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Abstract

The creation, transfer, and stabilization of localized excitations is studied in a donor-

acceptor Frenkel exciton model in an atomistic treatment of reduced-size double quan-

tum dots of various sizes. The explicitly time-dependent dynamics simulations carried out

by hybrid time-dependent density functional theory/configuration interaction show that

laser-controlled hole trapping in stacked, coupled germanium/silicon quantum dots can be

achieved by an UV/IR pump-dump pulse sequence. The first UV excitation creates an exci-

ton localized on the topmost QD and after some coherent transfer time an IR pulse dumps

and localize an exciton in the bottom QD. While hole trapping is observed in each excita-

tion step, we show that the stability of the localized electron depends on its multi-excitonic

character. We present how size and geometry variations of three Ge/Si nanocrystals influ-

ences transfer times and thus the efficiency of laser-driven populations of the electron-hole

pair states.
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Introduction

With miniaturization becoming ever more important in technology, nanotechnology became an

emergent field in the recent years, in which nanometer-sized components are designed with respect

to their size, morphology, and chemical composition to have desired properties. One class of

nanoparticles made from a few hundreds of atoms of semiconducting materials like silicon, gallium

or arsenic, is quantum dots (QDs).1,2 They are attractive for their size-tunable band gap3,4 and

the discrete states for their charge carriers, which are significantly different from that of the

respective bulk materials.4

QDs exist in a vast range of structural realizations arising from different fabrication routes.5

Some methods obtain QDs from thin films6 or nanowires7 with subsequent electrostatic confine-

ment of the charge carriers. Others use detonation to decompose larger particles into nanoparti-

cles.8 A large domain, however, is the growth of structures under different conditions: in colloidal

solution,9 in wires with alternating materials,10 on etched surfaces,2 or most prominently simply

by self-assembly.11 The creation of paired QDs or even small arrays is possible for all the mentioned

QD classes by a modified route for synthesis,,6,7,9,12 in particular, in anisotropic self-assembling

conditions for the lateral13 or vertical14 arrangement.

Along with the large manifold of synthesized QDs came a vast area of application of the

tailor-made particles that build on the QD’s discrete energy levels for electrons and holes. Two

spectral ranges are particularly relevant. In the far- and mid-infrared range of intra-conduction

band excitations of electrons (or valence-band excitations of holes) are addressed, which is used in

infrared detection.15 Ultraviolet and visible light (UV/Vis) allows for the crossing of the bandgap

and the creation of excitons, which are subject to photo-catalysis,16 quantum computing,17,18

light-emission,19–21 or solar cells functionality.16,22

The creation of a stable, i.e., long-lived exciton is frequently discussed. Such stability would

also play a key role in building block for quantum computers, since simple electron-hole recombi-

nation or the Auger process could easily destroy an exciton.23 Furthermore, a stable exciton is of

great importance in the creation of an electron-loaded QD surface to initiate chemical reaction.24
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The key strategy behind this is hole trapping.25,26 It relies on the relative energy levels of elec-

tron and hole of the QD and the embedding material. In a so-called type-II QD heterostructure

a hole is favorably localized when both the valence-band maximum and the conduction-band

minimum have higher energies than the embedding material, where, consequently, the electron

would assemble.25,26 Such charge separation leads ultimately to large permanent dipoles relevant

to information storage17 or solar cells.22

A promising material class in this respect is germanium QDs on a silicon surface.25 Their op-

tical structure is already well-investigated experimentally27 and particular states can be addressed

by lasers.28,29 Such laser excitation scenarios were also found to be similarly successful in pairs of

QDs.14,30,31 Another strategy for electron and hole separation in pairs of QDs, or double quantum

dots (DQDs), is potential-driven charge-carrier tunneling following photoexcitation.32,33

In this work, we would like to explore the exciton stabilization by hole trapping in combination

with electron migration in self-assembled germanium DQDs. Specifically, by quantum-dynamical

calculations we target a pump-dump process as shown in Fig. 1: UV radiation creates an exciton

in the top Ge/Si nanocrystal, the exciton is then coherently transferred34,35 to the lower QD,

where it is eventually stabilized by subsequent IR de-excitation. We will show that the excitonic

states involved in this two-pulse scheme consist of holes localized in the Ge structures and that

the final stability will be obtained from localizing the electron.

Stability is always a matter of timescales, of course. Therefore, the lifetime of the exciton

created should not exceed time spans on which decay processes in QDs may take place, namely

Auger decay (1 ps),36 acoustic phonon-mediated decay (50 ps − 1 ns),37,38 optical phonon-

mediated decay (0.5 − 5 ps),37 or radiative recombination (1 ns).36,39 Hence, the proposed

three-step process is best investigated by an explicitly time-dependent method that includes a

multitude of electronic states and that offers the possibility for the inclusion of decay mechanisms.

The theoretical modeling of nanostructures, however, is a challenge by itself and here two

major routes are pursued. Either QDs are described by confinement models that can reflect

the electronic band structures for geometries known from experiments.40,41 Such models have
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Figure 1: Top: Double QD made of Ge core nanocrystals (red spheres) embedded in Si shells
(silver spheres). The core/shell Ge/Si nanocrystals are stacked along z direction (spacer layers
are indicated by white spheres) and their absorption properties is schematically indicated by
underlying laser pulses: QDB is shielded from UV light excitation (fading blue lines) by Si layers
while these layers are transparent for IR pulses (red lines). Bottom: schematic laser-control path
by localized UV excitation, coherent transfer and IR fixation of specific hole-trapped state.
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successfully been used to study Ge/Si structures42–44 or electron dynamics in QD pairs.38,39 In

such models, though, the creation and annihilation of an exciton can only be accounted for

indirectly. Hence, we follow the route based on an explicit atomistic description of the QDs.

