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Abstract 

All cells of an organism develop from a single cell and, therefore, share an identical genetic 

repertoire. While differentially regulated gene expression results in individual sets of 

molecules providing unique and distinct cellular features, comparative studies have revealed 

striking similarities between the proteomes of different cell types allowing complementary 

functions on the one side and necessary communication between different organic systems 

on the other side. Among those, the central nervous system (CNS) had long been seen as a 

secluded area maintained by the blood-brain barrier shielding the brain from certain external 

influences such as pathogens and the subsequent immune response. However, the concept of 

an immune-privileged brain has been revised over the past few decades. For one thing, it was 

shown that the immune and the central nervous system communicate with each other using 

chemical transmitters that find their corresponding receptors in cells of both systems. But 

even more astonishing was the fact to find proteins in neurons thought to be exclusively 

expressed by immune cells and vice versa. 

The present work gives an overview about T cell receptor (TCR) signaling molecules 

expressed in neurons of the rat, mouse or human brain. Data were collected using several 

databases and screening published literature. Indeed, 84 out of 95 proteins belonging to the 

TCR signaling network were found to be expressed in neurons of the CNS. Among these 

molecules, we discovered the crucial signaling subunit of the TCR complex CD3, but not the 

T cell receptor itself. As CD3 only comprises a very short ectodomain unable to bind ligands, 

it needs an associated receptor to receive extracellular information. This thesis, therefore, 

evolved around the questions of the receptor-dependency of CD3 in neurons and of its 

neuronal functions. 

Our experiments show that CD3 negatively regulates dendrite outgrowth in DIV8 

hippocampal neurons through the RhoA/ROCK pathway. The proposed pathway also 

includes the immune kinase ZAP70, whose neuronal functions were so far elusive. 

Importantly, the reorganization of the actin cytoskeleton by CD3 depends on NR2B-

containing NMDA receptors implying a novel function for NR2B in hippocampal neurons 

prior to synaptogenesis.  

Apart from presenting novel functions for CD3 and NR2B-containing NMDA receptors, this 

thesis shows how many parallels can be found between two systems so different at first sight. 

Therefore, taking a look at immune signaling will be the key towards a better understanding 

of the functions of CD3and other immune proteins in neurons. 
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Zusammenfassung 

Die Gesamtheit aller Zellen eines Organismus entwickelt sich aus einer einzigen Zelle 

und trägt daher das identische genetische Material. Aufgrund der unterschiedlich 

regulierten Expression von Genen befinden sich in jeder Zelle individuelle 

Proteinrepertoires, die ihr einzigartige und ihrer Funktion entsprechende 

Eigenschaften verleihen. Dennoch haben vergleichende Studien erstaunliche 

Ähnlichkeiten zwischen den Proteomen verschiedener Zelltypen festgestellt, die 

einerseits komplementäre Funktionen und andererseits die notwendige 

Kommunikation zwischen verschiedenen Organsystemen ermöglichen. Unter den 

Systemen wurde das zentrale Nervensystem lange Zeit als isolierte Region betrachtet, 

die durch die Blut-Hirn-Schranke vor äußeren Einflüssen, wie zum Beispiel vor 

Pathogenen und der darauffolgenden Immunantwort, geschützt wird. In den letzten 

Jahrzehnten wurde das Konzept des immunprivilegierten Gehirns jedoch gründlich 

überarbeitet. Zum einen konnte gezeigt werden, dass das zentrale Nervensystem und 

das Immunsystem durch chemische Botenstoffe miteinander kommunizieren, die in 

beiden Systemen entsprechende Rezeptoren finden. Zum anderen wurden 

erstaunlich viele Proteine in Neuronen gefunden, die zunächst als ausschließlich 

immun exprimiert beschrieben wurden, bzw. konnten auch neuronale Proteine 

bereits in T-Zellen nachgewiesen werden.  

Die vorliegende Arbeit gibt einen Überblick über Signalmoleküle der T-Zell-Rezeptor-

Signaltransduktion, die in Nervenzellen des Gehirns von Ratten, Mäusen oder 

Menschen exprimiert werden. Die Daten wurden durch die Nutzung verschiedener 

Datenbanken sowie mittels Literaturrecherche zusammengetragen. Von 95 zum T-

Zell-Rezeptor-Signalnetzwerk gehörenden Proteinen konnten 84 in Neuronen des 

zentralen Nervensystems identifiziert werden. Zu diesen Molekülen zählt auch die 

essenzielle Signaluntereinheit des T-Zell-Rezeptorkomplexes  CD3, jedoch nicht der 

Rezeptor selbst. Da CD3 nur eine sehr kurze Ektodomäne besitzt, die nicht in der 

Lage ist Liganden zu binden, benötigt das Protein einen assoziierten Rezeptor, um 

extrazelluläre Informationen zu empfangen. Diese Arbeit beschäftigt sich daher mit 

der Suche nach einem möglichen neuronalen Rezeptor für CD3  und der 

Beschreibung von CD3-Funktionen in Neuronen. 
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Unsere Experimente zeigen, dass CD3 das Dendritenwachstum in sich 

entwickelnden hippokampalen Neuronen (DIV8) über den RhoA/ROCK Signalweg 

negativ reguliert. Der hier vorgeschlagene Signalweg führt auch über die 

Immunkinase ZAP70, deren neuronale Funktionen bisher nur unzureichend 

beschrieben wurden. Interessanterweise ist die Reorganisation des Actin-

Zytoskeletts durch CD3 von NR2B-enthaltenden NMDA-Rezeptoren abhängig. Die 

Daten weisen somit auf eine bisher unbekannte Funktion dieser Rezeptoren in 

hippokampalen Neuronen vor Beginn der Synaptogenese hin. 

Neben der Vorstellung neuer Funktionen von CD3 und NR2B-enthaltenden NMDA-

Rezeptoren verweist diese Arbeit auch auf die Parallelen zwischen dem zentralen 

Nervensystem und dem Immunsystem, obwohl sie im ersten Moment sehr 

unterschiedlich erscheinen. So könnte es auch zukünftig empfehlenswert sein, sich 

mit der Signaltransduktion in Immunzellen genauer zu befassen, um die Funktionen 

von CD3 und anderen Immunproteinen besser zu verstehen. 
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1 Introduction 

All cells of an organism develop from a single cell and, therefore, share the identical 

genetic repertoire. Cell differentiation is possible due to differentially regulated gene 

expression giving individual sets of molecules. Nevertheless, comparative studies 

have revealed striking similarities between the proteomes of different cell types 

(Wang et al., 2009). This may be related to the tightly integrated organization of cells 

where complex interactive patterns of molecular organization yield common 

structures. Thus, it is not completely surprising that two different cell types may 

share similar protein expression allowing for efficient intercellular communication 

and regulatory interaction (Broderick et al., 2013).  

For decades, the central nervous system (CNS) has been seen as a secluded area due 

to the existence of the blood-brain barrier (BBB) thought to shield the brain from 

certain external influences, in particular pathogens and the subsequent immune 

response. However, the idea of an immune-privileged CNS has been modified over the 

past years. Peripheral nerve ends innervate immune organs such as the spleen or 

lymph nodes (Nance and Sanders, 2007), and there are resident immune cells, the 

microglia, in the CNS (Hanisch and Kettenmann, 2007).  

Indeed, immune cells are receptive for and even synthesize classical 

neurotransmitters like acetylcholine, glutamate, dopamine, and serotonin (Levite, 

2008; Steinman, 2004). On the other hand, neurons are responsive to cytokines (e.g. 

tumor necrosis factor , interleukin-1) (Yirmiya and Goshen, 2011; Mousa and 

Bakhiet, 2013). Most data about neuroimmune interactions arose from studying 

autoimmune disorders, brain injury, or infection. Patients suffering from 

neurodegenerative diseases such as Alzheimer´s or Parkinson´s also show signs of 

neuroinflammation due to cytokine secretion and the subsequent activation of 

microglia that are thought to be responsible for initiating neuronal cell death (Lucin 

and Wyss-Coray, 2009). Even systemic autoimmune diseases have an impact on the 

brain. Autoantibodies in patients with systemic lupus erythematosus cross the BBB 

and induce neuronal cell death leading to cognitive impairment in some cases 

(Diamond, 2010; Xu et al., 2015). Therefore, modern conception of intersystem 

communication recognizes that the immune and central nervous system are not only 
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physically connected, but that they also communicate with each other using a 

common chemistry-based language (Marin and Kipnis, 2013). 

Interestingly, recent studies do not only imply a role of immune molecules in the 

pathologic brain, but also in normal neuronal functioning (Fourgeaud and Boulanger, 

2010). Corriveau et al. (1998) showed the neuronal expression of major 

histocompatibility complex I (MHC I) disproving the previously prevalent opinion 

that neurons belonged to the few cell types not expressing MHCI and simultaneously 

giving more evidence to negate the hypothesis of an immune-privileged brain. 

 

1.1 Immune Proteins in Neurons 

MHCI is a cell surface protein crucial for the immune system to discriminate “self” and 

“non-self” parts of the organism. It is expressed in neurons of the cortex, 

hippocampus, thalamus, and the cerebellum with postsynaptic localization (Huh et al., 

2000; Goddard et al., 2007). In the visual cortex, it could also be detected in 

presynaptic structures (Needleman et al., 2010). Mice lacking cell surface expressed 

MHCI (2m/TAP-/- mice) show increased hippocampal long-term potentiation (LTP) 

and reduced long-term depression (LTD) (Huh et al., 2000) as well as higher 

frequencies of miniature excitatory postsynaptic currents (mEPSCs) compared to 

wild-type controls (Goddard et al., 2007). Deletion of two MHCI genes expressed in 

the lateral geniculate nucleus (LGN) leads to incomplete refinement of 

retinogeniculate projections with impaired segregation of eye-specific inputs in mice 

(Datwani et al. 2009). All these data imply a function for MHCI in higher cognitive 

brain functions. 

The most prominent receptor for MHCI in immune cells is the T-cell receptor (TCR). 

The receptor is a heterodimer consisting of an - and a -chain (fig. 1A), which 

applies for approx. 95% of the T-cell population, or a - and a -chain. The highly 

variable extracellular domain recognizes the antigen presented by an MHCI-carrying 

cell. However, the TCR is not able to transduce signals to the intracellular space due 

to its short cytoplasmic tail. This is done by the cluster of differentiation (CD) 3 co-

receptor (fig. 1A). It comprises three dimeric transmembrane signaling modules: 

CD3/, CD3 / and CD3/(Call et al., 2004). Each protein contains at least one 
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immunoreceptor tyrosine-based activation motif (ITAM) whose tyrosine residues are 

phosphorylated upon TCR binding to an antigen. Phosphorylated ITAMs attract a 

number of other signaling molecules that diverge the incoming signal.  

Studies to prove the presence of the TCR in neurons have revealed the expression of 

the TCR genomic locus in neurons of the murine brain suggesting the probable 

existence of a neuronal TCR. However, an equivalent protein could not be detected so 

far (Syken and Shatz, 2003; Nishiyori et al., 2004). The more astonishing it is, that 

proteins of the CD3 co-receptor are expressed in neurons. CD3 is expressed on 

cerebellar Purkinje cells and seems to play a role in establishing proper neuronal 

architecture during development. CD3 and , but not CD3 mRNAs were also 

detected in Purkinje cells (Nakamura et al., 2007). However, CD3 is expressed in 

most other parts of the brain including the hippocampus and has been the focus of 

recent studies aiming at elucidating the function of immune molecules in neurons 

(Corriveau et al., 1998; Baudouin et al., 2008). 

 

Figure 1: Structure of the TCR complex (A) and CD3 (B). (A) The TCR complex consists of the - and -chain 

of the T-Cell receptor and dimers of the CD3 co-receptor – , , and . They interact with each other through 

acidic (red dots) and basic (blue dots) amino acid residues within their transmembrane domains. Whereas the 

TCR is responsible for antigen recognition, the CD3 co-receptor induces the intracellular signal transduction by 

phosphorylation of the ITAMs (purple). (B) CD3 is the crucial signaling subunit of the TCR complex with a length 

of 164 amino acids. It comprises a signaling peptide (SP), a short extracellular domain (EC), a transmembrane 

domain (TM) with an acidic aspartate residue (D36), and an intracellular domain (IC) mostly consisting of three 

ITAMs with two tyrosine residues each. 
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1.1.1 CD3 – Structure and Function in T-cells 

CD3 is a disulfide-linked homodimer of two 143 amino acid-long transmembrane 

proteins (fig. 1B). The unprocessed molecule also comprises a signaling peptide of 21 

amino acids. Due to a very short extracellular tail of only nine amino acids, CD3 is 

not able to receive any incoming signals and, therefore, needs an associated receptor 

such as the TCR to function properly. A negatively charged aspartate residue in the 

transmembrane domain of CD3 interacts with a basic arginine residue located 

within the transmembrane domain the TCR-chain (Wucherpfennig et al., 2010). This 

connection allows the transmission of extracellular signals from the TCR itself to the 

CD3 subunits that contain three ITAMs with two tyrosine residues each in the 

intracellular domains. Each ITAM can be phosphorylated and can engage in 

downstream signaling independently. This makes CD3 a crucial adaptor protein in 

TCR signal transduction (fig. 2).  

The tyrosine residues of the ITAMs are phosphorylated by two Src kinase family 

members: Lck and Fyn. This triggers the recruitment of the kinase ZAP70 that binds 

the two phosphorylated tyrosines within the ITAM with its tandem SH2 domains 

leading to its activation (Wange and Samelson, 1996). ZAP70 is a major signaling hub 

in T-cells connecting the TCR and CD3 to the actin cytoskeleton, gene expression, 

and immune response regulation (Baniyash, 2004). However, CD3 function and 

signaling in neurons remains poorly understood.

 

Figure 2: CD3 Signaling in T-cells. Upon TCR activation by antigen binding, the tyrosine residues of CD3 are 

phosphorylated by one of src family kinases Lck or Fyn. ZAP70 kinase is recruited by binding the phosphorylated 

tyrosines with its tandem SH2 domains which induces a conformational change allowing for the activation of 

ZAP70 by Lck or Fyn. Active ZAP70 serves as a major signaling hub by interacting with and phosphorylating 

several adaptor proteins and other kinases leading to the initiation of distal pathways. (Tyrosine phosphorylations 

are depicted as yellow circles.) 
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1.1.2 CD3 in Neurons 

First evidence for the involvement of CD3 in higher brain function came from 

electrophysiological studies in CD3 knockout mice that showed enhanced 

hippocampal LTP, but no LTD (Huh et al., 2000). This phenomenon was abolished by 

applying the inhibitor D-APV suggesting N-methyl-D-aspartate receptor (NMDAR)-

dependent mechanisms. Baudouin et al. (2008) published that CD3 expression is 

mostly neuronal with an enriched localization of the protein at dendritic tips and the 

axonal growth cone during development. They also found a functional implication for 

CD3in dendrite outgrowth regulation. Indeed, cultured CD3-/- retinal ganglion cells 

(RGC) show an abnormally complex dendritic arbor compared to wildtype neurons 

(Xu et al., 2010). At the same time, dendritic motility seems to be reduced though. 

Furthermore, RGC axonal projections to the lateral geniculate nucleus are disrupted 

in CD3-/- mice starting from the second postnatal week on. Around the same time, 

glutamate receptor-dependent RGC synaptogenesis is also impaired in knockout 

mice. 

Studies from the Hélène Boudin Lab brought further insights into CD3 functioning in 

hippocampal and cortical neurons. Overexpression of CD3 in neural progenitor cells 

was shown to disrupt neurogenesis (Angibaud et al., 2011a). Consequently, CD3 is 

only expressed in postmitotic neurons where it plays a role very early in neuronal 

development nevertheless. Here, CD3 represses early neuritogenesis in an ephrinA4 

receptor-dependent manner upon stimulation with ephrinA1. Furthermore, this 

interaction also seems to be responsible for induced axonal growth cone collapse. 

Both processes were abrogated in neurons from CD3-/- mice (Angibaud et al., 

2011b). The authors were also able to show the involvement of ZAP70 kinase in both 

phenomena. 

In an elegant study, Louveau et al. (2013) demonstrated that mice lacking CD3 

exhibited deficits in spatial learning and memory formation. On the molecular level, 

these mice showed reduced synaptic localization of the NMDAR subunit NR2A and a 

reduced interaction with its downstream signaling partner calcium/calmodulin-

protein kinase II (CamKII) in cortical neurons. They also showed that CD3 is 

necessary for CamKII phosphorylation in a chemically induced LTP protocol. 
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Taken together, there are strong implications for the involvement of neuronal CD3 

in dendritic arborization as well as synapse development and function. These 

processes are partially controlled by NMDARs that, according to the above-mentioned 

studies, might be putative upstream regulators of CD3.  

 

1.2 NMDA Receptors  

There are two types of glutamate receptors expressed in neurons: metabotropic and 

ionotropic receptors. NMDARs belong to the latter category that also includes α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) and 

kainate receptors. Ionotropic glutamate receptors form a channel with their subunits 

allowing the influx of cations that subsequently trigger intracellular reactions. In 

contrast, metabotropic glutamate receptors are G-protein coupled receptors and set 

off signal transduction via the direct interaction with their corresponding G-protein 

and further related molecules. 

NMDARs have certain characteristics that distinguish them from other ligand-gated 

ion channels. In resting state, their pore is blocked by Mg2+ which can only be 

removed by prior membrane depolarization. Once the channel is open, NMDARs show 

a high permeability for Ca2+ unlike e.g.  AMPARs that are mostly permissive for 

sodium and potassium. Furthermore, they possess slow kinetics due to the gradual 

unbinding of glutamate. Apart from glutamate, NMDARs need glycine or D-serine as a 

co-agonist to open (Traynelis et al., 2010; Cull-Candy and Leszkiewicz, 2004; Paoletti, 

2011). Their long C-terminal domains allow for various interactions with multiple 

intracellular proteins (Sprengel et al., 1998; Martel et al., 2009; Sanz-Clemente et al., 

2013). However, all these properties largely depend on subunit composition. 

The NMDAR is a heterotetramer consisting of two GluN1 (NR1) and two GluN2 (NR2) 

subunits or one GluN2 and one GluN3 (Paoletti et al., 2013). The NR2 subunits can be 

divided into NR2A through D. As NR2C and D containing receptors are only a small 

pool, the focus here will be on NR2A and NR2B containing NMDARs, the most 

common subunits especially in higher function brain areas such as the hippocampus 

(Watanabe et al., 1992; Monyer et al., 1994). While NR2B is already present in 

developing neurons from embryonic stages on, NR2A expression starts shortly after 
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birth and rises progressively (Sheng et al., 1994). Both receptors are found in the 

postsynaptic compartment of neuronal contacts. While NR2A is exclusively located 

within the postsynaptic density (PSD), an electron-dense signaling meshwork at the 

postsynapse (fig. 3), NR2B is also found in peri- and extrasynaptic areas (Hardingham 

and Bading, 2010; Petralia et al., 2010; Gladding and Raymond, 2011). These subunits 

are highly mobile and may change their localization through lateral diffusion (Groc et 

al., 2006). Apart from subunit composition, the different localization of NMDARs also 

accounts for their distinct functions. 

 

 

Figure 3: Structure of the postsynaptic density (PSD). When glutamate (Glu) is released from an axon terminal, 

the presynapse, it diffuses though the synaptic cleft and binds its receptors at the postsynaptic site. NMDARs, 

AMPARs and mGluRs are anchored in the PSD by a variety of scaffolding proteins such as PSD95 (postsynaptic 

density protein 95), ProSAP (proline-rich synapse-associated protein) or GRIP (glutamate receptor-interacting 

protein). This network is interconnected and stabilized by stargazin, GKAP (guanylate kinase-associated protein) 

and AKAP79 (A-kinase anchor protein 79). mGluRs are directly connected to the IP3 receptor (IP3R) of the 

endoplasmic reticulum (ER), the intracellular calcium store. Ionotropic glutamate receptors, and in particular the 

Ca2+-permeable NMDARs, regulate the actin cytoskeleton through, e.g., actin-binding proteins cortactin and -

actinin or the GTPase activating protein SPAR and the Rho guanine nucleotide exchange factor kalirin. Further 

regulation of actin is established by the activation of distinct kinases (for details see fig. 4). The cell-cell contact is 

stabilized by cell adhesion molecules such as neuroligin/neurexin or trans-interaction complexes such as the 

ephrin/ephrin receptor (Eph/EphR) complex. (Interactions are indicated by direct contact of the geometric 

shapes representing the proteins. The influence of certain proteins on the actin cytoskeleton is shown with 

arrows.)   
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Stimulation of synaptic NMDARs induces the expression of cell survival and plasticity 

genes. A well-described pathway is the regulation of cAMP response element binding 

protein (CREB)-driven gene expression. Ca2+-influx through open NMDA receptors 

activates the fast-acting Ca2+/Calmodulin dependent protein kinase (CaMK) pathway. 

Furthermore, the slower acting, but longer lasting Ras-extracellular-signal-regulated 

kinase 1/2 (ERK1/2) pathway is set off. Both signaling cascades lead to the 

phosphorylation of CREB, a prerequisite for the recruitment of the co-activator CREB 

binding protein (CBP). Extrasynaptic NMDARs (mostly NR2B) inactivate the Ras-

ERK1/2 pathway leading to CREB dephosphorylation. In addition, synaptic NMDA 

receptors mediate the phosphorylation of forkhead box proteins O (FOXO) via the 

PI3K/Akt pathway promoting the nuclear export of the transcription factor. 

Extrasynaptic NMDARs have the opposite effect and enable FOXO to bind and 

transcribe DNA sequences coding for apoptotic genes. (Hardingham and Bading, 

2010) 

Glutamate receptors play a crucial role in synaptic plasticity, a process describing the 

activity-dependent changes in synaptic structure and function. If a presynaptic and a 

postsynaptic cell are active at the same time, and, therefore, the latter underlies 

constant stimulation by the first over hours, so-called long-term potentiation (LTP) is 

induced. Sustained Ca2+ influx through NMDARs leads to the activation of the 

previously described CaMK pathway and the subsequent phosphorylation of AMPARs 

by CaMKII increasing their conductance. Furthermore, additional AMPARs taken from 

a non-synaptic pool are inserted into the postsynaptic membrane. Enhanced AMPAR 

responses increase NMDAR signaling promoting synaptic strength. The late phase of 

LTP requires protein synthesis and gene expression allowing the sustainable 

rearrangement of the synaptic cytoarchitecture. The weakening of synapses is called 

long-term depression (LTD). Low frequency stimulation leads to lower intracellular 

Ca2+ levels in the postsynapse promoting the activation of protein phosphatases. They 

mediate the endocytosis of AMPARs followed by a decrease of synaptic strength 

(Lüscher et al., 1999; Lüscher and Malenka, 2012). 

Both LTP and LTD trigger changes in the cytoskeleton of synaptic spines. The 

spinoskeleton (Rácz and Weinberg, 2012) consists of both linear and branched 

filamentous actin (F-actin) networks starting at the spine base and reaching up to the 
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PSD. Induction of LTP leads to actin polymerization and the enlargement of the spine. 

Conversely, LTD results in the loss of actin and spine shrinkage (Koleske, 2013). The 

reorganization of the spinoskeleton is in part controlled by NMDARs. However, they 

do not only exert this function in spines of mature neurons, but also in dendrites 

already during neuronal development (McAllister, 2000). In Xenopus laevis tadpoles, 

NMDAR activity is crucial for the dendritic development and outgrowth of optic tectal 

neurons (Rajan et al., 1998; Sin et al., 2002). Interestingly, even axon branch 

stabilization depends on dendritic NMDAR activation in Xenopus RGCs (Ruthazer et 

al., 2003). In cultured rat hippocampal neurons, overexpression of NR2B leads to a 

more complex dendritic arbor at DIV7, but not in mature cells (Bustos et al., 2014). 

