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Abstract 

Into the Multiverse: Methods for Studying Developmental Neuroscience 

Paul Alexander Bloom 

 

 One major challenge in developmental neuroscience research is the sheer number of 

choices researchers face when addressing even a single research question. Even once data 

collection is complete, the journey from raw data to interpretation of findings may depend on 

numerous decisions. To address this issue, this dissertation explores “multiverse” analysis 

techniques for following many analytical paths at once in the same dataset. In chapter 1, 

multiverses are used to examine which analyses of age-related change in amygdala-medial 

prefrontal cortex circuitry are robust versus sensitive to researcher decisions. Chapter 2 uses 

multiverse analysis to identify optimal solutions for mitigating breathing-induced artifacts in 

resting-state functional magnetic resonance imaging data. Chapter 3 uses a variety of model 

specifications to characterize simultaneous reward learning strategies in youth contingent on 

both visual task cues and spatial-motor information. Despite varied approaches and goals, each 

of the three studies highlight the benefits of conducting multiple parallel analyses for both 

addressing questions in developmental neuroscience and deepening understanding of the 

methods used to address them.
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Introduction 
  

Some researchers are motivated throughout their careers by a single burning question that 

drives every project. My own experience as a PhD student has never been like this. Over the past 

several years, my advisor has described my approach to the program as “like a kid in a candy 

store,” as I’ve delved deeply into projects spanning a broad range of scientific topics. While I 

have always viewed the breadth of my experiences and the depth to which I’ve been able to 

pursue varied research areas as a cornerstone of the PhD, I have also struggled when asked what 

my research focus is. At times, I have worried that committing to one “line” of research would 

mean letting go of other projects near and dear to me.  

 However, when thinking about the overarching themes linking the projects I have worked 

on during the PhD, a common factor has been research methodology. More specifically, my 

work has gravitated towards meta-scientific questions about the analysis process itself, where 

vast numbers of decision paths are available to researchers (Gelman & Loken, 2014). 

Particularly for developmental neuroscience research, where many questions focus on 

longitudinal trajectories or correlational study designs, there are often myriad methods for 

approaching ostensibly identical research questions. Often, there is no “gold standard” choice, 

yet such choices can drastically influence results for studies of both behavior (Orben & 

Przybylski, 2019) and the brain (Botvinik-Nezer et al., 2020; Bryce et al., 2021).  

 The work in this dissertation most generally seeks to address how researcher-driven 

choices during the journey from raw data to results impact developmental research studies. In 

particular, each of the three studies in one way or another undertake many parallel analyses of 

the same data in order to build meaning over a “multiverse” of possible choices (Dafflon et al., 
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2020; Steegen et al., 2016) or optimize analytical decisions to meet the needs of specific research 

questions. The first two studies focus on such decision-making within the context of functional 

magnetic resonance imaging (fMRI) studies, while the third study examines behavior during a 

sequential reward learning task from several analytical angles.  

 Though the term “multiverse analysis” was originated in reference to methods tailored for 

inference over many possible analytical decisions (Steegen et al., 2016), such parallel analyses of 

the same data can serve multiple purposes. For example, researchers can construct “specification 

curves” displaying the estimate of interest across many possible analytic specifications, and 

conduct joint inference of this estimate across the entire curve (Simonsohn et al., 2020). In this 

sense, specification curves are akin to systematic “sensitivity checks” for a single analysis 

(Rohrer et al., 2017). In addition, multiverses and accompanying specification curves allow 

researchers to quantify how each tested decision point (i.e. ‘fork’ in the analytical path) impacts 

the estimate of interest, and which decisions are most consequential (Dragicevic et al., 2019; Liu 

et al., 2021; Masur, 2021).  

 Particularly in neuroimaging settings, multiverse analyses are not merely useful in 

examining variability of results across decision points, but also for systematic benchmarking of 

analysis strategies to optimize desired metrics (Bridgeford et al., 2020; Ciric et al., 2017a; 

Clayson et al., 2021; Dafflon et al., 2020; Xu et al., 2022). Particularly given that preprocessing 

and software choices can give rise to varying results in neuroimaging studies (Bowring et al., 

2019; Li et al., 2021), multiverses are a particularly valuable tool for developing and comparing 

such preprocessing and analysis methods. Accordingly, recent software developments have made 

multiverse analyses accessible both for neuroimaging studies (Craddock et al., 2013; Esteban et 

al., 2019) and more generally (Liu et al., 2021; Masur, 2019).  
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 Despite the increasing feasibility of multiverse analyses, larger multiverses are not 

necessarily better. Multiverses are conceptually distinct from prediction-focused techniques such 

as ensemble learning methods (Hastie et al., 2009; Strobl et al., 2009) or Bayesian model 

averaging (Raftery et al., 1997), as individual specifications typically cannot be aggregated to 

achieve a more precise estimate (otherwise, greater statistical precision could always be achieved 

by simply running more models). From a practical standpoint, larger numbers of analyses can be 

costly in terms of time and computing resources. Focusing on the quantity of analyses may also 

make careful inspection of individual analyses more difficult. In addition, recent work has 

highlighted that conducting multiple smaller multiverses, as opposed to one large one, may be 

most effective for ensuring that included specifications are reasonable (Del Giudice & 

Gangestad, 2021). Thus, multiverse analyses targeted towards investigating a small set of key 

decision points may be most valuable when there is principled reason to believe that some 

analysis specifications are superior to others.  

 In seeking to understand impacts of researcher choices in developmental neuroscience, 

this dissertation takes several of the multiverse approaches mentioned above. In chapter 1 

(Bloom et al., 2022), specification curves serve the goal of identifying the relative robustness of 

age-related changes in amygdala-medial prefrontal cortex (mPFC) circuitry. In chapter 2, 

multiverse analyses serve the goal of optimizing respiratory correction strategies for resting-state 

fMRI analyses over several decision points. Chapter 3 strays furthest from typical multiverse 

design, but most generally uses a series of models specified to examine different aspects of 

youths’ decision-making strategies in a two-stage reward learning paradigm. Each of these 

studies are summarized below.  
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In chapter 1, we sought to make longitudinal growth charts of task-evoked amygdala and 

medial prefrontal cortex (mPFC) circuitry from ages 4-22, and examine how a variety of 

analytical decision points impacted such growth charts. In an accelerated longitudinal cohort, we 

constructed Bayesian longitudinal models of age-related change in amygdala reactivity and 

amygdala-mPFC functional connectivity associated with fear and neutral faces. For all analyses, 

we conducted specification curves with varied options for inclusion criteria, nuisance regression, 

region-of-interest (ROI) selection, functional connectivity methodology, fMRI analysis software, 

and group-level model specification. Results across many such parallel analyses indicated that 

age-related changes in amygdala reactivity were more robust to analytical decisions than 

amygdala-mPFC functional connectivity, though neither of these measures were reliable. 

Specification curves also yielded evidence that gPPI functional connectivity measures were 

particularly sensitive to preprocessing decisions. Further, exploration of longitudinal model 

parametrization indicated that within-participant changes in amygdala reactivity with age could 

not be differentiated from between-participant differences. Through this work, we highlight how 

such specification curve analyses can help determine the robustness of developmental 

neuroimaging findings. We also provide an interactive data exploration website and code 

tutorials for conducting similar analyses.  

In chapter 2, we compared many different methods for mitigating breathing-induced 

artifacts in functional neuroimaging studies. In particular, we addressed the problem that while 

informed correction of respiratory artifacts typically requires measurement of respiration itself, 

most neuroimaging studies do not collect such data (i.e. a respiration belt around the participant’s 

abdomen). This is especially problematic for developmental neuroimaging studies because 

respiration artifacts are often trait-like and associated with age, and may bias between-participant 
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analyses if not mitigated (Gratton et al., 2020). Here, we built on recently developed tools to 

estimate participant breathing from fMRI data alone without need for collection of peripheral 

respiratory belt data. Then, within both an adult (Human Connectome Project) and a 

developmental (Nathan Kline Institute Rockland Sample) dataset, we compared many 

preprocessing pipelines using both the belt and estimated respiratory data for model-based 

correction (RETROICOR + RVT; Birn et al., 2006; Glover et al., 2000). We also compared 

preprocessing with no model-based correction, and with several other correction strategies that 

were not directly informed by the respiratory data (notch filtering the motion parameters, global 

signal regression, censoring, and aCompCor). Across this “multiverse” of preprocessing 

pipelines, we examined which strategies optimized data retention, reliability, and mitigation of 

residual relationships with head motion. Overall, our results highlight that model-based 

respiratory corrections can be done without use of peripheral respiratory belt data, yet choice of 

artifact mitigation strategies for resting-state fMRI necessitates making “trade-offs” based on the 

priority of quality control metrics.  

In chapter 3, we applied several analytical strategies in parallel to develop a more 

thorough characterization of reward learning behaviors during middle childhood through young 

adulthood. Specifically, we investigated a task typically used to parse “model-free” from 

“model-based” reinforcement learning strategies, where learners using both strategies associate 

actions with rewards, but only model-based learners use cognitive maps of the task environment 

for prospective planning (Doll et al., 2015). We collected data among youth ages 7-14 years old 

(N=62) using a version of the “two-stage” task paradigm (Daw et al., 2011; Decker et al., 2016) 

modified to resemble a video game format. While we did not observe expected patterns of 

model-based or model-free decision making within this cohort, participants were nevertheless 
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responsive to the task structure. In addition to conducting analyses of model-based and model-

free strategies at the first stage, we also explored several models of the task at the second stage.  

While some results were idiosyncratic to our own task, we found that participants across several 

cohorts (Decker et al., 2016; Nussenbaum et al., 2020; Potter et al., 2017) as well as the current 

paradigm displayed reward-contingent spatial-motor decision-making, even in situations where 

such behavior would not increase reward probability. This project highlights both how varied 

analytical strategies can reveal different learning strategies within the same task, as well as 

tendencies of children, adolescents, and young adults assign value to spatial and motor cues in 

environments where the outcome of their decisions are uncertain. 

 Overall, the three studies included in this dissertation delve “into the multiverse” of 

possible analytic choices within different domains. Because conducting a large number of 

parallel analyses is likely a step some researchers might hope to avoid within their own studies, 

in each of the studies included here we work to provide clear information about which choices 

were most impactful and which resulted in little change in the results. While these methods are 

often time-consuming, many of the key findings from the studies included here emerged only 

through taking multiple simultaneous paths from raw data to results. Thus, we demonstrate 

throughout that comparison of multiple analytic strategies can be broadly beneficial across a 

variety of research questions. To decrease barriers to entry into multiverse analyses, for each of 

the three studies we provide open-source code or tutorials to inform or guide readers in their own 

explorations.  
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Chapter 1: Age-related change in task-evoked amygdala—

prefrontal circuitry: a multiverse approach with an accelerated 

longitudinal cohort aged 4-22 years 
 

 

Paul Alexander Bloom, Michelle VanTieghem, Laurel Gabard-Durnam, Dylan G. Gee, Jessica 

Flannery, Christina Caldera, Bonnie Goff, Eva H. Telzer, Kathryn L. Humphreys, Dominic S. 

Fareri, Mor Shapiro, Sameah Algharazi, Niall Bolger, Mariam Aly, & Nim Tottenham 

 

Please note, chapter published as: 

Bloom, P. A., VanTieghem, M., Gabard-Durnam, L., Gee, D. G., Flannery, J., Caldera, C., Goff, 

B., Telzer, E. H., Humphreys, K. L., Fareri, D. S., Shapiro, M., Algharazi, S., Bolger, N., Aly, 

M., & Tottenham, N. (2022). Age-related change in task-evoked amygdala—prefrontal circuitry: 

A multiverse approach with an accelerated longitudinal cohort aged 4–22 years. Human Brain 

Mapping. https://doi.org/10.1002/hbm.25847 
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Abstract: 

The amygdala and its connections with medial prefrontal cortex (mPFC) play central 

roles in the development of emotional processes. While several studies have suggested that this 

circuitry exhibits functional changes across the first two decades of life, findings have been 

mixed – perhaps resulting from differences in analytic choices across studies. Here we used 

multiverse analyses to examine the robustness of task-based amygdala–mPFC function findings 

to analytic choices within the context of an accelerated longitudinal design (4-22 years-old; 

N=98; 183 scans; 1-3 scans/participant). Participants, recruited from the greater Los Angeles 

area, completed an event-related emotional face (fear, neutral) task. Parallel analyses varying in 

preprocessing and modeling choices found that age-related change estimates for amygdala 

reactivity were more robust than task-evoked amygdala–mPFC functional connectivity to 

varied analytical choices. Specification curves indicated evidence for age-related decreases in 

amygdala reactivity to faces, though within-participant changes in amygdala reactivity could 

not be differentiated from between-participant differences. In contrast, amygdala—mPFC 

functional connectivity results varied across methods much more, and evidence for age-related 

change in amygdala–mPFC connectivity was not consistent. Generalized psychophysiological 

interaction (gPPI) measurements of connectivity were especially sensitive to whether a 

deconvolution step was applied. Our findings demonstrate the importance of assessing the 

robustness of findings to analysis choices, although the age-related changes in our current 

work cannot be overinterpreted given low test-retest reliability. Together, these findings 

highlight both the challenges in estimating developmental change in longitudinal cohorts and 

the value of multiverse approaches in developmental neuroimaging for assessing robustness of 

results.  
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1.1 Introduction 

 Rodent models and human neuroimaging have provided converging evidence for the 

importance of the amygdala and medial prefrontal cortex (mPFC) in the development of threat 

processing (Adolphs, 2008; Forbes et al., 2011), emotion regulation (Pozzi et al., 2020; Silvers 

et al., 2015; Sullivan & Perry, 2015), and affective learning (Moriceau & Sullivan, 2006; 

Pattwell et al., 2016). Characterizing growth trajectories of these regions may provide insight 

into neural constructions underlying emotional development (Meyer & Lee, 2019). To probe 

amygdala–mPFC circuitry across development, face stimuli are frequently employed because 

they effectively engage this circuitry while being child-appropriate (Hariri et al., 2002). Though 

a number of studies have examined age-related changes from childhood to young adulthood in 

amygdala responses and amygdala–mPFC functional connectivity (FC) associated with 

emotional face stimuli, findings have varied widely (likely due in part to differences in sample 

composition and task design; see Appendix A Table 1 for details). Several studies have found 

age-related change in amygdala reactivity, including decreases as a function of age in response 

to emotional faces (Gee et al., 2013; Guyer et al., 2008; Killgore et al., 2001; Passarotti et al., 

2009; Swartz et al., 2014; Telzer et al., 2015) as well as other images (Decety et al., 2012; 

Silvers et al., 2017b; Vink et al., 2014), increases in amygdala reactivity with age (Joseph et al., 

2015a; Todd et al., 2011), developmental sex differences (Xu et al., 2021) or peaks during 

adolescence (Hare et al., 2008a; Vijayakumar et al., 2019). Others have observed no age-related 

changes (Kujawa et al., 2016; Pfeifer et al., 2011; Pine et al., 2001; Wu et al., 2016; Yurgelun-

Todd & Killgore, 2006a; Zhang et al., 2019).  

With task-evoked amygdala–mPFC FC, several studies have found age-related 

decreases from childhood to young adulthood (Gee et al., 2013; Kujawa et al., 2016; Silvers et 
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al., 2017a; Wu et al., 2016), while others have found increases (Decety et al., 2012; Perlman & 

Pelphrey, 2011; Vink et al., 2014), developmental sex differences (Xu et al., 2021), or little age-

related change (Zhang et al., 2019). While some investigations have found differing age-related 

change for faces displaying different emotions (Killgore & Yurgelun-Todd, 2007a; Swartz et 

al., 2014; Vijayakumar et al., 2019), even investigations of fearful faces specifically have 

varied in their developmental findings for both amygdala reactivity and amygdala—mPFC 

functional connectivity (Forbes et al., 2011; Gee et al., 2013; Killgore et al., 2001; Wu et al., 

2016, 2016; Zhang et al., 2019).   

While the small sample sizes examined in many studies on amygdala–mPFC 

development likely contribute to differences in findings (Marek et al., 2020), especially given 

low reliability of many amygdala—mPFC measures (Elliott et al., 2020; Herting et al., 2017; 

Sauder et al., 2013), important methodological differences also exist across studies. Differences 

in age range or sample demographics, stimuli, task (e.g. passive viewing vs. emotion labeling 

or matching (Lieberman et al., 2007), task design (blocked vs. event-related; Sergerie et al., 

2008), or contrast used (faces > shapes vs. faces > baseline) may also contribute to 

discrepancies (see Appendix A Table 1). The brain regions under investigation also differ 

across studies; for example, prefrontal clusters with which amygdala connectivity was 

assessed. Interpreting discrepancies across studies without appreciation for these 

methodological differences would be inappropriate, and in fact, incorrect. Yet, such differences 

do not account for all discrepancies in findings across studies. Variation in processing 

pipelines is another source of differences across studies, as varying analytic decisions can 

produce qualitatively different findings, even between putatively identical analyses of the same 

dataset (Botvinik-Nezer et al., 2020). Choices including software package (Bowring et al., 
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2019), spatial smoothing (Jo et al., 2007), treatment of head motion (Achterberg & van der 

Meulen, 2019), parcellation (Bryce et al., 2021), and functional connectivity approach (Di et al., 

2020) can also impact results and qualitatively change findings (Cisler et al., 2014). 

Additionally, the majority of developmental investigations of amygdala–mPFC function have 

studied cross-sectional samples. Because cross-sectional studies are susceptible to cohort 

effects and cannot measure within-participant change, longitudinal work has been 

recommended for better charting of developmental trajectories (Crone & Elzinga, 2015; 

Madhyastha et al., 2017).  

Here, we used multiverse analyses to examine the robustness of developmental changes 

to varied analytical decisions. We focused on task-related amygdala–mPFC functional 

development in an accelerated longitudinal sample ranging from ages 4-22 years. We selected 

a task that was designed to be appropriate for young ages to characterize developmental change 

in amygdala–mPFC responses to fear and neutral faces across childhood and adolescence, and 

we asked whether findings were robust to analytical choices. This accelerated longitudinal 

design is an extension of the sample reported on by Gee et al. (2013). We preregistered two 

hypotheses (https://osf.io/8nyj7/) predicting that both amygdala reactivity (1) and amygdala–

mPFC connectivity (2) as measured with generalized psychophysiological interaction models 

(gPPI), would decrease as a function of age during viewing of fearful faces relative to baseline 

(see Table 1.1 Aims 1a & 2a).  

Although we did not preregister further hypotheses, we also investigated age-related 

changes in within-scan differences in amygdala responses across trials and FC using beta series 

correlations. As previous work identified associations between amygdala–mPFC FC and 

separation anxiety (Carpenter et al., 2015; Gee et al., 2013), we asked whether any amygdala–
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mPFC measures were associated longitudinally with separation anxiety behaviors (see Table 

1.1 Aim 3). We used ‘multiverse’ analyses and specification curves to examine the impact of 

analytical decisions on results. We also investigated test-retest reliability of all brain 

measurements across longitudinal study visits, given the importance of such reliability for 

interpreting individual differences or developmental change (Herting et al., 2017). Our 

multiverse approach allows us to thoroughly explore the robustness of different findings to 

analytical choices, highlighting the importance of considering both robustness and reliability in 

developmental research. 

 

Figure 1.1: A. Schematic showing study inclusion criteria. B. Included scans at each study 

wave, with each dot representing one scan, and horizontal lines connecting participants across 

study waves.  

 

Aim Preregistered 

Hypothesis 

Analysis Methodology Key Findings 
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Table 1.1: Summary of main aims, hypotheses, methods, and findings 

 

1a. Age-related change 
in amygdala reactivity to 
fear faces 

Amygdala reactivity to 
fearful faces will 
decrease with age, 
such that younger 
children will have 
more positive 
amygdala reactivity 
(higher BOLD 
response to fear faces 
relative to implicit 
baseline) than older 
youth. 
 

Multiverse amygdala ROI (anatomically-
defined) analysis using multilevel linear 
regression at the group level.  
 
Multiverse decision points: 

Preprocessing software, GLM software, GLM 
nuisance regressors, amygdala ROI definition, 
contrast estimate type (t-stat vs. beta estimate), 
HRF shape, group-level model covariates, 
exclusion of previously analyzed scans 

• Across decision points, weak but 
consistent negative age-related change 
in amygdala reactivity to fear > 
baseline and neutral > baseline 
contrasts 

• No consistent evidence for age-related 
change in fear > neutral contrast 

• Longitudinal models could identify 
consistent between-participant 
differences but not within-participant 
age-related change 

1b. Age-related change 
in patterns of amygdala 
responses across task 
trials 

None Multiverse analysis of slopes of amygdala 
reactivity across trials, and amygdala reactivity 
in each half of trials using multilevel linear 
regression at the group level, single trial models 
 
Multiverse decision points: 

Global signal subtraction, amygdala ROI 
definition, group-level model covariates 

• On average, amygdala reactivity 
decreased across trials (for both fear 
and neutral faces) 

• Amygdala reactivity for earlier trials 
was higher at younger ages 

• Age-related change in amygdala 
reactivity to fear faces in the first half 
of trials, but not the second half 

• Similar, but somewhat weaker age-
related change for neutral faces 

2a. Age-related change 
in amygdala–mPFC 
functional connectivity 
(FC) to fear faces, as 
measured by generalized 
psychophysiological 
interaction (gPPI) 

Amygdala–mPFC FC 
will decrease as a 
function of age such 
that as age increases, 
the valence of FC will 
shift from positive to 
negative.  

Multiverse gPPI analysis with anatomically 
defined bilateral amygdala seed and mPFC 
target ROIs using multilevel linear regression at 
the group level. 
 
Multiverse decision points: 

Deconvolution step, mPFC ROI definition, 
contrast estimate type (t-stat vs. beta estimate), 
group-level model covariates 

• No consistent evidence for age-related 
change in gPPI for any contrast  

• gPPI estimates extremely sensitive to 
deconvolution step in creation of 
regressors  

 

2b. Age-related change 
in amygdala–mPFC 
functional connectivity 
to fear faces, as 
measured by beta-series 
correlation (BSC) 

None for BSC 
specifically 

Multiverse BSC analysis between amygdala 
and mPFC using multilevel linear regression at 
the group level. 
 
Multiverse decision points: 

Global signal subtraction, amygdala ROI 
definition, mPFC ROI definition, group-level 
model covariates 

• No consistent evidence for age-related 
change in BSC for any condition 

• Amygdala–mPFC BSC was most 
sensitive to selection of mPFC ROI 

• Global signal subtraction reduced 
average amygdala–mPFC BSC, but 
impacts on age-related changes were 
small  

• BSC estimates were not strongly 
associated with gPPI estimates 

3. Associations of 
amygdala reactivity, 
change in amygdala 
reactivity across trials, 
or amygdala–mPFC 
FC with separation 
anxiety 

None Multiverse multilevel linear regressions with 
brain measures as predictors for separation 
anxiety behaviors, controlling for age  
 
Multiverse decision points: 

Separation anxiety measure, FC measure, 
mPFC ROI (FC only), amygdala ROI, 
contrast, deconvolution step (gPPI only) 

• No evidence that amygdala 
reactivity, amygdala–mPFC 
connectivity, or change in amygdala 
reactivity across trials were 
associated with separation anxiety 
behaviors  
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1.2 Methods 

Before completing analyses, we preregistered methods for the current study through the 

Open Science Framework at https://osf.io/8nyj7/. Only analyses for age-related changes in 

amygdala reactivity and amygdala–mPFC gPPI were preregistered in detail (see Table 1.1 Aims 

1a & 2a), and we did not preregister multiverse analyses. Methods detailed below include both 

information included in the preregistration and additional information and analyses not 

preregistered. Analysis code & documentation can be found at 

https://github.com/pab2163/amygdala_mpfc_multiverse.  

 Participants: Participants were recruited as part of a larger study examining brain 

development as a function of early life caregiving experiences. The current sample (N=98; 55 

female, 43 male) included typically developing children, adolescents, and young adults covering 

the ages 4-22 years-old (M = 11.9 years old) who enrolled to participate in a study on emotional 

development. All participants were reported to be physically and psychiatrically healthy (no 

medical or psychiatric disorders), as indicated by a telephone screening before participation, and 

free of MRI contraindications. All except 4 participants fell below clinical cutoffs (see Appendix 

A Fig. 2) on the Child Behavior Checklist (CBCL) Total Problems, Internalizing Problems, and 

Externalizing Problems scales (Achenbach, 1991). The larger study also included youths with a 

history of institutional and/or foster care outside of the United States, who are not included here. 

Participants from the greater Los Angeles area were recruited through flyers, state birth records, 

community events, online advertising, lab website and newsletters, psychologists’ offices, 

psychology courses at a local university (participants ages 18-22 years old only), and word-of-

mouth. Each participant completed up to 3 MRI scans spaced at an average interval of 18 months 

between visits. Parents provided written consent, children 7+ years old gave written assent, and 
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children under 7 years old gave verbal assent. Study protocols were approved by the local 

university institutional review board. These data were collected between 2009 and 2015. 

An accelerated longitudinal design was used such that participants’ starting ages at scan 1 

comprised the entire range of sample ages (4-22 years old), and coverage was approximately 

balanced across the entire age range (see Fig. 1.1B). The design was structured into 3 study 

‘waves’ corresponding with recruitment efforts and visit protocols. Participants were 

overenrolled at wave 1 to account for anticipated attrition (e.g., braces, relocation, etc) to achieve 

the desired sample size across the three waves. While most participants were recruited such that 

their first scan occurred at wave 1, a smaller set of participants were recruited at wave 2, such 

that some participants completed their first scan at wave 2 (see Fig. 1.1). For these participants, 

only 2 scans were planned.  

Of the 191 participants participating in the longitudinal study, 140 completed at least one 

MRI scan. After exclusions for incomplete task runs (including falling asleep), computer errors 

resulting in missing stimulus timing files, high head motion, and failed visual QA 

(scanner/motion artifacts), a final sample of 98 participants (N = 183 total scans) was included 

for analysis (see Fig. 1.1). Exclusion criteria were preregistered after conducting preliminary 

preprocessing, but before construction of group-level models and multiverse analysis plans. This 

sample included 40 participants with 1 scan, 31 with 2 scans, and 27 with 3 scans (one more 

participant than preregistered due to an initial coding error). Wave 1 data from forty-two of these 

participants were reported on by Gee et al. (2013).  

The median annual household income for participating families was $85,001-$100,000 

(for reference, median annual household income in Los Angeles County from 2015-2019 was 

$68,044; US Census Bureau, 2021). Epidemiological methods were not used to recruit a sample 
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representative of the Los Angeles or United States populations (Heeringa et al., 2004), and 

Hispanic or Latinx participants were particularly underrepresented. Further sample demographics 

can be found in the supplementary materials (see Appendix A Tables 2-3, Appendix A Figs. 1-

2).  

Separation Anxiety: For each participant (except for 10 adults 18-22 years), a parent 

completed both the Revised Children’s Anxiety and Depression Scale (RCADS-P) and the 

Screen for Child Anxiety Related Emotional Disorders (SCARED-P) to assess the frequency of 

symptoms of anxiety and low mood (Birmaher et al., 1999; Chorpita et al., 2000). Following 

prior work suggesting associations between task-evoked amygdala–mPFC functional 

connectivity and separation anxiety (Carpenter et al., 2015; Gee et al., 2013), we used the 

separation anxiety subscales from both the SCARED-P and RCADS-P as measures of anxiety-

related behaviors in asking whether such functional connectivity may be linked to anxiety levels 

during childhood and adolescence. For 11 participants who had missing items on the SCARED-

P, indicating parents had skipped or forgotten to answer a question, we imputed responses using 

5-Nearest Neighbor imputation using only the other items included in the SCARED-P separation 

anxiety subscale (Beretta & Santaniello, 2016). As expected, raw separation anxiety scores on 

both measures decreased as a function of age, while standardized scores (which are normed 

based on gender and grade level) were consistent across development with few children at or 

near clinical threshold (see Fig. 1.6). 

Emotion Discrimination Task: Participants completed either two (at wave 3) or three 

(at waves 1 and 2) runs of a modified ‘go/no-go’ task with emotional faces during fMRI 

scanning. Runs varied by emotional expression (fear, happy, sad), and within each run 

participants viewed emotional faces interspersed with neutral faces. To ensure that participants 
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were paying attention, they were asked to press a button whenever they saw a neutral face (no 

response was required for any other face expression). The order of the runs was counterbalanced 

across participants; the stimuli within each run were pseudorandomized (Wager & Nichols, 

2003) to allow for event-related estimates of the hemodynamic response, and fixed across 

participants. For the present analysis, only the fear run of the task was used. The other two runs, 

which used happy and sad faces in place of fear, are not included in the present analysis as these 

conditions were not present at all waves of data collection. As 50% of trials were ‘go’ trials 

under this paradigm, we refer to the task as an emotion discrimination task, rather than a true 

‘go/no-go’ paradigm since there was no strong prepotent motor response. Stimuli within each run 

were presented with a jittered ITI (3-10s, Median = 4.93s]) according to a genetic algorithm with 

a fixation cross on the screen (Wager & Nichols, 2003). Face images were adult White female 

faces from the Karolinska Directed Emotional Faces database (Calvo & Lundqvist, 2008), and 

the same face stimuli were used across longitudinal study visits (Vijayakumar et al., 2019). Each 

run (130 TRs, duration of 4:20) consisted of 48 trials (24 neutral faces, 24 fearful faces), each 

presented for 350ms. All fMRI analyses of this task used event-related designs. 

MRI Acquisition: Participants under 18-years-old completed a mock scanning session 

before the MRI scan to acclimate to the scanner environment and practice lying still for data 

collection. Waves 1 and 2 were collected on a Siemens 3T TIM Trio MRI scanner using a 

standard radiofrequency head coil. A 2D spin echo image (TR, 4000 ms; TE, 40 ms; matrix size, 

256 x 256; 4 mm thick; 0mm gap) was acquired in the oblique plane to guide slice configuration 

in both structural and functional scans. A whole-brain high-resolution T1-weighted anatomical 

scan (MPRAGE; 256 x 256 in-plane resolution; 256mm FOV; 192 x 1 mm sagittal slices) was 

acquired for each participant for registration of functional data. The task was presented through 
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MR-compatible goggles during scanning. T2*-weighted echoplanar images (interleaved slice 

acquisition) were collected at an oblique angle of ~30 degrees (130 volumes/run; TR=2000ms; 

TE=30 ms; flip angle=90°; matrix size=64 x 64; FOV=192 mm; 34 slices; 4 mm slice thickness; 

skip=0 mm). Wave 3 was collected on a Siemens 3T TIM Trio MRI scanner at a different 

location using identical acquisition parameters.  

Behavioral Analyses: We used multilevel logistic regression models to estimate age-

related changes in several task performance metrics. We fit separate models for the d’ 

performance metric, overall accuracy (probability of a correct response on any trial), hit rate (on 

neutral face trials), and false alarm rate (on fear face trials) as the respective outcomes, and 

included nested random effects for task sessions within participants (models were not nested for 

d’ as this analysis used only 1 metric per session rather than trial-wise outcomes, but still 

included random effects for participants). Additionally, to model age-related change in reaction 

times during correct hit trials, we fit linear, quadratic, cubic, and inverse age (1/age; Luna et al., 

2004, 2021) regressions with identical random effects structures. Model equations and results for 

all behavioral analyses can be found in the supplement (see supplemental methods p.12-14, 

Appendix A Figs. 3-4). 

Preregistered fMRI Pipeline: 3dskullstrip from the Analysis of Functional 

NeuroImages (AFNI, v20.1.16) software package (Cox, 1996) was first run on all MPRAGE 

scans. Next, experimenters checked the quality of the skull stripping. If there were outstanding 

issues with a particular scan run (areas of brain tissue cut off, or significant areas of skull left in, 

30/195 scans), FSL’s brain extraction tool (BET; Jenkinson et al., 2012) was used instead. We 

used robust brain center estimation, and modified the fractional intensity values between 0.5-0.7 

to optimize quality. Slice-time correction was not used. Timeseries of the 6 motion parameters 
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were calculated and subsequent spatial realignment of BOLD volumes was completed using 

MCFLIRT in FSL (Jenkinson et al., 2002). Scans over a threshold of >40 volumes with > .9mm 

framewise displacement (framewise displacement calculated as the sum of absolute frame-to-

frame differences between head realignment estimates; Power et al., 2012) were excluded from 

analysis (12 out of an initial 195, or 6.2%). After this exclusion, an average of 96.7% (range = 

[70.1-100%]) of stimulus-coincident volumes in each scan were below the 0.9mm framewise 

displacement threshold. The mean age of participants with excluded scans was 7.16 and 8/12 

were male. Registration matrices were calculated for registration of functional images to high-

resolution structural T1 images using FSL’s FLIRT with boundary-based registration. 

Registration matrices for standard MNI space were also calculated using both FLIRT (linear 

registration) and FNIRT (nonlinear registration) with 12 DOF and a warp resolution of 10mm. 

Data were high-pass filtered at .01Hz and smoothed with an isotropic Gaussian kernel with 

FWHM of 6mm before running general linear models (GLMs), and 4d volumes were grand 

mean scaled such that the average intensity value was 10000. 

Following preprocessing, we ran scan-level GLMs using FSL’s FEAT (v6.00). We 

included event-related regressors for fear and neutral faces (convolved with a double-gamma 

HRF), their temporal derivatives (Pernet, 2014), and 24 head motion nuisance regressors (the 6 

head realignment parameters, their temporal derivatives, and their squares (Power et al., 2012). 

Volumes with FD > .9mm were downweighed to 0 in the GLM. Pre-whitening was used to 

estimate and remove temporal autocorrelation (Woolrich et al., 2001). For each scan, we 

calculated fear > baseline, neutral > baseline, and fear > neutral contrasts. We used native-space 

bilateral amygdala masks generated using Freesurfer (v6.0; Fischl, 2012) by VanTieghem et al. 

(2021). 
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Multiverse Analyses and Specification Curves: In addition to the preregistered 

pipelines, we conducted multiverse analyses to address all aims in Table 1.1 and constructed sets 

of separate specification curves for each aim (see Table 1.2). In general, multiverse analyses aim 

to probe the consistency of results across all ‘reasonable’ possible combinations of analysis 

decisions (i.e. simultaneously taking all possible ‘forking paths’)(Steegen et al., 2016). Because 

analyzing fMRI data using all reasonable specifications was infeasible (i.e., possibilities are 

virtually infinite), we took the approach of ‘sampling’ from the many reasonable or commonly-

used analysis choices for each multiverse. Despite not being completely comprehensive, this 

approach still allowed for thorough investigation into the robustness of results. For all multiverse 

analyses, we constructed specification curves by ranking models by their beta estimates 

(ascending) for parameters of interest for interpretation and visualization (Cosme & Lopez, 

2020; Klapwijk et al., 2019; Orben & Przybylski, 2019; Simonsohn et al., 2015, 2020). Because 

specification choices were not preregistered, we did not conduct formal null hypothesis testing of 

specification curves. Instead, as continuous measures of evidence, we report the proportion of 

specifications resulting in an estimate of the same sign, as well as the proportion of specifications 

resulting in 95% posterior intervals excluding 0 in the same direction. In addition, to analyze in 

more detail the impact of specific choices, we submitted point estimates for parameters of 

interest across all specifications to multiple regression models. From these models, we examined 

the conditional effects of each analysis decision point on the parameter of interest (see 

supplemental methods p.30-31, Appendix A Figs. 11-13, 41-43, & 55-57).  

Multiverse amygdala reactivity analyses: For amygdala reactivity analyses, we 

examined the robustness of age-related change estimates to a variety of analytical decisions. In 

addition to the preregistered FSL-based pipeline, we preprocessed data using C-PAC software 
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(v1.4.1; Craddock et al., 2013). We used C-PAC to take advantage of features supporting 

running multiple pipeline ‘forks’ in parallel (for example multiple nuisance regression forks 

using the same registration). No spatial smoothing was used in C-PAC pipelines (see 

supplemental methods p.14). Following C-PAC and FSL preprocessing, we examined the impact 

of different sets of commonly-used analysis methods on age-related change in amygdala 

reactivity. We varied analysis choices of GLM software, hemodynamic response function, 

nuisance regressors, first-level GLM estimates, amygdala ROI, exclusion criteria (exclude vs. 

include scans analyzed by Gee et al., 2013), group-level model outlier treatment, and group-level 

model covariates (see Table 1.2 & supplemental methods p.14-17). Multiverse analyses of 

amygdala reactivity included a total of 2808 model specifications (156 ways of defining 

participant-level amygdala reactivity x 18 group-level model specifications) for each contrast. 

We analyzed all specifications in parallel. In addition, we examined nonlinear age-related 

changes using quadratic and inverse age models (see Appendix A Figs. 14-17) and ran a smaller 

set of analyses (Appendix A Fig. 19) to ask whether we could differentiate within-participant 

change over time from between-participant differences through alternative model 

parametrization (see supplemental methods p.19).  

For all specifications, individual-level amygdala reactivity estimates were submitted to a 

group-level multilevel regression model for estimation of age-related changes. All models 

allowed intercepts to vary by participant, and some specifications also allowed for varying slopes 

(see supplemental methods p.15 for model syntax). All models also included a scan-level 

covariate for head motion (mean framewise displacement [FD]; Power et al., 2012; Satterthwaite 

et al., 2012, 2013). Consistent with prior work, head motion was higher on average in younger 

children, and decreased with age (see Appendix A Fig. 5), though head motion was not 
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associated with amygdala reactivity estimates for most specifications (see Appendix A Fig. 26). 

Age-related change findings examined for the preregistered pipeline also remained consistent 

under more stringent exclusion thresholds based on mean framewise displacement (see Appendix 

A Fig. 27). Across preprocessing specifications, we also examined within-scan similarity of 

amygdala and whole-brain voxelwise reactivity patterns (see Appendix A Figs. 20-21) and 

between-scan correlations of average amygdala reactivity estimates (Appendix A Figs. 22-24).  

Change in amygdala reactivity across trials: To probe whether amygdala reactivity 

exhibited within-scan change in an age-dependent manner, we modeled reactivity to each face 

trial using a Least Squares Separate method (LSS; Abdulrahman & Henson, 2016). After 

preprocessing, we used FEAT to fit 48 separate GLMs corresponding to each trial in each scan. 

A given trial was modeled with its own regressor and the remaining 47 trials were modeled with 

a single regressor. Each GLM also included 24 head motion nuisance regressors and had TRs 

with framewise displacement > .9mm downweighted to 0. BOLD data were high-pass filtered at 

.01Hz before the GLM. From each of the 48 GLMs, we extracted the mean amygdala beta 

estimates corresponding to a contrast for each single trial > baseline.  

 We constructed separate multiverse analyses using three different methods for measuring 

change in amygdala reactivity across trials. For method 1 (slopes), we measured rank-order 

correlations between trial number and trial-wise amygdala betas. For method 2 (trial halves), we 

split trials into the first half (trials 1-12) and second half (trials 13-24), and modeled age-related 

change in each half. For method 3 (single-trial models), we constructed larger multilevel models 

with individual trials as the unit of observation. We conducted several analysis specifications for 

each method (see Table 1.2 & supplemental methods p.21-23), and generated corresponding 

specification curves.    
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Multiverse amygdala–mPFC functional connectivity (FC) analyses: We applied 

multiverse analysis techniques towards examining age-related changes in amygdala–mPFC FC 

using gPPI and beta-series correlation (BSC) methods. Briefly, gPPI estimates functional 

connectivity by constructing an interaction term between the timecourse in a seed region of 

interest and a stimulus (task) regressor. Voxels whose activity is well fit by this interaction term 

(a psychological-physiological interaction, or PPI) are assumed to be “functionally coupled” with 

the seed region in a way that depends on the behavioral task (McLaren et al., 2012; O’Reilly et 

al., 2012). BSC offers a different way of estimating functioning connectivity, by constructing 

‘timeseries’ of beta values (i.e., a beta series) in a condition of interest for two regions of interest, 

and calculating the product-moment correlation between those beta series. 

We constructed separate specification curves for age-related change in gPPI and BSC for 

each contrast. Across gPPI specifications, we varied whether to use a deconvolution step in 

creating interaction regressors (Di & Biswal, 2017; Gitelman et al., 2003), as well as several 

other analysis decision points (see Table 1.2 & supplemental methods p.24-25). The 

deconvolution step applies to the preprocessed BOLD data from the seed timecourse: these data 

are first deconvolved to estimate the “underlying neural activity” that produced the BOLD signal 

(Gitelman et al., 2003), then these deconvolved signals are multiplied with the task regressor 

(e.g., for fear faces). Finally, this new interaction term is convolved with a hemodynamic 

response to produce the BOLD functional connectivity regressor of interest. Given recent work 

indicating that centering the task regressor before creation of the interaction term can mitigate 

spurious effects (Di et al., 2017), we also compared pipelines in which we centered the task 

regressor before deconvolution (pipelines including deconvolution in main analyses did not 

include this step; see Appendix A Fig. 44).  
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We preregistered constructing an mPFC ROI containing 120 voxels centered at the peak 

coordinates reported by Gee at al. (2013) for age-related change in fear > baseline gPPI 

(Talairach 2,32,8; or MNI 3,35,8). However, after preregistration we discovered that these peak 

coordinates were not at the center of the ROI reported by Gee at al. (2013), and were quite close 

to the corpus callosum. The 120-voxel ROI we created that was centered at this peak coordinate 

would have contained a high proportion of white matter voxels relative to cortical voxels (though 

this was not true for the mPFC ROI identified by Gee et al. (2013). To address this issue, we 

instead constructed three spherical ROIs with 5mm radii; the first centered at the above peak 

coordinates, the second shifted slightly anterior, and the third shifted slightly ventral relative to 

the second (see Fig. 1.4). Lastly, to examine amygdala functional connectivity with a more 

broadly-defined mPFC, we also used a ‘large vmPFC’ mask encompassing many of the areas 

within the ventromedial prefrontal cortex derived from Mackey & Petrides (Mackey & Petrides, 

2014). 

For BSC analyses, we used beta estimates from the LSS GLMs described above for 

analyses of within-scan change in amygdala reactivity. Across BSC specifications we varied 

analyses across several decision points (see Table 1.2 & supplemental methods p.26), including 

whether to include a correction for global signal (post-hoc distribution centering; Fox et al., 

2009). We extracted mean beta estimates for amygdala and mPFC ROIs for each trial, then 

calculated product-moment correlations between the timeseries of betas across trials (neutral and 

fear separately) for both regions (Di et al., 2020). These correlation coefficients were 

transformed to z-scores, then submitted to group-level models.  