Experimental Ge/Si QDs exceed more than 100 atoms, which cannot be accurately treated in an

all-electron description and reduced-size model QDs are employed. It was shown that small Ge

clusters embedded in a few layers of Si shells do still feature the crucial optical properties of the

original structures.29,44,45

For the study of light-induced electron dynamics, the time-dependent configuration interaction

(TDCI) method that employs atom centered basis functions has proven to correctly describe the

response properties of multi-electron polyatomic systems.46–52 In the present work we study the

laser-driven exciton dynamics in a double quantum dot made of a pair of Ge/Si model quantum

dots. The excitonic properties and laser-induced electron-hole trapping in a single Ge/Si model

QD was already successfully simulated at the time-dependent configuration interaction singles

(TD-CIS) level of theory.29 To better account for the electronic correlation, thereby offering a

more accurate description of the electron dynamics, we adopt a hybrid time-dependent density

functional theory/ configuration interaction (TDDFT/CI) formalism.53–55 This yields a better

energetic description of the systems’ excited states at a numerical cost equivalent to the TD-CIS

method. In our study we extend such single small molecular cluster models to build a double

QD as depicted in Fig. 1 and introduce a dipole-dipole coupling between them. We present a

UV+IR laser-driven pump-dump scheme where the delay time between the pulses depend on the

transfer rate of the exciton between the two localized units of the DQD. This three-step process

towards a stable exciton is schematically depicted in Fig. 1. We will show that the overall rate

of the process is determined by the transfer time (orange arrow). This coherent transfer time,

τ = h/2∆E, is given by the energy splitting between intermediate excitonic states, which are

representations of localized electron-hole pairs on single QDs obtained at the TDDFT level of

theory and Coulomb coupled via dipole-dipole interaction.56,57

This paper is organized as follows: in section the theoretical background for the simulation
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of laser-induced electron dynamics by the hybrid TDDFT/CI method is summarized and the

establishment and construction of the Ge/Si model DQDs are elaborated. In section the results

of the laser-controlled exciton dynamics are presented and discussed. Sec. summarizes the

most significant results and gives an outlook on extending the model towards even more realistic

representation. Atomic units (e = h̄ = me = 4πε0 = 1) are used if not stated otherwise.

Theory

The evolution of a many-electron system driven by an external light source is governed by the

electronic time-dependent Schrödinger equation (TDSE)

i
∂|Ψel(t)〉

∂t
= Ĥ(t)|Ψel(t)〉 . (1)

Here, Ĥ(t) = Ĥel +V̂
ext

(t) is explicitly time-dependent as it includes the electronic Hamiltonian,

Ĥel = T̂el+V̂el,el+V̂el,nuc, with its terms for kinetic and potential energy and the interaction with

an oscillating external field, V̂
ext

(t), e.g., a laser pulse. Because the systems investigated here are

relatively small in size compared to the excitation wavelength, coupling with an external electric

field is treated in the semi-classical dipole approximation, V̂
ext

(t) = ˆ̃µ·~F(t). The molecular dipole

operator for a system composed of i electrons and A nuclei is given by µ = −
∑N

i ri+
∑NA

A ZARA.

Provided that the electronic wavefunction, |Ψel(t)〉, at a given initial time, t0, is known, the

wavefunction at any time, t, can be computed by integrating Eq. 1.

For the description of exciton dynamics in many-electron systems, correlated wavefunction

methods provide a potentially powerful approach. In this context, the configuration interaction

(CI) methodology represents a straightforward and systematic way to include electron correlation

in the many-body wavefunctions. In its single-reference version, dynamic correlation is included

by creating excited configurations from a reference Slater determinant of the ground state. This

is done by systematically promoting one or more electrons from occupied orbitals a, b, c, . . . of

that determinant to unoccupied orbital r, s, t, . . . . By symmetrizing the spin of these excited
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configurations, so-called configuration state functions (CSFs) are constructed.

Since optical processes predominantly involve the excitation of a single electron in the space

of correlated virtual orbitals,58 taking only singly excitations into account is common place when

treating electron dynamics on a femtosecond timescale. This leads to so-called the CI single

method, where the many-electron wavefunction in Eq. 1 is approximated by its CIS counterpart,

|Ψel(t)〉 ≈ |ΨCIS(t)〉. However, at the CIS level of theory the ground state remains the uncorre-

lated Hartree-Fock state and excitation energies are often too large.58 Density functional theory

(DFT) in its Kohn-Sham formulation offers a solution to this problem by including explicitly

electron correlation into the ground state Slater determinant.59

Time-dependent hybrid-TDDFT/CI

For the solution of Eq. 1, the time-dependent wavefunction is expanded in a basis of pseudo-CIS

eigenstates, |ΨCIS
i 〉

|Ψel〉(t) ≈
∑
i

Ci(t)|ΨCIS
i 〉 , (2)

where the expansion coefficients at any given time, Ci(t), are obtained by direct numerical

integration. The pseudo-CIS eigenstates are themselves written as truncated CI expansions,

|ΨCIS
i 〉 = δi0|Ψ0〉+

∑
ar

(1− δi0)Dr
a,(i)|Ψr

a〉, (3)

where the indices imply sums over all occupied spin orbitals, {a}, all unoccupied spin orbitals, {r}

and the Kronecker delta is used as a coefficient for the ground state Kohn-Sham determinant |Ψ0〉.

To improve on the system energetics while retaining the simple form of the CIS wavefunctions, the

coefficients Dr
a,(i) are computed using linear-response time-dependent density functional theory

(LR-TDDFT).54,59 Within the Tamm-Dancoff approximation, the equivalence between the LR-

TDDFT pseudo-eigenfunctions, |ΨTDDFT
i 〉, and the CIS expansion, |ΨCIS

i 〉, is strict, when the

former uses a Kohn-Sham ground state as a single reference. The method is also known as time-

dependent Tamm-Dancoff approximation (TD-TDA).55 By choosing an appropriate exchange-
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correlation functional, some of the electron correlation is included in the Kohn-Sham orbitals of

the ground state reference determinant, |Ψ0〉. This improves the energies of the orbitals and

provides a more accurate bandgap than in canonical Hartree-Fock orbitals, which serves as a

starting point for the standard CIS procedure. Ultimately, this leads to more accurate energies

for the excited many-electron pseudo-CIS eigenstates.

Keeping only the contributions larger than some user-defined threshold, |Dr
a,(i)| > ε, a com-

pact representation of the pseudo-CIS eigenfunction is obtained. Renormalization of the se-

lected response coefficients associated with each pseudo-CIS eigenstates yields approximate CIS

wavefunctions of the form Eq. 3, which can be used to compute the matrix elements of the

time-dependent Hamiltonian in Eq. 1. The TDCI method needs excitation energies and the cor-

responding dipole matrix only to allow performing laser-driven electron dynamics.48

The pseudo-CIS eigenvectors are further used to calculate the elements of the transition dipole

moment matrices along the three Cartesian directions q are calculated from the CIS eigenvectors

as

µij;q = 〈ΨCIS
i |µ̂q|ΨCIS

j 〉 . (4)

The diagonal elements i = j represent the permanent dipole of a given state, and the off-diagonal

elements the transition dipole moments which mediate optical transitions between states i and

j.

