
On Utilising Change over Time in Data Mining

DISSERTATION

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von Diplom-Informatiker Mirko Böttcher

geboren am 04. Mai 1975 in Magdeburg

Gutachter:

Prof. Dr. Rudolf Kruse
Prof. Dr. Detlef Nauck
Prof. Trevor Martin

Magdeburg, den 13. November 2013

Abstract

In many businesses data is continuously gathered over long periods of time and therefore
reflects changes in the domain from which it has been derived. The last decade has seen a
remarkable shift in the perception of the value of these changes. The initial focus of data
mining research on maintaining the quality of models and patterns in spite of change is
now superseded by an interest in gaining knowledge about change. This thesis closes the
gap between the two research streams. It advocates the use of knowledge about change in
order to improve the quality of models and patterns. Two different methods are detailed
which prove that such a direction is viable. The first method targets the shortcoming
of frequent item set discovery, namely the generation of vast numbers of item sets. It
proposes a novel condensed representation of item sets which considers change in the
data, yet is consistent with condensed representations that ignore change. The second
method targets the shortcoming of decision tree induction, namely the degradation in
the classification accuracy of a once learned decision tree as time proceeds. It proposes
to anticipate decision trees by utilising models of the change in the measures that control
its induction process. Through theory and experiments it is proven that both methods
truly enhance their change-unaware counterparts and provide a blueprint for utilising
change in data mining.

Kurzfassung

Viele Unternehmen sammeln große Mengen an Daten. Diese werden zumeist kontinuier-
lich über lange Zeiträume erfasst und reflektieren zeitliche Veränderungen der Domäne,
aus der sie stammen. Im Laufe des letzten Jahrzehnts konnte innerhalb der Data Mi-
ning Forschung ein bemerkenswerter Wandel in der Wahrnehmung des Wertes dieser
Veränderungen beobachtet werden. Das ursprüngliche Ziel, die Qualität von Modellen
und Mustern trotz Veränderungen zu erhalten, wurde verdrängt durch das Ziel der Ge-
winnung von Wissen über Veränderungen. Diese Dissertationsschrift schließt eine Lücke
zwischen den diesen Zielen zugeordneten Forschungsrichtungen. Sie verfolgt den Ansatz,
Wissen über Veränderungen zu nutzen, um die Qualität von Modellen und Mustern
zu verbessern. Zwei Methoden werden ausführlich erläutert, um zu zeigen, dass die-
ser Ansatz machbar ist. Die erste Methode zielt auf die Schwäche der Entdeckung von
häufigen Itemmengen (frequent item sets), eine riesige Anzahl an Mustern zu generie-
ren. Sie nutzt eine neuartige, kondensierte Repräsentation (condensed representation)
von Itemmengen, die Veränderungen in den Daten berücksichtigt. Zugleich ist sie kon-
sistent zu existierenden Ansätzen, die Veränderungen ignorieren. Die zweite Methode
zielt auf die Schwäche der Induktion von Entscheidungsbäumen, dass einmal gelernte
Entscheidungsbäume im Laufe der Zeit in ihrer Klassifikationsgenauigkeit abnehmen.
Die Methode antizipiert Entscheidungsbäume indem sie Veränderungsmodelle der Maße
nutzt, die den Induktionsprozess der Bäume kontrollieren. Theoretisch und experimen-
tell wird gezeigt, dass beide Methoden wirkliche Verbesserungen erzielen und gleichzeitig
allgemeine Ansatzpunkte bieten, wie zeitliche Veränderungen in Daten im Data Mining
genutzt werden können.

Acknowledgments

Writing a PhD thesis is a solitary endeavour, and yet without the support, inspiration
and advise of a number of people, I could not have written it.

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Dr. Rudolf
Kruse for his continuous support and his unlimited patience and trust in me finishing
this work. In many respects, he paved the way for my thesis. Not only did he raise
my interest in data mining and soft computing when I was an undergraduate student,
but he also provided the initial contact to British Telecom, and agreed to supervise my
thesis when I asked him two years after I finished my studies.

I am deeply grateful to Detlef Nauck for giving me the freedom to start and pursue
my own research in the course of the IDEAL project while I was working for British
Telecom’s Intelligent Systems Research Centre. Many of the ideas promoted in this
thesis originate from this research. I would also like to thank him for being one of the
first who (maybe without being aware of it) pointed me to the idea of doing a PhD and
for always being interested in my research and its progress.

Many thanks also go to my third reviewer, Prof. Trevor Martin, for travelling to Magde-
burg to personally attend my PhD defence which thus spared myself a video conference.

I owe a great deal to Martin Spott whose advise and critical passion substantially helped
me to shape and challenge my ideas. If it were not for his thorough proof-reading and his
insightful comments, parts of this thesis would be quite difficult to understand. I would
also like to thank him for keeping in touch over so many years and for his continuous
feedback to my work.

Many other people have followed this thesis and helped me to elaborate my ideas. In
particular, I would like to give thanks and a special acknowledgement to Alex Healing
for having read parts of this thesis and for his precious comments and language advise.
I would also like to thank Myra Spiliopoulou and Frank Höppner. Our discussions
and controversies during the preparation of our SIGKDD Explorations article and our
subsequent tutorial at the ECML PKDD were a great source of inspiration to me. I am
deeply thankful to Daniela Müller for providing me access to many research articles for
which I would otherwise only have a reference. I would also like to thank her for showing
a lot of patience and understanding when I sacrificed some of our quality time to work
on this thesis.

Last, but surely not least, I am deeply thankful to Katja, my girlfriend, for always
encouraging me to go on finishing this thesis and for enduring even the most stressful
periods of work with admirable patience.

“Sie sagen: Gib mir das Aktuellste! Das Problem mit dem Aktuellsten
ist, dass es oft unwahr ist. Und es hat keine Bedeutung. Die Frage ist
nicht: Wie verläuft die schrittweise Entwicklung? Die Frage ist: Was ist
die Hintergrundgeschichte? Was ist versteckt? Was wissen wir nicht? Wir
brauchen eben manchmal Wochen und Monate, um herauszufinden, was
wirklich passiert.”

Bob Woodward (Süddeutsche Zeitung, 28./29. November 2009)

Contents

1 Introduction 1
1.1 Fundamentals about Change . 2

1.1.1 The Process of Change . 3
1.1.2 The Time Axis . 3

1.2 Perspectives on Change . 4
1.2.1 Vincenzo Viviani and Léon Foucault 4
1.2.2 The Two Perspectives in Data Mining 6
1.2.3 A Third Perspective . 8

1.3 Objective . 8
1.4 Outline . 9

2 Analysing Change 11
2.1 Approaches for Analysing Change . 11
2.2 Contrast and Change Mining . 13
2.3 Change Analysis for Frequent Patterns . 15

2.3.1 Contrast Mining . 16
2.3.2 Change Mining . 18

2.4 Change Analysis for Decision Trees . 21
2.4.1 Contrast Mining . 22

2.5 Concept Drift Detection . 24
2.6 General Principles and Methodology . 26

2.6.1 Choosing the Time Periods . 26
2.6.2 Specifying the Objects of Change 27
2.6.3 Establishing Correspondence across Time 28

2.7 Conclusion . 30

3 Utilising Change for Item Sets 31
3.1 Motivation . 31
3.2 Problem Statement . 32
3.3 Terminology and Notation . 33
3.4 Condensed Representations . 35

3.4.1 Closed Item Sets . 36
3.4.2 δ-Free Item Sets . 37
3.4.3 Disjunction Free Item Sets . 38
3.4.4 General Principles . 39
3.4.5 Assessment . 41

3.5 Condensed Representations and Time . 44
3.5.1 Time Periods as Independent Data Sets 44

xii CONTENTS

3.5.2 Time Periods as Items . 47
3.6 Temporal Redundancy . 48

3.6.1 Invariance and Uninterestingness 49
3.6.2 Definition and Probabilistic Interpretation 51
3.6.3 Information Theoretic Assessment 53

3.7 Temporally Closed Item Sets . 57
3.7.1 Definition and Properties . 57
3.7.2 Discovery . 60
3.7.3 Supplemental Structures . 65

3.8 Data-centric Change Utilisation . 66
3.9 Conclusion . 68

4 Utilising Change for Classifiers 71
4.1 Motivation . 71
4.2 Problem Statement . 73
4.3 Terminology and Notation . 74
4.4 Learning Decision Trees . 74
4.5 Handling Concept Drift . 75

4.5.1 Windowing and Forgetting . 76
4.5.2 Model Repositories . 76
4.5.3 Assessment . 77

4.6 Process-centric Change Utilisation . 78
4.7 Predicting Decision Trees . 80

4.7.1 Models and Methods for Prediction 81
4.7.2 Predicting Attribute Evaluation Measures 84
4.7.3 Predicting the Class Label Distribution 84
4.7.4 Putting the Parts Together . 85

4.8 Conclusion . 86

5 Summary 89
5.1 Contributions . 89
5.2 Future Directions . 91

A Experimental Results 95
A.1 Utilising Change for Item Sets . 95

A.1.1 Description of Data Sets . 95
A.1.2 Experimental Setup . 96
A.1.3 Experimental Results . 97

A.2 Utilising Change for Classifiers . 101
A.2.1 Description of Data Sets . 101
A.2.2 Experimental Setup . 103
A.2.3 Experimental Results . 105

B Proofs 109
B.1 Proof of Theorem 3.1 . 109
B.2 Proof of Theorem 3.2 . 110
B.3 Proof of Theorem 3.3 . 111
B.4 Proof of Theorem 3.4 . 112

CONTENTS xiii

B.5 Proof of Theorem 3.5 . 114
B.6 Proof of Theorem 3.8 . 115

C Background 117
C.1 Background on Entropy and Mutual Information 117
C.2 Background on Regression Methods . 118

C.2.1 Linear Regression with Basis Functions 118
C.2.2 Gaussian Process Regression . 119

Bibliography 123

Chapter 1

Introduction

“...humans are built to detect real-world structure by detecting changes along
physical dimensions [...] and representing these changes as relations [...]
along subjective dimensions. Because change can only occur over time, it
makes sense that time somehow be incorporated into a definition of struc-
ture.”

Mari Riess Jones1

In the early 1980s Jennifer F. Freyd, at this time a PhD student in psychology at Stanford
University, conducted an experiment in which people viewed frozen-action photographs,
like one of a person jumping from a wall, and their memory for these scenes was tested.
To her surprise she found that very often the people identified photographs as being the
same when they were actually showing the scene at a later point in time. It appeared
as if the people subconsciously animated the photographs to continue the action in
mind. They enriched a static stimulus by information about change. Eventually, the
experiments by J. F. Freyd led to the hypothesis that the representation of change
plays an important role in human cognition independent of whether the perceptions are
dynamic or static (Freyd, 1983).

In everyday life many examples can be found how we successfully recognise, analyse and
utilise change which helps us predict what will happen and, consequently, how we should
make decisions. When investing in stocks we do not simply look at the current price
but also how it developed other the previous months. When we inspect an unknown
object we often gain a better understanding by changing the perspective from which we
view it, contrasting with previous views. When we drive a car we see many objects in
our field of vision but we focus only on those which change, for example visually, like
warning signs, or spatially, like pedestrians and cars.

In business life the situation is not much different: decisions have to be made and,
as a prerequisite, the processes and the entities involved need to be understood. In
contrast to everyday life though, the desired knowledge is often not readily available
but instead hidden within the masses of data generated throughout the years during
daily operations. As an answer to this problem the field of data mining has emerged
which is concerned with discovering structure in data, or as Fayyad et al. (1996b) wrote
“is the non-trivial process of identifying valid, novel, potentially useful and ultimately
understandable patterns in data”.

Because change is such a crucial source of information for understanding and decision
making— cognitively, and in everyday and business life—it is instructive to ask how this
is acknowledged by research in data mining. First of all, the data mining community is
aware that domains and thus the data collected from it change over time. Considerable
research has been conducted into maintaining models and patterns over time, into the

1Jones, M. R. (1976). Time, our lost dimension: toward a new theory of perception, attention, and
memory. Psychological Review, 83(5):323–355.

2 CHAPTER 1. INTRODUCTION

detection of novel or emerging patterns and into the description and analysis of change.
This led to the data mining fields concept drift detection, contrast mining and change
mining. On the other hand, the vast majority of data mining approaches either ignore
change altogether or regard it as a perturbing factor.

Both perspectives on change are extreme cases when compared to how humans process
change. Whilst change is sometimes intentionally focused on and sometimes completely
ignored, it is much more often unknowingly used as a further source of information
helping us to focus our attention, to sharpen our perception and to substantiate our
anticipation of the future. Transferred to data mining this leads to the question whether
data mining approaches can be improved if change as a further source of information
is incorporated and how this incorporation can be accomplished. Surprisingly these
questions have not received much attention from the data mining community yet.

The question this thesis aims to answer is, if we actively take change as a process into
account, if we analyse and model it, what advantages does this have on the results of data
mining? Because change can only occur over time this means that the time axis should
somehow be incorporated into data mining approaches. In particular, this thesis looks
at data mining approaches from association analysis and classification, demonstrating
for each how time and thus change can be incorporated into the mining process, which
current shortcomings can thereby be improved and draws general principles for utilising
change.

1.1 Fundamentals about Change

The ancient Greek philosopher Heraclitus once said: “The only thing that is constant is
change”. In fact, it is much easier to think about a domain which changes than to think
about one which does not change at all. Taking the retail business as an example of a
changing domain, customers are influenced in their perception of products and services
by marketing campaigns, through the advice of family or friends, by reviews read in
the internet, by the launch of competing or alternative products and their technological
level, reliability and perceived trendiness. As a response to the evolving attitude of
customers the retail business has to change too: business plans have to be revised,
product development work refocused and marketing campaigns launched. These actions,
in turn, have effect on the customers – a vicious cycle.

Customers, markets and products are typical entities analysed in data mining. Driven
by the need of businesses to influence customer satisfaction, and to respond to market
requirements and sales potentials, the value of the discovered knowledge is commonly
assessed by its actionability (Silberschatz and Tuzhilin, 1996) and usefulness (Fayyad
et al., 1996b). Thereby, the action is mostly targeted towards the analysed entities
themselves in the expectation that they will change in a way that will benefit the busi-
nesses’ objectives. For example, the insight that the sales figures of a product are too
low in an important group of customers may lead to the release of a new, specifically
tailored commercial. This commercial may indeed be successful and increase the sales
figures in this segment, but it may also have a negative impact on the perception of the
business in other customer groups. In either case, the results of data mining change the
next time the domain is being analysed. One of the factors which triggered this change
may have been the data mining itself.

1.1. FUNDAMENTALS ABOUT CHANGE 3

At this point it should be clear that change is ubiquitous in many domains. If a domain
does not change by itself, it certainly does by the application of knowledge as the result
of data mining. This truly is a paradoxical situation. On the one hand, data mining
may trigger change. On the other hand, data mining approaches very often assume that
the domain under consideration is stable over time.

1.1.1 The Process of Change

So far, we have used the word ‘change’ based on its intuitive meaning. However, there
are two possible notions of change which are employed in real life and consequently
also in data mining research. Both have their own relevance and both are accounted for
differently: change may denote the process of change, such as the evolution of a customer
segment and its responsiveness to a marketing strategy that must be aligned again and
again to keep it profitable. Or it may denote the outcome of a process of change, such
as a sales collapse for a particular product in a certain customer segment. Clearly, the
notion of change as a process provides the basis for the notion of change as an outcome.

These notions of change are associated with two intuitive questions: “How is the world
changing?” and “When did/will a significant change occur?” From a data mining point
of view the answer to the first question refers to the evolution of data and describes the
nature of change either retrospectively or prospectively. The second question on the point
in time of change can be the first step in linking significant changes with events that may
have affected the domain under consideration. The first question asks for a description
which can be provided having only little or perhaps no prior domain knowledge. In
contrast, the second question is a typical search question and a substantially larger
amount of prior domain knowledge is necessary to answer it. For example, it has to be
known what kind of change can be expected and what renders a change significant. The
difficulty is to determine significance. In fact, if no background knowledge is available it
is difficult to verify whether or not a change at a certain point in time also is significant.

1.1.2 The Time Axis

Generally, change may be observed along different dimensions, but is often linked with
the temporal or spatial dimension, or combinations of both. This thesis only deals with
changes along the temporal dimension. Because such changes occur over time, it is clear
that any kind of analysis which exploits change must somehow incorporate the time axis.
Fortunately, data sets which contain time as an attribute are common. In finance, retail
and medical care businesses, to name a few, it is often imperative to enable accountability
or traceability of data creation and changes. For example, banks are legally obliged to
maintain a complete trace of any customer transaction for a very long period of time.
This obligation also covers details such as keeping the date and time and origin of the
transaction. In retail applications often the complete history of customer interactions
is archived: details about purchased goods and service usage are needed for billing
and auditing purposes, and inquiries and complaints are kept for future reference and
to improve customer satisfaction. In medical applications documenting symptoms and
diagnoses over time helps in later examinations but may also guard against wrongful
malpractice lawsuits.

4 CHAPTER 1. INTRODUCTION

These needs for storing time information are mirrored in the invention and meanwhile
widespread use of data warehouse systems which were designed to capture the evolving
histories of organisations. As Kimball (1996) pointed out: “The time dimension is
the one dimension virtually guaranteed to be present in every data warehouse, because
virtually every data warehouse is a time series.” Even if organisations do not employ
data warehouse technology the time attribute can be expected to be present in almost
every database schema, not only because it is required but also because it is often the
simplest one to gather. Even if no time attribute is present, modern database technology
allows one to obtain the commit time of any row in a certain table. Assuming that most
data is written to a database close to when it is collected this allows at least the temporal
sequence of records to be reconstructed.

Although the time axis is omnipresent in real-world data sets, it is surprising that com-
mon benchmark data sets with a time attribute are virtually non-existant. At the time
of this thesis being written the well-known UCI machine learning repository2 contains 33
data sets with categorical attributes and of significant size (i.e. more than 1000 records),
none of which contain a time attribute. Moreover, many data sets, such as survey or
web access data, would have potentially been able to incorporate data from multiple
years, months, or days, but in fact they only contain those from a single period. For this
reason, many researchers employ artificially generated data such as a simple block-world
data set which according to Tsymbal (2004) is the most popular one and was first used
by Schlimmer and Granger (1986).

1.2 Perspectives on Change

In light of change being present everywhere and the fact it embodies cues for shaping
the future and judging the present, it may come as a surprise that it is also perceived
as a disturbance. These two perspectives on change not only relate to the area of data
mining research, but have also existed also in other areas for some time, as the following
historic example illustrates.

1.2.1 Vincenzo Viviani and Léon Foucault

Vincenzo Viviani (1622-1703) was an Italian nobleman, physician and mathematician.
In 1639 Galileo Galilei impressed by Viviani’s exceptional intelligence took him into his
home as student, collaborator and companion to work with him on physics and geometry.
After Galilei died in January 1642 Viviani stayed in Florence and continued his scientific
work first as a collaborator of Evangelista Toricelli, Galilei’s successor as the Medici’s
Court Mathematician, and later as a lecturer at the Accademia del Designo in Florence
and Mathematician to the Medici Court.

His reports and notes are kept in a museum in Florence and they indicate that he
must have undertaken substantial experimentation involving pendulums, using them,
for example, as a timing device—an approach which had been invented by his mentor
Galilei. One of these reports is quite remarkable from today’s perspective. It consists of
three notes which have been republished by Hagen and Rom (1930) and of which I will
only quote the first two. In the first note Viviani states: “We observed that a unifilar

2http://archive.ics.uci.edu/ml (Retrieved on May, 9th, 2013)

http://archive.ics.uci.edu/ml

1.2. PERSPECTIVES ON CHANGE 5

attached pendulum deviates from a vertical plane always in the same direction[...]”.
The second note provides a hint at Viviani’s reaction: “Because the ordinary unifilar
pendulum due to its freedom of movement (whatever its reason may be) slowly deviates
from its initial run [...] it was thought about suspending the bob on two strings to keep
the oscillations on the same trajectory.”

Léon Foucault (1819-1868) was a French experimental physician who first studied medi-
cine which he abandoned to turn himself towards physics. In fact, he never studied
physics but acquired his knowledge by self-teaching himself while working as a scientific
writer to make a living. Given this background it may be not surprising that he carried
out most of his experiments in the cellar of the house in which he lived with his mother
reaching achievements like proving that light travels more slowly through water than
through air, a counter-proof to Newton’s corpuscle theory of light.

While Foucault’s name is also linked to the construction of the first gyroscope and many
other inventions, it is one experiment which laid the foundation of his fame and it also
started in the cellar of his home. On January 6, 1851 he cleverly suspended a 2-meter
long pendulum at the ceiling such that it could rotate freely. Making it swing he observed
a sideward drift of the oscillation plane – the same drift Viviani had observed about 200
years earlier. In contrast to Viviani, however, he analysed this change and interpreted
its roots thus showing that the oscillation plane remains fixed with respect to the stars
while the earth rotates underneath it. For the first time it was proved that the earth
rotates using a clever, but simple experiment.

Viviani and Foucault made the same observation but looked at it from two different
perspectives. Viviani regarded the changing oscillation plane as a perturbation and
attributed it to an imperfection of the experiment having the potential to falsify its
desired outcome. There was no apparent reason for him to investigate further, except
maybe curiosity. Rather than trying to explain or to take into account what he observed
he provided a countermeasure by suspending the pendulum on two strings. Foucault, in
contrast, regarded the change as an important source of information. He was primarily
interested in observing and analysing the changing oscillation plane rather than the
oscillation as such. In fact, the experiment he conducted was tailored to this specific
purpose3.

As the story of Viviani’s and Foucault’s observation illustrates it can be difficult to
decide between either regarding change as perturbation or as information. Often it is
deliberately decided whether to ignore it or to incorporate it depending on the current
objectives and expectations. On the one hand, it is convenient to regard change as a
perturbation if the analysis of change is not obviously related to the task at hand, or if
the effort to analyse the change is disproportionate to the anticipated knowledge gain.
On the other hand, it seems to be easier to regard change as a source of information
if an initial hypothesis about the underlying causes of change exists and needs to be
verified, or if it can be assumed that analysing change leads to actionable insight into
the domain.

3What ‘put him on path’ to the pendulum experiment was twanging a round steel rod in the chuck
of a lathe. He rotated the chuck and although the rod turned with it the plane of vibration of the rod
stayed the same (Tobin, 2003). This effect must have surprised him as much as the drifting oscillation
plane must have surprised Viviani.

6 CHAPTER 1. INTRODUCTION

1.2.2 The Two Perspectives in Data Mining

Both perspectives on change can also be found in data mining. On the one hand most
‘classical’ data mining tasks like classification, clustering or association analysis are built
on the assumption that the domain from which data was derived is stable over time. If
this assumption is violated because the domain changes nonetheless, change is regarded
as a perturbing factor. On the other hand, many approaches have been published which
put change at the centre of the analysis by dealing with its detection and description.

