatory variables.  

 Cox Proportional Hazards Model   

Cox (1972) introduced a model for survival time that allows for covariates but does not 

impose a parametric form for the distribution of survival times. Specifically he assumed 

that the survival distribution satisfies the condition  

      0,exp| 0  txthxth    

where x is a covariate, but he made no assumption about the form of h0(t) which is called 

the baseline hazard function because it is the value of the hazard function when x = 0.  

When using a covariate of the form 

 x10exp  
 

0  is incorporated into the baseline hazard function  th0 .  When x is changed, the 

conditional hazard functions change proportionally with one another.  Hazard functions 

for any pair of different covariate values i and j can be compared using a hazard ratio: 

   
   
   

   jiforxxβ
βxth

βxth
HR ji

j

i  exp
exp

exp

0

0
 
 .   

Hence, the hazard ratio is a constant proportion and the Cox’s model is, indeed, a 

proportional hazards model.  This model is used when the covariates have a 

multiplicative effect on the hazard function and can be extended for multiple regression 

situations by allowing  

 βxexp0(t)hh(t|x)  . 

where β and x to be vectors.  It is mostly used in biostatistics. 
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Chapter 2 - Numerical Examples of Weibull and Cox Models 

This chapter will illustrate the use of the Weibull and Cox proportional hazards 

models with real data sets and will use simulation to compare estimates of the 

proportional hazards slope parameter. 

 SAS implementation   

The parameters in the Weibull model may be estimated in SAS with the 

LIFEREG procedure which uses the maximum likelihood estimates.  The parameters in 

the Cox proportional hazards model may be estimated with the PHREG procedure which 

uses a form of a partial likelihood function proposed by Breslow (1974) as the default 

option. When calculating parameter estimates, it is important to understand that 

LIFEREG and PHREG use different parameterizations. The coefficients that are 

estimated by the two procedures are not the same, but they are related. PROC PHREG 

uses the model 

   xthth o exp)()(   

where h(t) is the hazard function and )(tho  is the baseline hazard function.  PROC 

LIFEREG uses the  model  

xδδ* eTT 10  

 

where T is the survival time and 
*T  is a random variable that has the Weibull survival 

function 

 

   γ* t(t)S  exp  

In terms of the survival function, the parameterization of the Weibull model for T is 

 LIFEREG: 
xγδγδγγxδδ

eet)(texδδ* )(ee)e(tSS(t)
1010

10



  
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On the other hand, the parameterization for PHREG gives the following form of the 

survival function, 

 

 PHREG: 
βxγδγ eet )(eS(t)

0
  

 

It follows that the relationship between the parameterizations of the Weibull model for 

these LIFEREG and PHREG is  

   βγδ  1 . 

If 1̂  and γ̂  are estimates of the slope and shape parameters from LIFEREG and ̂ is the 

estimate of the slope from PHREG, it follows that  ˆˆ
1  and ̂  are estimates of the same 

parameter which we call “PH-slope”. This chapter shows numerical examples of 

estimates of PH-slope using real data and compares the mean square errors of estimates 

of this parameter when estimated by the maximum likelihood method for the Weibull 

model and the Breslow method for the semi-parametric Cox proportional hazards model. 

Computations are done using LIFEREG and PHREG. 

 Example 1  Survival Data with a Continuous Covariate using the Weibull 

Model and Proportional Hazard Model 

Survival data from 30 patients with AML is given in Table 1 (Lee, 1992).  Age is 

a continuous covariate and Censor indicates censoring where Censor = 1 is a censored 

observation.  Table 2 shows the SAS code and results when analyzed using PROC 

LIFEREG in SAS, and Table 3 shows the SAS code and results when analyzed using 

PROC PHREG in SAS.  The estimate of the slope and scale parameters in LIFEREG are    

-.0261 and .8345, respectively. Using the relationship above, the estimate of PH-slope 
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from LIFEREG is -(1.1983)×(-.0261) = .0313.  This compares to .0266, with standard 

error 0.01384, which is the estimate of PH-slope from the PHREG procedure. 

Table 1 Survival Times vs. Age of 30 AML Patients 

Survival 

Time Censor Age 

Survival 

Time Censor Age 

18 0 35 8 0 72 

9 0 42 2 0 60 

28 1 33 26 1 56 

31 0 20 10 0 61 

39 1 22 4 0 59 

19 1 45 3 0 69 

45 1 37 4 0 70 

6 0 19 18 0 54 

8 0 44 8 0 74 

15 0 26 3 0 53 

23 0 48 14 0 66 

28 1 32 3 0 64 

7 0 21 13 0 54 

12 0 51 13 0 60 

9 0 65 35 1 68 

 