Furthermore, for the analysis and characterization of the electronic transitions, natural tran-

sition orbitals (NTO)60 are constructed. The multi-determinantal excited state wavefunctions in

NTOs are expressed through a one-electron transition density matrix between this reference |Ψref〉

and the excited state. By this compact representations a qualitative description of an electronic

transition of the correlated pairs of particle and hole functions can obtained. All integrals can

be computed analytically from the knowledge of the pseudo-CIS wavefunctions, see below for

computational details. Finally, propagation of the expansion coefficients of the time-dependent
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wavefunction is done by direct numerical integration of the linearized equations of motion, using

an in-house code described in detail elsewhere.53,54,56,61

Exciton model

To simulate the dynamics in a pair of interacting quantum dots, we build upon the knowledge

of the pseudo-CIS wavefunctions and construct a Frenkel exciton model.62–64 In the present

context, the dynamics describes the time-evolution of non-covalently interacting stacked QDs,

and the choice of Frenkel exciton model appears natural, as it is amenable to the description

of large arrays of interacting QDs. The basic idea is to represent an excitonic state as a direct

product of electronic states of individual QDs, here labelled QDA and QDB: |ΨCIS
nA
〉⊗ |ΨCIS

nB
〉. By

using such product ansatz, excitonic states in the double quantum dots are generated, in which

independent electron-hole pairs are localized on individual QDs, and the transfer of an electron

from one QD to the other is not possible. These required building blocks – the local electron-hole

pair wavefunctions – are constructed by combining results of the single point calculations in the

individual QDs.

The zeroth-order energy of the excitonic states are simply given as the sum of energies of the

individual QD fragments. By construction, these excitonic states can be separated energetically in

two excitation bands. The first mixes excited states of one quantum dot while the other remains

in the ground state (|ΨCIS
0A
〉 ⊗ |ΨCIS

nB
〉 and |ΨCIS

nA
〉 ⊗ |ΨCIS

0B
〉). The second band is made of all

combinations of excitation in both clusters, and it is located at about twice the energy of the first

band. To rule out multi-photon effects when inducing a transitions to low-lying exciton states,

basis for propagations is truncated to the first band. This leads to a Frenkel exciton wavefunction

of the form

|Ψ(t)〉 =
∑
nA

cnA0B(t)|ΨCIS
nA
〉 ⊗ |ΨCIS

0B
〉+

∑
nB

c0AnB
(t)|ΨCIS

0A
〉 ⊗ |ΨCIS

nB
〉 . (5)

The total Hamiltonian of the two interacting QDs in Eq. 1 can be approximated by the Frenkel
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Hamiltonian of the excitonic system as

Ĥ =
∑
nA

εnA
|ΨCIS

nA
〉〈ΨCIS

nA
| ⊗ ÎB+

∑
nB

ÎA ⊗ εnB
|ΨCIS

nB
〉〈ΨCIS

nB
|

+
∑
nAnB
mAmB

V dd
nAnB
mAmB

|ΨCIS
nA
〉〈ΨCIS

mA
| ⊗ |ΨCIS

nB
〉〈ΨCIS

mB
| . (6)

The Coulomb interaction between the two stacked QDs is approximated as the coupling of two

dipoles, as found in the non-radiative Förster resonance energy transfer:65

V̂
dd

= κ
|~µA| |~µB|

R3
0

, (7)

where R0 is the distance between the centers of the QDs. The orientation factor

κ =
~µA · ~µB

|~µA| |~µB|
− 3

(
~µA · ~R

)(
~µB · ~R

)
|~µA| |~µB|R2

0

(8)

depends on the displacement vector ~R between the two QDs. This particular shape of the operator

simplifies evaluation of the coupling term in the excitonic basis as

V dd
nAnB
mAmB

= 〈ΨCIS
nA
|〈ΨCIS

nB
|V̂

dd
|ΨCIS

mB
〉|ΨCIS

mA
〉

=
κ

R3
0

∣∣〈ΨCIS
nA
|~µA|ΨCIS

mA
〉
∣∣ ∣∣〈ΨCIS

nB
|~µB|ΨCIS

mB
〉
∣∣ . (9)

The required transition dipole moments are calculated from the pseudo-CIS eigenfunctions ob-

tained from a single point calculation of the individual QDs, Eq. 4. The eigenvectors and eigenen-

ergies necessary to perform the TDCI dynamical simulations and integrate numerically Eq. 1 are

obtained by diagonalizing the matrix representation of the Hamilton Operator in the Frenkel

exciton basis

HU = UE

|Ψi〉 =
∑

mA,mB

U{mA,mB},i|ΨCIS
mA
〉 ⊗ |ΨCIS

mB
〉 .

(10)
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The similarity transformation allows to define a rotation matrix U with elements U{mA,mB},i

which relates the localized Frenkel exciton states |ΨCIS
mA
〉 ⊗ |ΨCIS

mB
〉 to the delocalized eigenstates

|Ψi〉. The effect of this transformation is shown in Fig. 2. On the left, the energy levels of

Figure 2: Schematic energy levels of the Ge/Si clusters for the individual QD (left) and the
double QD (right); distinction of exciton and eigenstates.

the individual QDs, computed here using LR-TDDFT in the Tamm-Dancoff approximation, are

shown. The Frenkel excitonic states are depicted in the center, with the ground state remaining

completely delocalized. This basis will be later used to analyze the dynamics in terms of localized

excitations. The coherent coupling between the two QDs is represented as a wavy orange arrow.

Note that only the germanium atoms (red spheres) are depicted to simplify the representation,

but all clusters include a double silicon shell saturated by hydrogen atoms, as depicted in Fig. 1.

On the right, the basis of delocalized eigenstates of the Frenkel Hamiltonian used in the TDCI

simulations is shown. The unitary transformation matrix U allows to toggle back and forth

between the TDCI propagation basis and the excitonic basis.

The Coulomb interaction between individual QD dipoles gives rise to an energy splitting that

is a function of separation of the QDs. The magnitude of this energy splitting depends on both

the change of permanent dipole moments of the states and the transition dipole moments among

them. It is found to be small and involves mostly coupling of excitonic states with the same

electron-hole pair character on either of the QDs. The coherent nature of this interaction is

reflected in the transfer between excitonic states localized on each QD. For every pair of coupled

localized excitonic states, the rate associated with this coherent transfer depends on the energy
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difference ∆E between eigenstates with a similar local electron-hole pair character on each QD.