Ignoring Change

Relatively early after the term data mining had been coined it became clear that the
different objectives for a person who is analysing data can be categorised based on the
corresponding type of task to be carried out. Many of these data mining tasks can be
called ‘classical’ because they already played an important role in fields like statistics
and machine learning well before the term ‘data mining’ emerged but still expose many
research challenges today. Among these ‘classical’ tasks are in particular those named
in the list below. The list does not claim to be complete because the tasks vary among
different authors depending on the year of publication, the chosen level of granularity
and the author’s background (see Fayyad et al., 1996a; Hand et al., 2001; Borgelt and
Kruse, 2002). For each task an article is cited which reviews the work done in this
respective area.

• Classification and Regression: The aim in this task is to predict the value of
one attribute—the class—based on the known values of other attributes. In case
of classification the attribute being predicted is nominal, in case of regression it is
quantitative. (Kotsiantis et al., 2006)

• Segmentation and Clustering: The aim of this task is to find a description of
the data by identifying a finite set of categories or clusters whereby the clusters
can be, for example, mutually exclusive, overlapping or hierarchical. (Jain et al.,
1999)

• Association and Pattern Mining: The aim here is to identify small structures
which describe regions of the data but not the complete data set as models do.
Often these small structures are described by associations, i.e. co-occurences of
attribute values or objects in general. (Hipp et al., 2000; Ceglar and Roddick,
2006)

When much of the seminal work for each task was published, like ID3 for classification
by Quinlan (1986), k-means for clustering by McQueen (1967) or apriori for association
mining by Agrawal et al. (1993), the available computing resources only allowed for
processing data sets which were quite limited in size compared with what is possible
today. Meaningful and accurate data analysis, however, requires large sample sizes. For
this reason, the data used typically only represented a snapshot of a domain taken at
a specific time point rather than over a longer time period. Change within a domain,
if captured at all, was hence not regarded as an issue and thus ignored. From this lack
of practical necessity in combination with methodical convenience arose the assumption
that domains are stable over time (see Schlimmer and Granger, 1986).

1.2. PERSPECTIVES ON CHANGE 7

This historically grown perspective on change is still predominant today even though
over the decades, with the emergence of cheap memory, fast processors and sophisticated
database technology, it became a reality to collect massive amounts of data over a long
period of time. Nevertheless, it was observed that changes within a domain manifest
themselves in the data and in the mid 1980s, if not earlier, it was realised that this
has a perturbing influence on the results of the task at hand: patterns become invalid
over time and models do not correspond to the real-world concept of interest anymore
(see Schlimmer and Granger, 1986; Kubat, 1989). In other words, if change is some-
what evident in the data such that it can no longer be ignored it is instead seen as a
perturbation.

Focussing on Change

To draw on the example of Viviani, after being confronted with a perturbation which
he could not gainfully relate to his task at hand he employed a countermeasure by
suspending the pendulum on two strings. Likewise the machine learning and data mining
community searched for countermeasures to the problems induced by changing domains.
In contrast to the example of Viviani, however, the causes of change almost always cannot
be controlled. Therefore, research efforts focused on the detection of significant changes
in order to enforce the relearning and adaption of models and patterns, respectively.

Initially the methods developed for change detection were meant to be embedded into
the learning algorithms as a contribution to areas like incremental (online) learning such
that they “can detect context changes without being explicitly informed about them”
(Widmer and Kubat, 1996). Nevertheless, in parallel to the increasing use of data
mining as a business tool consensus was growing that knowing how a domain evolves
is equally as important as producing highly accurate models (see, e.g., Liu et al., 2000;
Kifer et al., 2004). Because methods for change detection already were available as part
of approaches for dealing with concept drift, they provided a starting point to satisfy
this upcoming knowledge need, for example by pinpointing the time when a substantial
change has happened. Eventually, this led to a second perspective of data mining on
change in which change is not ignored anymore but, instead, focused on as the primary
analysis object. Nowadays, developing methods for change detection and analysis is
seen as one of the primary research issues when dealing with evolving data (Gaber et al.,
2005).

In recent years three research directions have emerged which dealing with the detection
and description of change. They are listed below. Further references, review articles or,
if none have been published yet, seminal works of each direction are provided.

• Concept Drift Detection: Under the assumption that a domain is at least tem-
porarily stable, the objective of concept drift detection is to identify a time point
such that preceding and succeeding data are sampled from a different distribution.
(Schlimmer and Granger, 1986; Widmer and Kubat, 1996)

• Contrast Mining: The objective of contrast mining is to quantify and describe
the difference between two data sets, which may have been collected subsequently,
in terms of the models they induce or the patterns they contain. (Novak et al.,
2009; Böttcher, 2011; Dong and Bailey, 2012)

8 CHAPTER 1. INTRODUCTION

• Change Mining: The objective of change mining is the discovery, modelling,
monitoring and interpretation of changes in the patterns and models that describe
an evolving domain. It encompasses methods for change analysis based on pro-
cessing models and patterns instead of data. (Böttcher, 2011)

1.2.3 A Third Perspective

Both aforementioned perspectives on change are diametrically opposed: one ignores
changes altogether while the other focuses on it entirely by discovering knowledge about
change. Although change is ubiquitous and although the time dimension is present in
many real-world data sets, change is solely utilised explicitly if it needs to be understood.
This thesis looks at a third perspective where change can also change can also be utilised
implicitly to the benefit of those ‘classical’ data mining methods which ignore change,
for example to improve on the quality of the knowledge they extract.

Implicitly utilising change means that change within a data set is seen as another ‘feature’
of the data which carries information, similar to the data set’s attribute values. It also
means that the focal point of data mining algorithms is not describing and understanding
change, like in the second of the mentioned perspectives, but rather on exploiting it as an
additional source of information. Because change can only occur over time this implies
that the time axis must somehow be incorporated into data mining algorithms whilst
their results do not necessarily refer to it.

The fundamental idea to regard change as a feature of the data which is embodied in the
time attribute is not new. In a seminal article on learning in changing domains Kubat
(1989) wrote:

What if the patterns are dynamic in the sense that some hidden attributes
are present that make the validity of the knowledge base be only temporary?
There are two ways to solve this. Either we try to uncover the hidden attrib-
utes and include them in the set of attributes, or, if this is not possible, an
algorithm is necessary for permanent (periodic) learning and updating the
knowledge base.

Kubat (1989) also noted that “in practice, a typical hidden attribute is the ‘time’ which
can induce the changes in other potential attributes”. Considering that more than
twenty years ago, apart from pure time series, time was only rarely present in data sets
it is not surprising that he suggested a solution for the latter case. But what surprises,
from today’s perspective, is that over the years with the increasing availability of time
referenced data the first way he suggested has not spurred much general interest; it
would most likely have led to the proposed third perspective of data mining on change.
Instead the work by Kubat (1989) sparked considerable research in window-based and
incremental learning from which many methods for concept drift detection originate.

1.3 Objective

This thesis advocates the above introduced third perspective on change with the ob-
jective to prove that it can be realised and is beneficial in practice. This leads to the
following research question. Given are a data mining task, a corresponding data mining

1.4. OUTLINE 9

method for solving it, and a time-stamped data set. Can this method be extended such
that it considers the changes hidden within the data and through this improve on a
selected, qualitative shortcoming of the original method’s results?

The objective of this thesis is met, if the extended and thus change-aware method satisfies
the following two requirements:

Improvement: Theory or experimentation show a measurable improvement in a qual-
itative shortcoming.

Consistency: The original method should be a special case of the change-aware method.
Their results are consistent, i.e. they have a similar structure and do not contradict each
other. Furthermore, existing advantages of the original method and its results are kept
and not sacrificed for the desired improvement.

This thesis does not aim to provide a general proof that every data mining method can
be extended with and enhanced by change utilisation capabilities. Rather the objective
is to show by the example of two chosen data mining methods that such an extension is
fruitful

1.4 Outline

The remaining part of this thesis is structured in four chapters. The following Chapter
2 provides a comprehensive survey of methods for change analysis ranging from the first
contributions to this subject proposed in the mid 1980s to the latest research results
addressing many of the current research challenges. The chapter focusses on the second
of the aforementioned data mining’s perspectives on change. It puts particular emphasis
on change analysis for classification and association mining, the two areas of data mining
that will be dealt with in the following two chapters.

The subsequent two chapters move forward from traditional change analysis by apply-
ing some of its fundamental ideas to long-standing weaknesses of ‘classical’ data mining
method and put forward algorithmic enhancements. The enhancements utilise informa-
tion about change and thus are examples for the proposed novel perspective on change
in data mining.

Based on this view Chapter 3 targets frequent item set learners’ weakness of producing a
huge number of patterns by proposing temporally closed item sets, a novel approach for a
condensed representation of item sets which is based on removing temporal redundancies.
A theoretical analysis of this representation shows that it is a subset of closed item sets,
which are probably the most well-known condensed representation of item sets if change
over time is not considered.

Chapter 4 provides an answer to how the classification accuracy of decision trees learned
in changing domains can be improved by presenting an algorithm which anticipates
future decision trees based on a model of change. In particular, this algorithm is based
on analysing the changes of the decisions made during model learning.

The concluding Chapter 5 summarises the results of this thesis and points out possible
future work.

Experimental results and proofs can be found in two appendices at the end of this thesis.

Chapter 2

Analysing Change

Change is ubiquitous. Due to the implied dynamics in the data’s underlying structure,
data mining is faced with old challenges but also with new opportunities: on the chal-
lenge side change is seen as perturbing the assumed stability of a domain. Incremental
mining methods are required to keep the discovered knowledge efficiently up-to-date and
to overcome the need for periodically starting a completely new data mining session. Sig-
nificant research has been conducted into this area and a plethora of algorithms have
been proposed that discount or even forget older examples, and adjust what has been
induced from them. Their discussion is outside the scope of this thesis; the interested
reader is referred to, for example, Klinkenberg (2004).

On the opportunity side, the change in the data’s underlying structure can lead to
interesting, valuable and novel insights into a domain, in particular its dynamics. Mainly
over the past decade, many researchers have become interested in this task which opened
up an alternative perspective on change that centres around using it explicitely, as a
primary subject to data mining. The vast majority of approaches for analysing change
can be assigned to either the areas contrast mining or change mining which differ in the
aspects of change they target and in the questions they are able to answer.

Although this thesis focuses on implicitly utilising change, it shares with the aforemen-
tioned perspective the salient commonality to have to respond to the conceptual and
practical challenges that arise from dealing with temporal data. Indeed, the task of
analysing change is more difficult than it appears. For this reason, this chapter provides
an overview of recent work on change analysis with a focus on frequent patterns and
decision trees in order to gain a deeper understanding of the problems that have been
identified and the fundamental techniques that are employed. Since it is inevitable for
this discussion to have an, at least basic, understanding of frequent patterns and decision
trees, both somewhat classical areas of data mining will be briefly and informally intro-
duced in the course of this chapter. Large parts of this chapter have first been published
in Böttcher (2011) and are reproduced here.

2.1 Approaches for Analysing Change

Threats and opportunities often manifest themselves by changes in an organisation’s
environment. Both of them require the systems exhibit an ability not only to detect
but also to understand changes to be able to respond with corrective or exploitative
action. To decide whether something needs to be done, what to do, and eventually
doing it is one core managerial task. It consists of three phases: first, a predecision stage
to identify actual and potential threats and opportunities; second, the decision making
itself, and third, a postdecision stage to conduct periodical checks for deviations from
the assumptions and knowledge on which the decision was based (Ackoff, 1981).

12 CHAPTER 2. ANALYSING CHANGE

Even though the pre- and postdecision stage are directed at analysing and understanding
changes within a domain, they demand different types of knowledge about it.

Starting with the postdecision stage, to check whether the assumptions and knowledge on
which a decision rests are still valid entails to contrast the knowledge which was available
at the time of decision making with the present one. In more general terms, such an
approach compares the present state of a domain with a baseline which corresponds to
its state at an earlier, distinguished time. As change is ubiquitous it is almost certain
that a considerable number of deviations will be detected, though slight deviations only
rarely provide enough reason for a corporation to abandon decisions. Owing to the costs,
time and resources necessary to decide, revise and implement plans, corporations would
intervene only if deviations are so large that the original decision, seen from the present,
would be rendered wrong. By and large, the knowledge demanded at the postdecision
stage is characterised by pinpointing what has changed and to which extent.

For the predecision stage, in contrast to the postdecision stage, almost always no baseline
as a reference of comparison is available owing to the fact that it looks for unexpected,
emerging changes in often only little understood domains. It is true that the approach of
contrasting two time points is theoretically employable here too by using some arbitrary
time point as the baseline. It is, nonetheless, also true that in practise its results will
often lack meaning and utility.

The decision whether to buy stocks illustrates this shortfall. Assume it is July 17, 2009
and we are interested in buying automotive stocks which in view of the just finished
automotive sales crisis are likely to be sold at a low price. To decide upon whether to
buy we analyse the change of the stock price of a car manufacturer using the contrasting
approach thereby arbitrarily choosing a time point one year earlier for the baseline, say
July 17, 2008. We find that the stock price despite the sales crisis stayed almost level
being 29.46 Euro on the first and 29.26 Euro on the second date. So, is this a good buy?

Although in this example the choice of decisions was predefined (buy, not buy) as opposed
to real world scenarios where a multitude of alternatives are the norm, most of them
being the result of time-intensive brainstorming and refinement, it demonstrates that
the knowledge produced by sole comparison of two time points is only of limited use
prior to decision making. What it lacks is a sense of rate and anticipation, this means,
whether the observed change progresses slow or fast-paced, and how it extends into the
future.

Anticipations of future trends are often developed by looking at the current point and
past trends, and projecting them into the future (Ackoff, 1981). Because one shift up or
down does not make a trend, an obvious solution for identifying changes to rest decisions
on could thus be to contrast the present with a sequence of historic time points as opposed
to merely a single one. This eventually yields a history of changes which can be analysed
further. Likewise one could also contrast each time point with its predecessor, or the
oldest one with any newer, and so forth. There are many alternatives of which each
yields a sequence of changes but the general idea remains the same: to analyse change
along a sequence of (many) time points. Having a history of how a domain looked like
in the past, it can serve as the fundamental for the identification and assessment of
patterns of change, the more simpler ones of which are trends.

Reconsider the example about buying automotive stocks. Figure 2.1 shows the devel-

2.2. CONTRAST AND CHANGE MINING 13

Oct08 Jan09 Apr09 Jul0915

20

25

30

35

Date

Pr
ic
e

Figure 2.1: Stock market example: price history from July 17, 2008 to July 17, 2009

opment of the price between the two dates previously used to illustrate the contrasting
approach, which means the price between July 17, 2008 and July 17, 2009. As one can
clearly see, there was first a downward trend that turned into an upward trend showing
a moderate rate of change. Given this information one would anticipate the continuation
of the trend into the near future. Overall it can be said that the information obtained
by looking at many time points rather than solely two reduces the uncertainty of making
a buy decision.

2.2 Contrast and Change Mining

Many of the changes corporations are interested in, but rarely aware of, are captured in
the masses of data collected during daily operations. Changes hidden in this data may
mirror, for instance, external influences such as customer and market trends, but also
internal influences such as supply shortages or shifts in product quality.

While data mining has traditionally concentrated on the analysis of a static world, in
which data instances are collected, stored and analysed to derive models that describe
the present, there is growing consensus that revealing how a domain changes is equally
as important as producing highly accurate models (Liu et al., 2000; Kifer et al., 2004).
Nowadays, developing methods for analysing and understanding change is seen as one
of the primary research issues when dealing with evolving data (Gaber et al., 2005).

Led by practical needs, the two main subfields of data mining for analysing change—
contrast mining and change mining—that have emerged reflect the two kinds of know-
ledge need laid out in the previous section.

Contrast Mining quantifies and describes the difference between two data sets in
terms of the models they induce or the patterns they contain. It produces knowledge
that describes what has changed as well as the extent of it.(Dong and Li, 1999; Ganti
et al., 2002; Novak et al., 2009)

Instead of comparing two data sets directly, contrast mining approaches first learn pat-
terns or models from the data sets which are then subsequently compared with each
other. This approach has the advantage that the complexity and size of the data is

14 CHAPTER 2. ANALYSING CHANGE

reduced while most of the information contained in the original raw data is being pre-
served. Nevertheless, this also means that the way how change is described and what
kind of change is discovered strongly depends on which types of patterns and models are
being used. Although this would theoretically yield a wide spectrum of contrast mining
approaches, research has so far focused on employing frequent patterns, decision trees
and clusters.

To illustrate the utility of contrast mining in real-world applications consider a retail
business. For a retail manager, it is paramount to detect whether the present customer
structure has significantly changed since the current marketing and sales plans were
decided. If he learns that, for instance, the largest customer group used to be single
twentysomethings but are now married middle agers he could revise the original plans
to match the characteristics of the older customer group. Similarly, the retail manager
could use contrast mining to check whether the revision was successful or had undesired
side-effects by comparing data from before and after it.

While customer analytics is the area which is targeted by the vast majority of reported
contrast mining applications (Song et al., 2001; Chen et al., 2005; Kim et al., 2005; Tsai
and Shieh, 2009) it is not the only area it has been successfully applied to. For instance,
Cormode and Muthukrishnan (2005) employed contrast mining in the field of computer
network monitoring to find addresses and flows that differ significantly in traffic level
compared to a reference time period.

Conventional data mining methods observe one data set and learn models or discover
patterns upon it. Contrast mining methods take two data sets and compare them based
on the models and patterns contained in them. They emphasise on describing what has
changed, in terms of differences, but are unable to answer how a domain changes, in
terms of trends. The need to also achieve the latter eventually led to the emergence of
the field of change mining. A contrast mining it is a subarea of higher order mining
(see Roddick et al., 2008), which encompasses methods for the discovery of knowledge
by processing models (instead of data).

Change Mining aims at modelling, monitoring and interpreting changes in the patterns
and models that describe an evolving domain over more than two, often many, tempor-
ally ordered data sets. (Liu et al., 2000; Böttcher et al., 2008a) It produces knowledge
that enables anticipation of the future.

Similar to contrast mining almost every type of model and pattern can be subject to
change mining. Most approaches, however, have focussed on utilising frequent patterns
and clusters. Because there seems to be a trend toward building systems to store, query
and analyse those ‘historical’ models which have been produced over time (Liu and
Tuzhilin, 2008) it can be expected that the scope of change mining approaches will be
further broadened in the future.

Change mining is particularly helpful in domains in which it is crucial to detect emerging
trends as early as possible and which require to make decisions in anticipation rather
than in reaction. One typical examples of such an application area is customer and
business process analysis. Consider a business which operates in dynamic markets with
customers who, driven by innovations and competing products, have highly changing
demands and attitudes. In such a business it is vitally important to understand what
their customers expect from them in the future. For example, in the utility industry

2.3. CHANGE ANALYSIS FOR FREQUENT PATTERNS 15

it is essential to understand the factors which drive customer to switch to a different
provider well before these factors effect a large fraction of them. Here, change mining
enables an analyst to identify emerging trends for dissatisfaction and thus to decide upon
countermeasures before they become severe on a medium or long term scale (Böttcher
et al., 2006a, 2009).

At last, it should be noted that the related topic of detecting change, as opposed to
analysing it, has a long-standing history, in statistics and also in machine learning. In
statistics a plethora of methods has been proposed for the identification of so-called
change points (Chen and Gupta, 2000; Brodsky and Darkhovsky, 2010). In machine
learning the contributions to change detection are directed toward the problem of concept
drift, this means to determine whether a target concept to be learned has changed in
order to quickly adapt the learner (Schlimmer and Granger, 1986; Widmer and Kubat,
1996). The difference to contrast and change mining, however, is that these methods are
often meant to be embedded into the learning algorithms as a contribution to fields like
incremental (online) learning such that they “can detect context changes without being
explicitly informed about them” (Widmer and Kubat, 1996).

2.3 Change Analysis for Frequent Patterns

The problem of finding frequent patterns can be stated as follows: given a collection of
sets of objects, discover the most frequent co-occurences among objects within the same
set (Agrawal et al., 1993). The frequency of a set of co-occuring objects is referred to as
support and is defined as the relative number of sets within the collection which contain
it.

Frequent pattern mining emerged from market basket analysis and even though it is
nowadays being applied to a much wider range of problems the used terminology still
significantly borrows from this initial application domain. In market basket analysis
the sets correspond to sales transactions and the objects correspond to purchased items.
Consequently, co-occuring objects are called item set, and they are frequent if the support
is greater than a user-specified threshold (minimum support). A typical result looks like
“A basket contains the items milk, bread and butter with support 0.6”. Such a result can
then be used to create special offers, to arrange products in a market or for customer-
tailored advertisement, assuming that the sale of one item will influence the sale of
others.

Historically, frequent item sets have for a long time been seen as a first step in finding
association rules. These are rules that imply the presence of some items based the
presence of other items within the same transactions with significant certainty. An
example of an association rule might be: “Among those customers who buy bread and
butter, 0.9 will also buy milk.” The attached relative frequency is called the confidence,
and it measures the fraction of transactions that contain the consequent item set among
the transactions that contain the antecedent item set. Nonetheless, today it is widely
agreed that frequent item sets can provide insightful knowledge on their own such that
the step of producing association rule can be seen as optional and is in practise often
omitted.

The core ideas of frequent item set mining have been adapted to other structures which

16 CHAPTER 2. ANALYSING CHANGE

coined the umbrella term frequent patterns that additionally embraces, for instance,
frequent sequences (Agrawal and Srikant, 1995), for co-occurences within sets of ordered
objects, and frequent subgraphs (Inokuchi et al., 2000; Kuramochi and Karypis, 2001),
for co-occurences within sets of interrelated or interdependent objects.

Even though being the oldest, frequent item sets are still also the most popular type
of frequent patterns. One reason is their versatility. Frequent item set mining can be
applied to any nominal data by encoding every (attribute, attribute value) combination
as an item. An item set then describes a conjunction of attributes and their values, and
its support represents the relative number of instances which satisfy this conjunction.
Stemming from the market basket analysis roots, the instances of a data set on which
frequent item set mining is carried out are also called transactions. Generalising further,
frequent item set mining can be applied to any data transformable into Boolean or 0/1
format, this means each attribute models the presence respectively absence of a real-
world property. In this way, micro-array experiments and documents can be considered
transactions whose items are gene expression properties respectively word occurrences.

Frequent item sets have received a high popularity as a facilitator for analysing change
owing to several advantages they offer. First and foremost, they provide a nearly ex-
haustive overview of the patterns contained within a data set that is only limited by the
chosen minimum support threshold. In this way, a rather detailed description of a data
sets structure is obtained. Second, item sets are interpretable. To illustrate the inter-
pretability consider survey data where each record corresponds to an individual. Taking
the intuitive notion of a subgroup as a set individuals who share properties, an item set
is a descriptor of such properties. The transactions, in turn, that contain this item set
constitute the subgroup. From this point of view, frequent item set mining produces
all subgroups contained in data which exceed a certain size. In more general terms it
can be said that an item set represents a specific subspace of the data respectively the
domain. Third, measures such as support, but also confidence, that were initially de-
veloped to guide the discovery process, are meaningful and practically valuable measures
for these subspaces. Support measures their relative size and confidence the fraction of
transactions in a subspace who have a certain property.