Table 2   SAS Results LIFEREG 

Parameter DF Estimate Std Err 95% CI Limits Chi-Square Pr<ChiSq 

Intercept 1 4.2454 0.6001 3.0693 5.4215 50.05 <.0001 

Age 1 -0.0261 0.0112 -0.048 -0.0043 5.49 0.0192 

Scale 1 0.8345 0.1395 0.6013 1.1582     

Shape 1 1.1983 0.2004 0.8634 1.663     
proc lifereg; 

model surv *censor(1)= age /dist=weibull;  

 

Table 3  SAS Results PHREG 

Covariate DF Estimates Std Error Chi-Suare Pr>ChiSq Hazard Ratio 

age 1 0.02655 0.01384 3.6818 0.055 1.027 

proc phreg; 

model surv *censor(1) = age; 
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 Example 2 Survival Data with Continuous Covariate and transformed survival 

time using the Weibull Model and Proportional Hazard Model 

 For illustrative purposes, Table 4 shows the results for LIFEREG when analyzing 

the square root of survival times from Example 1. If the original data are Weibull, the 

transformed data will also be Weibull but with different slope and scale parameters. The 

estimate of the PH-slope using PHREG will not change because the estimate using the 

Breslow partial likelihood depends only on the order of the observations and the pattern 

of censoring, not the actual survival times.   

Table 4   SAS Results LIFEREG 

Parameter DF Estimate Std Err 95% CI Limits Chi-Square Pr<ChiSq 

Intercept 1 2.1227 0.3 1.5347 2.7108 50.05 <.0001 

Age 1 -0.0131 0.0056 -0.024 -0.0021 5.49 0.0192 

Scale 1 0.4173 0.0698 0.3007 0.5791     

Shape 1 2.3966 0.4007 1.7269 3.326     

 

The estimate of PH-slope using the results of LIFEREG is - (2.3966)×(-.0131) = .0314 

which except for rounding is the same as obtained by the analysis of the original survival 

data, showing that the semi-parametric model does not depend on the shape parameter. 

 Example 3 Survival Data with Categorical Covariates using the Weibull Model 

and Proportional Hazard Model 

Using the same survival times, Table 5 shows age now recorded as a discrete 

variable; age = 1 if patient ≥ 50 years, 0 if patent < 50 years, and clot = 1 if cellularity of 

marrow clot section is 100%, 0 otherwise.  Table 6 shows the results from SAS using 

LIFEREG and Table 7 shows the results from SAS using PHREG.   
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Table 5 Survival Times vs. Age and Clot of 30 AML Patients 

Survival 

Time Censor Age Clot 

Survival 

Time Censor Age Clot 

18 0 0 0 8 0 1 0 

9 0 0 1 2 0 1 1 

28 1 0 0 26 1 1 0 

31 0 0 1 10 0 1 1 

39 1 0 1 4 0 1 0 

19 1 0 1 3 0 1 0 

45 1 0 1 4 0 1 0 

6 0 0 1 18 0 1 1 

8 0 0 1 8 0 1 1 

15 0 0 1 3 0 1 1 

23 0 0 0 14 0 1 1 

28 1 0 0 3 0 1 0 

7 0 0 1 13 0 1 1 

12 0 1 0 13 0 1 1 

9 0 1 0 35 1 1 0 
 

 

 

Table 6   SAS Results LIFEREG 

Parameter DF Estimate Std Err 95% CI Limits Chi-Square Pr<Chi-Sq 

Intercept 1 2.3514 0.2677 1.8267 2.876 77.16 <.0001 

age 1 -1.0191 0.366 0.3018 1.7364 7.75 0.0054 

clot 1 -0.3838 0.3517 -0.3056 1.0732 1.19 0.2752 

scale 1 0.8034 0.1363 0.5762 1.1202     

shape 1 1.2448 0.2111 0.8927 1.7356     
proc lifereg; 

model surv *censor (1)= age clot /dist=weibull 

 

 

Table 7  SAS Results PHREG 

Covariate DF Estimates Std Error Chi-Suare Pr>ChiSq Hazard Ratio 

age  1 1.01317 0.4574 4.9065 0.0268 2.754 

clot 1 0.35025 0.43917 0.636 0.4252 1.419 

proc phreg; 

model surv *censor(1) = age clot; 
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 If we multiply the estimates of the coefficients of age and clot by negative the 

shape parameter, we obtain the LIFEREG estimates of the proportion hazards parameters, 

that is, - (1.2448)×(-1.0191) =  1.269 for age and  - (1.2448)×(-.3838) = .4778 for clot. 

This compares to the estimates of 1.0132 and .3503, with standard errors 0.4574 and 

0.43917, for the respective estimates of these parameters from PHREG. 

Simulation 

Is there an advantage to using a parametric form of the survival distribution 

instead of the semi-parametric Cox proportional hazards model in estimating the effect of 

a covariate of survival time when the parametric form of the model is known? To 

investigate this question, a simulation study was done to compare the mean square errors 

of the Weibull maximum likelihood estimate and the Cox proportional hazards model 

estimate of  β = PH-slope when data come from a Weibull model.  