The present work reports on the scenario where two self-assembled QDs are stacked on top

of each other. This situation is represented in Fig. 1, where the z axis corresponds to the the

orientation normal to the silicon wetting layer on which germanium atom grow. The double QD

system is excited using an electric field polarized in the xy-plane and propagating towards the

positive z direction. The germanium cluster QDB is buried below QDA. Because the electric

field will cross a thicker layer of silicon to reach the second QD deeper inside the silicon surface,

the electric field will be more efficiently screened by the silicon wetting layer, depending on the

frequency of the incoming laser pulse. Silicon becomes opaque for excitation energies larger

than Ecutoff = 1.2 eV.66,67This implies that UV laser excitations will likely interact with the top

cluster only. However, both clusters are still sensitive to IR excitation, which lies in a frequency

domain for which silicon is almost transparent. To represent this situation, which is schematically

depicted in Fig. 1, the dipole moment matrix used to evaluate the coupling of the individual

QDs with the external field is modified. An effective dipole matrix, µ̃eff is defined such that all

components representing a transition at an energy ∆EnB
> Ecutoff for the QDB at the bottom

is set to zero in the exciton basis. That way, coupled quantum dots in a symmetric donor-

acceptor configuration are constructed. For the propagation in the eigenstate basis, the effective

dipole matrix is then transformed using the same unitary transformation as described above,

µeff = Utµ̃effU. Therefore, the effective interaction Hamiltonian used for the laser-induced

dynamics in the time-dependent calculations includes the different absorption properties in the

UV regime for the two QDs.
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Laser field design

To drive the dynamics, we apply a series of cos2-shaped laser pulses which are chosen to be

~F (t) =
∑
n

~fn(t) cos [ωn(t− tp,n) + Φn] with, (11)

~fn(t) =


~f0,n cos2

[
π

2σn
(t− tp,n)

]
if | t− tp,n |< σn

~0 else ,

(12)

where the index n = 1, 2 indicates the number of the laser pulse. The polarization and the

maximum amplitude, which is reached at tp,n, is given by ~f0,n. The frequency is ωn, while σn and

Φn determine the full width at half maximum (FWHM) and the phase of the nth laser pulse.

In the results section we will present laser excitations that induce a population inversion.

Such inversions between Ψm and Ψn can be achieved using so-called π-pulses, derived from

Rabi oscillations in a driven two-level system within the rotating wave approximation. The field

amplitude and pulse duration for the individual cos2-shaped pulses can be explicitly calculated

from the following condition

|~f0| · σ = π/|~µi,j| , (13)

for collinear vectors ~f0 and ~µi,j, as defined in Eq. 4. The associated maximum field intensities are

calculated as

Imax =
1

2
ε0 c ~f0

2
, (14)

where ε0 is the vacuum permittivity and c is the velocity of light. Note, that the rotating wave

approximation and the assumption of an ideal two-level system are only used for the determination

of the initial laser pulse parameters. All dynamics simulations presented later have been carried

out using a manifold of electronic states.
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Model and Methods

We present simulations on three Ge/Si core/shell nanocrystals that differ in size and geometry.

Their main structure element is a QD core of covalently bound germanium atoms, namely either

a pyramidal Ge7 (depicted in Fig. 2) or two isomeric Ge11 cores assigned as hat-A and hat-B.

The silicon atoms form the diamond-structured host matrix in such a way that each Ge atom

has got two layers of nearest neighbors of Si atoms. Any dangling bonds of the outer Si shell are

passivated with hydrogen atoms.

To impose the diamond lattice of bulk Si, all geometry optimizations are carried out while

freezing the second layer of Si atoms. That way C2v symmetry is imposed to the clusters during

geometry optimization at PBE/def2-SVP level of theory68,69 employing the TURBOLMOLE pack-

age.70 The lowest-lying 50 electronic states are taken from subsequent single-point LR-TDDFT

calculations in the Tamm-Dancoff approximation employing the PBE0/def2-SVP functional to

build electronic states of the exciton model. All single-point electronic structure calculations are

performed using the ORCA code.71

These single molecular clusters models are taken to build a double QD as depicted in Fig. 1

and introduce a dipole-dipole coupling between them (orange arrow). All 50 electronic states

are used for the construction of the 2500 exciton states Eq. 5 of the double dot. By subsequent

diagonalization of the effective interaction Hamiltonian the exciton state functions and the cor-

responding dipole matrix are obtained. Propagations are carried out with the first 99 states that

form the first exciton band as described in .

The coefficients of the pseudo-CIS eigenstates are pruned at a cutoff threshold of |Di
a| > ε,

with ε = 0.01 (see section ). The transition dipole moments from the corresponding pseudo-CIS

eigenvectors are computed using the module detCI of the open-source post-processing program

orbkit.54,72,73 Note, that the sign of all transition dipole moment elements from the ground

state, Eq. 4, have been set to positive values to ensure a systematic sign convention. This is

possible since each pseudo-CIS eigenstate obtained from LR-TDDFT is defined up to a global

absolute phase, without any relation among them. These phases are determined numerically and
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have no physical meaning. Yet, the phases have an important influence on the construction of

the exciton Hamiltonian, see Eq. 9. Finally, propagation of the expansion coefficients of the time-

dependent wavefunction is done using an in-house code described in detail elsewhere.29,53,54,56,57

Here, direct numerical integration of the linearized equations of motion is performed using as a

preconditioned adaptive step-size Runge-Kutta algorithm.74

Results and Discussion

The pyramidal Ge7/Si core/shell double QD

For the study of the exciton transfer in different double quantum dots we discuss first the pair

of the smallest nanocrystals of our series, the pyramidal Ge7 core structures. We present a

laser-driven pump-dump scheme where the delay time between the pulses is tuned according to

the transfer rate between excitonic states. This three-step process towards a stable exciton is

schematically depicted in Fig. 1. Since the stacked QDs are constructed by combining results of

individual QDs, a distance has to be determined in order to A) obtain a “large” energy splitting

between eigenstates for intermediate states and B) low-lying states with a vanishing splitting

between the final electron-hole pair states. Since the Coulombic coupling is weak at larger

distances, a single spacer layer that matches the diamond lattice of Si bulk was sufficient.