A number of possibilities of how NMDARs influence the cytoskeleton have been 

proposed. For example, they interact directly or indirectly with various actin-binding 

proteins such as -actinin, cortactin, or profilin (Rácz and Weinberg, 2012). 

Furthermore, NMDAR stimulation leads to the activation of CaMKII and 

phosphoinositide 3-kinase (PI3K) that regulate guanine nucleotide exchange factors 

(GEFs) to stimulate small GTPases of the Rho subfamily, critical regulators of the actin 

cytoskeleton and present in all eukaryotic cells and therefore also in T-cells (Luo, 

2000; Tada and Sheng, 2006) (fig. 4).  

 

1.3 Molecular Mechanisms of Cytoskeleton Reorganization 

The cytoskeleton is a highly dynamic structure supporting both cell shape and 

function. In all eukaryotic cells, it is formed by two major components: 

microfilaments and microtubules. Microfilaments, consisting of linear polymers of G-

actin, directly underlie the plasma membrane and drive local changes in cell shape 

(Rohn and Baum, 2010). Microtubules are long hollow cylinders formed by the 

polymerization of - and -tubulin. They play crucial roles in cell migration, mitosis, 

and the intracellular transport of proteins and their complexes (Vale, 2003). Many 

animal cells also contain a third type of structure: the intermediate filaments. They 

are composed of a variety of proteins, and their size ranges between microfilaments 

and microtubules (Herrmann et al., 2007). While the cytoskeleton of different 

organisms are composed of similar proteins, the dynamics and function may be very 
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different depending on the organism and the cell type (Wickstead and Gull, 2011; 

Gunning et al., 2015).  

In neurons, the actin cytoskeleton plays a role in differentiation, i.e. the outgrowth of 

neurites as well as the formation and plasticity of synaptic spines (Hotulainen and 

Hoogenraad, 2010; Matus, 2000; Pak et al., 2008). In mature neurons, the actin 

polymers are found directly underneath the PSD where they stabilize synaptic 

proteins and drive morphological changes in response to stimuli (Kapitein and 

Hoogenraad, 2011).The actin bundles are highly dynamic. Depolymerization occurs at 

the so-called pointed ends, whereas ATP-dependent nucleation takes place at the 

barbed ends facing the plasma membrane. Their growth towards the cell boundaries 

creates an outward force resulting in morphological changes (Pollard and Cooper, 

2009; Kapitein and Hoogenraad, 2011). 

Actin dynamics are regulated by a number of actin-binding proteins and their 

upstream signaling molecules among which the group of Rho GTPases is essential. 

The best-characterized members are RhoA, Rac1, and Cdc42 (Jan and Jan, 2010). They 

function as molecular switches cycling between an active GTP bound state and an 

inactive GDP bound state (Van Aelst and D´Souza-Schorey, 1997). Whereas RhoA 

activation leads to dendrite retraction (Chen and Firestein, 2007; Jan and Jan, 2010), 

Cdc42 and Rac1 have been shown to regulate pathways responsible for outgrowth 

and branching (Leemhuis et al., 2004; Scott et al., 2003). Rho GTPases are regulated 

by a number of extracellular cues activating NMDARs, AMPARs, and other neuronal 

receptors. Their final targets are actin-binding proteins such as cofilin and profilin. 

The detailed signaling pathways related to NMDARs are shown in figure 4. 

Cofilin is an actin disassembling factor whereas profilin polymerizes actin (Okamoto 

et al., 2009). Both proteins are inactivated due to phosphorylation as a consequence 

of RhoA, CDC42 or Rac1 signaling. The finely concerted modulation of cofilin and 

profilin by Rho GTPases determines the polymerization and disassembly of actin 

fibers. 

The same processes can be found in T-cells as a response to the binding of the TCR 

with the epitope-MHC-complex of an antigen presenting cell. This interaction initiates 

the formation of an immunological synapse which is – in analogy to a neuronal 
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synapse – a complex signaling platform at the contact site of two immune cells 

(Yamada and Nelson, 2007). After the activation of the TCR, signaling subdomains, 

each characterized by a distinct subset of proteins, are formed. These so-called 

supramolecular activation clusters (SMAC) surround the binding site in a concentric 

manner (Dustin and Colman, 2002). Both the formation of SMACs and the correct 

trafficking of proteins such as the TCR complex to their designated location require 

proper actin functioning (Kumari et al., 2013; Ritter et al., 2013). 

 

Figure 4: Regulation of the actin cytoskeleton by NMDARs. Ca2+ influx through open NMDARs triggers the 

activation of CaMKII that subsequently phosphorylates its substrates such as the GEFs kalirin-7 and tiam 1, 

SynGAP (Synaptic Ras GTPase-activating protein 1) as well as the actin-binding protein spinophillin (neurabin II). 

The next crucial step is the activation of small GTPases of the Rho subfamily (RhoA, Rac) and their downstream 

kinases ROCK, PAK and LIMK (Rho-associated protein kinase, p21 activated kinase, LIM domain kinase 1). ROCK 

and LIMK phosphorylate and thereby inactivate the actin disassembling factor cofilin and the actin monomer 

binder profilin. An alternative, though not fully understood pathway is the activation of PI3K, which also might 

depend on CaMKII (Lin et al., 2011), and the phosphorylation of its substrate mTORC2, a supposed regulator of 

RhoA and Rac (Jacinto et al., 2004). This complex interaction network allows a very finely regulated 

reorganization of the actin cytoskeleton. 

 

Since CD3 is the crucial signaling subunit of the TCR complex, we can conclude that 

the reorganization of the actin cytoskeleton in T-cells primarily depends on this 

protein.  Interestingly, studies have also connected CD3 with the neuronal 

cytoskeletal due to its regulation of dendrite outgrowth as well as its colocalization 
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with actin in distinct subcellular compartments (Baudouin et al., 2008).  Taking all 

these facts together, it gives rise to the hypothesis that CD3 is a regulator of the actin 

cytoskeleton in neurons. The characterization of the underlying mechanisms will be 

the topic of this thesis. 

 

 

1.4 Objectives 

 

Studies have shown that neurons and T-cells have a lot in common at the molecular 

level despite their different morphologies and functions. Conducting an extensive 

database and literature research, this thesis aimed at providing a comparison 

between TCR signaling and neuronal signaling based on the published expression of 

participating proteins. The central TCR signaling subunit CD3 was then chosen as a 

candidate protein, not only because of its immunological and neuronal expression, 

but mostly due to the fact that the protein needs a yet unknown neuronal receptor to 

transduce signals. 

Apart from further characterizing CD3 regarding its subcellular localization in 

neurons, the main objective of this thesis was to assess CD3 functioning in 

cytoskeletal reorganization. Developing hippocampal neurons with their high 

dendrite dynamics were chosen as a model and subjected to Sholl analysis after the 

transfection with CD3 loss-of-function mutants and pharmacological treatments. 

Biochemical analyses were then used to assess the influence of selected signaling 

molecules on CD3 phosphorylation. 

Furthermore, this study aimed at elucidating the role of NMDARs in the activation of 

CD3 again with special focus on cytoskeletal signaling events by means of 

interaction and colocalization experiments as well as pharmacological studies in cell 

cultures. 

  



 

13 
 

2 Material and Methods 

2.1 Material 

2.1.1 Chemicals 

All chemicals were obtained from BioRad, Roche, Invitrogen, Merck, Roth, Serva, 

Thermo Fisher Scientific, or Sigma-Aldrich and were of analytical grade. Special 

chemicals and solutions are detailed in the corresponding method descriptions. 

2.1.2 Antibodies 

2.1.2.1 Primary Antibodies 

 

Antibody Species Supplier Dilutions 

anti-Bassoon ms, monoclonal Stressgen IF: 1:400 

anti-CD3 ms, monoclonal Santa Cruz IB: 1:200 

anti-CD3 rb, polyclonal Abcam IF: 1:200 
IP 

anti-Cofilin rb, monoclonal Cell Signaling IB: 1:500 

anti-Cofilin (phospho S3) rb, polyclonal Abcam IB: 1:500 

anti-FLAG M2 ms, monoclonal Sigma IB: 1:2000 

anti-GAPDH ms, monoclonal Abcam IB: 1:10000 

anti-GFP rb, polyclonal Abcam IB: 1:10000 
IF: 1:2000 

anti-GluR1 ms, monoclonal NeuroMAB IB: 1:1000 

anti-GluR2 ms, monoclonal NeuroMAB IB: 1:1000 

anti-Homer rb, polyclonal Synaptic Systems IF: 1:400 

anti-Homer rat, polyclonal Acris IF: 1:200 

anti-MAP2 gp, polyclonal  Synaptic Systems IF: 1:1000 

anti-NR2B ms, monoclonal BD Transduction Laboratories IB: 1:250 
IF: 1:50 

anti-NR2B rb, polyclonal Alomone Labs IF: 1:20 (live) 

anti-Synaptophysin gp, polyclonal Synaptic Systems IF: 1:500 

anti-TrkB ms,monoclonal BD Transduction Laboratories IB: 1:500 

anti--Tubulin ms, monoclonal Sigma IB: 1:2000 

anti--Tubulin ms, monoclonal Sigma IB: 1:2000 
IF: 1:500 

anti-phospho-Tyrosine ms BD Transduction Laboratories IB: 1:2000 

Abbreviations: IB – immunoblot, IF – immunofluorescence, IP - immunoprecipitations 
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2.1.2.2 Secondary Antibodies 

 
Antibody 

Species Supplier Dilutions 

Anti-mouse IgG HRP Goat, polyclonal Dianova IB: 1:10000 

Anti-rabbit IgG HRP Goat, polyclonal Dianova IB: 1:10000 

Anti-rabbit IgG Alexa FluorTM 488 Goat, polyclonal Molecular Probes IF: 1:1000 

Anti-rabbit IgG cy3, cy5 Goat, polyclonal Molecular Probes IF: 1:1000 

Anti-mouse IgG cy3, cy5 Goat, polyclonal Molecular Probes IF: 1:1000 

Anti-guinea pig, cy3, cy5 Goat, polyclonal Molecular Probes IF: 1:1000 

Abbreviations: IB – immunoblot, IF – immunofluorescence 

 

2.1.3 Bacterial Strains and Culture Media 

For transformations and preparations of plasmid DNA from bacteria, the bacterial 

strain XL10-GOLD with the genotype endA1 glnV44 recA1 thi-1 gyrA96 relA1 lac Hte 

(mcrA)183 Δ(mcrCB-hsdSMRmrr) 173 tetR F'[proAB lacIqZΔM15 Tn10(TetR Amy 

CmR)] (Stratagene) was used.  

LB-medium 5g/l yeast-extract, 10g/l bacto-tryptone, 5g/l NaCl 

LB-plates 1000ml LB-medium, 15g agar 

SOC-medium 20g/l bacto-tryptone, 5g/l yeast-extract, 10mM NaCl, 2,5mM KCl, 10mM MgSO4, 

10mM MgCl2, 20mM glucose 

 

2.1.4 Animals 

In this study, Wistar rats from the Leibniz Institute for Neurobiology (Magdeburg, 

Germany) animal facilities were used. Animal housing and experimental procedures 

were authorized and approved by the Institutional State and Federal Government 

regulations (Land Sachsen-Anhalt, Germany). 
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2.2 Methods 

 

2.2.1 Molecular Biological Methods 

Molecular procedures followed established protocols as described in Green and 

Sambrook (2012). Therefore, all protocols are described briefly unless they were 

significantly altered. 

 

2.2.1.1 PolyA+-RNA Preparation and Reverse Transcription 

Rats at different ages were anesthetized and transcardially perfused with a 0.9% NaCl 

solution. Tissue from spleen, hippocampus, and cortex were used to isolate RNA 

employing the RNeasy Mini Kit from Qiagen. Reverse transcription of 1µg RNA into 

cDNA was done with the Omniscript Reverse Transcription Kit from Qiagen. All 

procedures followed the supplier´s protocols.  

 

2.2.1.2 Polymerase Chain Reaction (PCR) 

Taq DNA Polymerase:   Qiagen 
Primers (dissolved in ddH2O):  Biomers 
Deoxyribonucleotide Set (dNTPs): Thermo Scientific 

For the detection of CD3 cDNA in rat spleen, hippocampus, or cortex as well as for 

subcloning, DNA was amplified using specific primers. The reagent concentrations in 

a 50µl reaction sample and the PCR program used are shown below. The annealing 

temperature (Tm) was adjusted depending on the primers in use (see section 6.3). 

cDNA   1µg 
Primer 1  0.5µM 
Primer 2  0.5µM 
dNTPs   0.5mM 
Taq polymerase 5U 
10x buffer  5µl 
ddH2O   ad 50µl 
 

Initial denaturation 5min 95°C 
Denaturation  45sec 95°C 
Annealing  45sec Tm 
Elongation  1min 72°C 
Final Elongation 10min 72°C 

2.2.1.3 Site-directed Mutagenesis 

To substitute base pairs within the CD3ζ sequence, mutations were introduced into 

two overlapping DNA fragments using accordingly altered primers (see section 6.3) 

35 cycles 
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in two separate PCR reactions. In a second step, the fragments were fused and 

elongated. A detailed protocol can be found in PCR, Labor im Fokus, Spektrum 

Akademischer Verlag (Newton and Graham, 1997). 

 

2.2.1.4 DNA Restriction 

Restriction enzymes:  Thermo Scientific 

Several restriction enzymes were used according to the recommendations of the 

manufacturer to digest DNA fragments. 

 

2.2.1.5 Agarose Gel Electrophoresis and DNA Extraction from Agarose Gels 

Agarose:   Molecular biology grade, SERVA 
50x TAE:   2M Tris, 0.05M EDTA 
Ethidium bromide:  1mg/ml, Roth 
6x Loading Dye: 10mM Tris-HCl (pH 7.6), 0.03% bromophenol blue, 0.03% 

xylene cyanol FF, 60% glycerol, 60mM EDTA 
GeneRuler 1kb DNA ladder:  Thermo Scientific 
NucleoSpin ExtractII Kit:  Macherey-Nagel 

Separation of DNA fragments for analytical or preparative purposes was accomplished 

using one-dimensional agarose gel electrophoresis. 1% (w/v) agarose gels were prepared 

by dissolving agarose in 1x TAE buffer under heat using a microwave. To visualize DNA 

fragments under UV light, ethidium bromide was added to a final concentration of 

0.5µg/ml. Gels were run at 80mV in 1x TAE buffer. 

DNA fragments for subcloning were excised from the gel, and DNA was extracted 

using the NucleoSpin ExtractII Kit following the manufacturer´s protocol. 

 

2.2.1.6 Cloning of DNA Fragments into Plasmid Vectors 

T4 DNA ligase: New England Biolabs 

Both vectors and DNA fragments underwent restriction with according restriction 

enzymes. Digested DNA was submitted to agarose gel electrophoresis and was then 

extracted from the gel as described above. For ligations, ATP-dependent T4 DNA 

ligase was employed at a final concentration of 1U in a 10µl reaction sample. The 

molar ratio between DNA fragment and vector was 3:1. The sample was incubated at 
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23°C for 2h.  

2.2.1.7 Transformation of Chemically Competent Bacteria 

For the transformation of E.Coli XL10-GOLD, 5µl ligation sample was added to 100µl 

of bacteria and incubated on ice for 10 minutes. After a 45-second heat shock at 42°C, 

the samples were put back on ice for 2 minutes before they were transferred to 1ml 

preheated SOC medium. The bacteria were incubated at 37°C for 1h with constant 

shaking and then plated on LB-agar plates with respective antibiotics. Plates were 

incubated overnight at 37°C. 

 

2.2.1.8 Preparation of Plasmid DNA (mini and midi preparations) 

Buffer P1:   50mM Tris-HCl (pH 8.0), 10mM EDTA, 100µg/ml RNase A 
Buffer P2:   200mM NaOH, 1% (w/v) SDS 
Buffer P3:   3M potassium acetate (pH 5.5) 
Midi preparation:  NucleoBond® Xtra Midi, Macherey-Nagel 

To define positive clones after transformation, colonies were cultivated in 2ml LB-

medium containing the respective antibiotics at 37°C overnight. The preparation 

protocol was modified from Birnboim and Doly (1979). Bacteria were pelleted and 

resuspended with 300µl P1. Cells were lysed with 300µl P2 for 5min, neutralized with 

300µl P3, and then incubated on ice for 5min. Precipitated proteins were removed by 

centrifugation at 20.000xg for 10min. The DNA in the supernatant was precipitated 

with isopropanol. Plasmid DNA was collected by centrifugation (20000xg, 10min) and 

washed with 70% ethanol. After drying, the pellet was resuspended in 25µl 10mM 

Tris-HCl (pH 7.5). Large quantities of plasmid DNA with high purity were prepared 

from 250ml overnight cultures using the NucleoBond® Xtra Midi Kit according to the 

supplier´s protocol. 

 

2.2.1.9 Generation of Expression Constructs 

Constructs used in this study are listed in section 6.2 (appendix). All constructs were 

generated by subcloning or PCR and were sequenced. 
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2.2.1.10 Sequencing and Sequence Analysis 

Sequencing was done by the company SeqLab. The program Standard Nucleotide 

Blast by NCBI was used for sequence analysis. 

 

2.2.2 Biochemical Methods 

2.2.2.1 Subcellular Fractionation of Tissues 

All subcellular fractionations were performed at 4°C. 

 

2.2.2.1.1 Preparation of a Crude Membrane Fraction (P2) 

Buffer A:   320mM sucrose, 5mM HEPES (pH 7.4) 
Protease inhibitors:  Complete®, Roche 

Rats were anesthetized and decapitated. Both spleen and forebrain were taken and 

either directly submitted to fractionation or frozen on dry ice and stored at -80°C 

until use. The tissue was homogenized with 10ml/g Buffer A containing protease 

inhibitors with a homogenizer (12x 900rpm) and centrifuged for 10min at 1000xg. 

The pellet was washed in the same amount of Buffer A as before and centrifuged. The 

supernatants from both centrifugations were pooled and pelleted at 12000xg for 

15min. The supernatant (S2) contained the cytosolic protein fraction. The pellet was 

washed in Buffer A. The subsequent centrifugation step (12000xg, 20min) resulted in 

a crude membrane fraction (P2) that was then used for further subcellular 

fractionations. 

 

2.2.2.1.2 Synaptosome Preparation from Rat Forebrain 

Buffer B:   320mM sucrose, 5mM Tris-HCl (pH 8.1) 
Sucrose solutions:  0.85/1.0/1.2M sucrose, 5mM Tris-HCl (pH 8.1) 

To prepare a synaptosome-enriched fraction, P2 was resuspended in 1.5ml/g (wet 

tissue weight) Buffer B and transferred to a step gradient with 9.1ml each of 

0.85/1.0/1.2M sucrose solutions. After a 2-hour centrifugation at 85.000xg the 

following fractions are obtained: myelin at 0.32/0.85M sucrose interface, light 

membranes at 0.85/1.0M sucrose interface, synaptosomes at 1.0/1.2M sucrose 

interface, and mitochondria as a pellet.  
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2.2.2.1.3 Lipid Raft Preparation from Rat Forebrain 

Lysis buffer:   5mM HEPES (pH 7.4), 1% Triton X-100, protease inhibitors 
Resuspension Buffer:  5mM HEPES (pH 7.4), 2M sucrose 
Sucrose solutions:  0.85/1.5M sucrose, 5mM HEPES (pH 7.4) 

For the preparation of a lipid raft enriched fraction, P2 was lysed in 1ml/g (wet tissue 

weight) lysis buffer and incubated for 30min under agitation. Detergent-resistant 

membranes were collected at 20.000xg for 30min. The pellet was resuspended in 

1ml/g (initial tissue weight) resuspension buffer and placed at the bottom of a step 

gradient with 9ml each of 0.85M and 1.5M sucrose solution. The remaining volume of 

the centrifuge tube was filled with 5mM HEPES (pH 7.4) up to 0.5cm underneath the 

rim. After centrifugation (2h 100000xg), lipid rafts were harvested at the 0M/0.85M 

sucrose interface.  

 

2.2.2.2 Determination of Protein Concentrations 

2.2.2.2.1 Bicinchoninic Acid Assay 

BC Assay Protein Quantitation Kit: Uptima 
Bovine Serum Albumin (BSA):  Interchim 

The BC Assay is a colorimetric assay derived from the Biuret reaction (Gornall et al., 

1949). The protein concentrations of fractionation samples were determined in 

triplets. Different dilutions of BSA served as standards. The reaction was performed 

according to the recommendations of the supplier. The protein concentration is 

directly proportional to the optical absorbance measured at a wavelength of 562nm.  

 

2.2.2.2.2 Amido Black Protein Assay 

Amido black solution: 23mM amido black 10B (Merck) in methanol/acetic acid 
Methanol/acetic-acid: Methanol : acetic acid 9:1 
BSA:   Interchim 

The quantification of precipitated and in 2x SDS sample buffer resuspended proteins 

samples was done using the amido black protein assay (Popov et al., 1975). Different 

dilutions of BSA served as standards. The protein concentrations of both protein and 

BSA samples were determined in triplets. Samples were incubated with amido black 

solutions in a 96-well reaction plate at room temperature for 10min and centrifuge at 

3200xg for 10min. The pellets were washed three times with methanol/acetic acid 



 

20 
 

and centrifuged as before in-between. After drying, the pellet was resuspended in 

300µl 0.1N NaOH. Optical Absorbance was measured at 620nm with a photometer 

(VERSAmax microplate reader, Molecular Devices). The program Soft Max Pro 4.8 

was used for further analysis of the data.  

 

2.2.2.3 Protein precipitation 

4x SDS sample buffer: 250mM Tris (pH 6.8), 1% (w/v) SDS, 40% (v/v) glycerol, 20% 

(v/v) β-mercaptoethanol, 0.004% (w/v) bromophenol blue 

Fractionation samples containing 500µg of protein (determined by BC assay) were 

incubated in ice-cold 80% ethanol at -20°C overnight. Precipitated proteins were 

pelleted and then washed three times with ice-cold 80% ethanol employing 

centrifugation at 20.000xg at 4°C for 10min. The final pellet was dried and 

resuspended in 2x SDS sample buffer. 

 

2.2.2.4 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

4 x SDS sample buffer: 250mM Tris (pH 6.8), 1% (w/v) SDS, 40% (v/v) glycerol, 20% 
(v/v) β-mercaptoethanol, 0.004% (w/v) bromophenol blue  

Electrophoresis buffer:  192mM glycine, 0.1% (w/v) SDS, 25mM Tris (pH 8.3) 
Protein ladder:   Precision Plus Protein™ Prestained Standard Dual Color, Bio-Rad  

Separation of proteins by molecular weight was achieved by employing SDS-PAGE 

under denaturing conditions following a protocol by Laemmli (1970). Depending on 

the protein samples, either a homogenous running gel (12% polyacrylamide) or a 

continuous gradient gel (5-20% polyacrylamide) with 5% polyacrylamide stacking 

gel was used. Protein samples were solubilized in SDS sample buffer and incubated at 

95°C for 5min. Electrophoresis was performed at a constant current of 10mA. The 

gels were either stained with Coomassie Brilliant Blue or used for immunoblotting. 

 

2.2.2.5 Coomassie blue staining of SDS-PAGE gels 

Coomassie Brilliant Blue staining solution: 0.125% (w/v) Coomassie Brilliant Blue R250, 
50% (v/v) methanol, 10% (v/v) acetic acid 

Destaining solution:    7% (v/v) acetic acid 
Conservation solution:    50% (v/v) methanol, 5% (v/v) glycerol 

Gels were stained in Coomassie Brilliant Blue staining solution at room temperature 

overnight and destained with 7% acidic acid until protein bands were clearly visible. 
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For conservation, gels were incubated in conservation solution for 10min and 

spanned in a frame between two cellophane sheets (Roth) for drying. 