2.3.1 Contrast Mining

Consider two data sets that were collected during different time periods. If for all item
sets their support would be similar across the data sets it would be reasonable to state
that the data does not differ to a significant degree. In reverse, if the support of an
item set differs considerably it is reasonable to state that the data set differs in the part
of the attribute space described by it. The support difference can either be measured
absolutely by subtracting the values, or relatively by dividing them. Nonetheless, using
an absolute difference can be problematic sometimes: Because support is a relative
measure, the interpretation of an absolute change varies with its value. For example,
an increase by 0.05 would not be much for a support of 0.8 but for a support of 0.05 it
means a doubling of the transactions covered by the corresponding item set and therefore
a significant change. The larger the difference the more interesting an item set gets. In
particular when a relative difference is employed it is obvious that item sets with low
support have a greater chance to exhibit a strong difference than item sets with high
support.

2.3. CHANGE ANALYSIS FOR FREQUENT PATTERNS 17

Considering that the number of item sets is exponential in the number of items it is
self-evident that finding those item sets with maximal difference may require a huge
computational effort. Wang et al. (2005) investigated the computational complexity of
finding those item sets which are only present in one of the two data sets and have
maximum support difference. They proved that the problem of finding those item sets
is MAX SNP-hard. This implies that polynomial time approximation algorithms do
not exist for the problem unless P=NP. Because this is a special case of the idea laid
out above the result provides an indication of the computational complexity of contrast
mining based on frequent patterns in general.

Dong and Li (1999, 2005) were among the first who put forward the idea of a contrast
mining approach based on frequent patterns. They introduced the concept of emerging
patterns as “item sets whose supports increase significantly from one data set to an-
other”. Having a (time-)ordered pair of data sets an item set is emerging if the relative
difference, called growth rate, between its supports in the second and the first data set
exceeds a user-defined threshold.

Dong and Li argue that the truly interesting emerging item sets are those with low to
medium support. However, enumerating all item sets starting with the high support
ones, like it is typically done in frequent item set mining, is unfeasible in this setting due
to the potentially exponential number of item sets that need to be enumerated before
realistic candidates for emerging item sets, i.e. those with low to medium support, are
found.

To tackle this complexity challenge Dong and Li (1999, 2005) proposed to make a trade-
off between the explicitness of the emerging item sets’ representation and the time needed
to produce them. In particular, they decided to derive the emerging patterns but not
their actual growth rate and to represent the set of emerging item sets by two sets: one
constituting its lower bound, the other constituting its upper bound. An item set thus
is emergent if one of its subset is contained in the lower bound and one of its supersets
is contained in the upper bound. The pair of both sets is called a border description of
the set of emerging item sets. Dong and Li showed that a border description of emerging
item sets always exists.

The emerging patterns paradigm has been further elaborated by different researchers.
For example, Chu et al. (2009) presented a method which embeds emerging item sets
into the data stream paradigm. Furthermore, several contributions have been dealing
with the problem to reduce the usually large number of emerging patterns that are
discovered either by incorporating additional measures of interests (Zhang et al., 2000;
Fan and Ramamohanarao, 2003), by using condensed representations (Soulet et al.,
2004), or by presenting only those fundamental changes which cannot be explained by
others (Liu et al., 2001a).

Meanwhile a research area on its own are so-called jumping emerging patterns which
are emerging patterns whose support increases sharply from zero in one data set to
non-zero in the other (Li et al., 2001). Although they are a special type of emerging
patterns they are related to much older concepts, in particular to discriminant rules and
to rough set reducts. A discriminant rule is an assertion which discriminates one class of
objects from other classes. (Han and Fu, 1996) A rough set reduct is a set of attributes
providing complete knowledge about one particular classication hypothesis within a given

18 CHAPTER 2. ANALYSING CHANGE

universum of objects. A jumping emerging pattern is a set of attribute-value pairs which
is specific to objects belonging to one time period. Considering that a time period could
also be modelled as a class, it is evident that all three concepts although emerged from
different fields of research serve almost the same purpose. Indeed, basic mathematical
relations between rough set reducts and jumping emerging patterns have been reported
by Terlecki and Walczak (2007). No comparable analysis exists yet for discriminant
rules.

In the same year in which the idea of emerging pattern mining was first presented to a
wider audience the very similar concept of contrast sets was independently proposed by
Bay and Pazzani (1999, 2001), surprisingly also at the same conference. Bay and Pazzani
(1999, 2001) proposed to describe the difference between two data sets by contrast sets
which they defined as “conjunctions of attributes and values that differ meaningfully
in their distribution across groups”. It goes without saying that this representation is
equivalent to an item set when applied to attribute-valued data such that the problem
of finding contrast sets is transformed into the problem of searching all item sets which
significantly differ in their support across data sets.

To differ meaningfully an item set’s support difference must exceed a user defined
threshold. Different from emerging item sets the absolute difference between support val-
ues is employed such that the aforementioned complexity issues are not so predominant.
In addition, contrast sets require the support values in the data sets to be statistically
significantly different by means of a chi-square test. To discover contrast sets Bay and
Pazzani (1999, 2001) proposed the STUCCO algorithm which performs a breadth-first
search in the item set lattice. It starts with testing the smallest item sets, then tests all
next-larger ones, and so on. To overcome complexity problems the algorithm prunes the
search space by not visiting an item set’s supersets if it is determinable that they will
not meet the conditions for contrast sets or if their support values are too small for a
valid chi-square test.

Contrast sets seem to have received considerably less attention in research than emerging
patterns. Hilderman and Peckham (2005) presented the CIGAR (Contrasting Grouped
Association Rules) algorithm which employs different statistical tests to STUCCO. Wong
and Tseng (2005) showed how negations can be incorporated into the contrast set de-
scription. It was demonstrated by Webb et al. (2003) that contrast set mining can be
formulated as a classification task which produces rules that predict the data set an
instance belongs to. This idea was rediscovered by Hido et al. (2008) who generalised it
to work with arbitrary classifiers.

The concepts of contrast set and emerging patterns were not only concurrently developed,
also their informal definitions appear astonishingly similar. That the problems of finding
emerging patterns and contrast sets are also formally equivalent was shown by Novak
et al. (2009). They also proved that both can be formulated as subgroup discovery
problems (Wrobel, 1997).

2.3.2 Change Mining

The underlying idea of almost every change mining approach based on frequent pat-
terns is to detect interesting changes by analysing their support, confidence or any other
measure of interest (see Geng and Hamilton, 2006) along the time axis. The starting

2.3. CHANGE ANALYSIS FOR FREQUENT PATTERNS 19

Time

1

0

Support

Confidence

X → Y

T1

X → Y X → Y X → Y· · ·

· · ·T2 Tn−1 Tn

Figure 2.2: Pattern histories of support and confidence.

point of such an approach is depicted in Figure 2.2: a time-stamped data set is par-
titioned into intervals along the time axis. Frequent pattern discovery is then applied
to each of these subsets. This yields sequences—often also called pattern histories—of
the chosen measure for each pattern, which can be analysed further. Of particular in-
terest are regularities in the histories which are called change patterns. They allow to
make statements about the future development of a pattern and thus provide a basis for
anticipative decision making.

At its core, change mining based on frequent patterns is a time series analysis problem.
In spite of time series analysis having a long-standing tradition in statistics many of the
‘classical’ approaches, such as those described in the well-known text books by Chatfield
(1996, 2001), cannot directly be applied to pattern histories. The main reason is that
they rely on the availability of, or strong assumption on an underlying model. To fit a
model a sufficiently large number of values for parameter estimation is necessary, but
rarely available in change mining. Moreover, a fitted model may not always adequately
describe the underlying process. For example, a regression line can be fitted to any
pairs of values – independent of how the dependent value actually relates to the other.
Therefore a model needs to be validated, but this typically involves human intervention.
Considering the vast number of patterns typically discovered it is at hand that this in
unfeasible. Pattern change mining and time series analysis, nevertheless, have in com-
mon that both aim at providing a descriptive (qualitative) statement about an evolving
domain.

Research on how to analyse pattern histories for interesting changes has so far yielded
into three different directions that differ considerably in terms of the employed tech-
niques: template matching, statistical testing and heuristics. For example, consider
Figure 2.3 which shows two histories. The history of item set Z exhibits a very slight
downward trend which can only be ascertained by means of a statistical test. Even
though its support has significantly higher values than those of the item set X, the lat-
ter shows many apparent characteristic features which might be of interest to an expert:
a trend turning point and a declining and inclining trend left, respectively right from
it. These features could be analysed by means of a statistic, but also by heuristics to
detect the turning point, or by template matching if one is interested in “steep declines
followed by a moderate incline”.

The first change mining approach based on frequent patterns was proposed by Agrawal

20 CHAPTER 2. ANALYSING CHANGE

5 10 15 200.2

0.4

0.6

0.8

1

T

su
pp

X
Z

Figure 2.3: The support histories of two item sets X and Z taken from real-world data

and Psaila (1995). They considered a query language for the shape of the support
and confidence histories of association rules. The user has to specify several shapes,
which he regards interesting, and the histories are then matched against them. Several
authors have further elaborated on this initial approach, for example by introducing
fuzzy descriptions (Au and Chan, 2005; Steinbrecher and Kruse, 2008). It should also
be noted that there are several similar methods in the field of shape retrieval from time
series, such as the ones by Goldin and Kanellakis (1995) or Rafiei and Mendelzon (1997).

The work described by Liu et al. (2001b) is motivated by the observation that most
users of association rules feel uncomfortable with the bare presentation of rule confidence
and support. They are concerned about a rule’s validity. Thus additional information
about how a rule changes, if it exhibits trend, stability or other systematics, need to be
provided to assist a user in judging the rule’s value. The authors therefore argue that a
rule’s interestingness should be assessed by the characteristics of its behaviour over time.
Given a measure like support or confidence, rules are assigned by means of a χ2-test (for
stability) and a runs-test (for non-random behaviour) to one of three classes, if possible:
semistable rules, stable rules and trend rules. Subsequently, rules are ranked within each
class according to an interestingness measure. The idea to use the history of a pattern as
a key to examine its interestingness has also received attention by different researchers.
Böttcher et al. (2006b) proposed a framework which employs statistical tests different
to those used by Liu et al. (2001b) and additionally accounts for temporal redundancies.
Russ et al. (2007) considered using histories for establishing a relevance feedback process
for association rules.

The framework PAM (pattern monitor), which is proposed in the dissertation of Baron
(2004), aims to monitor rule histories in order to detect interesting short and long term
changes for instance in the context of email traffic monitoring (Baron et al., 2003) and
web usage analysis (Baron and Spiliopoulou, 2003). In contrast to the other approaches
discussed in this section, the monitor treats a history not as a static, but as a dynamic
object which is extended permanently after every new data mining session. For this
reason the author makes the early detection of long term changes a key issue. The
monitor’s architecture basically consists of two layers. The first layer discovers, stores
and maintains association rules and their histories. Each association rule is stored using

2.4. CHANGE ANALYSIS FOR DECISION TREES 21

the Generic Rule Model, which is a record containing the discovered rule, its statistics
for a particular period, a timestamp to indicate the period and a unique identifier for
each rule. The second layer builds upon the Generic Rule Model and provides several
heuristics to detect interesting short- and long term changes. A short term change refers
to the change between two consecutive periods, whereas long term change means that
the values of a rule’s measure do not immediately return to their former level.

The approach by Chakrabarti et al. (1998) is different from the other methods discussed
in this section, as it does not rely on a particular user-specified time partitioning. Instead,
the method determines the best time partitioning for each item set individually driven by
the assumption that the correlation between its constituting items should be maximally
homogeneous within, but inhomogeneous between partitions. This is done by application
of the minimum description length principle (Rissanen, 1978). For this purpose a binary
coding scheme for time partitions is defined. It assigns a code length that declines
with increasing homogeneity. The best partition is then chosen such that the sum of
all partition code lengths is minimised. An elegant aspect of this approach is that
the code length also reflects volatility — a potential measure of interestingness: Large
code lengths indicate higher volatility of the correlation among the items and thus a
potentially more interesting item set. The disadvantage of the method, however, is
that it derives one partitioning per item set. Beyond the scalability restrictions thus
implied, a juxtaposition of the evolution of different rules (e.g. overlapping ones) is
more complicated.

2.4 Change Analysis for Decision Trees

Possibly the most commonly encountered classifier in data mining are decision trees
which were introduced by Breiman et al. (1984) and Quinlan (1986). As the name
already indicates a decision tree is an acyclic graph having a tree-structure. Each inner
node of the tree is labelled with an attribute which is also called split attribute. For
each attribute value of a split attribute an edge to a child node exists and is labeled with
the attribute value. Each leaf node has a probabilities of class membership assigned to
it. Given a new, unclassified instance the decision tree is interpreted starting from the
root. In each inner node the instance is tested for the attribute stored within the node.
According to the result of the test the corresponding edge is followed to a child node.
When a leaf node is reached the most probable class assigned to it is taken as the class
for the instance. In other words, each path from the root to a leaf describes a rule with
the attribute and attribute values on the path forming the rule’s antecedent and the
majority class in the leaf the consequent.

Figure 2.4 illustrates the induction of decision trees from data as well as one of the
big challenges linked with their comparison based on a simple ‘block world’ example.
The upper part shows the distribution of training instances over the attribute space at
two different time periods. Each instance belongs to one of two classes, squares and
circles, each described by two attributes A and B with domains {a1, a2} and {b1, b2},
respectively. Consider that decision trees with only one split attribute are being learned
at the end of each period. In period T1, shown in the left part, the attribute A separates
the classes much better than B and it therefore would have been chosen as the split
attribute. The split divides the attribute space into two partitions, as shown by the

22 CHAPTER 2. ANALYSING CHANGE

a1

a1a1

a2

a2a2

b1

b1b1

b2

b2b2

T1 T2

A B

9 1 1 9 7 2 3 8

Figure 2.4: Two decision trees, each one learned from data of a different time period

thick solid line. Instances which fall into the partition defined by the attribute value a1
will be classified as circles because they constitute with 9 to 1 instances the majority
class, whereas instances which fall into the partition defined by a2 will be classified
as squares. Nonetheless, the distribution of samples shifts over time. Classifying the
instances in time period T2 with the decision tree learned in T1 leads to a classification
error of 8. Indeed, in period T2 attribute B would have been the superior split attribute,
leading to a completely different decision tree compared to the one from T1.

2.4.1 Contrast Mining

Due to trees being a fundamental and frequently encountered structure in computer
science, the comparison of them is a rather well-researched area. For example, the tree
edit distance problem is to compute a minimum edit script which transforms one tree
into the other based on a set of edit operations, such as node insertion, deletion and
relabeling. A related problem is that of tree alignment which aims to make two trees as
similar as possible by inserting (empty) nodes in both trees such that they are structural
isomorphic with a minimum label mismatch. Unfortunately, both problems are MAX
SNP-hard for unordered labeled trees (see Bille, 2005). This means there exists no
polynomial time approximation scheme unless P=NP. Nevertheless, for the special case
that the degree of both trees is bounded the tree alignment problem can be solved in
polynomial time (Jiang et al., 1995).

It is justifiable to say that structurally comparing decision trees may not be feasible in
practise. First of all, although decision trees are unordered trees, they are not labeled
because an attribute can be assigned to multiple nodes. For this reason, even the few
algorithms for solving constrained versions of the tree edit distance and tree alignment
problem cannot be applied. Even worse, decision trees are well-known for their instability
(Breiman, 1996) as the previous example illustrated. Even minor changes in the data, for
example introduced by some noisy instances, can lead to drastically different trees which
produce very similar classifications. In contrast, drastically different classifications can
sometimes be accounted to only minor changes in the tree.

For these reasons, the majority of the few publications on contrast mining using de-
cision trees are based on comparing the classification behaviour rather than performing

2.4. CHANGE ANALYSIS FOR DECISION TREES 23

a1

a1

a1

a1a1

a2

a2

a2

a2a2

b1

b1b1

b1b1

b2

b2b2

b2b2

T1 T2

A

A

A

B

BB

4 0 3 2 2 5 1 37 0 2 1 0 6 1 3

Figure 2.5: The ‘new decision tree’ method for comparing decision trees

a1a1

a1a1

a2a2

a2a2

b1b1

b2b2

T1 T2

AA

9 1 1 9 6 4 4 5

Figure 2.6: The ‘same attribute and same cut’ method for comparing decision trees

a disproportionally much more difficult structural tree comparison. They utilise that
a decision tree describes a successive refinement of the attribute space such that even-
tually every path from the root to a leaf uniquely determines a partition of it. Each
partition contains the probabilities of class membership of the instances which fall into
it, whereby each instance can be assigned to one and only one partition. In principle, two
main strategies have been proposed to compare decision trees based on the partitions
they describe. They can be termed ‘new decision tree’ and ‘same attribute and same
cut’ (Liu et al., 2000).

In the ‘new decision tree’ method, illustrated in Figure 2.5 using the previous example, a
decision tree is induced independently for each data set. The attribute space partitions
defined by the decision trees are then made identical by overlaying them. This means,
finer partitions are constructed that constitute a common subset of the partitions defined
by both trees. In each of these finer partitions the instances of both data sets which
fall into it are then compared with each other, for example, with respect to their class
membership probabilities. The observed differences can then be aggregated to yield an
overall similarity score for the two decision trees. This method was first proposed by
Ganti et al. (1999, 2002) who also showed that a greatest common refinement of two
decision tree partitions always exists. Wang et al. (2003b) proposed a different approach

24 CHAPTER 2. ANALYSING CHANGE

to comparing two decision trees which they call correspondence tracing. Rather than
calculating a common refinement which they claim does not match the thinking of human
experts they compare regions by means of their correspondence on a set of instances.
Thereby, a region corresponds to another if the former contains a significant amount of
the instances which are also contained in the latter.

The ‘same attribute and same cut’ method, depicted in Figure 2.6, starts with inducing a
decision tree for the first data set. It then builds a decision tree from the second data set
by using the same attributes and, in the case of numeric attributes, the same split points,
as in the first tree in each step of the induction process. If a branch of the new tree needs
to go beyond the corresponding branch in the old tree, the normal decision tree induction
process is performed. This way, the obtained partitions are already comparable such that
they do not need to be intersected as in the ‘new decision tree’ method. This method
has first been considered by Liu et al. (2000) and further extended by Kim et al. (2005)
who introduced heuristics to detect emerging, unexpected, added and removed rules.

Considering that decision trees describe a successive refinement of the attribute space
they can also be seen as defining a hierarchy. Provided that class membership prob-
abilities are additionally assigned to each inner node of the tree, the root node would
describe the class probabilities for the whole data set, the nodes in the first level of the
tree the class probabilities for the next-finer partition, and so on. Similar hierarchies can
be found in OLAP (Online Analytical Processing) tools where a target variable, such as
the revenue, is aggregated at various level of detail, for instance, first on country level,
then on state level and then on town level. On the one hand, the difference to decision
trees, however, is that the partitioning attributes in OLAP hierarchies are user-defined
and invariant over time. On the other hand, the ‘same attribute and same cut’ method
produces two decision trees with identical structure such that both approaches share
some similarities. Taking this into account change explanation methods for OLAP hier-
archies which have been, for example, proposed by Sarawagi (1999) and Agarwal et al.
(2007) could be, but have not been yet, adapted for explaining change in decision trees.

2.5 Concept Drift Detection

While the analysis of change is a relatively young research topic, the question of detecting
whether something has changed or is changing, without asking for the ‘what’ and ‘how’,
can be traced back to the very early days of machine learning, where it is often associated
with the term concept drift detection. In the following a brief introduction to the latter
field is provided thereby emphasis is being put on theoretical results but also on seminal
contributions.

Concept learning is an area of machine learning which deals with inferring the general
definition of some concept given examples labeled as members or non-members of it, but
is often also used synonymous for any task which learns a model from examples. While it
is folklore that many concept definitions change over time, for example the definition of
‘good weather’ may now be different than a hundred years ago, this was not perceived as
a problem for learning until the emergence of the first incremental, or on-line, algorithms
in the mid 1980s. It was realised that many concepts depend on some hidden contexts
which are not (and often cannot be) given explicitly as predictive attributes (Kubat,
1989; Widmer and Kubat, 1996). For example, the concept of ‘good weather’ is likely to

2.5. CONCEPT DRIFT DETECTION 25

depend on hidden contexts relating to the global climate and the geographical location.
Changes in the hidden context may introduce changes in the concept to learn. If this
change is gradual it is generally referred to as concept drift (Widmer and Kubat, 1996).
If it is abrupt the term concept shift is sometimes used. Because concept shift can be
seen as an extreme case of concept drift many authors distinguish only between gradual
concept drift and abrupt concept drift.

Mainly for the purpose of theoretical analysis concept drift is often quantified by its
rate which measures how frequent a concept changes, its extent which measures how
different two succeeding concepts are, and its speed which measures how gradual the
concept changes. If the goal is to keep track of the current concept it seems to be
apparent that it should become more difficult for a learning algorithm with increasing
extent and rate; indeed, results from computational learning theory show that bounds
exists for the maximum extent (Helmbold and Long, 1994) and rate (Kuh et al., 1990)
tolerable by a learning algorithm. Based on these theoretical considerations concepts
thus should be easier to track the less radical they change and the longer they are stable.
Unfortunately, similar theoretical results do not exist for the speed of concept drift but
experiments by several authors indicate that concept drift detection becomes a greater
challenge the slower change happens (Widmer and Kubat, 1996; Lanquillon and Renz,
1999; Stanley, 2003). The slower the concept drift, the more it is difficult to distinguish
the first signs of concept drift from noise, for instance mislabeled instances. Normally
a compromise needs to be found between concept drift detection methods which are
sensible to noise but detect drift early with a high likelihood of raising false alarms, on
the one hand, and on the other hand, methods which are robust against noise but which
will defer the detection decision until sufficient evidence for concept drift is available.

One consequence of concept drift is that a learning algorithm can only trust the most
recent instances which enforces regular updates of the learned model. Most proposed
strategies for coping with concept drift hence use variations of the sliding window idea:
a window is maintained that keeps the most recent instances, and from which older
instances are dropped according to some set of rules. The contents of the window is
then used to detect the point in time when a concept starts drifting and, obviously,
to have data to rebuild or revise the model after drift has been detected in order to
maintain its quality. Considering that historically the latter was the primary motivation
for developing concept drift detection methods it is not surprising that most of them
are based on monitoring one or more (quality) measures. For instance, Schlimmer and
Granger (1986) employ a Bayesian measure which models how well a characterisation
matches a concept. Widmer and Kubat (1996) use a model’s predictive performance
measured over a fixed number of past classifications, and Lanquillon and Renz (1999)
propose a combination of two measures; one based on the average confidence of a correct
prediction on new instances and the second one describes the fraction of instances for
which the confidence is below a given threshold.