Age-related changes in gPPI and BSC were estimated using multilevel regression models 

as described for the amygdala reactivity analyses. We focused primarily on linear age-related 
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change, but also examined quadratic and inverse age associations (see Appendix A Figs. 45-48 & 

58-61). We separately examined group mean gPPI and BSC for each contrast (see Appendix A 

Figs. 38 & 52), as well as associations between mean framewise displacement and both FC 

measures across specifications (see Appendix A Figs. 49 & 62). Additionally, we examined 

mean estimates and age-related change in ‘task-independent’ FC as measured by beta weight of 

the ‘physio’ term from the seed amygdala timeseries within the gPPI model (representing 

baseline amygdala–mPFC functional connectivity controlling for task-induced variance; 

Appendix A Figs. 50-51).   

Multiverse analyses of associations between amygdala–mPFC circuitry and 

separation anxiety behaviors: We used further multiverse analyses to ask whether amygdala 

reactivity, change in amygdala reactivity over the course of the task, or amygdala–mPFC FC 

were associated with separation anxiety behaviors. Separate specification curves were created for 

each brain measure type (amygdala reactivity, amygdala reactivity change across trials, 

amygdala–mPFC FC). All analyses used multilevel regression models with covariates for age, 

and specification curves included both RCADS-P and SCARED-P separation anxiety subscales 

as outcomes (see Table 1.2 & supplemental methods p.29-30). Because we did not have parent-

reported RCADS-P or SCARED-P scores for 10 adult participants, these analyses had an N=173. 

Reliability analyses: To better understand the proportion of variance in each measure 

explained by the grouping of observations within repeated measurements of the same 

participants over time, we computed Bayesian intraclass correlation (ICC) estimates through 

variance decomposition of the posterior predictive distributions of the multilevel regression 

models previously described. We implemented these through the ‘performance’ R package 

(Lüdecke et al., 2021; Nakagawa et al., 2017). Negative ICC estimates under this method are 
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possible, and indicate that the posterior predictive distribution has higher variance when not 

conditioning on random effects than when conditioning on them (likely indicating the posterior 

predictive variance is large, and random effects explain very little of this variance).  

Model-fitting: All statistical models fit at the group level were run in the R (v 3.6.1) 

computing environment. In order to most accurately model age-related changes in each of our 

measures, we attempted to take into account both between-participants information and repeated 

measurements within participants over time. Unless otherwise indicated, models were estimated 

using Hamiltonian Markov chain Monte Carlo sampling as implemented in the Stan 

programming language through the brms package in R (Bürkner, 2019; Gelman et al., 2015). 

Unless otherwise indicated, all models used package default weakly-informative priors (student-t 

distributions with mean 0, scale parameter of 10 standardized units, and 3 degrees of freedom for 

all fixed effects), and were run with 4 chains of 2000 sampling iterations (1000 warmup) each 

(see supplemental methods p.18-19 and p.30 for syntax). 

Interactive visualizations: Because static plots visualizing the model predictions for all 

models in each multiverse would require far more page space than available, we created web-

based interactive visualization tools for exploring different model specifications and viewing the 

corresponding raw (participant-level) data and fitted model predictions using R and Shiny 

(Beeley, 2013). These visualizations can be found at 

https://pbloom.shinyapps.io/amygdala_mpfc_multiverse/ 

Deviations from preregistration: Although we largely completed the preregistered 

analyses, the current study includes many analyses beyond those proposed in the initial 

preregistration. Because the additional analyses (i.e., all multiverses) conducted here give us 

substantial analytical flexibility over that initially indicated by preregistration, we consider all 
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results here to be at least in part exploratory (rather than completely confirmatory), despite the 

preregistered hypotheses. Additionally, we note that BSC analyses, analyses of change in 

amygdala reactivity across trials, and analyses of associations between all brain measures and 

separation anxiety were exploratory, and conducted after we had seen the results of the 

preregistered reactivity and gPPI analyses. In addition, to avoid possible selection bias 

introduced by the analytical flexibility inherent in running many parallel analyses, we consider 

all analysis specifications simultaneously, emphasizing that without further methodological 

work, we consider all such choices in tandem as providing equal evidential value. While 

reliability analyses were not preregistered, they too provide key information for interpreting the 

current analyses. 

 

 

Aim/Analysis Decision Point Choices 

1a. Age-related change in amygdala 
reactivity to fear faces > baseline 
 
 

Preprocessing Software FSL FEAT, C-PAC 

GLM Software FSL FEAT, AFNI 3dDeconvolve 

Hemodynamic Response Function Double Gamma, Single Gamma 

Nuisance Regressors 24 motion regressors, 6 motion regressors, 18 motion 
regressors + WM + CSF  

Low-frequency artifact removal High-pass filter (.01Hz), Quadratic drift regressor 

First-level GLM Estimates Beta Estimates, T-statistics 

Native vs. Standard MNI Space Native Space (Freesurfer), Harvard-Oxford Atlas in 
MNI 

Amygdala ROI Bilateral, Left, Right, High Signal, Low Signal 

Inclusion of 45 previously analyzed scans Include, Exclude 

Outlier treatment Exclude +/-3SD from mean, Exclude +/-3SD from 
mean + robust regression 

Group-level model covariates Mean FD, Mean FD + run, Mean FD + scanner, Mean 
FD + run + scanner 

Group-level model quadratic term Yes, No 

Group-level model random slopes Yes, No 

1b. Age-related change in patterns of 
amygdala responses across task trials 
 
FSL preproc & GLM, high-pass 

filter, 24 motion regressors, 2G HRF, 

beta estimates, included previously 

analyzed scans, and robust group-

level regression 

Method of quantifying within-scan change Slopes across trials, trials split into halves, single-trial 
models 

Global Signal Subtraction Yes, No 

Amygdala ROI (all MNI space) Bilateral, Left, Right  

Group-level model covariates Mean FD, Mean FD + run, Mean FD + scanner, Mean 
FD + run + scanner 

Group-level model quadratic term Yes, No 

Group-level model random slopes Yes, No 

2a Age-related change in amygdala–
mPFC functional connectivity (FC) to 

Deconvolution step Yes, No 

mPFC ROI (all MNI space) 3 different 5mm spheres, large vmPFC mask 
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fear faces > baseline, as measured by 
(gPPI) 
 
FSL preproc & GLM, high-pass 

filter, 24 motion regressors, 2G HRF, 

bilateral amygdala ROI in MNI space 

Outlier treatment Exclude +/-3SD from mean, Exclude +/-3SD from 
mean + robust regression 

Inclusion of 45 previously analyzed scans Include, Exclude 

Group-level model covariates Mean FD, Mean FD + run, Mean FD + scanner, Mean 
FD + run + scanner 

Group-level model quadratic term Yes, No 

Group-level model random slopes Yes, No 

2b. Age-related change in amygdala–
mPFC functional connectivity to fear 
faces > baseline, as measured by 
(BSC) 

 
FSL preproc & GLM, high-pass 

filter, 24 motion regressors, 2G HRF, 

beta estimates, robust group-level 

regression, included previously 

analyzed scans 

Amygdala ROI (all MNI space) Bilateral, Left, Right 

mPFC ROI (all MNI space) 3 different 5mm spheres, large vmPFC mask 

Global Signal Subtraction Yes, No 

Group-level model covariates Mean FD, Mean FD + run, Mean FD + scanner, Mean 
FD + run + scanner 

Group-level model quadratic term Yes, No 

Group-level model random slopes Yes, No 

3. Associations of amygdala 
reactivity, change in amygdala 
reactivity across trials, or amygdala–
mPFC FC with separation anxiety 
See supplemental methods p. 29 for 

details on included pipelines.  

Brain measure Amygdala reactivity, amygdala reactivity slopes, 
amygdala–mPFC gPPI, amygdala–mPFC BSC 

Global Signal Subtraction (amygdala 
reactivity slopes & BSC only) 

Yes, No 

Deconvolution step (gPPI only) Yes, No 

mPFC ROI (all MNI space, gPPI & BSC only) 3 different 5mm spheres, large vmPFC mask 

Separation anxiety outcome variable RCADS, SCARED raw scores, SCARED t-scores 

Table 1.2: Summary of forking pipelines used in analyses for each aim1 

1Bolded choices indicate those most closely matching preregistered pipelines. 

 

1.3 Results 

Age-related change in amygdala reactivity: We used multilevel regression models and 

specification curve analyses to examine age-related changes in amygdala reactivity to faces in an 

accelerated longitudinal sample ranging from ages 4-22 years (Fig. 1.2). Across specifications, 

we found relatively consistent evidence for negative age-related change in anatomically-defined 

(Harvard-Oxford atlas and Freesurfer-defined) amygdala reactivity to fear faces > baseline, such 

that the vast majority of analysis specifications (99.6%) estimated linear slopes at the group level 

that were negative in sign, and the majority (60.0%) of 95% posterior intervals about these 

slopes excluded 0 (Fig. 1.2A; interactive version at 

https://pbloom.shinyapps.io/amygdala_mpfc_multiverse/). Thus, over half of models indicated 
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that on average, increases in age were associated with decreases in amygdala reactivity to fear 

faces > baseline. Because the timepoint 1 data in the current study included the 42 scans used by 

Gee et al. (2013) to age-related changes in amygdala—mPFC circuitry for the fear > baseline 

contrast, results including these scans may have been more likely to find similar change 

(particularly for fear > baseline, see Appendix A Figs. 11-13, & 25). Estimated age-related 

change was on average weaker, though still largely negative (98.1% negative, 25.3% of posterior 

intervals excluding 0) when 42 previously analyzed scans (ages 4-17 years) were excluded to 

provide stricter independence from previously analyzed data (see Appendix A Fig. 11, Gee et al., 

2013). Estimated average age-related change for the fear > baseline contrast was somewhat 

stronger when using a right amygdala ROI compared to the left amygdala, and when using t-stats 

extracted from scan-level GLMs rather than beta estimates for group-level models (see Appendix 

A Fig. 11). 

Parallel multiverse analyses found similarly consistent age-related decreases in neutral 

faces > baseline amygdala reactivity (see Fig. 1.2C for an example pipeline & Appendix A Fig. 9 

for specification curve), but no consistent evidence for age-related change for the fear > neutral 

contrast (see Appendix A Fig. 10). However, there was consistent evidence for higher reactivity 

for fear faces > neutral on average as well as each emotion compared to baseline (Appendix A 

Figs. 6-8), indicating that while the amygdala responses were robust and generally stronger for 

fear faces compared to neutral, such fear > neutral differences did not change with age. Across 

contrasts, varying the inclusion of block order or scanner covariates, inclusion of random 

intercepts, and use of robust regression models had little impact on age-related change estimates 

(see Fig. 1.2B Appendix A Figs. 6-8).  
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While group-level estimates of average age-related change were relatively consistent 

across specifications, the estimated age terms in these models could be influenced by both 

within-participant change and between-participant differences (King et al., 2018; Madhyastha et 

al., 2018). A smaller separate specification curve indicated that when models were parametrized 

to differentiate within-participant change and between-participant differences, average within-

participant change was not consistent across specifications and could not be estimated with 

precision (Fig. 1.2D). In contrast, estimates of between-participant differences largely indicated 

negative age-related change in concurrence with our initial model parametrization. At the same 

time, within-participant versus between-participant terms were not reliably different from one 

another, indicating that models could not distinguish them despite higher precision for estimating 

between-participant differences (see Appendix A Fig. 19). We did not find consistent evidence 

for quadratic age-related changes in amygdala reactivity (see Appendix A Figs. 14-17). Inverse 

age models (i.e. amygdala reactivity modeled as a function of 1/age) indicated results similar to 

those of linear and quadratic models with most specifications for the fear > baseline and neutral 

> baseline (though less consistent) contrasts indicating age-related decreases (see Appendix A 

Fig. 18).  
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Figure 1.2: Multiverse analyses of age-related change in amygdala reactivity. A. Specification 

curve of age-related change in fear > baseline amygdala reactivity. Points represent estimated 

linear age-related change and lines are corresponding 95% posterior intervals (PIs). Models are 

ordered by age-related change estimates, with the dotted line representing the median estimate 

across all specifications. Color indicates sign of beta estimates and whether respective posterior 

intervals include 0 (red = negative excluding 0; blue = negative including 0, green = positive 

including 0, black = median across all specifications). B. Model specification information 

corresponding to each model in A. Variables on the y-axis represent analysis choices, 

corresponding color-coded marks indicate that a choice was made, and blank space indicates that 

the choice was not made in a given analysis. Within each category panel (amygdala ROI, Group-

Level Model, and Participant-Level Model), decision points are ordered from top to bottom by 

the median model rank when the corresponding choice is made (i.e. choices at the top of each 

panel tend to have more negative age-related change estimates). Black points with error bars 

represent the median and IQR ranks of specifications making the choice indicated on the 

corresponding line. C. Example participant-level data and model predictions for age-related 

related change in amygdala reactivity for both the fear > baseline (green) and neutral-baseline 

(orange) contrasts. Data are shown for a preregistered pipeline using a native space bilateral 

amygdala mask, 24 motion regressors, t-statistics, high-pass filtering, and participant-level 

GLMs in FSL. Points represent participant-level estimates, light lines connect estimates from 

participants with multiple study visits, and dark lines with shaded area represent model 
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predictions and 95% posterior intervals. D. Specification curves for a subset of models separately 

parametrizing within-participant (right) vs. between-participant (left) age-related change for both 

the fear > baseline (green) and neutral > baseline (orange) contrasts, as well as the median across 

specifications (black). See https://pbloom.shinyapps.io/amygdala_mpfc_multiverse/ for 

interactive visualizations. 

 

Age-related differences in within-scan amygdala reactivity change: To ask whether 

age-related changes in amygdala reactivity could be due to developmental changes in patterns of 

amygdala reactivity across face trials (within a run), we examined whether within-scan change in 

amygdala reactivity varied with age (see Table 1.1 Aim 1b). Analyses included 42 specifications 

(3 amygdala regions of interest [ROIs] x 2 global signal correction options x 7 group-level 

models). Across both fear and neutral trials, linear slopes of amygdala reactivity were negative 

on average, indicating higher amygdala reactivity at the beginning of the run (Fig. 1.3A, 

Appendix A Fig. 30). Across specifications, for both fear (100% of estimates had the same sign, 

95.2% of posterior intervals excluding 0 in the same direction) and neutral trials (100% of 

estimates in the same direction, 38.1% of posterior intervals excluding 0), there was evidence 

that these within-scan slopes were steeper (i.e., more negative) at younger ages, though evidence 

was relatively weaker for neutral trials (Fig. 1.3D-E). Specifications with a global signal 

subtraction step also tended to find stronger age-related change.  

 Similarly, when splitting trials into the first half (trials 1-12) versus second half (trials 13-

24), there was consistent evidence (100% of estimates had the same sign, 69.2% with posterior 

interval excluding 0) for an interaction between age and trial half, such that average reactivity to 

fear faces > baseline in the first half of trials decreased as a function of age more so than did 

average reactivity during the second half of trials (see Fig. 1.3B, Appendix A Fig. 32). This 

interaction was in the same direction for neutral trials across most specifications (88.5% of 

estimates), but was typically not as strong (3.8% of posterior intervals excluding 0). Single-trial 
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models indicated similar age-related change in within-scan amygdala dynamics (see Fig. 1.3C, 

Appendix A Figs. 33-34). Mean group-level amygdala reactivity was higher for the first half of 

trials for fear faces > baseline across several specifications, though there were not consistent 

differences between trial halves for mean amygdala reactivity to neutral faces (Appendix A Fig. 

31). 

   

 

Figure 1.3: Age-related change in amygdala reactivity across trials. A. An example model of 

estimated age-related change in slopes of beta estimates across both fear (green) and neutral 

(orange) trials. Negative slopes represent higher amygdala activity in earlier trials relative to later 

trials. B. Example models of estimated age-related change in amygdala reactivity for the fear > 

baseline (left) and neutral > baseline (right) contrasts for both the first (red) and second (blue) 

halves of trials. In both A and B, points represent participant-level estimates, light lines connect 

estimates from participants with multiple study visits, and dark lines with shaded area represent 
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model predictions and 95% posterior intervals. C. Example single-trial model predictions of 

estimated amygdala reactivity for fear (left) and neutral (right) faces as a function of age and trial 

number. Age was modeled as a continuous variable, and average predictions for participants of 

age 6 (red), 12 (green) and 18 (blue) years are shown for visualization purposes. All estimates in 

A-C shown are from an example analysis pipeline using bilateral amygdala estimates and 

without global signal correction. D. Specification curve for age-related change in slopes across 

fear trials (i.e., many parallel analyses for the fear trials in subplot B). E. Specification curve for 

age-related change in slopes across neutral trials (i.e., neutral trials in plot B). GSS = global 

signal correction using post-hoc mean centering. For both D and E, color indicates sign of beta 

estimates and whether respective posterior intervals include 0 (green = positive including 0, 

purple = positive excluding 0, black = median across all specifications), and horizontal dotted 

lines represent median estimates across all analysis decisions. Variables on the y-axis represent 

analysis choices, corresponding color-coded marks indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 

 

Age-related change in task-evoked amygdala–mPFC functional connectivity: We 

used multilevel regression modelling and specification curve analyses to examine age-related 

change in task-evoked amygdala–mPFC functional connectivity within the accelerated 

longitudinal cohort (see Table 1.1 Aims 2a-b). For the fear > baseline contrast, a specification 

curve with 288 total specifications (4 definitions of participant-level gPPI estimates x 4 mPFC 

ROIs x 18 group-level models) of amygdala–mPFC gPPI did not find consistent evidence of age-

related change: while 59.0% of models found point estimates in the positive direction, only 23% 

of posterior intervals excluded 0 (Fig. 1.4C-D, interactive version at 

https://pbloom.shinyapps.io/amygdala_mpfc_multiverse/). Specification curve analyses found 

that the sign of the estimated age-related change depended almost entirely on deconvolution, 

such that most specifications including a deconvolution step resulted in negative age-related 

change estimates never distinguishable from 0 (78.5% of point estimates negative, 0% of 

posterior intervals excluding 0), and most specifications not including a deconvolution step 

resulted in positive age-related change estimates (96.5% of point estimates positive, 47.9% of 



 41

posterior intervals excluding 0). A visualization of the effects of the deconvolution step on 

amygdala FC with each of four mPFC ROIs is presented in Fig. 1.4B. While mPFC ROI 

definition and other analysis decision points also influenced estimates of age-related change in 

gPPI (Fig. 1.4D), follow-up regression models indicated that the effect of including the 

deconvolution step was several times larger for the fear > baseline contrast (see Appendix A 

Figs. 41-43).  

Through equivalent multiverse analyses we also found no evidence of consistent linear 

age-related change in amygdala–mPFC gPPI for the neutral > baseline and fear > neutral 

contrasts (see Appendix A Figs. 39-40), or nonlinear change for any contrast (see Appendix A 

Figs. 45-48). In addition, we did not see consistent evidence for group average amygdala–mPFC 

gPPI for any contrast, though such results often differed as a function of whether a deconvolution 

step was included (see Appendix A Fig. 38). Though we included gPPI analysis specifications 

excluding the 42 scans at timepoint 1 studied by Gee et al. (Gee et al., 2013), exclusion of these 

scans had little impact on age-related change results (see Fig. 4D).   
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Figure 1.4: Multiverse analyses of age-related change in amygdala–mPFC connectivity using 

gPPI methods. A. MNI space mPFC ROIs used in connectivity analyses. B. Example participant-

level data and model predictions for age-related related change in amygdala–mPFC gPPI for 

analysis pipelines with a deconvolution step (red), or without (blue) for each of the four regions 

shown in A. Although deconvolution changed the sign of age-related change estimates, the 

estimates are not 'statistically significant' for each pipeline alone, except for mPFC ROIs 1 & 2 

without deconvolution. C. Specification curve of age-related change in fear > baseline 

amygdala–mPFC gPPI. Points represent estimated linear age-related change and lines are 

corresponding 95% posterior intervals. Models are ordered by age-related change estimates, and 

the dotted line represents the median estimate across all specifications. Color indicates sign of 

beta estimates and whether respective posterior intervals include 0 (blue = negative including 0, 

green = positive including 0, purple = positive excluding 0, black = median across all 

specifications). Black points with error bars represent the median and IQR ranks of specifications 

making the choice indicated on the corresponding line. D. Model specification information 

corresponding to each model in C. Variables on the y-axis represent analysis choices, 

corresponding color-coded marks indicate that a choice was made, and blank space indicates that 

the choice was not made in a given analysis. Within each category (Group-Level Model, mPFC 

ROI, and Participant-Level Model) respectively, decision points are ordered from top to bottom 

by the median model rank when the corresponding choice is made (i.e., choices at the top of each 

panel tend to have more negative age-related change estimates). See 

https://pbloom.shinyapps.io/amygdala_mpfc_multiverse/ for interactive visualizations. 
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 In addition to gPPI analyses, we used beta series correlation (BSC) analyses to examine 

age-related changes in task-evoked amygdala–mPFC connectivity (see Table 1.1 Aim 2b). As 

with gPPI, multiverse analyses of amygdala–mPFC BSC (168 total specifications; 3 amygdala 

ROI definitions x 4 mPFC ROI definitions x 2 global signal options x 7 group-level models) for 

fear trials (vs baseline) did not yield strong evidence of age-related change across pipelines 

(84.5% of point estimates in the same direction, 24.4% of posterior intervals excluding 0; Fig. 

1.5A, interactive version at https://pbloom.shinyapps.io/amygdala_mpfc_multiverse). Unlike 

gPPI analyses, however, choice of mPFC ROI (as well as amygdala ROI, though this was not 

examined for gPPI) most impacted age-related change in BSC estimates, rather than 

preprocessing or modeling analytical choices (Fig. 1.5B, Appendix A Figs. 55-57). Accordingly, 

while global signal subtraction resulted in weaker amygdala–mPFC BSC on average (see 

Appendix A Fig. 52), inclusion of this step did not consistently affect age-related change 

estimates (Fig.  1.4C). We did not find consistent evidence for age-related change in amygdala–

mPFC BSC for neutral trials (vs baseline), or for fear > neutral trials (Appendix A Figs. 53-54). 

We did not find consistent evidence for nonlinear age-related change for any contrast (Appendix 

A Figs. 58-61).  

 Additionally, we constructed a correlation matrix using rank-order correlations of scan-

level BSC and gPPI estimates for the fear (vs baseline) condition. Across scans, there was little 

evidence of correspondence between BSC and gPPI metrics for amygdala–mPFC connectivity 

(Fig. 1.5D, Appendix A Figs. 63-66). Further, FC estimates tended to be positively correlated 

within a method type (BSC, gPPI) across mPFC ROIs, though less strongly for gPPI estimates 

with versus without a deconvolution step. 
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 In addition to gPPI and BSC methods for functional connectivity, we also explored 

between-scan associations between amygdala reactivity and mPFC reactivity (Appendix A Figs. 

28-29). Multilevel models indicated that amygdala reactivity for fear faces > baseline was 

positively associated with mPFC reactivity for fear faces > baseline for all mPFC ROIs, though 

we did not find consistent evidence for age-related changes in associations between amygdala 

and mPFC reactivity to fear faces > baseline (see Appendix A Fig. 29).  

 

 

Figure 1.5: Multiverse analyses of age-related change in amygdala–mPFC connectivity using 

beta-series correlation (BSC) methods. A. Specification curve of age-related change in 

amygdala–mPFC BSC for fear trials. Points represent estimated linear age-related change and 

lines are corresponding 95% posterior intervals. Models are ordered by age-related change 

estimates, and the dotted line represents the median estimate across all specifications. Color 

indicates sign of beta estimates and whether respective posterior intervals include 0 (blue = 

negative including 0, green = positive including 0, purple = positive excluding 0, black = median 

across all specifications). B. Model specification information corresponding to each model in A. 

Variables on the y-axis represent analysis choices, corresponding color-coded marks indicate that 

a choice was made, and blank space indicates that the choice was not made in a given analysis. 

Within each category (amygdala ROI, group-level model, global signal subtraction, and mPFC 

ROI) respectively, decision points are ordered from top to bottom by the median model rank 

when the corresponding choice is made (i.e., choices at the top of each panel tend to have more 
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negative age-related change estimates). Black points with error bars represent the median and 

IQR ranks of specifications making the choice indicated on the corresponding line. GSS = global 

signal correction using post-hoc mean centering. C. Example model predictions for age-related 

change in amygdala–mPFC BSC for fear trials for analysis pipelines with a global signal 

subtraction (GSS, post-hoc mean centering) step (red), or without (blue) for each of the four 

mPFC regions (see Figure 1.4A) with the left and right amygdala. Pipelines shown have random 

slopes, no covariates for task block or scanner, and no quadratic age term. D. Between-scan 

rank-order correlations between amygdala–mPFC connectivity measures. All gPPI measures are 

for the fear > baseline contrast, and BSC measures are for fear trials. See 

https://pbloom.shinyapps.io/amygdala_mpfc_multiverse/ for interactive visualizations. 

 

Amygdala–mPFC Measures & Separation Anxiety: We conducted multiverse 

analyses of associations between several amygdala–mPFC measures (amygdala reactivity, 

amygdala–mPFC FC, within-scan changes in amygdala reactivity) and separation anxiety 

behaviors (see Table 1.1 Aim 3). Separation anxiety behaviors on average decreased with age, as 

indicated by the RCADS-P and SCARED-P raw scores (Fig.  1.6A-C). Neither specification 

curves for amygdala reactivity (18 total specifications, 56% of point estimates in the same 

direction as median estimate, 0% of posterior intervals excluding 0), amygdala–mPFC gPPI FC 

(90 total specifications, 72% of point estimates in the same direction as median estimate, 1% of 

posterior intervals excluding 0), amygdala–mPFC BSC FC (18 total specifications, 83% of point 

estimates in the same direction as median estimate, 0% of posterior intervals excluding 0), nor 

slope of amygdala responses across trials (12 total specifications, 75% of point estimates in the 

same direction as median estimate, 17% of posterior intervals excluding 0), found consistent 

evidence for associations between brain measures and separation anxiety. Similar specification 

curves found little consistent evidence for associations between brain measures and generalized 

anxiety, social anxiety, or total anxiety behaviors (see Appendix A Fig. 67). All specifications 

controlled for age (see supplemental methods p.30).  
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 To more specifically follow up on previous work reporting associations between 

separation anxiety behaviors and amygdala–mPFC gPPI for fear > baseline specifically (Gee et 

al., 2013), we plotted model predictions for such models from the above multiverse analysis for 

each of the four mPFC ROIs, across all three separation anxiety outcome measures, and both 

with and without a deconvolution step (Fig. 1.6E). We did not find consistent evidence for 

associations with separation anxiety, and results showed high sensitivity to the deconvolution 

step, mPFC ROI, and outcome measure used.  

 

 

Figure 1.6: Multiverse analyses of associations between amygdala–mPFC circuitry and 

separation anxiety. A. Age-related change in SCARED and RCADS raw and t-scores for parent-

reported separation anxiety subscales. The red dotted line in the middle panel represents the 

clinical threshold for the standardized RCADS measure (because this T-score measure is 

standardized based on age and gender, no age-related change is expected). B. Separate 

specification curves for associations of amygdala reactivity (left), amygdala–mPFC connectivity 

(both gPPI and BSC; center two panels), and amygdala reactivity slopes across trials (right) with 

the three separation anxiety outcomes shown in A. Points represent estimated associations 

between brain measures and separation anxiety (controlling for mean framewise displacement 

and age) and lines are corresponding 95% posterior intervals. Models are ordered by beta 

estimates, and the dotted line represents the median estimate across all specifications. Color 
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indicates sign of beta estimates and whether respective posterior intervals include 0 (red = 

negative excluding 0, blue = negative including 0, green = positive including 0). Scores on each 

separation anxiety outcome were z-scored for comparison. C. Example model predictions for 

associations between fear > baseline amygdala–mPFC gPPI and each separation anxiety 

measure. Predictions and 95% posterior intervals are plotted for each separation anxiety measure 

separately for each mPFC region, and for gPPI pipelines with and without a deconvolution step. 

Pipelines shown use robust regression, have random slopes, no covariates for task block or 

scanner, and no quadratic age term. 

 

Reliability: To examine test-retest reliability estimates of amygdala—mPFC measures 

across longitudinal visits, we computed Bayesian ICC estimates using a variance decomposition 

method (Lüdecke et al., 2021). Because such models can accommodate missing data, all 

observations (98 participants, 183 total scans) were used, including participants with only 1 visit. 

All amygdala reactivity (Fig. 1.7A) and amygdala—mPFC functional connectivity (Fig. 1.7C) 

measures, as well as slopes of amygdala reactivity estimates across trials (Fig.  1.7B), 

demonstrated poor reliability (ICC < 0.4; Cicchetti & Sparrow, 1981; Elliott et al., 2020). 

Separation anxiety measures demonstrated somewhat higher, though still largely poor reliability 

(point estimates ~0.4, 95% CIs included values below 0.4; Fig. 1.7D). Head motion in the 

scanner (mean framewise displacement) showed the highest reliability (ICC = 0.52, 95% CI 

[0.29, 0.68]), 
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Figure 1.7: Longitudinal test-retest Bayesian ICC estimates. ICC values are shown for amygdala 

reactivity (A), slopes of amygdala reactivity betas across trials (B), amygdala—mPFC functional 

connectivity using both gPPI and BSC methods (C), and separation anxiety and in-scanner head 

motion measurements (D). Shaded background colors depict whether ICC estimates are 

categorized as poor (< 0.4), fair (0.4 - 0.6), or good (0.6 – 0.75) reliability. No ICC estimates met 

the threshold for excellent reliability ( >0.75). Bayesian ICC estimates were calculated through a 

variance decomposition based on posterior predictive distributions. Negative values indicate 

higher posterior predictive variances not conditioned on random effect terms than conditioned on 

random effects terms. 

 

1.4 Discussion 

Measures that are both robust to researcher decisions and reliable across measurement 

instances are critical for studies of the human brain (Botvinik-Nezer et al., 2020; Bowring et al., 
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2019; Elliott et al., 2020; T. Xu et al., 2022). The accelerated longitudinal design and multiverse 

analysis approach used in the current study allowed a rare opportunity to examine both 

reliability and robustness of amygdala—mPFC measures using a rapid event-related face task 

from early childhood through young adulthood. Overall, estimates for age-related change in 

amygdala reactivity were relatively robust to a variety of analytical decision points, while age-

related change estimates for amygdala—mPFC connectivity were more sensitive to researcher 

choices. gPPI analyses were particularly sensitive to whether a deconvolution step was applied. 

Yet, in concurrence with previous work (Elliott et al., 2020; Haller et al., 2022; Herting et al., 

2017; Infantolino et al., 2018; Kennedy et al., 2021; Nord et al., 2017; Sauder et al., 2013), 

amygdala—mPFC measures displayed consistently poor test-retest reliability across many 

analytical specifications. While low reliability estimates in the present study may be due in 

part to the long (~18 months) test-retest interval (Elliott et al., 2020) and potential true 

developmental change (Herting et al., 2017), low reliability nevertheless imposes a major 

caveat towards interpretation of the current developmental findings. 

The present findings are valuable from a methodological standpoint in evaluating the 

robustness of analytical tools used. A measurement can have high test-retest reliability yet low 

robustness (high sensitivity) to analytical decisions, or vice versa (Li et al., 2021). Because 

neither robustness nor reliability guarantee the other, current findings on the impacts of 

analytic choices will likely be informative in guiding future studies. Thus, we discuss each of 

the main analyses below, with particular emphasis on how findings are impacted by analytic 

choices.  

Amygdala reactivity: While there were differences across model specifications, the 

majority of pipelines supported our hypothesis that amygdala reactivity to fearful faces 
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decreases with age from early childhood through early adulthood (see Table 1.1 Aim 1a). 

Across specifications, we found relatively robust evidence for age-related decreases in 

amygdala reactivity to both fearful and neutral faces (Fig. 1.2A). Yet, findings also varied 

considerably across specifications. For example, only 60% of pipelines produced results that 

would be individually labeled as ‘significant’ (under α = .05), indicating that multiple 

investigations of this dataset could likely lead to qualitatively different conclusions. While 

over half of analyses found evidence consistent with studies indicating greater amygdala 

reactivity to fear faces > baseline in younger children (Forbes et al., 2011; Gee et al., 2013; 

Guyer et al., 2008; Swartz et al., 2014), the other 40% of specifications would have been 

consistent with investigations that found little age-related change (NB: there were also 

differences in samples, age ranges, task parameters, and behavioral demands across these 

studies; Kujawa et al., 2016; Wu et al., 2016; Zhang et al., 2019). We also found that different 

specifications resulted in somewhat different nonlinear trajectories (see Appendix A Figs. 14-

18). Not only did inverse age and quadratic age models find different trajectories (as would be 

expected), but quadratic trajectories themselves also displayed considerable analytic 

variability, with some specifications finding “convex” and others finding “concave” fits (see 

Appendix A Fig. 17). Although estimating nonlinear age-related change was not a primary 

goal of the present study, future work should use model comparisons for better differentiating 

nonlinear patterns (Curran et al., 2010; Luna et al., 2021).  

Models also found evidence for between-participant differences, but could neither 

identify within-participant change (Fig. 1.2D) nor differentiate between-participant from 

within-participant estimates. As such, interpretation of the age-related change reported here is 

subject to many of the same limitations that apply to cross-sectional designs (Glenn, 2003), 
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where age-related changes may not necessarily indicate ‘true’ developmental growth. High 

uncertainty in estimating average within-participant change could be driven by several factors, 

including true heterogeneity in individual trajectories, low measurement reliability, scanner 

differences across longitudinal timepoints, or unmodeled variables impacting amygdala 

reactivity. Additionally, the within-participants terms represent a smaller age range (a 

maximum of 4 years for any given participant), relative to the broader age range assessed by 

the between-participants terms (18 years), which may have placed additional limits on 

identifying reliable within-participant change. 

Age-related change in amygdala responses to fear faces over baseline seemed largely the 

result of earlier trials in the task (see Appendix A Figs. 32-34). While differences in task design 

and contrast across studies have been highlighted as potential sources of discrepant findings on 

the development of amygdala function (Killgore & Yurgelun-Todd, 2007a; Lieberman et al., 

2007; Swartz et al., 2014), this result indicates that attention to trial structure and task duration 

may also be necessary in comparing studies. Because the paradigm used in the current study 

involved a task requiring participants to press for one face (‘neutral’) and not press for ‘fear’ 

faces, findings specific to fear faces over baseline under the current paradigm may also be driven 

by behavioral task demands.  

Amygdala–mPFC Functional Connectivity: We did not find evidence for our second 

hypothesis, as neither gPPI nor BSC analyses indicated consistent evidence of age-related 

change in amygdala–mPFC functional connectivity (see Table 1.1 Aims 2a-2b, Fig. 1.4-5). 

Thus, the age-related changes in task-evoked amygdala–mPFC connectivity identified in prior 

work (Gee et al., 2013; Kujawa et al., 2016; Wu et al., 2016) was not identified here, consistent 

with (Zhang et al., 2019). Crucially, however, our specification curves did not find strong 
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evidence against such age-related change, as we did not observe precise and consistent ‘null’ 

estimates across specifications. Additionally, quadratic and inverse age models did not find 

consistent evidence for nonlinear age-related change (see Appendix A Figs. 45-48 & 58-61). 

gPPI results were sensitive to whether a deconvolution step had been included in the 

preprocessing pipeline, such that we mostly found age-related decreases in amygdala–mPFC 

connectivity with a deconvolution step included, and age-related increases without it (although 

most pipelines would not have been ‘statistically significant’ on their own, see Fig. 1.4B). 

While deconvolution has been argued to be a necessary step for event-related PPI analyses 

(Gitelman et al., 2003), recent work has shifted guidelines on its use, and it may not be 

recommended for block designs (Di et al., 2020; Di & Biswal, 2017). Because the true 

‘neuronal’ signal underlying the BOLD timeseries within a given ROI cannot be directly 

measured, deconvolution algorithms are difficult to validate. Further, deconvolution may cause 

PPI results to be driven by baseline connectivity if task regressors are not centered (Di et al., 

2017), although such centering did not have a major influence on age-related change results in 

the present analyses (see Appendix A Fig. 44). Within the current study, small tweaks to 

AFNI’s 3dTfitter algorithm for deconvolution resulted in vastly different regressors (see 

Appendix A Fig. 36), suggesting the potential for high analytic variability even between gPPI 

analyses ostensibly using deconvolution. While the present study does not provide evidence 

that can inform whether or not deconvolution is recommended, further work is needed to 

optimize and validate applications of gPPI methods and selection of appropriate task designs. 

gPPI may be better equipped for block-designs and particularly ill-posed for rapid event-

related tasks due to both difficulties in resolving which times within the BOLD timeseries 

reflect functional connectivity evoked by rapid (350ms) events and low statistical power in 
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estimating such task-evoked connectivity (see Appendix A Figs. 35-37; O’Reilly et al., 2012). 

Concurrent with previous work, beta series correlation analyses may have higher statistical 

power for identifying task-related connectivity signal than gPPI within event-related designs 

more generally (Cisler et al., 2014).  

Age-related change estimates for amygdala—mPFC BSC showed somewhat higher 

robustness to analytic decisions compared to gPPI. For BSC analyses, choice of mPFC ROI 

contributed most to variability in age-related change estimates (see Fig. 1.5B, Appendix A 

Figs. 55-57). While a global signal correction (post-hoc distribution centering) greatly 

decreased average amygdala—mPFC BSC connectivity (see Fig. 1.5D, Appendix A Fig. 52) 

for both fear and neutral faces, this analytical step did not impact age-related change estimates 

as heavily (Appendix A Figs. 55-57). The fact that global signal correction so dramatically 

decreased average estimated amygdala—mPFC BSC may indicate that, like with resting-state 

fMRI analyses, positive functional connectivity values are due in part to motion and physiology-

related confounds (Gratton et al., 2020; Power et al., 2019). Supporting this, BSC estimates were 

correlated with mean framewise displacement across scans for the fear > baseline and neutral > 

baseline contrasts only when a global signal correction was not applied (see Appendix A Fig. 

62). In addition, while test-retest reliability for all BSC measures was poor, BSC estimates from 

pipelines including a global signal correction step mostly demonstrated somewhat higher ICC 

(Fig. 1.6). While these results are consistent with prior work indicating that correcting for the 

global signal can mitigate artifacts (Ciric et al., 2017a; Satterthwaite et al., 2012), other work 

indicates that such corrections also remove meaningful biological signals (Belloy et al., 2018; 

Glasser et al., 2018; Yousefi et al., 2018).   
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Amygdala–mPFC circuitry and separation anxiety: We did not find associations 

between any task-related amygdala–mPFC measures (reactivity or functional connectivity) and 

separation anxiety behaviors (see Table 1.1 Aim 3; Fig. 1.6). This finding stands in contrast to 

associations between amygdala–mPFC connectivity and anxiety identified in previous 

developmental work (Gee et al., 2013; Jalbrzikowski et al., 2017; Kujawa et al., 2016; Qin et al., 

2014). However, given that analyses of brain-behavior associations may require imaging 

cohorts much larger than the current sample (especially considering the low reliability of the 

measures used; Grady et al., 2020; Marek et al., 2020), the absence of relationships here may 

not be strong evidence against the existence of potential associations between amygdala–

mPFC circuitry and developing anxiety-related behaviors.    

Advantages and pitfalls of the multiverse approach: Our findings contribute to a 

body of work demonstrating that preprocessing and modeling choices can meaningfully 

influence results (Botvinik-Nezer et al., 2020). Indeed, most studies involving many analytical 

decision points could benefit from multiverse analyses. Such specification curves can help to 

examine the stability of findings in both exploratory and confirmatory research (Flournoy et al., 

2020). Particularly when methodological ‘gold standards’ have not been determined, 

specification curves may be informative for examining the impacts of potential analysis 

decisions (Bridgeford et al., 2020; Dafflon et al., 2020). Further, wider use of specification 

curves might help to resolve discrepancies between study findings stemming from different 

analysis pipelines.  

While specification curve analyses may benefit much future research, we also note that 

multiverses are only as comprehensive as the included specifications (Steegen et al., 2016), and 

such analyses alone do not solve problems related to unmodeled confounds, design flaws, 
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inadequate statistical power, circular analyses, or non-representative sampling. Further, unless 

all specifications are decided a priori, analyses are vulnerable to problems of analytic 

flexibility (Gelman & Loken, 2014), and inclusion of less justified specifications can bias 

results (Del Giudice & Gangestad, 2021). Because specification curves can include hundreds or 

thousands of individual analyses, rigorous evaluation of individual models can be difficult. To 

this end, we created interactive visualizations for visual exploration of individual analysis 

specifications. 

Computational resources are a relevant concern when conducting multiverse analyses 

as well. In the current study, preprocessing (registration in particular) was the most 

computationally intensive step, taking an estimated 4 hours of compute time per scan per 

pipeline using 4 cores on a Linux-based institutional research computing cluster. However, 

specification curve analyses themselves were relatively less intensive, with all group-level 

models of amygdala reactivity completing in a total of 48 hours using 4 cores on a laboratory 

Linux-based server. Specification curves using maximum likelihood models (lme4 in R; Bates 

& Bolker, 2011) were even more efficient, with thousands of models running within minutes 

using a 2019 MacBook Pro (2.8 GHz Intel Core i7).  

Limitations: The present study is subject to several limitations that may be addressed 

in future investigations. Perhaps most crucially, our conclusions (along with those of many 

developmental fMRI studies) are limited by the poor test-retest reliability of the fMRI data. 

Because amygdala—mPFC measures showed low reliability across study visits, the statistical 

power of our analyses of age-related changes is likely low (Elliott et al., 2020; Zuo et al., 2019). 

Low-powered studies can yield increased rates of both false positive and false negative results 

(as well as errors of the sign and magnitude of estimates; Button et al., 2013; Gelman & Carlin, 
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2014); therefore we caution against interpretation of our developmental findings (and brain-

behavior associations) beyond the cohort studied in the present investigation. In particular, the 

low statistical power of our rapid event-related task design may be a major contributor to the 

low test-retest reliability and variance in outcomes across analysis specifications. That being 

said, achieving high-powered studies presents a challenge for studying populations that cannot 

tolerate lengthy fMRI sessions. Both findings that were more robust to analytical decisions 

(amygdala reactivity) and findings that were less so (amygdala—mPFC connectivity, 

associations with separation anxiety) may be most valuable in meta-analytic contexts where 

greater aggregate statistical power can be achieved. In particular, future work on amygdala—

mPFC development will benefit from optimization of measures both on robustness to analytic 

variability (Li et al., 2021) and reliability (Kragel et al., 2021). 