 The data were simulated from a Weibull model with survival function 

  
xet )(eS(t)

2  

That is, the model is Weibull with β = 1 for the slope of the covariate x, shape parameter 

γ = 2, and baseline survival function 
2

0

te(t)S  .  The values of the covariate are x = 1, 2, 

3,  4, and 5. The total sample sizes are 15, 30, and 90 with 3, 6, or 18 observations for 

each value of x.  The data were simulated using the fact that the random variable U = 

F(T) has a uniform distribution where T is a Weibull random variable with cumulative 

distribution function F(t).  For this study, a value of T was obtained as 

211log( /x )U))e((T   

The uniform random variable was generated using the SAS random number generator. 

Data were simulated without censoring and with twenty percent random censoring. With 
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random censoring a uniform variable U* was generated independently of U and an 

observation was denoted as censored if U* ≤ .20.  

 The maximum likelihood estimate of PH-slope using the parametric Weibull 

model was obtained from LIFEREG as 1
ˆˆˆ δγβ   where ̂  is the estimate of the shape 

parameter and 1̂ is the estimate of the slope of the Weibull model as parameterized in 

LIFEREG.  Since the shape parameter is known to be 2, an estimate of PH-slope that 

takes advantage of this fact, 1
ˆ2δ , was also obtained. The estimate of PH-slope from the 

Cox proportional hazards model was computed using PHREG.   

 One-thousand replications of each sample size were run and the mean square 

estimated as  

  
1000

ˆ 2
1000

1

β)β( i

i


 

 

where β = 1. The standard error of the mean square error was computed as the standard 

deviation of the squared deviations 2ˆ β)β( i  , i = 1, 2,…1000, divided by the square root 

of 1000.  The distributions of ̂ from the maximum likelihood estimates of the Weibull 

parameters and from the Cox proportional hazards model do not depend on the value of 

the shape parameter γ.  Thus, the mean square errors apply to all Weibull shape 

parameters.  

Results for Complete Samples 

Table 8 has the means square errors for the complete sample case.  Here it can be 

seen that when the shape parameter is unknown, the estimates for the Cox proportion 

hazards model and the maximum likelihood estimates of the Weibull model perform 
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similarly, but when the shape parameter is known, the estimate 1
ˆ2  far out-performs 

the Cox proportional hazards model. From this, it can be concluded that when the 

distributional assumptions are not known, or are not met, the Cox proportional hazards 

model should be used.   

Table 8 MSEs and Standard Errors for Complete samples 

  N=15 N=30 N=90 

Weibull mle shape known 0.0381(.0016) 0.0180 (.0008) 0.0059 (.0002) 

Weibull MLE shape unknown 0.1616 (.0158) 0.0527 (.0029) 0.0140 (.0007) 

Cox PH model estimate 0.1494 (.0098) 0.0547 (.0031) 0.0143 (.0009) 

 

Results for Censored Samples 

Results for the censored sample case are shown in Table 9. The patterns are 

similar to the complete sample case.  The MSEs are similar for the maximum likelihood 

estimates and the proportional hazards model estimates when the shape parameter is 

unknown, but much smaller for the maximum likelihood estimates of the Weibull model 

when the shape parameter is known.  As would be expected, the MSEs for censored data 

are larger than uncensored data, but not appreciably so, except in one notable case. The 

small sample case, N=15, the Cox PH model occasionally produces unusual estimates, 

sometimes very large, in both the uncensored and censored cases yielding inconsistent 

MSE calculations.  This problem is exacerbated in the presence of censored data, but is 

not present in either case for larger sample sizes.  Although the Cox model is generally 

comparable to the Weibull model, perhaps it is not for small sample sizes. 
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Table 9 MSEs and standard errors of censored data 

  N=15 N=30 N=90 

Weibull MLE shape known 0.0484 (.0024) 0.0247 (.0043) 0.0067 (.0003) 

Weibull MLE shape unknown 0.1876 (.013) 0.0709 (.0039) 0.0194 (.0011) 

Cox PH model estimate 0.1385 (.012) 0.0756 (.0043) 0.0183 (.0009) 
 

 Conclusions   

In conclusion, the Weibull model is the best option for analyzing lifetime data if 

the distributional assumptions can be met and the shape parameter is known.  The mean 

square errors are smallest in this case.  However, when the shape parameter is unknown, 

the Cox proportional hazards model is a good alternative.  It requires fewer assumptions 

than the parametric Weibull model and provides comparable mean square errors of the 

estimates of PH-slope. There may be a concern for smaller samples with the Cox 

proportional hazards model depending on the particular data set being analyzed. 
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Appendix 1 

 
Probability Density and Likelihood Functions of Weibull Distribution 

 The probability density function of the Weibull random variable T is                                        

        tt ttt
dt

d
tf

11
expexpexp1)(




   

In the case of the complete sample with observed survival times nttt ,...,, 21 , the log 

likelihood function is 

          ii ttnnL log1loglog),(log  

The partial derivative of the log likelihood function with respect to   depends on the 

survival times through the quantities 

it .  The random variable TW  has an exponential 

distribution 

     .0,exp  wwwfW   

Thus the distribution of the maximum likelihood estimate of   depends only on the 

distribution of W, which is independent of  .  If   x10log   , then the distributions 

of the maximum likelihood estimates of 0  and 1  will not depend on  . 