Although the calculations of the dynamics are performed in the eigenstate basis of the QD

pair, discussion of results is better visualized in terms of the corresponding localized Frenkel

excitonic states, cf. Fig. 2. It is more intuitive since the distinction between top and bottom

cluster is clearer and the exciton exchange is directly visible. Therefore, the excitation path in the

exciton basis reads for example: |0〉⊗|0〉 UV
−→ |14〉⊗|0〉 transfer

−→ |0〉⊗|14〉 IR
−→ |0〉⊗|6〉. However,

an exciton population of the first step of P (|14〉 ⊗ |0〉) = 1 and P (|0〉 ⊗ |14〉) = 0 results in the

localized excitation on the top QD and is actually the result of a coherent eigenstate population

of P (|27〉) = 0.5 and P (|28〉) = 0.5. Hence, the above mentioned targeted excitation path is a

result of the linear combination of pairs of eigenstates and the actual propagation pathway reads:
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|0〉 UV
−→ |27〉/|28〉 IR

−→ |11〉/|12〉.

Careful selection of intermediate and target state properties largely supports the exciton

transfer-mediated hole trapping. In addition to these energetic constrains that intermediate

states have a large energy splitting and target states have a vanishing energy difference, they

need to be accompanied by pairwise sufficiently large transition dipole elements to be accessible

by radiation at moderate intensities. The selected pairs of eigenstates that fulfill such conditions

are listed in Tab. 1, which shows the excitonic composition of the eigenstates of the coupled QDs.

Tab. 2 lists their energies and dipole moments. In Tab. 2 is seen that the target eigenstates |11〉

and |12〉 have a very small ∆E, while it is much larger for the intermediate pair states |27〉 and

|28〉.

Table 1: Eigenstates and their contributions |nA〉 ⊗ |nB〉 from excitonic states for the
pyramidal Ge7 core structure. The contributions of each excitonic state is given in
parentheses.

Eigenstate Exciton State (Contribution)

|11〉 |6〉 ⊗ |0〉 (c = +0.7018)
|0〉 ⊗ |6〉 (c = −0.7123)

|12〉 |6〉 ⊗ |0〉 (c = +0.7123)
|0〉 ⊗ |6〉 (c = +0.7018)

|27〉 |14〉 ⊗ |0〉 (c = −0.7063)
|16〉 ⊗ |0〉 (c = +0.0323)
|0〉 ⊗ |14〉 (c = −0.7063)
|0〉 ⊗ |16〉 (c = +0.0323)

|28〉 |14〉 ⊗ |0〉 (c = −0.7064)
|16〉 ⊗ |0〉 (c = +0.0303)
|0〉 ⊗ |14〉 (c = +0.7064)
|0〉 ⊗ |16〉 (c = −0.0303)

The exciton contributions given in Tab. 1 show that the target states |11〉 and |12〉 are

composed solely from excitation to the sixth local excited state on either of the QDs, i.e., from

the excitonic states |0〉 ⊗ |6〉 and |6〉 ⊗ |0〉, respectively, while the intermediate eigenstates |27〉

and |28〉 have mixed excitonic contributions involving the excitations |14〉 and |16〉 on either of

the dots. Although excitonic state |16〉 ⊗ |0〉, for example, has a rather small contribution, its

transition dipole moment may be neglected in the design of the laser pulse.
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The corresponding dipole matrix with its Cartesian components is shown in the upper triangle

of Tab. 2. The permanent dipole moments of the states are given on the diagonal, while the

off-diagonal elements of the matrix are the transition dipole moments. Those values that are

highlighted in orange are responsible for the amount of energy splitting between pairs of eigen-

states |11〉/|12〉 and |27〉/|28〉. The magnitude of the transition dipoles, however, determines the

possible relations for laser amplitude and duration for the π-pulses (cf. Eq. 13). Highlighted in

blue and red are the transition dipole elements that are used for the UV and IR excitation in the

simulations. For the first UV pulse excitation, for example, |0〉 UV
−→ |27〉/|28〉, Tab. 2 shows that

a laser polarization along the y direction mediates the transition. However, by the construction

of a donor-acceptor DQD sytem, only the top cluster is receptive for UV radiation. Therefore,

the transition dipole moments of state |27〉 and |28〉 are scaled by their excitonic contribution of

|14〉⊗ |0〉 as 0.129 ea0/0.7063 = 0.183 ea0, cf. Tab. 1 and Tab. 2 (which in the end corresponds

to the transition dipole moment µ0,14 of the single QD). Later, an x polarized IR pulse dumps the

Table 2: The upper triangle shows the Cartesian components of the dipole matrix
of selected eigenstates given in ea0. In the lower triangle the energy differences
between these states are given in eV. Highlighted in blue and red are the transition
dipole moments and frequencies used for UV and IR π-pulse excitation, respectively.
Highlighted in orange are the permanent dipole moments of the eigenstates that drive
the transfer and hole trapping dynamics.

|0〉 |11〉 |12〉 |27〉 |28〉

|0〉

−0.000
+0.000
−0.496

 +0.000
−0.000
−0.003

 +0.000
−0.000
+0.355

 −0.000
−0.129
−0.327

 −0.000
−0.127
−0.000


|11〉 3.8531

+0.000
+0.000
−2.154

 +0.000
+0.000
+0.000

 −0.007
−0.093
−0.002

 +0.870
−0.092
+0.236


|12〉 3.8531 3.0211 · 10−14

+0.000
−0.000
−2.154

 +0.877
+0.092
+0.234

 +0.007
+0.091
+0.002


|27〉 4.0071 0.1541 0.1541

−0.000
−0.171
−0.331

 +0.000
+0.002
+0.000


|28〉 4.0075 0.1545 0.1545 4.0165 · 10−4

−0.000
+0.169
−0.330


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excitonic population from high excited states to low-lying target states, |27〉/|28〉 IR
−→ |11〉/|12〉,

which terminates the exciton exchange process.

For the dynamics, our knowledge on the system regarding excitation energies and dipole

moments allows to target the process through careful laser design. Laser parameters for both

the UV pump and the IR dump pulse are chosen in the following manner: to mimic the fact

that the Ge/Si DQDs grow on top of the silicon surface, laser polarizations are perpendicular

to the stacking direction while the field propagates into the surface. By doing so, non-linear

coupling of laser field and electronic states can be reduced, since the permanent dipoles of the

clusters are large along this stacking direction. For the exciton transfer it is necessary to induce a

population inversion preferably at each excitation step. Therefore, simple π-pulses (Eq. 13) with

cosine squared envelope are used to determine the relation between maximum field strength f0

and pulse duration 2σ.