Present findings are also limited by the number of participants studied (Bossier et al., 

2020; Marek et al., 2020), the number of longitudinal study sessions per participant (King et al., 

2018), and the duration of the task (Nee, 2019). Work with larger sample sizes, more study 

sessions per participant, and more task data collected per session will be necessary for charting 

functional amygdala–mPFC development and examining heterogeneity across individuals 

(although collecting task-based fMRI will continue to be challenging for studies including 

younger children). The generalizability of the current findings may also be limited by the fact 

that this cohort was skewed towards high incomes and not racially or ethnically representative 

of the Los Angeles or United States population.  

 Findings are also somewhat limited by the fact that the present study is not wholly 

confirmatory, despite preregistration. Because our multiverse analysis approaches expanded 

significantly beyond the methods we preregistered, most of the present analyses, while 
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hypothesis-driven, must be considered exploratory (Flournoy et al., 2020). The fact that some 

specifications used data included in previous similar analyses of the same cohort(Gee et al., 

2013) also limits the confirmatory power of the present study (Kriegeskorte et al., 2009). This 

may be especially true because longitudinal models could not identify within-person change as 

distinct from between-participant differences (see Fig. 1.2D), indicating that our age-related 

change estimates may be influenced by cross-sectional information similar to that investigated 

by Gee et al. (Gee et al., 2013).  

 Though the current study aimed to estimate longitudinal age-related changes in 

amygdala–mPFC functional circuitry evoked by fear and neutral faces, the current findings 

may not be specific to these stimuli (Hariri et al., 2002). Because our task did not include non-

face foils or probe specific emotion-related processes, results may be driven by attention, 

learning, or visual processing, rather than affective or face processing. In particular, because 

participants were instructed to press a button for neutral faces and withhold a button press for 

fear faces, observed amygdala—mPFC responses may in part reflect response inhibition (for 

fear faces; Menon et al., 2001) and target detection processes (for neutral faces; Jonkman et al., 

2003). Findings for the fear faces > baseline and neutral > baseline contrasts also may not be 

valence-specific in the absence of a different emotional face as part of the contrast. Further, 

because all faces were adult White women, the current results may not generalize to faces more 

broadly (Richeson et al., 2008; Telzer et al., 2012). Additionally, because face stimuli were the 

same across study visits, exposure effects across sessions may confound longitudinal findings 

(although exposure effects may be possible any time a task is repeated, even if stimuli are 

unique), particularly age-related decreases in amygdala responses (Telzer et al., 2018). While 

within-session amygdala habituation effects have been shown across several paradigms 
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(Geissberger et al., 2020; Hare et al., 2008a; Hein et al., 2018), between-session habituation 

effects are unlikely beyond 2-3 weeks (Geissberger et al., 2020; Johnstone et al., 2005; Plichta 

et al., 2014; Spohrs et al., 2018).  

Finally, our findings on age-related change in amygdala and mPFC function may be 

biased or confounded by age-related differences in head motion (Ciric et al., 2017a), 

anatomical image quality and alignment (Gilmore et al., 2020; Rorden et al., 2012), signal 

dropout, and physiological artifacts (Boubela et al., 2015; Fair et al., 2020; Gratton et al., 2020). 

While our multiverse analyses included preprocessing and group-level modeling specifications 

designed to minimize some of such potential issues, future work is still needed to optimize 

discrimination of developmental changes of interest from such potential confounds. 

 Despite these limitations, the present study concords with prior investigations in 

demonstrating the value of multiverse approaches to quantify sensitivity to researcher 

decisions. The results highlight key analytic considerations for future studies of age-related 

changes in amygdala—mPFC function, as well as for studies of human brain development 

more broadly. 
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Abstract 

Breathing-induced head ‘pseudomotions’ in functional MRI experiments have recently become a 

cause of greater concern. In addition to introducing systemic BOLD artifacts, respiration presents 

a problem for data quality assurance through inflation of head motion estimates. While 

retrospective image-based (RETROICOR) or respiration volume per time (RVT) correction can 

reduce artifacts, both techniques depend on respiration belt data not collected in many studies. 

Recently, temporal filtering of head realignment parameters with a notch filter has been 

proposed, though this technique also depends on knowledge of participants’ breathing. Building 

on recent work estimating respiratory traces at high temporal resolution from BOLD data alone, 

we asked whether such predicted respiratory traces can correct respiratory artifacts without 

respiration belt data. Specifically, within the Human Connectome Project test-retest (N = 36, 

24F/12M, ages 22-35) and NKI Rockland Sample (N = 97, 58F/39M, ages 6-20 years) cohorts, 

we compared preprocessing strategies for correcting such artifacts on data retention, reliability of 

functional connectomes, and residual head motion artifacts. Both notch filtering and model-

based correction with predicted respiration mitigated psueodmotion. Correction using predicted 

respiratory traces yielded similar functional connectivity estimates to when belt traces were used, 

indicating viability in datasets without belt measurements. However, impacts of model-based and 

notch filtering correction strategies on functional connectivity estimates were minimal compared 

to those of GSR, aCompCor, and censoring. With the exception of aCompCor (which either 

showed benefits or no effects on QC metrics), most preprocessing steps involved tradeoffs 

between data various QC metrics. Thus, instead of a “one size fits all” approach, future studies 

may benefit from tailoring preprocessing strategies based on the relative priority of distinct 

quality assurance metrics or multiversing consequential pipeline decisions.   
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2.1 Introduction 

Breathing-related signals are present in functional magnetic resonance imaging (fMRI) 

data (Chang & Glover, 2009; Prokopiou et al., 2019), particularly in studies of functional 

connectivity in which the measure of interest is covariance among signals (for example, 

“resting–state” analyses). Such respiratory artifacts pose two key issues for researchers. First, 

breathing can cause systematic artifacts within BOLD data that may bias estimates of functional 

connectivity (Birn et al., 2006; Power et al., 2020). In particular, because breathing patterns 

contain state and trait-like components and can vary with age (Tobe et al., 2021), sex (Lynch et 

al., 2020), BMI (Gratton et al., 2020), stress (Suess et al., 1980), and psychopathology (Giardino 

et al., 2007), such artifacts (akin to head motion artifacts) may confound relationships of interest 

in many fMRI studies. Second, breathing causes “pseudomotion” artifacts in BOLD data that 

inflate estimates of head motion (Brosch et al., 2002; Durand et al., 2001; Power et al., 2019). 

Such breathing-induced pseudomotion complicates detection of motion-contaminated volumes, 

making it more difficult to decide which data should be excluded from analysis (Fair et al., 

2020). Mitigation of breathing-induced artifacts is therefore a crucial step in preparing fMRI data 

for analyses of functional connectivity.  

While model-based methods exist for correction of respiratory artifacts in fMRI data, 

their applicability is limited by their reliance on peripheral physiological measurements that are 

often not collected during neuroimaging studies. In particular, an image‐based method for 

retrospective correction of physiological signal in fMRI (RETROICOR; Glover et al., 2000; 

Tijssen et al., 2014) or Respiration Volume (RV) and Respiration Volume per Time (RVT; Birn 

et al., 2006, 2008, 2014a; Chang & Glover, 2009) correction can mitigate breathing-induced 

artifacts, yet rely on data from a pneumatic respiration belt placed around a participant’s 
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abdomen measuring chest volume during scanning. In particular, RVT may capture signals 

associated with fluctuations in arterial CO2 (Chang & Glover, 2009; Golestani et al., 2015). Such 

tools can be applied after data collection and have shown efficacy in mitigating both global and 

spatially heterogeneous physiological (cardiac and respiratory) artifacts. Unfortunately, the 

required respiratory belt data can be difficult to set up properly, and often slip off or yield 

unreliable breathing data, especially among children or high-motion participants. As many fMRI 

studies do not acquire belt data, respiratory corrections that do not rely on such measurements 

are crucial for increasing the feasibility of effective artifact mitigation.  

 

Figure 2.1. Schematic representation of simultaneous true head motion and peudomotion caused 

by respiration during fMRI. Specifically, BOLD images “shift” periodically in the phase-

encoding direction as inhalation and exhalation occur (Raj et al., 2000, 2001). MR physics 

mechanisms behind such respiratory pseudomotion are beyond the scope of the current 

investigation (see Brosch et al., 2002).  
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Recently, filtering high-frequency fluctuations from the head realignment parameters has 

been proposed as a potential workaround for removing respiratory-induced signal from head 

motion calculations without requiring respiratory belt data (Fair et al., 2020; Kaplan et al., 2022). 

Among adults, quasi-periodic respiratory signals driven by regular breathing typically present 

within BOLD data at around 0.2-0.3Hz (Charlton et al., 2018), while respiration frequencies are 

higher on average in children (Caballero-Gaudes & Reynolds, 2017; Tobe et al., 2021). 

Specifically within multiband data, a notch filter (centered at the median frequency of quasi-

periodic respiration across a dataset) applied to the head realignment parameters as shown 

success in distinguishing true from pseudo motion and saving data from being censored (Fair et 

al., 2020). Such filtering also improves assessment of data quality based on adjusted head motion 

estimates (FD) post-filtering. While single-band data sets, or those with lower temporal 

resolution, may not support notch filtering if the filter response range falls near or above the 

Nyquist folding frequency (1/2 the frequency of BOLD acquisition), recent work has 

demonstrated that a similar lowpass filter can improve head motion estimation and preserve 

single-band data from being censored (Gratton et al., 2020).  

Yet, informed calibration of filters requires knowledge of respiratory frequencies within a 

dataset (i.e. for defining the response of a notch filter). Further, application of the same filter to 

the head realignment parameters of all participants in a dataset may fail to capture prominent 

frequencies of pseudomotion in some participants if breathing rates are heterogeneous. As 

breathing rates tend to decrease between childhood and young adulthood (Wallis et al., 2005), 

defining a common filter for datasets with wide age ranges may not be an effective approach at 

mitigating such artifacts. On the other hand, individual-specific filters cannot be derived without 
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individual-level respiratory frequency information, and low-quality respiratory belt data may 

preclude accurate estimation of the individual-specific filters even when available (Fair et al., 

2020). In addition, even individual-specific filters may fail to capture breathing-induced 

psuedomotion if the frequency of individuals’ respiration fluctuates within scan runs. Further, 

because notch filtering is applied only to head realignment estimates (for use in nuisance 

regression or motion-based censoring), this strategy may not on its own mitigate effects of 

breathing on the fluctuations in the BOLD signal itself.  

Two methods that do not require peripheral respiratory belt data; regression of the global 

signal (“GSR”) averaged across the gray matter voxels (Falahpour et al., 2013; Fox et al., 2009; 

Power et al., 2017), and the top principal components across atomically-defined white matter and 

cerebrospinal fluid voxels (anatomical component correction is often referred to as "aCompCor"; 

Behzadi et al., 2007; Muschelli et al., 2014); have been proposed for physiological noise 

correction. Indeed, global signal is thought to reflect, in part, fluctuations in arterial CO2 (Chang 

& Glover, 2009; Zhu et al., 2015). Signals related to both quasiperiodic respiration (Power et al., 

2018) and deep breaths (Kastrup et al., 2001; Power et al., 2017) are apparent within global 

signal timecourses. Because aCompCor models the principal components among the timeseries 

of “noise regions” that are unlikely to be driven primarily by neural signal, including such 

components in nuisance regression is also thought to remove influence of physiological artifacts 

from respiration and cardiac signal (Behzadi et al., 2007). Thus, even though neither global 

signal regression (GSR) nor aCompCor isolate respiratory-related signal in a theory-based or 

model-based way, such nuisance regression strategies have been argued to be the most effective 

methods for correction of physiological artifacts (Poskanzer et al., 2021; Power et al., 2019; 

Xifra-Porxas et al., 2021). 
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 On the other hand, global signal regression is a highly debated strategy, and there are 

potential drawbacks to both global signal regression and component-based approaches. Work in 

both humans and rodents suggests that the global signal timeseries in part contains meaningful 

signal arising from neuronal activity (Belloy et al., 2018; Fox et al., 2009; Glasser et al., 2018; 

Murphy et al., 2009; Thompson et al., 2013; Yousefi et al., 2018). In addition, while global 

signal regression mitigates associations between head motion and functional connectivity in 

resting-state fMRI data, it simultaneously introduces distance-dependent motion artifacts such 

that scan-level head motion (mean FD) is positively correlated with short-distance edges 

(correlations between two nodes) and negatively correlated with long-distance edges (Ciric et al., 

2017b; Power et al., 2014). Some analyses of fMRI data are also reliant on the global signal, and 

fundamentally incompatible with GSR (Wong et al., 2013). Further, nuisance regression on 

global signal and noise ROI components can reduce the number of temporal degrees of freedom 

within the resulting data, particularly when many noise ROI-based components are included 

(Parkes et al., 2018; Yan et al., 2013).  

Censoring high-motion frames, or “scrubbing”, has also been proposed as a method to 

mitigate head motion artifacts in BOLD data (Power et al., 2020; Siegel et al., 2014). Censoring 

volumes from BOLD data above a motion-based threshold (often framewise displacement >= 

0.2mm for resting-state fMRI) has been shown to reduce differences in functional connectivity 

estimates between high-motion and low motion scans (Power et al., 2013), and mitigate distance-

dependent relationships between head motion and functional connectivity (Ciric et al., 2017b). 

While removal of contaminated frames has demonstrated such positive impacts, respiratory-

induced pseudomotion may result in removal of frames with little true head motion (Fair et al., 

2020; Gratton et al., 2020; Kaplan et al., 2022), thus unnecessarily excluding data and lowering 
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statistical power. As such, techniques for mitigating breathing induced psuedomotion are 

important for removing contaminating influences of head motion without sacrificing uncorrupted 

volumes.  

  Encouragingly, recent work has demonstrated that respiratory signals can be estimated 

accurately from BOLD data alone (Hocke & Frederick, 2021; Salas et al., 2021). In particular, 

separate stack processing can be used with multiband fMRI datasets to estimate head 

realignment parameters separately for each 3D set of simultaneously acquired slices (Hocke & 

Frederick, 2021). A high-resolution set of head realignment parameters can then be constructed 

by interleaving each separately-estimated timeseries based on the order of acquisition, effectively 

multiplying the temporal resolution by the number of unique slice times (RF pulses) within each 

TR. For example, for a dataset with TR=1.4 (~.071Hz) and 16 unique slice acquisition times, a 

high-resolution timecourse can be estimated at ~11.4Hz. Such high-resolution timecourses are 

particularly useful for estimating respiratory influence on motion estimates, as they can more 

accurately capture higher-frequency respiratory signals that are aliased under traditional motion 

estimation. Respiratory belt traces are more strongly correlated with high-resolution motion 

estimates (particularly in the phase-encoding direction) than with traditional motion estimation 

(Hocke & Frederick, 2021). 

If high-resolution motion time courses are strongly associated with respiratory traces, then 

model-based physiological correction strategies (i.e. RETROICOR, RV, RVT) may be possible 

using these “predicted” respiratory traces without requiring respiratory belt data. While previous 

research had used BOLD data for accurate reconstruction of low-frequency fluctuations in 

respiratory volume (RV, Salas et al., 2021), this work is limited by the temporal resolution of the 

data. Thus, using high-resolution predicted respiratory traces for model-based correction may 
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allow for better mitigation of higher-frequency artifacts in functional connectivity data. If such 

correction strategies yield results similar to those when using respiratory belt data, this might 

eliminate the need for acquiring belt data in new studies, as well as providing a means for 

informed corrections in existing datasets without peripheral physiological recordings. 

In the current study, we asked whether using predicted traces can allow for effective model-

based physiological noise correction by comparing an array of different strategies through forked 

preprocessing pipelines (Bridgeford et al., 2020; Gelman & Loken, 2014). Using resting-state 

multiband fMRI data from the Nathan Kline Institute Rockland Sample (NKI-RS) and Human 

Connectome Project (HCP) test-retest sample, we applied model based physiological noise 

correction (RVT + RETROICOR) using both belt and predicted respiratory traces. In addition to 

these strategies, we also conducted many preprocessing specifications, varying whether to use a 

notch filter applied to the head realignment parameters, GSR, aCompCor, and motion-based 

volume censoring. We evaluate each strategy on benchmarks for data retention (if using 

censoring), test-retest reliability (I2C2 and discriminability) and residual motion-related artifacts 

in the preprocessed functional connectivity data.  

 

2.2 Methods 

Overview: Implementing methods developed by Hocke & Frederick (2021), we 

estimated predicted respiratory traces using both the HCP test-retest (Van Essen et al., 2012) and 

NKI-RS (Tobe et al., 2021) resting-state BOLD data. We next used both belt and predicted traces 

for model-based respiratory corrections (RVT + RETROICOR), respectively, and compared 

model-based with frequency-based approaches (notch filtering) for mitigation of pseudomotion 

artifacts. Then, we preprocessed the data under several forking pipelines, varying whether to use 
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a notch filter on the head realignment parameters (HCP only), GSR, aCompCor, and motion-

based censoring (NKI-RS only). We examined all resultant functional connectomes after 

preprocessing on benchmarks of test-retest reliability and residual motion-related artifacts. 

 

 

Figure 2.2: Pipeline forks for the HCP (A) and NKI-RS (B) datasets 
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Human Connectome Project Data: We used unprocessed BOLD data from the Human 

Connectome Project (HCP; (Van Essen et al., 2012) test-retest cohort (N = 45). The HCP test-

retest participants were scanned at Washington University (St. Louis, USA) using Siemens 3T 

Skyra for two sessions (Mean between-session interval = 4.7 months, range = [1,11]), each of 

which spanned two days. For each session, participants completed two 14.4 minute runs each 

day, 1 with a left-to-right (LR) phase-encoding direction and 1 with a right-to-left (RL) phase-

encoding direction. Apart from the flipped phase-encoding direction, all BOLD runs were 

acquired using the same EPI sequence parameters (TR=0.72s, TE=33.1ms, flip angle=52°, 

FOV=208x180mm, resolution=2x2x2mm, multiband factor=8) and were 1200 volumes (14.4 

minutes) each. During scan acquisition, participants were instructed to keep their eyes open, and 

a crosshair was shown on the screen.  We also used T1w scans  (TR=2.4s, TE = 2.14ms, TI = 1s, 

axial orientation, voxel size 0.7x0.7x0.7mm, flip angle=8°, FOV = 224 × 224 mm) acquired once 

per session for registration of functional images (Glasser et al., 2013). Within the HCP test-retest 

cohort, we analyzed data from a total of 36 participants with complete BOLD and respiratory 

data for all 8 runs across both sessions.  

Nathan Kline Institute Rockland Sample Data: This study used multiband resting state 

fMRI data from the NKI Rockland Sample (NKI-RS) cohort retest session (N = 97, 58F/39M, 

ages 6-20). We selected a random subsample of participants with complete data from the retest 

session stratified to match the distribution of mean framewise displacement values within the 

entire cohort.  

NKI-RS participants were scanned at both TR=645ms (TE = 30ms, transversal 

orientation, voxel size 3.0×3.0×3.0 mm, flip angle=60°, FOV = 222 × 222 mm, 10 interleaved 

slice acquisition times) and TR=1400ms (TE = 30ms, transversal orientation, voxel size 
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2.0×2.0×2.0 mm, flip angle=65°, FOV = 224 × 224 mm, 16 interleaved slice acquisition times), 

both sequences with a multiband acceleration factor of 4. Data were acquired with an anterior-

posterior (AP) phase-encoding direction for both sequences. Resting-state scans for both 

sequences were 10 minutes in duration. 

Respiratory belt acquisition: Participants in both the in NKI-RS and HCP samples wore 

pneumatic respiratory belts around the abdomen during fMRI acquisition, which measured 

changes in belt tension over time as a proxy for respiration. The elastic abdominal belt was 

connected to a bellows, such that pressure changes in the bellows were transmitted via a rubber 

tube for recording. Within the HCP data, belt measurements were taken at a sampling rate of 400 

Hz. Belt measurements for the NKI-RS data were taken at a sampling rate of 62.5 Hz. Cardiac 

measurements were also recorded for both datasets, but not used in the current analyses.  

Predicted respiratory traces using high-resolution head motion estimation: We 

constructed predicted respiratory traces for all scans using methods developed by Hocke & 

Frederick (2021) and reimplemented using python (Code can be found at 

https://github.com/pab2163/estimate_respiratory_traces). First, we grouped all simultaneously 

acquired slices into “stacks,” such that the number of slices within each stack was equal to the 

multiband acceleration factor, and the number of stacks was equal to the number of unique slice 

acquisition times. We then multiplied the thickness of each slice (in the inferior-superior 

direction) by the number of unique slice acquisition times. Next, we calculated head realignment 

parameters separately for each stack using 3DVolreg for rigid-body transformation (Cox, 1996; 

Teruel et al., 2018). Then, we concatenated head realignment parameters across stacks following 

the ordering of slice acquisition times to construct high-resolution estimates of head motion, and 
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applied a notch filter at the original BOLD sampling frequency (as well as 2nd and 3rd harmonics) 

to remove effects of sampling rate.  

Validation of predicted respiratory traces: Because breathing-induced signals are 

particularly apparent within motion estimates in the phase encoding direction, we used these high 

resolution timeseries in the phase-encoding direction as “predicted” respiratory traces.To 

validate these BOLD-derived respiratory traces as done by Hocke & Frederick (2021), we 

computed lagged cross-correlations between the belt trace and high-resolution head motion 

estimates in each of the three translation axis (left-right, inferior-superior, anterior-posterior). 

Before computing cross-correlations, we downsampled the belt traces to the sampling frequency 

of the high-resolution head motion estimates, and filtered both timeseries using a 3rd order 

bandpass filter of 0.2-0.5 Hz. We then computed all lagged product-moment cross-correlations 

within a window of +/- 15s (by repeatedly shifting the timeseries relative to one another by 1 

sample and zero-padding the corresponding samples in the shifted timeseries) to find the 

maximum correlation and corresponding lag time for each timeseries with the belt data. In 

addition to examining such lagged correlations, we also examined the product moment 

correlations between these timeseries with no lag. Finally, we upsampled the head realignment 

parameters in the original temporal resolution to the sampling frequency of the high-resolution 

head motion estimates, and computed similar cross-correlations with the belt traces. 

For each dataset, we also examined correspondence between belt and predicted traces in 

the frequency domain by applying a Savitzky-Golay smoothing filter to the power spectra of 

each respective trace 

(https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html), then 

correlating the peak frequencies of these traces across scan runs.  
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RVT + RETROICOR Physiological Noise Correction: We used both the predicted and 

belt respiratory traces, respectively, to perform model-based physiological noise correction on 

the BOLD data. We input traces into RetroTS.py for calculation of both RETROICOR and RVT 

regressors. RETROICOR regressors are created by estimating the phase within a respiratory 

cycle (i.e the temporal position from beginning to end of a breath) separately for each slice 

(Glover et al., 2000). Then, the sine and cosine of the phase, as well as 2 times the phase, are 

calculated for each slice within each volume. Thus, the 4 RETROICOR regressors for each slice 

allow for correction of physiological signal at higher frequencies than the BOLD data itself, and 

can take into account changes in respiration rate over the course of a run (Birn et al., 2008). In 

contrast, RVT regressors represent lower-frequency fluctuations in breathing rate and envelope. 

To calculate changes in respiratory volume per time, the breath amplitude is divided by the 

breath period (interpolated to each volume) for each timepoint (Birn et al., 2006). To account for 

delayed effects of respiration on BOLD signal, RVT regressors were created for 5 shifts of this 

timeseries ranging from 0-20 seconds in 4-second intervals. RVT regressors did not vary by 

slice.  

RVT and RETROICOR regressors were constructed with the RetroTS.py program using 

belt and predicted respiratory traces, respectively. Though RETROICOR can also estimate slice-

based regressors to account for cardiac artifacts, we opted not to include these in the current 

study in order to focus on respiratory-related corrections (Glover et al., 2000). Using 

afni_proc.py (https://afni.nimh.nih.gov/pub/dist/doc/program_help/afni_proc.py.html), we 

detrended the RETROICOR and RVT regressors, then regressed them on the BOLD data using 

3dREMLfit on a slice-wise basis. Polynomial ‘baseline’ regressors (linear and quadratic, 
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orthogonalized with RVT and RETROICOR regressors) were included in the regression model. 

Finally, the residuals from the slice-wise regression model were added to the polynomial 

baseline to form the corrected BOLD dataset used for further analysis.  

For a smaller subset (N=5) of NKI-RS participants, we also conducted the same RVT + 

RETROICOR procedure using predicted respiratory traces shifted to maximize lagged 

correlations with the belt timeseries. We then compared head motion power spectra and 

estimated framewise displacement for these participants for the lagged versus non-lagged 

predicted respiratory traces, as well as with those when the data were not corrected or corrected 

with RVT + RETROICOR using the belt traces (see Appendix B Figs. 1-2).  

Filtering head realignment parameters: We conducted a rigid-body motion correction 

of each BOLD run using 3dvolreg (Cox, 1996) to estimate six head realignment parameters (left-

right (dL, or ‘x’), anterior-posterior (dP, or ‘y’), inferior-superior (dS, or ‘z’), pitch, roll, and 

yaw). We then followed methods proposed by Fair et al. (2020) to remove respiratory-induced 

signal from head realignment estimates by applying a band-stop (‘notch’) filter to the head 

realignment parameters for each run. Notch filters can reduce signal around a center frequency 

within a certain bandwidth of frequencies while leaving signal at other frequencies unaffected. 

Here, we chose the center frequencies for each dataset as the mean peak predicted respiratory 

frequency (.31Hz for HCP, .37Hz for NKI-645). Based on Fair et al (2020), we used a bandwidth 

of .12Hz. Thus, this notch filter was “static”, or identical for all scans within each dataset 

(although scan-specific notch filtering is possible). Because the Nyquist frequency for the NKI-

1400 data was ~0.357Hz, we did not apply a notch filter to data for this sequence.  

While we only use the static notch filter for full preprocessing of the data, we also filtered 

the head realignment parameters using a scan-specific notch filter, where the center frequency 
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was set at the peak predicted respiratory frequency for each scan and the bandwidth was kept at 

.12 Hz. Notably, this filter was both scan-specific (individualized), and constructed without 

requiring respiratory belt data. We examined the efficacy of this filter at reducing respiratory 

artifacts in estimated head motion (see Appendix B Fig. 3). 

HCP Preprocessing Specifications: We conducted all preprocessing using C-PAC 

Version 1.8 (Craddock et al., 2013). We constructed 8 pipeline specifications based on the 

fMRIPREP-harmonized pipeline (https://github.com/FCP-INDI/C-

PAC/blob/develop_v1.8_convergence/CPAC/resources/configs/pipeline_config_fmriprep-

options.yml) defaults, varying whether or not to apply a static notch filter to the head 

realignment parameters before nuisance regression, and whether to include GSR or aCompCor in 

the nuisance regression (see Table 2.1). We ran all 8 pipelines on raw BOLD runs, BOLD runs 

passed through belt RVT + RETROICOR, and BOLD runs passed through predicted RVT + 

RETROICOR such that a common anatomical to MNI registration was used for all 24 total 

specifications for each given run (see Fig. 2.2).  

 For functional preprocessing, BOLD data were first motion corrected using 3dvolreg 

(two passes). At this point, the notch filter was applied to the head realignment parameters 

generated by 3dvolreg in forks including the step. Next, nuisance regression was applied, 

including 24 head motion regressors (6 head realignment parameters + squared + delayed + 

squared delayed; Friston et al., 1996) and linear and quadratic detrending, as well as global 

signal or aCompCor regressors corresponding with each fork (see Fig. 2.1). Bandpass filtering 

(.01-.1Hz) was applied to BOLD data after nuisance regression. Functional to anatomical 

registration matrices were calculated using FSL’s boundary-based registration, and anatomical 

registrations to a MNI template were calculated using ANTS. After all nuisance regression and 
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filtering, BOLD data were warped to the MNI template and interpolated to 3.4 mm isotropic 

voxels. No voxel-wise despiking, scrubbing, or spike regression were used in functional 

preprocessing.  

NKI-RS Preprocessing Specifications: Preprocessing for the NKI-RS was largely 

identical to the above pipelines described for the HCP data but with several exceptions. Within 

these data we did not include forks with a notch filter applied to the head realignment parameters 

(although we did estimate impacts of such notch filtering on head motion, see Fig. 2.4), and only 

included forks for neither GSR nor aCompCor or both within the nuisance regression. Within the 

NKI-RS data we included an additional forking decision point for whether or not to censor high-

motion volumes at the nuisance regression stage. Pipelines with censoring removed volumes 

with Jenkinson framewise displacement > .2mm (Power et al., 2013, 2014). Thus, between forks 

for model-based respiratory correction and for nuisance regression specification options, we ran 

a total of 12 preprocessing pipelines within the NK-RS Data (see Table 2.2). 

 

Decision Point # forks Fork Specifications 

Model-based respiratory 

correction 

3 (1) No correction, (2) RVT + RETROICOR 

(belt), (3) RVT + RETROICOR (predicted) 

Notch Filter 2 (1) No filtering of head realignment parameters, 

(2) notch filter (center = .31Hz, width = .12Hz, 

order =4) applied to realignment parameters 

before nuisance regression 

Global signal regression 2 (1) No global signal regression, (2) mean signal 

intensity across all gray matter voxels included 

as regressor in nuisance regression 

aCompCor 2 (1) No aCompCor, (2) top 5 PCs across white 

matter and cerebrospinal fluid included as 

regresses in nuisance regression 

Table 2.1: Decision forks for the HCP data. All combinations of specifications were run, 

resulting in 24 (3x2x2x2) pipelines.  
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Decision Point # forks Fork Specifications 

Model-based respiratory 

correction 

3 (1) No correction, (2) RVT + RETROICOR 

(belt), (3) RVT + RETROICOR (predicted) 

Global signal regression + 

aCompCor 

2 (1) No global signal regression or aCompcor, (2) 

mean signal intensity across all gray matter 

voxels and top 5 PCs across white matter and 

cerebrospinal fluid included as regresses in 

nuisance regression 

Censoring 2 (1) No censoring, (2) BOLD volumes with FD 

>= 0.2 censored to remove their influence on 

functional connectivity estimates 

Table 2.2: Decision forks for the NKI-RS data. All combinations of specifications were run, 

resulting in 12 (3x2x2) pipelines.  

 

Functional connectivity matrices: For all pipelines for each scan run, we extracted the 

mean timeseries for each of the Schaefer-200 Atlas parcels (Schaefer et al., 2018), then 

computed product-moment correlations between all pairs of nodes (parcels). For group-level 

analysis we extracted the upper triangle of all functional connectivity matrices, not including the 

diagonal.  

Power Spectra of Head Realignment Parameters: To visualize impacts of breathing on 

head motion estimates, we created heatmaps of power spectra of each of the six head realignment 

parameters across scan runs. Using methods similar to those of Fair et al (2020), we computed 

the power spectra of each respective parameter using scipy.fftpack.fft 

(https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft.html) for a discrete Fourier 

transform. We then ranked scan runs from least to greatest median framewise displacement, then 

plotted heatmaps of relative log power (from 0 up to the Nyquist folding frequency) for all scan 

runs for each of the six head realignment parameters. We created such heatmaps for five 

different sets of realignment parameters: (1) raw BOLD data (no correction), (2) after static 
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notch filtering of the head realignment parameters, (3) after belt RVT+RETROICOR, (4) after 

predicted RVT+RETROICOR, and (5) after scan-specific notch filtering (see Appendix B Fig. 

3). In particular, we examined the heatmaps for the power spectra in the phase-encoding 

direction (dL for HCP, dP for NKI-RS) to see which pipelines best attenuated signal most likely 

due to respiratory pseudomotion between about .2-.4 Hz. 

 Residual head motion artifacts in functional connectivity: We compared the impacts 

of several correction strategies on estimated head motion (mean framewise displacement), as 

well as impacts on data retention when applying exclusion criteria based on head motion (i.e. 

censoring). Specifically we calculated framewise displacement for several strategies: (1) from 

head realignment parameters based on the raw BOLD data, (2) from head realignment 

parameters based on the raw BOLD data after applying a static notch filter (except for the NKI-

1400 data due to the slower sampling rate), (3) from the head realignment parameters based on 

BOLD data after RETROICOR + RVT had been applied using the belt respiratory trace (“belt 

RVT + RETROICOR”), and (4) from the head realignment parameters based on BOLD data 

after RETROICOR + RVT had been applied using the predicted respiratory trace (“predicted 

RVT + RETROICOR”). Using these head realignment parameters, we then calculated framewise 

displacement using both the Power (Power et al., 2012) and Jenkinson (Jenkinson et al., 2002) 

methods. Power framewise displacement estimates were calculated as the sum of the absolute 

values of differences from the previous volume across each of the six parameters (assuming a 

head radius of 50mm for rotation parameters). We calculated Jenkinson framewise displacement 

using transformation matrices using the CALCULATE_FD_J function from C-PAC (Craddock 

et al., 2013).   
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We first compared mean framewise displacement estimates for each sequence (NKI-645, 

NKI-1400, and HCP) between all four strategies. Secondly, we compared the percentage of 

volumes with framewise displacement over a threshold FD=0.2mm to measure how much data 

was censored based on this widely-used criteria (Power et al., 2013; Yan et al., 2013). Third, we 

compared the percentage of frames under FD=0.2mm in the uncorrected BOLD data that caused 

FD to be estimated >=0.2mm with each correction strategy. We refer to these frames as “lost,” 

under the logic that applying a given correction strategy combined with censoring at this 

threshold will result in exclusion of these frames estimated to be low-motion in the uncorrected 

BOLD data. For each of these three metrics (mean framewise displacement, percentage of 

volumes censored, percentage of volumes lost), we estimated average differences between 

pipelines via bootstrapping (resampling participants with replacement, 10000 iterations). For 

each bootstrap iteration, we compared differences between each pair of pipelines for each 

individual run, then calculated the mean difference across all runs (see Appendix B Fig. 4 for all 

comparisons).  

Test-retest reliability & discriminability: To quantify how different pipelines impacted 

the relative similarity of functional connectome measurements within the same participant 

compared to other participants, we computed image intraclasss correlation coefficients (I2C2) for 

test-retest reliability. I2C2 is a multivariate generalization of the traditional intraclass correlation 

coefficient (ICC) for a global Image reliability measure (Shou et al., 2013). Like traditional ICC, 

I2C2 assumes that observations are drawn from a (multivariate) Gaussian distribution, and is 

calculated as the proportion of the total variance that is made up of between-participant variance 

(or more specifically, the trace of the between-participant covariance matrix divided by the trace 

of the total covariance matrix). We computed all I2C2 calculations using the neuroconductor R 
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package (Muschelli et al., 2019), and extracted within-participant and between-participant 

variance estimates as well as I2C2 metric. 

 Because the I2C2 metric is somewhat limited by Gaussian assumptions and highly 

sensitive to outliers (Vaz et al., 2013), we also computed multivariate discriminability as a 

reproducibility metric using the hyppo python package (Panda et al., 2019). Discriminability 

quantifies the proportion of the time in which multiple measurements of the same item are more 

similar to one another than they are to other items (Bridgeford et al., 2020). In this context, 

“items” were represented by participants, and similarity was operationalized through Euclidean 

distances between pairs of connectivity matrices. Thus, discriminability here represented the 

proportion of times that different connectivity matrices within the same participant were more 

similar to one another than with those of other participants (with discriminability=1 representing 

perfectly discriminable data). Discriminability also has advantages over using a fingerprinting 

index for reliability (Finn et al., 2015; Milham et al., 2021), because it calculates the proportion 

of times where measurements from the same participant are more similar to one another then 

measurements from different participants, rather than using an “all or nothing” approach (as 

fingerprinting does) to quantify whether the most similar measurement is from the same 

participant or not. We calculated reliability in several contexts. 

Reliability between sessions (HCP only): We computed I2C2 and discriminability 

across functional connectivity matrices for runs (14.4 min each) of the same phase-encoding 

direction collected during the “test” versus “retest” scanning sessions on separate days. We 

averaged functional connectivity matrices from pairs of scan runs collected during the same 

session for each participant with the same phase encoding direction to calculate I2C2 and 

discriminability for connectomes constructed from 28.8 minutes of data each.   
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Reliability between sequences (NKI only): To understand which pipelines best 

harmonized functional connectivity measurements between the TR=1400ms and TR=645 scan 

sentences, we computed I2C2 and discriminability for runs collected with each sequence for the 

same participants during the same session. 

Inter-pipeline agreement (Reliability between pipelines) (HCP and NKI): To 

understand which preprocessing choices contributed most to differences in functional 

connectivity estimates, we computed I2C2 for functional connectivity matrices generated from 

the same underlying data but with varying preprocessing pipelines. Here, pipelines were treated 

as “raters”, and we calculated I2C2 and discriminability between all pairs of pipelines.  

For reliability between sessions and sequences, we quantified the sampling variability in 

I2C2 and discriminability through bootstrapping participants. For each of 1000 bootstrap 

iterations, we drew a random sample (without replacement) of two-thirds of the participants in 

each dataset for which to calculate each metric.  

Head motion correlations with functional connectivity: To examine relationships 

between head motion and functional connectivity after preprocessing, we computed framewise 

displacement-functional connectivity (FD-FC) correlations for each pipeline. We calculated 

rank-order correlations between each edge weight (representing functional connectivity between 

two nodes) and Jenkinson mean FD each scan (Power et al., 2012; Satterthwaite et al., 2012). 

Within the HCP data, we computed FD-FC correlations across all scan runs for each respective 

pipeline. Within the NKI-RS data, we computed such correlations separately for each of the two 

scan acquisition sequences. For each pipeline, we summarized distributions of signed FD-FC 

correlations as well as distributions of correlation magnitudes (absolute value; Ciric et al., 
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2017b). For statistical comparisons of FD-FC relationships across pipelines, we conducted 1000 

iterations of bootstrap resampling to calculate distributions of median FD-FC across all edges. 

Distance-Dependence of head motion correlations with functional connectivity: Head 

motion during scanning can influence functional connectivity estimates in a distance-dependent 

way, such that connectivity for nearby nodes is increased and distant nodes decreased (Power et 

al., 2012, 2014). Thus, we sought to understand how head motion artifacts varied as a function of 

distance between nodes under each pipeline. To examine the impacts of preprocessing choices on 

these distance-dependent artifacts, we first calculated Euclidean distances between the center of 

mass for all pairs of nodes in the Schaefer 200 atlas. We then calculated rank-order correlations 

between the distance separating each pair of nodes (edge distance) and FC-FD correlation values 

for each edge. We conducted analyses for all pipelines across all scans within the HCP data, and 

separately for each of the two scan acquisition sequences within the NKI-RS data. For statistical 

comparisons of distance-dependent FD-FC relationships across pipelines, we conducted 1000 

iterations of bootstrap resampling to calculate distributions of the correlation between distance 

and FD-FC across all edges. 

 

2.3 Results 

Validation of predicted respiratory traces: We asked whether high-resolution motion 

estimates in the phase-encoding direction were effective as “predicted” respiratory traces, as 

previously demonstrated by Hocke & Frederick (2021), by examining their similarity with 

corresponding respiratory belt traces. Maximum lagged cross-correlations between belt and 

predicted (high-resolution motion estimates in the phase-encoding direction) traces within the 

0.2-0.5 Hz range (Fig. 2.3A-B) had medians of 0.63, 0.69, 0.91 in the NKI-1400, NKI-645, and 
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HCP data, respectively. Although such cross-correlations in the NKI-RS data were not as strong 

as those previously reported in a different subset of NKI-RS scans by Hocke & Frederick (2021), 

such relationships may have been weakened by the inclusion of runs with higher head motion 

and lower quality respiratory belt data. Indeed, within the NKI-RS data, correspondence between 

belt traces and high-resolution motion estimates was stronger for scans with lower head motion 

estimates and less clipping of the respiratory signal (see Appendix B Fig. 5).  

While for most scans, the temporal shift (lag) that maximized the correlation between the 

belt and predicted respiratory trace was under 2.5s (see Appendix B Fig. 6), we also computed 

similar correlations without such temporal lags. Correlations between the belt trace and high-

resolution head motion in phase-encoding direction without lag were somewhat weaker, though 

still fairly strong, especially in the HCP data (see Appendix B Fig. 7).  

Similarly, we found strong associations between the peak frequencies of belt traces and 

respective predicted traces using high-resolution motion estimation. For most HCP scans (Fig.  

2.3D), peak frequencies were nearly identical between belt and predicted traces, while some NKI 

scans demonstrated greater discrepancies in peak frequency.  
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Figure 2.3: Validation of predicted respiratory traces in the NKI-RS and HCP data. A-B: 

Maximum lagged correlations within a +/-15s window between the respiratory belt and head 

motion estimates in each axis of translation (red = high-resolution motion estimates, blue = 

original motion estimates). Boxplots of correlations are shown for the NKI data for the 

TR=1400ms sequence (A, left panel) and TR=645ms sequence (A, right panel) and HCP data 

(B). High-resolution motion estimates in the phase-encoding direction (dP for NKI-RS, dL for 

HCP) are treated as the predicted respiratory timeseries. C-D: Scatter plots displaying 

associations between the peak frequency in predicted (x-axis) and belt (y-axis) respiratory traces. 

Each point represents 1 scan run, and points are shown for the NKI data for the TR=1400ms 

sequence (C, left panel) and TR=645ms sequence (C, right panel) and HCP data (D) 

 

Impacts of correction strategies on estimated head motion: To assess impacts of 

respiratory correction strategies on estimated head motion and data retention, we compared 

framewise displacement estimates for the uncorrected BOLD data to those after applying a notch 
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filter to the head motion parameters, and RVT + RETROICOR using the belt and predicted 

traces, respectively. We calculated framewise displacement estimates using both Power (Power 

et al., 2012) and Jenkinson (Jenkinson et al., 2002) methods, and note that head motion estimates 

were consistently higher using the Power calculation (Fig. 2.4A & D). Prior work has indicated 

that Jenkinson calculations are likely more accurate (Yan et al., 2013). Mean framewise 

displacement estimates using the Power calculation were on average 1.71 times (SD = 0.10) 

higher than when using the Jenkinson calculation in the NKI data and 1.81 times (SD = 0.10) 

higher in the HCP data. Apart from Figure 2.4, we focused on Jenkinson framewise displacement 

estimates, and all reported statistics use Jenkinson calculations unless otherwise noted.  