 

2.2.2.6 Western Blotting and Immunodetection of Proteins 

Blotting buffer:   192mM glycine, 0.2% (w/v) SDS, 20% (v/v) Methanol, 25mM  
    Tris (pH 8.3) 
PonceauS solution:  0.5% (w/v) PonceauS in 3% (v/v) trichloroacidic acid 
10x TBS:    200mM Tris/HCl (pH 7.6), 1.37M NaCl 
TBS-A:    0.02% (w/v) NaN3 in 1xTBS 
TBS-T:    0.1% (v/v) Tween-20 in 1x TBS 
Blocking buffer:  5% (w/v) dried milk in 1x TBS-T 
Nitrocellulose membrane:  PROTRAN® pore size 0.45µm, Whatman® 

ECL: Pierce® ECL Western Blotting Substrate, PierceImmobilonTM 
Western, Millipore 

Light-sensitive films:  Amersham HyperfilmTM ECL, GE Healthcare 

The electrophoretic transfer of proteins to a nitrocellulose membrane followed a 

protocol by Towbin et al. (1979) in a 4°C-cooled blotting chamber by Hoefer at 

constant current of 200mM. Blotting time for endogenous CD3 was 1h, for all other 

samples 90min. After the transfer, the membrane was incubated in PonceauS solution 

for 15min at room temperature before blocking with blocking buffer for 1h. 

Incubation with the primary antibody was either done 1h at room temperature or 

overnight at 4°C under constant shaking. The antibody diluted in TBS-A, 5% BSA in 

TBS-TA, or blocking buffer depending on the supplier´s recommendations. Before and 

after the 1h incubation with secondary antibody in blocking solution, the membrane 

was washed four times 10min in TBS-T. Induction of chemiluminescence was 

achieved with an ECL reagent following the manufacturer´s protocol. Protein bands 

were detected using either light-sensitive films and the developer machine Agfa Crux 

60 or the INTAS ECL Chemocam Imager (INTAS Science Imaging).   

 

2.2.2.7 Expression and Purification of Tandem-Affinity-Purification-Tagged 

CD3 (CD3-TAP) 

10x PBS:   1.4M NaCl, 83mM Na2HPO4, 17mM NaH2PO4, pH 7.4 
Lysis Buffer:   50mM Tris/HCl (pH 8.0), 150mM NaCl, 1% Triton X-100 
Wash Buffer:   50mM Tris/HCl (pH 8.0), 150mM NaCl 
Protease Inhibitors:  Complete (Roche) 
Anti-FLAG® M2 Affinity Gel: Sigma 
FLAG® peptide:   Sigma 

HEK 293-T cells in 175cm2 flasks were transfected as described in 2.2.3.1. 24h after 
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transfection, cells were harvested in cold PBS, pelleted at 1000xg for 3min, and then 

lysed for 1h at 4°C under constant rotation with 250µl lysis buffer containing 

protease inhibitors. Insoluble cell debris was removed by centrifugation (20min, 

20000xg, 4°C). Prior to adding the supernatant to the Anti-FLAG® M2 Affinity Gel 

(75µl/175cm2 flask of cells) in 10ml flow-through columns (Pierce), the matrix was 

washed three times with 0.1M glycine (pH 3.5) and equilibrated five times with wash 

buffer. After a 1h incubation on an overhead rotator at 4°C, the gel was washed four 

times with protease inhibitor containing washing buffer and then twice with the same 

buffer with 5µg/µl FLAG peptide. Bound protein was eluted with 2x SDS sample 

buffer and analyzed by SDS-PAGE and subsequent Coomassie staining for purity. 

 

2.2.2.8 Antibody Generation and Affinity Purification of Polyclonal Antisera 

10x PBS:  1.4M NaCl, 83mM Na2HPO4, 17mM NaH2PO4, pH 7.4 
Blocking Buffer:  5% (w/v) BSA in 1xPBS, 0.1% (v/v Tween-20, 0.025% (w/v) NaN3 
Wash buffer:  0.1% (w/v) BSA in 1x PBS, 0.1% (v/v) Tween-20 
Elution buffer:  100mM glycine (pH 2.5) 
Neutralization buffer: 1M Tris-HCl (pH 8.0) 

The immunization of rabbits and guinea pigs with four different peptides of the CD3 

sequence (2 animals per peptide) was carried out by BioGenes, Berlin, Germany. The 

immune reactivity of crude sera at different time points after the immunization was 

tested. If CD3-TAP expressed in HEK-293 T could be detected via immunoblot 

analysis, the animal was sacrificed to collect the complete serum. 

For the affinity purification of antisera, purified CD3-TAP was subjected to SDS-

PAGE and Western blotting. Staining of the nitrocellulose membrane with PonceauS 

solution showed a clear band of approximately 25kDa, which was excised and cut into 

pieces. The blot pieces were blocked for 1h at room temperature in blocking buffer 

and incubated with 1.5ml crude serum at 4°C overnight. After washing three times 

with wash buffer, polyclonal antibodies were eluted with 900µl elution buffer and 

immediately neutralized with 90µl 1M Tris-HCl (pH 8.0). Aliquots were stored at -

80°C. 
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2.2.2.9 Co-Immunoprecipitation using Magnetic anti-GFP Microbeads 

µMACSTM Epitope Tag Protein Isolation Kit: Miltenyi Biotec 
Protease inhibitors:    Complete (Roche) 

HEK 293-T cells co-expressing CD3TAP and GFP, CD3GFP or either one of the 

mutants were harvested in PBS and pelleted for three minutes at 1000xg. The pellet 

was lysed for 1h at 4°C using the lysis buffer of the µMACSTM Epitope Tag Protein 

Isolation Kit supplemented with protease inhibitors. Insoluble cell debris was 

removed by centrifugation (20min, 20000xg, 4°C). The supernatant was subjected to 

immunoprecipitation as described in the manufacturer´s protocol. Elution was done 

using 2x SDS sample buffer. Samples were analyzed by immunoblot. 

 

2.2.2.10 Co-Immunoprecipitation using Protein G magnetic beads 

Wash buffer:  50mM Tris/HCl (pH 8.0), 150mM NaCl 
Lysis buffer: 50mM Tris/HCl (pH 8.0), 150mM NaCl, 1% Triton X-100, protease 

inhibitors 
Protease inhibitors: Complete (Roche) 
Dynabeads Protein G: Life Technologies (Thermo Fisher Scientific) 

Rat synaptosome fraction containing 1mg of protein were washed twice with 5ml 

wash buffer and centrifuged at 100000xg at 4°C to remove residual sucrose. The 

pellet was lysed with 500µl lysis buffer on an overhead rotator at 4°C for 1h, and 

insoluble cell debris was removed by centrifugation (20000xg, 20min, 4°C). The 

supernatant was incubated with 2µg anti-CD3 antibody or rb IgG coupled to protein 

G magnetic beads overnight on an overhead rotator at 4°C. After washing three times 

with 500µl lysis buffer, precipitated proteins were eluted with 2x SDS sample buffer.  

 

2.2.2.11 Biotin-labeling and Isolation of Cell Surface Proteins 

Pierce Cell Surface Protein Isolation Kit: Thermo Fisher Scientific 
Protease Inhibitor:    Complete (Roche) 

Hippocampal neurons (300000/ well in 6-well plate) were transfected with GFP, 

CD3GFP or either one of the mutants using lentivirus on DIV10. Six days later, 

neurons were used for cell surface protein biotinylation using Pierce cell surface 

protein isolation kit. In short, cells were washed twice with ice-cold PBS and 

incubated with a 0.25mg/ml biotin solution on ice while shaking for 30 minutes. After 

adding 50µl of quenching solution, cells were washed with TBS and lysed in 50µl lysis 
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buffer supplemented with protease inhibitors on ice for 20 minutes. Cell suspension 

of two wells was collected in a tube, and insoluble cell debris was removed by 

centrifugation (20000xg, 5min, 4°C). 100µl equilibrated NeutrAvidin agarose 

suspension was added to the supernatant and incubated for 1h at room temperature 

while rotating. After four times washing with washing buffer, bound proteins were 

eluted with 2x SDS sample buffer. 

 

2.2.3 Cell Culture 

2.2.3.1 Cultivation and Transfection of Mammalian Cell Lines 

HEK 293-T cells: American Type Culture Collection (ATCC) 
COS7 cells:  American Type Culture Collection (ATCC) 
Culture dishes:  (Nunc) 
Solution A:   500mM CaCl2   
Solution B:   140mM NaCl, 50mM HEPES, 1.5mM Na2PO4 , pH 7.05 
Culture Medium: DMEM, 10% (v/v) fetal bovine serum (FBS), 2mM L-glutamine, 100U/ml 

penicillin, 100µg/ml streptomycin (all Gibco) 
TrypLETM  Express:  1x (Gibco) 
HBSS:    (Gibco) 

Human embryonic kidney (HEK) 293-T cells and COS7 cells derived from African 

green monkey kidney were used for overexpression studies. Cultures were 

maintained at 37°C, 5% CO2 and 95% humidity in an incubator. Confluent cultures 

were passaged twice a week.  After washing with warm HBSS, cells were trypsinized 

with 1x TrypLETM for three minutes at 37°C. For cell line maintenance, cells were split 

in a 1:10 ratio into fresh culture medium. For transfection, cells were split to achieve 

80% confluency within 24 hours. 

Transfection of cell lines was performed with calcium phosphate precipitates. For a 

75cm2 culture flask, 1ml solution A was mixed with 25µg plasmid DNA. After adding 

1ml solution B, the mix was incubated for one minute at room temperature before 

adding it dropwise to the flask. Culture medium was exchange for new one six hours 

after transfection. For smaller culture flasks or plates, the amount of transfection 

reagents and DNA was scaled down. Cells were processed 24 hours after transfection. 
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2.2.3.2 Cultivation and Transfection of Hippocampal Primary Cells 

Plating medium:  DMEM, 10% (v/v) FBS, 100U/ml Penicillin, 100µg/ml, Streptomycin,  
2mM L-glutamine (all Gibco) 

Culture Medium:  NeurobasalTM, 1x B27 , 0.8mM L-glutamine (all Gibco) 
Culture dishes:  (Nunc) 
Coverslips:  (Roth) 
HBSS:   (Gibco) 
Trypsin:   10x Trypsin (-EDTA), (Gibco) 
Poly-D-lysine:   100 mg/l in 0.15 M boric acid, pH 8.4 
OptiMEMTM:  (Gibco) 
Lipofectamin 2000: Life Technologies (Thermo Fisher Scientific) 

Preparation of hippocampal neuronal culture followed the method introduced by 

Kaech and Banker (2006) with slight modifications. E18 rat embryos were 

decapitated, and hippocampi were dissected from the brain in HBSS. The tissue was 

trypsinized for 15 minutes at 37°C and washed three times with plating medium to 

remove residual trypsin. Dissociation of hippocampi was achieved by repeatedly 

pipetting up and down with a Pasteur pipette with a narrowed tip (achieved by 

flaming). After determining the cell density, neurons are seeded in plating medium 

onto poly-D-lysine treated coverslips or culture dishes. One hour after seeding, 

plating medium is exchanged for culture medium. Partial exchange of culture medium 

to verify optimal feeding of cells followed once per week. Medium of low-density 

cultures (20000 cells/12mm coverslip) used for immunofluorescence was 

supplemented with conditioned medium. Biochemical procedures were performed 

with hippocampal neurons in 6-well plates (300000/well). High-density cultures 

(60000 cells/12mm coverslip) were used for transfection.  

Transfection of neurons was performed using lipofection. Culture medium of 24-well 

plates was exchanged for 450µl OptiMEMTM and stored for later use in the culture 

incubator at 37°C. Per well 25µl OptiMEMTM were incubated with 1µl Lipofectamin 

2000 for 5min at room temperature after vigorous mixing. Then another 25µl 

OptiMEMTM containing 1µg of plasmid DNA were added. After 20 minutes of 

incubation, suspension was added dropwise to the well. Four hours later, cells were 

washed three times with OptiMEMTM. Neurons were maintained in their old culture 

medium in the culture incubator until further use. 
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2.2.3.3 Generation of Lentiviruses 

Medium I:  DMEM, 10% (v/v) FBS, 2mM l-Glutamine, 100U/ml Penicillin, 100µg/ml 
Streptomycin (all Gibco) 

Medium II:  DMEM, 4%FBS, 2mM L-glutamine, 100U/ml Penicillin, 100µg/ml 
Streptomycin (alles Gibco) 

Sterile filter:   (Corning) 
Centrifugation tubes: (Beckmann Ultra clear) 

Lentiviral expression vectors were generated by integrating DNA fragments amplified 

by PCR into the FUGW vector (Lois et al., 2002). Used constructs are listed in the 

appendix (section 6.2).  

Production of lentiviruses in HEK 293-T cells followed protocols described in Dittgen 

et al. (2004) und S2 security conditions. Transfer vector and the helper vectors VSVg 

and pSPAX2 were transfected into HEK 293-T cells using the calcium phosphate 

method (see 2.2.3.1) with a ratio of 10µg/5µg/7.5µg. The culture medium (medium I) 

was replaced with medium II 24h after transfection. On the next day, this medium 

was collected for virus harvest. Cell debris was removed by centrifugation for 5min at 

2000xg and subsequent filtration though a previously blocked sterile filter (pore size 

0.45µm). Viral particles were pelleted at 19700xg for 2h and resuspended 

NeurobasalTM. Aliquots were stored at -80°C until use. 

Optimal virus concentrations for infection of hippocampal neurons were tested for all 

constructs in both low-density and high-density cultures. Depending on the 

experiment, neurons were infected on DIV3 and harvested on DIV8 or infected on 

DIV10 and used six days later. 

 

2.2.3.4 Stimulation of Cultured Hippocampal Neurons 

2.2.3.4.1 Pervanadate Treatment of Cultured Hippocampal Neurons 

Na3VO4: 200mM in H2O (pH 10.0) (Sigma) 
H2O2:  30% (v/v) (Sigma) 
HBSS +/+: (Gibco) 

Pervanadate is an irreversible inhibitor of tyrosine phosphatases (Huyer et al., 1997). 

It is used to maintain the phosphorylated state of tyrosine residues of target proteins. 

20min before treatment, the culture medium of the neurons was exchanged for HBSS 

+/+ (HBSS containing Ca2+ and Mg2+) – 500µl/well in 24-well plates or 1ml/ well in 6-

well plates. The next protocol steps are described for 24-well plates. Amounts can be 
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up-scaled for use in larger culture dishes. For stimulation, 15µl 200mM Na3VO4 and 

1µl H2O2 were added per well. Neurons were incubated for 5min at 37°C before 

washing twice with ice-cold HBSS +/+. Cells were harvested with 25µl 2x SDS buffer 

per well. Samples were boiled at 95°C for 5min before immunoblot analysis. The 

experiment was performed both on DIV8 and DIV16 hippocampal neurons. 

 

2.2.3.4.2 NMDA Stimulation of Hippocampal Neurons 

Tyrodes buffer: 12.5mM HEPES (pH 7.4), 1.25mM KCl, 15mM glucose, 120mM NaCl, 2mM 
MgCl2, 2mM CaCl2 

1000x NMDA:  100mM in H2O 
1000x glycine:  2mM in H2O (prepared directly before use) 

This experiment was performed on DIV16 hippocampal neurons. Culture medium 

was exchanged for Tyrodes buffer at least 20min prior to stimulation. Three minutes 

of incubation with 1xNMDA/1xglycine at 37°C was followed by three times washing 

with tyrodes buffer. Water was used instead of NMDA/glycine as vehicle control. 

After 20min neurons were harvested in 25µl 2x SDS buffer. Samples were boiled at 

95°C for 5min before immunoblot analysis. 

 

2.2.3.4.3 Inhibition of Neuronal Receptors and Kinases 

200x D-APV:   10mM in DMSO (Sigma) 
1000x CNQX:   10mM in DMSO (Sigma) 
1000x Ifenprodil:  10mM in DMSO (Sigma) 
1000x Damnacanthal:  100µM in DMSO (Tocris) 
1000x Piceatannol:  10mM in DMSO (Sigma) 
1000x PP2:   1mM in DMSO (Sigma) 
1000x Wortmannin:  50µM in DMSO (Sigma) 
1000x Y-27632:  10mM in H2O (Sigma) 

The inhibitors were used for Sholl analysis experiments (DIV8) and pervanadate 

treatment experiments (DIV8 and DIV16) with hippocampal neurons. For Sholl 

analysis, neurons were transfected with Lipofectamin 2000 (see 2.2.3.2) in 

OptiMEMTM. When replacing OptiMEMTM with culture medium, inhibitors or vehicle 

(DMSO or H2O in case of Y-27632) were added. Cells were kept in the incubator at 

37°C for 5h before fixing with 4% PFA as described in 2.2.3.5. For pervanadate 

treatment (see 2.2.3.4.1), inhibitors were added to the neurons 1h before the 

experiment.  
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2.2.3.5 Immunocytochemistry 

PFA:   4% (w/v) paraformaldehyde in 1xPBS 
Blocking solution: 5% (w/v) bovine serum albumin (BSA), 10% (w/v) horse serum (HS), 

0.1% (v/v) Triton X-100 in 1x PBS 
Mowiol:  10% (w/v) Mowiol, 25% (v/v) Glycerol, 100mM Tris/HCl (pH 8.5) 

Cells were grown on Ø 12 mm coverslips and fixed with 4% PFA in 1xPBS for 7 at 

room temperature. Coverslips were washed four times 10min with PBS to remove the 

PFA. Cells were blocked for 30min with blocking solution. The incubation with 

primary antibodies diluted in blocking solution followed for 1h at room temperature 

or overnight at 4°C. After thorough washing, cells were incubated with secondary 

antibodies diluted in blocking solution for 1h at room temperature. Then, cells were 

washed four times 10min with PBS, rinsed briefly in bidistilled water and mounted in 

7µl mowiol.  

Live Staining of Surface NR2B  

To visualize surface NR2B molecules, hippocampal neurons were treated with an 

anti-NR2B antibody recognizing an extracellular epitope (Alomone Labs). The 

antibody was diluted 1:20 in culture medium, and insoluble parts were removed by 

centrifugation for 5min at 10000xg. Coverslips were incubate with the antibody 

solution for 15min at 37°C. After short washing with warm culture medium, cells 

were fixed with 4% PFA and the protocol proceeded as described in the section 

above. 

 

2.2.3.6 Image Acquisition and Analysis 

Fluorescence was visualized with the Axio Imager.A2 microscope (Zeiss, Oberkochen, 

Germany), and images were acquired with the CoolSNAP MYO camera by 

Photometrics (Tucson, USA). The imaging software VisiView (Visitron Systems GmbH, 

Puchheim, Germany) was used for image documentation.  

 

2.2.3.6.1 Sholl Analysis of Cultured Hippocampal Neurons 

To assess dendrite complexity, DIV8 hippocampal neurons were fixed and mounted 

on microscope slides 9h after transfection. Images were acquired with a 20x objective 
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and 2x camera binning to improve visualization of dendrites.  

Soma and dendrites of neurons were traced using Adobe Photoshop (Adobe Systems, 

San José, USA). The trace copy of the neuron was subjected to Sholl analysis (Sholl 

Analysis Plugin for ImageJ, public domain, imagej.nih.gov/ij/) with the following 

parameters:  

Starting radius:  0µm 
Ending radius:  200µm 
Radius Step Size:  5µm 
Radius Span:   0 
Span Type:   Median  
 

 

2.2.3.6.2 Optic Density Analysis of Overexpressed Proteins in Dendrites 

To examine the distribution of CD3 and its mutants in hippocampal neurons, cells 

were fixed 6h after transfection and subjected to immunocytochemical staining of the 

somatodendritic compartment with an anti-MAP2 antibody. Images were acquired 

with a 63x (1.4 NA) objective and 1x camera binning. Optic density distribution 

within a dendrite was measured using ImageJ software by tracing the branch with the 

“Segmented Line” tool and taking the “Plot Profile”. 

 

2.2.3.6.3 Analysis of Synaptic Structures and NR2B-positive puncta 

Images were acquired with a 63x (1.4 NA) objective and 1x camera binning (pixel size 

= 0.072µm x 0.072μm, pixel depth = 8 bytes). Dendritic segments of 50μm2 approx. 

were cropped and used as templates for quantifications. The size, number, and 

fluorescence intensity of puncta were quantified for each individual channel using 

“Analyze Particle” tool of the Fiji software by setting the following parameters: 

brightness and contrast range = 30 to 255; color threshold filter pass range = 70 to 

255; range of particle size = 0.04–0.6μm2 as in detail described previously (Herrera-

Molina et al., 2014). Lists of raw data were automatically generated as an Excel-

compatible file for further statistical analysis. Data were normalized on the base of 10 

μm2 of dendrite. 
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After quantification of number and size of pre- and post-synaptic proteins, 1-bit 

masks were created for each individual channel using the “Analyze Particle” tool of 

the Fiji software. To quantify the number of synapses, I used complementary masks 

(from pre- and post-synaptic markers) and the “Image calculator” function of the Fiji 

software. By this procedure, a synapse results from the contact of at least one pre- 

and one postsynaptic punctum and, thus, it is robust in detecting tightly matched 

complementary synaptic markers (Herrera-Molina et al., 2014). 
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3 Results 

 

3.1 A Comparative Study of Immune and Neuronal Signaling 

Pathways 

Computational systems biology provides a holistic approach to understand complex 

signal transduction networks. In an effort to describe the components and dynamics 

of T cell receptor (TCR) signaling, Saez-Rodriguez et al. (2007) published a model 

relying on Boolean algebra. It comprises 94 nodes and 123 interactions. The model 

allows following the global behavior of the network at any given condition, e.g. 

inhibition of certain proteins. To gain deeper insights into postsynaptic signaling, we 

used an extended version of the model as a blueprint (104 nodes including 95 

proteins). In a first step, we compared the expression of listed proteins between T- 

cells and neurons. Peer-reviewed publications were searched for information 

regarding the expression of proteins in rat, mouse or human neurons and glia cells 

with special focus on the brain regions hippocampus and cortex. Apart from 

published data we also used a variety of databases, namely the Allen Brain Atlas, the 

Human Protein Atlas, and SynProt. 

The Allen Brain Atlas is a project initiated by the Allen Institute for Brain Science in 

Seattle, USA. It comprises several atlases of human and mouse brain of which the 

latter one was used for this study. The mouse atlas provides information on gene 

expression in the adult mouse brain (Lein et al., 2007, Jones et al., 2009). Nissl 

staining of the brain sections allows for localization of mRNA to neuronal cells. 

Information on glial mRNA expression is not available. 

The second database used was the Human Protein Atlas hosted by the Royal Institute 

of Technology in Stockholm, Sweden (Uhlén et al., 2015). They follow an antibody-

based approach to characterize the protein expression in a large variety of human 

tissues, cancer types as well as cell lines. Brain tissue expression is specified for 

neurons, glia cells, epithelia, and neuropil in cortical, hippocampal, cerebellar, and 

lateral ventricle area. 

Information on the synaptic presence of the proteins could be found in the database 

SynProt (Pielot et al., 2012). This database is a meta-study of proteomics screens 
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detecting proteins in the detergent-resistant synaptic junctions fraction. The 

classification system of the database gives information on glial or neuronal protein 

expression as well as on pre- or postsynaptic localization. 

Detailed results can be seen in the appendix section 6.4. Figure 5 gives an overview 

over the entire network depicting all the nodes and providing color-coded 

information on protein expression. Abbreviations are explained in table 1. In short, 

69 out of 95 proteins were found to be expressed in hippocampal pyramidal cells 

according to published data (green nodes). Also shown in green are the second 

messengers calcium (Ca2+), diacylglycerol (DAG) and phosphatidylinositol (3,4,5)-

trisphosphate (PIP3). Another eight proteins could be detected in cortical or other 

neurons (grey) with no information available regarding their hippocampal 

expression. Neuronal localization of 18 proteins has not been published so far. 