A priori theoretical analysis of the eigenstates properties allows to identify a promising exci-

tation scheme through intermediate states with a short transfer time, together with an estimate

of the required laser parameters. Fine-tuning of the lasing action is done through parametric

optimization of the laser strength and pulse duration of both the UV and the IR pulse, as well

as the pump-dump delay time. The laser pulse strength is first obtained from Eq. 13 for π-pulses

of 500 fs and 1 ps duration in the UV and IR case, respectively. These pulse durations are short

enough to avoid vibration-induced relaxation in such rigid systems and long enough to prevent

dynamical broadening. At least in the specific case of GeSi, phonon lifetimes were found to be on

the order of a few ps and longer.29 The π-pulse durations are then optimized to obtain a maximal

population inversion for each excitation step.

The resulting laser-driven population dynamics can be viewed in Fig. 3. The upper panel shows

the dynamics in terms of eigenstate populations, whereas the lower panel shows the respective

excitonic state population evolution. In the eigenstate basis (upper panel), the first pulse is

resonant with the |27〉 ← |0〉 transition at an excitation energy of 4007 meV. It is polarized

along the y direction and drives a transition from the ground state (purple curve) to coherent
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superposition of states |27〉 and |28〉 (blue and light blue) with an almost equal population of

0.507 and 0.485.

The magnitude of the transition dipole moments along the y direction allows using a moderate

laser intensity of Imax = 102 GW/cm2 with a duration of 2σ1 = 483.8 fs. The second transition

is driven by a x-polarized re-optimized π-pulse resonant with |12〉 ← |28〉 (154 meV), at a much

lower intensity of Imax = 0.732 GW/cm2 due to the longer duration of 2σ2 = 1209.44 fs. The

final populations in the target states |12〉/|11〉 are 0.0.495/0.463.

For a more straightforward and intuitive view of the excitation and charge separation process

studied here, the dynamics is additionally presented in the exciton basis in the bottom panel of

Fig. 3. After UV pulse excitation, the population of the excitonic state |14〉 ⊗ |0〉, in which the

topmost quantum dot is excited while the other remains in its ground state, reaches a maximum

of 0.985 after 0.435 ps. Note that the total population of states |27〉 and |28〉 is larger than

the population of the target excitonic state after the excitation. This is because each excited

eigenstate contains small components in other excitonic states, which bear the remainder of the

population. The ground state population drops to 0.007 in that time where it remains until the

end of propagation. Coherent exchange between states |14〉 ⊗ |0〉 and |0〉 ⊗ |14〉 (dashed blue

and light blue curves) takes place right after the start of the UV pulse, however, it is much slower

than the laser-induced change of occupation. Within 4.5 ps the exciton is thus transferred from

the top to the bottom quantum dot, an effect that was hidden in the eigenstate representation.

The IR pulse sets in shortly before the end of the formal transfer exchange. With the center of the

IR dump pulse at tp,2 = 5.44 ps, a maximal population of the target state |0〉 ⊗ |6〉 (red lines) of

0.954 is achieved. In this state only the bottom Ge7 cluster bears an exciton. The corresponding

excitation on the upper cluster, |6〉 ⊗ |0〉 (orange line), is with 0.001 barely populated. Due to

the very small energy difference between these states, even after 50 ps no exciton transfer can be

observed, as seen in the inset. That means, a stable exciton state is created in the bottom cluster,

QDB. During the full pump-dump cycle some transient populations to various excited states occur

(black curves in both panels), however, they are not relevant for the overall population dynamics.

20



The character of the laser-induced transition can be evaluated using natural transition orbitals.

Hole-trapping in the topmost quantum dot is observed in the first excitation step already – as

seen in the NTO densities of exciton state |14〉 from the calculation of the single QD in the top

of Fig. 4. The hole densities, represented by grey isosurfaces, show a fairly localized hole in the

pyramidal Ge7 structure. In contrast, the NTO density of the electron (blue isosurfaces) is spread

throughout the silicon shells. The IR pulse changes the distribution of the hole density only a

little by centering it even further to the Ge structure, as its NTO density in the bottom figure

shows. But importantly, it strongly localizes the electron in the Si bulk right below the Ge cluster.

Note that the NTO densities do not only explain the charge separation, but, in direct relation,

also the magnitude of the permanent dipole moments of the considered eigenstates. In the final

charge-separated exciton |0〉⊗|6〉, the permanent dipole is large along the z direction, −2.15 ea0

(cf. the values for eigenstates |11〉 and |12〉 in Tab. 2). With −0.33 ea0 along the z direction, it

is much smaller for the intermediate ones |27〉 and |28〉, where it is also much less directed along

the DQD stacking direction having a non-negligible contribution of ±0.17 ea0 also along y.

Summarizing, from investigation of two pyramidal Ge clusters in a Si shell, we can deduce

that a combined UV-IR pump-dump excitation scheme can selectively create a stable, charge-

separated state on an acceptor quantum dots that is otherwise not accessible using a single pulse

alone.

The Ge11/Si double QDs

The following section explores the transferability of the aforementioned excitation scheme on

two slightly larger symmetric double dot. These nanocrystals both have Ge11 cores of different

geometry, which will be addressed as hat-A and hat-B. The single QD structures can be

viewed in the top left panels of Fig. 5 and Fig. 6, respectively, along with the NTO densities

associated with the intermediate (top) and final (bottom) states. In both cores, the Ge7 core

from the pyramidal cluster is extended along the x direction, and the structures differ only in

their connectivity with the first silicon shell. Including the hydrogen atoms that saturate the
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second silicon shell, chosen to retain the structure of the diamond lattice, the two nanocrystals

possess 161 and 162 atoms in total. For the excitonic system, symmetric DQDs are constructed

by stacking these single clusters along the z direction, as described in the previous sections. The

larger Ge11 clusters both have a higher density of states compared to Ge7. This is reflected in

the larger amount of excitonic states involved in the composition of the eigenstates of the DQDs.

The dominant contributions for the intermediate and final states to be used in the pump-dump

dynamics are shown in tables in the center of Fig. 5 and Fig. 6 for hat-A and hat-B, respectively.