All correction strategies generally reduced mean framewise displacement relative to the 

uncorrected BOLD data, with the notch filter and predicted RVT + RETROICOR showing the 

least head motion (Fig. 2.4A & D, see Appendix B Fig. 4 for all statistics). Although head 

motion estimates were slightly lower using predicted RVT + RETROICOR compared to the 

notch filter in the HCP data (Mean DifferenceHCP = -.003mm, 95% CI [-.005, -.001], p = .0003), 

we did not observe a consistent difference in the NKI-645 data (Mean DifferenceNKI-645 = 

0.001mm , 95% CI [-.003, .007], p = .606). Both predicted RVT + RETROICOR and the notch 

filter resulted in lower estimated mean framewise displacement compared to belt RVT + 

RETROICOR. Framewise displacement estimates were higher for the NKI-1400 compared to the 

NKI-645 data, although this discrepancy was mitigated by normalizing to framewise 

displacement per minute (see Appendix B Fig. 8). 

To estimate impacts of correction strategies on data retention, we calculated the 

proportion of volumes in each scan over a threshold of Jenkinson framewise displacement >= 

0.2mm. Most generally, correction strategies reduced the proportion of volumes that would be 
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censored using this threshold, although reductions were of greater magnitude in the NKI-1400 

where motion estimates were highest. The notch filter (Mean DifferenceNKI-645 = 1.38%, 95% CI 

[0.74, 2.13], p = .0001; Mean DifferenceHCP = 5.74%, 95% CI [4.64, 6.93], p = .0001) and 

predicted RVT + RETROICOR (Mean DifferenceNKI-645 = 0.99%, 95% CI [0.08, 1.9], p = .0349; 

Mean DifferenceNKI-1400 = 8.99%, 95% CI [6.32, 12.00], p =.0001; Mean DifferenceHCP = 5.94%, 

95% CI [4.73, 7.26], p = .0001) strategies resulted in the greatest reductions in volumes censored 

relative to no correction, though the proportion of volumes over threshold was not different 

between these two strategies (Mean DifferenceNKI-645 = 0.39%, 95% CI [0.06, 1.02] p = .109; 

HCP Mean Difference = -0.20%, 95% CI [-0.50, 0.14], p = .252).  

We also examined how often correction strategies caused volumes below the 0.2mm 

framewise displacement threshold in the uncorrected BOLD data to pass above this threshold 

after correction (i.e. “lost” TRs). We calculated the proportion of all volumes in each run that 

were lost under each correction strategy applied. All correction strategies resulted in lost TRs 

compared to no correction, though using Jenkinson FD, generally only a small percentage were 

lost. The proportion of lost volumes was higher when using the notch filter compared to the 

predicted RVT + RETROICOR in both the NKI-645 (Mean DifferenceNKI-645 = -0.66%, 95% CI 

[-1.11, -0.08], p = .0273) and HCP (Mean DifferenceHCP = -0.50%, 95% CI [-0.69, -0.335], p = 

.0001), data, as well as the belt RVT + RETROICOR strategy in the HCP (Mean DifferenceHCP = 

-0.36%, 95% CI [-0.55, -0.20], p = .0001), but not NKI-645 data (Mean DifferenceNKI-645 = -

0.35%, 95% CI [-1.06, 0.65], p = .403). Visualization of individual head motion timeserieses 

revealed that the notch filter may tend to “spread” rapid peaks in head motion, such that FD 

estimates for low-motion frames occurring immediately before or after rapid large movements 

are inflated (see Appendix B Fig. 9).  
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Figure 2.4: Head motion estimates under different correction strategies. A-B: Boxplots of mean 

framewise displacement estimates under both the Jenkinson and Power methods using each 

correction strategy (black = no correction, purple = notch filter, red = RVT + RETROICOR 

(belt), blue = RVT + RETROICOR (predicted). C-D: Boxplots displaying the proportion of 

volumes censored under each strategy using a FD >= 0.2mm threshold. E-F: Boxplots showing 

the percentage of volumes “lost” with each correction strategy relative to no correction. Lost 

volumes are calculated as the percentage of all volumes with FD < 0.2mm without correction, 

but with FD >= 0.2 with a correction applied. All plots show estimates shown for the NKI-RS 

(left) and HCP (right) data. Notch filtering was not performed for the NKI 1400 sequence 
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because much of the filter envelope (center = .37Hz, width = .12Hz) was above the Nyquist 

frequency (~0.357Hz) of the BOLD sampling rate. 

 

Power spectra of head realignment parameters: To visually inspect impacts of 

respiration-induced pseudomotion within the head realignment parameters, we constructed 

heatmaps of the power spectra of each of the 6 head realignment parameters. In the HCP data, 

while without any correction, strong signatures of both respiratory induced motion (or 

pseudomotion) were visible in the .2-.4Hz range, particularly in the phase encoding direction 

(Fig. 2.5A). While a static notch filter decreased some signal in this frequency band (Fig. 2.5B), 

it also “missed” signal within this range for some participants. RETROICOR + RVT, whether 

using belt (Fig. 2.5C) or predicted (Fig. 2.5D) respiratory traces, tended to remove such signal 

over a smoother frequency range. Results were similar for the NKI-RS data, although 

visualization of respiratory artifacts in the NKI-1400 sequence was somewhat less precise due to 

the Nyquist frequency (~0.357Hz) falling within the frequency band of such artifacts (see 

Appendix B Figs. 10-11). We also note a frequency band at ~0.12Hz only in the phase encoding 

direction, which in prior work has been suggested to represent the influence of slower, deep 

breaths (Power et al., 2020). However, the fact that this frequency band seems to appear only in 

datasets collected on Siemens Prisma (or Skya with Prisma-like hardware used in HCP) scanners 

suggests that this may be a scanner-driven or sequence-driven artifact (see Appendix B Fig. 12; 

(Kaplan et al., 2022; Power et al., 2019).  
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Figure 2.5: Power spectra of head realignment parameters in the HCP dataset with (A) no 

correction, (B) a notch filter of the head realignment parameters, (C) RETROICOR + RVT with 

belt trace, and (D) RETROICOR + RVT with the predicted respiratory trace. For each plot, each 

row represents one scan run, with runs ranked from lowest median framewise displacement (top) 

to highest (bottom). Columns represent the 6 head motion parameters, where pitch, roll, and yaw 

indicate rotation and dS (inferior-superior), dL (left-right), and dP (anterior-posterior) indicate 

translation.  

 

Test-Retest Reliability of Functional Connectivity Between Sessions: Using the HCP 

data, we compared bootstrapped distributions for the test-retest reliability of connectivity 

matrices across sessions using both the I2C2 and discriminability metrics. We report statistics for 

scans acquired in the LR phase encode direction in the main text, and RL results were highly 

similar (see supplement). Neither notch filtering (ΔI2C2 = 0.002, 95% CI [-0.002, 0.005], p 

=413; Δdiscrim = -0.001, 95% CI [-0.004, 0.002], p = 0.742) nor RVT + RETORICOR using belt 

(ΔI2C2 = 0.001, 95% CI [-0.009, 0.011]; Δdiscrim = 0.004, 95% CI [-0.005, 0.012], p = 0.413) or 

predicted (ΔI2C2 = -0.002, 95% CI [-0.011, 0.0069]; Δdiscrim = 0.001, 95% CI [-0.006, 0.008], p 

= 0.792) respiratory traces had a significant impact on either I2C2 (Fig. 2.6A, right panel) or 

discriminability (Fig. 2.7A). Within-participant variance (Fig. 2.6A, left and center panels) was 

lower for pipelines using both belt (Δwithin = -11.1, 95% CI [-15.1, -7.07]) and predicted (Δwithin = 

-7.65, 95% CI [-11.5, -3.79]) RVT + RETROICOR, as well as notch filtering (Δwithin = -1.31, 

95% CI [-2.67, -0.01]), although effects of notch filtering on within-participant variance were 

smallest in magnitude. However, both belt (Δbetween = -10.7, 95% CI [-17.7 , -2.93]) and predicted  

(Δbetween = -10.1, 95% CI [-15.8, -3.53]) RVT + RETROICOR decreased between-participant 

variance.  

GSR and aCompCor impacted test-retest reliability much more than did RVT + 

RETROICOR or notch filtering strategies. The combination of GSR and aCompCor resulted in 
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the highest I2C2 compared to other pipelines (ΔI2C2 = 0.053, 95% CI [0.012, 0.089]), although 

GSR without aCompCor resulted in the lowest (ΔI2C2 = -0.066, 95% CI [-0.115, -0.007]) I2C2 

estimates relative to others (Fig. 2.6A, right panel). While GSR did not consistently impact I2C2 

overall (ΔI2C2 = -0.010, 95% CI [-0.057, 0.037]), this step both reduced within-participant 

(Δwithin = -34.0, 95% CI [-57.7, -9.49]) variance and between-participant variance (Δbetween = -

46.4, 95% CI [-75.0, -18.8]; Fig. 2.6A, left panel). aCompCor did not impact I2C2 consistently 

(ΔI2C2 = 0.0467, 95% CI [-0.005, 0.103]) or between-participant variance (Δbetween = -16.4, 95% 

CI [-41.1, 12.0]), but did decrease within-participant variance (Δwithin = -51.4, 95% CI [-78.8, -

17.1]). GSR and aCompcor also reduced the impacts of sampling variability on both I2C2 and 

discriminability across bootstrap resamples (i.e. lower variance across bootstraps). GSR 

increased discriminability (Δdiscrim = 0.062, 95% CI [0.024, 0.089], p = 0.001), while aCompCor 

increased discriminability specifically in pipelines with GSR (Δdiscrim = 0.046, 95% CI [0.001, 

0.071], p = 0.029), but did not significantly impact discriminability in pipelines without GSR 

(Δdiscrim = 0.016, 95% CI [-0.027, 0.058], p = 0.493; Fig. 2.7A). Figures 2.6-7 display results for 

the HCP scans acquired in the left-right phase-encoding direction, though results were highly 

similar for scans acquired in the right-left phase encoding direction (see Appendix B Figs. 13-

14).  

 



 93

 

Figure 2.6: A: I2C2 test-retest reliability of functional connectivity matrices between sessions in 

the HCP data. Data shown here are scans with left-right phase-encoding (see Appendix B Fig. 13 

for right-left phase-encoding). Y-axis indicates the chosen forks for each pipeline (GSR, 

aCompCor, notch filtering head motion parameters). B. I2C2 test-retest reliability of functional 

connectivity matrices between the NKI-645 and NKI-1400 sequences, within the same session. 

Y-axis indicates chosen forks for each pipeline (GSR/aCompcor together, censoring volumes 

based on framewise displacement). For all plots, color indicates whether a model-based 

correction was used (red = no physio correction, green = RVT + RETROICOR (belt), blue = 

RVT + RETROICOR (predicted). The left two panels show between-participant variances (left) 

and within-participant variances (center) in arbitrary units, and the right panel shows I2C2 values 
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(0 = reliability, 1 = perfect reliability). Shaded densities indicate bootstrapped distributions using 

repeated random resampling of ⅔ of the participants, and points with error bars represent 

bootstrapped means and 95% confidence intervals. Note: x-axis scales differ between panels A & 

B in order to more clearly highlight comparisons within each dataset. 

 

Test-Retest Reliability of Functional Connectivity Between Sequences: Using the 

NKI-RS data, we compared bootstrapped distributions for the test-retest reliability of 

connectivity matrices acquired during the same session using TR=645ms versus TR=1400ms 

sequences. As with the HCP data, RVT + RETROICOR using belt (ΔI2C2 = -0.010, 95% CI [-

0.024, 0.003]) or predicted (ΔI2C2 = -0.004, 95% CI [-0.021, 0.013]) respiratory traces did not 

impact estimates of I2C2 (Fig. 2.6B, right panel). Neither belt nor predicted RVT + 

RETROICOR impacted within-participant variance (Δwithin_belt = 6.09 95% CI [-11.7, 24.2], 

Δwithin_predicted = -3.44, 95% CI [-23.1, 16.1]) nor between-participant variance (Δbetween_belt = -10.1 

95% CI [-22.6, 3.25], Δbetween_predicted = -6.69, 95% CI [-20.3, 6.59]. Neither belt (Δdiscrim = -0.008, 

95% CI [-0.019, 0.003], p = .173) nor predicted (Δdiscrim = -0.006 , 95% CI [-0.019, 0.007], p = 

.397) RVT + RETROICOR impacted discriminability (Fig. 2.7B).  

 As with between-session test-retest reliability, the combination of GSR and aCompCor 

had the largest effects on reliability between the NKI-645 and NKI-1400 sequences. 

GSR+aCompCor reduced both between-participant variance (Δbetween = -69.5 , 95% CI [-136.1, -

7.05]) and within-participant (between-sequence, Δwithin= -99.2, 95% CI [-152.0, -48.7]; Fig. 

2.6B, left/center panels). While pipelines using GSR+aCompCor showed the numerically lowest 

I2C2 estimates (Fig. 2.6B, right panel), GSR+aCompCor did not consistently impact I2C2 

(ΔI2C2 = -0.013 95% CI [-0.078, 0.052]). In contrast to I2C2, GSR+aCompCor also increased 

estimates of discriminability between sequences (Δdiscrim = 0.174 , 95% CI [0.142, 0.206], p = 

.0001; Fig. 2.7B). Further, pipelines including GSR+aCompCor showed lower variance in 
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discriminability across bootstrap resamples, indicating a reduced influence of sampling 

variability on the discriminability under such pipelines. Censoring did not impact between-

sequence discriminability (Δdiscrim = -0.006 , 95% CI [-0.0213, 0.009], p = .479).  
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Figure 2.7: A: Test-retest discriminability of functional connectivity matrices between sessions 

in the HCP data. Data shown here are scans with left-right phase-encoding (see Appendix B Fig. 

14  for right-left phase-encoding). Y-axis indicates the chosen forks for each pipeline (GSR, 

aCompCor, notch filtering head motion parameters). B. Test-retest discriminability of functional 

connectivity matrices between the NKI-645 and NKI-1400 sequences, within the same session. 

Y-axis indicates chosen forks for each pipeline (GSR/aCompcor together, censoring volumes 
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based on framewise displacement). For all plots, color indicates whether a model-based 

correction was used (red = no physio correction, green = RVT + RETROICOR (belt), blue = 

RVT + RETROICOR (predicted). Shaded densities indicate bootstrapped distributions using 

repeated random resampling of ⅔ of the participants, and points with error bars represent 

bootstrapped means and 95% confidence intervals. A value of 1 indicates perfect 

discriminability. Note: x-axis scales differ between panels A & B in order to more clearly 

highlight comparisons within each dataset. 

 

Inter-pipeline agreement: To quantify how different pipeline choices contributed most 

to variability in functional connectivity, we computed I2C2 for functional connectivity estimates 

generated from the same data between all pairs of pipelines. Within the HCP data, the order in 

which pipeline choices contributed to variability, from most to least, was GSR >  aCompCor > 

RVT + RETROICOR > notch filter (Fig. 2.7B, bottom panel). I2C2 was always lowest between 

pairs of pipelines that differed (i.e. one pipeline with GSR, one without) on whether GSR was 

applied (ΔI2C2 = .323, 95% CI [.315, .331]). Varying aCompCor also contributed to variability 

(ΔI2C2 = .102, 95% CI [.094, .110]). In contrast, varying RVT + RETROICOR only contributed 

to minimal decreases in I2C2 (ΔI2C2 = .017, 95% CI [.008, .025]), and varying the notch filter 

step did not consistently decrease I2C2 (ΔI2C2 = .004, 95% CI [-.003, .012]). I2C2 estimates of 

reliability both between sessions and between pipelines demonstrated similar results. 

 Within the NKI data, the order in which the pipeline choices contributed to variability, 

from most to least, was GSR+aCompCor > RVT + RETROICOR > censoring.  I2C2 was always 

lowest between pairs of pipelines that differed on whether GSR+aCompCor was applied (ΔI2C2 

=.447, 95% CI [.435, .459]). To a lesser extent, varying RVT + RETROICOR (ΔI2C2 =.057, 

95% CI [.044, .069]) and censoring (ΔI2C2 =.043, 95% CI [.031, .055]) also decreased between-

pipeline I2C2.  
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Figure 2.8: Inter-pipeline agreement as measured by I2C2 between pipelines. I2C2 estimates 

(top) are shown for identical BOLD data processed using different combinations of pipelines. X-

axis represents each I2C2 measurement comparing two pipelines, and the heatmaps (bottom) 

show whether the choice for any given decision point was the same (yellow) or different 

(purple). Comparisons to the right of the dotted line indicate identical preprocessing pipelines as 

well as BOLD data (this is why all such I2C2 estimates are 1). A: Between-pipeline I2C2 

estimates in the NKI data for the 1400 (left) and 645 (right) sequences. B: Between-pipeline 

I2C2 estimates in the HCP data for data in the left-right phase encoding direction.  

  

FD-FC Correlations: We computed correlations across scans between mean framewise 

displacement (FD) and functional connectivity edge weights between all pairs of nodes to 

examine relationships between motion and functional connectivity (FD-FC) after preprocessing 

(Fig.  2.9). Overall, impacts of notch filtering and RVT + RETROICOR on FD-FC correlations 

were relatively minor. Within the HCP data, notch filtering did not impact FD-FC relationships 

(Δabs(FD-FC) = 0.003, 95% CI [-0.016, 0.024], p = 0.784). Within the HCP data neither RVT + 

RETROICOR using belt (Δabs(FD-FC) = 0.001, 95% CI [-0.018, 0.020], p = 0.994) nor predicted 

(Δabs(FD-FC) = -0.002, 95% CI [-0.020, 0.018], p = 0.820) traces impacted FD-FC relationships. 

Within the NKI-RS data, neither RVT + RETROICOR using belt (ΔNKI-645abs(FD-FC) = -0.002, 
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95% CI [-0.059, 0.055], p = 0.938; ΔNKI-1400abs(FD-FC) = 0.013, 95% CI [-0.040, 0.072], p = 

0.622) nor predicted (ΔNKI-645abs(FD-FC) = 0.006, 95% CI [-0.051, 0.065], p = 0.874; ΔNKI-

1400abs(FD-FC) = 0.003, 95% CI [-0.054, 0.060], p = 0.918) traces impacted FD-FC relationships 

most generally. RTV + RETROICOR using both belt (ΔNKI-645signed(FD-FC) = 0.046, 95% CI 

[0.021, 0.074], p = 0.001; ΔNKI-1400signed(FD-FC) = 0.046, 95% CI [0.025, 0.068], p = 0.001) and 

predicted traces did increase signed FD-FC correlations specifically among pipelines with 

GSR+aCompCor (Fig. 2.9B, right panel). However, neither RVT + RETROICOR using belt 

(ΔNKI-645abs(FD-FC) = 0.015, 95% CI [-0.007, 0.037], p = 0.207; ΔNKI-1400abs(FD-FC) = 0.016, 

95% CI [-0.007, 0.038], p = 0.135) nor predicted (ΔNKI-645abs(FD-FC) = 0.016, 95% CI [-0.006, 

0.038], p = 0.167; ΔNKI-1400abs(FD-FC) = 0.018, 95% CI [-0.004, 0.041], p = 0.085) traces 

impacted the magnitude of FD-FC correlations in pipelines with GSR+aCompCor (or across all 

pipelines; Fig. 2.9B, left panel). 

GSR, compared to all other decision points, had the largest impacts on FD-FC 

correlations. Across all datasets, pipelines including a GSR step showed distributions of signed 

FD-FC correlations centered closer to 0 (Fig. 2.9, right panel). Within the HCP data, GSR 

reduced the magnitude of FD-FD correlations  (Δabs(FD-FC) = -0.013, 95% CI [-0.024, -0.003], p = 

0.007). Within the NKI data, pipelines with GSR+aCompCor also showed reduced magnitude of 

FD-FC correlations (ΔNKI-645abs(FD-FC) = -0.089, 95% CI [-0.137, -0.042], p = 0.001; ΔNKI-

1400abs(FD-FC) = -0.147, 95% CI [-0.192, -0.102], p = 0.001). Within the HCP data, aCompCor 

alone did not influence FD-FC correlations  (Δabs(FD-FC) = 0.008, 95% CI [-0.003, 0.019], p = 

0.187), although it did reduce signed correlations specifically in pipelines with GSR (Δsigned(FD-FC) 

= -0.008, 95% CI [-0.012, -0.004], p = 0.001). Censoring reduced the magnitude of FD-FC 
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correlations within the NKI-1400 data (Δabs(FD-FC) = -0.076, 95% CI [-0.122, -0.025], p = 0.003), 

but not within the NKI-645 data (Δabs(FD-FC) = -0.006, 95% CI [-0.053, 0.041], p = 0.796). 
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Figure 2.9. FD-FC correlations for all preprocessing specifications in the HCP (A) and NKI (B) 

datasets. Right panels show boxplots of distributions of signed FD-FC correlations (across all 

scans) between mean Jenkinson FD and functional connectivity for each edge (N=19900 edges 

for each boxplot). Left panels show boxplots of the absolute values of the same FD-FC 

distributions, representing the distribution of the magnitude of FD-FC correlations regardless of 

sign. For all panels, the y-axis labels indicate chosen forks for each pipeline (and within the NKI 

data, the sequence). For all plots, color indicates whether a model-based correction was used (red 
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= no physio correction, green = RVT + RETROICOR (belt), blue = RVT + RETROICOR 

(predicted). FD measurements based on raw BOLD data without any corrections were used for 

all FD-FC correlations.  

 

Distance-Dependent FD-FC Correlations: We also examined how correction strategies 

impacted the distance-dependence of head motion artifacts by computing correlations between 

the length of edges (Euclidean distance between nodes) and corresponding head motion artifact 

(FD-FC correlation) for each edge. We then compared bootstrapped distributions of distance-

dependent FD-FC correlations across pipelines. Across all pipelines and datasets, we observed 

negative correlations between edge length and FD-FC correlations, indicating that connectivity 

estimates between closer nodes were more positively associated with head motion across scans 

than were connectivity estimates between more distant nodes.  

Within HCP data, neither notch filtering (Δdist_dependence = -0.007, 95% CI [-0.031, -0.017], 

p = .5804), belt RVT + RETROICOR (Δdist_dependence = 0.008, 95% CI [-0.021, 0.035], p = .5844), 

nor predicted RVT + RETROICOR (Δdist_dependence = 0.012, 95% CI [-0.017, -0.041], p = .4266) 

impacted distance-dependent FD-FC correlations. However, GSR strengthened distance-

dependent FD-FC correlations (Δdist_dependence = -0.073, 95% CI [-0.096, -0.048], p = .0001), such 

that there was a stronger negative correlation between distance and FD-FC correlations with 

pipelines using GSR (Fig. 2.10). In particular, visualization of relationships between edge length 

and FD-FC correlations indicated that while GSR centered distributions of such correlations at 0, 

such correlations tended to be more negative for the longest edges (Fig. 2.10B & D). Conversely, 

aCompCor weakened distance-dependent FD-FC relationships (Δdist_dependence = 0.037, 95% CI 

[0.014, 0.060], p = .0050).  

RVT + RETROICOR using both belt (Δdist_dependence = -0.059, 95% CI [-0.098, -0.020], p 

= .0001) and predicted (Δdist_dependence = -0.078, 95% CI [-0.121, -0.036], p = .0001) traces 
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strengthened distance dependent FD-FC correlations within NKI-1400 data, though in the NKI-

645 data neither RVT + RETROICOR with belt (Δdist_dependence = -0.041, 95% CI [-0.094, 0.014], 

p = .1409) nor predicted (Δdist_dependence = -0.039, 95% CI [-0.093, 0.014], p = .1389) traces had 

such consistent effects. The combination of both GSR and aCompCor did not impact distance-

dependent FD-FC correlations in either the NKI-645 (Δdist_dependence = -0.002, 95% CI [-0.046, 

0.041], p = .9361) or NKI-1400 data (Δdist_dependence = -0.020, 95% CI [-0.053, 0.137], p = .2088). 

Censoring weakened distance-dependent FD-FC correlations in both the NKI-645  (Δdist_dependence 

= 0.071, 95% CI [0.027, 0.121], p = .0001) and NKI-1400 (Δdist_dependence = 0.134, 95% CI [0.101, 

0.166], p = .0001) data.   
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Figure 2.10. Distance-dependent FD-FC correlations. A-B: Bootstrapped distributions  (using 

repeated random resampling of all scans, with replacement) of distance-dependence of FD-FC 

correlations for each pipeline for the HCP (A) and NKI (B) datasets. Distributions show rank-

order correlations between edge length (Euclidean distance between nodes) and FD-FC 

correlations. Shaded densities indicate full bootstrapped distributions and points with error bars 

represent bootstrapped means and 95% confidence intervals. The dotted vertical line indicates 

zero linear distance-dependance. C-D: Bivariate distribution heatmaps showing Euclidean 

distance between nodes on the x-axis and FD-FC correlations for corresponding nodes on the y 

axis. Each subpanel indicates one pipeline as indicated by the row and column labels for the 

HCP (C) and NKI (D) datasets. Warmer, brighter color indicates higher density. Rank-order 

correlation lines of best fit are plotted over each heatmap, as well as the value of the mean 
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bootstrapped distance-dependent correlation coefficient. FD measurements based on raw BOLD 

data without any corrections were used for all distance-dependent FD-FC correlations.  

 

Comparisons across QC Metrics: Because pipelines that perform comparatively better 

for one quality assurance metric may not necessarily perform better (and sometimes worse) on 

other metrics, we created an interactive web application for visualization of such potential 

tradeoffs (https://pbloom.shinyapps.io/qc_metric_comparison/). Here, users can compare the 

pipelines tested in the current investigation on metrics of data retention, test-retest reliability, and 

residual head motion artifacts, and visualize “tradeoffs” between optimizing on any pair of 

metrics in either the HCP or NKI data. For easier interpretability, only point estimates for each 

metric are displayed in the application (uncertainty estimates can be found in static manuscript 

figures). 

 

 

Figure 2.11. Interactive comparison of pipelines on combinations QC Metrics. 

Web-based application (https://pbloom.shinyapps.io/qc_metric_comparison/) allows 

for pipeline comparisons on any pair of QC metrics within the HCP & NKI data separately.  
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2.4 Discussion 

 Respiration-induced head motion is a major challenge for resting-state fMRI analyses, 

but has often been overlooked in investigations of preprocessing (Fair et al., 2020). Such artifacts 

are particularly visible in multiband datasets where data are acquired at higher frequencies, 

although often present in single-band data as well. Here, we attempt several different techniques 

for correcting respiration-induced head motion artifacts, and evaluate their impacts on data 

quantity, reliability, and presence of residual head motion artifacts. In particular, we compared 

techniques relying on peripheral collection of respiratory belt data or knowledge of participants’ 

breathing rates (notch filtering head realignment parameters, RVT + RETROICOR with belt 

data) to techniques reliant only on BOLD (GSR, aCompCor, censoring, RVT + RETROICOR 

with predicted data). Building on prior work (Hocke & Frederick, 2021), we first demonstrate 

that corrections for breathing-induced artifacts can be performed using predicted respiratory 

traces generated from BOLD data alone, without requiring use of a peripheral respiratory belt. 

Next, we discuss the impacts of each of the techniques investigated on data quantity, reliability, 

and presence of residual head motion artifacts within both the HCP and NKI datasets. 

 

A: HCP Data 

Metric GSR aCompCor Notch RVT 

Pred 

RVT 

Belt 

GSR+, 

aCompCor+,  

RVT Pred OR 

Notch  

GSR-, 

aCompCor+,  

RVT Pred OR 

Notch 

Data Retention* N/A N/A ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ 

Reliability ↑ ↑    ↑↑ ↑ 
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FD-FC ↓↓     ↓↓  

FD-FC Distance-

Dependence 

↑↑ ↓    ↑ ↓ 

 

B: NKI Data 

Metric GSR+aCompCor Censor RVT 

Pred 

RVT 

Belt 

GSR+, 

aCompCor+,  

Censor+, 

RVT Pred 

GSR+, 

aCompCor+,  

Censor+ 

Data Retention* N/A ↓↓ ↑↑ ↑ ↑↑ ↓↓ 

Reliability ↑↑    ↑↑ ↑↑ 

FD-FC ↓↓ ↓ ↑ ↑ ↓ ↓↓ 

FD-FC Distance-

Dependence 

 ↓↓ ↑ ↑  ↓ 

 

Table 2.3: Summary of impacts of correction strategies on QC metrics in the HCP (A) and NKI 

(B) datasets. Each cell indicates how a particular processing strategy (columns) impacted each of 

the QC metrics (rows). Upwards arrows indicate an increase in a given metric, and downward 

arrows indicate a decrease. Double arrows (↓↓, ↑↑) denote relatively larger effects compared to 

single arrows (↓, ↑). Green shaded columns on the right indicate pipelines that perform best on 

one or more metrics. ‘RVT Pred’ and ‘RVT Belt’ pipelines are shorthand for the combined RVT 

+ RETROICOR step. Volume censoring was not conducted within the HCP data, and notch 

filtering was not conducted within the NKI data. *Note: if censoring is applied, pipeline choices 

impact data retention through reductions in framewise displacement. Data retention is not 

impacted if no censoring is done. 
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Prediction of respiratory traces from BOLD data: Using separate stack processing 

(Hocke & Frederick, 2021), we created “predicted” respiratory traces from high temporal 

resolution head motion estimates in the phase-encoding direction generated through separate 

stack processing. As previously reported, these predicted traces showed strong associations with 

corresponding respiratory belt traces in both the NKI and HCP datasets (Fig. 2.3). Correlations 

between belt and predicted respiratory traces were often strongest with a slight (1-2.5s) lag, 

indicating potential phase delay between the belt and predicted traces (Fig. 2.3, Appendix B Fig. 

6), although correlations were still present without phase delay. Additionally, peak frequencies 

were highly similar between belt and predicted traces, indicating that such predicted traces could 

capture frequency information measured by the respiratory belt.  

Although the current results within the NKI retest session data were quite similar to those 

previously reported in a distinct subsample of NKI scans (Hocke & Frederick, 2021), our 

findings indicated somewhat weaker relationships between predicted and belt respiratory traces. 

A potential reason for this is that the current study did not employ strict quality control-based 

inclusion criteria for either the belt traces or BOLD data, and NKI data in the current 

investigation included both BOLD runs with high levels of head motion and low-quality 

respiratory traces (for example, high rates of signal clipping or evidence of the belt slipping off). 

Among the NKI data, correspondence was indeed weaker between belt and predicted traces 

when either belt or BOLD data quality was lower (see Figs.s 5-6). In particular, that scans with 

lower mean framewise displacement showed stronger similarity between belt and predicted 

traces indicates that high levels of head motion may impede estimation of respiratory 

information from BOLD data.  
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Data Inclusion: In both HCP and NKI-RS datasets, model-based respiratory correction 

(RVT + RETROICOR) using predicted respiratory traces mitigated respiratory artifacts within 

head motion estimates, and reduced the amount of data excluded when censoring based on head 

motion comparably to a notch filtering strategy (Fair et al., 2020). One drawback to the notch 

filter observed in the HCP data in particular was a somewhat higher proportion of “lost” volumes 

that were included without the correction, but above threshold for exclusion afterwards. As has 

been previously noted within the context of BOLD data itself (Power et al., 2013), such band-

pass filtering can “spread” impacts of high-motion frames to neighboring ones. It is possible that 

notch filtering the head realignment parameters is producing the same effect and spreading 

motion estimates from high-motion frames to ones immediately before or after.  

 Although data quantity is an essential component of statistical power and generalizability 

(Chen et al., 2022; Cho et al., 2020; Gordon et al., 2017; Marek et al., 2020; Nee, 2019), we 

emphasize that increased data quantity alone cannot be a benchmark for optimization. In 

particular, relaxing motion-based inclusion criteria without simultaneous verification of data 

quality risks increased contamination by head motion artifacts. In particular, recent work has 

suggested that conventional FD=0.2mm thresholds may need to be lowered after applying 

correction methods that broadly decrease the power of the FD trace (Gratton et al., 2020; Kaplan 

et al., 2022). Therefore, increases in data retention after notch filtering the head realignment 

parameters or under RVT + RETROICOR approaches may not be beneficial unless equivalent or 

better data quality can be established. 

Reliability: Overall, the current reliability findings suggest that while corrections for 

breathing-induced artifacts may impact head motion, their effects on preprocessed whole-brain 

functional connectivity estimates are dwarfed by those of GSR and aCompCor (Xifra-Porxas et 
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al., 2021). In particular, notch filtering did not impact inter-pipeline agreement, I2C2, or 

discriminability. RVT + RETROICOR, whether using belt or predicted respiratory traces, only 

had minor impacts on inter-pipeline agreement, and did not impact I2C2 or discriminability. 

Although RVT + RETROICOR tended to decrease between-participant and within-participant 

variance consistent with previous findings (Birn et al., 2014a), effects were small and did not 

impact I2C2 or discriminability.  

In contrast, GSR and aCompCor had major impacts on inter-pipeline agreement, as well 

as reliability between sessions and sequences. GSR in particular impacted inter-pipeline 

agreement the most (Li et al., 2021). GSR and aCompCor both contributed to large reductions in 

between-participant and within-participant variance, which lead to increases in discriminability. 

While neither step consistently impacted I2C2, lack of convergence between the I2C2 and 

discriminability metrics may be due to both violation of the gaussian assumptions of the I2C2 

metric and differences in their calculation. Whereas I2C2 is a ratio of between-participants to 

within-participants variances, discriminability is calculated as the average proportion of within-

participant distances that are smaller than between-participant distances (Li et al., 2021; Milham 

et al., 2021).  

While reliability is critical for fMRI measurement (Elliott et al., 2021), reliability alone is 

not sufficient for pipeline optimization. Highly reliable signal is not necessarily valid signal, and 

trait-like motion or respiratory artifacts in functional connectivity can boost reliability while 

contaminating neuronally-based signals (Birn et al., 2014a; Finn & Rosenberg, 2021; Siegel et 

al., 2014). To ensure that this is not the case, pipelines can be optimized both for reliability and 

reduction of such artifacts.  

 



 111

Residual head motion artifacts: To compare residual head motion artifacts in functional 

connectivity across pipelines, we computed FD-FC correlations and their distance dependence. 

As previously reported (Ciric et al., 2017b; Power et al., 2014), GSR reduced FD-FC correlations 

overall while increasing the distance-dependence of FD-FC correlations, and censoring reduced 

both overall and distance-dependent FD-FC correlations. While GSR worsened distance-

dependent artifacts, simultaneous use of aCompCor partially mitigated this issue in the HCP 

data. Although we did not test GSR and aCompCor factorially in the NKI data, pipelines with 

both GSR and aCompCor showed roughly equivalent distance-dependence to pipelines with 

neither step. Decisions for whether to include GSR in preprocessing may then depend on the 

relative priority of minimizing the central tendency of FD-FC relationships versus their distance-

dependence, although aCompCor and censoring help improve both metrics (see Table 2.3).  

While findings indicated that while RVT + RETROICOR may benefit data retention, 

including such data may come at the expense of exacerbated residual head motion artifacts in 

functional connectivity estimates. However, such effects were specific to the NKI data, such that 

neither belt nor predicted RVT + RETROICOR impacted FD-FC correlations or their distance 

dependence in the HCP data. It is possible that such effects in the NKI are due to the fact that 

data quality was lower (higher motion, clipping of respiratory belt traces) in some of the NKI 

scans. In such scans, conducting RVT + RETROICOR before rigid body motion correction of 

the fMRI data may have interfered with this step, as well as the estimated head realignment 

parameters, causing downstream worsening of FD-FC relationships. Future work could examine 

whether integrating RVT + RETROICOR with rigid body correction effectively reduces these 

FD-FC associations (Jones et al., 2008).  
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It is possible that RVT + RETROICOR may have led to the inclusion of more motion-

contaminated volumes, which in turn worsened FD-FC relationships. The fact that the RVT + 

RETROICOR did not impact FD-FC relationships in the HCP data, where we did not apply 

motion-based censoring, supports this possibility. However, in the NKI data, increased FD-FC 

artifacts were still present in pipelines with either belt or predicted RVT + RETROICOR even 

when censoring was not done. Therefore, the mechanism by which such model-based respiratory 

corrections may worsen residual head motion artifacts is yet unclear.  

Model-based versus frequency-based respiratory correction strategies: Current 

findings indicate that researchers have numerous viable options for mitigation of breathing-

induced artifacts even without available respiratory belt data. However, because thus far the 

current study has not examined impacts of notch filtering on functional connectivity in the NKI 

dataset or censoring in the HCP dataset, conclusions cannot be made on the relative strengths and 

weaknesses of notch filtering versus predicted RVT + RETROICOR. While such comparisons 

will be crucial for more definitive recommendations, we summarize relevant findings and 

considerations so far below. 

First, model-based strategies have several practical and theoretical advantages over notch 

filtering. Most notably, notch filtering is only possible in datasets with sufficient temporal 

resolution to estimate head motion in the 0.2-0.4Hz frequency range (data would need to be 

collected at TR=1.25 to estimate motion up to 0.4Hz). However, low-pass filtering may be used 

at slower TRs (Gratton et al., 2020), though this strategy has not been investigated in depth in the 

current investigation. In addition, RVT + RETROICOR is tailored to mitigate participant-

specific and scan-specific breathing artifacts (Birn et al., 2014b), whereas static notch filtering is 

inflexible to differences in respiration patterns between participants (if a common filter is applied 
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to a whole dataset) or within the course of a scan. Particularly in datasets where breathing rates 

may vary widely (i.e. datasets with wide age ranges), designing filters that capture respiratory 

frequencies for most participants could be difficult (Fair et al., 2020). Yes, within the HCP data, 

such theoretical advantages of model-based correction approaches did not result in improved 

reliability (Fig. 2.7-8) or reduced residual head motion artifacts (Fig. 2.9-10).  

At the same time, several key factors may make notch filtering head realignment 

parameters preferable over model-based strategies. Notch filtering is a more parsimonious and 

less computationally demanding strategy compared to the slice-based regressions used under 

RVT + RETROICOR, and is a more accessible tool for researchers given its implementation in 

existing software (Craddock et al., 2013; Fair et al., 2020). Further, previous work has indicated 

that this approach can increase the reliability of functional connectivity estimates (Fair et al., 

2020; Kaplan et al., 2022), although current findings did not confirm this in the HCP data. 

Finally, we found that RVT + RETROICOR using belt or predicted traces increased residual FD-

FC relationships in the NKI data (see Fig. 2.9-10). If further analyses in the NKI data indicates 

that such artifacts are not increased by a notch filter, this would be another piece of evidence for 

its relative advantage.  

At present, however, findings do not support strong guidelines for choosing between 

model-based and filter-based approaches to respiratory artifact correction. For now, we suggest 

that either strategy may be applied in conjunction with other tools, depending on one’s priority in 

quality control metrics.  
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Figure 2.12:  Decision tree for guiding preprocessing choices. Optimal pipelines may depend on 

one’s priority in quality control metrics.  

 

Summary of Observations: Overall, our findings indicated that no one pipeline 

optimized all metrics tested. Although aCompCor improved both reliability and reduced residual 

head motion artifacts with few drawbacks, all other individual methods represented “tradeoffs” 

between two or more metrics. In particular, while predicted RVT + RETROICOR demonstrated 

viability for reducing breathing-induced artifacts in head motion estimates, this strategy came at 

the expense of exacerbated head motion artifacts in functional connectivity in a developmental 

(ages 6-20) dataset (NKI). In efforts to guide researchers in selection of pipelines to meet their 

priorities in quality control metrics, we summarize the impacts of each of the tested strategies 
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(Table 2.4) and construct a decision tree for potential ways to approach such decisions (Fig. 

2.12).  

 

 

Topic Main Observations 

Notch filtering head 

motion parameters 

*Functional connectivity 

HCP only 

1. Reduced respiratory artifacts in head motion estimates, which improved data retention when 

censoring based on head motion 

2. Did not impact reliability inter-pipeline agreement of functional connectivity  

3. Did not impact head motion artifacts in functional connectivity or their distance-dependence  

RVT + RETROICOR  1. Reduced respiratory artifacts in head motion estimates, especially when using predicted traces, 

which can improve data retention comparably to notch filtering 

2. Did not impact reliability of functional connectivity when either belt or predicted traces were 

used, and only had minor impacts on inter-pipeline agreement 

3. Increased head motion artifacts in functional connectivity among pipelines including GSR and 

aCompCor, though such effects were small in magnitude compared to those of GSR (NKI 

only) 

4. Increased distance-dependent head motion artifacts in functional connectivity, though such 

effects were small in magnitude compared to those of censoring (NKI only) 

GSR  1. Increased discriminability, but not I2C2.  

2. Impacted inter-pipeline agreement more than any other single step 

3. Reduced both within-participant and between-participant variances in functional connectivity 

4. Reduced head motion artifacts in functional connectivity, but increased their distance-

dependence 

aCompCor 1. Increased discriminability, but not I2C2 

2. Impacted inter-pipeline agreement less than GSR, but more than any other steps 

3. Reduced both within-participant and between-participant variance in functional connectivity 

4. Reduced distance-dependent head motion artifacts  

Censoring  

*NKI only 

1. Reduced data retention (by definition), but did not impact reliability  

2. Reduced both residual head motion artifacts and their distance-dependence 

General QC Points 1. Given the same threshold (such as FD > 0.2mm), using the Power FD metric will always 

result in equal or more data excluded compared to the Jenkinson FD metric 

2. aCompCor benefited several QC metrics and showed few negative impactsMultiple QC 

metrics should be considered in tandem with the characteristics of the scanned cohort and 

research question when making fMRI preprocessing decisions 

3. Investigations of reliability should separately examine within-participant and between-

participant variance 
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4. Resting-state fMRI studies will be strengthened by multiversing key preprocessing choices, 

most notably GSR and corrections for breathing-induced artifacts in head motion (Li et al., 

2021) 

Table 2.4: Summary of observations for each preprocessing strategy, as well as general quality 

control considerations 

 

Limitations: We note several key limitations to the present work. Most notably, 

distinguishing breathing-induced pseudomotion from true head motion (breathing-induced or 

otherwise) remains a challenge. Although use of multi-echo sequences may help with 

discrimination of artifact signals in BOLD data (Kundu et al., 2015; Power et al., 2018), future 

fMRI denoising work will also benefit from “ground truth” peripheral measurements of head 

position not susceptible to breathing-induced distortions. Unfortunately, that respiratory 

correction techniques, particularly RVT + RETROICOR, may be most effective in high-quality 

low-motion data limits their effectiveness in contexts where exclusion criteria may be most 

important, including developmental or multi-site investigations.  