In the case of the sample with censored data, the likelihood function is 

      ,1
1

 


it

c

i

c

i tFtf  

where c = 0 if the time is not censored, and c = 1 if the time is censored.  From the form 

of )(tf  and )(tF for the Weibull distribution, it can be seen that the distribution of the 

maximum likelihood estimate of  does not depend on  , as in the case of the complete 

sample.   
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Mean and Variance of Weibull Distribution 

 The following steps show the derivations of the mean and variance of the Weibull 

random variable T. 
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Appendix 2 

Log Transformation of Weibull Distribution 

and 

Cumulative Distribution Function for Extreme Value Distribution  

Let T have a Weibull distribution with cdf 

    ttFT  exp1 . 

Let )log(TY  . The cdf of Y is 

             yyTPyTPyYPyFY expexp1explog  . 

To put the distribution in the form of a location-scale model, let    exp  and 




1
 .  With this 

          


 


y
yyFY expexp1expexpexp1 .                         

 

Probability Density Function for Extreme Value Distribution 
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Mean of Extreme Value Distribution 
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where γ is the Euler-Mascheroni constant, 0.57722. 

= µ - 0.57722σ  
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Standard Deviation of Extreme Value Distribution 
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where 2I is an Euler-Mascheroni integral and γ is the Euler-Mascheroni constant. 
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Appendix 3 

Estimate of PH-Slope Using Cox Proportional Hazards Model 

The Breslow form of the Cox partial likelihood for a single covariate x with 

values nxxx ,,, 21   is 

 
 
 




i

i

x

x
L






exp

exp
 

where the product is taken over all uncensored times )()2()1( kttt   and the sum for 

each )(it is taken over the individuals whose survival time is at least )(it .  The estimate of 

  does not depend on the actual survival times, only the orders of the times and the 

pattern on censoring. 
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Appendix 4 

Simulation SAS Code for N=15, Uncensored 

title 'Uncensored Data N=15'; 

dm "output;clear;log;clear;"; 

ODS TAGSETS.EXCELXP 

file='\\statsrvr\home\asoehlke\My Documents\data15.xls' 

STYLE=sasweb 

OPTIONS ( Orientation = 'landscape'); 

%macro one; 

%do k = 1 %to 1000 %by 1;  

 

data c; 

do x = 1 to 5 by 1;  

 do i = 1 to 3 by 1; 

 F=rand('uniform');  

 t=(-exp(-x)*LOG(1-F))**(1/2); 

  output; 

 end; 

end;  

run; 

 

 

ods trace on;  

proc lifereg data=c; 

model t=x / dist=weibull; 

ods select ParameterEstimates;  

run; 

ods trace off; 

 

ods trace on; 

proc phreg data=c; 

model t=x; 

ods select ParameterEstimates; 

run; 

ods trace off; 

 

%end; 

%mend; 

 

%one; 

 

ods tagsets.excelxp close; 

 

run; 

quit; 
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Simulation SAS Code for N=15, Censored 

title 'Censored Data N=15'; 

dm "output;clear;log;clear;"; 

ODS TAGSETS.EXCELXP 

file='\\statsrvr\home\asoehlke\My Documents\censored15.xls' 

STYLE=sasweb 

OPTIONS ( Orientation = 'landscape'); 

%macro one; 

%do k = 1 %to 1000 %by 1;  

 

data c; 

do x = 1 to 5 by 1;  

        do i = 1 to 6 by 1; 

        F=rand('uniform');  

        t=(-exp(-x)*LOG(1-F))**(1/2); 

  rand_number = rand('uniform'); 

  If rand_number <=.2 then censor = 1; 

  else censor = 0;  

  output; 

        end; 

end;  

run; 

 

 

 

ods trace on;  

proc lifereg data=c; 

model t*censor(1) =x / dist=weibull; 

ods select ParameterEstimates;  

run; 

ods trace off; 

 

ods trace on; 

proc phreg data=c; 

model t*censor(1) = x; 

ods select ParameterEstimates; 

run; 

ods trace off; 

 

%end; 

%mend; 

 

%one; 

 

ods tagsets.excelxp close; 

 

run; 

quit; 
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