Compared to the DQD of the pyramidal Ge7 structure, however, important similarities in the

nature of the excited states can be found. This enables to design a very similar pump-dump

scheme in the larger DQDs, using UV and IR pulse excitations with x and y polarizations. For

both Ge11 cores, states with energy splittings that are large for intermediate and small for the

target states are readily found as well. The final states also exhibit a similar degree of hole

localization, as revealed by the NTO analysis (see left panels in Figs. 5 and 6), such as to allow

efficient laser-driven hole trapping. The selected intermediate and final states are accompanied

by transition dipole moments that compare well for all three presented double dot models, so that

laser intensities and durations are all in the same range. π-pulse durations, intensities, and the

IR pulse delay time have been parametrically re-optimized as described in the previous section

to obtain a maximal population transfer at each excitation step. Here again, for the initial UV

pulse excitations of the top cluster, the transition dipole moments from the single nanocrystals

are used to estimate the π-pulse conditions, see Eq. 13.

The right panel in Fig. 5 shows the exciton state population dynamics in the hat-A DQD for

the sequence: |0〉 ⊗ |0〉 UV
−→ |23〉 ⊗ |0〉 transfer

−→ |0〉 ⊗ |23〉 IR
−→ |0〉 ⊗ |7〉 . After UV excitation the

ground state, |0〉 ⊗ |0〉 (purple), is virtually depopulated (P0 = 0.003), while the intermediate

excitonic state in the top cluster (dark blue) reaches a maximum population of P (|23〉 ⊗ |0〉) =

0.931 at t = 0.374 ps. The IR pulse sets in shortly before the exciton transfer to the bottom

cluster is completed. There, the intermediate excitonic state in the bottom dot (light blue) shows

a maximum population of P (|0〉 ⊗ |23〉) = 0.890 at around t = 2 ps. The intermediate states
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involving predominantly the excitation |23〉 on either of the QDs are no pure states. In both

cases, there is population in |25〉⊗ |0〉 and |0〉⊗ |25〉, however, only amounting to less than 0.05

each. This was already to be expected from the exciton state contributions to the eigenstates |45〉

and |46〉 listed in the middle of Fig. 5. Indeed, the dominant contributions in the intermediate

states are more spread over multiple excitonic states than in the pyramidal Ge7 core: |23〉 ⊗ |0〉

and |0〉 ⊗ |23〉 with only about c = |0.69|, |25〉 ⊗ |0〉 and |0〉 ⊗ |25〉 with c = |0.15|, compared

to c = |0.04| for |21〉 ⊗ |0〉 and |0〉 ⊗ |21〉 as the next dominant contribution. After IR pulse

excitation the target state (red) is populated by P (|0〉×|7〉) = 0.918, while its counterpart in the

top QD |7〉× |0〉 (orange) stays virtually unpopulated. The final target state itself is not strongly

coupled to any other excitonic states, as can be seen from the coefficients of eigenstates |15〉 and

|16〉 in the red-boxed table of Fig. 5. The target population is found to be smaller than in the

pyramidal Ge7 core, mostly due to non-linear effects during excitation, resulting in the population

of a number of higher excited states (black).

A similar population evolution is obtained in the DQD from hat-B Ge cores. The bottom

panel of Fig.6 shows the population dynamics due to UV pump and time delayed IR dump

pulse excitation, following the same strategy as above: |0〉 ⊗ |0〉 UV
−→ |9〉 ⊗ |0〉

transfer
−→ |0〉 ⊗ |9〉

IR
−→ |0〉 ⊗ |3〉. Again, the UV π-pulse depopulates the ground state |0〉 ⊗ |0〉 (purple) (0.004),

while an exciton on the top cluster is created P (|9〉 ⊗ |0〉) = 0.964 (dark blue) after t = 0.31

ps. Re-optimizing the pump-dump time delay, the IR π-pulse starts slightly before the coherent

transfer is completed, such that after t = 2.5 ps an excitonic population in the bottom cluster of

P (|0〉⊗|9〉) = 0.95 (light blue) is observed. These intermediate states are as well mixed excitonic

states, therefore, also populations in |10〉 ⊗ |0〉 and |0〉 ⊗ |10〉 are obtained. The IR pulse then

de-excites the bottom cluster such that in the target state of the bottom QD (red) a population

of P (|0〉 × |3〉) = 0.922 is achieved. The reduced efficiency for the target state population is

here again mostly due to some excitation to higher excited states (black). However, the state

|3〉 × |0〉 on the top QD is not at all populated, as desired.

These population dynamics in both hat-A and hat-B compare well with the pump-dump
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simulations in DQDs based on the pyramidal Ge7 structure. Such similarities have their origin

in the types of excitations addressed by the lasers. As a quantitative measure of the similarities,

the NTO densities for the intermediate and final excitons are computed and presented in the left

panels of Figs. 5, 6, and 4 for the three cases studied. For all selected excitonic states in the

three model QDs, localized holes at the Ge cores are observed (grey isosurfaces). This confirms

the hole-trapping character of the excitations. The IR dump pulse are also not found to cause

significant delocalization of the hole. However, the NTO density for the electron (blue isosurfaces)

shows larger differences between all considered clusters. The electron in the intermediate state

used for hat-A, as shown on the top left of Fig.5, is located in the first silicon shell below the

Ge11 QD. This is similar to the electron distribution in the target state of the pyramidal Ge7

case (c.f. Fig. 4). In the case of DQDs based on the hat-B structure, the electron remains

delocalized through both pump and dump steps. This is a strong indication that the permanent

dipole moment is not alone responsible for the energetic splitting between pairs of excitonic

states, which serves as a driving force for the transfer exchange dynamics that is observed. The

more delocalized nature of the particle is possibly also the reason for the stronger mixing among

excitonic states for the intermediate state in both Ge11-based DQDs, see central panels of Figs.5

and 6. Stronger mixing of the exciton character originates from the larger density of states

coupled by their transition dipole moments. As a consequence, this seems to indicate that the

multi-excitonic character of the eigenstates is intimately related to their energy splitting, which

directly relates to the transfer rates. This induces faster exchange between the intermediate

states on faster timescales in the Ge11-based DQD cases as compared to the Ge7 cluster. Indeed,

exciton transfer between the stacked DQDs based on Ge11 is about twice as fast for the pyramidal

case, and maximum population in the target states is obtained in 2.7 ps and 3 ps for hat-A and

hat-B, respectively.
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Conclusions and outlook