 An additional limitation is that the current study did not test many possible preprocessing 

strategies for mitigating both motion and breathing-induced artifacts. Impacts of notch filtering 

on functional connectivity were not tested in the NKI data, and impacts of censoring not tested in 

the HCP data, which makes weighing the relative strengths and weaknesses of predicted RVT + 

RETROICOR and notch filtering across datasets more difficult. While exhaustive examination of 

all possible strategies is beyond the scope of any one investigation, future work could address in 

particular whether scan-specific notch filtering strategies (potentially using predicted respiratory 

traces to select filter envelopes) or independent components analysis (ICA-FIX, ICA-AROMA; 

(Pruim et al., 2015) effectively mitigate such artifacts. Further, the current work did not directly 

test whether high-resolution estimation of head motion parameters can be used to predict 

respiratory signal in single-band fMRI datasets, where breathing-related head motion artifacts are 
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also present (Gratton et al., 2020). In theory, this may be feasible if head realignment parameters 

are estimated separately for individual slices (rather than “stacks” of slices), though further 

investigation will be needed to explore this possibility. 

 Finally, we note several limitations to some of the QC metrics used in the current study. 

Since both I2C2 and discriminability are multivariate metrics of reliability, findings based on the 

multivariate reliability of functional connectivity matrices as a whole may not necessarily apply 

to individual edges or regions (Xu et al., 2022). In addition, recent work has demonstrated that 

FD-FC correlations may be an imperfect metric (Raval et al., 2021), as addition of high-variance 

noise in functional connectivity can suppress true associations with head motion. Last, the 

current investigation examined impacts of preprocessing strategies on static functional 

connectivity during resting-state fMRI. Thus, findings may not generalize to task-based 

approaches, scans collected during movie-watching (Vanderwal et al., 2019), or time-varying 

connectivity methods (Bassett et al., 2011).  

 

Conclusion 

Broadly, the current findings indicate necessary tradeoffs between data inclusion, data 

reliability, and residual head motion artifacts in resting-state fMRI preprocessing, as no one 

pipeline was able to optimize all such metrics. Given such tradeoffs, future studies will also 

likely benefit from tailoring pipelines to match priorities in quality control metrics, and  

“multiverses” of preprocessing pipelines to determine the robustness of results to potentially 

influential analytical decisions (Botvinik-Nezer et al., 2020; Cosme & Lopez, 2020; Dafflon et 

al., 2020).  

 



 118

Acknowledgements 

Data were provided in part by the Human Connectome Project, WU-Minn Consortium 

(Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 

16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by 

the McDonnell Center for Systems Neuroscience at Washington University. 

  



 119

Chapter 3: Strong and wrong? An exploration of strategies beyond 

model-free and model-based learning from childhood to young 

adulthood 
 

Paul Alexander Bloom, Andrea Fields, Tricia Choy, Nicolas Camacho, Lisa Gibson, Anna 

Vannucci, Syntia Hadis, Chelsea Harmon, Sage Hess, Gabriela Rodrigues, Michael Lincoln, 

Roxanna Flores Toussaint, Rebecca Umbach, Charlotte Heleniak, Daphna Shohamy, & Nim 

Tottenham 

 

 

 

 

 

 

 

 

 

 

 

 

 



 120

Abstract 

 Recent work has suggested that the ability to plan prospectively using cognitive maps of 

the environment undergoes maturation from middle childhood to young adulthood. While 

adolescents and adults use such “model-based” learning, children have been argued to use 

“model-free” strategies without planning ahead or using environmental structures to make 

decisions. Such findings have been replicated across several studies using two-stage sequential 

decision-making paradigms. Yet previous analyses of developing two-stage task behaviors have 

rarely studied decision-making at the second stage of the task. Here, we studied two-stage task 

strategies in 62 youth ages 7-13 years old using a modified two-stage task intended to enhance 

model-based decision making. Contrary to expectations, there was no evidence for the signatures 

of model-based or model-free decision-making during the first stage of the task. Yet, child 

behaviors indicated sensitivity to task structure. To better understand such behaviors, we 

compared data collected under this modified paradigm to three previously collected 

developmental datasets (301 total participants, ages 8-25 years). Despite methodological 

differences (e.g., task instructions, gamification, trial duration, reward incentives, visit duration) 

across datasets we also observed behavioral patterns at the second stage of the task explained 

neither by model-free nor model-based algorithms. Participants across the entire age range 

studied repeated spatial-motor sequences (left/right button presses) following rewards, even 

when such sequences would not impact the likelihood of receiving a subsequent reward. Further, 

participants repeated such sequences more quickly following rewarded trials, suggesting that 

such behaviors may be planned before the start of the subsequent trial. These findings suggest 

that, in tandem with model-free or model-based strategies, youth assign value to spatial and 

motor cues in environments where the outcomes of their decisions are uncertain.  
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3.1 Introduction 

 Starting even before birth (Spence & DeCasper, 1987; Varendi et al., 1996; Voegtline et 

al., 2013), learning from one’s environment to guide future behavior is a vital feature of human 

development (Knudsen, 2004; Rovee & Rovee, 1969). The ability to use previous positive and 

negative experiences to choose actions is necessary for adaptive functioning across development, 

including both fundamental regulatory needs and higher order social and cognitive processes 

(Frankenhuis et al., 2019; Jones et al., 2011; Nussenbaum & Hartley, 2019). In particular, 

reinforcement learning, or the association of prior actions with outcomes and subsequent use of 

associations to choose future actions, is fundamental to learning how to successfully navigate 

both threatening and rewarding environments (Delgado et al., 2008; LeDoux & Daw, 2018). 

Reinforcement learning algorithms (Rescorla & Wagner, 1972; Sutton & Barto, 1998) drawn 

from computer science have shown efficacy in explaining both human and animal behaviors 

during reward (O’Doherty et al., 2003; Roesch et al., 2012) and threat learning (Mkrtchian et al., 

2017; Phelps et al., 2004), as well as corresponding midbrain dopaminergic signals (Schultz et 

al., 1997; Sharp et al., 2016). Thus, reinforcement learning paradigms have been argued to have 

both explanatory potential for a variety of behaviors and biological plausibility.  

Recently, much work has focused on distinguishing behaviors generated by two distinct 

reinforcement algorithms, dubbed “model-free” and “model-based” learning (Daw et al., 2011; 

Gläscher et al., 2010). Model-free learners associate actions with values, but do not use 

“cognitive maps” of the environment to link actions with subsequent states (a state can be any 

new situation with a new set of possible actions). Thus, model-free learners only retrospectively 

update the utility of actions, and do not “plan ahead”. Model-based learners, on the other hand, 

make prospective decisions based on “maps” of the environment, which include both values of 



 122

actions and the likelihood that actions will lead to future states (Doll et al., 2012, 2015; Duncan 

et al., 2018). For example, while a model-free learner might learn from previous trips which of 

several routes of travel tends to be fastest, a model-based learner might also learn which routes 

tend to be fastest conditional on the time of day, then plan their trip based on what time of day 

they will be leaving.  

While model-based learning is more capable of nuance and likely advantageous in many 

environments, such a strategy is thought to come at cognitive burden. Model-based learners must 

store and update more information (i.e. both maps and action values, whereas model-free 

learners only keep track of action values), especially in complex environments (Otto, Raio, et al., 

2013). Thus, empirical research and simulation studies have indicated that it may be adaptive to 

use a combination of both strategies, or switch between strategies as a function of one’s 

environment (Simon & Daw, 2011). Indeed, adult humans may use combinations of both model-

based and model-free learning (Daw et al., 2011), or even change strategies over time. 

Nevertheless, whether model-based versus model-free approaches are more computationally 

demanding, from an algorithmic perspective, depends on the structure of the environment. 

Indeed, environments exist where model-free strategies are no less costly than model-based ones 

(Kool et al., 2016; Simon & Daw, 2011). Further, the “cost” of a strategy for an algorithmic 

agent (number of required computational steps, parameters required, values cached) may not 

map directly onto required memory and executive functions for human participants.  

In particular, research with human participants has approached studying these learning 

strategies with versions of a ‘two-stage’ Markov decision task, which assess use of both types of 

learning (Daw et al., 2011; Kool et al., 2016). In the most widely-used paradigm (Daw et al., 

2011), participants navigate through two stages of sequential choices over many trials. In the first 
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stage, participants make a binary choice of two stimuli, which each lead probabilistically 

(typically, each of the two stage 1 choices lead to one of the stages with a 70% likelihood, and a 

30% likelihood to the other) to one of two second-stage “states”. In each of the two states, 

participants then make a binary choice between two more stimuli, each of which provide a 

reward with a different likelihood. The reward probabilities of each of the four stage 2 choices 

drift independently over time according to a Gaussian random walk procedure. Typically, 

researchers examine patterns of choices at stage 1 over several hundred trials to ask whether 

choices at this stage reflect use of the “transition probabilities” from the first to second stages in 

decision-making. Participants using model-based strategies incorporate the transition 

probabilities into decision-making, making stage 1 choices with the plan to reach a specific state 

at stage 2, while participants using model-free strategies use a simpler strategy of repeating stage 

1 choices that previously lead to rewards (regardless of stage 2 state, see Fig. 3.2).  

 Model-based and model-free learning have also been proposed as a useful framework for 

understanding cognitive development from childhood to young adulthood (Raab & Hartley, 

2018). In particular, recent work has held that model-based learning is a hallmark of cognitive 

development, as use of model-based learning strategies tend to increase from childhood through 

young adulthood (Decker et al., 2016; Nussenbaum et al., 2020; Potter et al., 2017). In particular, 

youth ages 13 years and under have been argued to rely mostly on “habit’, or model-free 

strategies. Further, model-based learning is associated with abstract reasoning capabilities in 

developmental samples (Nussenbaum et al., 2020; Potter et al., 2017), motivating arguments that 

the developmental appearance of model-based learning may be driven by the slower maturation 

of prefrontal cortical (PFC) function compared to the basal ganglia (Casey et al., 2016). 

Supporting this view, disruption of the dorsolateral PFC through transcranial magnetic 
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stimulation decreased model-based, but not model-free learning in adults (Smittenaar et al., 

2013).  

On the other hand, there is ample evidence that infants can learn hierarchical rule 

structures (Werchan et al., 2015, 2016) and apply them to new stimuli. Such behaviors are 

closely related to model-based control, as they require agents to learn context-dependent rules 

and choose actions accordingly (Frank & Badre, 2012). Further, work with a modified two-stage 

task paradigm has found that children as young as 5 years of age are capable of model-based 

control (Smid et al., 2020). Across several studies, children ages 8-13 also demonstrate 

knowledge (if not use of) of transition structure from stage 1 to stage 2 within the two-stage 

paradigm as evidenced by increased reaction times following “rare” compared to “common” 

transitions (Nussenbaum et al., 2020). Together, such findings raise the possibility that younger 

children may elect to use strategies other than model-based control to approach the two-stage 

task, rather than lacking the neural circuitry to support such computations.  

 Simultaneously, recent work has demonstrated that adult participants’ behaviors during 

two-stage task paradigms are heavily influenced by task instructions (Feher da Silva & Hare, 

2020). In particular, if task instructions are not sufficiently clear, adult participants make 

assumptions about the structure that may bias estimates of model-free versus model-based 

learning. Recent work has argued that adults primarily use model-based strategies, and apparent 

combinations of model-free and model-based strategies are due to underspecified task 

instructions or improper analysis strategies (Miller et al., 2016). Modifying the task with more 

specific instructions in one study led to little evidence of model-free learning (Feher da Silva & 

Hare, 2020). Thus, it may be possible that age-related differences in interpretations of 
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instructions may give rise to findings of increasing model-based control between childhood and 

young adulthood. 

Further, the continuum from model-free to model-based learning is only one dimension 

with the potential to explain behavior in a potentially multidimensional space of task strategies 

(Collins & Cockburn, 2020; Momennejad et al., 2017). Particularly because “credit assignment” 

(e.g. determining what contributed to a reward; Minsky, 1961) following stochastic rewards is 

difficult, participants may also assign value to reward-independent spatial or motor information 

during such two-stage paradigms (i.e. repeating patterns of left/right button presses after rewards, 

regardless of transitions and states), rather than pursuing putatively model-based policies (Shahar 

et al., 2019). However, little work has investigated strategies beyond purely model-free and 

model-based ones during the two-stage paradigm within developmental samples. Despite the fact 

that there is much active research using this paradigm, deeper knowledge of the degree to which 

additional learning mechanisms may help to accurately characterize behavior would be highly 

beneficial for understanding the development of reward processing.  

 In the present work, we take several approaches to more holistic characterization of 

youths’ learning strategies during two-stage paradigms. Initially, we designed a modified space-

themed version of the two-stage task intended to encourage model-based learning through a 

constant spatial representation of the transition structure. Healthy developing children (N=62, 

ages 7-13 years) completed this task in the laboratory. Contrary to our expectations, participants 

showed neither typical model-free nor model-based signatures at the first stage of the task. In 

efforts to understand such strategies, we conducted exploratory analyses of stage 2 behaviors 

under our modified paradigm, as well as in three previously collected datasets. Overall, while 

results indicated behaviors unique to the current paradigm at stage 1, we found evidence for 
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stage 2 behaviors in all datasets not explained by either model-free or model-based learning 

algorithms. In particular, participants across the entire age range studied repeated spatial-motor 

sequences (left/right button presses) following rewards, even when such sequences did not 

impact the likelihood of receiving a subsequent reward (Shahar et al., 2019). Overall, the current 

findings indicate that model-free and model-based signatures may be both sensitive to both the 

task (instructions, practice trials, spatial layout of stimuli, trial duration, ‘gamification’) and 

study design (monetary incentivization of rewards, context of task within study session) factors. 

Yet, the presence across paradigms of credit assignment to spatial-motor cues indicated a broader 

tendency to use such cues even when independent of reward outcomes. 

  

3.2 Methods 

Participants: The present study included 62 (30M / 32F) youth recruited from the United 

States ranging from 7-13 years of age (M=9.6, SD = 1.74). The sample studied here was part of 

the Parents and Children Coming Together (PACCT) study (Fields et al., 2021; Nikolaidis et al., 

2022); a larger longitudinal study on early caregiving disruptions (N = 103, institutionalization, 

domestic or international foster care, extended separation from parents), though the present work 

focused only on “comparison” youth without such experiences. The median family income-to-

needs ratio for participating families was 2.35 (SD=3.4, range [0.44, 14.8]). Information on 

participant race and ethnicity is available in supplemental tables 1-2. Participants studied in the 

current work were recruited via flyers, street fairs, word of mouth, and re-contact from lists of 

interested participants from previous lab studies. Data collected for the current work were from 

the second visit of the longitudinal study, which occurred on average 18 months after the first 

visit. Parents provided consent and youth provided written assent.  
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Study visits most often lasted 4-5 hours, and included approximately 75 minutes of 

magnetic resonance imaging (MRI). Most youth completed MRI scanning prior to the two-stage 

sequential learning task studied here. In addition, youth completed a larger set of assessments 

aimed at characterizing cognitive control behavior and negative valence systems, while parents 

completed surveys and semi-structured clinical interviews (KSADS). Analyses in the current 

study only include the two-stage learning task data, and not the MRI or other assessments. The 

university Institutional Review Board approved the study protocol, and families were 

compensated $175 per child (for some families, multiple children participated) in cash. Travel 

expense coverage (Uber for families within New York City, Amtrak tickets and hotel vouchers 

for families outside New York City) was also offered to participating families.  

Data collection of the two-stage task began in March 2019 and was ended in March 2020 

at the onset of the COVID-19 pandemic. Although moving the task paradigm to an online format 

was possible (Nussenbaum et al., 2020), we chose to stop data collection given that a majority of 

healthy comparison participants (62/106, ~58%) had already completed the task, and to avoid 

discrepancies in procedures between participants. 

Previously Collected Datasets: In addition to data collected specifically for the present 

study, we conducted secondary data analyses of 3 previously acquired datasets using the 

spaceship version of the two-stage task from which the current paradigm was based (Decker et 

al., 2016; Nussenbaum et al., 2020; Potter et al., 2017). All data were accessed via the Open 

Science Framework (https://osf.io/we89v). All three datasets used similar versions of the 

spaceship task, and included participants ranging in age from 8-25 years.  

 

Source Name used here Age Ranges (years) Collection Method 



 128

Decker et al., 2016 Decker dataset 8-12 (N=30), 13-17 

(N=28), 18-25 

(N=22) 

In-lab 

Potter et al., 2017 Potter dataset 8-12 (N=26), 13-17 

(N=23), 18-25 

(N=25) 

In-lab, during fMRI  

Nussenbaum et al., 

2020 

Nussenbaum dataset 8-12 (N=50), 13-17 

(N=50), 18-25 (N-51) 

Online via Pavlovia 

Table 3.1: Information on three previously collected developmental datasets using a spaceship 

version of the two-stage task 

 

Two-Stage Task: Participants completed a custom version of the two-stage task built in 

pygame (https://github.com/pab2163/spaceTreasureRLTask) and inspired by the one used by 

Decker et al. (2016). The task structure was identical, such that participants were presented with 

200 trials each where they first selected a green or yellow “portal” (Fig. 3.1A) to move their 

avatar using the left/right arrow keys. Then (Fig. 3.1B), on 70% of trials, a ladder carried the 

avatar vertically to the planet above (common transition), where in the other 30% of trials a 

ladder carried the avatar diagonally to the other planet (rare transition). Once at a given planet, 

the participants then used the left/right arrow keys again to select an alien to approach (Fig. 

3.1C). On each trial, aliens gave coin rewards at likelihoods that drifted independently using a 

Gaussian random walk (with standard deviation 0.025) over the course of the task (Fig. 3.1D). 

Reward likelihood changed over the course of the task in order to incentive learning over all 200 

trials (Daw et al., 2011). The positions of the different portals and aliens were counterbalanced 

across participants, but fixed within participants such that neither portals nor aliens shifted in 

location for a given run. The task was designed such that exactly 7 of the first 10 trials, in a 

random order, would be common transitions (so as not to bias participants’ cognitive maps early 

in the task). Then 133 of the 190 remaining trials were set to be common transitions, also in a 

random order.  
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While the core structure of the task design was identical to that used in previous studies 

(Daw et al., 2011; Decker et al., 2016; Nussenbaum et al., 2020; Potter et al., 2017), we also 

made several design modifications intended to enhance participant engagement and encourage 

model-based learning strategies. Most notably, the entire structure of both stages 1 and 2 

remained on the screen at all times, such that participants could see both planets and all four 

aliens even when at stage 1, as well as seeing the chosen portal and ladder while at stage 2. We 

hoped that by making the spatial transition structure always visible to participants, this would 

increase use of this structure for model-based learning.  

In addition, because participants were completing this task during the middle of a 4-hour 

study session, we made several modifications to enhance engagement with the task. First, we 

increased the speed of transitions to 500ms, and decreased the intertrial interval to 500ms such 

that each trial would take ~3s and the entire task around 10 minutes. We also allowed 

participants to choose their own avatars from a set of possibilities (Black Panther, Chloe the cat 

[from Secret Life of Pets], Spiderman, or Pikachu), and included sound effects and background 

music throughout the task in efforts to resemble a video game. To further emphasize reward 

feedback, the game emitted a “whee!” sound when the alien choice resulted in a coin reward, and 

a beeping sound when the choice did not result in a reward. Finally, we shortened the 

instructions and practice period such that participants viewed an overview of the task structure, 

then completed only 2 practice trials with a different stimulus set. This was substantially shorter 

compared to the 50 practice trials completed by participants in other studies (Daw et al., 2011; 

Nussenbaum et al., 2020). A video of the tutorial and 25 trials of the task can be viewed at 

https://osf.io/9m8xh/. Due to the structure of the larger study session, participants completed the 

task in a mock MRI room or participant testing room on the same floor as the MR suite on a 
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Windows laptop with the experimenter sitting next to them. Participants were not in the MRI 

scanner while completing the task. 

After completion of the task, we also asked a subset of participants to report “what 

strategies did you use to play the game?” in their own words. Experimenters transcribed these 

responses word-for-word as accurately as possible.  

 

 

 

Figure 3.1: Participants completed a modified version of the space-themed two-stage task 

developed by Decker et al. (2016). For each of 200 trials, participants first selected a portal (A) 

to navigate their avatar using the left/right arrow keys. Then (B), on 70% of trials, a ladder 

carried the avatar vertically to the planet above (common transition), where in the other 30% of 

trials a ladder carried the avatar diagonally to the other planet (rare transition).  Once at a given 

planet, the participants then used the left/right arrow keys again to select an alien to approach 

(C). On each trial, aliens gave coin rewards at likelihoods that drifted independently over the 

course of the task (D). Positions of all portals, planets, and aliens were counterbalanced between 

participants but were constant across trials for each participant. Portals, planets, and aliens were 
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always visible on the screen to encourage use of the transition structure for decision-making, 

although aliens were slightly more transparent during stage 1 choices.  

 

Analyses  

Simulated learning agents: To check the validity of our custom task and ensure that 

idealized model-based and model-free learners would show similar patterns of behavior to those 

with previously used tasks, we simulated 500 model-free and 500 model-based agents 

“completing” our task.  However, we note here that some of the features that made the task 

unique (trial duration, gamification, spatial layout) were not included in the simulation process. 

The simulated model-free learners employed a SARSA algorithm to complete the task 

(Feher da Silva & Hare, 2020). Initially at � = 1 (the first trial), the model-free values of all 

actions (Q-values) that can be taken at all stages are set to 0.5 (i.e. �����	, �� = 0.5 for all 

potential stages and actions). Then, model-free learners update the values of chosen actions. 

Second-stage action values (at the planets) are updated as the current value, plus the product of 

the stage two learning rate (��� and the reward prediction error at stage 2 (���), which is defined 

as  

��� = �� − �����	�, ��� �1� 

 

where ��  is the reward for trial t (either 1 for a coin, or 0 for no coin). Thus, stage 2 Q-values are 

updated as follows: 

 

������ �	�, ���  = �����	�, ��� +  ����� �2� 

Then, the Q-value of the chosen first-stage action �� at first stage state 	�, the value is also 

updated according to the products of the stage 1 learning rate (��� and reward prediction errors 
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at both stages. Here, the reward prediction error at stage 2 (���), was defined as the difference 

between Q values for the chosen stage 1 and stage 2 actions: 

 

��� = �����	�, ��� +  �����	�, ���  �3� 

Thus, the Q-value for first stage actions was update as: 

 

������ �	�, ���  =  ������ �	�, 1� +  ����� +  ������ �4� 

 

where � represents the ‘eligibility’ parameter (which can range from 0-1) governing how well 

reward prediction errors are back-propagated to previous states and actions. Model-based 

learners performed updating identically at stage 2 such that �����	�, ��� =  �����	�, ���. 

However, model-based agents calculated values for stage 1 actions at the time of decision 

making using both the values of stage 2 actions and the probabilities that stage 1 actions will 

transition to stage 2 states as follows: 

 

�����	�, ��� =  � ��	�|	�, ���
!"∈$

%�&'"∈(�����	�, ��� �5� 

 

where ��	�, ��� represents the probability of a given stage 1 action �� resulting in a transition to 

a stage 2 state.  S is the set of all possible stage 2 states (both planets), and A is the set of actions 

available at a given stage 2 state (left or right alien). Thus, action values at stage 1 are calibrated 

based on the products of the likelihood of transitioning to each stage 2 stage and the maximum 

action value (best alien) if that stage 2 state is reached.  
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 Both model-free and model-based agents made all decisions with likelihoods governed 

by a softmax function with inverse temperature parameter ) (Daw, 2011), such that higher 

values of ) resulted in heavier weighting of differences in Q-values for any given decision and 

shifting the balance towards exploitation (whereas lower ) increased likelihood of 

‘exploration’). Both types of agents also were set with a “perseveration” parameter (drawn from 

a uniform distribution with range [0.01, 0.2]), such that they exhibited a mild tendency to be 

slightly more likely to repeat previous stage 1 choices than switch. Simulations did not include 

any such perseveration parameter for stage 2 choices.  

Logistic regression models of consecutive trials: For both simulated and human 

learners in the current study, respectively, we used logistic regression models of consecutive 

trials to estimate the probability of repeated stage 1 choices as a function of the reward (reward 

versus no reward) and transition type (common versus rare) on the previous trial. Prior work has 

demonstrated that ideal model-free agents will more likely repeat stage 1 choices (‘stay’) if the 

previous trial resulted in a reward, regardless of whether the previous trial’s transition was 

common or rare (Daw, 2011). Thus, model-free learners will show a main effect of reward, but 

not a main effect of transition type or interaction. On the other hand, ideal model-based learners 

will be most likely to repeat stage 1 choices if the previous trial was rewarded and a common 

transition, or if the previous trial was not rewarded and a rare transition. Thus, purely model-

based learners will not show any main effects of reward or transition type, but will show a 

reward X transition type interaction on probability of staying at stage 1. The R syntax for this 

model was as follows: 
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stay1~last_reward*last_transition + (last_reward*last_transition|id), family = bernoulli(link = 

"logit") 

 

In addition to this group-level model, we fit a similar model with a single between-

participants term for age, as well as terms for age X reward, age X transition, and age X reward 

X transition interactions, to ask whether model-free or model-based learning signatures changed 

as a function of age. The syntax for this model with age terms is as below:  

 

stay1~last_reward*last_transition*age + (last_reward*last_transition|id), family = 

bernoulli(link = "logit") 

 

All logistic regression models were fit using multilevel Bayesian estimation using the 

brms R package (Bürkner, 2019), with all terms allowed to vary across participants (or simulated 

agents).  
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Figure 3.2: Idealized stage 1 decisions of model-free (left) and model-based learners reproduced 

from Daw et al. (2011). X axis positions represent whether the previous trial resulted in a reward 

or not, and color represents whether the previous trial had a common (blue) or rare (transition). Y 

axis values represent the likelihood that a learner will “stay”, or choose the same stage action as 

the previous trial.  

 

Knowledge of task structure: To probe participants’ understanding of the task structure, 

we asked them a series of questions after completing the task. Questions asked participants to 

identify the transition structure most generally (Fig. 3.3, left), as well as which stage 2 state each 

stage 1 choice most often led to (Fig. 3.3, center & right). For the latter two questions, stage 1 

choices (portals) were shown in the center of the bottom of the screen, rather than on the side 

presented during task trials, such that participants could not rely on spatial information about 

portals to infer their transition probabilities with stage 2 states. 

 To assess implicit knowledge of the transition structure, we also measured stage 2 

reaction times immediately following common versus rare transitions. Previous work has found 

participants across ages generally respond more slowly at stage 2 following rare transitions, and 

that larger rare > common reaction time differences are associated with higher usage of model-

based strategies (Decker et al., 2016; Nussenbaum et al., 2020).  
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Figure 3.3: Assessment of participants’ explicit knowledge of the task structure. For each 

question, participants could press the left or right arrow key to indicate their answer. Participants 

answered these questions after completing all trials of the task. 

 

Equivalence of Stimulus, Action, and Spatial Location: Within the current task 

paradigm, as well as each of the three previously collected datasets, the positions of stimuli at 

stage 1 (portals in the current paradigm, spaceships in existing datasets) and stage 2 (aliens) were 

always located on the same sides of the screen. In addition, in the current paradigm, the stage 2 

states (planets) and associated actions (aliens) were always visible on screen in the same position 

(see Fig. 2.1). Thus, unlike previous versions of the task used with adults in which stimuli shifted 

in their relative positions (Daw et al., 2011), all stage 1 and stage 2 choices were associated with 

a certain direction (i.e. left or right), and a certain button press (i.e. left arrow key, right arrow 

key). Because choices were then synonymous with both spatial locations and actions (or motor 

behaviors), we examined learning behaviors based on spatial and action-based information rather 

than the stimuli on the screen (Shahar et al., 2019).  

Exploratory analyses of stage 2 stay behaviors: After observing that, contrary to our 

expectations, participants showed neither the canonical signatures for model-free nor model-
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based learning at stage 1 (Fig. 2.1, we sought to further characterize participant learning through 

analyses of decisions at stage 2. In particular, to identify whether such behaviors at stage 2 were 

specific to our modified paradigm, we conducted secondary analysis of three previously 

collected datasets using the spaceship version of the two-stage task. Because rewards occur 

directly after stage 2 decision during the two-stage task, model-based and model-free learners are 

theorized to behave identically in their decision making at this stage (e.g. because there are no 

future states for a model-based learner to take into account; Doll et al., 2015). Thus, other than 

analyses of reaction times at stage 2 following rare versus common decisions as an indicator of 

awareness of transition structure (Decker et al., 2016), few studies have focused on decision 

strategies at the second stage of the two-stage task. 

         Here, in parallel to often-used analyses of stay/switch behaviors at stage 1, we examined 

the tendency of participants to stay versus switch choices at stage 2. We defined a “stay” at stage 

2 as pressing the same button at stage 2 as the previous trial, regardless of state. Under reward 

learning algorithms, a learning agent would be more likely to stay with the same choice at stage 

2 following a reward on the previous trial, provided that the agent is at the same stage 2 state. In 

fact, previous investigations have used such behaviors as an inclusion criterion under the logic 

that participants who do not stay with previously rewarded stage 2 choices at the same state are 

not “pursuing reward” (Decker et al., 2016). However, if the learning agent is at a different stage 

2 state compared to the last trial, whether a reward was obtained on that trial should not influence 

the agent’s choice. A reward prediction error on the previous trial will only update the Q-value 

for the chosen stage 2 action, therefore the relative probability of choices at a different stage 2 

state on the subsequent trial will not be different based on whether a reward was obtained. Thus, 
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neither model-free nor model-based learners, as typically defined, should show effects of 

previous rewards on stage 2 stay behaviors if at a different stage 2 state compared to the last trial.  

 To explore stage 2 stay behaviors as a function of reward on the last trial and whether 

participants were at the same stage 2 state, we fit similar multilevel logistic regression models to 

those used with stage 1 behavior. For both the simulated agents and for each dataset (PACCT, 

Decker, Potter, & Nussenbaum) separately, we fit the same model, where state_match was coded 

as a 1 when the participant was at the same stage 2 state as the previous trial, and a 0 when not. 

To quantify whether stage 2 stays were more likely following stage 1 stays, models also included 

an interaction term for stage 1 stays (stay1) on the current trial as follows: 

 

stay2 ~ state_match*last_reward*stay1 + (state_match*last_reward*stay1 | id), 

family = bernoulli(link = 'logit') 

 

To examine whether any such behaviors showed age-related differences, we also fit the above 

model with an added term for age, including interactions of age with all parameters. The model 

was fit separately to each dataset as follows: 

 

stay2 ~ state_match*last_reward*stay1*age + (state_match*last_reward*stay1 | id), family = 

bernoulli(link = 'logit') 

 

Because such higher-order interactions tend to be much lower powered and prone to 

errors of estimation than do lower-order interactions or main effects (Gelman, 2018), we 

examined whether such interaction effects generalized across all 4 datasets.  
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Stage 2 reaction times: In efforts to understand whether participants made faster 

decisions when executing reward-contingent action sequences, we fit a multilevel linear 

regression model to participants’ stage 2 reaction times. We first within-participant z-scored 

stage 2 reaction times such that each participant’s mean reaction time was set to 0 and the 

standard deviation set to 1. We then modeled these z-scored reaction times as a function of 

reward on the previous trial (last_reward), stays/switches at both stage 1 (stay1) and stage 2 

(stay2) of the current trial, as well as the transition type (transition) on the current trial: 

 

rt2_z ~ stay1*stay2*last_reward*transition + (stay1*stay2*last_reward*transition | id)       

 

We examined the relative speed of reward-contingent action sequences through the 

parametrization of a 3-way stay1 x stay2 x last_reward interaction on stage 2 reaction times. 

Additionally, we examined whether such effects differed when the current trial transition was 

common versus rare through the 4-way interaction of stay1 x stay2 x last_reward x transition.  

 

Model-fitting: For all analyses, Bayesian multilevel regression models were fit using 

Markov Chain Monte Carlo estimation using the brms package in R (Bürkner, 2019). Unless 

otherwise indicated, 4 chains of 2000 iterations (1000 warmup) were run for each model. All 

models used package-default weakly informative priors unless otherwise indicated. 95% 

posterior intervals (PI) and posterior predictive intervals of expected values are reported using 

the quantile method. All data analyses were done using R, and visualizations were created using 

the ggplot2 package (Wickham et al., 2019).  
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3.3 Results 

Simulated learning agents within the current task paradigm: As a check of our task 

parameters, we simulated decisions for 500 model-free and 500 model-based learning agents. We 

then fit multilevel logistic regression models to the model-free and model-based agents 

separately to stage 1 stay/switch behaviors contingent on the last trial reward and transition type. 

As previously demonstrated with two-stage paradigms (Daw et al., 2011), model-free learners 

most often stayed with stage 1 choices (made the same choice as the previous trial) following 

rewarded trials, but did not show responsiveness to the transition type of the previous trial (Fig. 

3.4A). Model-based learners, on the other hand, showed an interaction effect between the reward 

and transition type on the last trial. (Fig. 3.4B) Model-based learners were most likely to stay 

with stage 1 choices following common rewarded trials and rare unrewarded trials, and relatively 

less likely to stay following rare rewarded trials and common unrewarded trials. As previously 

demonstrated, model-free and model-based learners performed identically following trials with a 

common transition, but showed different patterns of stage 1 stay behaviors following a rare 

transition.  

 



 141

 

Figure 3.4: Simulated model-free (A) and model-based (B) learning agents’ stay/switch 

behaviors at the first stage of the current task paradigm. Panels indicate whether the last trial 

resulted in reward (left) or not (right), while the x-axis indicates common verus rare transitions 

on the previous trial, and the y-axis indicates the probability of staying with the stage 1 choice 

made on the last trial. The model-free learners (left) and model-based learners (right) both 

showed typical behaviors, such that model-free learners were more likely to stay at stage 1 

following rewarded trials with both rare and common transitions, whereas model-based learners 

were more likely to stay at stage 1 following rewarded common trials and non-rewarded rare 

trials. 

 

Neither model-free nor model based learning signatures in the current study: We 

examined participants’ use of model-free and model-based learning strategies in our modified 

paradigm using logistic regression analyses of stage 1 stay/switch behaviors. Contrary to our 

expectations, participants showed neither signatures typical of model-free nor model-based 

reward learning, as we found little evidence for a main effect of reward on the previous trial, or 

previous reward X previous trial transition interactions (see Fig. 3.5 & Table 3.2). However, we 

found a main effect of previous trial transition type, such that participants were more likely to 

stay at stage 1 following a rare trial regardless of whether a reward was obtained. Within the 
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current cohort ages 7-13 years, we found no age-related differences in any of the stage 1 

behaviors analyzed (see Table 3).  

 

 

 

Figure 3.5: Stage 1 stay/switch behaviors in the current paradigm as a function of reward and 

transition type on the previous trial. Panels indicate whether the participant received a reward 

(left) or not (right) on the previous trial, and color indicates whether the previous trial was a 

common (red) or rare (blue) transition. The y-axis indicates the probability of stage 1 stays (i.e. 

making the same choice as the previous trial) under each condition. Shaded distributions indicate 

expected values of the posterior predictive distribution for each condition from the multilevel 

logistic regression model. Thick and thin error bars represent 80% and 95% posterior intervals, 

respectively. Thin gray lines represent raw proportions of stays under each condition for each 

participant (1 line is 1 participant). 

 

 

Predictor Mean Estimate 95% Posterior Interval 
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Intercept -0.12 [-0.324, 0.06] 

Last Trial Reward -0.03 [-0.266, 0.196] 

Last Trial Rare 0.81 [0.621, 1.002] 

Last Trial Reward X Last Trial Rare 0.23 [-0.092, 0.525] 

Table 3.2: Logistic regression parameters for effects of previous reward and previous transition 

on subsequent stage 1 stay/switch choices in the modified two-stage paradigm. Parameter 

estimates are in log odds.  

 

Predictor Mean Estimate 95% Posterior Interval 

Intercept 0.32 [-0.754 , 1.421] 

Last Trial Reward 0.10 [-1.287 , 1.397] 

Last Trial Rare 0.44 [-0.732 , 1.56] 

Age -0.05 [-0.161 , 0.065] 

Last Trial Reward X Last Trial Rare 0.03 [-1.673 , 1.807] 

Last Trial Reward X Age -0.01 [-0.147 , 0.126] 

Last Trial Rare X Age 0.04 [-0.076 , 0.158] 

Last Trial Reward X Last Trial Rare X Age 0.02 [-0.161 , 0.196] 

Table 3.3: Logistic regression parameters for age-related differences in the modified two-stage 

paradigm in effects of previous reward and previous transition on subsequent stage 1 stay/switch 

choices. Age (years, range = [7,13]) is treated continuously, and parameter estimates are in log 

odds.  
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Knowledge of transition structure in the current study: We assessed participants’ 

understanding of the task structure in the current study using both explicit questions at the end of 

the task and reaction time measures. A majority of participants (64.5%, 71%, and 72.6%) 

correctly answered each of 3 binary-choice questions on the task structure after completing the 

study (Fig. 3.6A). Although a sizable minority of participants did not correctly answer some 

questions on the task structure, responses overall nevertheless suggested that most participants 

understood the task transition structure. In addition, a multilevel linear regression indicated that 

participants were slower on average (ΔRT=141.5ms, 95% CI [116.6, 165.5]) to make stage 2 

choices following rare transitions compared to common transitions during the current trial (Fig. 

3.6B), indicating behavioral sensitivity to transition type.  

 

 

Figure 3.6: A: Participant responses to questions on explicit knowledge of transition structure. 

Error bars indicate bootstrapped 95% confidence intervals. B: Participants’ stage 2 reaction 

times as a function of transition type and trial. Distributions indicate posterior predictive 

distributions for the mean stage 2 reaction time, and thick and thin error bars represent 80% and 

95% posterior intervals, respectively. Gray lines represent individual participants’ average 

reaction times (1 line = 1 participant). Stage 2 reaction times were consistently slower following 
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rare transitions compared to common transitions throughout the duration of the task, suggesting 

that participants were responsive to the transition structure.  

 

Reward-contingent stage 2 behaviors common across datasets: After initial analyses 

indicated unexpected behavioral patterns at the first stage of the current paradigm (see Fig. 3.5), 

we worked to more fully characterize participants’ decision-making strategies. To this end, we 

conducted parallel analyses of stage 2 behaviors in the current paradigm as well as three 

previously collected two-stage datasets (see Table 1). We first examined stage 2 stay versus 

switch behaviors, where stays were defined as an identical button press at stage 2 compared to 

the last trial (regardless of stage 2 state). Simulated model-free () = 1.69, 95% PI [1.40, 1.98]) 

and model-based () = 1.54, 95% PI [1.30, 1.78]) learners both showed an interaction effect 

between stage 2 location and last trial rewards on stage 2 staying behavior. Learners under both 

algorithms were more likely to stay at stage 2 following rewards when at the same stage 2 state 

(i.e. planet) as the previous trial, but showed no reward-contingent staying when at the other 

stage 2 state compared to the last trial (Fig. 3.7B). Such patterns did not differ based on stage 1 

stay versus switch behaviors (e.g. stage 2 location X last trial reward X stage 1 stay interaction; 

)model-free = -0.17, 95% PI [-0.44, 0.09]; )model-based = 0.08, 95% PI [-0.19, 0.34]). Thus, these 

simulations demonstrated that under model-free and model-based algorithms, previous reward-

contingent choices at stage 2 were specific to when learners were at the same stage 2 state as the 

last trial.  

 Like the simulated model-free and model-based learners, participants in each cohort 

demonstrated interaction effects between stage 2 location and last trial rewards on stage 2 staying 

behavior (see Fig. 3.7; )PACCT = 0.69, 95% PI [0.38, 1.00]; )Decker = 1.06, 95% PI [0.68, 1.47], 

)Nussenbaum = 1.43, 95% PI [1.09, 1.79]; )Potter = 1.65, 95% PI [1.14, 2.16]). However, unlike the 
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simulated learners, participants in each cohort showed main effects of last trial rewards on stage 

2 staying behavior, such that last trial rewards increased the probability of stage 2 stays even on 

trials where participants were at the other stage 2 state (i.e. planet) compared to the last trial (Fig. 

3.7A). In addition, unlike simulated learners, participants in each cohort showed last reward X 

stage 1 stay interaction ()PACCT = 0.60, 95% PI [0.39, 0.81]; )Decker = 0.50, 95% PI [0.28, 0.72], 

)Nussenbaum = 0.24, 95% PI [0.07, 0.41]; )Potter = 0.37, 95% PI [0.11, 0.63]), such that they were 

more likely to stay at stage 2 following staying at stage 1 on the same trial (Fig. 3.8).  

 While the above patterns of stage 2 behavior were consistent across all datasets, within 

the current paradigm (PACCT) patterns of reward-contingent staying behavior were weaker on 

trials where the current stage 2 state matched the last trial. In particular, participants were no 

more likely to stay at stage 2 following a reward when the stage 2 state matched the last trial 

compared to when it did not match (see Fig. 3.7A; Δstay_probability = 0.01, 95% PI [-0.03, 0.06]).  
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Figure 3.7: Reward-contingent stay/switch behaviors at stage 2. Plots show the probability of 

stage 2 stays (defined as the same stage 2 button press as the previous trial) on the y-axis. Stage 2 

stay probability is shown as a function of reward on the last trial (purple = no reward, green = 

reward), whether the stage 2 state is the same (same planet) or different (other planet) compared 

to the last trial, and whether the participant stayed with the same stage 1 choice as the previous 

trial (top row = stage 1 stay, bottom row = stage 1 switch).  A: Plots for participants in the 

PACCT, Decker, Nussenbaum, and Potter datasets. Distributions indicate expected values of the 

posterior predictive distribution for each condition from the multilevel logistic regression model. 

Thick and thin error bars represent 80% and 95% posterior intervals, respectively. B: Simulated 

model-based (left) and model-free (right) learners completing the current study paradigm. For all 

conditions, chance performance = 50%. 