However, seven of these can be found in either one of the databases with expression 

in neurons (grey stipes). 

The TCR complex is shown with green stripes. It comprises several proteins of which 

some are expressed in neurons. Therefore, a detailed overview is given in figure 6 

with an explanation of the abbreviations in table 2. Neither the - nor the -chain of 

the TCR can be found in neurons. Syken and Shatz (2003) report findings of TCR 

mRNA, but no evidence of respective proteins. Subunits of the T-cell surface 

glycoprotein CD3 can be detected in neurons. The -, -, and -chain are found in 

cerebellar granule neurons (nodes shown in grey). However, little is known about 

their functions there (Nakamura et al., 2007). On the contrary, the CD3 chain has 

been described in hippocampal pyramidal cells and its functional characterization in 

neurons has yielded interesting links toward NMDA receptor signaling. This study 

will complement and extend already published data on neuronal CD3. 
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Figure 5: Scheme of TCR signaling components and their expression in neurons. Nodes represent proteins or 

second messengers connected by black (activation) or red (inhibition) arrows. The Boolean operation “and” is 

depicted as a dot implying the concerted action of connected proteins to activate or inhibit further signaling. 

Arrowheads pointing directly at a node stand for “or” connections that allow for alternative upstream pathways to 

regulate the respective species. Green-colored proteins are expressed in hippocampal neurons and grey ones in 

cortical neurons according to published data. Information on grey-striped nodes regarding their neuronal 

expression could only be found in databases. For white proteins, there are no data about neuronal expression 

available. The TCR complex is depicted in green stripes and shown in detail in figure 2. Full protein names can be 

found in table 1. 
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Table 1: Full protein names for nodes in TCR signaling network shown in figure 1. 

Abbreviation Full Name Abbreviation Full Name 

A20 TNF-induced protein 3 CRE cAMP responsive element 
ABL Tyr-protein kinase ABL1 CREB CRE-binding protein 
AKAP79 A-Kinase Anchor protein 5 CSK Tyr-protein kinase CSK  
AP1 Transcription factor AP-1  CYC1 Cytochrome c1  

BAD 
Bcl2-associated agonist of 
cell death 

DAG Diacylglycerol 

BCAT Catenin -1 DGK Diacylglycerol kinase alpha 

BCL10 
B-cell lymphoma/leukemia 
10 

ERK1 MAPK 3  

BCLXL Bcl-2-like protein 1 (XL) ERK2 MAPK 1 
BM BCL10-MALT1-Complex FKHR Forkhead box protein O1  
Ca Calcium FOS Proto-oncogene c-fos  

CABIN1 
Calcineurin-binding protein 
Cabin-1  

FYN 
Proto-oncogene tyrosine-
protein kinase Fyn  

CALCIN Calcineurin GAB2 
GRB2-associated-binding 
protein 2  

CALPR1 Calcipressin-1  GADD45 
Growth arrest and DNA-
damage-inducible protein  

CAM Calmodulin  GADS 
GRB2-related adapter 
protein 2  

CAMK2 
Ca2+/calmodulin-dependent 
protein kinase type II  

GAP GTPase activating proteins 

CAMK4 
Ca2+/calmodulin-dependent 
protein kinase type IV  

GRB2 
Growth factor receptor-
bound protein 2  

CARD11 
Caspase recruitment domain-
containing protein 11  

GSK3 Glycogen synthase kinase- 

CASPASE-8 Caspase-8 HPK1 
MAPK kinase kinase kinase 
1  

CBLB 
E3 ubiquitin-protein ligase 
CBL-B 

IKB NFB inhibitor 

CBM CARD11-BM-Complex IKKAB Inhibitor of NFB kinase  
CCBLP1 Phosphorylated CBL-C IKKG NFB essential modulator  

CCBLP2 Phosphorylated CBL-C IP3 
Inositol-trisphosphate 3-
kinase 

CCBLR 
E3 ubiquitin-protein ligase 
CBL-C 

ITK Tyr-protein kinase ITK 

CD28 
T-cell-specific surface 
glycoprotein CD28  

JNK MAPK 8  

CD4 T-cell surface glycopr. CD4  JUN Transcription factor jun 

CD45 
Receptor-type tyrosine-
protein phosphatase C  

LAT 
Linker for activation of T-
cells family member 1  

CDC42 
Cell division control protein 
42 homolog 

LCKP1 Phosphorylated LCK 

cFLIP 
CASP8 and FADD-like 
apoptosis regulator 

LCKP2 Phosphorylated LCK 

cFLIP-p22 Cleavage product of cFLIP LCKR 
Proto-oncogene tyrosine-
protein kinase LCK 
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Abbreviation Full Name Abbreviation Full Name 

cFLIP-p43 Cleavage product of cFLIP MALT1 
Mucosa-associated 
lymphoid tissue lymphoma 
translocation protein 1  

MEK 
Dual specificity MAPK kinase 
1  

RAF 
RAF proto-oncogene 
ser/thr-protein kinase  

MEKK1 MAPK kinase kinase 1  RAS GTPase HRas  

MEK4 
Dual specificity MAPK kinase 
4  

RASGRP 
RAS guanyl-releasing 
protein 1  

MLK3 MAPK kinase kinase 11  RIP1 
Receptor-interacting 
ser/thr-protein kinase 1 

NFAT 
Nuclear factor of activated T-
cells, cytoplasmic 

RIP2 
Receptor-interacting 
ser/thr-protein kinase 2 

NFKB Nuclear factor NF-kappa-B RLK TXK tyrosine kinase     

P21C 
Cyclin-dependent kinase 
inhibitor 1  

RSK 
Ribosomal protein S6 kinase 
alpha-1  

P27K 
Cyclin-dependent kinase 
inhibitor 1B  

SH3BP2 
SH3 Domain Binding 
Protein 

P38 
Mitogen-activated protein 
kinase 14  

SHIP1 
Phosphatidylinositol-3,4,5-
trisphosphate 5-
phosphatase 1  

P70S 
Ribosomal protein S6 kinase 
beta-1  

SHP1 
Tyr-protein phosphatase 
non-receptor type 6  

PAG 
Phosphoprotein associated 
with glycosphingolipid-
enriched microdomains 1  

SHP2 
Tyr-protein phosphatase 
non-receptor type 11  

PDK1 
3-phosphoinositide-
dependent protein kinase 1  

SLP76 
Lymphocyte cytosolic 
protein 2  

PI3K 
Phosphatidylinositol-4,5-
bisphosphate 3-kinase 

SOS Son of sevenless homolog 1  

PIP3 
Phosphatidylinositol (3,4,5)-
trisphosphate 

SRE Serum response Element 

PKB RAC- ser/thr-protein kinase TCRB T-cell receptor complex 
PKCTH Protein kinase C theta type  TCRLIG T-cell receptor ligand 
PLCGA Phopholipase C gamma 1 TCRP Phosphorylated TCRB 

PLCGB 
Phopholipase C gamma 1 
(Non-active form) 

TRAF2 
TNF receptor-associated 
factor 2 

PTEN 
PIP3-phosphatase and dual-
specificity protein 
phosphatase PTEN  

TRAF6 
TNF receptor-associated 
factor 6 

RAC1P1 Phosphorylated RAC VAV1 Proto-oncogene vav 

RAC1P2 Phosphorylated RAC VAV3 
Guanine nucleotide 
exchange factor VAV3  

RAC1 
Ras-related C3 botulinum 
toxin substrate 1  

ZAP70 
Tyrosine-protein kinase 
ZAP-70  
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Figure 6: Detailed view of TCR complex signaling. Nodes represent proteins involved in initial TCR signaling 

color-coded for hippocampal (green) or cerebellar (grey) expression. The a- and b-chain of the TCR (white) cannot 

be found in neurons. For better visibility, signaling connected to the crucial TCR signaling subunit CD3 is shown 

in black as opposed to grey for all other connections. Boolean operations apply as described above in figure 5. 

 

Table 2: Full protein names for nodes in TCR complex signaling shown in figure 6. 

Abbreviation Full Name 

CD3 T-cell surface glycoprotein CD3 gamma/epsilon chain dimer 

CD3P Phosphorylated T-cell surface glycoprotein CD3 gamma/epsilon chain dimer 

CD3 T-cell surface glycoprotein CD3 delta/epsilon chain dimer 

CD3P Phosphorylated T-cell surface glycoprotein CD3 delta/epsilon chain dimer 

CD3 T-cell surface glycoprotein CD3 zeta chain dimer 

CD3P Phosphorylated T-cell surface glycoprotein CD3 zeta chain dimer 

FYN Proto-oncogene tyrosine-protein kinase Fyn 

LCK Proto-oncogene tyrosine-protein kinase LCK 

TCR T-cell receptor alpha chain 

TCR T-cell receptor beta chain 

ZAP70 Tyrosine-protein kinase ZAP-70 



 

37 
 

3.2 Characterization of CD3 in the Brain 

 

3.2.1 CD3 mRNA is found in Hippocampus and Cortex of Young and Adult Rats 

To initiate our studies, I aimed at showing the existence of CD3 mRNA in the brain of 

both adult (P56) and young (P5) rats. To that end, the animals were perfused with a 

saline solution to avoid contamination of tissue samples with hematopoietic cells. 

Total RNA was isolated from hippocampus, cortex, and spleen and then subjected to 

reverse transcription PCR (RT-PCR). The resulting cDNA was used as a template for 

quantitative PCRs either amplifying CD3 or GAPDH as a control. cDNA from spleen 

served as a positive control for CD3 expression (Baudouin et al., 2008).  

CD3 mRNA can be detected in both hippocampus and cortex of young and adult rats 

as shown in figure 7. The expression levels in young animals were lower than in older 

animals. Further data are needed to confirm this impression. 

 

 

 

 

Figure 7: CD3 transcripts in rat brain. CD3 cDNA 

can be amplified from both young (P5) and adult (P56) 

rat hippocampus and cortex. cDNA from spleen was 

taken as a positive control for CD3. Amplification of 

GAPDH served as a loading control. Image is 

representative for three independent experiments.  

 

 

3.2.2 CD3 Localization at Different Developmental Stages of Hippocampal 

Neurons 

Next, I examined the localization pattern of CD3 protein in cultured hippocampal 

neurons at different developmental stages – days in vitro (DIV) 2, 7, 11, and 21. After 

fixation, neurons were stained with an anti-CD3 antibody as well as with antibodies 

directed against cytoskeletal marker proteins such as actin, MAP2 or III-tubulin. In 

mature neurons, synaptic formations were labeled with the postsynaptic marker 

homer or the presynaptic marker bassoon. 
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CD3 can be detected in hippocampal neurons at all investigated stages with 

differences in localization though. At DIV2, CD3 and actin immunofluorescences are 

overlapping at the axonal growth cone and at dendritic tips (figure 8). The latter 

localization of CD3 can still be observed at DIV7 when visualizing the 

somatodendritic compartment with MAP2. Around the time point of synaptogenesis 

(DIV11) (Ziv et al., 1996), CD3 colocalizes with homer positive puncta and can no 

longer be detected at dendritic ends. This is also true for CD3 localization in mature 

neurons at DIV21 (figure 9). To exclude presynaptic localization of CD3, a staining 

with bassoon was performed. CD3 fluorescence hardly showed any overlapping with 

bassoon fluorescence. Thus, I concluded that CD3 localization is mainly postsynaptic. 

 

 

Figure 8: Localization of CD3 in hippocampal neurons at different developmental stages. Cultures were 

fixed prior to immunofluorescent labeling of indicated proteins. At DIV2 CD3 is detected at dendritic and axonal 

growth cones. The latter localization vanishes over time with labeling of dendritic tips left at DIV7. CD3 moves to 

homer positive synaptic puncta around the time point of synaptogenesis (DIV11). 
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Figure 9: Postsynaptic localization of CD3 in mature hippocampal neurons. Cultures were fixed prior to 

immunofluorescent labeling of indicated proteins. At DIV21, CD3 immunofluorescence shows a partial overlap 

with homer-positive postsynaptic puncta, but hardly any colocalization with bassoon-positive presynapses 

leading to the assumption of a postsynaptic localization of the protein.  

 

3.2.3 CD3 is Abundant in Rat Brain Fractions 

To further elucidate the localization of CD3, subcellular fractions of adult rat 

forebrain were prepared using a sucrose gradient centrifugation approach. The 

samples were then probed on Western Blot with an anti-CD3 antibody and 

compared to a spleen membrane fraction control. Equal amounts (60µg) of each 

fraction were loaded (figure 10). 

In spleen control the antibody detects a single band at approximately 25kDa as 

expected for CD3(Sakaguchi et al., 2003). This band can also be found in brain 

homogenate (Hom), the membrane fraction (P2), the cytosolic fraction (S2) as well as 

in synaptosomes (Syn) and detergent resistant membranes (DRM) derived from P2. 

However, all brain samples also reveal yet uncharacterized bands at 30kDa, 50kDa, 

and with the exception of DRM at 75kDa. The existence of stable dimer formations of 

CD3, explaining the signal at 50kDa, is conceivable pending further investigation. 
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Another possible explanation is a certain unspecificity of the antibody in neurons. 

Therefore, we aimed at raising new antisera against different CD3 epitopes to 

confirm our previous observations. 

 

 

 

 

 

Figure 10: Subcellular fractionation of 

adult rat forebrain. CD3 can be 

detected at 25kDa in homogenate (Hom), 

membrane (P2) and cytosolic (S2) 

fraction as well as in synaptosomes 

(Syn) and detergent resistant 

membranes (DRM) derived from P2. 

Spleen membrane fraction serves as a 

positive control. Bands at 30kDa, 50kDa 

and 75kDa are of unknown origin. Equal 

amounts (60µg) of each fraction were 

loaded. 

 

3.3 Generation of Tools to Characterize CD3 in Neurons 

 

3.3.1 Generation of Antisera against CD3 

Specific antisera are an important tool to characterize a protein regarding its 

biochemical and cellular properties. Polyclonal antisera were raised in either rabbits 

or guinea pigs by immunizing the animals with peptides with sequences 

corresponding to previously selected CD3 epitopes (see figure 11). Both the 

extracellular and the transmembrane epitope are frequently used in commercial 

CD3 antibodies (Santa Cruz Biotechnology sc-1239, Alexis Biochemicals ALX-210-

828). The two intracellular epitopes (IC1 and IC2) were chosen according to their 

proteomic properties such as accessibility and the lack of putative posttranslational 

modifications.  

All antisera were tested on Western Blot to recognize a CD3TAP fusion protein and 

in immunofluorescent stainings to detect overexpressed CD3GFP in COS7 cells. 

CD3TAP was overexpressed in HEK293T cells. Total cell lysate was then used for 

immunoblot analysis. For immunofluorescent stainings, COS7 cell were transfected 
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with CD3GFP and fixed 24 hours later. All antisera, except anti-CD3-TM, recognized 

both the adequate band at 25 kDa on Western Blot and the overexpressed fusion 

protein, but not GFP alone in COS7 cells (figure 12, data for anti-CD3-TM not shown). 

The functional antisera were subjected to affinity purification using CD3TAP 

purified via an anti-FLAG M2 column (Gloeckner et al., 2007).  

Purified antisera produced much weaker bands of CD3TAP on Western Blot 

compared to native antisera (figure 12 A). They also lost the ability to detect 

overexpressed CD3GFP in COS7 cells (figure 12 E). Neither the native nor the 

purified antisera were able to recognize endogenous CD3 from a spleen membrane 

fraction where a band of 25kDa would be expected as detected by a commercial anti-

CD3 antibody. Anti-CD3-IC1 and IC2 show a band at approximately 20kDa of 

unknown origin (figure 12 B). The antisera were also not able to detect endogenous 

CD3 in cultured hippocampal neurons (data not shown). While commercial 

antibodies showed stainings comparable to the ones presented in figure 12, signals 

obtained by antisera application did not exceed background levels. 
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Figure 11: Overview over the antigen epitopes and the names of the corresponding CD3 antisera. Anti-

CD3-EC and IC2 were raised in guinea pigs, anti-CD3-TM and IC1 in rabbits. 

 

These results suggest an insufficient elution of the antibodies from the nitrocellulose 

membrane. Indeed, probing the blot pieces used for purification on Western Blot 

revealed pronounced bands corresponding to light and heavy chains of antibodies 

(data not shown) indicating incomplete elution from the nitrocellulose membrane. 

The lack of a suitable antibody to further characterize CD3 in neurons led to an 

alternative strategy: the generation of CD3 mutants to extend our toolbox and assess 

functional properties of CD3 in neurons. 
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Figure 12: Characterization and specificity of antisera. (A) Antisera (AS) and CD3TAP affinity purified 

antisera (pur. AS) were tested on immunoblots with a CD3TAP fusion protein overexpressed in HEK cells. Equal 

amounts of total cell lysate were loaded. Detection with an anti-FLAG M2 antibody served as positive control. (B) 

Antisera and CD3TAP affinity purified antisera were tested on immunoblots with a spleen membrane fraction 

(30µg loaded). Detection of CD3 with a commercial anti-CD3 antibody (Santa Cruz) served as positive control. 

(C) and (D) COS7 cells overexpressing CD3GFP (C) or GFP as a control (D) were stained with antisera. Antisera 

recognize the CD3GFP fusion protein, but not GFP alone. (E) Purified antisera were applied to detect CD3GFP 

overexpressed in COS7 cells. Lack of overlapping (yellow) immunofluorescence indicates that the purified antisera 

do not recognize the fusion protein. 

 

3.3.2 Generation and Characterization of Two CD3 Mutants 

To elucidate functional properties of CD3 in neurons, we generated two different 

mutants as GFP fusion proteins. In the sequence of CD3-6YF, tyrosine residues 

within the three ITAM´s Y72, Y83, Y111, Y123, Y142, and Y153 were exchanged for 

phenylalanine to prevent phosphorylation and subsequent signaling. This mutant has 

previously been described as a loss-of-function mutant in the literature (Baudouin et 



 

44 
 

al., 2008). For the second mutant, I replaced the aspartate residue at position 36 by 

alanine (D36A). This mutation alters the properties of the transmembrane region 

subsequently preventing the formation of the TCR complex in T cells (Rutledge et al., 

1992; Call et al., 2002). An overview of both mutants is given in figure 13. 

 

 

Figure 13: Overview over both CD3 mutants. (A) For the CD3-6YF mutant, all tyrosine residues within the 

ITAM´s were replaced by phenylalanine to prevent phosphorylation at these amino acid residues. (B) In the CD3-

D36A, the aspartate residues within the transmembrane domain was exchanged for alanine. 

 

 

3.3.3 CD3 Fusion Protein and its Mutants Form Dimers 

Dimer formation is an essential part for CD3 functionality (Wange and Samelson, 

1996). Therefore, we assessed the ability of both mutants to interact with TAP-tagged 

wild type (wt) CD3 by means of immunoprecipitation (IP). CD3TAP, CD3GFP, 

CD3-6YF-GFP, CD3-D36A-GFP, and GFP as a control were overexpressed in HEK 

cells. Total cell lysates were then incubated with anti-GFP tagged magnetic beads. 

Bound proteins were eluted with SDS sample buffer. Cell lysates and eluates were 

subjected to immunoblotting (figure 14). 

Probing the blot with an anti-GFP antibody reveals bands at 25kDa for GFP in both 

lysate and IP fraction. Bands at 50kDa present the GFP-tagged mutants 

demonstrating equal motility properties in SDS polyacrylamide gels. The 37kDa 
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bands in the eluate might be due to protein degradation. As the TAP tag contains the 

FLAG sequence, an anti-FLAG M2 antibody was used to examine the presence of 

CD3TAP. Equally strong bands at around 25kDa in the lysate of all samples indicate a 

similar expression level of the protein. The double band is most likely due to the 

existence of phosphorylated and non-phosphorylated CD3TAP. Bands in the eluate 

fraction of wt CD3 and both mutants prove the presence of coprecipitated CD3TAP 

implying dimer formation. The lack of a band in the GFP control confirms the 

specificity of the interaction. The IP fraction of the D36A sample also shows a striking 

double band at around 60-70kDa probably presenting the dimer of CD3TAP and 

CD3-D36A-GFP. Quantitative analysis of the experiments shows no significant 

difference in the ability to form dimers between wt CD3 and either one of the 

mutants indicating the possibility of the mutants to participate in interactions with 

other proteins and to fulfill basic functional requirements. 

 

 

Figure 14: Dimerization of CD3 mutants compared to wt CD3. GFP fusion proteins including CD3 wt and 

mutants were overexpressed in HEK cells together with wt CD3TAP. Total cell lysates were subjected to 

immunoprecipitation with GFP-coupled magnetic beads. Western Blots were probed with an anti-GFP and an anti-

FLAG M2 antibody. Optic density of the bands was measured using Quantity One. Statistical analysis of three 

independent experiments (One-way ANOVA) resulted in no significant difference between the means (p>0.05). 

Error bars present the SEM. 

 

3.3.4 Phosphorylation of CD3-D36A-GFP is Reduced Compared to CD3GFP  

In T cells, CD3 signaling is initiated by its phosphorylation by the kinase Fyn (Wange 

and Samelson, 1996). As neurons also express a variety of src kinases including Fyn, 

the next experiment aims at evaluating the phosphorylation properties of CD3GFP 
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and the D36A mutant when overexpressed in cultured hippocampal neurons applying 

lentivirus at DIV3. Five days after transfection, cells were submitted to a 5-minute 

pervanadate treatment. Pervanadate blocks tyrosine phosphatases and prevents the 

dephosphorylation of proteins at these sites. The neurons were then harvested with 

SDS sample buffer and subjected to immunoblotting (figure 15).  

Probing the blot membrane with an anti-GFP antibody reveals bands at around 50kDa 

in CD3 wt as well as in both mutant samples. Whereas CD3-6YF-GFP is shown as a 

clear band, CD3GFP and CD3-D36A-GFP show a slight smear suggesting 

posttranslational modifications. The use of a pan phospho-tyrosine (pTyr) antibody 

confirms this observation. The pTyr antibody produces a very broad band in the 

CD3GFP sample; the band of the transmembrane mutant is rather weaker. The 6YF 

sample shows no band and therefore no tyrosine phosphorylation as expected. 

Statistical analysis reveals a significant difference in the phosphorylation properties. 

CD3-D36A-GFP phosphorylation is reduced by approximately 75% compared to 

CD3GFP meaning that the transmembrane mutant may not be able to transmit 

signals to a full extend.  

 

 

 

 

 

 

Figure 15: Phosphorylation of overexpressed CD3 wt and mutants. 

GFP fusion proteins were overexpressed in cultured hippocampal neurons. 

Prior to harvesting at DIV8, cells were treated with pervanadate to inhibit 

tyrosine phosphatases. Immunoblots were probed with an anti-phospho-

tyrosine (pTyr) and an anti-GFP antibody. Optic density of the bands was 

measured using ImageJ. Statistical comparison of measurements using 

one-way ANOVA showed a clearly reduced phosphorylation of the D36A 

mutant (p**<0.01, ***p<0.0001) in five different experiments. Signal in the 

6YF lane can be considered background. 
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3.3.5 CD3 Wildtype and its Mutants Localize Differently in COS7Ccells and in 

Neurons 

A possible reason for the reduced phosphorylation of the D36A mutant might be 

improper localization resulting in limited accessibility for kinases. To investigate this, 

I transfected COS7 cells with CD3GFP, GFP, or either one of the mutants. Indeed, 

overexpressed CD3GFP and its mutants reveal different localization patterns when 

observed under the fluorescence microscope as can be seen in figure 16. GFP alone 

shows cytoplasmic expression, whereas CD3GFP and CD3-6YF-GFP localize to the 

membrane as well as to cell organelles – probably the Golgi apparatus, the 

endoplasmic reticulum, or transport vesicles as indicated by various small GFP-

positive puncta. CD3-D36A-GFP, however, seems to accumulate within the Golgi 

apparatus resulting in an enlarged organelle visible as a large GFP-positive spot. 