We have simulated laser-controlled electron-hole localization in pairs of stacked, coupled germa-

nium/silicon quantum dots with various sizes in a symmetric donor-acceptor configuration. A

Frenkel exciton model is constructed and parametrized from first principles using time-dependent

density functional theory calculations. The atomistic treatment shows that a reduced-size DQD

does exhibit similar features of the hole-trapped excitonic states in larger self-assembled Ge/Si

nanostructures described by others.42–44 Laser-induced many-electron dynamics calculations in the

donor-acceptor Frenkel exciton model were carried out by means of the explicitly time-dependent

hybrid TDDFT/CI method. To achieve long-lived hole trapping in a given QD a UV/IR pump-

dump pulse sequence was designed. First, a UV laser excitation is optimized to create an exciton

localized on the topmost QD. After some time delay, a second pulse in the IR regime is used to

dump and localize an exciton in the bottom QD.

Three selected symmetric DQDs systems were studied: a pyramidal Ge7 cluster, and two

Ge11, each surrounded by two wetting silicon shells and saturated by hydrogen atoms. The

smaller pyramidal DQD system showed the highest population transfer efficiency and hole trapping

performance in the target of the bottom QD |0〉⊗|6〉 = 0.954. This efficiency was found to come

at longer times, 6 ps, though, due to the relative long time required for the exciton exchange

between the QDs after initial excitation by the UV pump pulse. This means that the pump-dump

strategy could be hampered by dissipation in such small DQDs.53 A slight increase in the size

of the quantum dots seems to improve this situation, due to an increased density of excited

states. Our atomistic investigations of the intermediate and target state characters reveal that

the hole remains trapped at all times while the particles are delocalized. Further, it indicates that

the multi-excitonic character is probably responsible for the faster exciton transfer in the larger

DQDs. Therefore, the larger QDs would make better candidates when including electron-phonon

effects, since the overall dynamics is then faster.

In the system based on the so-called hat-A structure, the fastest exciton transfer of about

2 ps is observed, leading to relatively fast hole trapping in the target QD. In comparison, a
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DQD system based on QD fragments of the same size but with different shapes, labelled hat-

B, showed a slightly increased transfer time of about 2.5 ps. However, high excited states are

involved in the pump-dump dynamics for hat-A than for hat-B, where only low-lying excitations

where involved in the population dynamics. It demonstrates that even marginal changes in the

connectivity and in the atomic structure of QD fragments can have non-negligible effects on the

laser-driven many-electron dynamics. In particular, higher excited states are typically shorter-

lived and they are expected to be more strongly coupled with the silicon environment. This latter

coupling could be included in the theoretical treatment as an ionization process, i.e., the loss of

an electron to the silicon bulk. The TDCI methodology used here is amenable to the inclusion

of ionization, with the used complex absorbing potentials in energy space75 and in real space.76

Proper treatment of this electron-loss process would allow to treat subsequent reactions, such as

inter-Coulombic decay.38,39

As a general conclusion, since the Ge/Si quantum dots are self-assembled, there is only a little

degree of control over their sizes and shapes. This implies that an experimental realization of

the pump-dump scenario described here would necessarily be non-optimal for a large number of

DQDs, although optimal for a given member of this ensemble. However, the mechanistic findings

discussed in the present work can be transferred to other types of double quantum dots systems,

such as QDs in solution, where the pump-transfer-dump strategy could be used to trap long-lived

particle or hole states.
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Figure 3: Exciton population dynamics in coupled Ge7/Si double quantum dots due to excitation
and de-excitation by a UV+IR pulse sequence for which the pulse is given as a gray-shaded area.
Top: time-dependent eigenstates populations; Bottom: population evolution of corresponding
exciton states, the inset shows these populations for times up to 50 ps. The dominant states
are indicated by their kets, during the IR pulse a black lines shows temporarily occupied other
states (temp.). Laser parameters: UV: y-polarized cos-squared pulse f0,y = 0.0017 Eh/ea0,
h̄ω0,1 = 0.1473 Eh (4.0071 eV), 2σ1 = 483.8 fs centered at tp,1 = 241.9 fs; IR: x-polarized
cos-squared f0,x == 0.000145 Eh/ea0 h̄ω0,2 = 0.0057 Eh (0.154 eV), 2σ2 = 1209.44 fs centered
at tp,2 = 5442.48 fs.
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Figure 4: Natural transition orbital densities for a single pyramidal Ge/Si core/shell nanocrystal
(red/silver spheres) elaborating the hole-trapped state involved after UV excitation (top) and the
electron-hole localization after IR excitation (bottom). Blue isosurfaces represent the electron
densities and the transparent grey isosurfaces the densities of the hole (the isosurface value was
set to 0.0007 a−3

0 ).
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Figure 5: Summary of the exciton characterization and population dynamics in a DQD of two
hat-A Ge/Si core/shell nanocrystals. On the left, the NTO densities are displayed for a single
nanocrystal (blue/silver isosurfaces represent the electron/hole NTO densities at isosurface value
0.0007 a−3

0 ). The NTO densities in the blue boxes corresponds to the intermediate UV-excited
state, for which the composition is given in the center of the figure. The NTO densities in
the red boxes corresponds to the target state after IR dumping. Dynamics subsequent due to
excitation with two cos-squared π-pulses is shown on the right-hand-side of the figure in exciton
basis representation. Parameters for the cos-squared π-pulses: UV: y-polarized, Imax = 50.536
GW/cm2, h̄ω0,1 = 3.852 eV, 2σ1 = 435.4 fs centered at tp,1 = 217.7 fs; IR: x-polarized Imax =
0.317 GW/cm2, h̄ω0,2 = 0.228 eV, and 2σ2 = 1.209 ps centered at tp,2 = 2.35 ps.

Figure 6: Same as in Fig. 5 for a DQD composed of two hat-B Ge/Si core/shell nanocrystals.
Parameters for the cos-squared π-pulses: UV: y-polarized, Imax = 85.014 GW/cm2, h̄ω0,1 =
3.705 eV, 2σ1 = 387.0 fs centered at tp,1 = 193.5 fs; IR: x-polarized with Imax = 0.948 GW/cm2,
h̄ω0,2 = 0.163 eV, and 2σ2 = 725.7 fs centered at tp,2 = 2741.4 fs.
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Figure 7: TOC graphic
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