 

 

 

Figure 3.8: Parametrization of reward-contingent stay/switch behaviors at stage 2. Each 

posterior distribution shows the contrast of the probability of stage 2 stays when the last trial was 

rewarded > last trial not rewarded. 0 indicates no effect, such that stage 2 stays were equally 

likely following rewarded > non-rewarded trials. Posterior contrasts such for reward effects are 

subset based on whether the stage 2 state (planet) is the same as the previous trial (columns) and 

whether or not the participant stayed at stage 1 (rows). Posterior distributions for such contrasts 

are shown for each cohort (blue) and both model-free and model-based simulated learners 

(yellow). Thick and thin error bars represent 80% and 95% posterior intervals, respectively. 
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Faster reaction times for reward-contingent stage 2 behaviors across datasets: Given 

evidence across cohorts for reward-contingent staying behaviors at stage 2, especially following 

stage 1 stays, we investigated differences in stage 2 reaction times as a function of stays at both 

stages, last trial rewards, and current trial transition type using multilevel linear regression 

models fit to each cohort. Negative 3-way stage 1 X stage 2 X last trial reward interaction terms 

(Fig. 3.9B, top panel) for each cohort indicated that following rewards, participants made stage 2 

choices faster on average if staying at both stages of the current trial (Fig. 3.9A). We did not find 

strong evidence for a 4-way stage 1 X stage 2 X last trial reward X current trial transition 

interaction across cohorts (Fig. 3.9B, bottom panel), such that such reward-contingent speeded 

reaction times when staying at both stages occurred whether the current trial contained a rare or 

common transition (although stage 2 reaction times were slower in general following rare 

transitions, see Fig. 3.6B & Nussenbaum et al., 2020). 
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Figure 3.9: Reaction times contingent on rewards and stay/switch behaviors at stage 2. A: Plots 

show within-participant z-scored stage 2 reaction times on the y-axis as a function of reward on 

the last trial, whether participants stayed at both stage 1 (x-axis) and stage 2 (red=stay, 

blue=switch), and whether the current trial is rare or common (rows). Plots for participants in the 

PACCT, Decker, Nussenbaum, and Potter datasets. Distributions indicate expected values of the 

posterior predictive distribution for each condition from the multilevel linear regression model. 

B: Posterior distributions for each dataset for key model parameters from the regression model 

visualized in A. The top panel represents 3-way stay1 X stay2 X last trial reward interactions, 

where negative estimates indicate stronger evidence of reward-contingent speeding of stage 2 

choices on trials with stay decisions at both stages. The bottom panel indicates 4-way stay1 X 

stay2 X last trial reward X current transition interactions, where more negative estimates indicate 

stronger reward-contingent speeding on trials with stays at both stages for rare trials, compared 

to common trials.  Thick and thin error bars represent 80% and 95% posterior intervals, 

respectively.  

 

Age-related differences in reward-contingent behavioral sequences: We examined 

age-related differences in each cohort in reward-contingent behaviors at stage 2. With age treated 

as a continuous between-participants variable in multilevel regression models, we explored age-
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related differences in the reward contingency of stage 2 stays on trials where participants stayed 

at stage 1 (Fig. 3.10). In all datasets other than the current paradigm (PACCT), age was 

positively associated with the probability of staying at stage 2 following a previously rewarded 

trial if at the same planet again (Fig. 3.10A). No consistent age-related differences in reward-

contingent stage 2 stay behaviors were observed on trials where the stage 2 location was the 

other planet compared to the previous trial (Fig. 3.10B). However, across the entire age range 

studied, participants were more likely to stay at stage 2 following rewards (in Fig. 3.10A green 

ribbons always above purple), consistent with prior work indicating age-related increase in 

inverse temperature (i.e. lower “decision noise”; Eckstein et al., 2021; Nussenbaum & Hartley, 

2019).   
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Figure 3.10: Age-related differences in reward-contingent stage 2 stay behaviors on trials with 

stage 1 stays. A: Model posterior predictions for the mean probability of stage 2 stays as a 

function of age, stage 2 location (other planet vs. same planet), and last trial reward (green) 

versus no reward (purple). Lines show predicted means and shaded areas represent 95% PIs. We 

note that the x-axis range is different (7-14) for the PACCT dataset given the narrower age range 

of this cohort. B: Posterior distributions for age X last trial reward interactions on stage 2 stays 

on trials with stage 1 stays. Distributions are shown for each cohort, and separately for subsets of 

trials where participants were at the same stage 2 location (same planet) versus other location 

(other planet) compared to the previous trial. Positive values indicate positive associations 

between age and effects of reward on stage 2 stays. Thick and thin error bars represent 80% and 

95% posterior intervals, respectively.  
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3.4 Discussion 

 The current study aimed initially to adapt a child-friendly two-stage paradigm to 

encourage model-based learning. However, contrary to what was predicted, youth aged 7-13 

displayed little evidence of typical model-free or model-based signatures in completing this 

paradigm despite evidence of understanding the task transition structure. Several factors in the 

current study may have contributed to behavioral patterns quite different from previously 

reported, including task ‘gamification’, shortened instructions and practice trials, the spatial 

layout of the transition structure, shortened trial durations, long study sessions, and lack of 

monetary incentives for task performance. Follow-up explorations of stage 2 behaviors in data 

collected under this modified paradigm, as well as three previously collected developmental 

datasets using the two-stage task, indicated that participants across cohorts used reward-

contingent strategies not explained by either typical model-free or model-based algorithms. In 

particular, speeded reward-contingent motor sequences indicated that participants may tend to 

use spatial or motor cues to generate action policies during reward learning even when not 

instructed to. More broadly, the current work highlights both the fact that model-free and model-

based behaviors may be highly paradigm-specific, as well as that even within the two-stage 

paradigm, youth may pursue strategies “beyond” those expected by either algorithm. We discuss 

each of these points in greater detail below.  

Neither typical model-free nor model-based strategies under the current paradigm: 

Contrary to our expectations, when completing our modified two-stage paradigm, participants 

demonstrated neither the signatures of model-free nor model-based learning typically observed 

in studies using the two-stage task (Daw et al., 2011; Decker et al., 2016; Nussenbaum et al., 

2020; Otto, Raio, et al., 2013; Potter et al., 2017; Sharp et al., 2016). Participants showed neither 
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main effects on stage 1 staying behaviors of last trial rewards (indicative of model-free learning) 

nor reward X transition interactions (indicative of model-based learning). Instead, at stage 1 

participants showed only sensitivity to rare versus common transitions on the previous trial, such 

that they stayed at stage 1 more often following rare transitions (see Fig. 3.5). Such unexpected 

behavior was not likely due to a lack of awareness of the task structure or a lack of attention to 

the task, as participants’ choices at both stages and reaction times at stage 2 reflected a 

sensitivity to the transition structure (Figs 3.5-6).  

Potential mechanisms for stage 1 stays following rare transitions on the last trial: 

Unlike prior studies, participants repeat stage 1 choices more often after rare trials, regardless of 

reward (Fig. 3.5). One possibility is that such behaviors represent “novelty-seeking” or 

“exploration” in the sense that rare transitions are novel relative to common ones (Gopnik, 

2020). While repeating a stage 1 choice following a rare transition does not increase the chance 

of a subsequent rare transition or increase the likelihood of obtaining novel information per se, 

participants could have found rare trials more salient due to their relative novelty (Galván, 2010; 

Lloyd et al., 2021). Participants may have believed that rare transitions marked stage 1 choices 

that would reveal new information (Krebs et al., 2009). Participants also may have believed 

erroneously that rare transitions were associated with rewards, particularly because only common 

transitions were shown in the instructions and practice trials in the current study.  

 On the other hand, participants may have repeated stage 1 choices following rare trials in 

efforts to reach the stage 2 state (planet) not visited on the previous trial. When asked to describe 

their decision-making strategies, several participants indicated that they tried to “switch planets 

each time,” which could be accomplished more often under a policy of switching after common 

trials and staying after rare trials at stage 1. Such a policy is also consistent with a “depletion 
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model” where stage 2 states or actions are believed to be less likely to yield rewards on multiple 

consecutive visits. Indeed, some participants reported beliefs such as “if an alien gave a reward, 

it probably didn’t have one next time so I tried to go to a different planet”. Such statements are 

consistent with a model-based policy under such a depletion model, as they indicate prospective 

decision-making to avoid previously rewarding stage 2 actions. Finally, it is also possible that 

participants found rare transitions more intrinsically rewarding than the “coins” they received as 

rewards, especially given that no true monetary compensation was provided to extrinsically 

motivate better task performance. Overall, mechanisms for repeated stage 1 choices following 

rare trials most likely stem from interpretations of the task structure not aligned with reward 

learning algorithms, as such behavior is not beneficial towards earning rewards.  

 An additional consideration is that participants’ task behaviors did not always match the 

strategies they explicitly self-reported. One reason for this is that younger participants may not 

have been able to explicitly describe the algorithms by which they made decisions, despite 

readily using them. Additionally, this observation is supported by prior work indicating that 

participants may use both declarative and non-declarative “habitual” processes in learning from 

rewards (Foerde et al., 2006; Otto, Gershman, et al., 2013). Thus, participants’ descriptions of 

their own strategies, while not incorrect per se, may have been incomplete. On the other hand, 

because explicit questions on task strategies were at the end of the task, participants may have 

reported using strategies that they used towards the latter trials. Especially if participants shifted 

behaviors over the course of the task, such explicit responses may not represent behavioral 

patterns from earlier trials.  

Potential contributors to differences with prior developmental two-stage task 

studies: As previous work has demonstrated within adults (Feher da Silva & Hare, 2020), 
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unclear or misleading task instructions may have caused participants’ altered interpretations of 

the current paradigm and resultant patterns of behavior. One potentially influential factor is that 

in the current study, instructions were shortened compared to previous versions of the spaceship 

two-stage task (Daw et al., 2011; Decker et al., 2016; Nussenbaum et al., 2020; Potter et al., 

2017), and the number of practice trials was reduced from 20-50 to 2. Especially given that 

previous studies have given participants more extensive practice (with different stimuli, 20 or 50 

trials) and specific instructions on the transition structure, such scaffolding may have narrowed 

the space of strategies participants chose from (i.e. towards model-free or model-based 

algorithms) to complete the task. In contrast, participants may have begun the current task 

paradigm with fewer priors guiding their decision-making processes, and therefore turned to 

alternative action policies.  

In addition, the spatial layout of the task transition matrix on the screen may have 

encouraged alternative decision-making policies. Previous versions of the two-stage task have 

not imparted specific spatial context to the transition matrix (i.e. stage 2 stimuli replace stage 1 

stimuli on screen). While we intended for the representation of common transitions with vertical 

ladders and rare transitions with diagonal ones to encourage model-based strategies under the 

logic that a model with spatial properties would be easier to use, it is possible that this oriented 

participants away from such reward learning strategies at the first stage. Because adolescent and 

adult participants have previously been shown to use spatial-motor cues in lieu of model-based 

strategies (Shahar et al., 2019), the mapping of transition structures with spatial relationships 

may have encouraged such reward-independent strategies.  

The “gamification” of the task may also have contributed to the unusual stage 1 behaviors 

observed under the current paradigm. While the “space treasure” theme and music, sounds, and 
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animations were added to boost engagement with the task, these changes may also have 

distracted participants or oriented their focus towards reward-independent information. Further, 

because durations of transitions, rewards, and inter-trial intervals were shortened relative to 

previous versions of the task, the quickened pace of the task may have encouraged participants to 

pursue less cognitively burdensome strategies. While model-based learning has been suggested 

to particularly make demands on working memory (Kool et al., 2016; Otto, Raio, et al., 2013; 

Potter et al., 2017), both model-free and model-based learners at minimum maintain expected 

value computations for stage 2 actions. Fatigue that participants may have experienced as they 

completed this task during approximately 4-hour study visits could also have contributed towards 

participants’ selection of less working memory-intensive strategies. While any combination of 

the above factors may contribute to the unusual patterns of stage 1 choices under the current 

paradigm, future work directly isolating and manipulating such factors will be needed to better 

understand their influence on such behaviors.  

Reward-Contingent Spatial-Motor Behaviors: After initial analyses indicated that 

participants under the current paradigm did not show typical signatures of model-free or model-

based learning, we set out to characterize other factors explaining their behavior and investigate 

whether these behaviors were common to three other developmental cohorts (Decker et al., 2016; 

Nussenbaum et al., 2020; Potter et al., 2017). Particularly because stimuli were associated with 

distinct spatial-motor information at both stages of the task across datasets, we investigated 

whether participants displayed reward-contingent behaviors based on such mappings even when 

such choices would not increase reward probability. Consistent with prior work (Shahar et al., 

2019), participants repeated stage 2 choices that had been rewarded on the previous trial, even 

when at a different state compared to the last trial (Figs 3.7-8). During these trials where the 
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current stage 2 state did not match that of the last trial, simulated model-free and model-based 

agents did not show reward-contingent stage 2 stay behaviors. On such trials, repeated stage 2 

choices indicate a binding of spatial (left vs. right) or motor (a particular button press) 

information with reward, despite the fact that such information is irrelevant to reward 

probability. Participants were also more likely to repeat stage 2 actions after having repeated 

their stage 1 action compared to the previous trial, even in such reward-independent situations, 

indicating erroneous association of spatial-motor information with reward at both stages of the 

task. Such reward-independent decision-making was not associated with age (Fig. 3.10). 

 Across all datasets, we also found evidence that participants chose actions more quickly 

when behaving consistently with such reward-contingent spatial-motor mappings. Following 

rewarded trials, participants’ stage 2 reaction times were fastest on trials where they repeated 

both stage 1 and stage 2 choices (Fig. 3.9). The same pattern was not true following trials 

without rewards. Thus, participants may have chosen to quickly repeat “sequences” of button 

presses yielding rewards on the previous trial. As previously suggested (Shahar et al., 2019), 

these behaviors suggest “embodied” decision-making strategies as learners attempt to decide 

between visual stimuli and their own actions in assigning credit following rewards (McDougle et 

al., 2016).  

Potential mechanisms underlying mapping of rewards to spatial-motor behavior: 

While credit assignment to reward-independent spatial and motor information will not increase 

rewards (Shahar et al., 2019), spatial and motor cues are not purely reward-independent in the 

studied datasets. As particular button presses are associated with actions at both stages, action 

policies assigning value only to motor execution at each stage (irrespective of the transition 

structure) will maximize reward likelihood when the current stage 2 state is the same as the last 
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one. Thus, participants pursuing such a policy may have identified an adaptive “shortcut” for 

completing the task. Even though this strategy fails on trials with incongruent consecutive stage 

2 states, repeating sequences of button presses following a rewarded trial may be a form of 

model-free computation with low working memory demands. 

Alternatively, it is possible that participants may not be mapping rewards to spatial-motor 

behaviors, but rather assuming non-independence of the expected values of stage 2 actions. For 

example, participants may update the expected values of non-chosen (or non-visited) states and 

actions based on rewards (Biderman & Shohamy, 2021). Because independently drifting reward 

probabilities of each of the four stage 2 choices may be particularly difficult for participants to 

update and maintain in working memory (Master et al., 2020), consolidating the values of stage 2 

choices may be an adaptive step.  

Limitations: The current findings are limited by several factors that may be addressed in 

future work. First, because only youth ages 7-13 participated in the current paradigm (PACCT), 

direct comparisons of this cohort with older participants in the previously collected datasets was 

not possible. That no participants in the current study completed both the spaceship version of 

the two-stage task (Decker et al., 2016) and our modified version also precludes making strong 

conclusions about which factors may have contributed to differences between task paradigms. In 

addition, the current study only examined learning behaviors as a function of the previous trial, 

rather than using multi-step approaches (Miller et al., 2016) or full reinforcement learning 

models (Daw, 2011; Eckstein et al., 2021). Future work using such methods may be able to 

characterize model-free, model-based, and spatial-motor decision-making strategies in more 

depth.  

 



 159

Conclusion 

The current investigation found evidence for both study-specific and more general 

patterns of behavior among developmental cohorts beyond the model-free and model-based 

learning strategies often studied in the context of the two-stage sequential decision-making tasks. 

Differential patterns of behavior within a modified version of the two-stage paradigm highlighted 

the potential sensitivity of participants’ learning strategies to factors including task instructions, 

trial duration, study visit duration, and incentivization of rewards (Smid et al., 2020). Consistent 

with recent work (Shahar et al., 2019), participants ages 7-25 demonstrated decision-making 

based on spatial-motor information even in contexts where such information was reward-

independent. While the use of such spatial-motor cues occurred in addition to, rather than instead 

of, model-free and model-based strategies, the present findings add evidence to recent calls to 

characterize reward learning across a broader set of potential policies (Daw, 2018; Feher da Silva 

& Hare, 2020; Momennejad et al., 2017). In particular, while previous work has examined 

associations between model-based control and stress (Otto, Raio, et al., 2013), working memory 

(Potter et al., 2017; Silva et al., 2018), depression (Heller et al., 2018), and dopaminergic 

function (Doll et al., 2016; Sharp et al., 2016), future work may benefit from characterizing 

similar associations using spatial-motor decision-making strategies. 
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Conclusion 
  

The chapters in this dissertation demonstrate the use of multiverse approaches within 

several research contexts, in particular in examining robustness of results to researcher decisions, 

optimizing such decisions, and exploring multiple psychological mechanisms. Yet, the core 

components of multiverses are far from new concepts. Indeed, much prior work has developed 

and used statistical analyses of sensitivity (Saltelli & Annoni, 2010; Vincent et al., 2008) and 

model comparison (Hastie et al., 2001). However, multiverse approaches provide a principled set 

of approaches for increasing the breadth of decision points examined and quantifying their 

impacts (Niso et al., 2022). Multiverses also offer a systematic way of computing data reliability 

metrics necessary for many statistical paradigms across many decision points. Multiverse 

analyses can also function as organized checks of internal validity through probing possible 

combinations of confounding variables (Frank, 2000), or convergent validity through systematic 

comparisons with a different measurement of the same construct (for example, fMRI signal 

could be compared with another brain imaging modality). Further, specification curves in 

particular allow for visualization of research findings that emphasize the totality of the evidence 

across multiple reasonable strategies.  

One key consideration for multiverse approaches is that due to the sheer number of 

analyses, multiverses by definition involve multiple comparisons (Steegen et al., 2016). Thus, in 

classic multiverse analyses where the goal is to determine where there exists a robust finding 

across specifications, individual specifications should not be overinterpreted. Rather, joint 

inference can be made based on a parameter summarizing all analyses, such as the median 

estimate across specifications (Simonsohn et al., 2020). Crucially, researchers should report all 

tested decision points and interpret equally reasonable analyses with equal evidential weight to 
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avoid selective reporting based on the desirability of results (i.e. p-hacking; Liu et al., 2020; 

Wicherts et al., 2016). Multiverse decision points can also be preregistered to maximize 

confirmatory value and minimize risk of “p-hacking” (Flournoy et al., 2020; Olsson-Collentine 

et al., 2021). When multiple comparisons between individual specifications is central to a 

research question, both preregistration and replication of multiverse findings in independent 

datasets can help build evidential strength.   

A further practical issue is that in theory, specification curve analyses should test “all 

reasonable choices” by definition (Simonsohn et al., 2015). While researchers may then, 

justifiably, want to consider all possible combinations of decisions when analyzing their data or 

optimizing a method, such comprehensiveness is often computationally intractable. Particularly 

for computationally demanding analyses (such as fMRI preprocessing), multiverses may be most 

feasible when targeting a small number of decision points believed to be most consequential. 

Further, the computational burden of larger multiverse analyses raises issues of accessibility of 

research computing resources (Chalker et al., 2020) as well as environmental concerns (because 

high computing can require vast energy consumption; Anthony et al., 2020; Lannelongue et al., 

2021). While there are extant resources for lowering such computational burdens (Fan et al., 

2022; Lawrence et al., 2021) and widening the accessibility of performance computing (Pestilli, 

2022; Towns et al., 2014), limiting multiverse size and scope is nevertheless crucial in many 

contexts.  

Although limiting the expansion of multiverse analyses can be difficult, researchers can 

use several strategies to limit their scope. First, researchers may be able to eliminate decision 

points if alternatives are not truly “arbitrary” or if one choice is unambiguously superior to 

another based on prior empirical or theoretical work (Simonsohn et al., 2020; Steegen et al., 
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2016). In contrast to “full multiverses” with all possible choices included, researchers can also 

use psychometric properties and theoretical domain knowledge to construct smaller “principled 

multiverse-style analyses” best suited for a question of interest (Del Giudice & Gangestad, 

2021). More cumulatively, multiverse investigations can seek to optimize decision-making for 

studied choices so that such decisions will no longer be arbitrary for future investigations. Thus, 

multiverse studies can eliminate decision points for subsequent ones.  

When multiverses reveal that different, or even seemingly arbitrary, choices yield varied 

results, researchers may experience discouragement or lack of confidence in their work. On one 

hand, lack of confidence in a particular result is warranted given high sensitivity to reasonable 

analytic choices (Botvinik-Nezer et al., 2020; Orben & Przybylski, 2019; Steegen et al., 2016). A 

self-correcting science requires that researchers alter methodologies given strong evidence that 

previously used techniques are flawed (Vazire & Holcombe, 2021). Yet, at least some variation 

in results across analysis strategies would be expected in any circumstance, even when a finding 

is highly “robust” (Patel et al., 2015). Sensitivity to a particular choice may not doom a 

measurement or analysis strategy, but can instead indicate that alternative choices truly answer 

distinct empirical questions. Further, researchers with multiverse results indicating high 

sensitivity to analytical decisions might be encouraged by the fact that such findings are often 

methodological contributions alone. That a particular methodological decision contributes great 

variance to results might enhance understanding of the method, or prompt fruitful examination 

into the research questions in which the method might be most aptly used.   

The chapters in this dissertation emphasize the utility of multiverse analyses across 

several different contexts and types of research questions. Although much of the work here 

focuses on functional MRI, multiverse strategies can be broadly valuable in any studies where 
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researchers face multiple reasonable options. Indeed, recent multiverse studies have addressed 

topics including electrophysiology (Clayson et al., 2021; Gordillo et al., 2022), the microbiome 

(Nearing et al., 2022), experience sampling methods (Weermeijer et al., 2022), and clinical 

subtyping (Beijers et al., 2020). Because multiverses and specification curves are still relatively 

young as formal statistical methods, they may hold much promise for future methodological 

development and applied use across many fields of research. 
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Previous Studies of Age-Related Change in Amygdala—mPFC Function 

Authors Year N Design Ages Task Faces MRI 
Design 

Contrast Reactivity Amyg—mPFC 
Connectivity 

Connectivity 
Method 

Baird et 
al.  

1999 12 Cross-
section
al 

12 to 17 Emotion 
labeling 
with fear 
faces 

Ekman & 
Friesen, 
1976 

Block fear > 
nonsense 
grayscale 
figures 

No age-related changes NA NA 

Killgore 
et al. 

2001 19 Cross-
section
al 

9 to 17 Emotion 
labeling 
with fear 
faces 

Ekman & 
Friesen, 
1976 

Block fear > 
baseline 

Age-related decrease in 
left amyg, but not right 
amyg, only in females 

NA NA 

Thomas 
et al. 

2001 18 Cross-
section
al 

Youth 
(mean = 
11, sd = 
2.4), and 
male 
adults 
(mean = 
24, sd = 
6.6) 

Passive 
viewing with 
fear & 
neutral 
faces 

Ekman & 
Friesen, 
1976 

Block fear > 
neutral 

Adults show higher fear > 
neutral reactivity in left 
amyg than children 

NA NA 

Pine et al. 2001 20 Cross-
section
al 

Youth 
(age 12-
16) and 
adults 
(age 25-
38) 

Masking 
paradigm 
with happy 
and fear 
faces 

Ekman & 
Friesen, 
1976 

Block masked 
fear > 
fixation, 
masked 
happy > 
fixation 

No group differences in 
amygdala reactivity for 
any contrast 

NA NA 

Monk et 
al. 

2003 34 Cross-
section
al 

Youth (9-
17) and 
adults (25-
36) 

1) passive 
viewing with 
fear, angry, 
happy, 
neutral 2) 
emotional 
rating of 
faces 3) 
subjective 
rating of 
nose width 

NimStim 
(2009); 
Ekman & 
Friesen, 
1976; 
Gur, 
2001 

Event-
related 

A) rating of 
fear for fear 
faces > 
nose width 
for fear 
faces, B) 
nose width 
for fear 
faces > 
nose width 
for neutral 
faces, C) 
passive 
viewing for 
fear faces > 
passive 
viewing for 
neutral 
faces 

No age-related amygdala 
differences for contrasts 
A/B. For C, adolescents 
show higher reactivity 
than adults in right amyg, 
but no age-related 
change within adolescent 
group 

NA NA 
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Authors Year N Design Ages Task Faces MRI 
Design 

Contrast Reactivity Amyg—mPFC 
Connectivity 

Connectivity 
Method 

McClure 
et al. 

2004 34 Cross-
section
al 

Youth (9-
17) and 
adults (25-
36) 

Threat 
rating for 
fear, angry, 
happy, 
neutral 
faces 

NimStim 
(2009); 
Ekman & 
Friesen, 
1976; 
Gur, 
2001 

Event-
related 

Angry faces 
> all other 
faces, each 
emotion 
separately 
> baseline 

Only in females, adults 
showed greater right 
amygdala reactivity to 
angry > neutral and angry 
> fear faces 

NA NA 

Yurgelun-
Todd & 
Killgore 

2006 16 Cross-
section
al 

8 to 15 Passive 
viewing of 
fearful and 
happy faces 

Ekman & 
Friesen, 
1976 

Block fear > 
baseline, 
happy > 
baseline 

No age-related changes 
in amygdala reactivity for 
either contrast 

NA NA 

Killgore & 
Yurgelun-
Todd 

2007 22 Cross-
section
al 

Adolescen
ts (age 9-
17) and 
adults 
(mean= 
23.7, 
sd=2.1) 

Masking 
paradigm 
with sad 
and happy 
faces 

Erwin et 
al., 1992 

Block masked sad 
> baseline, 
masked 
happy > 
baseline, 
masked 
happy > 
masked sad 

Adolescents show greater 
right amygdala activation 
for masked sad > 
baseline than adults. No 
differences for other 
contrasts 

NA NA 

Guyer et 
al. 

2008 61 Cross-
section
al 

Adolescen
ts (9-17) 
and adults 
(21-40) 

Passive 
viewing with 
fear, angry, 
happy, 
neutral 
faces 

NimStim 
(2009); 
Ekman & 
Friesen, 
1976; 
Gur, 
2000 

Event-
related 

fear > 
neutral, fear 
> fixation, 
neutral > 
fixation 
 

Adolescents show greater 
amygdala activation than 
adults for fear > neutral 
and fear > fixation. No 
difference for the neutral 
> fixation contrast. No 
age-related change within 
adolescent group.  
 

No differences in seed-
based amyg—mPFC 
functional connectivity 
between adolescents 
and adults 

Seed-based 
correlation 

Hare et al. 2008 60 Cross-
section
al 

Children 
(7-12), 
Adolescen
ts (13-18), 
Adults (19-
32) 

Go/no-go 
with fear, 
happy, calm 
faces. All 
combination
s of 
emotions 
used as 
targets 

NimStim 
(2009) 

Event-
related 

fear > 
baseline, 
fear > calm 

Adolescents show 
greatest amygdala 
activation to fear > 
baseline compared to 
children and adults. No 
differences in amygdala 
activation to fear > 
baseline between children 
and adults 

NA NA 

Passarotti 
et al. 

2009 20 Cross-
section
al 

Adolescen
ts (mean 
age = 14), 
adults 
(mean age 
30) 

Age 
judgement, 
affect 
judgement 
with angry 
and happy 
faces 

Gur, 
2002 

Event-
related 

angry + 
happy > 
fixation 

Adolescents show greater 
right amyg activation than 
adults in the incidental 
condition > fixation under 
a liberal contiguity 
threshold, but not a strict 
one. No group differences 
in amygdala during 
directed condition 

NA NA 
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Authors Year N Design Ages Task Faces MRI 
Design 

Contrast Reactivity Amyg—mPFC 
Connectivity 

Connectivity 
Method 

Somervill
e et al. 

2010 62 Cross-
section
al 

6 to 29 Go/no-go 
with fear, 
happy, calm 
faces. All 
combination
s of 
emotions 
used as 
targets 

NimStim 
(2009) 

Event-
related 

happy > 
baseline, 
calm > 
baseline 

No age-related changes 
in amygdala from whole-
brain analysis 

NA NA 

Pfeifer et 
al 

2011 38 
(76 
sca
ns) 

Longitu
dinal (2 
waves) 

10 to 13 Passive 
viewing with 
fear, angry, 
happy, sad, 
neutral 
faces 

NimStim 
(2009) 

Event-
related 

all faces 
individually 
> fixation, 
all faces 
together > 
fixation, all 
emotional 
faces 
individually 
> neutral 
faces 

No age-related change in 
right or left amygdala 
activity in all faces 
averaged together > 
fixation. Increase in 
activity in the right 
amygdala in response to 
sad > neutral faces 
 

NA NA 

Forbes et 
al. 

2011 76 Cross-
section
al 

11 to 13 Matching 
with fear, 
angry, 
neutral 
faces, and 
shapes 

NimStim 
(2009) 

Block fear > 
shapes, 
angry > 
shapes, 
neutral > 
shapes 

No differences for fear > 
shapes. Pre/early-
pubertal adolescents 
show greater amyg 
reactivity to neutral > 
shapes than mid/late 
pubertal adolescents 

NA NA 

Todd et 
al. 

2011 45 Cross-
section
al 

31 
children 
(age 3.5-
8.5), 14 
young 
adults 
(age 18-
33) 

Passive 
viewing of 
angry and 
happy 
mother/stra
nger faces, 
phase-
scrambled 
images 

Angry & 
happy 
face 
images 
of 
mothers 
of 
participa
nts  

Block all faces > 
scrambled 
faces, 
angry > 
scrambled 
faces, 
happy > 
scrambled 
faces 

Age-related increase in 
bilateral amyg activation 
to faces > scrambled 
faces, and angry faces > 
scrambled faces 

NA NA 

Perlman 
& 
Pelphrey 

2011 20 Cross-
section
al 

5 to 11 Go/no-go 
with fear 
faces 
intersperse
d. Also, 
block 
structure 
with 
winning, 
losing, and 
recovery of 
points 

NimStim 
(2009) 

Event-
related 

Effective 
connectivity 
calculated 
during block 
3 of the 
task 

NA Effective connectivity 
during block 3 between 
left amygdala and 
inferior frontal 
gyrus/ACC increased 
with age 

Granger 
causality 
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Authors Year N Design Ages Task Faces MRI 
Design 

Contrast Reactivity Amyg—mPFC 
Connectivity 

Connectivity 
Method 

Telzer et 
al. 

2012 32 Cross-
section
al 

4 to 16.5 Matching 
with angry, 
happy, 
neutral 
faces, and 
shapes 

NimStim 
(2009) 

Block African-
American 
faces > 
baseline, 
European-
American 
faces > 
baseline 

Right amygdala response 
to African-American faces 
> baseline increases with 
age, no age-related 
change in right amygdala 
response to European-
American faces 

NA NA 

Gee et al. 2013 45 Cross-
section
al 

4 to 22 Go/no-go 
with fear, 
happy, and 
neutral 
faces. 
Withhold 
press for 
emotional 
faces 

NimStim 
(2009) 

Event-
related 

fear > 
baseline 

Age-related decreases in 
right amygdala 

Positive early in 
development between 
right amyg—mPFC, 
turning negative in 
adolescence 

gPPI with AFNI 
deconvolution 

Swartz et 
al. 

2014 39 Cross-
section
al 

9 to 19 Gender 
identificatio
n with fear, 
happy, sad, 
neutral 
faces 

NimStim 
(2009) 

Event-
related 

all emotions 
individually 
> baseline 

Age-related decreases in 
left amygdala to fear > 
baseline. Age-related 
decreases in left 
amygdala to each other 
emotion individually > 
baseline 

No age-related change 
in right or left amygdala 
with mPFC for all faces 
> baseline contrast 

gPPI with 
SPM8, 
deconvolution 
not mentioned 

Dreyfuss 
et al. 

2014 80 Cross-
section
al 

6 to 27 Go/no-go 
with fear, 
happy, calm 
faces. All 
combination
s of 
emotions 
used as 
targets 

NimStim 
(2009) 

Event-
related 

fear > calm No age-related changes 
in amygdala from whole-
brain analysis 

NA NA 

Telzer et 
al. 

2015 52 Cross-
section
al 

4 to 18 Matching 
with angry, 
happy, 
neutral, 
faces, and 
shapes 

NimStim 
(2009) 

Block same sex > 
shapes, 
opposite 
sex > 
shapes 

Bilateral amygdala 
responses to opposite-
sex faces > shapes 
decrease with age, 
bilateral amygdala 
response to same-sex 
faces > shapes increase 
with age 

NA NA 

Joseph et 
al. 

2015 42 Cross-
section
al 

5 to 18 Passive 
viewing of 
faces (73% 
happy, the 
rest 
neutral), 

Custom 
unfamilia
r high-
school 
yearbook 
faces 

Block face > 
texture 

Age-related increase in 
right and left amyg 
reactivity to faces > 
textures contrast 

NA NA 
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Authors Year N Design Ages Task Faces MRI 
Design 

Contrast Reactivity Amyg—mPFC 
Connectivity 

Connectivity 
Method 

objects, and 
textures 

Wu et al. 2016 61 Cross-
section
al 

7 to 25 Matching 
with fear, 
angry, 
happy, 
neutral 
faces, and 
shapes.  

Hariri et 
al., 2002 

Block fear > 
shapes, 
angry > 
shapes, 
happy > 
shapes 

No age-related change in 
amygdala found for any 
contrast, or all together 

For each emotion > 
shapes, positive early 
in development 
between left amyg-
ACC, turning to 
negative around age 
15. Same with right 
amyg 

PPI done in 
AFNI 

Kujawa et 
al. 

2016 61 Cross-
section
al 

7 to 25 Matching 
with fear, 
angry, 
happy, 
neutral 
faces, and 
shapes.  

Hariri et 
al., 2002 

Block fear > 
shapes, 
angry > 
shapes, 
happy > 
shapes 

No age-related change 
effects in either 
hemisphere for either 
emotion > shapes 

Positive early in 
development between 
both 
hemispheres/ACC, 
turning negative in 
around age 15 

PPI done in 
SPM with 
deconvolution 

Heller et 
al. 

2016 155 Cross-
section
al 

5 to 32 Go/no-go 
with fear, 
happy, calm 
faces. All 
combination
s of 
emotions 
used as 
targets 

NimStim 
(2009) 

Event-
related 

happy > 
baseline, 
calm > 
baseline 

NA No age-related 
changes reported in 
whole-brain analysis 

Beta series 
correlation 
analysis done 
with amygdala 
seed to whole 
brain 

Vijayaku
mar et al. 

2019 82 Longitu
dinal (3 
waves) 

9 to 18 Passive 
viewing with 
fear, angry, 
happy, sad, 
neutral 
faces 

NimStim 
(2009) 

Event-
related 

all emotions 
together > 
baseline, all 
emotions 
individually 
> baseline 

None for fear > baseline. 
Age-related increase for 
sad > baseline, and sad > 
neutral 

NA NA 

Zhang et 
al. 

2019 759 Cross-
Section
al 

8 to 23 Emotion 
labeling 
with fear, 
angry, 
happy, sad 
faces 

Gur, 
2002 

Rapid 
Event-
related 

all emotions 
individually 
> baseline 

Depending on ROI 
definition and model, 
either no age-related 
change or age-related 
increases for fear > 
baseline, happy > 
baseline, sad > baseline 

Depending on ROI 
definition and model, 
either no age-related 
change in amyg-PFC 
connectivity, or age-
related increases for 
fear, happy, angry 

gPPI & BSC 

Xu et al. 2021 321 Cross-
Section
al 

243 (7-
12), 78 
young 
adults (19-
25) 

Emotion 
matching 
with fear & 
angry faces 

Wang & 
Luo 
(2005) 

Block negative 
(fear/angry) 
faces > 
shapes 

Age*sex interaction -- 
age-related decreases in 
females in BLA and CMA, 
increases (though not 
always significant) in 
males 

age*sex interaction -- 
age-related increases 
in males, decreases in 
females 

gPPI with 
deconvolution 
using SPM 

 



 221

Appendix A Table 1: Previous studies of age-related change in amygdala—mPFC function 

We summarize cohort, task design, contrast, connectivity method (when available), and amygdala—mPFC result information from 

prior work with fMRI analyses of age-related differences in amygdala—mPFC responses to faces (Baird et al., 1999; Dreyfuss et al., 

2014; Ekman & Friesen, 1976; Erwin et al., 1992; Forbes et al., 2011; Gee et al., 2013; Gur et al., 2002; Guyer et al., 2008; Hare et al., 

2008b; Hariri et al., 2002; Heller et al., 2016; Joseph et al., 2015b; Killgore et al., 2001; Killgore & Yurgelun-Todd, 2007b; Kujawa et 

al., 2016; McClure et al., 2004; Monk et al., 2003; Passarotti et al., 2009; Perlman & Pelphrey, 2011; Pfeifer et al., 2011; Pine et al., 

2001; Somerville et al., 2010; Swartz et al., 2014; Telzer et al., 2012, 2015; Thomas et al., 2001; Todd et al., 2011; Tottenham et al., 

2009; Vijayakumar et al., 2019; Wang & Luo, 2005; Wu et al., 2016; J. Xu et al., 2021; Yurgelun-Todd & Killgore, 2006b; Zhang et 

al., 2019).  
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Supplemental Methods 

 

Participant demographics 

 

 Parents reported their child’s gender, race, and whether their child was “Hispanic or 

Latino” via questionnaire items (except for 10 participants ages 18-22 who self-reported). 

Parents indicated separately whether their child’s race fell in differeint categories (African-

American/Black, American Indian/Alaska Native, Asian-American, European-

American/Caucasian, Native Hawaiian or Other Pacific Islander; see Appendix A Table 2). 

Some parents indicated multiple race categories (therefore total proportions of racial groups sum 

to greater than 1). Parents also had the option to indicate any other racial categories their children 

belonged to through an open-response item (see Appendix A Table 3). Parents also reported 

annual household income within discrete bins (see Appendix A Figure 1). Income data was 

missing for 13 families.   

 

 

 

 

 

 

  N Proportion 

Gender Female 55 0.56 
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Male 43 0.44 

Race European-American/Caucasian 56 0.57 

 
African-American/Black 28 0.29 

 Asian-American 24 0.24 

 American Indian/Alaska Native 3 0.03 

 
Native Hawaiian or Other Pacific Islander 1 0.01 

Hispanic or Latino ethnicity Hispanic or Latino 12 0.12 

 Not Hispanic or Latino 84 0.86 

 
Missing Data 2 0.02 

 

Appendix A Table 2: Race, gender, and ethnicity distributions for study participants  

 

 

 

Response N 

Hispanic 3 

Arab 2 

Filipino 1 

Iranian American 1 

Mexican 1 

Spanish 1 

Appendix A Table 3: Parent free responses for their children’s racial identities beyond available 

categories 
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Appendix A Figure 1: Distribution of annual household income for participating families.  

 

 

CBCL Scores: 

 Parents reported on child emotional and behavioral symptoms via the Child Behavior 

Checklist (CBCL; Achenbach, 1991) for age 1.5-5 and 4-18 years. Age and gender-normed 

scores for participants’ first study timepoint indicated that 4 participants met clinical threshold 

for internalizing problems, while none met clinical threshold for externalizing or total problems.  
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Appendix A Figure 2: Parent-reported CBCL scores 

Boxplots show medians and IQRs for CBCL T-scores for each scale, and points are individual 

participants. No participants met clinical cutoff for externalizing or total problems at timepoint 1, 

while 4 participants met the clinical cutoff for internalizing problems.  

 

Analyses of task behavior 

 

 To characterize age-related changes in task performance, we modeled behavior in several 

ways. First, we calculated the d’ performance metric for each scan using a correction for extreme 

proportions (Hautus, 1995) where button presses for neutral faces were considered ‘hits’, 

withheld presses for neutral faces ‘misses’, withheld presses for fear faces ‘correct rejections’, 

and presses for fear faces ‘false alarms’. We constructed multilevel models to look at linear only, 



226 
 
 

linear + quadratic, and linear + quadratic + cubic age-related changes in d’ with the following R 

syntax: 

 

# Linear:  

brm(dprime ~ age + (age | participant)) 

 

# Linear + Quadratic:  

brm(dprime ~ poly(age, 2, raw = TRUE) + (age | participant)) 

 

# Linear + Quadratic + Cubic:  

brm(dprime ~ poly(age, 3, raw = TRUE) + (age | participant)) 

 

# Inverse age (1/age) 

brm(dprime ~ age_inverse + (age_inverse | participant)) 

 

 

 

We fit all models using the brms package (Bürkner, 2017), and all models included varying 

linear slopes for age and intercepts across participants. In addition, to characterize more specific 

aspects of task behavior, we fit separate single-trial multilevel logistic regression models with 

overall accuracy (probability of a correct response on any trial), hit rate (on neutral face trials), 

and false alarm rate (on fear face trials) as the respective outcomes and included nested varying 
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effects for task sessions within participants. For the accuracy model, ‘hits’ and ‘correct 

rejections’ were coded as 1 and ‘misses’ and ‘false alarms’ coded as 0.  

 

# Accuracy:  

brm(accuracy ~ age + (age |participant/session), family = bernoulli(link = 'logit')) 

 

# False Alarms:  

brm(false_alarms  ~ age + (age |participant/session), family = bernoulli(link = 'logit') ) 

 

# Hits:  

brm(hits  ~ age + (age |participant/session), family = bernoulli(link = 'logit')) 

 

To examine age-related changes in reaction times (for hits only), we used similar single-trial 

multilevel regression models with linear only, linear + quadratic, and linear + quadratic + cubic 

terms and nested varying effects for task sessions within participants.  

 

# Linear: 

brm(reaction_time ~ age + (age |participant / session)) 

 

# Linear + Quadratic:  

brm(reaction_time ~ poly(age, 2, raw = TRUE) + (age |participant / session)) 

 

# Linear + Quadratic + Cubic:  
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brm(reaction_time ~ poly(age, 3, raw = TRUE)  + (age |participant / session)) 

 

# Inverse Age (age_inverse = 1/age) 

brm(reaction_time ~ age_inverse + (age_inverse |participant / session)) 

 

 

Reactivity Analyses 

 

C-PAC preprocessing pipeline 

In addition to the preregistered FSL preprocessing pipeline, we preprocessed BOLD images 

using C-PAC software ( v1.4.1; Craddock et al., 2013). For these pipelines, we mostly used 

software defaults. In these pipelines, ANTS (Tustison et al., 2013) was used to skull-strip 

MPRAGE images, and slice-time correction was applied (slices were acquired in interleaved 

order). BOLD spatial realignment and motion parameters were calculated with MCFLIRT as 

with the preregistered pipeline. Registration matrices were then calculated for functional images 

to be registered to high-resolution structural T1 images using FSL’s FLIRT with boundary-based 

registration. Registration matrices for T1 images to standard MNI space were calculated using 

ANTS, and functional images were warped to MNI space before running GLMs. 