There is very little membranous localization and fewer small puncta compared to 

CD3 wt and the 6YF mutant confirming the aforementioned mislocalization 

phenotype of this mutant.  

 

 

Figure 16: Localization of CD3 and its mutants in COS7 cells. Cells were transfected and fixed 24 hours later. 

Whereas GFP shows a diffused pattern, both CD3GFP and CD3-6YF-GFP display localization at the membrane 

and in cell organelles. CD3-D36A-GFP fluorescence seems to be restricted to the Golgi apparatus with little to no 

surface expression. Images are representative for three independent experiments. 
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Next, I aimed at evaluating CD3 distribution in neurons. Hippocampal cells were 

transfected at DIV7 and fixed six hours later. After a counterstaining with an anti-

MAP2 antibody to visualize the cell soma and dendrites, images were taken with a 

fluorescence microscope. Figure 17 shows that GFP is again diffusely spread 

throughout the entire cell. The localization of wt CD3GFP is similar to endogenous 

CD3 at DIV7 with large amounts of the protein visible at the dendritic tip as 

indicated by arrows (compare fig. 8). The 6YF mutant can be found more spread 

along the dendrite with a slight concentration at dendritic ends. The transmembrane 

mutant seems to spread throughout the dendrite showing a punctate distribution 

pattern. To quantify these observations, we compared the mean optical density of the 

dendritic tip (defined as the final 10µm of the branch) with the mean optical 

density/µm of the entire dendrite using ImageJ. The equal diffusion based 

distribution of GFP results in a ratio of around 1. The quotients of the 6YF and D36A 

mutant are marginally higher which is not statistically different compared to the GFP 

control though. The pronounced localization of wt CD3 at dendritic ends can be 

confirmed by the quantitative analysis resulting in a more than threefold higher ratio 

than GFP control. 
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Figure 17: Distinct localization pattern of CD3GFP and its mutants in hippocampal neurons. Cells were 

transfected at DIV7 and fixed six hours later. After immunofluorescent labeling of the somatodendritic 

compartment with an anti-MAP2 antibody, images were acquired with a fluorescent microscope. Image analysis 

was done using ImageJ. CD3GFP immunofluorescence is pronounced at dendritic tips, whereas both mutants are 

more spread throughout the branch. Analysis of optic densities (OD) results in an increased OD tip to OD branch 

ratio for the wildtype protein compared to GFP and the mutants (One-way ANOVA, p < 0.001). Error bars present 

the SEM. 

 

3.3.6 Cell Surface Expression of CD3GFP and its Mutants 

Apart from the different distribution of the constructs, we also observed a seemingly 

reduced cell surface expression of CD3-D36A-GFP mutant in COS7 cells. To evaluate 

if this holds true in neurons, we overexpressed all CD3 construct as GFP fusion 

proteins in hippocampal cells using lentiviral transfection at DIV 10. At DIV16, cells 

were subjected to cell surface biotinylation (Solé et al., 2009; Kim and Kovacs, 2011). 
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After lysis, biotinylated proteins were isolated with a streptavidin matrix and eluted 

with SDS sample buffer. Cell lysate and eluate were analyzed by western blot 

employing an anti-GFP antibody to detect overexpressed proteins (figure 18). 

Comparably strong bands of CD3GFP in the lysate and eluate fraction indicate a high 

level of cell surface expression. The CD3-6YF-GFP signal in the eluate is weaker than 

in the lysate sample. The eluate of the CD3-D36A-GFP sample shows a hardly 

perceivable band despite high expression levels of the protein as conveyed by a 

strong signal in the total cell lysate. Quantitative analysis of reveals a significantly 

reduced cell surface expression of CD3-D36A-GFP compared to wt CD3 confirming 

the observed differences in localization patterns of this mutant in both COS7 cells and 

neurons. 

 

 

 

 

 

 

 

 

Figure 18: Cell surface expression of CD3GFP and its 

mutants in hippocampal neurons. Fusion proteins were 

overexpressed using lentiviral transfection. At DIV16, cell 

surface proteins were biotinylated and isolated using a 

streptavidin column after lysis. Total lysates and column 

eluates were subjected to immunoblot analysis employing an 

anti-GFP antibody. ODs were measured using ImageJ. OD ratio 

between eluates and lysates were analyzed using a one-way 

ANOVA revealing reduced surface expression CD3-D36A-GFP 

compared to CD3 wt (six independent experiments, 

***p<0.001). Error bars present the SEM. 

 

 

3.3.7 CD3GFP Overexpression Reduces Dendrite Complexity 

Previous publications have suggested a role for CD3 in the regulation of dendritic 

branching (Baudouin et al., 2008; Xu et al., 2010). To further elucidate the functional 

influence of the phosphorylation and the localization phenotype, I performed Sholl 
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Analysis on neurons overexpressing CD3GFP, GFP or either one of the mutants. DIV8 

neurons were transfected and fixed nine hours later. Images were taken with a 

fluorescence microscope and analyzed using PhotoShop and ImageJ Sholl analysis. 

The number of intersections with the concentric circles was plotted against the 

distance from the soma resulting in a curve. The area under this curve was taken as a 

parameter to describe the complexity of the cells. As shown in figure 19, 

overexpression of CD3GFP clearly reduces dendritic branching compared to GFP 

control confirming published observations. Both mutants do not affect the dendritic 

arbor.  

 

 

Figure 19: Overexpression of CD3GFP reduces dendritic complexity in DIV8 hippocampal neurons. Cells 

were transfected and fixed nine hours later. The number of intersections of a dendrite with concentric circles was 

plotted against the distance from the soma resulting in a curve. The area under the curve was taken as a 

parameter to describe dendrite complexity. Overexpression of CD3GFP leads to reduced branching, whereas 

neither of the mutants shows any effect on dendrite complexity (one-way ANOVA, ***p<0.001). Error bars present 

the SEM. 

 

To verify this effect of CD3GFP, I aimed at knocking down the protein expecting 

increased neurite complexity. Four commercially available shRNA constructs were 

evaluated regarding their efficacy to decrease the levels of expressed CD3GFP in 

HEK 293T cells. Total cell lysates were subjected to immunoblot analysis. Levels of 
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CD3GFP were compared to an internal GAPDH control. As depicted in figure 20, 

shRNA 2 and 3 proved to be most efficient compared to scramble and vector controls 

and were chosen for use in neurons. 

 

 

 

 

 

 

 

 

 

Figure 20: Efficacy of shRNAs. 

HEK293T cells were transfected with 

CD3GFP and either one of the shRNAs. 

Total cell lysates were subjected to 

immunoblot analysis and probed with 

an anti-GFP and an anti-GAPDH 

antibody. ShRNA 2 and shRNA 3 

proved to be most effective in reducing 

CD3GFP expression. Signal intensity 

of each band was measured using 

ImageJ. The data are expressed as 

mean ± SEM from three independent 

experiments (*p<0.05). 

  

Hippocampal cells were transfected with shRNA 2, shRNA 3, scramble or vector 

control at DIV8 and fixed 24 hours later. Images were acquired with a fluorescence 

microscope and analyzed using PhotoShop and ImageJ Sholl analysis. Only shRNA 3 

transfected cells showed a significantly increased area under curve indicating more 

complex branching compared to vector control (fig. 21). This verifies the role of CD3 

in the regulation of neuronal cytoarchitecture which will be examined in detail in the 

next sections. Complexity of both shRNA 2 and scramble control transfected neurons 

is not statistically different from vector control.  
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Figure 21: Knockdown of endogenous CD3 increases dendrite complexity. Hippocampal neurons were 

transfected at DIV8 and fixed 24 hours later. Image analysis was done employing ImageJ Sholl analysis. 

Quantification of Sholl analysis data reveals shRNA 3 to be most effective (three experiments, one-way ANOVA, 

**p<0.01). 

 

3.3.8 Involvement of CD3 in Actin and Microtubule Regulation 

The neuronal cytoskeleton consists of three major components: actin-based 

microfilaments, neurofilament-based intermediate filaments, and tubulin-based 

microtubules (Lee and Cleveland, 1996; Kapitein and Hoogenraad, 2011). The first 

and the latter have a major impact on dendrite outgrowth and stabilization. Thus, in a 

next step, I analyzed how CD3 and its mutants influence proteins involved in actin or 

microtubule regulation. Microtubules consist of -/-tubulin dimers (Singh et al., 

2008). A change in the ratio of those two proteins would indicate a modification of 

microtubules regarding their cytoskeleton or transportation function. Influences on 

actin can be monitored by analyzing the amount of phosphorylated cofilin. As an 

actin-binding factor, cofilin depolymerizes actin filaments and thereby regulates 

cytoskeletal reorganization. Phosphorylation of cofilin inactivates the protein 

(Okamoto et al., 2009). 
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Developing hippocampal neurons (DIV8) overexpressing CD3GFP or either one of 

the mutants after lentiviral transfection were subjected to immunoblot analysis. 

Samples were probed for - and -tubulin or cofilin and phosphorylated cofilin. As 

shown in figure 22, measurement of signal intensities with ImageJ does not show any 

change in -/-tubulin levels. However, a strong decrease in cofilin phosphorylation 

can be observed in CD3GFP and both mutant samples compared to GFP control 

indicating an influence on actin cytoskeleton regulation. 

 

 

Figure 22: Influence of CD3 on neuronal cytoskeleton. Hippocampal neurons (DIV8) overexpressing 

CD3GFP, its mutants or GFP were analyzed on immunoblots probed for a-/b-tubulin or phosphorylated (p)cofilin 

and cofilin. Optic density of bands was measured using ImageJ. Samples were compared to GFP control. The data 

are expressed as mean ± SEM from six different experiments (one-way ANOVA, *p<0.05, **p<0.01, ***p<0.001) 

 

3.3.9 Effect of CD3 and its Mutants on Mature Hippocampal Neurons 

Cytoskeletal changes do not only occur in developing but also in mature neurons 

(Kaech et al., 2001). Synaptic structures highly depend on actin dynamics (Chen et al., 

2007; Cingolani and Goda, 2008). As shown before (fig. 9), CD3 is located at the 

postsynapse. Therefore, it is conceivable that CD3 does not only regulate dendritic 

complexity, but also synaptic architecture in mature neurons. Thus, I examined 

dendrite complexity and synapse properties in DIV16 hippocampal neurons again 

using lentiviral transfection at DIV10 to overexpress CD3GFP, its mutants, and GFP 

as a control.  
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To assess dendritic branching, cells were stained with anti-MAP2 antibody after 

fixation. Images were acquired with a fluorescence microscope using a 10x objective 

and 1.6x digital zoom. Sholl analysis was performed as described previously. As 

shown in figure 23, CD3GFP does not have any effect on the dendritic arbor in 

mature neurons, nor does the D36A mutant. However, CD3-6YF-GFP overexpression 

leads to an increase in dendrite complexity compared to the other samples indicating 

that correct CD3 functioning still plays a role in mature neurons. 

 

Figure 23: CD3-6YF-GFP increases dendrite complexity in mature hippocampal neurons. Cells 

overexpressing CD3GFP, its mutants or GFP were fixed on DIV16. Sholl analysis was done applying ImageJ 

software. Data from four independent experiments were subjected to one-way ANOVA (*p<0.05, ***p<0.001). 

Data are shown as mean ± SEM.  
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Figure 24: Influence of CD3 on synaptic structures in hippocampal neurons. Cells were fixed at DIV16 after 

a 6-day overexpression of CD3GFP, its mutants or GFP. Immunofluorescent labeling of pre- and postsynaptic sites 

was achieved by staining with anti-synaptophysin or anti-homer antibodies. Analysis of puncta size and number 

was done with ImageJ. Data of three different experiments are expressed as mean ± SEM (one-way ANOVA, 

*p<0.05, **p<0.01, ***p<0.001). 
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For synapse evaluation, hippocampal neurons were stained with the presynaptic 

marker synaptophysin (Glantz et al., 2007) and the postsynaptic marker homer 

(Ippolito and Eroglu, 2010) after fixation. Images were taken with a fluorescence 

microscope and 63x magnification. ImageJ analysis allowed to count homer or 

synaptophysin positive dots along a dendrite and to calculate their area. Partially 

colocalizing pre- and postsynaptic puncta were regarded as synapses. Representative 

images and the statistical analyses of the experiment are shown in figure 24. 

The area of presynaptic puncta of cells overexpressing the 6YF or D36A mutant is 

increased compared to GFP control. CD3-6YF-GFP overexpression also leads to 

enlarged postsynapses in comparison to CD3 wt neurons. The non-phospho mutant 

does not affect the number of pre- or postsynaptic puncta, whereas CD3-D36A-GFP 

decreases the number of postsynaptic puncta, and CD3GFP the number of 

presynaptic puncta. In both cases, this results in a lower synapse count. These 

outcomes suggest an influence of CD3 on synaptic structure that might be analogous 

to its effect on dendrite complexity.  

 

3.4 The CD3-NMDA Receptor Complex 

NMDA receptors are known to regulate actin cytoskeleton reorganization (Penzes 

and Cahill 2012; Penzes and Rafalovich 2012; Bustos et al., 2014). Furthermore, they 

have been shown to be involved in CD3 signaling. Huh et al. (2000) were able to 

show that CD3-/- mice have an enhanced LTP. This effect could be abolished using 

the NMDA receptor inhibitor APV. A later study then confirmed that the interaction 

between CD3 and the NR2A subunit (Louveau et al., 2013) influences CaMKII 

dependent induction of LTP. Thus, I examined whether CD3 also forms a complex 

with the NR2B subunit and how it influences NR2B expression levels. 
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3.4.1 CD3 and NR2B Form a Complex 

Conducting an immunoprecipitation experiment, we examined if CD3 also interacts 

with the NR2B subunit or with other receptors that are related to NMDA receptor 

signaling. A Triton X-100 lysate of adult rat forebrain synaptosomes was incubated 

with either an anti-CD3 antibody or control IgG coupled to protein G magnetic beads. 

After washing, elution was done with SDS sample buffer. Total lysate, unbound 

fraction, the two last washing steps, and the eluate of CD3 IP and IgG control were 

subjected to immunoblot analysis (fig. 25A).  

The NR2B subunit could be coprecipitated with the CD3 antibody, but not with 

control IgG. Respectively, the amount of NR2B found in the unbound fraction of the 

IgG control is higher than the one in the actual IP. Clean washing steps indicate that 

protein bands seen in the eluate stem from binding to the IP antibody and not from 

contamination. Neither TrkB nor the GluR1 and GluR2 subunit of AMPA receptors 

were detected in the CD3 interactome.  

The CD3-NR2B-complex should show as colocalization of both proteins in a 

fluorescent staining. To that end, DIV21 hippocampal neurons were fixed and 

subsequently incubated with an anti-CD3 and an anti-NR2B antibody. Homer 

labeling was used to define postsynaptic sites. Figure 25B shows that CD3 and NR2B 

partially colocalize around homer positive postsynapses proving their local proximity 

as a prerequisite for interaction.  
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Figure 25: CD3 and NR2B form a complex. (A) Immunoprecipitation (IP) with an anti-CD3 antibody and IgG 

control using a Triton X-100 extract of rat forebrain synaptosomes. Total lysate, unbound, washing and eluate 

fractions of both IP and IgG control were subjected to immunoblot analysis and probed with an anti-NR2B, anti-

TrkB, anti-GluR1 and anti-GluR2 antibody. NR2B but none of the other receptors coprecipitated with CD3. A 

representative image of four independent experiments is shown. (B) Colocalization of NR2B and CD3 in DIV21 

hippocampal neurons. Cell were fixed and stained with an anti-CD3, anti-NR2B and anti-homer antibody. The 

enlarged cutout shows triple colocalization (white) in detail. Results could be confirmed in three independent 

experiments. 

 

3.4.2 CD3 Affects Expression Levels of NR2B in Hippocampal Neurons 

Next, I examined the functional relationship between NR2B and CD3. In a first 

experiment, NR2B expression levels in DIV16 neurons overexpressing CD3GFP, GFP, 

or either one of the mutants were evaluated after NMDA/glycine stimulation 

compared to a vehicle control. Hippocampal cells were transfected using lentivirus at 

DIV10. Stimulation with 100µM NMDA/2µM glycine or vehicle for three minutes 

followed on DIV16. Cells were harvested with SDS sample buffer 20 minutes after 

treatment and subjected to immunoblot analysis probing for NR2B and GAPDH. 

Previous studies have shown a decrease in NR2B activity and protein levels 20 

minutes after stimulation due to internalization and subsequent degradation (Nong et 

al., 2003; Snyder et al., 2005; Li et al., 2009). I can also observe this effect in my 
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experiment. In both CD3 and GFP overexpressing neurons, NR2B protein levels drop 

down to less than 30% of the original value after treatment (fig. 26). This decrease is 

missing in neurons overexpressing either one of the mutants indicating a role for 

CD3 in NMDA receptor internalization and degradation. Therefore, both mutants can 

be considered loss-of-function-mutants concerning NMDA receptor signaling. 

 

 

 

 

 

 

Figure 26: Expression levels of NR2B before and 

after NMDA receptor stimulation. Hippocampal 

neurons overexpressing CD3GFP, its mutants or GFP 

were treated with 100µM NMDA / 2µM glycine at 

DIV16. 20 minutes after stimulation, cells were 

harvested and analyzed via immunoblot probing for 

NR2B and GAPDH. Quantitative analysis of signal 

intensities was done with ImageJ. Data from seven 

independent experiments are expressed as mean ± 

SEM (one-way ANOVA, **p<0.01, ***p<0.001). 

 

 

If CD3 is indeed involved in the internalization or degradation of NR2B-containing 

NMDA receptors, CD3GFP transfected neurons should show altered NR2B surface 

expression. To that end, I performed live staining of NR2B in DIV16 hippocampal 

neurons overexpressing GFP, CD3GFP or either one of the mutants prior to fixation. 

Images were acquired with a fluorescence microscope and a 63x objective. Number, 

area, and intensity of NR2B positive puncta were calculated using ImageJ (fig. 27).  

There was no difference observed in the size of the puncta when comparing 

CD3GFP- to GFP- or mutant-overexpressing neurons. However, the loss-of-function 

mutant 6YF leads to a decrease of the amount of puncta per 10µm compared to wt 

CD3, which shows a slight, albeit not statistically significant increase in the count. 

The intensity of surface NR2B fluorescence is reduced in both CD3GFP and CD3-

D36A-GFP overexpressing cells when compared to GFP control or 6YF mutant. Taken 
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together, these results indicate an influence of CD3 on the distribution of surface 

NR2B rather than on its amount. An effect on complex clustering is conceivable 

pending further experiments. Merely the D36A mutant seems to reduce surface 

expression levels of NR2B slightly. 

 

 

Figure 27: Immunofluorescent staining of surface NR2B. DIV16 hippocampal neurons expressing CD3GFP, its 

mutants or GFP were stained for surface NR2B prior to fixation. Analysis of puncta properties was done using 

ImageJ. Data from three different experiments are shown as mean ± SEM (one-way ANOVA, *p<0.05, ***p<0.001). 
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3.4.3 NMDA Receptor Activity is needed for CD3 Phosphorylation  

Not only may CD3 influence the function, localization, and cell surface expression 

features of NMDA receptors, also the reciprocal effect is possible. Therefore, I 

assessed the influence of a variety of receptor inhibitors on CD3 phosphorylation, i.e. 

activation, employing a variety of inhibitors (see table 3 for detailed information). 

DIV10 hippocampal cells were transfected with CD3GFP lentivirus and then treated 

with pervanadate as described previously at DIV16. After harvesting, samples were 

subjected to immunoblot analysis comparing phosphorylated versus total CD3GFP. 

Results are shown in figure 28. 

 

Table 3: Overview over applied inhibits and their target proteins. 

Inhibitor Target Protein References 

APV NMDA receptor Morris (1989) 

CNQX AMPA receptor 
Honoré et al. (1988) 

Long et al. (1990) 

Damnacanthal Lck Faltynek et al. (1995) 

Ifenprodil NR2B-containing NMDA receptor Williams (2001) 

Piceatannol ZAP70 
Geahlen et al. (1989) 

Oliver et al. (1994) 

PP2 Src-kinases (Lck, Fyn) Hanke et al. (1996) 

Wortmannin PI3K Wymann et al. (1996) 

Y-27632 ROCK Uehata et al. (1997) 

 

As CD3 is phosphorylated by a src kinase in immune cells (Wange and Samelson, 

1996), we used the general src kinase inhibitor PP2 as a control for the feasibility of 

the experiment. Indeed, application of PP2 leads to a decrease of phospho-CD3 

compared to a vehicle control. The same can be observed for the use of the NMDA 
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receptor blocker APV, albeit a smaller reduction than with PP2. Both the NR2B 

specific inhibitor ifenprodil and the AMPA receptor inhibitor CNQX do not affect CD3 

phosphorylation. This suggests that in mature neurons NR2A containing NMDA 

receptors, which are incidentally the predominant type at this stage, have the major 

influence on CD3 signaling. In developing neurons, however, NR2B is much more 

prevalent than NR2A (Thomas et al., 2005, Petralia 2012). Therefore, I focused the 

next experiments on DIV8 hippocampal neurons. 

 

 

Figure 28: NMDA receptor activity is crucial for CD3 phosphorylation. Receptors of hippocampal neurons 

(DIV16) overexpressing CD3GFP were blocked for 2 hours, and cells were subsequently treated with 

pervanadate. Samples were blotted against phospho-tyrosine (pTyr) detecting phosphorylated CD3GFP and total 

CD3GFP (GFP). Quantitative analysis of six (PP2 three) independent experiments was done with ImageJ. Data are 

shown as mean ± SEM (t-test, *p<0.05, ***p<0.001). 

 

3.4.4 Influence of CD3 on NR2B Expression Levels in Developing Hippocampal 

Neurons 

To evaluate the influence of CD3 on NR2B protein levels in developing neurons 

(DIV8), I overexpressed CD3GFP, GFP, or either one of the mutants and 

immunostained the samples against an anti-NR2B and an anti-GAPDH antibody as a 

loading control (fig. 29). Interestingly, NR2B expression levels are reduced in all 

conditions compared to GFP control giving no hint to a specific influence of CD3.  
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Figure 29: Effect of CD3 on NR2B expression levels 

in DIV8 hippocampal neurons. Neurons 

overexpressing CD3GFP, GFP, or either one of the 

mutants were subjected to immunoblot analysis and 

probed with an anti-NR2B and an anti-GAPDH 

antibody as loading control. Optic density of the bands 

was analyzed using ImageJ. Data of six experiments are 

shown as mean ± SEM (one-way ANOVA, *p<0.05, 

p**<0.01, ***p<0.001) 

 

3.5 CD3 Activation Leads to Reorganization of the Actin 

Cytoskeleton  

Now that the influence of CD3 on actin cytoskeleton regulation and on NR2B 

expression levels was established in mature neurons, I aimed at elaborating the role 

of CD3 in developing neurons – especially regarding the pronounced effect of CD3 

overexpression on dendrite complexity. Thus, I decided to use Sholl analysis and the 

CD3 phosphorylation paradigm to characterize the influence of NMDA receptors and 

other proteins on CD3 functioning in young neurons by applying a number of 

inhibitors. 

For the following studies in DIV8 hippocampal neurons, cells were transfected with 

CD3GFP, GFP, CD3-6YF-GFP, or CD3-D36A-GFP. After four hours, the transfection 

medium was replaced by growth medium containing the appropriate inhibitors or 

vehicle. Neurons were incubated for another 5 hours and then fixed with PFA. For 

image acquisition, a fluorescence microscope with 20x objective was used. Image 

analysis was done using Adobe Photoshop and ImageJ Sholl analysis. 