Although these methods are based on heuristics they work reasonable well in practise.
Due to their simplicity they also provide the advantage of being efficiently applicable
which is in particular important in data stream contexts. On the downside they lack
generality because they are often tightly related to a specific type of model and also
they do not provide guarantees on the detection reliability. Kifer et al. (2004) were
the first who addressed these shortcomings. They reformulated the problem of concept

26 CHAPTER 2. ANALYSING CHANGE

drift detection as identifying a time point such that preceding and succeeding data
are sampled from different distributions and proposed a non-parametric statistical test
which allows to compare the data in the current window to the data in a reference
window. Notably, Kifer et al. (2004) proved that their approach provides guarantees
regarding its sensitivity while allowing to control the robustness against raising false
alarms. Although much more sophisticated than the aforementioned heuristics their
approach still is suitable for data stream mining and is thus seen as one of the seminal
works in this area.

2.6 General Principles and Methodology

In general, the spectrum of approaches to analyse change is vast and only a tiny fraction
of what may be achievable has been researched so far. For each type of model respectively
pattern used in conventional data mining there is a manifold of ways to analyse change.
Furthermore, the above discussion of contrast and change mining shows that these are
two independent research streams which have been created and evolve with separate aims
and objectives. Even though there may be the potential for unifying them by either
generalising contrast mining approaches to many periods, or reducing change mining
approaches to only two periods, this far this challenge seems to have not been addressed
by the research community. Nevertheless, examination of these two research streams by
juxtaposing and generalising the respective approaches reveals common concepts that
can be shaped into general principles for dealing with models and patterns across time.
These principles have first been published in Böttcher et al. (2008a) and are reproduced in
a revised form in the following sections. It should be noted that the following discussion
generalises beyond change analysis for frequent patterns and decision trees to embrace,
for instance, cluster analysis. For this reason the reader is referred to the overview by
Böttcher (2011) for a broader discussion on change analysis methods, that also includes
cluster analysis.

2.6.1 Choosing the Time Periods

Time periods need to be chosen to obtain the data sets from which eventually those
models respectively pattern sets are learned that are subject to change analysis. From
the view point of change analysis this choice is as vitally important as it is difficult.
Several aspects have to be weighed against each other.

On the one hand, a long period leads to a larger data set and thus enhances the reli-
ability of the learned model or pattern set. However, long periods imply a coarse-grain
partitioning of the time axis, in which interesting short-duration changes might be over-
seen and rather dramatic changes may get blurred due to ‘averaging out’ highly dynamic
episodes. Also, they are less easy to locate on the time axis.

On the other hand, short periods force a more frequent re-learning of the model or pattern
set from a—compared to long periods—smaller data set, implying that the model may
become less robust and patterns less substantial. This makes the discovery of changes
more difficult because the distinction between interesting model components, resp. pat-
terns, and incidental noise gets more challenging (Höppner and Böttcher, 2007). At last,

2.6. GENERAL PRINCIPLES AND METHODOLOGY 27

it should also be kept in mind that frequent re-learning may introduce computational
overhead especially when starting at each period from scratch.

More pragmatic approaches are often feasible though. For example, many applications
are inherently designed around regular time intervals like days, weeks, months et cet-
era. For instance, customer surveys in marketing are often conducted regularly, so time
periods for change analysis should be chosen in accordance with them. Additionally, the
maximum number of periods is often restricted, for example, to match corporate policies
that require performance reports to be generated quarterly or annually. Another option
is to determine the length of the periods by fixing the size of the data sets. If all data
sets have the same cardinality the risk of introducing sporadic changes due to a varying
quality of models respectively patterns is reduced.

2.6.2 Specifying the Objects of Change

The granularity at which change should be analysed needs to be decided. Many models
are a composition of smaller model components, each of which is interpretable and mean-
ingful on its own. For instance, a decision tree is an aggregate of many classification
rules, or a Bayesian network consists of probability distributions and relations thereof.
For other models such as neural networks or support vector machines, a decomposition
does not make sense because the individual parts would lack meaning. In contrast to
the aforementioned, those models can only be observed as monoliths. Pattern sets, for
example sets of item sets or clusters, are always decomposable, as may be expected.
Nonetheless, for reasons of brevity the same terminology as for models will be used in
the following to distinguish between the parts and the whole.

Both, the monolith and the individual components, are the objects of change. The de-
cision for one or the other determines whether change is analysed on a coarse respectively
fine level of detail. Which of the two alternatives to choose depends on factors such as
the type of model for which change is analysed, the desired expressiveness of the insights
about change but also the acceptable balance between the results’ interpretability and
the required effort to produce them.

Monolithic approaches recommend themselves when monitoring the performance of a
model over time is at least as important as understanding the changes within the un-
derlying domain. The model or pattern set is virtually seen as a ‘black box’. For this
reason, monolithic approaches are predominantly found in areas related to concept drift
detection where a description of change is not of greater concern. In fact, monolithic
approaches are independent of the employed model, apart from the naturally domain-
driven differentiation between, for instance, predictors and classifiers.

Compositional approaches are advantageous to give more detailed answers to the question
of what aspects of a domain are changing and how. Here, a set of structural components
that jointly form a (global) model or a pattern set is examined. Corresponding compon-
ents of models from different time periods are analysed for changes. Because in many
cases decomposable models, such as decision trees, item set collections or cluster sets,
describe a partitioning of the data space, the compositional approach enables a localisa-
tion of change. But since the type of partitioning and also the individual characteristics
of model components may differ considerably for different kinds of models, compositional

28 CHAPTER 2. ANALYSING CHANGE

approaches require an adaption to them. This, in turn, influences the type of changes
that can be detected upon the selected objects of change.

In particular, change analysis for pattern sets and contrast mining for decision trees
is dominated by compositional approaches. Notably, all methods that have been dis-
cussed in Section 2.3 regarding contrast and change mining for frequent patterns, and
in Section 2.4 for decision trees qualify as such.

For fruitful change mining, the compositional approach seems preferable over the mono-
lithic one. It requires that the data mining algorithm delivers interpretable models,
whose components are meaningful in their own right. Yet, it is also more demand-
ing. It requires an analyst to have an awareness on which change types are detectable
by which models, and how well these change types fit the real-world problem to be
solved. Depending on the real-world problem, the granularity of decomposition, and the
type of the data mining problem, the types of change considered may be arranged in a
change taxonomy (see Ganti et al., 1999, 2002; Spiliopoulou et al., 2006). Further, the
compositional approach requires a higher computational effort, because for each model
component—in the case of frequent patterns this may be thousands or even hundreds of
thousands—a separate analysis task is carried out, on top of the effort to produce the
model itself.

2.6.3 Establishing Correspondence across Time

After the time axis is suitably partitioned and the objects of change are defined, but
before change eventually is analysed, corresponding models respectively components
need to be (re-)identified across time.

The monolithic approach treats models as a black box such that independent of how
the models actually look like, correspondence is always given. Monolithic approaches
therefore often make use of measures that quantify and assess the model’s behaviour
or performance at time points that mark the end of periods. Change analysis is then
conducted by contrasting these measures or regarding them as a time series.

The employed measures can either summarise structural properties or assess the beha-
viour of a model towards a test set. Generally applicable in this context are validity
measures on homogeneity, separation or stability that are traditionally used for the
evaluation of descriptive models (Vazirgiannis et al., 2003). For instance, Rissland and
Friedman (1995) propose the structural-instability metric for decision trees: Two de-
cision trees are juxtaposed by pairwise comparing their tree nodes and counting (and
weighting) (mis)matches. Predictive models devise measures of their predictive power
such as accuracy, variance and F-measure. For instance, the conceptual equivalence met-
ric proposed by Yang et al. (2005) captures the equivalence between two models by
comparing their classification verdict on each instance of a given test set.

For the compositional approach the problem of establishing correspondence is much
more difficult to solve because components may not always be identical across time,
yet describe the same real world entity. Important examples include classification rules
are getting more specific or more general, or clusters are drifting, splitting, merging or
simply (dis-)appear. On the opposite side, other model components may not change in
their structure but only in associated measures. For instance, an item set can be seen

2.6. GENERAL PRINCIPLES AND METHODOLOGY 29

as time-invariant, i.e. it is formally present at any point in time and no item set can
change into one having fewer, more, or other items. This is because the support—a
measure—determines the item set’s degree of validity, with zero support indicating that
the item set is not present at all.

The distinction between a structural component and a measure component which jointly
form a model component is also applicable to other models, for example decision trees
or sets of clusters (see Ganti et al., 1999, 2002; Bartolini et al., 2004, 2009). The struc-
tural component often describes a region in data space whereas the measure component
comprises a measure—or possibly a set of measures—for it. For instance, a structural
component of a decision tree is a single classification rule’s antecedent and the region in
data space it encodes, whereas a measure component is the class label distribution in
this region.

This distinction enables for establishing correspondence across time by first matching
the structural components and then quantifying change based on the resulting series
of measure components. This leads to statements on whether, for instance, a model
component is moving, shrinking, expanding or—to pick up on the above decision tree
example—its class label distribution changes. Moreover, the mere attempt to match on
itself already allows for a qualitative description of change. If it is not successful, the
model component qualifies for being an emerging component or a vanishing component.
If it is successful on the long run, the model component may be a stable component.

Two strategies offer themselves for matching structural components. A data-driven
strategy aims to identify those structural components among all possible pairings that
have the most significant overlap in the subset of data they describe respectively are
applicable to. This overlap can be determined in several ways. For instance, it can
be the union of the regions in the data space described by the components (e.g. Ganti
et al., 1999, 2002). It can also be determined based on the set of instances covered
by one component which are also covered by the other (e.g. Spiliopoulou et al., 2006;
Höppner and Böttcher, 2007). A representation-driven strategy aims to identify those
structural components among all possible pairings that are significantly similar in their
symbolic representation (see Bartolini et al., 2004, 2009). The similarity is accessed, for
instance, by counting structural differences (e.g. Rissland and Friedman, 1995) or by
transforming the representation such that common similarity measures are applicable
(e.g. Russ et al., 2007). In a way, the representation-driven strategy focuses on the syntax
of a structural component’s representation rather than its semantic as the data-driven
strategy does. Further, the representation-driven strategy is less frequently encountered
in related publications as opposed to the data-driven.

Turning back to the problem of analysing a series of measure components, it needs to
be observed that many of the measures employed for the monolithic approaches are
aggregates of measurements on model components, for example accuracy and variance.
Further, contemporary research shows that model components can, on a local scale, be
model themselves (see Hand, 2002; Rüping, 2006). It therefore comes with no surprise
that the same toolset employed in the monolithic approach can also be employed here,
now to model components rather than the complete global model. Conversely, models
may be build from (local) patterns (see Fürnkranz and Knobbe, 2010) such that ideas
from compositional approaches are transferrable to monolithic ones.

30 CHAPTER 2. ANALYSING CHANGE

The fundamental difference however is that in the compositional approach each com-
ponent may be interrelated or interdependent with others. This interplay between com-
ponents can change and should therefore be addressed by compositional approaches. It
can neither be detected by looking at each component in isolation nor by monolithic
approaches. In part, approaches that follow the above mentioned data-driven strategy
for matching model components are applicable here too. Instead of assessing the overlap
across time periods it is assessed for model components within the same single time
period. A special form of overlap is containment which often manifests itself by one
model component being a specialisation of another. For instance, one item set may be
a proper superset of another one. Each instance for which the more specific model com-
ponent is applicable is also covered by the more general one. The related data spaces
thus contain respectively enclose each other. The well-known confidence measure for
item sets is an example of how containment can be assessed.

2.7 Conclusion

It is crucial in many domains to discover, understand and assess ongoing changes early
and to be able to automatically (re-)act in time. As a response two research fields
have emerged in data mining which are addressing this knowledge need and that can
be distinguished by the type of knowledge they produce. The field of contrast mining
deals with detecting all significant differences between two time periods, or generally,
two data sets. The field of change mining is concerned with discovering how a domain
changes with an emphasis on long term monitoring and change pattern detection.

With the increasing number of change aspects current methods are dealing with also
the number of research challenges increased. The biggest and also oldest challenge
is how to distinguish noise from true changes. This challenge not only concerns the
quality of the data but also the quality of the models and patterns to which change
detection methods can be applied. Another challenge is the computational complexity
of comparing structures, like trees or large pattern sets. Sometimes not even polynomial
time approximation schemes exist such that a crucial research aim is to find a good
balance between the desired knowledge about change and the feasibility to discover it
in reasonable time. Last but not least, in many domains it is not only essential to
detect change, but also to know which changes will occur in the future. Although from a
practical point of view highly desirable the aspect of predicting change, however, has so
far received only little attention in research. Still, this last challenge is somewhat easier
to tackle than the first two and it can be expected to be solved in the near future.

Chapter 3

Utilising Change for Item Sets

One approach to understand change within a domain is to analyse how patterns evolve.
As the previous chapter illustrated a plethora of approaches have been proposed that
target different aspects of change—almost all have in common that they require a tem-
porally ordered sequence of data sets, each one corresponding to a time period. However,
focusing on frequent item sets as one of the most prominent pattern types, a core prob-
lem still is unresolved. The number of item sets found in a data set often is often so
huge, that an expert can hardly, if at all, inspect them in full.

This chapter proposes temporally closed item sets as a novel solution to this problem.
Temporally closed item sets make use of the temporal dimension and thus utilise change.
Still, they are compatible to both change mining approaches and existing reduction
approaches for sets of item sets. Hence, temporally closed item sets are one example,
how the utilisation of change is able to help improve on shortcomings of existing data
mining approaches.

This chapter is organised as follows. Section 3.1 sheds light on the item set quantity
problem and is followed by the problem statement in Section 3.2. Section 3.3 provides
an introduction into frequent item set discovery and introduces the terminology and
notion used throughout the reminder of this chapter. Existing approaches, so-called
condensed representations, for reducing the number of item sets are discussed in Section
3.4. Section 3.5 describes representations of time in data sets. It is discussed how these
representations are reflected in the results of condensed representation approaches if
they are unaware of the representations’ temporal meaning. Section 3.6 introduces the
concept of temporal redundancy on which a novel time-aware condensed representation,
defined in Section 3.7, rests.

3.1 Motivation

The ability to discover all patterns is an item set learner’s strength and likewise its
weakness. Usually the number of discovered item sets can be immense, easily in the
thousands or even tens of thousands. This is particularly evident when dense data sets
are analysed. According to Bayardo et al. (2000) dense data sets have any or all of
the following properties: many frequently occurring items, strong correlations between
several items, and many items in each transaction.

While market-basket data is mostly sparse, in many other domains dense data is being
produced, for instance in the social sciences (census data) and in the telecommunication
business. Because dense data is much more common than sparse data, item set quantity
constitutes a significant practical problem: experts are forced to sift through the mass
of discovered item sets to find the few that are truly important for them—a likely long
and tedious task.

32 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

The item set quantity problem fuels a need for methods that reduce the number of item
sets without reducing the knowledge they represent. Condensed representations address
this need. They facilitate redundancies in the item sets. Redundancy may arise if an
expert, with application of his background knowledge, is able to infer from the occurrence
and properties of some item sets the occurrence and properties of others. Essentially,
observed and inferred item sets have the same meaning to the expert.

The long duration needed by an expert to analyse a collection of item sets is in strong
contrast to the relatively short duration needed for producing the collection from a data
set. Also, data tends to be collected regularly. This led to the need for storing item sets.
In fact, collections of item sets stemming from multiple time periods often are stored
one after the other. The reasons are that experts want to have access to former item
sets, for instance to justify past decisions, but also the prospect of conducting change
analysis.

However, condensed representations to reduce the number of item sets only take into ac-
count a single data set. Similarly, if a temporal sequence of sets of item sets is available,
condensed representations would consider each set individually. Condensed representa-
tions thus do not account for any temporal information and consequently ignore change
and redundancies imposed by it. This ignores the opportunity for a significant further
reduction in the number of item sets which would result from employing more, or broader
forms of redundancy that rest upon consideration of the temporal dimension, and the
change it embodies.

3.2 Problem Statement

The previous discussion leads to the following problem statement: Given a sequence of
data sets each corresponding to a time period produce a condensed representation of the
item sets contained therein that takes into account the temporal dimension. Thereby, it
is assumed that the time periods are disjoint and that no more than one data set exists
for each time period.

Any good solution constitutes an improvement over established condensed representa-
tions. To be eligible, the solution thus needs to be consistent to an established condensed
representation—not only practical, based on experimental results, but also theoretical,
based on conceptual similarities and equivalencies. Indeed, the question is whether to
develop a condensed representation ‘from scratch’ or use the strength of an existing
condensed representation as a leverage for the desired solution. Following the latter al-
ternative makes more sense than following the first, to enforce consistency and to avoid
developing ‘yet another condensed representation’. Moreover, to leverage on the strength
of an established condensed representation, also means to rethink its weaknesses and to
overcome them, at least in part.

Based on the aforesaid, the following requirements are identified:

• Consistency: The solution is a (temporal) extension or generalisation of an exist-
ing and established condensed representation, which hereafter will be referred to as
the reference representation. Especially, it will produce no result that contradicts
the reference representation.

3.3. TERMINOLOGY AND NOTATION 33

• Reduction: Applying the solution to a sequence of data sets yields a smaller
representation than the one obtained from producing the reference representation
from the union of all data sets.

• Robustness: The effectiveness of the solution does not strongly depend on the
level of noise in data.

As mentioned earlier, one reason sequences of item set collections are stored chronology
preserving is the option to carry out change analysis. It is clear that an expert must have
the very same option on the condensed representation to be developed, without having
to accept essential losses in the knowledge about change that is discoverable. This leads
to one further requirement:

• Meaningfulness: The type of redundancy that decides whether an item set is
contained in the condensed representation should be meaningful and designed such
that no potentially interesting change is lost.

Overall, on the way to find a solution for the above problem, several questions need to
be answered. First and foremost, which of the available condensed representations is
suitable as reference representation? What is a meaningful and suitable definition of
redundancy under consideration of the temporal dimension, and how can it be robustly
tested? What is the size of the resulting condensed representation? In this order, the
following sections answer these questions.

3.3 Terminology and Notation

This section extends the commonly used terms for item set mining—motivated and in-
formally introduced in Section 2.3—with a formal notation that will be used throughout
the remaining chapter.

Frequent item set discovery is applied to a setD of transactions I ∈ D. Every transaction
I is a subset of a set of literals L. These literals are called items and a subset X ⊆ L
with |X| = k a k-item set, or short item set. It is said that a transaction I supports an
item set X if X ⊆ I.

The significance of an item set X is measured by its support defined as the fraction of
transactions which contain X, and is also depicted in Figure 3.1:

supp(X) :=
|{I ∈ D | X ⊆ I}|

|D| (3.1)

The nominator in Equation 3.1, which expresses the number of transactions that contain
X, is called absolute support and is denoted by suppa(X).

If X ⊂ Y holds for two item sets X and Y it is said that X is more general than
Y because X puts less restrictions on the underlying transaction set. The other way
around, Y is termed more specific than X. Furthermore, we define XY := X ∪ Y for
simplicity. Obviously, the more specific an item set gets, the less it is supported by
transactions and thus the smaller its support, i.e. for Y ⊃ X it is supp(X) ≥ supp(Y).
This is commonly referred to as the downward-closure property of item sets.

34 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

{I ∈ D}

{I ∈ D|X ⊆ I}

supp(X)

100%

Figure 3.1: supp(X) is the relation between the
cardinality of the set of transactions
which contain X relative to the size
of the transaction set. Both sets are
marked by a dot.

{I ∈ D|Y ⊆ I}

100%
conf(X,Y)

{I ∈ D|XY ⊆ I}

{I ∈ D|X ⊆ I}

Figure 3.2: conf(X,Y) is the relation between
the cardinality of the set of trans-
actions which contain XY relative
to the set of transactions with X.
Both sets are marked by a dot.

The confidence measure is used to assess the degree of overlap between two item sets X
and Y in terms of transactions that support both. It measures the ratio of transactions
that contain Y additionally to X with regard to the number of transactions that contain
X. It is defined as follows, and also depicted in Figure 3.2:

conf(X,Y) :=
|{I ∈ D | X ∪ Y ⊆ I}|
|{I ∈ D | X ⊆ I}| (3.2)

When mining item sets a vast number of candidate sets must be considered. The discov-
erable number of item sets grows exponentially with |L|. Practically, it is never required
nor wanted to mine such a large number of item sets. The search space can be reduced
by employment of a higher threshold σ for support. An item set is frequent if its support
is greater than or equal to σ. The set of frequent item sets is defined as

Freq(D,σ) := {X : supp(X) ≥ σ} (3.3)

Example 1. Consider Table 3.1 which shows an example data set D consisting of 14
transactions that are subsets of the set of items L = {a, c, d, t, w}. Each transaction is
uniquely distinguishable by its transaction identifier (TID) shown in the first column.
Choosing a minimum threshold for absolute support σa = 4 (i.e. to be frequent an item
set has to be contained in at least four transactions), the 27 frequent item sets shown in
Table 3.2 will be found.

Now, assume D being a data set where each transaction is associated with a certain point
in time. Further, let [t0, tn] be the minimum time span that covers all its transactions.
The interval [t0, tn] is divided into n > 1 periods Ti := [ti−1, ti], such that the correspond-
ing subsets Di ⊂ D are characterised by the following three properties. First, each has a
size |Di| ' 1. Second, the data sets Di do not share transactions, i.e. Di∩Dj = ∅, i)= j
and, third, they represent a complete partitioning of D, i.e. ∪n

i=1Di = D. Based on their
chronological order, the Di form a sequence of data sets. The set of all time periods will
be denoted by T̂ := {T1, . . . , Tn}.

The same terminology and notation that has previously been discussed in the context of
D is also applicable to each individual Di. The significant difference however is that the

3.4. CONDENSED REPRESENTATIONS 35

Items
TID

a c d t w

11 1 1 1 1
12 1 1 1 1 1
13 1 1 1 1
14 1 1 1
15 1 1 1 1
16 1 1 1 1
17 1 1 1 1 1
18 1 1 1
21 1 1 1 1
22 1 1
23 1 1 1 1
24 1 1 1 1
25 1 1 1 1 1
26 1 1

Table 3.1: Example data set D

suppa Frequent Item Sets

14 c
12 t, ct
10 a, w, cw, ac
9 aw, at, acw, act
8 tw, atw, ctw, actw
7 d, cd
5 dw, ad, dt, cdw, acd, cdt
4 adt, adw, acdw, acdt

Table 3.2: Frequent item sets contained in D
which satisfy σa = 4

measures of support and confidence are now related to a specific time period Ti. This will
be indicated by using the notation Freq i(D,σ) for the set of frequent item sets, suppi(X)
for support and confi(X) for confidence. An item set X which has been discovered in all
periods is therefore described, for instance, by n support values. Imposed by the order
of time the values form sequences (supp1(X), . . . suppn(X)) which are called support
histories. Confidence histories are defined likewise.