 

Amygdala reactivity: multiverse details (Table 2, Aim 1) 

As detailed in in the main manuscript, we constructed forking pipelines for analyses of age-

related change in amygdala reactivity. Below we provide details into each decision point.  
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• GLM Software: Within-participant first-level GLMs were conducted either using FEAT 

or AFNI 3dDeconvolve. Prewhitening as specified in software defaults was used in all 

GLMs to adjust for temporal autocorrelation.  

• Hemodynamic Response Function: Within the GLM, regressors for fear and neutral faces 

were convolved with either a canonical double-gamma or single-gamma hemodynamic 

response function. 

• Nuisance Regressors: Nuisance regressors were added to the first-level GLMs in all 

analysis pipelines.  Pipelines included either 6 head motion regressors, 24 motion 

regressors (as preregistered; 3 for rotation, 3 for translation, their temporal derivatives, 

and the square roots of all the above; see Friston et al., 1996), or 18 motion regressors 

plus additional regressors for mean white matter and cerebrospinal fluid signal (C-PAC 

preprocessing only, 6 head motion regressors, their squares, and their backwards 

derivatives). In addition, to remove low-frequency artifacts, we either applied a high-pass 

filter (cutoff = .01Hz) to BOLD data before the GLM, or included a quadratic drift term 

in the model (AFNI GLMs only). In all pipelines, TRs with >.9mm framewise 

displacement (FD) were down-weighted to 0 in the GLM, effectively removing their 

influence on the model.  

• First-Level GLM Estimates: From each first-level GLM, we estimated contrasts for fear 

faces > baseline, neutral faces > baseline, and fear > neutral faces for each voxel using an 

event-related design. Although the fear > baseline contrast was of primary interest to the 

current study in following up work by Gee et al. (2013), we repeated analyses for the 

other contrasts as well. For each contrast, we either submitted beta estimates for each 

contrast (i.e. FSL COPEs), or t-statistics for group-level models. While the beta estimates 
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represent the raw magnitude of estimated contrast effects for each scan, the t-statistics 

represent standardized effect sizes; i.e. these magnitudes scaled by the estimation 

uncertainty.  

• Amygdala ROIs: We conducted reactivity analyses with the amygdala defined in both 

native space and in standard MNI space. For native space analyses, participant-specific 

native space masks were defined using Freesurfer (v6.0; Fischl, 2012) for the bilateral 

amygdala, as well as left and right amygdala separately, and manually inspected for 

quality assurance by an experimenter. For analyses in standard space, we used an 

amygdala mask from the Harvard-Oxford Atlas (probability threshold = .5). In addition, 

to check whether effects were driven by signal dropout, we performed a median split of 

all voxels in the right and left amygdala, respectively, based on the grand mean BOLD 

intensity across all scans to create ‘high signal’ and ‘low signal’ amygdala sub-regions. 

All amygdala masks are available on OSF (https://osf.io/hvdmx/). For all amygdala ROI 

definitions, we calculated the mean reactivity across included voxels for each scan for 

bilateral, left, and right regions respectively for group-level analyses. 

• Exclusion of previously analyzed scans: 45 of the scans in this dataset were previously 

analyzed by Gee et al. (2013). Because these scans were used in a whole-brain mass 

univariate analysis as a discovery sample to identify regions changing with age in both 

reactivity and connectivity with the amygdala for the fear > baseline contrast, analyses in 

the current study including these scans will could be partially dependent (i.e. circular 

analysis) on the previous selection process (Kriegeskorte et al., 2009, 2010). Therefore, 

we included pipelines in the multiverse that excluded the 42 scans (3 scans originally 

included were excluded in the current study for high motion) previously analyzed. In 
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addition, to disentangle whether any differences in results between such pipelines are due 

to nonindependence versus reduced sample size (i.e. reduced estimation precision), we 

also conducted permutation testing in which we iteratively removed 42 scans not 

originally analyzed in the Gee et al. study before group-level modeling.  

• Outliers: As preregistered, scans where amygdala reactivity estimates were > 3 standard 

deviations from the mean were excluded from analysis. In addition, to account for the 

possibility of remaining outliers, additional models were fit using a Student’s t-

distribution (rather than a Gaussian) for the likelihood function. A gamma(4,1) prior was 

used for the parameter for degrees of freedom (ν). Such models, because they model the 

outcome variable with a heavy-tailed t-distributions (i.e. t-distributions with few degrees 

of freedom), have been demonstrated to be robust to outliers (Gelman & Hill, 2006; 

Kurz, 2019).   

• Group-level models: ROI estimates from each scan were submitted to multilevel linear 

regression models to estimate group-level effects. Age was grand mean-centered and 

modeled as a continuous variable, and all models included a covariate for mean 

framewise displacement (Power et al., 2012). In multiverse analyses, we included models 

with all combinations of additional covariates for task run (coded as a binary variable 

indicating first run versus second/third run) and scanner (coded as a binary variable for 

scanner 1 versus scanner 2). In addition, we included models with an additional quadratic 

term for age to explore potential non-linear age-related changes. We included models 

both with and without participant-specific random slope terms, but all models included 

participant-specific intercepts.  
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• Within-participant change vs. between-participant differences: To ask whether any 

observed age-related changes in amygdala reactivity were due to true developmental 

growth (i.e. longitudinal change within the same participant across timepoints) versus 

between-participant differences, we conducted a separate smaller multiverse analysis. In 

this analysis, we included separate model parameters for ‘within-participant’ (i.e. mean-

centered within participants) and ‘between-participant’ (i.e. grand mean-centered) age 

effects, with random effects for within-participant age. These analyses included 

preprocessing pipelines using both FSL and C-PAC, GLMs run in both FSL and AFNI, 

and both native and MNI space amygdala t-stat estimates.  

 

Longitudinal Amygdala Model Syntax 

As described above, we modeled longitudinal age-related changes in amygdala reactivity using 

several different specifications with the brms package. R syntax for the 9 specifications for 

longitudinal models is shown below. Each model (plus equivalent models with normal likelihood 

functions instead) was applied to all 156 preprocessing pipelines for a total of 2808 models.  

 

# 1: Linear, no exclusions 

modLinear = brm(reactivity ~ age_centered + motion + (age_centered|participant), data = ., cores 

= 2, chains = 4, family = 'student', prior = prior(gamma(4, 1), class = nu)) 

 

# 2: Linear, exclude previously studied participants 
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modLinearExclude = brm(reactivity ~ age_centered + motion + (age_centered|participant), data 

= dplyr::filter(., is.na(prev_studied)), cores = 2, chains = 4, family = 'student', prior = 

prior(gamma(4, 1), class = nu)) 

 

# 3: Quadratic, exclude previously studied participants 

modQuadraticExclude = brm(reactivity ~ poly(age_centered,2, raw = TRUE) + motion + 

(age_centered|participant), data = dplyr::filter(., is.na(prev_studied)), cores = 2, chains = 4, 

family = 'student', prior = prior(gamma(4, 1), class = nu)) 

 

# 4: Quadratic, no exclusions 

modQuadratic = brm(reactivity ~ poly(age_centered,2, raw = TRUE) + motion + 

(age_centered|participant), data = ., cores = 2, chains = 4, family = 'student', prior = 

prior(gamma(4, 1), class = nu)) 

 

# 5: Linear + scanner covariate, no exclusions 

modLinearScanner = brm(reactivity ~ age_centered + motion + scanner + 

(age_centered|participant), data = ., cores = 2, chains = 4, family = 'student', prior = 

prior(gamma(4, 1), class = nu)) 

 

# 6: Linear + block covariate, no exclusions 

modLinearBlock = brm(reactivity ~ age_centered + motion + blockBin + 

(age_centered|participant), data = ., cores = 2, chains = 4, family = 'student', prior = 

prior(gamma(4, 1), class = nu)) 
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# 7: Quadratic + block + scanner covariates, no exclusions 

modQuadraticBlockScanner = brm(reactivity ~ poly(age_centered,2, raw = TRUE) + motion + 

blockBin + scanner + (age_centered|participant), data = ., cores = 2, chains = 4, family = 

'student', prior = prior(gamma(4, 1), class = nu)) 

 

# 8: Linear + block + scanner covariates, no exclusions 

modLinearBlockScanner = brm(reactivity ~ age_centered + motion + blockBin + scanner + 

(age_centered|participant), data = ., cores = 2, chains = 4, family = 'student', prior = 

prior(gamma(4, 1), class = nu))) 

 

# 9: Linear without participant-varying slopes, no exclusions 

modLinearNoRandomSlopes = brm(reactivity ~ age_centered + motion + (1|participant), data = 

., cores = 2, chains = 4, family = 'student', prior = prior(gamma(4, 1), class = nu))) 

 

 

 

Parametrization of within-participant change versus between-participant differences 

 In efforts to better discriminate truly longitudinal within-participant changes from 

between-participant differences, we created alternate model parametrizations for a subset of 

specifications (bilateral amygdala only, t-statistic amygdala reactivity estimates) for both the fear 

> baseline and neutral > baseline contrast. For each model, we included two separate terms for 

age. The first term represented between-participant differences and was grand mean-centered 



235 
 
 

(such that this term was equal to 0 at age 11.9 years; the mean age across all participants and 

scans); the second, representing within-participant change, was centered within participants 

(such that this term was equal to 0 at the mean age of each participant across visits). We allowed 

only the second within-participant change term to vary across participants, as follows: 

# Within vs. between model (reactivity) 

brm(reactivity ~ age_grand_mean_centered + age_centered_within_participant +  

                motion + (age_centered_within_participant|participant)) 

 

After fitting these model formulations to the subset of preprocessing specifications, we examined 

the posterior distributions of resulting grand mean-centered (between-participant) and within-

participant centered (within-participant) parameters in a smaller specification curve (Figure 2D). 

In addition, we also examined approximate leave-one-out cross-validated R2 using the loo_R2() 

function from the brms package (Bürkner, 2017). This metric uses the posterior likelihood to 

provide an adjusted R2 metric that estimates predictive performance.  

 

Within-person similarity of reactivity voxel-wise statistical maps across multiverse forks 

 We asked whether, for each given scan, whether different pipelines yielded similar voxel-

wise patterns of estimates in a within-scan analysis. To explore how changes in preprocessing 

impacted scan-level statistical results for the fear > baseline, neutral > baseline, and fear > 

neutral contrasts, we computed image similarities between t-statistic maps for each scan across 

all pipelines. Similarities were calculated using product-moment correlations of 3d images (using 

AFNI 3ddot; https://afni.nimh.nih.gov/pub/dist/doc/program_help/3ddot.html) for the same scan 

after transformation to MNI space at 2mm (isotropic) resolution, and across all voxels in the 
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brain. We computed similarities across all pairwise comparisons of pipelines preprocessed using 

C-PAC, as well the similarity of all C-PAC pipelines to the preregistered FSL pipeline. In 

addition to whole-brain similarity, we also computed similarity statistics in the same way for all 

voxels within the bilateral amygdala mask from the Harvard Oxford atlas.  

 

Between-scan associations between amygdala reactivity estimates across specifications 

We also asked whether different pipelines yielded similar relationships between amygdala betas 

across scans in a between-scan analysis. This analysis examined whether between-scan 

relationships among amygdala reactivity estimates were preserved across preprocessing 

specifications for each contrast. To accomplish this, we computed rank-order correlations 

between amygdala-reactivity estimates (t-tstats, bilateral amygdala only) between preprocessing 

specifications for each contrast. Because this analysis was focused on examining whether scan-

level differences were preserved across specifications, correlations were conducted across all 

scans from all participants without taking into account the nesting of repeated observations 

within participants across sessions.  

 

Dependence of amygdala reactivity findings on previous work 

42 scans from the first timepoint were previously analyzed as a ‘discovery set’ by Gee et al 

(2013). Thus, we were concerned that analyses of amygdala reactivity including all data 

(including these scans) might be biased to find stronger effects of negative age-related change 

due to the pre-selection of the amygdala for showing an effect within part of the current sample 

(see Kriegeskorte et al., 2009). Indeed, age-related change in amygdala reactivity for the fear > 

baseline contrast was stronger and more negative in specifications using all data, compared to 
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when excluding these 42 scans (see Appendix A Figure 25). However, such stronger effects 

without exclusion may also have been due to the larger sample size. To address this, we 

conducted permutation tests across several pipelines to assess differences in age-related change 

estimates after exclusion of these 42 scans versus 42 other randomly-drawn scans. To conserve 

computational resources, we fit these models using maximum likelihood with the lme4 R 

package (Bates et al., 2019), rather than fully Bayesian inference. Approximate 95% confidence 

intervals were constructed from these models by computing the interval ±2 standard errors from 

the maximum likelihood estimate.  

 

Within-scan changes in amygdala reactivity across trials 

 

Changes in amygdala reactivity across trials: multiverse details (Table 2, Aim 2) 

• Quantification of change across trials: We conducted separate multiverse analyses using 

several different methods for measuring change in reactivity across trials.  

• Slopes: For each scan we performed a rank-order correlation between trial number and 

amygdala betas corresponding to each trial number (separately for fear and neutral trials). 

These correlation coefficients representing slopes for linear changes in reactivity across 

trials were then submitted to group-level models. 

• Trial halves: We split trials into the first half (trials 1-12) and second half (trials 13-24) 

for fear and neutral faces respectively, and modeled age-related change in amygdala 

reactivity separately for each half of trials at the group level. These models included half 

x age interaction terms to specifically estimate whether age-related change in amygdala 

reactivity differed in the first versus second half of trials.  
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• Single-trial models: We constructed single-trial models with age x trial number 

interaction terms and crossed random effects for age (random intercept and age effects 

for each participant) and trial number (random intercepts and linear slopes for trial for 

each scan).  

• Global signal subtraction: It is possible that changes in amygdala reactivity across trials 

may reflect temporal trends in the whole-brain ‘global signal’, rather than differing 

amygdala reactivity specifically. To correct for this, we included pipelines with a global 

signal correction using post-hoc distribution centering of reactivity for each trial. Post-

hoc distribution centering consisted of subtracting the mean beta estimate across all 

voxels from each voxel such that the distribution of beta estimates for each respective 

trial was centered at 0 (mean-centering).  

• Amygdala ROI: Only Harvard-Oxford anatomically-defined amygdala ROIs in MNI 

space were used in these analyses. Analyses of bilateral, left, and right amygdala ROIs 

were each included. 

• Group-level models: Age was grand mean-centered and modeled as a continuous 

variable, and all models included a covariate for mean framewise displacement. In 

multiverse analyses, we included models with all combinations of additional covariates 

for task run (coded as a binary variable indicating first run versus second/third run) and 

scanner (coded as a binary variable for scanner 1 versus scanner 2). In addition, we 

included models with an additional quadratic term for age. All models were formulated to 

be robust to outliers as described above.  

 

Longitudinal model syntax for models of within-scan change in amygdala reactivity 
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Example brms model formulas are shown below for each of the different types of models for 

within-scan changes in amygdala reactivity.  

 

# Slope model (method 1) 

slope_model_ = brm(slope ~ age_centered + motion + (age_centered | participant),  

        data = ., cores = 2, chains =4, family = 'student',  

        prior = prior(gamma(4, 1), class = nu)) 

 

# Trial half model (method 2) 

half_model = brm(reactivity ~ age_centered*half + motion +  

(age_centered|participant) + (1 | scan),  

        data = ., cores = 2, chains =4, family = 'student',  

        prior = prior(gamma(4, 1), class = nu)) 

 

# Single trial model (linear trial term, method 3) 

single_trial_linear = brm(reactivity ~ age_centered*trial +  

        motion + (age_centered | participant ) + (trial | scan),  

        data = ., cores = 2, chains =4, family = 'student',  

        prior = prior(gamma(4, 1), class = nu)) 

 

# Single trial model (discrete trial term, method 3) 

single_trial_discrete = brm(reactivity ~ age_centered*trial_discrete +  

        motion + (age_centered | participant ) + (trial | scan),  
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        data = ., cores = 2, chains =4, family = 'student',  

        prior = prior(gamma(4, 1), class = nu)) 

 

Amygdala—mPFC functional connectivity analyses 

 

Amygdala—mPFC gPPI analyses: multiverse details (Table 2, Aim 3) 

• Preprocessing: We ran all gPPI analyses using preregistered preprocessing pipelines in 

FSL. No gPPI analyses were run on data preprocessed using C-PAC. 

• Amygdala gPPI seed: All gPPI analyses used the anatomically-defined Harvard-Oxford 

bilateral amygdala mask as a seed region. We extracted mean timecourses from the 

amygdala from the preprocessed BOLD data to use as the seed regressor.  

• Deconvolution step: In all pipelines interaction terms between the amygdala seed 

timeseries and both fear and neutral face regressors were constructed following 

generalized form (gPPI; McLaren et al., 2012). Before multiplication of the seed and 

stimulus timeseries, however, some pipelines included an additional step such that the 

seed timeseries was deconvolved to recreate the seed ‘neuronal’ timeseries using AFNI 

3dTfitter (https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTfitter.html). To most 

closely match pipelines run by Gee et al. (2013), we did not up-sample the seed 

timeseries before using 3dTfitter, and applied no regularization to the regression solver. 

This deconvolution step (often included in AFNI and SPM PPI analyses, but not FSL) 

has been suggested to allow the PPI regressors to better approximate task-modulated 

connectivity at the level of the neuronal response, rather than after being filtered by the 

hemodynamic response function (Di & Biswal, 2017; Gitelman et al., 2003). Following 
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deconvolution, the resulting timeseries was multiplied with the fear and neutral face 

regressors, then re-convolved with the HRF for entry into the GLM. For pipelines not 

including a deconvolution step, seed timeseries were multiplied by stimulus regressors 

that had already been convolved with the HRF.  

• First-Level gPPI GLM: First-level GLMs for gPPI analyses were constructed in FSL 

almost identically to those used in preregistered amygdala reactivity analyses, with the 

addition of the amygdala seed timeseries regressor and gPPI terms for both fear and 

neutral faces. gPPI GLMs included 24 head motion parameters and had TRs with 

framewise displacement >.9mm down-weighted to 0. As with amygdala reactivity 

analyses, we extracted both t-statistics and contrast beta estimates (COPEs) for the fear > 

baseline, neutral > baseline, and fear > neutral contrasts, although the fear > baseline 

contrast was of primary interest for the current study.  

• mPFC ROI definition: We preregistered constructing an mPFC ROI containing 120 

voxels centered at the peak coordinates reported by Gee at al. (2013) for age-related 

change in fear > baseline gPPI (Tailarach 2,32,8; or MNI 3,35,8). However, after 

discovery that this ROI heavily overlapped the corpus collosum, we instead constructed 

three spherical ROIs with 5mm radii, the first centered at the above peak coordinates, the 

second shifted slightly anterior, and the third shifted slightly ventral relative to the second 

(see Figure 4). Lastly, we also used a large mask encompassing the ‘whole vmPFC’, 

taken from Mackey & Petrides (2014). All masks used are available on OSF 

(https://osf.io/hvdmx/). For each scan, we calculated mean gPPI beta estimates and t-

statistics for each of these four ROIs for submission to group-level models.  
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• Group-level models, outliers, and previously analyzed scans: Multiverse gPPI analyses 

included identical decision points to amygdala reactivity analyses with respect to group-

level modeling, dealing with outliers, and use of previously analyzed scans. 

 

Amygdala—mPFC BSC analyses: multiverse details (Table 2, Aim 3) 

• Preprocessing: We conducted all BSC analyses using preregistered preprocessing 

pipelines in FSL.  

• GLMs: We used beta estimates from LSS GLMs fit separately to each trial (as described 

on p. 12 of the main text) for BSC analyses.  

• Amygdala ROI definitions: Only Harvard-Oxford amygdala ROIs in MNI space were 

used in these analyses. Analyses of bilateral, left, and right amygdala ROIs were each 

included. 

• mPFC ROI definitions: For BSC analyses, we used the same mPFC ROIs as with gPPI 

analyses (see Table 2, Aim 3).   

• Global signal subtraction: We included BSC pipelines both with and without the global 

signal subtraction step previously described (post-hoc distribution centering).   

• Beta-series correlations: For each respective amygdala—mPFC ROI pair (12 pairs in 

total for 3 amygdala x 4 mPFC), we extracted mean beta estimates for each ROI for each 

trial, then calculated product-moment correlations between the timeseries across trials 

(neutral and fear separately) for both regions (Di et al., 2020). These correlation 

coefficients were then submitted to group-level models.  

• Group-level models: Multiverse BSC analyses included identical decision points to gPPI 

analyses with respect to group-level modeling, with the exceptions that all BSC models 



243 
 
 

were formulated to be robust to outliers (using Student’s t likelihood functions), and we 

did not exclude previously analyzed scans from any BSC analysis pipelines. 

 

Longitudinal models for functional connectivity 

Longitudinal models for gPPI used the same 9 specifications as previously described (with R 

syntax) above for amygdala reactivity. BSC models were similar, except that all BSC models 

used t-distributed likelihood functions and no BSC models excluded previously studied 

participants because BSC analyses had not previously been conducted with these data. Thus, 

there were a total of 7 longitudinal model specifications for BSC analyses.  

 

Rank-order associations between gPPI & BSC amygdala—mPFC FC 

 In addition to examining age-related changes in amygdala—mPFC FC using both gPPI 

and BSC methods, we asked whether between-scan differences in scan-level FC estimates were 

similar across methods. To accomplish this, we computed rank-order correlations between 

amygdala—mPFC FC estimates using both gPPI (with deconvolution and without) and BSC 

(with global signal subtraction and without) methods for all four mPFC ROIs. Because this 

analysis aimed to investigate the scan-level similarity of FC estimates across method, we 

computed correlations across all scans for all participants.  

 

Effects of up-sampling/lasso regularization parameters during deconvolution on gPPI regressors 

 The AFNI documentation for the 3dTfitter program comes with the warning, 

“Deconvolution is a tricky business, so be careful out there! ... Experiment with different 

parameters to make sure the results in your type of problems make sense” 
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(https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTfitter.html). While our initial choices 

of deconvolution parameters were guided by previous work done with the same dataset, we 

explored the impact of different parameters on the resulting gPPI regressors of interest. We 

systematically varied whether to up-sample the seed amygdala timeseries to a sampling 

resolution of 10Hz (effective TR = 0.1s), and whether to apply no regularization versus an L1 

penalty to the deconvolution solution parameters. We then compared within-scan similarity of 

gPPI regressors by computing product-moment correlations between all generated gPPI 

regressors for a given scan. We also computed equivalent correlations between gPPI regressors 

and the seed timeseries.  

 

Within-person similarity of voxel-wise statistical maps for amygdala FC from gPPI pipelines 

We asked whether, for each given scan, whether different pipelines yielded similar voxel-wise 

patterns of estimates in a within-scan analysis. To explore the degree to which scan-level 

statistical maps for gPPI contrasts were impacted by whether a deconvolution step was included 

in the pipeline, we computed similarity statistics for fear > baseline, neutral > baseline, and fear 

> neutral gPPI contrast t-statistic maps between the pipelines with versus without deconvolution. 

Similarities were calculated using product-moment correlations of 3d images (using AFNI 3ddot; 

https://afni.nimh.nih.gov/pub/dist/doc/program_help/3ddot.html) after transformation to MNI 

space at 2mm (isotropic) resolution, and across all voxels in the brain. In addition to whole-brain 

similarity, we also computed similarity statistics in the same way for all voxels within all four 

mPFC ROIs previously described.  

 

Within-person similarity between gPPI & BSC amygdala FC 
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Given previous evidence that gPPI and BSC connectivity methods detect similar differences in 

connectivity between task contrasts (Di et al., 2020), we asked whether this was true for the fear 

> neutral faces contrast, specifically for amygdala FC. To accomplish this, we computed mean 

FC with the Harvard-Oxford bilateral amygdala for each ROI in the Harvard-Oxford cortical and 

subcortical atlases (https://neurovault.org/collections/262/). For gPPI, mean FC was computed as 

the mean t-statistic over all voxels in each ROI for the fear > neutral contrast. For BSC, mean FC 

was computed as the product-moment correlation between the average timeseries of the bilateral 

amygdala and each ROI. We thus compiled a vector representing amygdala FC with 62 ROIs 

(we removed all subcortical ROIs representing white matter, ventricles, or entire hemispheres of 

cerebral cortex) across the brain for gPPI (both with and without deconvolution) and BSC 

pipelines (both with and without global signal subtraction (GSS)). For each scan, we computed 

product-moment correlations between each of these vectors as a measure of the similarity of 

amygdala FC with the rest of the brain across pipelines. We also computed within-person 

similarity for BSC amygdala connectivity for pipelines with versus without global signal 

subtraction.  

 

Associations between amygdala—mPFC circuitry & separation anxiety: 

 

Amygdala—mPFC circuitry & separation anxiety: multiverse details (Table 2, Aim 5) 

Amygdala reactivity measures: We used t-statistic estimates from the bilateral amygdala (both 

native and MNI space) for fear > baseline, neutral > baseline, and fear > neutral contrasts as the 

predictor of interest.  
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Amygdala reactivity slope measures: For analyses of change in amygdala reactivity over trials, 

we used the slope calculated across fear and neutral trials, respectively, as previously described. 

We used a bilateral amygdala mask (in MNI space) to define amygdala reactivity slopes, and 

included pipelines both with and without global signal correction. 

Amygdala—mPFC FC measures: We used t-statistic estimates for gPPI between bilateral 

amygdala (in MNI space) and all four mPFC ROIs previously described, as well as BSC 

estimates for FC between the same regions. We included gPPI estimates both with and without a 

deconvolution step, and BSC estimates with and without global signal correction. We submitted 

estimates to group-level models for fear, neutral, and fear > neutral contrasts.  

Separation anxiety outcomes: Analyses were run for each of three separation anxiety outcomes: 

scores from the RCADS separation anxiety subscale, and both raw and standardized t-scores 

from the SCARED separation anxiety subscale. 

Group-level models: In all models, separation anxiety outcomes were modeled using multilevel 

linear regressions with crossed random effects for age and brain measure.  All separation anxiety 

models were formulated to be robust to outliers (using Student’s t likelihood functions), and we 

did not exclude previously analyzed scans from any analysis pipelines. 

 

Longitudinal model syntax for amygdala—mPFC circuitry & separation anxiety  

 Longitudinal models for associations between amygdala—mPFC circuitry and separation 

anxiety included participant-varying slopes for the respective brain measure included as a 

predictor in each model, as well as for age.  

# Separation anxiety model 
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brm(separation_anxiety ~ brain_measure + age_centered + motion + (brain_measure + 

age_centered|participant, chains = 4, cores = 4,  

                  family = 'student', prior = prior(gamma(4, 1), class = nu)) 

 

 

Estimating impacts of specific forked decision points on age-related change estimates 

 To explore impacts of different analytical decision points (or the impacts of ‘taking 

different forks’ in the path from beginning to end of the analysis) on age-related change 

estimates, we submitted point estimates for linear age-related change (posterior medians) from 

each model to separate Bayesian linear regression models. Models were fit using the rstanarm 

package (Gabry et al., 2019), and included each decision point (one-hot encoded if there were 

more than 2 options) as a binary predictor of the point estimates for age-related change. 

Following modeling, we plotted posterior distributions and 95% posterior intervals for each 

parameter, representing effects of each decision point conditional on all others. Example syntax 

of one model for amygdala reactivity decision points is below. 

 

decision_point_model = stan_glm(data = sca_frame, estimate ~ tstat + quadratic +  

                          random_slopes + ctrl_scanner + ctrl_block + exclude_prev +   

                          amyg_right + amyg_left + amyg_high_sig + amyg_low_sig +  

                          native_space + motion_reg6 + motion_reg18 +  

                          hrf_2gamma + highpass + robust,  

                          cores = 4, chains = 4) 
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Supplemental Results 

Behavior: Supplemental Results 

Behavioral Task Performance 

 

Appendix A Figure 3: d’ as a function of age.  

d’ for task performance as a function of age, modeled using linear, quadratic, cubic, and inverse 

age longitudinal models. Points display performance for one participant at one timepoint, black 

lines connect estimates from participants with multiple study visits, and colored lines with 

shaded area represent fitted model predictions and 95% posterior intervals. 
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We modeled task performance with d’ (using a correction for extreme proportions; Hautus, 

1995) as a function of linear, quadratic, cubic, and inverse age trends (Appendix A Figure 3). 

Models indicated age-related improvements in d’ without notable quadratic or cubic change. The 

ICC for d’ scores was estimated to be 0.31 (95% PI [0.04, 0.51]). We also modeled accuracy 

(probability of a correct response on any trial, with hits and correct rejections coded as 1, misses 

and false alarms coded as 0), hits, and false alarms using single-trial multilevel logistic 

regression models, and found similar age-related increases in task performance (Appendix A 

Figure 4). Even at the youngest ages, task performance was well above chance levels. We also 

modeled reaction time as a function of age using linear, quadratic, and cubic models. Along with 

general age-related decreases in reaction times to neutral faces (‘hits’), quadratic and cubic 

models indicated that the most age-related change in average reaction times occurred at the 

younger end of the age range, between approximately 4-11 (Appendix A Figure 4, bottom right 

panel). 
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Appendix A Figure 4: Task performance metrics as a function of age 

Age-related change in accuracy (top left), hits (top right), false alarms (bottom left), and reaction 

times during go trials (bottom right). Points display summarized performance for one participant 

at one timepoint (e.g. the proportion accurate across trials during that run), black lines connect 

performance summaries from participants with multiple study visits, and colored lines with 

shaded area represent fitted trial-by-trial model predictions and 95% posterior intervals. 

 

Head Motion 
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Head motion, as measured by mean framewise displacement estimates derived from MCFLIRT 

(Jenkinson et al., 2002) decreased with age ()̂=-0.04, 95% PI [-0.05, -0.02]) among all 

participants with available task fMRI data (Appendix A Figure 5). Among only included 

participants with <= 40 TRs with FD < 0.9mm, mean framewise displacement also decreased 

with age, although somewhat less strongly ()̂=-0.02, 95% PI [-0.02, -0.01]).  

 

 

Appendix A Figure 5: Mean framewise displacement as a function of age (years) 

 

Amygdala Reactivity: Supplemental Results 

 

Group Mean Amygdala Reactivity  
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 We separate specification curves to estimate group averages in amygdala reactivity for 

the fear > baseline, neutral > baseline, and fear > neutral contrasts. To preserve computational 

resources, all models for mean amygdala reactivity were fit using the lme4 R package with 

intercepts allowed to vary by participant. All specifications for the fear > baseline contrast 

(Appendix A Figure 6) and most specifications for the neutral > baseline contrast (Appendix A 

Figure 7) resulted in positive amygdala reactivity with a confidence interval distinct from zero, 

indicating robust average amygdala reactivity to faces of both emotions. In addition, most 

specifications found higher amygdala reactivity for fear compared to neutral faces (fear > neutral 

contrast, Appendix A Figure 8). Higher average amygdala reactivity for fear > neutral faces may 

have been due to either the face emotions or the fact that participants were instructed to press for 

neutral faces and withhold button press for fear faces.  
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Appendix A Figure 6: Specification curve for mean fear > baseline amygdala reactivity  

A: Points represent estimated mean amygdala reactivity for each specification, and lines 

represent corresponding 95% posterior intervals. B: Variables on the y-axis represent analysis 

choices, corresponding lines indicate that a choice was made, and blank space indicates that the 

choice was not made in a given analysis. 
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Appendix A Figure 7: Specification curve for mean neutral > baseline amygdala reactivity 

A: Points represent estimated mean amygdala reactivity for each specification, and lines 

represent corresponding 95% posterior intervals. B: Variables on the y-axis represent analysis 

choices, corresponding lines indicate that a choice was made, and blank space indicates that the 

choice was not made in a given analysis. 
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Appendix A Figure 8: Specification curve for mean fear > neutral amygdala reactivity 

A: Points represent estimated mean amygdala reactivity for each specification, and lines 

represent corresponding 95% posterior intervals. B: Variables on the y-axis represent analysis 

choices, corresponding lines indicate that a choice was made, and blank space indicates that the 

choice was not made in a given analysis. 
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Multiverse analyses of age-related changes in amygdala reactivity 

 In addition to constructing specification curves for age-related change in amygdala 

reactivity for the fear > baseline contrast as reported in the main manuscript (see Figure 2), we 

constructed parallel specification curves for the neutral > baseline and fear > neutral contrasts. 

Generally, age-related change findings for the neutral > baseline contrast were similar to, but 

slightly weaker than, fear > baseline: while 98.9% of specifications found negative age-related 

change, only 42.4% of specifications estimated negative age-related change distinguishable from 

0 (see Appendix A Figure 9). No pipelines found age-related change in fear > neutral amygdala 

reactivity distinguishable from 0 (see Appendix A Figure 10).  
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Appendix A Figure 9: Specification curve for age-related change in neutral > baseline amygdala 

reactivity 

A: Points represent estimated linear age-related change in amygdala reactivity for each 

specification, and lines represent corresponding 95% posterior intervals. B: Variables on the y-

axis represent analysis choices, corresponding lines indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 
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Appendix A Figure 10: Specification curve for age-related change in fear > neutral amygdala 

reactivity 

A: Points represent estimated linear age-related change in amygdala reactivity for each 

specification, and lines represent corresponding 95% posterior intervals. B: Variables on the y-
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axis represent analysis choices, corresponding lines indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 

 

Impacts of pipeline choices on age-related change estimates for amygdala reactivity 

 While the goals of the present study were not to precisely quantify impacts of specific 

pipeline decision points, we explored impacts of all decision points on estimates of age-related 

changes in amygdala reactivity for each contrast. Specifically for the fear > baseline contrast (see 

Appendix A Figure 11), age-related change was somewhat stronger (more negative) for 

specifications using a right amygdala region compared to a bilateral region, and weaker for 

specifications using a left amygdala region. Most notably, specifications excluding the 42 

participants previously studied (Gee et al., 2013) found weaker age-related change.   
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Appendix A Figure 11:  Fork impacts on age-related change for fear > baseline amygdala 

reactivity 

Posterior distributions and 95% posterior intervals are shown, representing the average 

difference in linear age-related change estimates relative to the alternative choice. As most 

specifications find negative age-related change, negative values indicate more strongly negative 

change, and positive values indicate weaker change.  

 

 

 

Appendix A Figure 12:  Fork impacts on age-related change for neutral > baseline amygdala 

reactivity 

Posterior distributions and 95% posterior intervals are shown, representing the average 

difference in linear age-related change estimates relative to the alternative choice. As most 
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specifications find negative age-related change, negative values indicate more strongly negative 

change, and positive values indicate weaker change.  

 

 

 

Appendix A Figure 13:  Fork impacts on age-related change for fear > neutral amygdala 

reactivity 

Posterior distributions and 95% posterior intervals are shown, representing the average 

difference in linear age-related change estimates relative to the alternative choice. Negative 

values indicate more negative change, and positive values indicate more positive change.  
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 In addition to linear age-related change, we also included quadratic age terms in some 

model specifications for somewhat more flexible modeling of longitudinal trajectories of 

amygdala reactivity. We constructed specification curves for quadratic age-related change 

parameters across all models including quadratic terms for the fear > baseline (Appendix A 

Figure 14), neutral > baseline (Appendix A Figure 15), and fear > neutral (Appendix A Figure 

16) contrasts. Across all contrasts, very few specifications estimated quadratic terms 

distinguishable from 0 under a 95% posterior interval. Further, quadratic fits were varied in sign 

for each contrast, such that some quadratic models estimated developmental ‘peaks’ while others 

estimated ‘troughs’ in amygdala reactivity. When model predictions from separate specifications 

were plotted as individual ‘spaghetti’, there was not clear consensus in quadratic trajectories for 

any contrast (as there was for linear change for the fear > baseline and neutral > baseline 

contrasts, see Appendix A Figure 17). Thus, while the current study may not have been 

adequately powered to estimate quadratic age-related change, we did not find consistent 

evidence for either peaks or troughs in amygdala reactivity between ages 4-22. 

Because inverse age models may be particularly useful in characterizing rapid change early in 

development, we also fit such models such that amygdala reactivity was estimated as a function 

of 1/age. Models were fit using maximum likelihood, and fits indicated age-related decreases in 

the fear > baseline and neutral > baseline contrasts (Appendix A Figure 18). However, such 

inverse age models used here can characterize rapid change earlier in development but not later 

in development by design (i.e. they are formulated to capture deceleration in adolescence and 

stabilization in young adulthood; Luna et al., 2021).  
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Appendix A Figure 14: Spec. curve for quadratic age-related change in fear > baseline amygdala 

reactivity 

A: Points represent estimated quadratic age-related change in amygdala reactivity for each 

specification, and lines represent corresponding 95% posterior intervals. B: Variables on the y-

axis represent analysis choices, corresponding lines indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 
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Appendix A Figure 15: Spec. curve for quadratic age-related change in neutral > baseline 

amygdala reactivity 

A: Points represent estimated quadratic age-related change in amygdala reactivity for each 

specification, and lines represent corresponding 95% posterior intervals. B: Variables on the y-
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axis represent analysis choices, corresponding lines indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 

 

  

Appendix A Figure 16: Spec. curve for quadratic age-related change in fear > neutral amygdala 

reactivity 
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A: Points represent estimated quadratic age-related change in amygdala reactivity for each 

specification, and lines represent corresponding 95% posterior intervals. B: Variables on the y-

axis represent analysis choices, corresponding lines indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 
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Appendix A Figure 17: Predictions of age-related change across linear and quadratic model 

specifications. Each blue line represents 1 specification, with age on the x-axis and estimated 

amygdala reactivity on the y-axis. For quadratic models (right panel), some specifications found 

convex change while other indicated concave change. 

 

  

 

 

 

Appendix A Figure 18: Inverse age models for amygdala reactivity 

Spaghetti plots for fitted model predictions (top) and specification curves (bottom) for inverse 

age estimates for models of amygdala reactivity. Positive parameter fits for inverse age indicate 
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decrease in amygdala reactivity as a function of age. Panels represent the fear > baseline contrast 

(A, left), neutral > baseline contrast (B, center), and the fear > neutral contrast (C, right) 

 

 

Between-participant age associations versus within-participant age-related change 

 We constructed a smaller specification curve of models parametrized to differentiate 

between-participant age associations from within-participant age-related changes in amygdala 

reactivity. While only between-participant terms indicated consistent associations with age, we 

also examined, for each specification, whether between-participant and within-participant age 

terms differed from one another. We estimated the differences between such terms through 

calculating the distribution of paired differences in posterior draws between the two terms, and 

summarizing using the median and 95% quantiles (to construct a 95% posterior interval). 

Overall, we found that despite the higher estimation precision for between-participant age 

associations reported in the main text (see Figure 2), within-participant and between-participant 

estimates did not consistently differ within most models for fear > baseline or neutral > baseline 

amygdala reactivity (Appendix A Figure 19A). In addition, R2 metrics calculated with 

approximate leave-one-out cross-validation were close to 0 for all models, indicating predictive 

performance close no better than chance (Appendix A Figure 19B).  
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Appendix A Figure 19: Differences between within-participant and between-participant terms for 

age-related associations with amygdala reactivity 

A. Estimated differences between within-participant and between-participant terms for age-

related associations with amygdala reactivity. B. Approximated leave-one-out cross-validated R2 

scores for each specification separately parametrizing within-participant and between-participant 

terms. R2 values below 0 indicate cross-validated performance poorer than that expected under 

the “null” model.  

 

 

 

Within-person similarity of voxel-wise amygdala reactivity statistical maps across forks 

 We sought to understand whether different preprocessing pipelines, for each given scan, 

yielded similar voxel-wise patterns of estimates in a within-scan analysis. To understand which 

preprocessing steps influenced reactivity estimates most, we computed the voxel-wise similarity 

of statistical maps (t-statistics) for the same scans across preprocessing specifications. Thus, for 
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each pair of pipelines, we computed 1 similarity value for each scan for the whole brain, and 1 

similarity value for each scan for the bilateral amygdala. While similarity (product-moment 

correlation across all brain voxels) was positive for most comparisons between the preregistered 

pipeline (all FSL) and pipelines using C-PAC preprocessing, similarity did vary across scans 

such that for any comparison, some scans were highly different across specifications (i.e. near-

zero or negative correlation values). In general, statistical maps for both the whole brain and the 

bilateral amygdala from the preregistered FSL pipeline were more similar to pipelines using C-

PAC preprocessing + FSL GLMs compared to pipelines using C-PAC preprocessing + AFNI 

GLMs (see Appendix A Figure 20). In addition, within specifications with C-PAC 

preprocessing, similarity across pipelines was somewhat higher, especially within pipelines using 

the same GLM software or nuisance regressors (see Appendix A Figure 21). Relatively higher 

similarity among of specifications with C-PAC preprocessing was likely to do the common 

registration shared by all such pipelines (as opposed to differing registrations from the 

preregistered FSL pipeline). 
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Appendix A Figure 20. Voxelwise image similarity for amygdala reactivity contrasts between 

the preregistered FSL pipeline and C-PAC pipelines.  

The x-axis indicates product-moment correlations across all brain voxels (bottom panel) and 

bilateral amygdala voxels (top) for the preregistered FSL pipeline with the pipelines indicated on 

the y-axis. Similarity is shown for the fear > baseline (left), fear > neutral (middle), and neutral > 

baseline (right) contrasts. 

 

 



273 
 
 

 

Appendix A Figure 21: Voxelwise similarity for amygdala reactivity contrasts between all C-

PAC pipelines.  

The x-axis indicates product-moment correlations across all brain voxels (green) and bilateral 

amygdala voxels (blue) within each scan for all pairwise comparisons of C-PAC pipelines 

indicated on the y-axis. Similarity is shown for the fear > baseline (left), fear > neutral (middle), 

and neutral > baseline (right) contrasts. Pipeline comparisons are organized into comparisons 

between two pipelines with AFNI GLMs (top), one pipeline with an AFNI GLM and the other 

with FSL (middle), and two pipelines with FSL GLMs (bottom). 
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Between-scan correlations of amygdala reactivity estimates across specifications 

 To ask whether relative relationships between scans for amygdala reactivity were 

preserved across preprocessing specifications, we computed correlations between scan-level 

estimates of mean amygdala reactivity across pairs of pipelines (for bilateral amygdala estimates, 

t-statistics) for each contrast. For each pair of preprocessing pipelines, we computed the rank-

order correlation between vectors of bilateral amygdala reactivity estimates (1 datapoint per scan 

per pipeline). While correlations were all positive and mostly strong (r >= .7) for most pairs of 

pipelines for the fear > baseline (Appendix A Figure 22) and neutral > baseline (Appendix A 

Figure 23) contrasts, correlations between the most disparate preprocessing pipelines were often 

much weaker (e.g. from 0.4-0.6). Thus, the between-scan relationships between amygdala 

reactivity estimates were only somewhat weakly preserved across such pipelines. On the other 

hand, for the fear > neutral contrast, all pairwise comparisons of pipelines yielded higher (r >=.7) 

between-scan correlation values (Appendix A Figure 24).  
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Appendix A Figure 22: Between scan correlations for amygdala reactivity pipelines for fear > 

baseline. 
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Appendix A Figure 23: Between-scan correlations for amygdala reactivity pipelines for neutral > 

baseline. 
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Appendix A Figure 24: Between scan correlations for amygdala reactivity pipelines for fear > 

neutral. 