In all experiments, wt CD3 overexpression leads to a clear reduction of dendrite 

complexity as described previously, whereas both mutants do not show any effect 

(fig. 30-32, 34-36, 38-39). By applying specific inhibitors of receptors or putative 

downstream actors of CD3, I aimed at deciphering the mechanism of this 

phenomenon (see table 3 for detailed information on inhibitors). 
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3.5.1 NMDA Receptor Activation is Crucial for CD3 Signaling to the 

Cytoskeleton 

To assess the contribution of NMDA receptors on CD3 signaling, I applied APV, 

which blocks all NMDA receptors, and ifenprodil, which is specific for NR2B-

containing NMDA receptors. Although CD3 does not interact with AMPA receptor 

subunits GluR1 and GluR2 (fig. 25A), these types of glutamate receptors may still 

have an influence on NMDA receptor dependent CD3 signaling. To remove the Mg2+ 

block of NMDA receptor to allow opening, membrane depolarization is needed. This 

can be achieved by previous stimulation of AMPA receptors (Horak et al., 2014). 

Therefore, I also used the AMPA receptor inhibitor CNQX. 

Blocking NMDA receptors with APV abolishes the negative influence of CD3 on 

branching and even increases the complexity above GFP vehicle control level (fig. 30). 

To verify the hypothesis, that CD3 signaling predominantly depends on NR2B in 

young neurons, I repeated the experiment with ifenprodil. Also here, I observed 

control levels of dendrite complexity in CD3GFP overexpressing cells when 

specifically inhibiting NR2B (fig. 31). None of the inhibitors had any effect on GFP or 

mutant overexpressing neurons. 

Using the inhibitor CNQX, I assessed the impact of AMPA receptors on this paradigm. 

Interestingly, this inhibitor was not able to rescue the effect of CD3 on neurite 

branching (fig. 32), nor did it have any influence on cells expressing GFP or one of the 

mutants. Thus, AMPA receptors do not seem to affect the influence of CD3 on 

cytoskeleton reorganization in young neurons. 
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Figure 30: NMDA receptor blocker APV reverses CD3 effect on dendrite complexity. DIV8 cultured 

hippocampal neurons were transfected with CD3GFP, GFP or either one of the mutants. 5 hours prior to fixing, 

50µM APV was applied. Image analysis was done using Adobe PhotoShop and ImageJ Sholl analysis. The two 

upper graphs plot the number (No.) of intersections of dendrites with concentric circles of the Sholl analysis 

against the distance from the soma. The area under the curves is depicted in the column graph below. Data of four 

experiments are shown as mean ± SEM (one-way ANOVA, ***p<0.001) 

 



 

67 
 

 

Figure 31: NR2B subunit inhibitor ifenprodil reverses CD3 effect on dendrite complexity. DIV8 cultured 

hippocampal neurons were transfected with CD3GFP, GFP or either one of the mutants. 5 hours prior to fixing, 

10µM ifenprodil was applied. Image analysis was done using Adobe PhotoShop and ImageJ Sholl analysis. The two 

upper graphs plot the number (No.) of intersections of dendrites with concentric circles of the Sholl analysis 

against the distance from the soma. The area under the curves is shown in the column graph below. Data of four 

independent experiments are expressed as mean ± SEM (one-way ANOVA, ***p<0.001) 
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Figure 32: AMPA receptor inhibitor CNQX does not rescue the CD3 overexpression phenotype. DIV8 

cultured hippocampal neurons were transfected with CD3GFP, GFP or either one of the mutants. 5 hours prior to 

fixing, 10µM CNQX was applied. Image analysis was performed using Adobe PhotoShop and ImageJ Sholl analysis. 

The two upper graphs plot the number (No.) of dendritic intersections with concentric circles of the Sholl analysis 

against the distance from the soma. The area under the curves is shown in the column graph below. Data of four 

independent experiments are expressed as mean ± SEM (one-way ANOVA, ***p<0.001) 

 

If NMDA receptor activation regulates CD3 signaling in young neurons, it may also 

affect CD3 phosphorylation. To that end, I overexpressed CD3GFP in hippocampal 

neurons using lentivirus and harvested the cells after pervanadate treatment at DIV8. 

Immunoblot analysis for phosphorylated and total CD3GFP, detected with an anti-

phospho-tyrosine and an anti-GFP antibody respectively, shows a reduction of CD3 

phosphorylation when applying APV and ifenprodil, but also when using CNQX (fig. 
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33). The outcome suggests an impact of NMDA receptors, and more specifically of 

NR2B containing NMDA receptors, on CD3 signaling. AMPA receptors, even though 

not involved in CD3 dependent structuring of the cytoskeleton, may still have an 

influence on CD3 functioning in other areas, e.g. gene expression or receptor 

localization.  

 

 

Figure 33: NMDA and AMPA receptor activity has an impact on CD3 phosphorylation in developing 

neurons. AMPA (10µM CNQX) and NMDA receptors (50µM APV, 10µM ifenprodil specific for NR2B subunit) of 

hippocampal neurons (DIV8) overexpressing CD3GFP were blocked for 2 hours, and cells were subsequently 

treated with pervanadate. Samples were blotted against phospho-tyrosine (pTyr) detecting phosphorylated 

CD3GFP and total CD3GFP (GFP). Quantitative analysis of seven independent experiments was done with 

ImageJ. Data are shown as mean ± SEM (t-test, *p<0.05, **p<0.01). 

 

3.5.2 Src Kinases are Required for CD3-dependent Cytoskeletal Remodeling in 

Developing Neurons 

In T cells, CD3 phosphorylation is mediated by the src kinases Fyn or Lck (Wange 

and Samelson, 1996). The recruitment of Lck to the TCR activation site leads to the 

activation of ZAP70 and PI3K (von Willebrand et al., 1998; Wang et al., 2010; Wange 

and Samelson, 1996). Both proteins are starting points for several pathways of which 

some regulate actin cytoskeleton remodeling (Bach et al., 2007; Dustin and Cooper 

2000). To decipher neuronal CD3 signaling, I employed a number of inhibitors and 

observed their effect on dendrite complexity and CD3 phosphorylation in cultured 

hippocampal neurons. 

Blocking src kinases with PP2 led again to a phenotypical rescue of CD3 

overexpression in neurons. Remarkably, branching in GFP expressing control 

neurons was decreased with the inhibitor. PP2 had no effect on neurons expressing 

the mutants (fig. 34). The same could be observed when using the Lck inhibitor 
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damnacanthal. CD3GFP neurons showed increased and GFP neurons reduced 

branching when blocking Lck (fig. 35). The PI3K inhibitor wortmannin also increased 

dendrite complexity of CD3GFP expressing cells, but had no influence on GFP or 

mutants expressing neurons (fig. 36). 

These results suggest an involvement of all three kinases Fyn, Lck, and PI3K in CD3 

dependent cytoskeletal reorganization.  

 

 

Figure 34: The general src kinase inhibitor PP2 reverses the effect of CD3 on dendrite complexity. DIV8 

cultured hippocampal neurons were transfected with CD3GFP, GFP or either one of the mutants. 5 hours prior to 

fixing, 1µM PP2 was applied. Image analysis was performed using Adobe PhotoShop and ImageJ Sholl analysis. The 

two upper graphs plot the number (No.) of dendritic intersections with concentric circles of the Sholl analysis 

against the distance from the soma. The area under the curves is shown in the column graph below. Data of three 

different experiments are expressed as mean ± SEM (one-way ANOVA, **p<0.01, ***p<0.001) 
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Figure 35: Lck inhibitor damnacanthal rescues the CD3 overexpression phenotype. DIV8 cultured 

hippocampal neurons were transfected with CD3GFP, GFP or either one of the mutants. 5 hours prior to fixing, 

100nM damnacanthal was applied. Image analysis was performed using Adobe PhotoShop and ImageJ Sholl 

analysis. The two upper graphs plot the number (No.) of dendritic intersections with concentric circles of the Sholl 

analysis against the distance from the soma. The area under the curves is shown in the column graph below. Data 

of four different experiments are expressed as mean ± SEM (one-way ANOVA, **p<0.01, ***p<0.001) 
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Figure 36: The PI3K blocker wortmannin rescues the CD3 overexpression phenotype. DIV8 cultured 

hippocampal neurons were transfected with CD3GFP, GFP or either one of the mutants. 5 hours prior to fixing, 

50nM wortmannin was applied. Image analysis was performed using Adobe PhotoShop and ImageJ Sholl analysis. 

The two upper graphs plot the number (No.) of dendritic intersections with concentric circles of the Sholl analysis 

against the distance from the soma. The area under the curves is shown in the column graph below. Data of three 

independent experiments are expressed as mean ± SEM (one-way ANOVA, ***p<0.001) 

 

In a next step, I aimed at determining whether the kinases function up- or 

downstream of CD3, i.e. if they influence CD3 phosphorylation. Therefore, I 

performed the previously described CD3 phosphorylation experiment using 

pervanadate treatment in DIV8 hippocampal neurons overexpressing GFP, CD3GFP, 

or either one of the mutants after lentiviral transfection. Immunoblot analysis of the 

samples shows a reduction of CD3 phosphorylation by more than 75% when 
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applying PP2 (fig. 37). This effect could not be observed with any of the other two 

inhibitors. Thus, I conclude that Lck and PI3K are located downstream of CD3 

whereas a src kinase other than Lck mediates CD3 phosphorylation. 

 

 

Figure 37: CD3 phosphorylation is mediated by a src kinase in developing neurons. The general src kinase 

inhibitor PP2 (1µM), the Lck blocker damnacanthal (100nM), or PI3K inhibitor wortmannin (50nM) were applied 

on cultured hippocampal neurons (DIV8) overexpressing CD3GFP for two hours. Neurons were subsequently 

treated with pervanadate. Samples were blotted against phospho-tyrosine (pTyr) detecting phosphorylated 

CD3GFP and total CD3GFP (GFP). Quantitative analysis of four independent experiments was done with ImageJ. 

Data are presented as mean ± SEM (t-test, **p<0.01). 

 

3.5.3 Downstream Signaling of CD3 is Mediated by ZAP70 Kinase Leading to 

the Activation of the RhoA/ROCK Pathway 

The tyrosine kinase ZAP70 is a major signaling network hub in immune cells (Wang 

et al., 2010). Studies have shown the expression of ZAP70 and the closely related 

kinase Syk in neurons (Hatterer et al., 2011), but did not elaborate on their putative 

functions there. Considering the close interaction between CD3 and ZAP70 in 

immune cells, it was conceivable to further explore the role of the kinase in the 

CD3dependent cytoskeletal regulation. Indeed, inhibiting ZAP70 with piceatannol 

leads to an increased branching of CD3 overexpressing neurons bringing dendrite 

complexity back to GFP control levels (fig. 38).  
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Figure 38: ZAP70 inhibitor piceatannol reverses CD3 effect on dendrite complexity. DIV8 cultured 

hippocampal neurons were transfected with CD3GFP, GFP or either one of the mutants. 5 hours prior to fixing, 

10µM piceatannol was applied. Image analysis was performed using Adobe PhotoShop and ImageJ Sholl analysis. 

The two upper graphs plot the number (No.) of dendritic intersections with concentric circles of the Sholl analysis 

against the distance from the soma. The area under the curves is shown in the column graph below. Data of four 

independent experiments are expressed as mean ± SEM (one-way ANOVA, ***p<0.001) 

 

With the involvement of ZAP70 and PI3K established, there were a number of 

possible pathways to close the gap towards actin remodeling of which the 

RhoA/ROCK pathway is well described in neurons (Da Silva et al., 2003; Govek et al., 

2005). If this pathway were involved, application of the ROCK inhibitor Y-27632 

would abolish the negative effect of CD3 overexpression in neurons. Indeed, this was 

the case. As can be seen in figure 39, Y-27632 prevents the negative regulation of 
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CD3 overexpression on dendrite complexity. There was no observable effect on 

neurons expressing GFP or either one of the mutants.  

 

Figure 39: ROCK inhibitor Y-27632 reverses CD3 effect on dendrite complexity. DIV8 cultured hippocampal 

neurons were transfected with CD3GFP, GFP or either one of the mutants. 5 hours prior to fixing, 10µM Y-27632 

was applied. Image analysis was performed using Adobe PhotoShop and ImageJ Sholl analysis. The two upper 

graphs plot the number (No.) of dendritic intersections with concentric circles of the Sholl analysis against the 

distance from the soma. The area under the curves is shown in the column graph below. Data of three independent 

experiments are expressed as mean ± SEM (one-way ANOVA, ***p<0.001) 

 

 

 

 

  



 

76 
 

4 Discussion 

The formerly prevalent concept of an immune-privileged brain had to be revised over 

the past few decades (Steinman, 2004; Marin and Kipnis, 2013). For one thing, it was 

shown that the immune and the central nervous system communicate with each other 

using chemical transmitters that find their corresponding receptors in cells of both 

systems (Mousa and Bakhiet, 2013; Marin and Kipnis, 2013). But even more 

astonishing was the fact to find proteins in neurons thought to be exclusively 

expressed by immune cells (Fourgeaud and Boulanger, 2010).  

The present work gives an overview about TCR signaling molecules expressed in 

neurons of the rat, mouse or human brain. The underlying data were collected using 

several databases and screening published literature. 84 out of 95 proteins belonging 

to the immune signaling network were found to be expressed in neurons of the CNS. 

Among these molecules, we discovered the crucial signaling subunit of the TCR 

complex CD3, but not the T-cell receptor itself. As CD3 only comprises a very short 

ectodomain unable to bind ligands, it needs an associated receptor to receive 

extracellular information. This thesis, therefore, evolved around the questions of the 

receptor-dependency of CD3 in neurons and of its neuronal functions. 

Our experiments show that CD3 negatively regulates dendrite outgrowth in DIV8 

hippocampal neurons through the RhoA/ROCK pathway. The reorganization of the 

actin cytoskeleton by CD3 depends on NR2B-containing NMDA receptors implying a 

novel function for NR2B in hippocampal neurons prior to synaptogenesis.  

 

4.1 A Comparative Study of Immune and Neuronal Signaling 

The first part of this thesis is concerned with the comparison of TCR signaling with 

neuronal signaling. An extended model of the one published by Saez-Rodriguez et al. 

(2007) was used as a basis. Researching published literature as well as the databases 

Allen Brain Atlas, Human Protein Atlas and SynProt, we found that 82 out of 94 

proteins are expressed in neurons. The evidence for 77 proteins could be found in 

peer-reviewed publications. The neuronal expression of seven further proteins was 

published in either one of the databases. However, they are limited by the use of an 

appropriate hybridization probe (Allen Brain Atlas) or a specific antibody (Human 
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Protein Atlas). Therefore, a negative result may still be overthrown by the use of 

better working tools. This can be seen with NF-kappa-B essential modulator (IKKG) 

whose neuronal expression was negated by the databases, but was published in peer-

reviewed journals (Shen et al., 2003). 

The postsynaptic density (PSD) is one of the best-characterized signaling platforms in 

neurons (Sheng and Kim, 2011). The database SynProt (Pielot et al., 2011) provides 

an overview over proteins found in the fraction of synaptic junctions which includes 

the PSD. 36 out of 84 neuronal expressed proteins could be detected in these 

biochemical preparations. As a metastudy, SynProt relies on published works whose 

limitations are just the ones described above. Therefore, the present comparative 

study is not exclusive, but rather the beginning of ongoing work. While it may take a 

lot of time to be completed, especially considering the possibility of including more 

proteins, it serves as an insightful basis for understanding the signaling in neuronal 

models. 

As our neuronal model was the hippocampal CA3 synapse on CA1 pyramidal neurons, 

we were particularly interested in the expression of the proteins in these cells. 

Indeed, the presence of 69 proteins has been shown in principal cells of the 

hippocampus. Among them are several very well-characterized proteins such as the 

src kinase Fyn (Xu et al., 2006), proteins of the MAPK signaling pathway (Sweatt, 

2001; Derkinderen et al., 2003) or Calmodulin and its related kinases (Maletic-Savatic 

et al., 1998; Palfi et al., 2002). Their functions have been implied in the regulation of 

LTP and LTD, transcription regulation as well as in neuronal receptor signaling such 

as the NMDAR, AMPAR and TrkB to only name a few (Salter and Kalia, 2004; Appleby 

et al., 2011;). However, we know very little of the neuronal function of other proteins 

such as ZAP70.  

Zap70 kinase is a major signaling hub in TCR signal transduction (Wange and 

Samelson, 1996). It phosphorylates tyrosine residues of many regulatory proteins 

that further diverge incoming signals (Baniyash, 2004). Some of these proteins are 

also expressed in hippocampal neurons including phospholipase C (PLCG) 

(Minichiello et al., 2002), diacylglycerol kinase (DGK) (Kim et al., 2010) or son of 

sevenless (SOS) (Tian et al., 2004).  ZAP70 activation requires its conformational 

change triggered by the binding of so-called immunoreceptor tyrosine-based 

activation motifs (ITAM) (Wang et al., 2010) that despite the name can also be found 
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in cells outside the immune system. The ITAM-containing proteins Jedi-1 and 

MEGF10 are both expressed in glial precursor cells in the peripheral nervous system. 

They regulate the phagocytosis of neuronal cell debris after apoptosis occurring 

during development (Wu et al., 2009). Their signals are transduced via the ZAP70-

related kinase Syk (Scheib et al., 2012). Both proteins share 73% sequence homology 

including the tandem SH2 domain responsible for binding ITAMs (Béné, 2006), and 

their functions might be partially overlapping (Kong et al., 1995).  

Another ITAM-bearing protein expressed in both T-cells and neurons is CD3, the 

crucial signaling subunit of the TCR. Immunological CD3 signal transduction occurs 

through the interaction with ZAP70 (Wange and Samelson, 1996). However, its 

neuronal implications are poorly understood. The main objective of this thesis was 

the further characterization of CD3 functions in neurons, and the outcome will be 

discussed in the next chapters. 

 

4.2 Characterization of CD3 in the Rat Brain 

First evidence for the presence of CD3 mRNA in the brain came from Corriveau et al. 

(1998) probing young and adult feline lateral geniculate nuclei and Huh et al. (2000) 

examining the same brain area in young mice. Baudouin et al. (2008) then showed 

CD3 mRNA expression in adult rat brain after synthesizing cDNA from a total RNA 

extract. They claimed that CD3 mRNA levels are lower in brain compared to a spleen 

positive control. Our data generated using cDNA from rat hippocampus and cortex do 

not confirm this impression. CD3 mRNA levels in adult rat brain and spleen are 

rather the same. The difference might be that Baudouin and colleagues have used 

total rat brain RNA which might have included areas with little or no CD3 mRNA, 

whereas we concentrated our studies on hippocampal and cortical areas. However, 

we observed lower levels in young rats compared to adult rats. To confirm this result, 

further experiments need to be performed. Moreover, in situ hybridization of rat or 

mouse brain at different developmental stages will give deeper insights in the area 

specific expression of CD3 mRNA. 

The protein CD3 has mostly been studied in hippocampal neurons which led to our 

decision to use these cells as our model system. Immunofluorescent labeling of CD3 

in cultured hippocampal neurons at different developmental stages revealed a 
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remarkable localization of the protein at sites of ongoing structural changes. At DIV2, 

CD3 can be detected at the growth cones of neurites colocalizing with actin, and its 

presence at dendritic tips can still be observed at DIV7 confirming previously 

published results (Baudouin et al., 2008). While neurons mature, their dendritic 

arbor stabilizes and its structural plasticity decreases (Koleske 2013). However, at 

this time synaptogenesis is at its peak. In cultured neurons, this can be observed at 

around DIV11 which is also the time point when CD3 starts colocalizing with the 

postsynaptic protein homer. The presence of CD3 in postsynaptic spines in mature 

neurons and neurite tips of developing neurites implies a possible role in structural 

reorganization or stabilization.  

Another interesting observation is that the colocalization of CD3 with homer is only 

partial leading to the conclusion that CD3 might not be integrated into the PSD, but 

rather is a part of the surrounding environment. Some images even imply the 

presence of CD3 in the spine neck. If CD3 translocates to the PSD under certain 

conditions, e.g. receptor stimulation, can be the objective of further studies.  

Immunoblot analysis of fractions obtained through differential centrifugation of total 

rat forebrain shows CD3 in detergent resistant membranes (DRM) derived from P2 

membrane fraction. This fraction includes lipid rafts and the PSD giving a hint that 

CD3 might be enriched in particular signaling platforms of cellular membranes. 

Interestingly, CD3 cannot only be detected in membrane fractions, but also in the S2 

fraction comprising the cytosol and intracellular membranes. Compared to P2, the 

cytosolic fraction contains even more CD3 possibly included in microsomes. There 

might be a protein pool in the endoplasmic reticulum or vesicles ready for surface 

membrane integration upon certain stimuli as shown for other proteins such as the 

TrkB receptor surfacing upon BDNF stimulation (Huang et al., 2013) or the AMPA 

receptor that is introduced into the synaptic membrane during LTP (Hanley 2008) 

The multitude of immunoreactive bands in brain samples imposed new questions. 

The CD3 monomer runs at approximately 25kDa and can also be found in spleen 

membrane fraction. All brain fractions show a band of 50kDa implying the existence 

of a dimer complex resistant to -mercaptoethanol lysis. A trimer explaining the band 

at 75kDa has never been reported though. Therefore, the cause for this band as well 

for the weak staining at 30kDa remains rather elusive and might be due to unspecific 
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antibody binding. Therefore, we generated antisera against CD3 that would allow us 

to elucidate CD3 function in hippocampal neurons. Some of these antisera showed 

high affinity toward CD3 fusion proteins in immunoblot analysis and 

immunofluorescent stainings. However, they were not able to recognize endogenous 

CD3. Attempts to increase the affinity toward the endogenous proteins by 

purification did not prove successful. Consequently, we decided to take a different 

approach by designing CD3 mutants. 

 

4.3 Characterization of Two CD3 Loss-of-Function Mutants 

To further assess CD3 function in neurons, we generated two loss-of-functions 

mutants as GFP-tagged fusion proteins. For the 6YF mutant, all six tyrosine residues 

of the ITAMs were replaced by phenylalanine to prevent phosphorylation of CD3 

and phosphorylation-dependent downstream signaling. For the second mutant, the 

aspartate residue within in the transmembrane domain was replaced by alanine. Both 

mutants have been published, but lacked proper characterization in neurons 

(Rutledge et al., 1992; Call et al., 2002; Baudouin et al., 2008). They were examined 

regarding certain properties crucial for proper CD3 functioning: dimerization, 

tyrosine phosphorylation as well as their localization and surface expression in 

neurons. 

CD3GFP mutants are indeed able to form dimers with a wildtype TAP-tagged CD3 

fusion protein in about the same extent as CD3GFP wildtype. Double bands again 

point to the existence of phosphorylated and unphosphorylated protein. Remarkably, 

the CD3-D36A-GFP/CD3TAP dimers seem to be partially resistant to -

mercaptoethanol treatment as indicated by an additional double band at 50-60kDa. 

Rutledge et al. (1992) reported that the aspartic acid residue is crucial for dimer 

formation which occurs at a cysteine residue lying only four amino acids N-terminal 

from D36. However, they only tested dimer formation of two D36A mutants and not 

of a mutant with the wildtype protein. It seems that in this case dimer formation can 

still occur as shown here. Nevertheless, complex formation might also be due to third 

factors in an immunoprecipitation experiment that was performed with total cell 

lysates and not purified proteins. 
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As CD3signaling in T-cells depends on its ability to be phosphorylated and 

subsequently bound by ZAP70 (Wange and Samelson, 1996), we tested the effect of 

the tyrosine kinase inhibitor pervanadate on the phosphorylation status of both CD3 

wildtype and mutant fusion proteins in neurons. As expected wildtype CD3 is 

phosphorylated whereas the 6YF mutant shows no phosphorylations. The 

phosphorylation of the D36A mutant is clearly reduced compared to the wildtype 

protein. While the anti-phospho-tyrosine antibody produces a double band in the 

CD3 wildtype sample, only the lower band of these two can be seen in the D36A 

mutant lane indicating the phosphorylation of only some of the six possible tyrosine 

residues. This suggests a smaller signaling capacity compared to wildtype CD3, but 

does not necessarily mean that signal transduction is largely impaired. 