3.4 Condensed Representations

Informally, the idea of condensed representations, is to compute a subset of the set of
frequent item sets which might be as concise as possible while allowing to restore from
it the whole collection of frequent item sets together with some of their characteristic
properties, like their support, without looking at the data. The resulting set of item sets
thus is smaller than the original set but still provides the same information to a user.

Condensed representations are assessable by two desirable properties.

• Lossless: A condensed representation is lossless if it allows, first, to determine for
each item set whether it is frequent and, second, to restore for each frequent item
set particular interestingness heuristics. Losslessness can mean an exact restoration
or an approximate restoration depending on whether noise should be accounted for.

• Concise: A condensed representation is concise if it is significantly smaller than
the original, unreduced collection of frequent item sets (Bonchi and Lucchese,
2004). A way of measuring conciseness therefore is counting item set.

While it was Mannila and Toivonen (1996) who first proposed the idea of condensed
representations within a theoretic framework called ε-adequate representations, it was
Zaki and Ogihara (1998) and Pasquier et al. (1998) who put this idea into practice

36 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

which independently led them to a condensed representation called closed item sets.
Many other useful condensed representations have been proposed since then, like δ-free
item sets (Boulicaut et al., 2000, 2003), disjunction free sets (Bykowski and Rigotti,
2001) and non-derivable item sets (Calders and Goethals, 2002, 2007). In the following
the basic principles of condensed representations will be explained on the example of
closed, δ-free and disjunction free item sets. The interested reader is referred to Calders
et al. (2005) for a survey on all four of the above representations.

3.4.1 Closed Item Sets

A closed item set is the largest item set common to a set of transactions, this means no
larger item set can be found that is supported by exactly the same set of transactions.
From this it follows that for a closed item set no larger item set exists which has the
same support. Vice versa, if one item set is a subset of another and both have the same
support also the transactions which contain them must be the same. This leads to the
following definition:

Definition 3.1 (Closed Item Set). An item set X is a closed item set if and only if there
exists no proper superset Y ⊃ X such that supp(X) = supp(Y). Equivalently, an item set
X is called non-closed iff there exists a proper superset Y such that supp(X) = supp(Y).

The set of all closed item sets with respect to a data set D will be denoted as Closed(D)
and the set of all frequent closed item sets with respect to a support threshold σ denoted
FreqClosed(D,σ).

The largest superset Y of X having the same support as X is called the closure of X and
a closed item set is equal to its closure. It can be shown that for any item set a closure
exists and that this closure is unique (Pasquier et al., 1999; Zaki, 2004). The support
of any (non-closed) item set can therefore be determined by the support of its smallest
closed superset. Similarly, to decide whether an item set is frequent it suffices to find
a frequent closed item set which is a superset. For these reasons the set of (frequent)
closed item sets is a condensed representation of the set of (frequent) item sets.

Several algorithms have been proposed to efficiently discover the set of closed item sets
from a given data set, for example: Close (Pasquier et al., 1999), Closet (Pei et al.,
2001) and its extensions like Closet+ (Wang et al., 2003a), and CHARM (Zaki and
Hsiao, 2005).

Example 1 (continued). The frequent item sets shown in Table 3.2 are represented by
the frequent closed item sets listed in Table 3.3. It should be noticed that the number
of frequent closed item sets is with 13, compared to 27, significantly smaller than the
number of frequent item sets. The item set atw is non-closed because it has the same
support as actw—one of its supersets, whereas actw is closed because all of its supersets
have a lower support. The item set actw thus is the closure of atw.

Another perspective on closed item sets can be derived from Definition 3.1 by considering
association rules and the definition of their confidence: an item set X is non-closed with
a closure Y ⊃ X iff a rule r : X ⇒ Y \X exists with conf(r) = 1. It is almost certain, on
the one hand, that in real-world data such strict rules, i.e. rules that hold with absolute
certainty, are likely uncommon, particularly when the data sets are large and noisy. On

3.4. CONDENSED REPRESENTATIONS 37

suppa Freq. Closed Item Sets

14 c
12 ct
10 cw, ac
9 acw, act
8 actw
7 cd
5 cdw, acd, cdt
4 acdw, acdt

Table 3.3: Closed item sets contained in D which
satisfy σa = 4

suppa Freq. 0-Free Item Sets

14 c
12 t
10 a, w
9 aw, at
8 tw
7 d
5 dw, ad, dt
4 adt, adw

Table 3.4: 0-free item sets contained in D which
satisfy σa = 4

the other hand, if rules are strict despite noise they presumably represent basic, already
known facts about the data’s underlying domain. Ideally, this means that given the item
sets X and Y and knowing that X ⇒ Y \X is always true, experts can easily conclude
that both item sets must have the same support. This way, X and Y can be termed
redundant because they provide the same knowledge from the experts’ point of view:
Knowing the support of either of them and then learning about the other does not yield
any new insights.

3.4.2 δ-Free Item Sets

Two possibilities can be thought of when assuming an ideal world in that an expert knows
any basic facts expressible by strict association rules. Both, in light of the previous
discussion, can be interpreted as a form of redundancy reduction based on what are
(implicitly) assumed to be well-known facts: Either only those item sets are kept to
which no strict rule can be applied anymore, or only those are kept which cannot be
produced by applying strict rules to smaller item sets. The first possibility yields closed
item sets whereas the second leads to an alternative condensed representation known as
free item sets.

Boulicaut et al. (2000, 2003) proposed δ-free item sets, or short free item sets, based on
the notion of a δ-strong rule. Informally, a δ-strong rule is an association rule X ⇒δ a,
where X ⊆ L, a ∈ L \ X, which is ‘almost strict’, this means it is violated in no more
than δ transactions whereby δ is supposed to be small.

Definition 3.2 (δ- Free Item Set). An item set Y is a δ-free item set if and only if there
is no valid δ-strong rule X ⇒δ a such that X ⊂ Y, a ∈ Y , a)∈ X.

The set of all δ-free item sets with respect to a data set D will be denoted as Freeδ(D)
and the set of all frequent δ-free item sets with respect to a support threshold σ denoted
FreqFreeδ(D,σ).

Example 1 (continued). The frequent item sets shown in Table 3.2 contain the fre-
quent 0-free item sets listed in Table 3.4. For instance, the item set actw is non-0-free
because the 0-strong-rule atw ⇒0 c holds for the data set, but also atw is non-0-free
because tw ⇒0 a holds too. In contrast, tw is 0-free because neither t ⇒0 w nor w ⇒0 t
are valid 0-strong-rules.

38 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

Unlike a non-closed item set which can be related to one and only one smallest closed
superset, a non-δ-free item X set can have multiple δ-free item sets that are a subset of
X and whose support could serve as an approximation. The best approximation can be
obtained by choosing among all δ-free item sets included in X the one that has minimum
support (Boulicaut et al., 2003).

In case of δ = 0 the support can be exactly determined. In fact, 0-free item sets
correspond to the notion of key patterns and generators developed independently by
Bastide et al. (2000), respectively Pasquier et al. (1999), and which they used for closed
item set generation. These works also establish a link between closed and 0-free item
sets: any frequent closed item set is the closure of at least one 0-free item set.

Even though the frequent δ-free item sets are sufficient to approximate (or determine)
the support of any other frequent (non-δ-free) item set they are not sufficient to decide
whether an item set is frequent, or not. This entails that without knowledge about
whether an item set’s support is greater than the threshold it is impossible to approx-
imate the item set’s support.

Example 1 (continued). Consider the item sets actw and dtw which both are not
in the set of frequent 0-free item sets shown in Table 3.4. Both have no frequent free
superset but a frequent free subset: tw for actw with suppa(tw) = 8, and dw for dtw with
suppa(tw) = 5. This would imply that actw and dtw both are frequent, with absolute
supports suppa(actw) = 8 and suppa(dtw) = 5, respectively. In fact, for actw this is
true, whereas dtw in truth is infrequent with suppa(dtw) = 3 as can be seen from Table
3.1.

Intuitively, the set of frequent δ-free sets must be supplemented with the set of the
smallest non-frequent δ-free sets. This can be expressed using the concept of a negative
border (Mannila and Toivonen, 1997).

Definition 3.3 (Negative Border). The negative border of a set of item sets J , denoted
Bd−(J), is the set {X |X ⊆ L ∧X)∈ J ∧ (∀Y ⊂ X : Y ∈ J)}.

Formally, the set of frequent δ-free sets FreqFreeδ thus needs to be complemented by the
set Bd−(FreqFreeδ)∩Freeδ. Now, given any item set Y , if there exists X ⊆ Y such that
X ∈ Bd−(FreqFreeδ)∩Freeδ, then Y must be infrequent. In the other case, the support
of Y can be approximated, respectively exactly determined for δ = 0, as described above.

3.4.3 Disjunction Free Item Sets

Starting from the concept of 0-free item sets different alternative condensed representa-
tions can be derived by allowing for more complex rules than those of form X ⇒0 a. One
possibility that has been put forward is to use disjunctive rules of the form X ⇒ a ∨ b
where X ⊂ L and a, b ∈ L \X (Bykowski and Rigotti, 2001).

Definition 3.4 (Disjunction-Free Item Set). An item set Y is a disjunction-free item set
if and only if there is no valid disjunction rule X ⇒ a∨ b such that X ⊂ Y , a, b ∈ Y \X.

In the following, the set of all disjunction-free item sets with respect to a data set D
will be denoted as DisFree(D) and the set of all frequent disjunction-free item sets with
respect to a support threshold σ denoted FreqDisFree(D,σ).

3.4. CONDENSED REPRESENTATIONS 39

suppa Freq. Disj.-Free Item Sets

14 c
12 t
10 a, w
9 aw, at
8 tw
7 d
5 dw, ad, dt
4

Table 3.5: Disjunction-free item sets contained in D which satisfy σa = 4

Further, it should be noticed that FreqDisFree(D,σ) must be a subset of the frequent
0-free item sets FreqFree0 (D,σ) because valid rules of the form X ⇒0 a on which the
concept of 0-freeness is based can be rewritten as disjunctive rules X ⇒0 a ∨ a.

Example 1 (continued). The frequent item sets shown in Table 3.2 contain the fre-
quent disjunction-free item sets listed in Table 3.5. For instance, the item sets atw and
adw are non-disjunction-free because the disjunction rules a ⇒ t ∨ w, resp. a ⇒ d ∨ w,
are valid for the data set D (see Table 3.1).

Similarly to δ-free sets, disjunction free item sets need to be augmented by the set
Bd−(FreqDisFree)∩DisFree to determine whether a given non-disjunction-free item set
is frequent. In addition, the set of all valid disjunction rules need to be stored, because
without them it is impossible to efficiently determine the support of a frequent non-
disjunction-free item set, (Calders et al., 2005).

As a more space-efficient but also more time-demanding alternative Bykowski and Rigotti
(2001) proposed to (recursively) reconstruct all valid disjunctive rules from FreqDisFree
and Bd−(FreqDisFree) by searching for four item sets X, Xa, Xb and Xab such that
supp(X) = supp(Xa) + supp(Xb) − supp(Xab). If and only if the latter equation is
satisfied the disjunctive rule X ⇒ a ∨ b is valid.

Lastly, it should be mentioned that disjunction-free item sets can be further generalised
towards rules of the form X ⇒ a1∨ . . .∨ai∨ . . .∨an as has been pointed out by Bykowski
and Rigotti (2001) and put into practise by Kryszkiewicz and Gajek (2002).

3.4.4 General Principles

Producing a condensed representation means to partition the collection of (frequent) item
sets such that within each partition item sets have a particular property in common, but
across partitions no two share the same. For 0-free and closed item sets this property is
that the item sets are supported by the identical set of transactions. This implies that
within a partition the support values are all equal. In general terms, it makes sense that
the chosen property is linked to interestingness heuristics for item sets, and albeit the
discussed approaches restrict the latter to support also other heuristics such as lift are
possible (see Soulet and Crémilleux, 2008).

40 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

acdtw3

acdt4 adtw3 acdw4 actw8 cdtw3

acd5 act9 adt4 cdt5 acw9 adw4 atw8 ctw8 cdw5 dtw3

ac10 ad5 at9 cd7 dt5 aw9 ct12 tw8 cw10 dw5

a10 c14 d7 t12 w10

∅14

σa = 4

Figure 3.3: Hasse diagram for the item sets from Example 1 with equivalence classes of item sets
which are supported by the identical set of transactions.

In other words, item sets of the same partition are equivalent to each other; the par-
titions themselves are equivalence classes. The item sets are equivalent because they
are indiscernible with respect to the property that formed the partitions. They are also
redundant because they represent the same information. A major step in reducing the
number of item sets and eventually obtaining a condensed representation therefore is to
choose a set of equivalence class representatives for each partition. Given an item set,
the ideal choice of representatives allows to identify its corresponding partition, while,
at the same time, being minimal in size. It makes sense to choose either the smallest
(greatest lower bound), the largest item sets (least upper bound), or both as equivalence
class representation, rather than arbitrary elements.

Example 1 (continued). Figure 3.3 shows the equivalence classes with respect to
support of the frequent item sets displayed in Table 3.2. Each item set’s support is
shown as subscript. Comparison of the smallest and largest item sets in each equivalence
class with Table 3.4 and Table 3.3 reveals that these are the frequent free, respectively
frequent closed item sets.

Having only equivalence class representatives to describe the condensed representation’s
item sets is sometimes insufficient. As, for example, the cases of 0-free and disjunction
free item sets show: having only the representative is not enough to determine whether
a certain item set is frequent or its actual support. For this reason, these condensed
representations introduced two supplemental structures. In large, this decomposes con-
densed representations into three building blocks: the subset of the original collection

3.4. CONDENSED REPRESENTATIONS 41

Representation Rule Set Elements Border Set

FreqClosed X ⇒ X∪ {a} \X
FreqFree0 X ⇒ X ∪ {a} \X Bd−(FreqFree0) ∩ Free0

FreqFreeδ X ⇒δ X ∪ {a} \X Bd−(FreqFreeδ) ∩ Freeδ

FreqDisFree X ⇒ (X ∪ {a} \X) ∨ (X ∪ {b} \X) Bd−(FreqDisFree) ∩DisFree

Table 3.6: Condensed representations and their building blocks.

of item sets, a set of rules and a (negative or positive) border set. The subset of the
original collection, in an intuitive sense, is what can be termed the actual condensed
representation; it is those building block a user is primarily interested in. The set of
rules is used to restore the not included item sets and their interestingness heuristics.
Note, that this set of rules may be stated implicitly, as in the case of closed and free
item sets, or explicitly, as in the case of disjunction free item sets. With exception of
σ-strong rules these are strict rules; they represent strong knowledge about a domain.
The border set is necessary to be able to determine whether an item set is frequent.
Knowing only this border set is sufficient to enumerate any frequent item set. It is thus
conceptually similar to maximal frequent item sets (see Bayardo, Jr., 1998). As with
the rule set, the border set is either given implicitly or explicitly.

Table 3.6 provides an overview on the building blocks of each discussed representation.
It is sorted in order of publication, and as can be seen closed item sets are the root
from which the discussed condensed representations have been derived. Free sets stem
from the idea of representing the closed item set equivalence classes using their smal-
lest elements rather than their largest. As a side effect this led to the introduction
of border descriptions, because without those borders infrequent item sets would be
falsely identified as belonging to an equivalence class of frequent item sets. Disjunction
free sets, in turn, have been derived from 0-free sets by allowing a particular type of
Boolean expression on the right hand side of the rules. Their introduction had added
an explicitely represented rule set to the, still necessary, border description. Bold letters
within the rules indicate those item sets that are kept as a candidate for the condensed
representation.

From an expert’s point of view the item sets of a condensed representation are the result
of removing redundancies from the original set of item sets. The previously mentioned
rule sets support this interpretation. By intuition, an item set is deemed redundant if its
presence and properties are inferable from knowledge about the presence and properties
of other item sets by application of the expert’s domain knowledge. This way the inferred
item sets are excludable from presentation without loss of meaning. Rule sets are a
common representation of domain knowledge. Nonetheless, in addition, recalling his
domain knowledge needs to be effortless for an expert, which implies that it must be
widely known and obvious. The above mentioned rules hold within a given data set
without exception; despite noise and an often poor data quality. Thus, these rules are
so strong that there is a good chance that an expert already is aware of them.

3.4.5 Assessment

The afore-outlined condensed representations have received a varying level of attention
in the scientific community, measured by means of published enhancements, extensions,

42 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

algorithms and applications. In this regard, closed item sets seem to have gained the
highest maturity among the proposed representations, followed by 0-free item sets. Dis-
junction free sets only play a minor role, and so are many other condensed representations
that have been proposed but are not further elaborated in this thesis.

Independent of their maturity, all condensed representations have their advantages and
disadvantages, such that there is often no clear answer on which one is ‘the best’. As
explained at the beginning of Section 3.4, the objective of condensed representations
is to describe the set of frequent item sets as concise and lossless as possible. Both
requirements are conflicting such that in the ideal case a choice would have to be made
between sacrificing the ability to precisely reconstruct the set of frequent item sets for
the sake of a smaller representation, or strictly maintaining losslessness.

The following sections discuss closed, free and disjunction free item sets in the light of
these requirements with the aim to identify one condensed representation that will serve
as the reference for condensed representation to be developed in this chapter. It turns
out that closed item sets are this reference representation.

Lossless

Closed, 0-free and disjunction free item sets are strictly lossless condensed representa-
tions. They enable to exactly restore for each given item set its particular interestingness
heuristics, in these cases support. The restored collection of item sets and their support
values is identical to the original collection that yielded the condensed representation.
The disadvantages of an exact restoration are at least twofold. First, amongst useful
information also noise and other unwanted artefacts in the data are being preserved.
Second, the condensed representations are susceptible to a low data quality. One erro-
neous transaction can turn, for instance, an actually non-0-free item set into a 0-free
one. As a result, the number of item sets in the condensed representation increases.

Since the chance that a data set contains erroneous transactions increases with its size,
the problem becomes more apparent in large-scale, real-world data rather than in the
small-scale, often synthetic data used in scientific publications. In fact, in many real-
world data sets the number of closed, disjunction free respectively 0-free item sets will
be almost the same as the one of frequent item sets—no reduction is achieved at all, the
condensed representations miss the conciseness requirement further down. In Appendix
A one real-world data set will be presented in which all frequent item sets are closed.

Strict losslessness results from the equivalence class view on condensed representations
laid out in Section 3.4.4. To take closed and 0-free item sets as an example: Two
item sets belong to the same equivalence class if and only if they are supported by the
identical set of transactions, which implies their supports have to be equal. The use of
the equality relation enforces the possibility of the support values’ exact reproduction.
From a theoretical standpoint, this approach has the appeal to provide for an algebraic
interpretation of condensed representations, and indeed closed item sets are historically
rooted in the theory of lattices and Galois connections (Pasquier et al., 1999).

From a practical standpoint, the idea is to sacrifice algebraic beauty for effectiveness on
real data, and strict losslessness for the sake of conciseness. This leads to approaches
that aim not to preserve noise in the condensed representation, and thus are almost

3.4. CONDENSED REPRESENTATIONS 43

lossless. The concept of δ-free item sets (Boulicaut et al., 2003), for δ > 0, and a similar
extension of closed item sets to δ-tolerant closed item sets (Cheng et al., 2006) are a
step into this direction. Both have two drawbacks. First, they require a parameter—δ
in both cases—which describes how much noise is expected. Specifying such a noise
tolerance level demands a degree of expert knowledge about the domain and the data
collection process which is not always available. Second, in the case of δ-free item sets
the tolerance level is an absolute, support-independent number of erroneous transactions.
Ideally, it should be a function of support such that for item sets with lower (absolute)
support values less erroneous transactions are acceptable. The latter, nonetheless, holds
for δ-tolerant closed item sets were δ is a factor specifying the fraction of support that
is tolerated to be attributable to erroneous transactions.

Concise

Conciseness is understood as that “the size of the [condensed] representation is signi-
ficantly smaller than the original set” (Bonchi and Lucchese, 2004). The emphasise is
put on ‘representation’ and ‘size’—despite this, it is left open what is measured and
how. Section 3.4.4 identified three building blocks which in varying combinations belong
to a condensed representation and are explicitly represented therein: the subset of the
original collection of item sets, a set of rules and a border set. The question is, which
blocks contribute towards measuring size and thus towards assessing conciseness? The
problem becomes apparent when contrasting 0-free and disjunction free item sets. To
determine whether an item set is kept within the condensed representation the approach
of disjunction free item sets uses a generalised form of the criterion employed for 0-free
item sets. As one result the set of disjunction-free item sets is smaller or equal than
the set of 0-free item sets. At the same time more additional information need to be
maintained: In addition to the negative border now also the set of disjunction rules is
required to avoid their costly recalculation. Already the negative border by itself can be
very large and sometimes even exceed the size of the corresponding collection of frequent
item sets (Liu et al., 2008). If the size of each building block counts towards conciseness
then it seems that decreasing the size of item sets by introducing more general or more
complex criterions not always leads to a more concise condensed representation. In this
case, closed item sets are favourable to 0-free and disjunctive item sets.

Conversely, condensed representations solve a presentation and not a storage problem.
The vast number of frequent item sets entails a need for presenting only a meaningful
subset without suppressing significant ones. The retrieval of support values or asser-
tions about their significance for unpresented item sets is a later step, only carried out
on demand. From this perspective, building blocks such as rule sets or borders will not
be presented but only stored and queried. Having access to massive amounts of cheap
storage nowadays is not a problem anymore. For this reason, they should not contrib-
ute towards the assessment of conciseness. In this regard, as opposed to the above,
disjunction free item sets are favourable to 0-free item sets.

Another issue in assessing conciseness concerns the size of the item sets. For illustration,
contrast the number of items contained in 0-free item sets with those contained in closed
item sets. Both condensed representations describe the same equivalence classes of item
sets; the ones formed by item sets appearing in the identical set of transactions (Bastide
et al., 2000). 0-free item sets are the smallest elements and closed item sets the largest

44 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

elements of each class. 0-free item sets thus are smaller than closed item sets and may
appear more concise.

However, as representatives for each equivalence class more than one free item set may
be necessary, whereas always exactly one closed item set is sufficient (Bastide et al.,
2000). Moreover, it is not guaranteed that 0-free item sets from the same equivalence
classes are disjoint. Multiple 0-free sets may share items. Overall more items are needed
to represent an equivalence class compared to taking the closed item set. This means,
seen on the level of single items the smaller size of 0-free item sets provides no advantage
for obtaining a concise representation.