 

Dependence of amygdala reactivity age-related change findings on previous work 

When we included only scans not previously used as a ‘discovery set’ to identify voxels 

changing with age in their reactivity to fear faces (a cluster in the right amygdala; Gee et al., 

2013), estimates of age-related change were weaker on average, and the majority of posterior 

intervals for these estimates included 0. Permutation testing against equally sized samples, where 

42 scans not previously studied were excluded from analysis at random (to form a ‘null’ 

distribution), indicated that for all pipelines tested, excluding the previously studied scans 

resulted in numerically weaker (less negative) age-related change (Appendix A Figure 25). 
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Specifically, for the right amygdala (where age-related change was found in exploratory whole-

brain analyses by Gee et al., 2013), age-related change when excluding these previously studied 

scans was less strong than the vast majority of permutation iterations excluding other scans at 

random for most pipelines. This indicates that analyses within the present study including these 

scans may somewhat overestimate age-related change due to partial dependence on the previous 

selection of the right amygdala by Gee et al. (2013). However, the magnitude of differences in 

findings between pipelines including versus excluding these previously-studied scans was small, 

and the vast majority of age-related change estimates are of the same sign regardless of exclusion 

of these scans. In addition, participants were younger on average by 1.5 years (95% PI [0.02, 

3.00]) when studied at timepoint 1 by Gee et al. (2013) compared to other scans analyzed here 

due to the longitudinal study design. Thus, bias introduced by partially circular analyses here 

may not substantially alter conclusions across all specifications. Further, we also note that even 

analyses excluding these 42 participants cannot be considered entirely independent of the 

previous work, as the present work still examines follow-up scans from many of the same 

participants and uses the same stimuli.  
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Appendix A Figure 25: Permutation tests for age-related change excluding previously studied 

scans 

Blue distributions are ‘null’ distributions for age-related change for models of datasets excluding 

42 randomly selected scans that had not been previously studied. Error bars indicate 95% 

confidence intervals based on these distributions, and blue points are the median value. Red 

points indicate estimate age-related change when excluding the 42 previously studied scans. Red 

points are always more positive than the blue points (especially for the right amygdala), 

indicating stronger median negative age-related change when these 42 scans are included than if 

excluded.  

 

Head Motion & Amygdala Reactivity 

 We computed product-moment correlations between in-scanner head motion (mean FD) 

and amygdala reactivity for specifications across preprocessing pipelines and contrasts (see 
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Appendix A Figure 26). Overall, few specifications resulted in amygdala reactivity estimates that 

were strongly correlated with head motion, although some estimates were significantly 

associated with motion (95% confidence interval excluding 0 for each contrast).   

 

 

Appendix A Figure 26: Correlations between head motion and amygdala reactivity for each 

contrast 

Plots show specification curves of correlations ranked by their value for the fear > baseline (A), 

neutral > baseline (B), and fear > neutral (C) contrasts. Color indicates sign of correlation 

estimates and whether respective 95% confidence intervals include 0 (red = negative excluding 
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0; blue = negative including 0, green = positive including 0, purple = positive excluding 0, black 

= median across all specifications). 

 

Our preregistered exclusion criteria (<= 40 TRs with FD >= .9mm) based on in-scanner head 

motion was relatively lenient, especially compared to recent recommendations for resting-state 

fMRI preprocessing (Power et al., 2014). To examine whether results were driven by the 

inclusion of high-motion scans, we systematically varied an inclusion threshold for analysis from 

mean framewise displacement during the scan of 0.2-1.0mm in increments of 0.1mm. For each 

dataset based on the different inclusion thresholds, we modeled age-related change (longitudinal 

model #1) in bilateral amygdala (both Freesurfer-defined in native space and MNI space) 

reactivity using both t-statistics and beta estimates from the preregistered preprocessing pipeline. 

We did not observe meaningful differences in estimated age-related change as a function of head 

motion exclusion thresholds (see Appendix A Figure 27), indicating that age-related change 

findings in amygdala reactivity reported here are not likely driven purely by high-motion scans.  
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Appendix A Figure 27: Estimated age-related change as a function of mean FD exclusion 

threshold 

The mean FD threshold for exclusion of a scan is shown on the x-axis, and the point estimate and 

95% posterior intervals for corresponding age-related change estimates are on the y-axis. 

 

 

mPFC reactivity: supplemental results 

In addition to the amygdala, we also inspected reactivity in each of the 4 mPFC regions for the 

fear > baseline contrast with separate specification curves. To conserve computational resources, 

we fit these models using maximum likelihood with the lme4 R package (Bates et al., 2019), 

rather than fully Bayesian inference. Approximate 95% confidence intervals were constructed 

from these models by computing the interval ± 2 standard errors from the maximum likelihood 

estimate. Average reactivity differed by region, such that reactivity to fearful faces in the large 

vmPFC region was negative (i.e. signal lower than baseline), somewhat negative for mPFC 
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region 3, and somewhat positive for mPFC regions 1-2 (Appendix A Figure 28A). Only in the 

large vmPFC region was average reactivity for fear > baseline reliably distinguishable from 0 

across specifications. While age-related change estimates were rarely distinguishable from 0 for 

any region, estimates were all negative in sign for mPFC regions 1-3 (Appendix A Figure 28B-

C).  

 

Appendix A Figure 28: Group average mPFC reactivity and age-related change for fear faces > 

baseline  

(A) estimated group mean mPFC reactivity for each preprocessing pipeline and ROI. (B) 

estimated age-related change in mPFC reactivity for each preprocessing pipeline and ROI. For 

A-B, error bars are approximate 95% confidence intervals. (C) model predictions for estimated 

fear > baseline mPFC reactivity as a function of age (in years), with different preprocessing 

pipelines plotted as individual spaghettis for each ROI.  
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 Because Gee et al. (2013) reported that between-participant associations between 

amygdala and mPFC connectivity were positive among younger children and negative among 

older youth in a sample from the first timepoint studied here, we examined associations between 

amygdala and mPFC reactivity similarly in the current longitudinal sample. For these analyses, 

we also used multilevel linear regression models with the lme4 R package (without random 

slopes, but with random intercepts and a covariate for head motion). Across preprocessing 

pipelines, both the left and right amygdala, and all four mPFC regions, fear > baseline amygdala 

reactivity was positively associated with fear > baseline mPFC reactivity (see Appendix A 

Figure 29A-B). However, we did not find consistent evidence for age-related differences in 

associations between amygdala and mPFC reactivity for any mPFC region (Appendix A Figure 

29C). 

 

 

Appendix A Figure 29: Associations between amygdala & mPFC reactivity 
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(A) Model predictions for fear > baseline mPFC reactivity (y-axis) as a function of fear > 

baseline amygdala reactivity (x-axis). Individual spaghettis represent models for different 

preprocessing pipelines for both the left (red) and right (blue) amygdala. (B) Beta coefficients 

and 95% confidence intervals for associations between amygdala and mPFC reactivity. (C) Beta 

coefficients and 95% confidence intervals for age-related change in associations between 

amygdala and mPFC reactivity. Positive terms would represent stronger (more positive) 

amygdala—mPFC reactivity associations with increasing age. 

 

 

Within-scan changes in amygdala reactivity: supplemental results 

Group average within-scan changes in amygdala reactivity 

 As with amygdala and mPFC reactivity, we modeled the group average within-scan 

change in amygdala reactivity using lme4. We estimated both the average slope of amygdala 

reactivity across trials (such that negative slope indicates linear decreases in amygdala reactivity 

across trials), and the mean difference between reactivity in trials 1-12 > 13-24 (first half > 

second half). We computed these group average estimates across bilateral, right, and left 

amygdala regions, with and without global signal subtraction, and for both the fear > baseline 

and neutral > baseline contrasts. Average slopes across trials were negative for both fear and 

neutral faces, although slopes were on average steeper for fear faces (Appendix A Figure 30). 

While on average, amygdala reactivity was higher for the first half of trials for fear faces across 

specifications, there were no consistent average differences between trial halves for amygdala 

reactivity to neutral faces (Appendix A Figure 31).  
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Appendix A Figure 30: Group average slopes in amygdala reactivity across trials 

Negative slopes indicate linear decreases in amygdala reactivity across trials on average. Points 

display maximum likelihood estimates, and error bars are 95% confidence intervals.  

 

 

Appendix A Figure 31: Group average differences in amygdala reactivity across first > second 

half of trials 

Positive values indicate higher average amygdala reactivity in the first half of trials. Points 

display maximum likelihood estimates, and error bars are 95% confidence intervals.  
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Age-related differences in within-scan amygdala reactivity change 

 In addition to specification curves for amygdala reactivity slopes across trials (main 

manuscript Figure 3), we constructed parallel specification curves for age-related change in the 

difference in amygdala reactivity between trial halves. For the fear > baseline contrast, most 

specifications found evidence for an interaction between trial half and age (100% in the same 

direction, 66.7% of posterior intervals excluded 0), such that differences between amygdala 

reactivity in the first half > second half of trials were more negative (i.e. smaller positive 

differences, see Appendix A Figure 31) at older ages on average (Appendix A Figure 32A). 

Posterior intervals for this estimated interaction never excluded 0 for the left amygdala, but 

always did for the right or bilateral amygdala. For the neutral > baseline contrast, while the 

majority of specifications (83.3%) found numerically negative change, none of the 95% posterior 

intervals excluded 0 (Appendix A Figure 32B).  

Single-trial models also indicated that for both fear and neutral faces, amygdala responses were 

larger for early trials for younger children, and more similar across age (though still positive) in 

later trials (see main manuscript Figure 3C, Appendix A Figure 33). Specification curves for 

single-trial models indicated that this pattern was somewhat stronger and more robust to analysis 

choices for fear faces (100% of 95% posterior intervals excluding 0), than for neutral faces (60% 

of posterior intervals excluding 0, see Appendix A Figure 34). Thus, analyses of slopes across 

trials, differences between trial halves, and single trial analyses indicated more consistent 

evidence of age-related change for fear faces than for neutral.  
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Appendix A Figure 32: Spec. curve for differences across task half in amygdala reactivity age-

related change. Specification curves showing parameter estimates and 95% posterior intervals for 

the estimated interaction term between age*trial half for amygdala reactivity, for the fear > 

baseline (A) and neutral > baseline (B) contrasts. Negative terms indicate that age-related change 

is more negative (stronger) during the first 12 trials compared to the last 12 (see main manuscript 

Figure 3B). 
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Appendix A Figure 33: Multiverse single-trial model predictions as a function of trial and age 

Predictions for each single-trial model are plotted as individual ‘spaghettis’ for both fear trials 

(left) and neutral trials (right). For illustrative purposes, we plot predictions for an average 

person at age 6, 12, and 18 years of age. In the top panel, models include terms for linear trial 

associations, while in the bottom panel, trials are modeled discretely.  
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Appendix A Figure 34: Spec. curve of age*trial amygdala reactivity interactions from single-trial 

models 

Positive trial*age interaction terms indicate that slopes for within-scan linear changes in 

amygdala reactivity (as modeled through a single-trial multilevel model) were more positive (i.e. 

less negative, because slopes were negative on average) at older ages.  

 

 

gPPI Functional Connectivity Results 

 

Impacts of a deconvolution step on gPPI regressors and estimates 

 gPPI regressors are interactions formed from the multiplication of the seed timeseries 

with the stimulus (task) regressors. In order for gPPI to measure ‘task-dependent’ connectivity, 

there must be adequate time when stimuli are ‘on’ versus ‘off’ such that such an interaction 

regressor can represent the difference in connectivity between two regions when the stimulus is 

present versus absent (McLaren et al., 2012). Unfortunately, within rapid event-related design, 
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there were few periods of baseline 350ms presentations of either fear or neutral faces (ITI was 

jittered between 3-9s), other than the initial 20-second fixation period at the beginning of the 

scan. If it is then unclear which TRs represent connectivity when the stimuli are ‘on’ versus ‘off’, 

estimation of ‘task-dependent’ connectivity is difficult. Thus, other than the initial 20-second 

fixation period in our paradigm, resolution between stimulus presentations is low and there are 

very few moments in which the gPPI regressors are at baseline (i.e. flat, see Appendix A Figure 

35 for an example set of regressors). This may especially be a problem for the gPPI regressor 

without deconvolution, where the stimulus regressor has already been convolved with the HRF 

before multiplication with the seed timeseries. Because of the slow temporal dynamics of the 

HRF, the stimulus regressor rarely returns to baseline between events (this would take 15-20s), 

and the gPPI regressor is then correlated with the seed timeseries.  

 Indeed, regressors both with and without deconvolution were collinear with the amygdala 

seed on average, although multicollinearity was more of a problem without deconvolution 

(Appendix A Figure 36). Thus, gPPI estimates without deconvolution might especially represent 

associations between brain regions that include “task-independent” signal in addition to 

connectivity associated particularly with the face stimuli. Within pipelines including a 

deconvolution step, however, tweaks to regularization methods (adding a lasso penalty) in the 

3dTfitter algorithm or up-sampling of the seed timeseries to 0.1s resolution before deconvolution 

resulted in substantially differing gPPI regressors. As shown in Appendix A Figure 36 (top 

panel), gPPI regressors for the same scan using different deconvolution methods were only often 

only weakly associated (r < .5). Such differences among regressors all ostensibly using 

deconvolution indicates that our solutions for the ‘underlying neuronal timecourse’ (and the 
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resulting gPPI estimates) may be unreliable due to their sensitivity to such changes in the 

deconvolution pipeline.  

 We then asked how similar amygdala gPPI results would be at a voxelwise level when 

using a pipeline with versus without deconvolution. We compared voxelwise patterns between t-

statistic maps for fear > baseline, fear > neutral, and neutral > baseline gPPI with versus without 

deconvolution for the same scans. Patterns were overall positively correlated across for all mPFC 

regions (as well as whole-brain patterns), but varied significantly such that the median 

correlation between patterns with versus without deconvolution was never above r = .5 for the 

fear > baseline or neutral > baseline contrasts (Appendix A Figure 37). While patterns were 

slightly more similar for the fear > neutral contrast, that such correlations were only moderate 

indicated substantial differences in patterns of results across voxels between pipelines with 

versus without deconvolution. The higher variability in similarity values across mPFC regions 1-

3 is likely because these ROIs were much smaller, and thus correlations were calculated across 

far fewer voxels. These substantial differences when comparing amygdala gPPI results with 

versus without deconvolution for the same scan likely play a major role in the discrepancies in 

findings for age-related change in amygdala—mPFC gPPI. Although we did not test other task 

paradigms here, we speculate that gPPI analyses with block designs or event-related designs with 
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longer ITIs (20+ seconds) may be more successful at estimating task-dependent connectivity. 

 

Appendix A Figure 35: Example gPPI and amygdala seed regressors for one scan  

Timecourses for the average timeseries of the amygdala seed (black), gPPI regressor without 

deconvolution (green), and gPPI regressor with deconvolution (blue) for an example participant. 

TRs where fear face stimuli are presented are highlighted in grey. gPPI regressors, especially the 

regressor without deconvolution, are rarely flat other than at the beginning of the task, because 

there are few temporal gaps between fear face stimuli of more than 10-15s. Thus, both gPPI 

regressors, but especially the one without deconvolution, tend to be correlated with the seed 

timecourse. 
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Appendix A Figure 36: Correlations between gPPI regressors, and between gPPI regressors and 

the seed 

Top: boxplots show distributions of correlations across between different versions of gPPI 

regressors for the same scan for all scans. +Deconv represents the deconvolved regressor without 

up-sampling or lasso regularization, which was used for pipelines in the main manuscript. These 

+Deconv regressors were about equally similar to -Deconv regressors (regressors used in the 

main manuscript without deconvolution) as they were to +Deconv regressors with lasso 

regularization. +Deconv regressors were even less similar to +Deconv regressors with up-

sampling, or up-sampling and lasso regularization. Bottom: boxplots show distributions of 
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correlations between different versions of gPPI regressors with the amygdala seed timeseries 

across all scans.  

 

 

 

Appendix A Figure 37: Voxelwise image similarities of gPPI estimates with vs. without 

deconvolution 

Values on the y-axis represent product-moment correlations between t-statistic maps for each 

ROI with versus without deconvolution.  

 

Group mean amydala-mPFC gPPI estimates 

 To preserve computational resources, all models for mean amygdala—mPFC gPPI were 

fit using the lme4 R package with intercepts allowed to vary by participant. Overall, we did not 

see consistent evidence for group mean task-dependent amygdala—mPFC connectivity distinct 

from 0 for any contrast or ROI (see Appendix A Figure 38). As discussed previously, however, 

the lack of detected group average task-dependent connectivity may owe more to the fact that the 

task paradigm was ill-suited for estimation of gPPI than absence of true connectivity.  
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Appendix A Figure 38: Group average amygdala—mPFC gPPI estimates for each contrast and 

ROI 

The x-axis represents estimated average task-dependent amygdala—mPFC connectivity for each 

ROI (on the y-axis) and contrast (left = fear > baseline, middle = fear > neutral, right = neutral > 

baseline). Pipelines with deconvolution are represented in blue, and without deconvolution in 

red.   

 

Multiverse analyses of age-related change in amygdala—mPFC gPPI 

In addition to the constructing specification curves for age-related change in amygdala—mPFC 

gPPI for the fear > baseline contrast as reported in the main manuscript (see Figure 4), we 

constructed parallel specification curves for the neutral > baseline and fear > neutral contrasts. 

For the neutral > baseline contrast the vast majority of pipelines (98.2%) found positive age-

related change, though only 29.5% of pipelines estimated such change with a posterior interval 
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excluding 0 (Appendix A Figure 39). Similar to the fear > baseline contrast, pipelines with a 

deconvolution step tended to find less positive age-related change. For the fear > neutral contrast, 

86.1% of pipelines estimated numerically negative age-related change, though only 2.1% of 

pipelines did so with a posterior interval excluding 0 (Appendix A Figure 40). Thus, across all 

contrasts there was no consistent evidence of age-related change in amygdala—mPFC gPPI.  

 

Appendix A Figure 39: Spec. curve for age related change in amygdala—mPFC gPPI for neutral 

> baseline 

A: Points represent estimated linear age-related change in amygdala—mPFC gPPI for each 

specification, and lines represent corresponding 95% posterior intervals. B: Variables on the y-

axis represent analysis choices, corresponding lines indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 
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Appendix A Figure 40: Spec. curve for age related change in amygdala—mPFC gPPI for fear > 

neutral 

A: Points represent estimated linear age-related change in amygdala—mPFC gPPI for each 

specification, and lines represent corresponding 95% posterior intervals. B: Variables on the y-

axis represent analysis choices, corresponding lines indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 

 

Impacts of analysis choices on age-related change estimates for amygdala—mPFC gPPI 

 As with amygdala reactivity, we explored the impacts of gPPI analysis choices on 

estimates of linear age-related change, conditional on all other decision points. For the fear > 

baseline contrast, whether to use a deconvolution step or not made by far the biggest impact on 

estimated age-related change (see Appendix A Figure 41). Deconvolution also impacted 
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estimates for the neutral > baseline contrast (Appendix A Figure 42) and fear > neutral contrast 

(Appendix A Figure 43).  The chosen mPFC ROI also had a large impact on estimated age-

related change.  

 

Appendix A Figure 41. Fork impacts on age-related change for fear > baseline amygdala—

mPFC gPPI 

Posterior distributions and 95% posterior intervals are shown, representing the average 

difference in linear age-related change estimates relative to the alternative choice. 
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Appendix A Figure 42: Fork impacts on age-related change for neutral > baseline amygdala—

mPFC gPPI 

Posterior distributions and 95% posterior intervals are shown, representing the average 

difference in linear age-related change estimates relative to the alternative choice. 
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Appendix A Figure 43:  Fork impacts on age-related change for fear > neutral amygdala—mPFC 

gPPI 

Posterior distributions and 95% posterior intervals are shown, representing the average 

difference in linear age-related change estimates relative to the alternative choice. 

 

Impacts of regressor centering on age-related change in amygdala—mPFC gPPI 

As previous work has recommended centering the task regressor in gPPI models using 

deconvolution (Di et al., 2017), we investigated whether age-related change gPPI results with 

deconvolution differed as a function of this centering. Overall, regressor centering had little 

impact on linear age-related change estimates, with deconvolution and choice of mPFC ROI 

having relatively more influence on regression estimates (Appendix A Figure 44A). Further, 

scan-level estimates for the fear > baseline contrast were highly similar between pipelines where 
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the task regressor was centered before creating the gPPI regressor and pipelines where no such 

centering was done (Appendix A Figure 44B). The similarity of scan-level estimates indicated 

that this centering step had little impact on individual gPPI estimates in this instance.  

 

 

 

Appendix A Figure 44:  Impacts of centering the task regressor in gPPI models with 

deconvolution 

A: Posterior distributions and 95% posterior intervals are shown for age-related change estimates 

in amygdala—mPFC gPPI functional connectivity as a function of the gPPI regressor 

specification. Models with deconvolution and without centering of the task regressor (green) 

demonstrated highly similar estimated age-related change to models with deconvolution and 

centering the task regressor (orange). Models without deconvolution (purple), by comparison, 

showed differing estimates of age-related change. Models displayed are for the fear > baseline 

contrast. B: Direct comparison of scan-level estimates for fear > baseline amygdala—mPFC 

gPPI with deconvolution and with the task regressor centered (x-axis) versus not centered (y-

axis). Panels separate gPPI estimates by mPFC ROI.  
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Non-linear age-related changes in amygdala—mPFC gPPI 

We constructed specification curves for quadratic age-related change parameters across all 

models including quadratic terms for the fear > baseline (Appendix A Figure 45), neutral > 

baseline (Appendix A Figure 46), and fear > neutral (Appendix A Figure 47) amygdala—mPFC 

gPPI. Across all contrasts, few specifications (20.8% for fear > baseline, 1.0% for neutral > 

baseline, 8.3% for fear > neutral) estimated quadratic terms distinguishable from 0. Quadratic fits 

also varied considerably in sign for each contrast, such that there was not consensus on ‘U-

shaped’ or ‘inverse U-shaped’ change. Thus, while the current study may not have been 

adequately powered to estimate quadratic age-related change, we did not find consistent 

evidence for either peaks or troughs in amygdala—mPFC gPPI.  

We also constructed inverse age models for age-related change in amygdala—mPFC gPPI 

(Appendix A Figure 48). As with linear models, such models indicated that a deconvolution step 

largely influenced age-related change estimates for the fear > baseline contrast, often flipping the 

sign from positive change (without deconvolution) to negative change (with deconvolution, 

Appendix A Figure 48). However, deconvolution had a relatively smaller impact for the neutral 

> baseline and fear > neutral contrasts. 

 

 

 

 



304 
 
 

 

Appendix A Figure 45: Spec. curve for quadratic age-related changes in fear > baseline 

amygdala—mPFC gPPI  

A: Points represent estimated quadratic age-related change in amygdala—mPFC gPPI for each 

specification, and lines represent corresponding 95% posterior intervals. B: Variables on the y-

axis represent analysis choices, corresponding lines indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 
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Appendix A Figure 46: Spec. curve for quadratic age-related changes in neutral > baseline 

amygdala—mPFC gPPI  

A: Points represent estimated quadratic age-related change in amygdala—mPFC gPPI for each 

specification, and lines represent corresponding 95% posterior intervals. B: Variables on the y-

axis represent analysis choices, corresponding lines indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 
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Appendix A Figure 47: Spec. curve for quadratic age-related changes in fear > neutral 

amygdala—mPFC gPPI  

A: Points represent estimated quadratic age-related change in amygdala—mPFC gPPI for each 

specification, and lines represent corresponding 95% posterior intervals. B: Variables on the y-

axis represent analysis choices, corresponding lines indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 
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Appendix A Figure 48: Inverse age models for amygdala—mPFC gPPI  

Left panels show fitted model predictions for inverse age models for the fear > baseline (A, top), 

neutral > baseline (C, middle), and fear > neutral (E, bottom) contrasts. Specifications including 

a deconvolution option are plotted in red, and without deconvolution in blue. Specifications 

using beta estimates are plotted with filled lines and with t-stats using dotted lines. Right panels 

show beta estimates for corresponding models for each contrast. Positive estimates for inverse 

age indicate decreases in amygdala—mPFC gPPI as a function of age, and vice-versa. 

 

Correlations between head motion and amygdala—mPFC gPPI estimates  

We computed product-moment correlations between in-scanner head motion (mean FD) and 

amygdala—mPFC gPPI across pipelines (deconvolution versus none), contrasts, and ROIs (see 
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Appendix A Figure 49). Overall, head motion was not strongly correlated with gPPI estimates, 

such that few 95% confidence intervals for correlations excluded 0.  

 

Appendix A Figure 49: Correlations between mean FD & gPPI estimates across scans 

For each contrast, pipeline (+deconv. versus -deconv), and ROI, points show estimated product-

moment correlations and error bars represent 95% confidence intervals.  

 

Task-independent amygdala—mPFC connectivity estimates from gPPI models 

 Within the gPPI model, the association between the seed timeseries (or ‘physiological’ 

term) and target voxel has been conceptualized as representing ‘task-independent’ functional 

connectivity (Greene et al., 2020). Although we cannot be sure that such measurements are truly 

‘task-independent’ without analysis of tasks beyond the current study, we used these estimates to 

explore amygda-mPFC functional connectivity while controlling for task-induced variance. For 

all mPFC ROIs, such task-independent connectivity with the amygdala was positive on average 
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across all participants (Appendix A Figure 50). The positive task-independent amygdala—mPFC 

connectivity found here may be an overestimate, however, as gPPI pipelines did not include a 

global signal correction (Power et al., 2017).  

In addition, pipelines with deconvolution found age-related increases in task-independent 

amygdala—mPFC connectivity, while pipelines without deconvolution found age-related 

decreases (Appendix A Figure 51B). Few 95% confidence intervals excluded 0 for age-related 

change for either set of pipelines however (Appendix A Figure 51A).  

 

Appendix A Figure 50: Group average task-independent amygdala—mPFC connectivity 

Points show estimates and error bars represent 95% confidence intervals for each pipeline and 

ROI.  
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Appendix A Figure 51: Age-related change in task-independent amygdala—mPFC connectivity 

Age-related change coefficients in task-independent amygdala—mPFC connectivity across 

methods and ROIs (A). The y axis indicates estimated linear age-related change in amygdala—

mPFC connectivity. In (B), model predictions as a function of age are plotted as spaghettis in red 

for pipelines without deconvolution, and blue for pipelines with deconvolution.  

 

 

BSC Functional Connectivity Results 

 

Group mean amygdala—mPFC BSC 

To preserve computational resources, all models for mean amygdala—mPFC BSC were fit using 

the lme4 R package with intercepts allowed to vary by participant. For both the fear > baseline 

and neutral > baseline contrasts, we found positive amygdala—mPFC connectivity for all 

pipelines without a global signal correction, and positive (yet weaker) connectivity for all 
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pipelines with a correction (Appendix A Figure 52). We did not find average differences 

between amygdala—mPFC BSC for the fear > neutral contrast (Appendix A Figure 52).  

 

 

Appendix A Figure 52: Group mean amygdala—mPFC BSC across contrasts, mPFC ROIs, and 

pipelines 

Points represent mean estimates and error bars represent 95% confidence intervals.  

 

Multiverse analyses of age-related change in amygdala—mPFC BSC 

In addition to the constructing specification curves for age-related change in amygdala—mPFC 

BSC for the fear > baseline contrast as reported in the main manuscript (see Figure 5), we 

constructed parallel specification curves for the neutral > baseline and fear > neutral contrasts. 

For the neutral > baseline contrast, 77.9% of specifications found positive age-related change 

(most of them for mPFC ROI #1 or the large vmPFC ROI), though only 12.5% of posterior 

estimates excluded 0 (Appendix A Figure 53). For the fear > neutral contrast, only 1 pipeline out 
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of 300 resulted in a posterior estimate excluding 0 for age-related change (Appendix A Figure 

54).  

 

 

 

Appendix A Figure 53: Spec. curve for age-related change in neutral > baseline BSC 

A: Points represent estimated linear age-related change in amygdala—mPFC BSC for each 

specification, and lines represent corresponding 95% posterior intervals. B: Variables on the y-

axis represent analysis choices, corresponding lines indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 
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Appendix A Figure 54: Spec. curve for age-related change in fear > neutral BSC 

A: Points represent estimated linear age-related change in amygdala—mPFC BSC for each 

specification, and lines represent corresponding 95% posterior intervals. B: Variables on the y-

axis represent analysis choices, corresponding lines indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 

 

Impacts of analysis choices on age-related change estimates for amygdala—mPFC BSC 

Unlike gPPI, for all BSC contrasts the choice of mPFC ROI, rather than preprocessing or 

modeling decisions, made biggest relative impact on estimates of age-related change (Appendix 

A Figures 55-57). For both fear > baseline and neutral > baseline contrasts, pipelines with mPFC 

ROIs #2-3 showed more negative age-related change compared to mPFC ROI #1 or the large 

vmPFC ROI. For the fear > neutral contrast, pipelines with mPFC ROI #3 and the large vmPFC 
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ROI showed more negative age-related change compared to mPFC ROIs #1-2 (Appendix A 

Figure 57). 

 

Appendix A Figure 55: Fork impacts on age-related change for fear > baseline amygdala—

mPFC BSC 

Posterior distributions and 95% posterior intervals are shown, representing the average 

difference in linear age-related change estimates relative to the alternative choice. 
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Appendix A Figure 56:  Fork impacts on age-related change for neutral > baseline amygdala—

mPFC BSC 

Posterior distributions and 95% posterior intervals are shown, representing the average 

difference in linear age-related change estimates relative to the alternative choice. 
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Appendix A Figure 57. Fork impacts on age-related change for fear > neutral amygdala—mPFC 

BSC 

Posterior distributions and 95% posterior intervals are shown, representing the average 

difference in linear age-related change estimates relative to the alternative choice. 

 

Nonlinear age-related changes in amygdala—mPFC BSC 

Some model specifications for amygdala—mPFC BSC included quadratic age-related change 

terms. Overall, however, we found little consistent evidence for quadratic age-related change for 

any contrast (see Appendix A Figures 58-60), as the sign of quadratic terms (‘peaks’ vs 

‘troughs’) varied across specifications, and very few terms for each contrast were estimated with 

the 95% posterior interval excluding 0 (4% for fear > baseline, 8% for neutral > baseline, 18% 
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for fear > neutral). Inverse age models for age-related change in amygdala—mPFC BSC also 

indicated little evidence for consistent age-related change (Appendix A Figure 61). 

 

Appendix A Figure 58: Spec. curve for quadratic age-related changes in fear > baseline 

amygdala—mPFC BSC 

A: Points represent estimated quadratic age-related change in amygdala—mPFC BSC for each 

specification, and lines represent corresponding 95% posterior intervals. B: Variables on the y-

axis represent analysis choices, corresponding lines indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 
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Appendix A Figure 59: Spec. curve for quadratic age-related changes in neutral>baseline 

amygdala—mPFC BSC 

A: Points represent estimated quadratic age-related change in amygdala—mPFC BSC for each 

specification, and lines represent corresponding 95% posterior intervals. B: Variables on the y-

axis represent analysis choices, corresponding lines indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 
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Appendix A Figure 60: Spec. curve for quadratic age-related changes in fear > neutral 

amygdala—mPFC BSC 

A: Points represent estimated quadratic age-related change in amygdala—mPFC BSC for each 

specification, and lines represent corresponding 95% posterior intervals. B: Variables on the y-

axis represent analysis choices, corresponding lines indicate that a choice was made, and blank 

space indicates that the choice was not made in a given analysis. 
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Appendix A Figure 61: Inverse age models for amygdala—mPFC BSC  

Left panels show fitted model predictions for inverse age models for the fear (A, top), neutral (C, 

middle), and fear > neutral (E, bottom) contrasts. Specifications including a global signal 

correction are plotted in red, and without it in blue. Line type indicates amygdala ROI (solid = 

bilateral, dotted = left, dashed = right). Right panels show beta estimates for corresponding 

models for each contrast. Positive estimates for inverse age indicate decreases in amygdala—

mPFC BSC as a function of age, and vice-versa. 

 

Correlations between head motion & amygdala—mPFC BSC estimates 

 We calculated correlations between mean framewise displacement and BSC estimates for 

each ROI and contrast for pipelines with and without global signal correction. For pipelines 
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without global signal correction fear > baseline and neutral > baseline estimates were positively 

associated with head motion (see Appendix A Figure 62). Such correlations were reduced in 

pipelines with a global signal correction, consistent with indications that such estimates of BSC 

for only one condition may also represent some ‘task-independent’ signal that may contain 

motion and respiratory artifacts. BSC estimates for the fear > neutral contrast were not overall 

strongly associated with head motion.  

 

Appendix A Figure 62: Correlations between mean FD & BSC estimates across scans 

For each contrast and ROI, points show estimated product-moment correlations and error bars 

represent 95% confidence intervals.  

 

Within-scan similarity between gPPI & BSC amygdala FC 

 Previous work from Di et al. (2020) indicated a convergence in BSC and gPPI for 

contrasts between two task conditions. We addressed this in the present data with a within-scan 

analysis.To examine whether certain pipelines across BSC and gPPI were representing more 
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similar signals, we computed correlations between vectors of fear > neutral amygdala FC with 

the rest of the brain between each pair of BSC and gPPI pipelines for the same scan. Overall, 

patterns of amygdala FC with the rest of the brain were positively associated between all 

pipelines on average, although not strongly, and associations varied widely across participants 

(Appendix A Figure 63, left panel). gPPI pipelines without deconvolution resulted in somewhat 

more similar amygdala connectivity patterns with BSC relative to gPPI pipelines with 

deconvolution. Amygdala connectivity patterns were the most strongly associated between the 

two BSC pipelines with versus without global signal correction (Appendix A Figure 63, right 

panel).  

 

Appendix A Figure 63. Similarity of amygdala FC with the rest of the brain between gPPI & 

BSC 
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Points represent similarity across pipelines for each individual scan for each comparison (x axis 

marks each comparison of pipelines), with error bars summarizing 95% posterior intervals for 

estimated mean similarity across scans.  Left: between-method comparisons of similarity of 

amygdala FC between BSC and gPPI methods. Right: within-method comparisons of similarity 

of amygdala FC within BSC and gPPI methods, respectively, while altering decisions for GSS 

(for BSC) and deconvolution (gPPI). GSS = global signal subtraction using post-hoc mean 

centering. 

 

Between-scan correlations between gPPI & BSC estimates 

 We also sought to examine whether different methods for functional connectivity yielded 

similar relationships between scans in mean amygdala—mPFC functional connectivity estimates. 

We computed between-scan rank-order correlations between gPPI and BSC estimates for each 

contrast to examine whether relative ordering was preserved across different estimates of 

amygdala—mPFC functional connectivity. For each pair of preprocessing pipelines, we 

computed the rank-order correlation between vectors of functional connectivity estimates (1 

datapoint per scan per pipeline). Most generally, BSC estimates were not strongly associated 

with gPPI estimates, even for the same contrast and mPFC ROI (Appendix A Figures 64-66). 

However, for the fear > neutral contrast specifically, gPPI estimates without deconvolution were 

generally positively correlated with BSC estimates for corresponding ROIs, while gPPI estimates 

with deconvolution were not (Appendix A Figure 66). In addition, while BSC estimates for the 

same ROI with versus without global signal correction were generally highly associated, gPPI 

estimates for the same ROI with versus without deconvolution were often only weakly 

associated. 



324 
 
 

 

Appendix A Figure 64: Between-scan correlations between fear > baseline gPPI & BSC 

estimates   
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Appendix A Figure 65: Between-scan correlations between neutral > baseline gPPI & BSC 

estimates 

 

Appendix A Figure 66: Between-scan correlations between fear > neutral gPPI & BSC estimates 

 

Associations with generalized anxiety and social anxiety behaviors 

 

 Here, we primarily focused on associations between amygdala—mPFC responses and 

separation anxiety in efforts to follow up on previous analyses of the same cohort (Gee et al., 

2013), and because separation anxiety behaviors often show pronounced decline among typically 

developing cohorts of age range (Allen et al., 2010; Francis et al., 1987). However, we also 

examined associations with parent-reported generalized anxiety and social anxiety behaviors as 

measured by the SCARED-P and RCADS-P, as well as the Total Anxiety Score from the 

RCADS-P. Using multilevel linear regression models (covarying for age) with maximum 
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likelihood estimation as described above, we did not find robust evidence for longitudinal 

associations between amygdala—mPFC measures and any of the anxiety scales examined 

(Appendix A Figure 67).  

 

 

 

Appendix A Figure 67: Associations between amygdala—mPFC measures and anxiety-related 

behaviors  

Specification curves are shown for longitudinal associations between fear > baseline amygdala 

reactivity (A), fear > baseline amygdala—mPFC BSC (B), fear > baseline  amygdala—mPFC 

gPPI (C), and slopes for amygdala fear betas (D) and anxiety scales (green = generalized anxiety 

behaviors, orange = social anxiety behaviors, purple = total anxiety behaviors). 
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Appendix B: Chapter 2 Supplement 
 

 

 

Appendix B Figure 1: Estimated head motion for a subset of NKI participants with lagged 

predicted RVT + RETROICOR compared to without lag, raw BOLD, and belt RVT + 

RETROICOR. Panels show TR=645 on the left and TR=1400 on the right. 
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Appendix B Figure 2: Estimated power spectra of head motion in the anterior-posterior (phase-

encoding) direction for a subset of NKI participants with lagged predicted RVT + RETROICOR 

compared to without lag, raw BOLD, and belt RVT + RETROICOR. Top panel shows TR=645 

and bottom panel shows TR=1400.  
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Appendix B Figure 3: Power spectra in the HCP data when an “adaptive notch” filter was 

applied. The notch filter center was set to the scan-specific predicted peak respiratory frequency 

with a width of 0.12Hz.  
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 Appendix B Figure 4: Bootstrap comparisons for head motion metrics between raw BOLD, 

notch filtering, belt RVT + RETROICOR, and predicted RVT + RETROICOR. Each point range 

shows the bootstrapped mean and 95% confidence interval for the mean difference in each 

metric (top row = mean Jenkinson FD, middle row = % TRs censored, bottom = % TRs lost). Y-

axis labels indicate the contrast.  
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Appendix B Figure 5: Relationships between head motion (x-axis) and maximum lagged 

correlations between belt and high-resolution motion timeseries within the NKI data. Columns 

show direction (left-right, anterior-posterior, inferior-superior), and rows indicate sequence. All 

combinations of sequence and direction indicate that maximum lagged correlations are weaker in 

scans with higher mean Jenkinson FD.  
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Appendix B Figure 6: Distributions of lag times for the maximum correlations between belt and 

predicted respiratory traces within the NKI data (A-P direction). X-axis indicates the temporal 

lag (positive indicates the predicted traces was “ahead”) and y-axis indicates the max correlation 

found at the respective lag time. Blue dots indicate scans where >= 15% of belt trace time points 

were clipping, red dots indicate < 15% clipping.  

 

 
Appendix B Figure 7: Non-lagged correlations between the respiratory belt and high-resolution 

(red) and original resolution (green) motion parameters in the 0.2-0.6Hz range. Correlations are 
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shown in each direction of translation, and also for relationships between high resolution and 

original resolution motion parameters (blue). Correlations are shown for the NKI (left) and HCP 

(right) data 

 

 

Appendix B Figure 8: Normalizing framewise displacement estimates to FD-per-minutes 

reduces discrepancies in head motion estimates across sequences.  
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Appendix B Figure 9: Comparison of an example HCP participant’s estimated FD from raw 

BOLD (light grey) and after notch filtering (black, with points). Lost TRs where only the notch 

filtered frame is above FD = 0.2mm occur after the large motion spike. Motion may thus be 

“spread” from large spikes to neighboring TRs.  

 

 
Appendix B Figure 10: Power spectra of head realignment parameters in the NKI 645 raw 

BOLD data 
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Appendix B Figure 11: Power spectra of head realignment parameters in the NKI 645 raw 

BOLD data 

 

 
Appendix B Figure 12: Power spectra of head realignment parameters among resting-state 

scans collected as part of the PACCT study (Tottenham). Data were collected in the A-P phase 

encoding direction on a Siemens Prisma with multiband factor=6.  
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Appendix B Figure 13: Bootstrapped I2C2 within HCP data collected in the R-L phase 

encoding direction. In the R-L, compared to L-R data, aCompCor made somewhat of a clearer 

improvement to I2C2. Red = no model-based physio correction, green = belt RVT + 

RETROICOR, blue = predicted RVT + RETROICOR.  
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Appendix B Figure 14: Bootstrapped discriminability within HCP data collected in the R-L 

phase encoding direction. Red = no model-based physio correction, green = belt RVT + 

RETROICOR, blue = predicted RVT + RETROICOR. 
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Appendix C: Chapter 3 Supplement 
 

Parent-selected child race N Percentage 

European-American/Caucasian 23 37.1% 

African American/Black 22 35.5% 

Other 21 33.9% 

Asian American 2 3.2% 

American Indian/Alaska Native 1 1.6% 

Native Hawaiian/Other Pacific Islander 0 0% 

Appendix C Table 1: Parent-selected child race. Parent’s selected from a list of options whether 

their child was of each race or not. Parents could select multiple options; therefore total 

percentages add up to over 100%. 20 parents (32.2%, 

 

 

 

Parent-reported child race N 

Hispanic 6 

Hispanic/Caucasian 2 

Italian 2 

White 2 
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American/Hispanic 1 

Arabic African 1 

Caribbean 1 

Caucasian+Asian 1 

East Indian 1 

Eurasian 1 

Hispanic-American 1 

Latino 1 

White & Asian 1 

Appendix C Table 2: Parent-reported child race for parents who initially reported their child’s 

race as “other”. In this case, responses are shown as given by parents.  

 