The only moderate phosphorylation suggests an impaired functionality of the D36A 

mutant which might be due to its reduced surface expression in hippocampal 

neurons. It is clearly decreased compared to CD3 wildtype. Whether this is caused 

by an impaired plasma membrane integration of the protein or by fast degradation 

owing to the lack of functionality is not clear. Both phenomena would explain the 

inclusion of CD3-D36A-GFP in vesicles as can be observed after overexpression in 

COS7 cells. These vesicles might either be structures of the Golgi apparatus or the 

proteasome degradation machinery. The neuronal surface expression of the 6YF 

mutant is only slightly and not significantly reduced leading to fewer and smaller 

vesicles in COS7 cells. Nevertheless, both mutants fail to reach their destined 

localization in developing neurons. While CD3 wildtype fusion protein is present at 

dendritic tips in DIV7 hippocampal neurons, comparable with the endogenous 

protein, both mutants show a more equal distribution throughout the dendritic 

branch. After all these experiments, it still remained unclear whether CD3-D36A is a 

true loss-of-function mutant. 

Therefore, we decided to test all mutants in a previously published functional 

paradigm. Baudouin et al. (2008) reported that transient CD3GFP overexpression 

led to reduced dendrite complexity in developing neurons while the 6YF mutant had 

the opposite effect when performing Sholl analysis two days after transfection. We 

transfected DIV8 hippocampal neurons with CD3 wildtype, both mutants and GFP 

control and analyzed the dendritic arbor nine hours later. Overexpression CD3GFP 
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indeed resulted in decreased dendrite complexity. Both mutants have no effect within 

the nine-hour overexpression period.  

The influence of CD3 wildtype and mutant overexpression in mature neurons is very 

different though. While viral overexpression of the wildtype has no effect on dendrite 

complexity, both mutants lead to increased dendritic arborization at DIV16. This 

apparent contradiction might be explained by the different overexpression modes. In 

DIV8 neurons, overexpression was achieved by classical transient transfection with a 

eukaryotic pEGFP vector resulting in high protein expression levels within a short 

amount of time. Older neurons were infected with a CD3 wildtype or mutant virus at 

DIV10 and fixed at DIV16. This approach yields much more subtle and physiological 

expression levels that can explain the normal dendrite complexity in CD3 wildtype 

overexpressing neurons. Furthermore, at DIV11 endogenous CD3 is found at 

postsynaptic sites suggesting that it has little effect on dendrite outgrowth from this 

time point on. 

On the other hand, this would suggest an influence on synaptic structures. 

Analogously to its effect on dendrite complexity, the 6YF mutant increases the area of 

post- and presynaptic puncta without altering their numbers. The enlargement of the 

postsynapse can be explained by an influence on the actin-based spinoskeleton. The 

increase in presynaptic area might then just be a cellular response to this. 

Why the overexpression of the D36A mutant also results in larger presynapses 

remains elusive and hard to explain. As the observed effect is rather small, it might 

just be a statistical artifact, especially since the number of postsynaptic sites under 

these conditions is clearly reduced. Contrarily, CD3 wildtype overexpression 

decreases the amount of presynaptic sites. In both cases, the logical consequence is 

the presence of fewer synapses. For the better understanding of synaptic CD3 

functions, it is advisable to conduct a 3D-analysis of high-resolution confocal images 

yielding much more precise results. 

Concluding the characterization of the mutants, one can state that the impaired 

functioning of CD3-6YF is clearly explained by the lack of phosphorylation sites. 

However, the operation mode of the D36A mutant remains speculative.  It is 

perceivable that the mutant sequesters endogenous CD3 in vesicles through 

dimerization and thereby keeps it from exerting its proper function analogous to the 



 

83 
 

effect of a knock-down. Another possibility is that the mutations impairs the 

interaction with a putative receptor whose signaling is pivotal for CD3 functioning. 

 

4.4 Linking CD3 to the NR2B Subunit of the NMDAR 

Studies have connected CD3 to the NMDAR before. For example, CD3-/- mice show 

enhanced hippocampal LTP that can be abolished by the application of the general 

NMDAR receptor inhibitor D-APV (Huh et al., 2000). These mice also display impaired 

glutamate receptor dependent synaptogenesis in retinal ganglion cells (Xu et al., 

2010).  In 2013, Louveau et al. presented a first evidence of an immediate molecular 

association between the NMDAR and CD3. The subunit NR2A could be co-

immunoprecipitated with CD3 from adult mouse brain lysate. 

In our study, we are able to coimmunoprecipitate NR2B with CD3 from 

synaptosomes lysate from adult rat forebrain. Both proteins also show colocalization 

at homer-positive postsynaptic sites in DIV21 hippocampal neurons. On a functional 

level, CD3 influences NR2B expression levels after stimulation with NMDA in DIV16 

hippocampal neurons. In this paradigm, NR2B levels in GFP control and CD3 

wildtype overexpressing neurons decrease after treatment in agreement with 

published data (Nong et al., 2013). NR2B in mutant transfected cells remains at pre-

treatment levels which are slightly, albeit not significantly lower than in the other two 

groups. Louveau et al. (2013) have shown that adult CD3-/- mice display reduced 

NR2A levels, but no significant alteration in NR2B levels in synaptosome fractions. 

Nevertheless, it proves that CD3 influences NMDAR expression.  

We asked whether this also applies to NR2B surface expression. Overexpression of 

CD3 wildtype and D36A mutant reduces intensity of NR2B immunofluorescence 

compared to GFP control and the 6YF mutant whereas the area of surface NR2B 

positive puncta remains the same under all conditions. This gives a first hint of an 

altered surface expression. Here again, 3D-analysis of high-resolution confocal images 

would help to verify the results. 

While the assessment of CD3 influence on NMDARs is rather complex, the reciprocal 

effect is easier to observe by testing the phosphorylation levels of CD3. The 

experiment clearly shows the dependency of CD3 phosphorylation on NMDAR, but 
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not on AMPAR activation. As the NR2B-specific inhibitor only yielded a minor and not 

significant decrease of CD3 phosphorylation, we can conclude that in mature 

neurons, CD3 functionality might depend more on NR2A-containing than on NR2B-

containing receptors. But what about developing neurons? 

Assessing NR2B expression levels in DIV8 neurons overexpressing CD3 or its 

mutants resulted in reduced levels in all conditions compared to GFP control. 

Apparently, NR2B is very sensitive to any strong changes in CD3. Indeed, it has been 

described that NR2B and CD3 work together to regulate the cytoskeleton (Baudouin 

et al., 2008; Bustos et al., 2014), thus we decided to assess their association 

employing Sholl analysis in DIV8 CD3 wildtype or mutant overexpressing neurons 

under the influence of selected inhibitors putative upstream and downstream 

signaling partners.  

 

4.5 CD3 Mediates NR2B-dependent Regulation of the Neuronal 

Cytoskeleton 

NMDARs have long been implicated in the reorganization of the neuronal actin 

cytoskeleton (Rajan et al., 1998; McAllister, 2000; Sin et al., 2002; Ruthazer et al., 

2003). Most published studies examine the function of NMDARs in spines, where they 

have been shown to regulate cofilin activity after induction of LTP or LTD leading to 

spine growth or shrinkage respectively (Fukazawa et al., 2003; Zhou et al., 2004). 

Postsynaptic NMDARs have been linked to late dendritic development and outgrowth 

in Xenopus laevis tadpoles (Rajan et al., 1998; Sin et al., 2002). However, there is only 

one study addressing NMDAR involvement in cytoskeletal dynamics during initial 

formation of dendrites prior to synapse formation corresponding to a prenatal 

neuronal state in vivo equivalent to several days in vitro (Dotti et al., 1988). Due to the 

presence of NR2B-containing NMDARs during early developmental stages, it is likely 

that the NR2B subunit plays a crucial role in these early phases. Only very recently, 

Bustos et al. (2014) reported that overexpression of NR2B in DIV7 hippocampal 

neurons results in a more complex dendrite arbor. They argue that high levels of 

endogenous NR2B correlate with high dendrite complexity which peaks around DIV7 

in hippocampal neurons. As neurons mature, the NMDAR ratio shifts toward NR2A-

containing receptors coinciding with the deceleration of the dendritic arborization. 
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However, the study by Bustos et al. (2014) lacks a mechanism linking NR2B to the 

cytoskeleton.  

As an important and novel finding, our experiments show that actin regulation 

through CD3 depends on NMDAR activation. As ifenprodil also abolished the 

dendrite complexity reducing effect of CD3, we conclude that NR2B is the crucial 

subunit in this mechanism. This view is confirmed by the fact that both APV and 

ifenprodil inhibition reduces CD3 phosphorylation needed for its activation in 

cultured hippocampal neurons. In contrast, CNQX blockage of AMPAR does not rescue 

the CD3 overexpression phenotype. This is consistent with my experiments showing 

that neither the GluR1 nor the GluR2 subunit of the receptor can be 

coimmunoprecipitated with CD3. Interestingly, blocking AMPAR activity leads to 

reduced CD3 phosphorylation allowing us to speculate about a second functional 

CD3 pool involved in additional and different signaling pathways involved in other 

cell function. 

As described in the introductory section, CD3 can be phosphorylated by two Src 

kinase family members in T-cells – Fyn and Lck (Wange and Samelson, 1996). These 

non-receptor type tyrosine kinases are also expressed in neurons. Whereas there´s 

little known about Lck function in the brain, Fyn and Src kinase have been studied 

extensively. Both kinases seem to have redundant functions to a certain degree (Stein 

et al., 1994), and both have been implied in the regulation of dendritic and axonal 

outgrowth. Brouns et al. (2001) observed defects in axonal outgrowth in Src-/- and 

Fyn -/- mice. The latter also display shorter apical dendrites of pyramidal neurons in 

the CA1 region of the hippocampus (Kojima et al., 1997). 

Consistent with the literature, applying PP2, a general src-kinase family inhibitor with 

an affinity for all three above-mentioned kinases (Hanke et al., 1996), resulted in 

reduced dendrite complexity in GFP-overexpressing control neurons in our 

experiment. More importantly, PP2 was also able to rescue the CD3 overexpression 

phenotype indicating the involvement of src kinases in the pathway.  By using the Lck 

inhibitor damnacanthal (Faltynek et al., 1995), we aimed at clarifying if Lck or rather 

Fyn and Src were the responsible kinases. Indeed, damnacanthal treatment resulted 

in higher complexity of dendrites in CD3GFP overexpressing cells similar to control 

and loss-of-function mutant levels. Again, the inhibitor had the reverse effect on GFP 
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control neurons. However, while damnacanthal had previously been reported to be a 

specific inhibitor of Lck (Faltynek et al., 1995), more recent studies have shown a 

much higher affinity for the kinase LIMK (Ohashi et al., 2014). LIMK phosphorylates 

cofilin and thereby regulates actin dynamics (Yang et al., 1998). Therefore, the effect 

on dendrite outgrowth cannot be clearly related to Lck. This is supported by the fact 

that damnacanthal does not affect CD3 phosphorylation levels in neurons. If Lck was 

inhibited, a decrease of phosphorylation as seen with PP2 would be expected. The 

current evidence points to the involvement of Fyn and/or Src in the activation of 

CD3 and the subsequent negative regulation of dendrite outgrowth. 

Another kinase shown to participate in CD3 signaling in T-cells (Koyasu, 2003) and 

in the regulation of the neuronal cytoskeleton (Jacinto et al., 2004) is PI3K. 

Application of the PI3K inhibitor wortmannin (Wymann et al., 1996) abolishes the 

effect of CD3GFP overexpression on dendrite complexity, but does not impair CD3 

phosphorylation. This leads to the conclusion that PI3K acts downstream of CD3. At 

the same time this might associate CD3 with the mTOR signaling pathway in 

neurons as it has already been shown in T-cells (Thomson et al., 2009; Chi, 2012; 

Hamilton et al., 2014). Conducting experiments using the mTOR inhibitor rapamycin 

might be able verify this hypothesis. 

Nevertheless, the most prominent kinase associated with CD3 in T-cells is ZAP70 

(Wang et al., 2010). As an immediate downstream actor of the TCR complex, it is the 

central signaling hub where most signals involved in T-cell activation diverge from 

(Chan et al., 1994). The ZAP70 inhibitor piceatannol (Geahlen et al., 1989; Oliver et al. 

1994) can block the effect of CD3 and leads to control levels of dendrite complexity 

in CD3GFP overexpressing neurons. This implies a direct involvement of ZAP70 in 

CD3-dependent remodeling of the actin cytoskeleton, but also opens up possibilities 

for yet unknown neuronal signaling pathways. One of these pathways seems to 

regulate CD3 localization at dendritic tips of developing hippocampal neurons 

(Baudouin et al., 2008). Here, short application of piceatannol leads to the dispersion 

of CD3 clusters throughout the dendrite away from the dendritic tip. 

Both PI3K and ZAP70 have been implied in the regulation of small GTPases of the Rho 

subfamily (Jacinto et al., 2004; Piragyte and Jun, 2012; Kumari et al., 2013). In 

neurons, negative regulation of dendrite outgrowth is mediated by the GTPase RhoA 
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and its effector kinase ROCK (McAllister, 2000; Luo, 2002; Koleske, 2013). Inhibition 

of ROCK with Y-27632 (Uehata et al., 1997) abolishes the CD3GFP overexpression 

phenotype suggesting that the CD3-dependent regulation of actin cytoskeleton 

remodeling is mediated by the RhoA/ROCK pathway. This pathway leads to the 

phosphorylation and subsequent inactivation of cofilin resulting in higher actin 

polymer stability. However, at the same time, ROCK can inactivate profilin which has 

the opposite effect (Okamoto et al., 2009). The final outcome is the result of a well-

balanced process to enable a precise regulation of actin dynamics. 

 

4.6 Conclusion and Outlook 

Taking all data together, there is strong evidence for the activation of ZAP70 and PI3K 

downstream of CD3 in hippocampal neurons that leads to a negative regulation of 

dendritic outgrowth by activating the RhoA/ROCK pathway. Furthermore, this is 

NMDAR-, but not AMPAR-dependent. To our knowledge, this is the first study 

showing a mechanism between NR2B-containing NMDARs and the regulation of the 

actin cytoskeleton in developing hippocampal neurons prior to synaptogenesis. 

Figure 40 shows a possible signal transduction model including suggestions for 

further downstream signaling events that are partially inferred by the TCR signaling 

network and can be objects of future studies. It is perceivable that similar processes 

take place at postsynapses of mature neurons, although here, NR2A-containing 

NMDARs may play a bigger role.  

Nevertheless, the questions of how NMDARs influence CD3 remains. There is no 

evidence for a direct interaction between both proteins. One possibility is that Ca2+ 

influx through NMDARs activates yet unknown mediators. If the CD3-receptor 

interaction follows the same rules as in T-cell, we are looking for a transmembrane 

protein with a positively charged amino acid residue with its transmembrane domain. 

In this case, the CD3-D36A mutant may prove as a useful tool. However, there is also 

the possibility that the interaction follows other rules. Studies show that CD3 

associates with Fc receptor III (Lanier et al., 1989; Arase et al., 2001) that does not 

possess a positively charged amino acid in its transmembrane domain. 

In either case, electrophysiological studies of CD3-dependent NMDAR behavior will 

give a more complete picture on their apparent interdependence. Here, not only the 
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mutants, but also the shRNA constructs introduced in this work may be helpful – 

especially when introduced into lentiviral expression vectors allowing for a longer 

observation period of CD3 deficiency.  

With the tools presented in this thesis, further experiments regarding neuronal CD3 

signaling can be conducted. It will be worthwhile to take a look at the immunological 

side when deciphering signaling pathways in neurons. This study among others (for 

review see Boulanger, 2009; Fourgeaud and Boulanger, 2010; Steinman, 2012) shows 

that they have much more in common than obvious at first sight, and immunologists 

and neurobiologists may learn a lot from each other.   

 

Figure 40: Proposed model of CD3 signaling in developing hippocampal neurons. The activation of NR2B-
containing NMDARs leads to the activation of CD3by Src/Fyn. Then our data suggest two probably independent 
scenarios. (A) Phosphorylated CD3 leads to the activation of PI3K and its subsequent regulation of RhoA through 
a yet unidentified RhoGEF.  (B) ZAP70 binds phosphorylated CD3 and is itself activated by a src family kinase. 
ZAP70 then triggers the activation of RhoA. The GTPase activates ROCK and thereby regulates the actin-binding 
proteins cofilin and profilin. This way a finely balanced adjustment of the actin cytoskeleton can be achieved that 
in this specific case leads to a negative regulation of dendrite outgrowth. The association of CD3 with ZAP70 and 
PI3K also opens further putative pathways indicated in grey. 
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6 Appendix 

6.1 Abbreviations 

 

A  alanine 

AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

ANOVA  analysis of variance 

APV  (2R)-amino-5-phosphonovaleric acid 

BBB  blood-brain barrier 

BDNF  brain-derived neurotrophic factor 

bp  base pairs 

BSA  bovine serum albumin 

C  Celsius 

Ca  calcium 

CD  cluster of differentiation 

cDNA  complementary DNA 

CNQX  6-cyano-7-nitroquinoxaline-2,3-dione 

ddH2O  bidistilled water 

CNS  central nervous system 

Cx  Cortex 

D  aspartate 

DAG  diacylglycerol 

DIV  days in vitro 

DNA  deoxyribonucleic acid 

DRM  detergent resistant membranes 

ECL  enhanced chemiluminescence 

EDTA  ethylenediaminetetraacetic acid 

E.coli  Escherichia coli 

e.g.  exempli gratia 

et al.  et alias 

F  phenylalanine 

fig.  Figure 

GAPDH  glyceraldehyde 3-phosphate dehydrogenase 

GDP  guanosine diphosphate 

GFP  green fluorescent protein 

gp  guinea pig  

GTP  guanosine triphosphate 

h  hour 

HBSS  Hank´s balanced salt solution 

Hc  hippocampus 

H2O  water 

HRP  horse radish peroxidase 

IgG  Immunoglobulin G 

ITAM  immunoreceptor tyrosine-based activation motif 

kDa  kilo Dalton 
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Lck  lymphocyte-specific protein tyrosine kinase 

LGN  lateral geniculate nucleus 

LTD  Long-term depression 

LTP  Long-term potentiation 

M  molar 

mEPSC  miniature excitatory postsynaptic current 

Mg  magnesium 

MHC I  major histocompatibility complex I 

min  minutes 

mRNA  messenger RNA 

mTOR  mechanistic target of rapamycin 

ms  mouse 

NaOH  sodium hydroxide 

NMDA  N-methyl-D-aspartate 

NMDAR N-methyl-D-aspartate receptor 

NR2A  N-methyl-D-aspartate receptor subunit A 

NR2B  N-methyl-D-aspartate receptor subunit B 

NR2C  N-methyl-D-aspartate receptor subunit C 

NR2D  N-methyl-D-aspartate receptor subunit D 

n.s.  not significant 

p  p-value (statistics) 

P  pellet 

PBS  phosphate-buffered saline 

PCR  polymerase chain reaction 

PFA  paraformaldehyde 

PI3K  phosphoinositide 3-kinase 

PSD  postsynaptic density 

pTyr  phosphorylated tyrosine 

Rb  rabbit 

RGC  retinal ganglion cell 

RNA  ribonucleic acid 

ROCK  Rho-associated protein kinase 

S  supernatant 

SDS  sodium dodecyl sulfate 

SEM  standard error of the mean 

SH2  src homology 2 (domain) 

TAE  Tris-acetate-EDTA-buffer 

TAP  tandem affinity purification tag 

TCR  T-cell receptor 

Tm  annealing temperature 

TRIS  Tris(hydroxymethyl)aminomethane 

USA  United States of America 

wt  wildtype 

Y  tyrosine 

ZAP70  zeta-chain-associated protein kinase 70 
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6.2 Vectors and cDNA Expression Constructs 

 

Table 4: Applied expression vectors. 

Vector System Company 

pEGFP-N1 Living Colors™ Fluorescent 
Proteins 

Clontech 

N-SF-TAP-pcDNA3 Mammalian expression 
construct 

Gloeckner et al. (2007) 

pCMV-VSV-G Lentiviral expression construct Addgene 
pSPAX2 Lentiviral expression construct Addgene 
pFUGW Lentiviral expression construct Lois et al. (2002) 

 

Information regarding the base pair (bp) positions refer to the cDNA sequence 

BC097933.1 of CD247 rat. 

Table 5: Applied cDNA expression constructs. 

Name Insert Vector Restriction 
Sites 

Application 

CD3TAP bp 63-554 
Primers 5,6 

N-SF-TAP-
pcDNA3 

HindIII / 
EcoRI 

Expression 

CD3GFP bp 63-554 
Primers 1,2 

pEGFP-N1 AgeI / EcoRI Expression 

CD3-6YF-GFP bp 63-554 
Mutagenesis 
Primers 7-18 

pEGFP-N1 AgeI / EcoRI Expression 

CD3-D36A-
GFP 

bp 63-554 
Mutagenesis 
Primers 
19,20 

pEGFP-N1 AgeI / EcoRI Expression 

CD3FUGW bp 63-554 
Primers 3,4 

pFUGW  Expression 

CD3-6YF-
FUGW 

bp 63-554 
Mutagenesis 
Primers 7-18 

pFUGW  Expression 

CD3-D36A-
FUGW 

bp 63-554 
Mutagenesis 
Primers 
19,20 

pFUGW  Expression 
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6.3 Applied Primers 

Primers were used for subcloning, mutagenesis, or PCR from cDNA. The annealing 

temperature (Tm) for each primer and the primer pair is given in the table below 

among other information. 

 

Table 6: Applied primers. 