Some authors have argued, the smaller size of 0-free item sets is more suitable classi-
fication purposes because they may generalise better (match unseen instances) (see Liu
et al., 2008; Zimmermann, 2009). However, the equality relation used within the cri-
terions for 0-free and closed item sets imposes such a strong condition on the data that
whenever a 0-free item set matches an unseen instance, its closure (i.e. the corresponding
closed item set) will tend to match too. On the other hand, free item sets are the worse
choice for descriptive purposes, because it is hidden that multiple free item sets may
describe the same set of transactions. This, however, can only be revealed by computing
and comparing the corresponding closed item set. In fact, closed item sets are the better
choice for descriptive purposes.

3.5 Condensed Representations and Time

A general shortcoming of all condensed representations is that they were not developed
with the temporal dimension in mind. Even closed item sets, as the one with the highest
maturity level and probably also the most widely used approach, does not incorporate
time—although, as laid out in Chapter 1, almost every data set is time-stamped. As
a result condensed representations do not account for redundancies imposed by the
temporal dimension which would not only may have the potential to make condensed
representations more concise but also have the appeal to seemingly integrate with the
item set-based change mining approaches reviewed in Chapter 2. This section looks into
two straightforward, simple ways of incorporating time into closed item sets and analyses
their properties. Later on, they will serve as a baseline against which a proposed, more
sophisticated approach for dealing with temporal redundancies is compared.

3.5.1 Time Periods as Independent Data Sets

Given a temporal sequence of data sets D1, . . . , Dn, closed item sets only take each data
set independently into account. In fact, they were developed to be applied only to single
data sets. For this reason, the first straightforward approach for incorporating time that
will be discussed is to generalise the definition of closed item sets from a single data set,
which corresponds to one time period, to a sequence of many by producing closed item
sets independently for each Di and subsequently combining the results (see Böttcher
et al., 2009).

On the one hand, from such a generalisation one would expect it to be straightforward in
the sense that it resembles the original definition of closed item sets as well as possible.
On the other hand, the generalisation should be sufficient for the purpose of change

3.5. CONDENSED REPRESENTATIONS AND TIME 45

mining: an item set should only be regarded as non-closed over a sequence of time
periods if no important change information is lost that a user may be interested in.

As an example how change information can be lost consider an item set X for which in
one half of the periods there exists an item set Y ⊃ X with suppi(X) = suppi(Y) and
in the other half an item set Z ⊃ X with suppi(X) = suppi(Z); only it is neither Y ⊂ Z
nor Z ⊂ Y . Should X be regarded as closed or as non-closed over a sequence of time
periods? If an item set with varying reason for non-closedness would be regarded as
non-closed over a sequence of time periods and thus not presented to a user this change
information is lost. Consequently, it is reasonable to regard such item sets as closed in
the context of a generalisation of closed item sets towards sequences of time periods,
even though it is non-closed in each time period.

Generally, two requirements have to be met by a temporal generalisation of closed item
sets. In the first place, an item set X should be non-closed over a sequence of time
periods only if it is non-closed in all periods. Secondly, following the above discussion
the underlying reason for non-closedness should be an invariant property.

A direct temporal generalisation of non-closed item sets which meets the requirements
above is the following: An item set is non-closed over a sequence of time periods Ti, i =
1, . . . , n iff there exists an item set Y ⊃ X such that for all periods suppi(X) = suppi(Y)
i = 1, . . . , n. Equivalently, item sets which are closed over a sequence of time periods
are defined as follows:

Definition 3.5 (Closed over a Sequence). Let D be a time-stamped data set and
{T1, . . . , Tn} a corresponding partition of the time axis into periods. An item set X
is closed over the sequence of time periods T̂ := (T1, . . . , Tn) iff there exists no item set
Y ⊃ X such that for all Ti : suppi(X) = suppi(Y).

In the following, the set of all item sets that are closed over a sequence is denoted by
SeqClosed(D, T̂).

The above definition means that SeqClosed(D, T̂) contains all item sets which are closed
in at least one period. Additionally, it also contains those item sets which are non-closed
in each individual time period but for which their reason for non-closedness differs across
periods. It should be noted, however, that the latter is a rare constellation as it has
already been reported by authors in the field of incremental item set mining (see Chi
et al., 2006).

An item set X that is closed over a sequence of time periods (T1, . . . , Tn) is frequent
with respect to a support threshold σ if it is frequent in all periods, this means if
suppi(X) ≥ σ, i = 1, . . . , n. The set of frequent item sets that are closed over a sequence
will be represented by FreqSeqClosed(D, T̂ ,σ).

Example 1 (continued). Consider the data set D shown in Table 3.1 as gathered in
two different time periods: all transactions having a transaction identifier lower than 20
belong to period T1 and all others to period T2. Table 3.7 shows the frequent item sets
that are closed over the sequence of time periods T̂ = (T1, T2) contained in D based on
a support threshold of σa = 2. Note, that some item sets like ct are closed in T1 and T2,
whereas others are only closed in one period, like ac which is non-closed in T1.

In a time-stamped data set any time period uniquely determines a subset of it. The fol-

46 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

suppa
T1 T2 FreqSeqClosed

8 6 c
7 5 ct
6 4 ac, cw
6 3 act
5 4 acw
5 3 actw
5 2 cd
3 2 cdw, acd
2 2 acdw

Table 3.7: Item sets contained in D which are closed over the sequence (T1, T2) and are frequent
based on σa = 2

lowing theorem demonstrates that this subset relation also transfers to the corresponding
sets of closed item sets.

Theorem 3.1. Let D be a data set and D′ ⊆ D, then it is Closed(D′) ⊆ Closed(D).

The following theorem establishes a link between closed item sets and those item sets
which are closed over a sequence.

Theorem 3.2. Given a time-stamped data set D and a corresponding partition of the
time axis into periods T̂ := {T1, . . . , Tn}, the set of closed item sets contained in D equals
the set of item sets that are closed over the sequence T̂ , in other words SeqClosed(D, T̂) =
Closed(D).

Theorem 3.2 expresses that incorporating time into a condensed representation by produ-
cing closed item sets individually for each time period and then combining the produced
results leads to the same set of closed item sets that is found in the original un-split
data. Indeed, the result is the same as if time would not be considered at all. The
representation of item sets that are closed over a sequence thus misses the initially set
goal of obtaining a more concise condensed representation by incorporating time.

Still, it should be noticed that Theorem 3.2 has at least two practical implications. First
of all, to develop a more concise condensed representation by incorporating time it is
desirable to have an established condensed representation with which it can be compared,
both theoretically and experimentally. Although closed item sets are probably the most
widely used condensed representation they cannot directly be used for this purpose
because they were not developed with the temporal dimension in mind. Definition 3.5
together with Theorem 3.2 put closed item sets into a temporal context and thus provide
a basis for comparisons.

Secondly, Theorem 3.2 indicates that the problem of producing closed item sets for a
given (not necessarily time stamped) data set can be solved by splitting it into smaller
sub-problems that correspond to smaller data sets and subsequently merging the ob-
tained solutions. This, in turn, matches modern paradigms for parallel processing of
large data sets like MapReduce (Dean and Ghemawat, 2008). This idea, however, will
not be further investigated in this thesis.

3.5. CONDENSED REPRESENTATIONS AND TIME 47

3.5.2 Time Periods as Items

A second straightforward approach for incorporating time is to encode the time period
from which a transaction originates as an extra item. To each transaction such an item
is added and a condensed representation obtained from the resulting, now temporally
augmented transaction set. Formally, assume L being a set of items and D = D1∪ . . . Dn

a data set with Di being the subset of transactions I ∈ Di, I ⊆ L belonging to time
period Ti.

Definition 3.6 (Temporally Augmented Transaction Set). Let ti)∈ L be an (artificial)
item that uniquely represents Ti, and LT := L ∪ {t1, . . . , tn}. Construct a data set DT

i
from Di such that for all I ∈ Di there exists a I ∪ {ti} ∈ DT

i , and for all I ∈ DT
i there

exists a I \ {ti} ∈ Di. Then, DT = DT
1 ∪ . . . DT

n is the temporally augmented transaction
set to Di.

The following theorems establish a link between the closed item sets obtained from D
and DT (resp.Di and DT

i). Thereby Y ti denotes the item set that results from adding
ti to Y .

Theorem 3.3. Let X be an item set and Y ∈ Closed(Di) its closure in time period Ti.
If suppi(X) > 0 then Y ti ∈ Closed(DT) and suppi(X) = suppT (Y ti)/ suppT (ti) .

Considering an item set X ∈ Closed(D) this theorem states that for each time period
Ti in which X exists a closed item set Y ti, X ⊆ Y will be produced from DT . This
means, the size of Closed(DT) will be larger than Closed(D); in the worst case by at
least a factor equal to the number of time periods. The next theorem shows that the
intersection of Closed(D) and Closed(DT), if non-empty, consists of those elements of
Closed(D) which are present in at least two periods.

Theorem 3.4. If X ∈ Closed(D) and there exist i)= j such that suppi(X) > 0 and
suppj(X) > 0 then it follows X ∈ Closed(DT).

It is not unexpected that adding further items, which represent time periods, does not
reduce the collection of item sets. The obtained theorems nonetheless are significant
because they devise a way to obtain the support histories of item sets. Support histories
capture the temporal development of item sets and are thus the foundation of change
mining approaches, as laid out in Section 2.3. Section 3.3 introduced their formal defin-
ition and notation.

In brief, support histories are obtained as follows. Having a time stamped data set D
and a partition of time, construct the data set DT and produce its closed item sets
Closed(DT). According to Theorem 3.4, each item set X ∈ Closed(D) which is present
in all time periods is element of Closed(DT), and according to Theorem 3.3 also is
Xti. Utilising suppi(X) = supp(Xti)/ supp(ti) yields the history of each closed item
set. From the histories of all closed item sets the histories of the remaining item sets are
retrievable (see Theorem 3.2).

The approach pointed out in the literature for obtaining item set histories involves the
discovery of item sets—not closed item sets—individually for each time period (see,
e.g., Baron and Spiliopoulou, 2001; Liu et al., 2001b). After each discovery run, each
produced item set is compared to those discovered in previous periods and, in case of a
match, its history extended. To facilitate an efficient matchmaking and to address a need

48 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

for long-term storage of item sets, change mining systems sometimes employ database
technology (Baron and Spiliopoulou, 2001; Böttcher et al., 2006a).

The approach that encodes periods as items is by a factor of |L| more time efficient than
the latter ‘matchmaking’ approach in obtaining item sets’ histories from a time-stamped
data set. The following estimates for both approaches’ time complexity are based on the
assumption that the number of items |L| is equal in all periods. Further, both estimates
use the theoretical result that enumerating all frequent item sets for an arbitrary support
threshold has a time complexity which is exponential in the number of items. In fact,
the problem is known to be NP-hard (Gunopulos et al., 2003; Yang, 2004).

The matchmaking approach enumerates for each of the n time periods the item sets
discovered therein. In the worst case, for each time period this takes O(2|L|), and thus
overall O(n · 2|L|). For the first period this effort includes the construction of a prefix
tree—the prevalently used data structure to represent item sets (Cheng et al., 2008,
p. 4). Item sets of each subsequent periods are matched against the item sets stored in
the prefix tree along with their so-far obtained support histories. The effort to find an
item set within a prefix tree is bounded by the length of the longest possible item set
which is |L|. Since this lookup needs to be done for each item set within each period,
the time complexity for the matchmaking approach therefore is O(n · |L| · 2|L|).

The approach that encodes time periods as items introduces n more items. However, due
to the restriction that periods are disjoint these items have the property that no more
than one of them is contained within a frequent item set produced from DT . This means,
for each frequent item set already enumerated from D, a maximum of n additional item
sets will be enumerated when considering DT . The approach’s time complexity therefore
is O(n · 2|L|).

It is noteworthy that the additional effort needed for the matchmaking approach solely
depends on the chosen data structure for searching item sets. If the search would be
accomplishable in O(1), for instance using a hash table and a perfect hash function, then
the time complexity is the same for both approaches. Nonetheless, the space complexity
for the hash table-based approach will be worse because hash keys need to be stored
for each item set. In addition to this gain in time-efficiency, the approach of encoding
time periods as items offers a range of practical benefits, which will be discussed in
Section 3.7.2.

3.6 Temporal Redundancy

The approaches discussed in the previous section devise two possibilities of incorporating
time into closed item sets; yet they do not lead to any further reduction in the number
of item sets in comparison to the condensed representations discussed in Section 3.4.
The reason is they exploit no type of redundancy that is characteristic for a temporal
context and whose presence only is determinable when chronological information about
the data set’s records is available.

There may exist a plethora of suitable types of temporal redundancy that differ in their
occurrence, their meaningfulness but also their ‘backward compatibility’ to non-temporal
types of redundancy as they are used in classical condensed representations, for instance
closed or free item sets. The ultimate choice is characterised by the capability of being

3.6. TEMPORAL REDUNDANCY 49

the basis of a condensed representation. As such, it must contribute towards fulfilling
the requirements thereon that are identified in the Problem Statement in Section 3.2.
This section discusses one type of temporal redundancy which is present in many data
sets. It puts special emphasis on demonstrating that this type is meaningful to experts
and on showing how it serves as a main building block for a condensed representation
that accounts for the temporal dimension.

3.6.1 Invariance and Uninterestingness

When elaborating on change mining in Chapter 2 it was pinpointed that properties of a
domain which change are inherently interesting because they serve as an indicator for a
required intervening action, for instance, to rectify a problem or to exploit an opportunity
(Chakrabarti et al., 1998). In contrast, invariant properties are of less interest because
they are almost always known and generally not judged as hinting at a serious problem
(Berger, 2005).

Example 1 (continued). Consider the item sets in Table 3.7 (p. 46) and their support
values in period T1 and T2. A closer look reveals two invariant properties of the same
type. The ratio between the support of item set ac and its superset acd does not change,
it is 2/3 in each period. The same applies to cw and cdw, here the ratio also is 2/3. In
other words, the fraction of transactions that contain d additionally to ac, respectively d
additionally to cw is invariant. This can be expressed in terms of uncertain rules cw ⇒ d
and ac ⇒ d whose uncertainty is quantified by their confidence. The uncertainty factor
is constant over time and thus represents an invariant domain property. For i = 1 and
i = 2 it is confi(cw ⇒ d) = 2/3 and confi(ac ⇒ d) = 2/3.

In the example, the shape of the support history of cdw and the one of cw, apart from
scaling, are equal. It is suppi(cwd) = 2/3 suppi(cw). The same holds for acd and ac.
Knowing the above invariant property an expert is able to infer the shape of one item
set’s history from that of the other. The relevance of a particular item set is primarily
dictated by its qualitative change over time and not by its actual support value (Agrawal
and Psaila, 1995; Chakrabarti et al., 1998). Taking the aforesaid into account an expert
yields from one item set, like cwd, all the necessary information to decide whether the
other item set, like cw, is relevant. The reason is that invariant properties of a domain
are known; for both item sets it thus can be stated that they are temporally redundant
with respect to each other.

Example 2. Consider a data set which was collected from information about road
accidents with casualties and that includes details about the accident such as data,
time, location, weather conditions and causality severity.1 The data is split into 10
smaller data sets corresponding to the years 2000 to 2009 and item sets are discovered
for each. The item set X represents accidents that happened at bad lighting conditions
at a T, Y or staggered junction, while the item set XY represents the subset of those
with two involved cars.2 Figure 3.4 shows the support history of both item sets. As
can be seen, the change of X is qualitatively the same apart from noise as the one of

1Further details on this data are found in Appendix A.
2Taking the attributes and attribute values from the original data, the item set X consists of the

items A1.16 = 3 and A1.21 = 2 and the item set Y of A1.5 = 2.

50 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

2000 2002 2004 2006 2008

0.025

0.03

0.035

0.04

0.045

Ti

su
pp

X
XY

Figure 3.4: Histories of the item sets XY and X
from Example 2

2000 2002 2004 2006 2008

0.025

0.03

0.035

0.04

0.045

Ti

su
pp

Derived from X
XY

Figure 3.5: Approximated history of XY using
the history of X

XY . Both histories only differ by a scaling factor which is an invariant property of the
domain.

In this example the invariant property is the ratio of accidents that involve two cars
relative to all accidents that happen on junctions under poor visibility conditions. This
property did not change over a period of 10 years, such that with high probability it
is well-known to experts and of no interest, as claimed at the beginning of this section.
But also for non-experts this invariant is of no surprise. Presumably many accidents on
crossings under poor visibility are due to the inattentiveness of the driver. A driver will
be inattentive in general, and not only towards specific other road users. There is little
to no reason to assume that car drivers would develop a preference to overlook another
car, but not pedestrians or road sign poles, for instance.

Among the many existing types of temporal redundancy the one laid out before has
the appeal that a condensed representation build thereupon aligns well with the type
of redundancy underlying closed and 0-free item sets. As mentioned earlier it is based
on uncertain rules X ⇒ Y whose uncertainty is measured through confi(X,Y) and is
constant over time. In comparison, closed and 0-free item sets are based on rules X ⇒ Y
which are certain; this means it is conf(X,Y) = 1. It appears as if the former can be
interpreted as a generalisation of the latter. This aspect is elaborated in Section 3.7.1.

The discussed type of temporal redundancy is very common in practice. Many of the
changes observed in item set histories are simply the effect of a combination of changes
in other item set histories with invariant domain properties (see Liu et al., 2001a). This
leads to the situation depicted in Figure 3.4: Histories of item sets have qualitatively
the same shape, thus provide the same information to an expert and have the same
relevance. Having a collection of item sets that are linked through generalisation and
specialisation relationships and have histories with equal shape, only one representative
needs to be presented. From the perspective of condensed representations this opens the
opportunity to achieve a higher degree of conciseness. From the perspective of change
mining this eradicates the otherwise tedious and time eating task of identifying the
fundamental changes that take place within a domain.

3.6. TEMPORAL REDUNDANCY 51

3.6.2 Definition and Probabilistic Interpretation

Figure 3.4 reveals that the type of temporal redundancy motivated in the previous
section manifests itself by a (simple) functional dependency between the history of X
and XY . Other functional dependencies exist, but may be less prevalent or too complex
to be practically meaningful. Böttcher et al. (2005) provide an analysis of functional
dependencies other than the aforementioned one. Since these dependencies are functions
of time, item sets will be called temporally dependent, if their histories are linked in such
a way.

Definition 3.7 (Temporally Dependent). Let X, X1, X2 . . . Xp be item sets with X ⊃ Xi

for all i and p > 0. Let supp the support, supp |X(T) := supp(X,T) and supp |Xi(T) :=
supp(Xi, T) its functions over time and M := {g : T̂ −→ [0, 1]} be the set of functions
from time into the unity interval. The item set X is temporally dependent iff a function
f : Mp −→ M exists such that for all T ∈ {T1, . . . , Tn}

supp |X(T) = f(supp|X1 , supp|X2 , . . . , supp|Xp)(T)

The main idea behind the above definition is that an item set is temporally depend-
ent, if its history can be constructed as a mapping of the histories of (a subset) of its
supersets. To compute the value supp(X,T) the values supp(Xi, T) are thereby con-
sidered. The definition above does not allow for a pointwise definition of f on just the
T ∈ {T1, . . . , Tn}, but instead states a general relationship between the support values
independent from the point in time. It can therefore also be used to predict the value
of supp(X) given future values of the supp(Xi).

Based on this definition the type of temporal redundancy discussed in the previous
section can be stated supp |X = f(supp |X1) = ε supp |X1 , i.e. the support history of an
item set X can be obtained by multiplying the support history of a subset X1 with a
constant ε. If this kind of relationship is present between the history of an item set and
the history of one of its subsets it is said that the first is temporally derivable from the
latter. Formally:

Definition 3.8 (Temporally Derivable). Let X,Z)= ∅, Z ⊃ X be item sets and
(supp1(X), . . . , suppn(X)), respectively (supp1(Z), . . . , suppn(Z)) their support histor-
ies. The item set Z is temporally derivable with regard to X, denoted X↪→Z, iff there
exists a constant ε, 0 < ε ≤ 1 such that suppi(Z) = ε suppi(X), i = 1, . . . , n.

Explained intuitively, the definition states that an item set is temporally derivable if
it has the same shape as the history of a subset apart from a scaling factor ε. To

emphasise the scaling factor ε sometimes the notation X
ε
↪→ Y will be used. Assuming

XY = Z the criterion suppi(XY) = ε suppi(X), i = 1, . . . , n used within the definition
can be rewritten as ε = suppi(XY)/ suppi(X) = conf(X,Y). This means, the fraction
of transactions containing Y additionally to X constantly grows in the same proportion
as X. In other words, the confidence (represented by the scaling factor ε) of the rule
X ⇒ Y does not change over time thus is an invariant property of the domain.

Figures 3.4 and 3.5 show an example of a temporally derivable item set taken from the
road accident data also used for other experiments (see Appendix A). The meaning of
the referred item set is detailed in Example 2 (p. 49). Figure 3.4 shows the support

52 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

histories of the less specific item set at the top and the more specific item set below,
both over ten years. The shape of the two histories is obviously very similar and it turns
out that the history of the more specific item set XY can approximately be determined
using the more general one X by applying a scaling factor. Vice versa, the history of
the less specific item set can be determined from the more specific in the same way. As
shown in Figure 3.5 the reconstruction is not exact. The reason for this is noise.

Due to noise two histories, which for an expert would appear being temporally derivable
from each other, are not being detected as such when strictly adhering to Definition 3.8
and utilising a test for equality. This is a serious practical limitation because far fewer
temporally derivable item sets will be discovered within data than are actually contained.
For this reason, a noise-tolerant approach for testing for temporal derivability is desirable
and will eventually be described in the following section. One step into this direction is to
look at temporal derivability from a probabilistic and information theoretic perspective.

Suppose a transaction I being the result of a random process. Then, for each transac-
tion it can be measured whether it includes a given item set X and the result of this
measurement can be described by a random variable X with dom(X) = {1, 0}. Thereby,
X = 1 indicates that inclusion holds, i.e. X ⊆ I. Further, a different measurement that
can be applied to the random process regards the time period during which a transac-
tion was generated. The result can be described by a random variable T with domain
dom(T) := T̂ = {T1, . . . , Tn} assuming that the random process’ start and end time are
known and that a complete partitioning of this time span into a finite number of periods
already exists.

In practise the probability distributions P (X) and P (T) will almost never be exactly
known. They can, however, be approximated. The support of an item set measures the
relative frequency with which the item set is contained in a sample of transactions. From
a probabilistic point of view a relative frequency provides an estimate for the probability
that a certain event occurs and according to the law of large numbers this estimate
becomes more accurate the larger the sample size gets. Because the support supp(X)
measures the relative frequency of the event X = 1 it is therefore P (X = 1) ≈ supp(X).
From the two-valued domain of X it follows P (X = 0) = 1 − P (X = 1) ≈ 1 − supp(X).
As concerns P (T), its values P (T = Ti) are approximated by the relation between
the number of transactions that are from time period Ti and the overall number of
transactions, that is P (T = Ti) ≈ |Di|/|D|.