No. Name Sequence (5´ 3´) 
Restriction 

site 
Tm 

(°C) 
Tm (°C) 

PCR 
Experiment 

1 CD3z fw 
TCGAGGAATTCCCACGAAGT

GGACGGCATCAGTC 
EcoRI 78 

63 

Subcloning 
PCR 

2 CD3z rev 
TGACGACCGGTGCGCGAGGG

GGCAGGGTCT 
BamHI 83 

Subcloning 
PCR 

3 CD3zFUGW fw 
CAAGCTTCTGATCACCATGA

AG 
BclI 52 

63 (with 
No. 2) 

Subcloning 

4 CD3zTAP fw 
CTTCAAGCTTCCACCATGAA

GTGGACG 
HindIII 65 

67 
Subcloning 

5 CD3zTAP rev 
CGACGAATTCGCGAGGGGGC

AGGGT 
EcoRI 73 Subcloning 

6 CD3zY72F fw 
CAGCTCTTTAACGAGCTCAA

TCTAG 
- 53 

53 
Mutagenesis 

7 CD3zY72F rev 
CTAGATTGAGCTCGTTAAAG

AGCTG 
- 53 Mutagenesis 

8 CD3zY83F fw 
GAGGAATTTGATGTTTTGGA

CAAG 
- 54 

54 
Mutagenesis 

9 CD3zY83F rev 
CTTGTCCAAAACATCAAATT

CCTC 
- 54 Mutagenesis 

10 CD3zY111F fw 
GAAGGCGTGTTCAATGCACT

GCAG 
- 63 

63 
Mutagenesis 

11 CD3zY111F rev 
CTGCAGTGCATTGAACACGC

CTTC 
- 63 Mutagenesis 

12 CD3zY123F fw 
GAGGCCTTCAGTGAGATTGG

CATG 
- 61 

61 
Mutagenesis 

13 CD3zY123F rev 
CATGCCAATCTCACTGAAGG

CCTC 
- 61 Mutagenesis 

14 CD3zY142F fw 
GACGGCCTTTTCCAGGGTCT

CAGC 
- 65 

65 
Mutagenesis 

15 CD3zY142F rev 
GCTGAGACCCTGGAAAAGGC

CGTC 
- 65 Mutagenesis 

16 CD3zY153F fw 
GACACCTTTGACGCCCTGCA

TATG 
- 61 

61 
Mutagenesis 

17 CD3zY153F rev 
CATATGCAGGGCGTCAAAGG

TGTC 
- 61 Mutagenesis 

18 CD3zD36A fw 
CTATATGCTAGCTGGAATCC

TCTTC 
- 52 

52 
Mutagenesis 

19 CD3zD36A rev 
GAAGAGGATTCCAGCTAGCA

TATAG 
- 52 Mutagenesis 

20 GAPDH fw ACCACAGTCCATGCCATCAC - 53 
54 

PCR 
21 GAPDH rev TCCACCACCCTGTTGCTGTA - 54 PCR 
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6.4 Proteins of the TCR Signaling Network 

The table on the following pages shows all the proteins of the aforementioned TCR 

signaling network (fig. 5) with their full name, gene name and accession number as 

stated by the database Uniprot. Note that for certain proteins, several genes and their 

expression were considered. Furthermore, the table contains information concerning 

the classification and Ca2+-binding properties of the protein. Most importantly, the 

expression of the protein in rat, mouse or human brain (neurons and glia) according 

to published literature, the Allen Brain Atlas or the Human Protein Atlas is presented. 

The latter even showed quantitative measurements of protein expression (high, 

medium, low) in neurons and glia. Using the database SynProt, the postsynaptic 

localization of the proteins was assessed. Literature used for the screening process is 

listed in section 6.5 of the appendix. Symbols and abbreviations of the table are 

explain in the legend below. Proteins whose search did not yield any data are marked 

in red. 

 

a astroglia 
b Bergmann-glia 
cb cerebellum 
cx cortex 
hc hippocampus 
m microglia 
med medium 
Neu neurons 
No. number 
o oligodendrocytes 
 expressed 
 data not available 
 not expressed 
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No. Network Name (Uniprot) 
1 A20 Tumor necrosis factor alpha-induced protein 3 
2 ABL tyrosine-protein kinase ABL1 
3 AKAP79 A-Kinase Anchor protein 5 
4 AP1 Transcription factor AP-1 
5 BAD Bcl2-associated agonist of cell death 
6 BCAT Catenin beta-1 
7 BCL10 B-cell lymphoma/leukemia 10 
8 BCLXL B-cell lymphoma-extra large / Bcl-2-like protein 1 isoform XL 
9 c-FLIP CASP8 and FADD-like apoptosis regulator 

10 CABIN1 Calcineurin-binding protein cabin-1 

11 CALCIN 
Calcineurin Subunit B type 1 
Calcineurin subunit B type 2 

12 CALPR1 Calcipressin-1 
13 CAM Calmodulin 

14 CAMK2 

Calcium/calmodulin-dependent protein kinase type II subunit alpha 
Calcium/calmodulin-dependent protein kinase type II subunit beta 
Calcium/calmodulin-dependent protein kinase type II subunit delta 
Calcium/calmodulin-dependent protein kinase type II subunit gamma 

15 CAMK4 Calcium/calmodulin-dependent protein kinase type IV 
16 CARD11 Caspase recruitment domain-containing protein 11 
17 Caspase 8 Caspase-8 
18 CBLB E3 ubiquitin-protein ligase CBL-B 
19 CCBLP1 E3 ubiquitin-protein ligase CBL 
20 CD28 T-cell-specific surface glycoprotein CD28 
21 CD4 T-cell surface glycoprotein CD4 
22 CD45 Receptor-type tyrosine-protein phosphatase C 
23 CDC42 Cell division control protein 42 homolog 

24 CREB 
Cyclic AMP-responsive element-binding protein 1 
Cyclic AMP-responsive element-binding protein 5 

25 CSK Tyrosine-protein kinase CSK 
26 CYC1 Cytochrome c1, heme protein, mitochondrial 
27 DGK Diacylglycerol kinase alpha 
28 ERK2 Mitogen-activated protein kinase 1 
29 ERK1 Mitogen-activated protein kinase 3 
30 FKHR Forkhead box protein O1 
31 FOS Proto-oncogene protein c-fos 
32 FYN Proto-oncogene tyrosine-protein kinase Fyn 
33 GAB2 GRB2-associated-binding protein 2 

34 GADD45 
Growth arrest and DNA-damage-inducible protein GADD45 alpha 
Growth arrest and DNA-damage-inducible protein GADD45 beta 
Growth arrest and DNA-damage-inducible protein GADD45 gamma 

35 GADS GRB2-related adapter protein 2 
36 GRB2 Growth factor receptor-bound protein 2 

37 GSK3 
Glycogen synthase kinase-3 alpha 
Glycogen synthase kinase-3 beta 

38 HPK1 Mitogen-activated protein kinase kinase kinase kinase 1 

39 IKB 
NF-kappa-B inhibitor beta 
NF-kappa-B inhibitor epsilon 

40 IKKAB 
Inhibitor of nuclear factor kappa-B kinase subunit alpha 
Inhibitor of nuclear factor kappa-B kinase subunit beta 

41 IKKG NF-kappa-B essential modulator 

42a IP3 
Inositol-trisphosphate 3-kinase A 
Inositol-trisphosphate 3-kinase B 

42b  Inositol 1,4,5-trisphosphate receptor type 1 
43 ITK Tyrosine-protein kinase ITK/TSK 
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No. Network Name (Uniprot) 
44 JNK Mitogen-activated protein kinase 8 

45 JUN 
Transcription factor jun-B 
Transcription factor jun-D 

46 LAT Linker for activation of T-cells family member 1 
47 LCKR Proto-oncogene tyrosine-protein kinase LCK 
48 MALT1 Mucosa-associated lymphoid tissue lymphoma translocation protein 1 
49 MEK Dual specificity mitogen-activated protein kinase kinase 1 
50 MEKK1 Mitogen-activated protein kinase kinase kinase 1 
51 MKK4 Dual specificity mitogen-activated protein kinase kinase 4 
52 MLK3 Mitogen-activated protein kinase kinase kinase 11 

53 NFAT 
Nuclear factor of activated T-cells, cytoplasmic 1 
Nuclear factor of activated T-cells, cytoplasmic 2 
Nuclear factor of activated T-cells, cytoplasmic 3 

54 NFKB 
Nuclear factor NF-kappa-B p105 subunit 
Nuclear factor NF-kappa-B p100 subunit 

55 P21C Cyclin-dependent kinase inhibitor 1 
56 P27K Cyclin-dependent kinase inhibitor 1B 
57 p38 Mitogen-activated protein kinase 14 
58 P70S Ribosomal protein S6 kinase beta-1 
59 PAG Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 
60 PDK1 3-phosphoinositide-dependent protein kinase 1 
61 PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha isoform 
62 PKB RAC-alpha serine/threonine-protein kinase 
63 PKCTH Protein kinase C theta type 
64 PLCGA 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-1 

65 PTEN 
Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase and dual-specificity 
protein phosphatase PTEN 

66 RAC1R Ras-related C3 botulinum toxin substrate 1 
67 RAF RAF proto-oncogene serine/threonine-protein kinase 
68 RAS GTPase HRas 
69 RASGRP RAS guanyl-releasing protein 1 
70 RIP1 Receptor-interacting serine/threonine-protein kinase 1 
71 RIP2 Receptor-interacting serine/threonine-protein kinase 2 
72 RLK TXK tyrosine kinase 
73 RSK Ribosomal protein S6 kinase alpha-1 
74 SH3BP2 SH3 Domain Binding Protein 
75 SHIP1 Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 
76 SHP1 Tyrosine-protein phosphatase non-receptor type 6 
77 SHP2 Tyrosine-protein phosphatase non-receptor type 11 
78 SLP76 Lymphocyte cytosolic protein 2 

79 SOS 
Son of sevenless homolog 1 
Son of sevenless homolog 2 

80 CD3G CD3 gamma 
81 CD3D CD3 delta 
82 CD3E CD3 epsilon 
83 CD3Z CD3 zeta 
84 CD3H CD3 eta 
85 TRAF2 TNF receptor-associated factor 2 
86 TRAF6 TNF receptor-associated factor 6 
87 VAV1 Proto-oncogene vav 
88 VAV3 Guanine nucleotide exchange factor VAV3 
89 ZAP70 Tyrosine-protein kinase ZAP-70 
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No. Network Gene Classification 
Ca2+-

binding 
Uniprot Accession Number 

Rat Mouse Human 

1 A20 TNFAIP3 ubiquitination  M0R7V5 Q60769 P21580 
2 ABL ABL1 Kinase  E9PT20 P00520 P00519 

3 AKAP79 AKAP5 regulatory  P24587 D3YVF0 P24588 
4 AP1 JUN DNA-binding  P17325 P05627 P05412 
5 BAD BAD Apoptosis  O35147 Q61337 Q92934 

6 BCAT CTNNB1 DNA-binding  Q9WU82 Q02248 P35222 
7 BCL10 BCL10 Apoptosis  Q9QYN5 Q9Z0H7 O95999 
8 BCLXL Bcl2l1 Regulatory  P53563 Q64373 Q07817 

9 c-FLIP CFLAR Apoptosis  C0H5Y5 O35732 O15519 
10 CABIN1 CABIN1 Regulatory  O88480 Q6PFH4 Q9Y6J0 

11 CALCIN 
PPP3R1 

Phosphatase  P63100 Q63810 P63098 

PPP3R2 P28470 Q63811 Q96LZ3 
12 CALPR1 RCAN1 Regulatory  Q6IN33 Q9JHG6 P53805 
13 CAM CALM1 Regulatory  P62161 P62204 P62158 

14 CAMK2 

CAMK2A 

Kinase 

 P11275 P11798 Q9UQM7 
CAMK2B  P08413 P28652 Q13554 
CAMK2D  P15791 Q6PHZ2 Q13557 

CAMK2G  P11730 Q923T9 Q13555 
15 CAMK4 CAMK4 Kinase  P13234 P08414 Q16566 
16 CARD11 CARD11 Regulatory  F1M1I1 Q8CIS0 Q9BXL7 

17 Caspase 8 CASP8 Apoptosis  Q9JHX4 O89110 Q14790 
18 CBLB CBLB ubiquitination  Q8K4S7 Q3TTA7 Q13191 
19 CCBLP1 CBLC ubiquitination  G3V8H4 Q80XL1 Q9ULV8 

20 CD28 CD28 Adaptor  P31042 P31041 P10747 
21 CD4 CD4 Regulatory  P05540 P06332 P01730 
22 CD45 PTPRC Phosphatase  P04157 P06800 P08575 

23 CDC42 CDC42 Regulatory  Q8CFN2 P60766 P60953 

24 CREB 
CREB1 

DNA-biding 
 P15337 Q01147 P16220 

CREB5  D3ZBH0 Q8K1L0 Q02930 

25 CSK CSK Kinase  P32577 P41241 P41240 
26 CYC1 CYC1 mitochondrial  D3ZFQ8 Q9D0M3 P08574 
27 DGK DGKA Kinase  P51556 O88673 P23743 

28 ERK2 MAPK1 Kinase  P63086 P63085 P28482 
29 ERK1 MAPK3 Kinase  P21708 Q63844 P27361 
30 FKHR FOXO1 DNA-binding  G3V7R4 Q9R1E0 Q12778 

31 FOS FOS DNA-binding  P12841 P01101 P01100 
32 FYN FYN Kinase  Q62844 P39688 P06241 
33 GAB2 GAB2 Adaptor  Q9EQH1 Q9Z1S8 Q9UQC2 

34 GADD45 
GADD45A 

Regulatory 
 P48317 P48316 P24522 

GADD45B  Q5U3Z2 P22339 O75293 
GADD45G  Q9WTQ7 Q9Z111 O95257 

35 GADS GRAP2 Adaptor  Q3KR57 O89100 O75791 
36 GRB2 GRB2 Adaptor  P62994 Q60631 P62993 

37 GSK3 
GSK3A 

Kinase 
 P18265 Q2NL51 P49840 

GSK3B  P18266 Q9WV60 P49841 
38 HPK1 MAP4K1 Kinase  D3Z8I4 P70218 Q92918 

39 IKB 
NFKBIB 

Regulatory 
 Q9JIA3 Q60778 Q15653 

NFKBIE  Q6P780 O54910 O00221 

40 IKKAB 
CHUK 

Kinase 
 B5DF32 Q60680 O15111 

IKBKB  Q9QY78 O88351 O14920 

41 IKKG IKBKG Kinase  Q6TMG5 O88522 Q9Y6K9 

42a IP3 
ITPKA 

Kinase 
 P17105 Q8R071 P23677 

ITPKB  P42335 B2RXC2 P27987 
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No. Network Gene Classification 
Ca2+-
binding 

Uniprot Accession Number 
Rat Mouse Human 

42b IP3 ITPR1 Regulatory  P29994 P11881 Q14643 
43 ITK ITK Kinase  D4A7W7 Q03526 Q08881 

44 JNK MAPK8 Kinase  P49185 Q91Y86 P45983 

45 JUN 
JUNB 

DNA-binding 
 P24898 P09450 P17275 

JUND  P52909 P15066 P17535 

46 LAT LAT Adaptor  O70601 O54957 O43561 
47 LCKR LCK Kinase  Q01621 P06240 P06239 
48 MALT1 MALT1 ubiquitination  D4A980 Q2TBA3 Q9UDY8 

49 MEK MAP2K1 Kinase  Q01986 P31938 Q02750 
50 MEKK1 MAP3K1 Kinase  Q62925 P53349 Q13233 
51 MKK4 MAP2K4 Kinase  Q4KSH6 P47809 P45985 

52 MLK3 MAP3K11 Kinase  Q66HA1 Q80XI6 Q16584 

53 NFAT 
NFATC1 

DNA-binding 
 D3ZE20 O88942 O95644 

NFATC2  D4A0I8 Q60591 Q13469 

NFATC3  D3ZU59 P97305 Q12968 

54 NFKB 
NFKB1 

DNA-binding 
 Q63369 P25799 P19838 

NFKB2  Q5U2Z4 Q9WTK5 Q00653 

55 P21C CDKN1A Regulatory  Q64315 P39689 P38936 
56 P27K CDKN1B Regulatory  O08769 P46414 P46527 
57 p38 MAPK14 Kinase  P70618 P47811 Q16539 

58 P70S RPS6KB1 Kinase  P67999 Q8BSK8 P23443 
59 PAG PAG1 Adaptor  Q9JM80 A6H659 Q9NWQ8 
60 PDK1 PDPK1 Kinase  O55173 Q9Z2A0 O15530 

61 PI3K PIK3CA Kinase  Q91XL6 P42337 P42336 
62 PKB AKT1 Kinase  P47196 P31750 P31749 
63 PKCTH PRKCQ Kinase  Q9WTQ0 Q02111 Q04759 

64 PLCGA PLCG1 Regulatory  P10686 Q62077 P19174 
65 PTEN PTEN phosphatase  O54857 O08586 P60484 
66 RAC1R RAC1 Regulatory  Q6RUV5 P63001 P63000 

67 RAF RAF1 Kinase  P11345 Q99N57 P04049 
68 RAS HRAS Regulatory  P20171 Q61411 P01112 
69 RASGRP RASGRP1 Regulatory  Q9R1K8 Q9Z1S3 O95267 

70 RIP1 RIPK1 Kinase  D3ZYL0 Q60855 Q13546 
71 RIP2 RIPK2 Kinase  G3V783 P58801 O43353 
72 RLK TXK Kinase  Q501W1 P42682 P42681 

73 RSK RPS6KA1 Kinase  Q63531 P18653 Q15418 
74 SH3BP2 SH3BP2 Adaptor  F1LS93 Q06649 P78314 
75 SHIP1 INPP5D phosphatase  P97573 Q9ES52 Q92835 

76 SHP1 PTPN6 phosphatase  P81718 P29351 P29350 
77 SHP2 PTPN11 phosphatase  P41499 P35235 Q06124 
78 SLP76 LCP2 Adaptor  Q920L0 Q60787 Q13094 

79 SOS 
SOS1 

Regulatory 
 Q497A5 Q62245 Q07889 

SOS2  F1MAI3 Q02384 Q07890 
80 CD3G CD3G Regulatory  Q64159 P11942 P09693 

81 CD3D CD3D Regulatory  P19377 P04235 P04234 
82 CD3E CD3E Regulatory  D4A5M2 P22646 P07766 
83 CD3Z CD247 Regulatory  Q4V7G0 P24161 P20963 

84 CD3H CD3H Regulatory  - P29020 - 
85 TRAF2 TRAF2 ubiquitination  B5DFH7 P39429 Q12933 
86 TRAF6 TRAF6 ubiquitination  B5DF45 P70196 Q9Y4K3 

87 VAV1 VAV1 Regulatory  P54100 P27870 P15498 
88 VAV3 VAV3 Regulatory  F1LWB1 Q9R0C8 Q9UKW4 
89 ZAP70 ZAP70 kinase  Q5FVN9 P43404 P43403 



 

110 
 

No. Gene 
Publications 

Rat Mouse Human 

Neu Hc Cx Glia Neu Hc Cx Glia Neu Hc Cx Glia 

1 TNFAIP3             
2 ABL1             
3 AKAP5             
4 JUN    a         
5 BAD             
6 CTNNB1    a    a    a 
7 BCL10   (yes) a         
8 Bcl2l1  mRNA           
9 CFLAR        a     

10 CABIN1    a         

11 
PPP3R1    a         
PPP3R2    a         

12 RCAN1             
13 CALM1    a         

14 

CAMK2A             
CAMK2B             
CAMK2D             
CAMK2G             

15 CAMK4             
16 CARD11             
17 CASP8    a/o         
18 CBLB             
19 CBLC             
20 CD28             
21 CD4    m         
22 PTPRC    m         
23 CDC42    a    m/a     

24 
CREB1    a         
CREB5             

25 CSK             
26 CYC1    a         
27 DGKA             
28 MAPK1    a         
29 MAPK3    a         
30 FOXO1    m/a         
31 FOS    a         
32 FYN    a    o     
33 GAB2     brain        

34 
GADD45A             
GADD45B             
GADD45G             

35 GRAP2             
36 GRB2             

37 
GSK3A             
GSK3B             

38 MAP4K1             

39 
NFKBIB Cb            
NFKBIE             

40 
CHUK        a     
IKBKB        a     

41 IKBKG        a     

42a 
ITPKA             
ITPKB             
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No. Gene 
Publiccations 

Rat Mouse Human 

Neu Hc Cx Glia Neu Hc Cx Glia Neu Hc Cx Glia 

42b ITPR1    a         
43 ITK             
44 MAPK8    a    a     

45 
JUNB    a         
JUND    a         

46 LAT             
47 LCK             
48 MALT1             
49 MAP2K1        a/o     
50 MAP3K1             
51 MAP2K4             
52 MAP3K11             

53 
NFATC1             
NFATC2             
NFATC3             

54 
NFKB1        a     
NFKB2        a     

55 CDKN1A    a        a 
56 CDKN1B    a    a     
57 MAPK14    a         
58 RPS6KB1             
59 PAG1             
60 PDPK1    a    a     
61 PIK3CA    a         
62 AKT1    a         
63 PRKCQ             
64 PLCG1             
65 PTEN        a     
66 RAC1             
67 RAF1             
68 HRAS    a         
69 RASGRP1             
70 RIPK1             
71 RIPK2        a     
72 TXK             
73 RPS6KA1        a     
74 SH3BP2             
75 INPP5D             
76 PTPN6    a         
77 PTPN11        a     
78 LCP2             

79 
SOS1             
SOS2             

80 CD3G     Cb        
81 CD3D     Cb        
82 CD3E     Cb   b     
83 CD247    a/o         
84 CD3H             
85 TRAF2             
86 TRAF6             
87 VAV1             
88 VAV3    a         
89 ZAP70             
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No. Gene 
Allen Brain Atlas Human Protein Atlas 

SynProt Mouse Human 

Neu Hc Cx Neu Hc Cx Glia 

1 TNFAIP3     low med   
2 ABL1     low low low  
3 AKAP5     high high low (Cx)  
4 JUN      low   
5 BAD     med med med  
6 CTNNB1     low low low  
7 BCL10     med med low  
8 Bcl2l1         
9 CFLAR     med med med  

10 CABIN1     high med low (Cx)  

11 
PPP3R1     med high   
PPP3R2     med high   

12 RCAN1     high high med  
13 CALM1     med med low (Cx) med (hc)  

14 

CAMK2A     high high   
CAMK2B     high med   
CAMK2D     med med low (Cx)  
CAMK2G     high high low (Cx)  

15 CAMK4     high high low  
16 CARD11     low low   
17 CASP8     low low   
18 CBLB     med med   
19 CBLC     low low low (Cx)  
20 CD28         
21 CD4         
22 PTPRC         
23 CDC42         

24 
CREB1     high low high  
CREB5         

25 CSK     high high low  
26 CYC1     med med low  
27 DGKA     low med low (Cx)  
28 MAPK1     high high med (Cx) high (Hc)  
29 MAPK3     high high med  
30 FOXO1     low low   
31 FOS     low low low(Cx)  
32 FYN         
33 GAB2     low med high  

34 
GADD45A         
GADD45B     med low med (Cx) low (Hc)  
GADD45G     high high low (Cx)  

35 GRAP2     low low   
36 GRB2     med med low  

37 
GSK3A     high high med (Cx) low (Hc)  
GSK3B     med med   

38 MAP4K1         

39 
NFKBIB     med med   
NFKBIE     med med med (Cx) low (Hc)  

40 
CHUK     high med med  
IKBKB     med med med (Cx) low (Hc)  

41 IKBKG         

42a 
ITPKA       med (Cx)  
ITPKB       med  
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No. Gene 
Allen Brain Atlas Human Protein Atlas 

SynProt Mouse Human 

Neu Hc Cx Neu Hc Cx Glia 

42b ITPR1      med   
43 ITK         
44 MAPK8     med med low (Hc)  

45 
JUNB     high high high  
JUND     med nd med (Cx)  

46 LAT         
47 LCK         
48 MALT1         
49 MAP2K1     med med low  
50 MAP3K1     med med low  
51 MAP2K4     high med   
52 MAP3K11     high med low  

53 
NFATC1     low    
NFATC2     low low   
NFATC3     med med low  

54 
NFKB1         
NFKB2     low low   

55 CDKN1A         
56 CDKN1B     med high med  
57 MAPK14     med low   
58 RPS6KB1     high med low  
59 PAG1     low low   
60 PDPK1     high med low  
61 PIK3CA     med med low (Cx)  
62 AKT1     high high med  
63 PRKCQ         
64 PLCG1     high high low  
65 PTEN     med low   
66 RAC1         
67 RAF1     low med low  
68 HRAS     high high high  
69 RASGRP1         
70 RIPK1     low med low (Cx)  
71 RIPK2     low med low (Cx)  
72 TXK         
73 RPS6KA1     med med med (Cx)  
74 SH3BP2     high med low  
75 INPP5D       low  
76 PTPN6         
77 PTPN11     high high high  
78 LCP2         
79 SOS1         

 SOS2     high high med  
80 CD3G         
81 CD3D    yes     
82 CD3E         
83 CD247         
84 CD3H         
85 TRAF2     low low low  
86 TRAF6 yes        
87 VAV1     high high med (Cx) low (Hc)  
88 VAV3     low med low (Cx) med (Hc)  
89 ZAP70         
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