Having the support history (supp1(X), . . . suppn(X)) of an item set X and following
a similar line of argumentation as above it thus provides an estimate for the con-
ditional probabilities P (X = 1 |T = T1), . . . , P (X = 1 |T = Tn). Utilising that
P (X = 0 |T = Ti) = 1 − P (X = 1 |T = Ti) the conditional probability distribution
P (X |T) follows immediately. This means, a support history can be equivalently rep-
resented as a conditional probability distribution, which again allows for a probabilistic
reformulation of temporal derivability.

Theorem 3.5. The item set XY is temporally derivable from the item set X if and only
if ∀Ti ∈ T̂ : P (Y |X = 1, T = Ti) = P (Y |X = 1).

This means, if it is known that a transaction containsX and then learning about the time
period from which it stems does not change the knowledge on whether the transaction
also contains the item set Y . But if any knowledge about time does not tell anything

3.6. TEMPORAL REDUNDANCY 53

new about a certain item set occurrence, then the respective part of the domain which
this item set models should be deemed stable.

Example 1 (continued). In the example on page 49 the item set acd was identified
temporally derivable from the item set ac. Let X := ac and Y := d, for each Ti

the probability that a transaction which contains ac also contains d can be estimated
based on the support values given in Table 3.7 (p. 46) P (Y = 1 |X = 1, T = T1) ≈
supp1(acd)/ supp1(ac) = 0.5, and P (Y = 1 |X = 1, T = T2) ≈ supp2(acd)/ supp2(ac) =
0.5. According to Theorem 3.5 these probabilities should be equal to P (Y = 1 |X = 1).
Indeed, it is P (Y = 1 |X = 1) ≈ supp(acd)/ supp(ac) = 0.5 (cp. Table 3.2, p. 35).

In the extreme case that for any item set and for any number of time periods Y is
probabilistically independent of T, the ‘classical’ assumption in data mining that a do-
main is stable would be met. A (colloquially expressed) definition of ‘stable’ therefore
could be: stability is in place when adding time to the analysis does not alter any prior
knowledge.3 On the other extreme, no temporally derivable item set is detected. This
will only occur if change is omnipresent and no stable parts of the domain exist; every
item set occurrence then depends on time, regardless whether, or not, the probability is
conditioned on the occurrence of another item set.

Both extremes will almost never occur. It can be expected that some aspects of a domain
will change (and thus are probabilistically dependent on time) while others remain stable
(and thus are probabilistically independent of time). Each item set describes knowledge
about such an aspect of a domain. The stronger an item set depends on time the more
effective it gets to utilise change—implicitly represented through a time axis—for the
enhancement of knowledge, as it is advocated in this thesis. Conversely, if knowledge
is probabilistically independent of time then its augmentation with information about
change is meaningless and ineffective. The concept of temporal derivability thus provides
a way of separating those parts of knowledge for which change is worth to be utilised
from those for which it is not.

3.6.3 Information Theoretic Assessment

Theorem 3.5 only provides a probabilistic criterion on whether two item sets are tem-
porally derivable based on the independence of an item set’s occurrence and time. It
does neither establish a way of testing this criterion nor does it yield a statement on
the strength of the relation in case of dependence. Two questions are of interest: Is the
occurrence of the item set Y independent of time? And, second, how much information
does time contain about the occurrence of Y ? Thereby it may be already known that
a transaction contains an (not necessarily non-empty) item set X. Both questions are
related, an answer of zero for the second should imply a positive answer for the first
question, and vice versa. Thus, both should be answered using the same tool set.

Information theory provides such a tool set; an introduction to its basic concepts provides
Appendix C.1. Information theory introduces the concept of entropy H(A) which is the
average number of bits needed to describe a random variable A. It is thus a measure of
its information content. Having two random variables A and B the concept of mutual

3As the experiments in Appendix A show this is not the case by far. This, in turn, supports the
assumption that change is ubiquitous and that the stability assumption is often wrong.

54 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

information I(A , B) describes how much information contains one about the other.
Mutual information also is a measure of the inefficiency of assuming that the distribution
is P (A = a)P (B = b) when the true distribution is P (A = a, B = b). The more the
assumption of independence is violated the more bits are necessary to describe A when
having knowledge about B. When wrongfully assuming independence one would need
on average I(A , B) extra bits (or H(A |B) + I(A , B) overall). However, if they are
independent the following theorem can be stated which is, for instance, proven in Cover
and Thomas (2006, p. 28f; Theorem 2.6.3 and Corollary).

Theorem 3.6. For any two random variables, A and B, it is I(A , B) = 0 if and only
if A and B are probabilistically independent.

Returning to the initial problem of determining how much information time T contains
about an item set occurrence Y, the mutual information between Y and T is denoted

IX(Y , T) =
∑

t∈dom(T)

∑

y∈dom(Y)

P (Y = y, T = t |X = 1) ·

log
P (Y = y, T = t |X = 1)

P (Y = y |X = 1)P (T = t |X = 1)
(3.4)

The subscript X emphasise that the probabilities are conditioned on X = 1, that is on
having prior knowledge that a transaction already contains the item set X (cp. The-
orem 3.5).

In this context the utilisation of mutual information is appropriate and meaningful. As
has been pointed out in Section 3.6.2 temporal derivability is associated with the concept
of stability, and manifests itself in the probabilistic independence of item set occurrence
Y and time T (see Theorem 3.5). Taking the aforesaid into account, IX(Y , T) thus
fulfils three purposes. First and foremost, it measures the information that time yields
about a particular item set occurrence. The higher its value the easier it gets to guess
for a transaction with known time period whether it contains this item set. Secondly,
it quantifies in bits the inefficiency of wrongfully assuming stability when describing Y

(over time). The more the stability assumption is violated, the more extra bits need
to be spend. Thirdly, it serves as another criterion for testing temporal derivability, as
follows immediately from combining Theorem 3.5 and Theorem 3.6.

Corollary 3.1. The item set XY is temporally derivable from the item set X if and
only if IX(Y , T) = 0.

The meaningfulness of mutual information in combination with Corollary 3.7 renders
it a good starting point for testing the condition in Theorem 3.5 and thus determining
whether temporal derivability holds for given item sets X and XY . Yet, there is a
practical pitfall here. The mutual information IX(Y , T) depends on the joint probability
distribution P (Y, T |X = 1) which almost always will be unknown. Nevertheless, as
discussed in Section 3.6.2 the probabilities can be estimated by support.

For notational convenience, consider the required (absolute) support histories to be

3.6. TEMPORAL REDUNDANCY 55

T1 . . . Tj . . . Tn
∑

supp. o11 . . . o1j . . . o1n o1·
not supp. o21 . . . o2j . . . o2n o2·∑

o·1 . . . o·1 . . . o·n o··

Table 3.8: 2× n contingency table for support histories

organised in a 2× n contingency table as shown in Table 3.8 using the abbreviations:

o1j := |Dj | suppj(XY) o2j := |Dj | (suppj(X)− suppj(XY))

o1· :=
n∑

j=1

o1j = |D| supp(XY) o2· :=
n∑

j=1

o2j = |D| (supp(X)− supp(XY))

o·j := o1j + o2j = |D| suppj(X) o·· :=
n∑

j=1

o·j =
2∑

i=1

oi· = |D| supp(X)

The first row contains for each data set Dj the absolute number of transactions which
support X and Y . The second row contains for each Dj the absolute number of trans-
actions which do support X but do not support Y . These numbers are called observed
frequencies oij , i = 1, 2 ; j = 1, . . . , n. Obviously, it is

o1j/o·· ≈ P (Y = 1, T = Tj |X = 1) o2j/o·· ≈ P (Y = 0, T = Tj |X = 1)

o1·/o·· ≈ P (Y = 1 |X = 1) o2·/o·· ≈ P (Y = 0 |X = 1)

o·j/o·· ≈ P (T = Tj |X = 1)

Substitution in (3.4) followed by some basic transformations yields

ÎX(Y , T) :=
1

o··

2∑

i=1

n∑

j=1

oij log
o··oij
oi·o·j

(3.5)

Note that for any given data set and random variables such an estimate can be obtained
by substituting in the definition of mutual information the probabilities with their relat-
ive frequency counts (see Appendix C.1). In either way the resulting mutual information
Î will only be an estimate of the exact mutual information I, and it is clear that due to
noise and sampling effects Î can only be zero in exceptional cases. Because Î is based
on the outcomes of a random process (represented by a data set D), it is a random vari-
able itself. Kullback (1968, p. 155ff) obtained and analysed its probability distribution,
albeit Wilks (1935, 1938) achieved an equivalent result while researching the probability
distribution of likelihood ratios from which the following statement can be easily derived.

Theorem 3.7. Given a data set D, if the hypothesis that A and B are probabilistically
independent is true, then the statistic G2 := 2|D| log(e) Î(A , B) approximates to a χ2-
distribution with (r−1)(s−1) degrees of freedom, where r = | dom(A)| and s = | dom(B)|.

Combining Theorem 3.5 and Theorem 3.7 allows to statistically test the following hy-
pothesis H0 against its alternative H1:

H0 : XY is temporally derivable from X
H1 : XY is not temporally derivable from X

56 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

Time Period

T1 T2 T3 T4 T5

|Dj | 233729 229014 221751 214030 207410
suppj(X) 0.035293 0.034574 0.033627 0.035644 0.035919
suppj(XY) 0.025345 0.024692 0.023824 0.025239 0.025577

T6 T7 T8 T9 T10

|Dj | 198735 189161 182115 170591 163554
suppj(X) 0.037738 0.037587 0.040672 0.040646 0.042255
suppj(XY) 0.027322 0.027204 0.029311 0.028723 0.030130

Table 3.9: Data set sizes and support histories for Example 2

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
∑

o1j 5924 5655 5283 5402 5305 5430 5146 5338 4900 4928 53311
o2j 2325 2263 2174 2227 2145 2070 1964 2069 2034 1983 21254∑

8249 7918 7457 7629 7450 7500 7110 7407 6934 6911 74565

Table 3.10: 2× 10 contingency table for Example 2

The test statistic is defined by (3.5). If the null hypothesis holds it follows a χ2 dis-
tribution with (2 − 1)(n − 1) degrees of freedom. The null hypothesis H0 is rejected
at significance level α, if the test statistic exceeds the threshold value χ2

1−α of the χ2

distribution with (n− 1) degrees of freedom.

The testing procedure is illustrated in the following example.

Example 2 (continued). Table 3.9 shows the actual values of the two histories that
have previously been depicted in Figure 3.4 on Page 50 and Table 3.10 the resulting
contingency table. Applying (3.5) leads to the test statistic Î = 13.4. If the null
hypothesis H0, that XY is temporally derivable from X, holds the test statistic Î is χ2-
distributed with (2− 1)(10− 1) = 9 degrees of freedom. At significance level α = 0.05 it
is χ2

0.95 = 16.91 > 13.4 = Î. Thus the null hypothesis cannot be rejected. By statistical
means XY is temporally derivable from X.

To carry out a statistical test the proposition which has to be shown is generally for-
mulated as the alternative H1, whereas the null hypothesis H0 is merely formulated to
be rejected. This allows to control the probability that the test rejects H0, although
it is in fact correct, by the significance level. The method above connects the decision
for temporal derivability to the non-rejection of the null hypothesis. This means, the
significance level does not control the probability that an item set is wrongly identified
as temporally derivable, but the probability that an item set is identified by the test as
being non-temporally derivable, although in fact it is.

The above choice of the null hypothesis reflects the ‘conservative’ position of domain
stability. The test thus is optimal in settings where this position has to be disproved.
This is, for instance, the case when all those item sets are of interest that have a unique
history in the sense that there exists no more general, or likewise no more specific item
set, whose history has the same shape. Clearly, such are non-temporally derivable item
sets which are represented by the alternative hypothesis.

If instead the focus is on identifying stable aspects of a domain which is equivalent to

3.7. TEMPORALLY CLOSED ITEM SETS 57

discovering temporally derivable item sets, the above choice of the hypothesis is sub-
optimal. The probability that an item set is wrongly identified as stable might possibly
increase by lowering the significance level. However, the theoretical foundations of stat-
istical tests require an equality relation in the null hypothesis, such that there seems
to be no way to circumvent the problem described above. The implication, however,
basically is that the detection of temporally derivable item sets is optimistically biased.
An alternative to generally circumvent hypothesis testing would be the introduction of a
user-defined threshold for the mutual information. Nonetheless, its reasonable definition
may be a tedious and complicated task for a user.

3.7 Temporally Closed Item Sets

If an item set X is temporally derivable from Y then both item sets have histories with
qualitatively the same shape. Under the assumption that the relevance of an item set is
primarily determined by the qualitative changes represented in its history both item sets,
X and Y , have the same interestingness. For example, in Figure 3.4 on page 50 both
histories show the same characteristic features that attract a user’s attention: an upward
trend coupled with what appears to be a seasonal variation. Hence, if one item set and its
history are known, learning about the other item set and its history does not lead to any
new insights. One item set of the two is superfluous and does not need to be presented
to an expert. Removing superfluous item sets obviously leads to a smaller collection
of item sets without losing any knowledge. Further elaborating on this idea leads to
a condensed representation which builds upon the concept of temporal derivability. It
accounts for redundancy imposed by the temporal dimension and eventually is smaller
than condensed representations that do not account for it.

3.7.1 Definition and Properties

If two item sets are in relation by temporal derivability they have, apart from scaling,
the same shape and are linked by set inclusion (i.e. one is a superset of the other).
Temporal derivability thus partitions a collection of item sets into equivalence classes.
Within a class item set histories have qualitatively the same shape and all are directly
or indirectly connected by set inclusions. The latter means that if X and Y belong to
the same equivalence class then, in the direct case, it is X↪→Y . Otherwise there exists a
Z within the same class such that either X↪→Z and Y ↪→Z, or Z↪→X and Z↪→Y , which
is the indirect case.

Example 1 (continued). Figure 3.6 shows the Hasse diagram of this example’s item
sets (see Table 3.2, p. 35) together with their support histories. The support threshold
is σa = 2. Equivalence class membership is indicated by related item sets being circum-
scribed. Temporal derivability partitions the collection of frequent item sets into nine
equivalence classes, each one having a size between two and four elements. Note that
albeit acd and cdw have the same shape they are not within the same equivalence class,
because there exists no item set Z such that either acd↪→Z and cdw↪→Z, or Z↪→acd and
Z↪→cdw.

Taking the aforesaid into account, that an item set’s interestingness is primarily dictated
by its temporal development over time and not by its actual support values, the item sets

58 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

acdtw(2,1)

acdt(3,1) adtw(2,1) acdw(2,2) actw(5,3) cdtw(2,1)

acd(3,2) act(6,3) adt(3,1) cdt(4,1) acw(5,4) adw(2,2) atw(5,3) ctw(5,3) cdw(3,2) dtw(2,1)

ac(6,4) ad(3,2) at(6,3) cd(5,2) dt(4,1) aw(5,4) ct(7,5) tw(5,3) cw(6,4) dw(3,2)

a(6,4) c(8,6) d(5,2) t(7,5) w(6,4)

∅(8,6)

σa = 2

Figure 3.6: Hasse diagram for the item sets from Example 1 with equivalence classes imposed by
temporal derivability

within an equivalence class are indiscernible with respect to their interestingness. Their
essential information is captured within an equivalence class representative. For the sake
of consistency to closed item sets, as the chosen reference condensed representation, the
largest item sets of each class are taken. Leaning on the definition of closed item sets,
temporally closed item sets are defined as follows:

Definition 3.9 (Temporally Closed). An item set X is temporally closed iff there exists
no item set Y ⊃ X such that X↪→Y .

The set of temporally closed item sets for a given data set D and a partition of the time
axis T̂ := {T1, . . . , Tn} will be denoted TClosed(D, T̂).

Temporally closed item sets are a subset of the item sets that are closed over a sequence,
as the following theorem states:

Theorem 3.8. Given a time-stamped data set D and a corresponding partition of the
time axis into periods T̂ := (T1, . . . , Tn), the set of temporally closed item sets contained
in D is a subset of the set of item sets that are closed over the sequence T̂ , in other
words TClosed(D, T̂) ⊆ SeqClosed(D, T̂).

Combining Theorem 3.2 and Theorem 3.8 leads to the following corollary.

Corollary 3.2. Given a time-stamped data set D and a corresponding partition of the
time axis into periods T̂ := (T1, . . . , Tn), TClosed(D, T̂) ⊆ Closed(D).

The last example demonstrated that TClosed indeed can be a proper subset of Closed .

3.7. TEMPORALLY CLOSED ITEM SETS 59

suppa
T1 T2 FreqTClosed

8 6 c
7 5 ct
6 3 act
5 4 acw
5 3 actw
5 2 cd
3 2 cdw, acd
2 2 acdw

Table 3.11: Item sets contained in D which are temporally closed and frequent based on σa = 2

This means, every temporally closed item set is also closed on the overall (not temporally
split) data set but not every item set which is closed is also a temporally closed one. In
fact, as the experimental results in Appendix A show, the set of temporally closed item
sets is significantly smaller than the set of closed ones, which again can be significantly
smaller than the set of frequent item sets.

Corollary 3.2 is of high practical relevance for three reasons. First, reconsidering the
problem statement in Section 3.2, Corollary 3.2 ensures the required consistency of
temporally closed item sets to an established condensed representation. It allows an
interpretation of temporally closed item sets as a time-aware generalisation of closed
item sets. Thus, temporally closed item sets are not just ‘yet another’ condensed rep-
resentation.

Second, also as required in the problem statement the corollary shows that a further
reduction in the number of item sets is possible when the temporal dimension of a data
set is considered, compared to its neglectance.

Even though the set of temporally closed item sets describes a subset of the set of
closed item sets, its size theoretically can be exponential in the number of items. For
this reason, only the frequent temporally closed item sets are produced, analogous to
frequent item set mining but also the other condensed representation discussed earlier.
Nonetheless, because the definition of temporally closed item sets is based on a sequence
of temporally ordered data sets rather than merely a single one the notion of what makes
an item set frequent needs to be extended.

Definition 3.10 (Frequent Temporally Closed). A temporally closed item set X is fre-
quent with regard to a minimum support threshold σ iff X is temporally closed and for
its support history (supp1(X), . . . , suppn(X)) it is suppi(X) ≥ σ, i = 1, . . . , n.

The set of frequent temporally closed item sets for a given data set D with the par-
tition of the time axis T̂ := {T1, . . . , Tn} and support threshold σ will be denoted
FreqTClosed(D, T̂ ,σ).

Example 1 (continued). Table 3.11 shows temporally closed item sets contained
within the example data set based on a support threshold of σa = 2. As expected
from Corollary 3.2 the displayed item sets are a subset of the closed ones enlisted in
Table 3.3 (p. 37).

60 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

3.7.2 Discovery

The third reason is, Corollary 3.2 devises a way to search a data set for temporally
closed item sets. Rather than testing each individual frequent item set it is sufficient to
consider only item sets that are closed in D, which means that in comparison far fewer
tests are necessary. Since algorithms for identifying closed item sets have reached a high
level of maturity, this offers the opportunity to yield an algorithm for temporally closed
item sets through building upon prior work, as opposed to a development from scratch.

The CHARM Algorithm

The CHARM algorithm (Zaki and Hsiao, 2002, 2005) for frequent closed item set dis-
covery serves as the foundation of the later proposed method for discovering temporally
closed item sets. The choice of CHARM in favour of other algorithms such as Close
(Pasquier et al., 1999), CLOSET (Pei et al., 2000) and CLOSET+ (Wang et al., 2003a)
lies in its superior performance (see Zaki and Hsiao, 2005, p. 473ff) while being similar
in its general approach (see Ceglar and Roddick, 2006, p. 26).

Central to CHARM is the concept of prefix-based equivalence classes for item sets. Sup-
pose an (arbitrary) order is defined on the items x ∈ L and let x1, . . . , xn be the resulting
ordered sequence of items. For each item set X ⊆ L the function p(X, k) returns X’s
prefix of length k based on the afore-defined order. This defines an equivalence relation
θk on item sets as follows: X ≡θk Y ⇔ p(X, k) = p(Y, k). Thus, two item sets are in
the same equivalence class if they share a common prefix of length k. Obviously, from
X ≡θk+1

Y follows X ≡θk Y such that a class based on prefix P is a composition of the
equivalence classes with prefix Py, whereby y ∈ L and x < y for all x ∈ P . In the same
way, these classes are again sub-divisible and so on, until no further items are available
to extend the prefix.

This yields a tree structure of equivalence classes, whereby the equivalence class with
prefix length 0—the empty prefix—constitutes the root node. This class is identical to
the power set of L, that is, it contains all item sets. Each (inner) node represents one
equivalence class and its children are those equivalence classes that result from extending
the node’s prefix by one more item in accordance with the item order. Because each
prefix uniquely corresponds to an item set (by neglecting the item order) and vice versa
each item set yields a prefix (by sorting its items). Traversing the tree enumerates not
only all equivalence classes but also all item sets.

Traversing the sub-tree rooted at a node with prefix P returns all elements of the re-
spective equivalence class. Hence, each node only has to store the information which
items lead to its children. In short form, an equivalence class therefore is denoted
[P] = {xi1 , . . . , xir}, where P is the prefix and parent node, and each xij a single item
that represents the node (equivalence class) with prefix Pxij . To facilitate fast sup-
port calculation and other operations on the transaction set, CHARM augments each
x ∈ [P] with the set of those transactions which contain the item set that the prefix Px
represents. The set is denoted t(Px), or short t(x) if the prefix is clear. For notational
simplicity when referring to a node in the tree, the notation of [P] sometimes is extended
to [P] = {xi1 × t(xi1), . . . , xir × t(xir)}.

The tree structure breaks the problem of finding the frequent (closed) item sets into

3.7. TEMPORALLY CLOSED ITEM SETS 61

Charm(D,σ)
1 [∅] ← {xi × t(xi) : xi ∈ L ∧ supp(xi) ≥ σ}
2 D ← ∅
3 Charm-Extend([∅], D)
4 return D

Charm-Extend([P], D)
1 for each xi × t(xi) in [P]
2 do Pi ← P ∪ xi and [Pxi] ← ∅
3 for each xj × t(xj) in [P] with j > i
4 do Charm-Property(xi, xj , t(xi) ∩ t(xj), Pi, [Pxi], [P])
5 Subsumption-Check(Pi, D)
6 Charm-Extend([Pxi], D)
7 delete [Pxi]

Charm-Property(xi, xj , tij , Pi, [Pxi], [P])
1 if supp(Pi ∪ xj) ≥ σ
2 then if t(xi) = t(xj)
3 then Remove xj from [P]
4 Pi ← Pi ∪ xj

5 else if t(xi) ⊂ t(xj)
6 then Pi ← Pi ∪ xj

7 else if t(xi) ⊃ t(xj)
8 then Remove xj from [P]
9 Add xj × tij to [Pxi]

10 else if t(xi) -= t(xj)
11 then Add xj × tij to [Pxi]

Subsumption-Check(P,D)
1 h(P) ←

∑
T∈t(P) T

2 for each Y in Hashtable(h(P))
3 do
4 if P ⊆ Y ∧ supp(Y) = supp(P)
5 then return
6 D ← D ∪ P

Figure 3.7: The CHARM-Algorithm for discovering frequent closed item sets from a data set D using
a minimum support threshold σ. (Zaki and Hsiao, 2005)

independent sub-problems and makes it recursively describable: The search results from
the equivalence class with prefix P are the aggregate of the results obtained from search-
ing its child equivalence classes in the tree. Clearly, no sub-tree of a node with infrequent
prefix needs to be visited. Zaki and Hsiao (2005, p. 465f) provide the following proper-
ties of pairs x × t(x) which allow to skip equivalence classes during traversal and thus
leverage a faster closed item set discovery.

Theorem 3.9. Let x × t(x) and y × t(y) be any two members of a prefix equivalence
class [P] and x < y. Further let c(Px) denote the function that maps an item set Px to
its closure (i.e. the corresponding closed item set). The following four properties hold:

1. If t(Px) = t(Py), then c(Px) = c(Py) = c(Pxy).

2. If t(Px) ⊂ t(Py), then c(Px))= c(Py), but c(Px) = c(Pxy).

62 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

3. If t(Px) ⊃ t(Py), then c(Px))= c(Py), but c(Py) = c(Pxy).

4. If t(Px))⊆ t(Py) and t(Px))⊇ t(Py), then c(Px))= c(Py))= c(Pxy).

Property 1 implies that node Px is skippable and that the traversal can continue with
node Pxy. Node Py can be removed from further consideration as its closure is the
same as the one of Pxy. Property 2 also implies to skip over Px, yet not to remove Py
from further consideration because its closure is different from those of Px. Property 3 is
symmetric to Property 2, nevertheless has different consequences. It implies that Py can
be removed from further consideration, as its closure and the one of Pxy are the same,
and Pxy will already be visited while traversing the sub-tree rooted at Px. Property 4
states that both Px and Py have different closures, hence no skips are possible.

Figure 3.7 shows CHARM in pseudo-code notation. It consists of four parts: Charm,
Charm-Extend, Charm-Property and Subsumption-Check. Charm in Line 1
initialises the equivalence class with prefix length 0—the root of the tree—to the fre-
quent single items. Each item is paired with the set of transactions that support it.
In Line 3 Charm then passes the root node to Charm-Extend. This routine in Line
6 recursively traverses depth first through the tree routed at node [P] provided in the
routine’s argument. Charm-Extend is also responsible for constructing the child nodes
[Pxi] of [P] (Line 2). For each item xi × t(xi) in [P] (Line 1), it combines it with any
other pair xj×t(xj), that in the employed order comes after the former (Line 3). For just
enumerating all nodes in the tree (and thus all item sets) it would be sufficient to append
all resulting pairs xj × t(xi) ∩ t(xj) to [Pxi] and to subsequently call Charm-Extend
with the latter.

This, however, is inefficient since the properties provided in Theorem 3.9 allow for skip-
ping nodes. The properties are tested in Charm-Property which is called in Line 4
of Charm-Extend. The test result may trigger changes to the node [Pxi]: by adding
the element xj to its prefix, in case property 1 or 2 hold, or by appending the pair
xj × t(xi) ∩ t(xj) to it, in case property 3 or 4 hold. If property 3 is true, Charm-
Property additionally modifies the node [P] by removing the element xj × t(xj), thus
that the sub-tree rooted at [Pxj] will not be traversed anymore. After producing the
node [Pxi] it is guaranteed that no node visited in the future will render [Pxi] non-
closed. It is thus closed unless a previously found closed item set (i.e. one, that does not
share a common prefix with [Pxi]) is its closure. Subsumption-Check tests whether
this is the case. If no such closed item sets exists, Pxi is inserted in the set of closed
item sets (Line 6).

The CHARM-T Algorithm

CHARM-T extends CHARM such that temporally closed item sets are discovered.
Those later described extensions serve two purposes: to obtain the support history
of each frequent closed item set and to speed up the discovery of temporally closed item
sets by skipping or avoiding unpromising sub-trees.

According to Definition 3.9 temporally closed item sets are based on the notion of tem-
poral derivability, for which Section 3.6.3 provides a statistical test. Temporal derivab-
ility and the test rely on the support histories of item sets being available, that is the
item sets’ support within each time period. CHARM, however, only operates on a single

3.7. TEMPORALLY CLOSED ITEM SETS 63

Charm-T(DT ,σ)
1 [∅] ← {xi × t(xi) : xi -∈ T̂ ∧ supp(xi) ≥ σ} ∪{ xi × t(xi) : xi ∈ T̂}
2 FreqTClosed ← ∅
3 Charm-T-Extend([∅],FreqTClosed)
4 return FreqTClosed

Charm-T-Exend([P],FreqTClosed)
1 for each xi × t(xi) in [P] with xi -∈ T̂
2 do Pi ← P ∪ xi and [Pxi] ← ∅
3 for each xj × t(xj) in [P] with j > i
4 do if xj -∈ T̂
5 then Charm-Property(xi, xj , t(xi) ∩ t(xj), [Pxi], [P])
6 if xj ∈ T̂
7 then if supp(Pi ∪ xj)/ supp(xj) > σ
8 then Add xj × (t(xi) ∩ t(xj)) to [Pxi]
9 else Jump to outer loop and continue with next xi

10 if Temporal-Derivability-Test([P], [Pxi])
11 then FreqTClosed ← FreqTClosed \P
12 Subsumption-Check([Pxi],FreqTClosed)
13 Charm-T-Extend([Pxi],FreqTClosed)

Charm-Property(xi, xj , tij , [Pxi], [P])
1 if supp(Pi ∪ xj) ≥ σ
2 then if t(xi) = t(xj)
3 then Remove xj from [P]
4 Pi ← Pi ∪ xj

5 else if t(xi) ⊂ t(xj)
6 then Pi ← Pi ∪ xj

7 else if t(xi) ⊃ t(xj)
8 then Remove xj from [P]
9 Add xj × tij to [Pxi]

10 else if t(xi) -= t(xj)
11 then Add xj × tij to [Pxi]

Subsumption-Check(P,FreqTClosed)
1 for each P ′ in FreqTClosed with P ′ ⊃ P
2 do
3 if Temporal-Derivability-Test([P], [P ′])
4 then return
5 FreqTClosed ← FreqTClosed ∪{P}

Figure 3.8: The CHARM-T-Algorithm for discovering frequent temporally closed item sets from a
data set DT using a minimum support threshold σ.

data set, not on multiple ones that are temporally ordered. Section 3.5.2 (p. 47ff) offers
a solution to this conflicting situation: Time periods are encoded as individual items
and each transaction is extended accordingly prior to invoking CHARM. Following the
notion introduced earlier, the data set D then turns into a data set DT .

CHARM enumerates the closed item sets contained in a data set D. Because according
to Corollary 3.2 the temporally closed item sets are a subset of the closed item sets,
each closed item set is a candidate temporally closed item set. This entails that when

64 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

replacing D with DT as input to CHARM, these candidates must still be produced.
Because only frequent temporally closed item sets are of interest, the candidate closed
item sets can be restricted to those that have non-zero support in each time period.
Under this assumption, Theorem 3.3 and Theorem 3.4 apply. Theorem 3.3 guarantees
that for any item set which is closed in D, its entire support history can be constructed
from the result produced by CHARM on DT . Theorem 3.4 ensures that the result
produced on DT also contains any item set which is closed in D and present in each
time period. Consequently, the result from CHARM onDT contains the (frequent) closed
item sets from D plus their support histories—all information necessary for finding the
temporally closed item sets is available.

The test for temporal derivability provided in Section 3.6.3 may be conducted as a
post-processing step after applying CHARM to DT . However, this would require to
enumerate each closed item set at least twice—once during the CHARM run, and once
in the post-processing step. A more efficient way is to incorporate the test into CHARM.
The result is the Charm-T algorithm shown in Figure 3.8.

Charm-T extends and amends Charm in several ways. As discussed above, Charm-T
receives as input the data set DT which differs to D in that it encodes time periods as
additional items. Since these items have a special meaning, it is necessary to distinguish
them from the others. For this the (short-handed) predicate x ∈ T̂ is used. The concept
of predicate equivalence classes and the traversal through the item sets at their core
are the same as in Charm. However, items x ∈ T̂ are treated differently in order to
reduce the number of visited prefix equivalence class predicates (i.e. nodes). First and
foremost, when constructing the child equivalence classes [Pxi] of [P] only items xi)∈ T̂
are considered in Charm-Extend (Line 1). The reason is that the equivalence class
prefixes later result in closed item sets, but there is no interest in closed item sets which
contain an item that marks a time period. In fact, the interest solely lies in obtaining a
support history. For this, it is sufficient that for all xi ∈ T̂ the pair xi×t(xi) is contained
in [P] (Line 8). In Line 10 all the information necessary is available to conduct the test
for temporal derivability. In case of a positive outcome the item set P is not temporally
closed and hence is removed from FreqTClosed .

The sub-tree rooted at [Pxi] is not traversed if Pxi is infrequent in at least one period.
To avoid unnecessary computations, this is already tested before adding the item xi to
the prefix equivalence class (Line 1 of Charm-Property, Line 1 of Charm-T). The
tested condition supp(Pi ∪ xj) ≥ σ, however, provides only a necessary criterion. That
is, if it is false it implies that a time period exists in which Pxi is infrequent; but if it
is true it cannot be concluded that Pxi is frequent in all periods. Thus, for those Pxi
which ‘slip through’ a second test using a sufficient criterion is carried out later, when
the pairs xj × t(xj), xj ∈ T̂ are added to [Pxi] (Line 7 of Charm-T-Extend). In Line
12 of Charm-T-Extend the prefix equivalence class [Pxi] and thus also the history
of the item set Pxi are complete. Before starting the traversal of [Pxi]’s corresponding
sub-tree in Line 13, it is tested whether Pxi is temporally non-closed with regard to
one of its earlier-visited supersets. This requires a data structure for subset containment
queries, to efficiently retrieve for Pxi all supersets stored in FreqTClosed . Charikar
et al. (2002) published such a data structure. If no earlier-visited superset is found
which renders Pxi temporally non-closed, the item set Pxi is provisionally added to
the set of temporally closed item sets (Line 6 of Subsumption-Check). It may be

3.7. TEMPORALLY CLOSED ITEM SETS 65

removed again if it temporally closed with regard to its later-visited supersets (Line 11
of Charm-T-Extend).

3.7.3 Supplemental Structures

Knowing all elements in FreqTClosed and their support histories allows for identifying
those frequent item sets that have a unique history and for determining whether a non-
temporally closed item set is frequent. In practise, nonetheless, two more questions
sometimes are of interest: First and foremost: What is the shape of the support history
of a non-temporally closed item set? And second: What is the actual support value
of a non-temporally closed item set? The latter is equivalent to asking for the values
of the item sets’ support history. While the first question reflects the change analysis
perspective on an item set, that its interestingness is primarily dictated by its histories’
shape, not its concrete values; the second question takes on a more traditional view on
item set interestingness.

FreqTClosed on its own is not sufficient to answer either of these questions. A sup-
plemental structure is necessary. Section 3.4.4 analysed that all the condensed repres-
entations presented in Section 3.4 require one or more of such structures, with closed
item sets being the only exception. In particular, Section 3.4.4 identified two types of
supplemental structures: rule sets and border sets. The former being used to determine
the support, the latter being used to determine the frequentness of those item sets which
are not part of the condensed representation. Throughout the remainder of this section
it should be remembered from the discussion in Section 3.4.4 that condensed represent-
ations solve a presentation and not a storage problem. For this reason, the presence of
a supplemental structure only is of minor importance.

To answer the question for actual support values, FreqTClosed must be supplemented
with the collection of all valid rules of the form Y ⇒ Z, where Y ∪ Z ∈ FreqTClosed ,
Y ∈ FreqClosed and Y ↪→Y ∪ Z. Using those rules the frequent closed item sets can
be reconstructed, and from them the support histories of all other frequent item sets
inferred. The combination of several of this Section’s findings provides the justification:
The frequent closed item sets are produced by Charm-T as the only candidates that are
to be tested for temporal closedness (see Section 3.7.2, p. 62f). A closed item set is non-
temporally closed only if another closed item set can be temporally derived from it (see
Section 3.7.1, p. 57f). Being temporally derivable, in turn, is conceptually equivalent to
the occurrence of rules whose confidence does not change over time (see Section 3.6.2,
p. 51f); such as the above ones. Indeed, and overall, the above suggested supplemental
structure already is implicitly generated during a Charm-T run and thus only needs to
be unfolded.

This approach has two practical benefits: First of all, the size of the supplemental
structure is bounded by the number of closed item sets minus the number of temporally
closed item sets. This is a huge improvement over other condensed representations’
supplemental structure whose size may become larger than those of the set of frequent
item sets (see p. 43). The second benefit is the consequence of item set discovery being
sometimes seen merely as a prior step to producing association rules. Analogous to how
support histories are used for item sets to judge their interestingness, confidence histories
can be defined for association rules to serve the same purpose. Following the arguments

66 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

provided in Section 3.6.1, rules with invariant confidence are regarded uninteresting.
Exactly these rules are represented by the above defined structure, and thus they may
serve as a backlist for rules not to be displayed to a user. This avoids an explicit test
for confidence histories’ invariance.

To answer the question for the shape of item sets’ history, FreqTClosed must be sup-
plemented with the collection of all valid rules of the form Y ⇒ Z, where Y ∪ Z ∈
FreqTClosed , Y ∈ FreqClosed , Y ↪→Y ∪ Z and there exists no X ⊂ Y , X ∈ FreqClosed
with X↪→Y . This definition is the same as for the rule set before with an extra con-
straining condition added. The resulting rule set thus is a subset of those necessary to
produce the actual support values. Intuitively, these rules describe the lower bounds
of each equivalence class that results from temporally derivability (see Section 3.7.1, p.
57ff). In combination with FreqTClosed these lower bounds allow to state for any item
set whether it belongs to a certain equivalence class, or not. Since all histories within an
equivalence class have the same shape, the above question can therefore be answered. It
should, however, be noted that the reconstruction of the history shape does not account
for noise, hence it is only an approximation.

3.8 Data-centric Change Utilisation

As an example how change can be utilised for item set mining, this chapter describes a
change-based condensed representation which lessens the shortfall of frequent item set
mining to produce a vast number of item sets more effectively than conventional, change-
ignoring condensed representation. For this example, specific theorems and algorithms
have been detailed. Yet, for change utilisation to be carried over to other data mining
tasks, general principles and a more theoretic framework are needed.

Taking a bird’s eye perspective on the content of this chapter, three core principles can
be identified. First, the data is enriched by additional information which, in its symbolic
representation, encodes temporal aspects of the data. Second, the resulting temporally
augmented data set is processed by an algorithm which is unaware of the temporal
semantics of some of the data set’s symbols. Third, the resulting pattern set contains
extractable higher level temporal information (compared to the one in the input data)
whose characteristic is that filtering on it yields a pattern set which is in some aspects
superior to the one that would be retrieved from the original, not enriched data.

It is clear that the second and third principle only are applicable and effective if the
symbolic representation and the temporal information it encodes are cleverly chosen
with these principles in mind. This puts strong emphasise on the data rather than the
algorithm it is processed by and for this reason this approach to change utilisation is
named data-centric.

More formally, let A be a set of symbols and D[A] be the space of all data sets that are
based on A’s elements. Let AT be a symbol set that results from extending A with addi-
tional symbols ti which encode temporal information, e.g. AT := A∪{t1, . . . , tn}, ti)∈ A,
and D[AT] the space of all data sets based on it. Further, let P[A] be the space of all
pattern sets that are based on A.

The data-centric approach to change utilisation is diagrammed in Figure 3.9. Its goal is
the same as for any data mining approach, to produce a pattern set P from a data set D

3.8. DATA-CENTRIC CHANGE UTILISATION 67

Data D

Temporally
Augmented
Data

DT

Pattern Set P∗ P

τ ψ

ψ∗

χ

Figure 3.9: Data-centric change utilisation uses a temporally-augmented data set DT

by some algorithmic procedure, which formally is described as a function ψ : D[A] −→
P[A]. Central to data-centric change utilisation is the function τ : D[A] −→ D[AT] with
τ(D) = DT which maps a data set D to a temporally enriched one DT . To DT a function
ψ∗ : D[AT] −→ P[AT] with ψ∗(DT) = P∗ is applied which extracts patterns from it,
yet is unaware of the temporal semantics that some of DT ’s symbols are carrying. The
algorithm which realises ψ∗ thus can be an existing data mining algorithm. In particular,
it must not even have been originally designed with intending change utilisation, like the
closed item set miner CHARM that was employed in this chapter. P∗ contains three
kinds of patterns: those stemming from the original data set, higher level aggregates
of the temporal symbols, and mixtures of the both. As the last step, a filter function
χ : P[AT] −→ P[A] with χ(P∗) = P is applied which filters the first kind of patterns
based on criterions defined on the latter two kinds.

In practise, as seen in Section 3.7.2, there may be no necessity for a strict separation of
concerns between ψ and χ. For reasons of computational efficiency, the latter might be
integrated into the former to filter patterns ‘on the fly’, as they are generated. Further-
more, analysis of the function χ, might allow for ψ integrating optimisations to avoid
the needless patterns being produced.

Data-centric change utilisation does not only apply to frequent patterns or item sets,
in particular. Indeed, it is applicable to other approaches for pattern discovery as well.
For instance, Höppner and Böttcher (2007) published the PAMALOC algorithm which
“enables the detection of local patterns in noisy data sets more reliable compared to the
case when the temporal information is ignored” by making use of the observation “that
noise does not reproduce its incidental structure over time but even small patterns do”.
The authors thus employed change utilisation for enhancing the reliability of small pat-
tern detection, specifically clustering. In light of the previous discussion, their approach
briefly reads as follows: The function τ adds to the data set a further attribute which
uniquely assigns a data slice number to each record. A slice can be thought of as describ-
ing data from a certain small time period. These slices are then aggregated to sub-data
sets covering larger time-periods which overlap by one slice. A records membership to
sub-data sets is described by adding appropriate attributes to the data. The function
ψ∗ basically is a standard OPTICS cluster algorithms which produces a clustering for
each sub-data set. The function χ then filters out all incidental clusters by determining
whether they do not repeat over time.

68 CHAPTER 3. UTILISING CHANGE FOR ITEM SETS

3.9 Conclusion

Chapter 1 assigned data mining areas to perspectives, depending on whether they ignore
change or describe it, and proposed a third perspective that centres around its implicit
utilisation as a leverage for tackling weaknesses of today’s data mining approaches. This
Chapter focused on the weakness of frequent item set mining to produce result sets of a
size that is manageable only with great difficulty. It proposed and described a solution—
temporally closed item sets—which reduces the number of produced item sets through
incorporation of the temporal dimension. Because change can only occur over time, the
solution does not ignore change; knowledge about change is not produced either. For
this reason it neither belongs to the first nor to the second traditional perspective on
change.

Indeed, temporally closed item sets belong to the in Chapter 1 proposed third perspect-
ive on change for three reasons. First of all, they address a problem for which also
conventional data mining solutions exist that do not incorporate change at all, specific-
ally condensed representations. In particular, they regard change as another ‘feature’
of the data, encoded by items that represent time periods. Second, temporally closed
item sets do not ignore this previous work. They take advantage of closed item sets and
at the same time enhance them. Third, temporally closed item sets provide a benefit
for item set-based change mining because they reduce the number of observed changes
dramatically—as the experiments in Appendix A (p. 97ff) demonstrate—and help to
identify the core changes within a domain.

The concept of temporally closed item sets and the Charm-T algorithm for their dis-
covery have several characteristic technical features which are described next, and put
in relationship to the requirements defined in the problem statement in Section 3.2.

• Consistency: The concept of temporally closed item sets is derived from the
concept of closed item sets, and Charm-T is an extension of Charm. Thus,
temporally closed item sets are comparable to closed item sets, which in this way
becomes a reference representation. Temporally closed item sets and closed item
sets do not contradict each other, thus are consistent, because the first is a subset
of the latter, as Corollary 3.2 states.

• Reduction: The set of temporally closed item sets is produced from a sequence
of data sets, as opposed to closed item sets which are produced from the data sets’
union. That means, both representations are produced from the same data, yet
there are fewer temporally closed item sets due to the aforementioned set inclusion.
Appendix A.1 documents experiments on two real-world data sets, which show that
the set of temporally closed item sets is significantly smaller than the set of closed
item sets. On one data set, closed item set discovery reduces the number of item
sets by 20%, whereas temporally closed item set discovery reduces it by 54%. On
the other data set, closed item set mining leads to no reduction in the number of
item sets, whereas with temporally closed item sets a reduction by 55% is obtained.

• Robustness: Section 3.4.5 discussed why closed item sets are not suitable in the
presence of (even slightly) noisy data. Even in massive data sets one erroneous
transaction is able to turn an actually non-closed item sets into a closed one.
The reason that has been identified is the approaches for producing closed item

3.9. CONCLUSION 69

sets, such as Charm, rely on a test for strict support equality between item sets.
Charm-T does not have this deficit. Whether an item sets is temporally closed, or
not, is determined by means of a statistical test, which is presented in Section 3.6.3.

• Meaningfulness: Section 3.6.1 identified that properties of a domain are inter-
esting when they change. Conversely, invariant properties are uninteresting. Item
sets represent such a domain property. The concept of temporal derivability which
underlies temporally closed item sets (see Definitions 3.8 and 3.9) describes the
invariant relationships in a domain, specifically between item sets. The relation-
ships are representable by rules with constant confidence. Both, the utilisation
of invariance and the rule representation when describing redundancy contribute
towards the meaningfulness of temporally closed item sets

Chapter 4

Utilising Change for Classifiers

In a classification problem the goal is to assign class labels to test cases that are described
by a set of attributes. In data mining this problem is approached inductively, by learning
a classifier from a training data set of already classified cases. A classifier hence is
a mapping between attributes and classes. The most popular type of classifiers are
decision trees (Wu et al., 2008). Their popularity stems from their ability to deliver
good classification results while still being comprehensible. The induction of a decision
tree from a data set is a mature and well-researched topic. Aiming at improvements in
comprehensibility and classification accuracy many algorithms have been proposed which
emphasise on different aspects of the induction process. However, albeit all this research,
decision trees share the following shortcoming with all other classifiers: in the presence of
a changing domain a decision tree is out of date as soon as it has been induced. Applied
to unseen data, the classification accuracy can therefore drop considerably. Shortening
the interval between tree renewals is the most common method to limit the drop in
performance, but that does not address the conceptual problem.

On the other hand, algorithms for decision tree induction have been developed based
on the assumption that the underlying domain is stable. Thus they do not use the
information contained in the training data in its entirety. Knowing that domains change
over time is suggesting to ask: Can the temporal dimension and the change it represents
be used to overcome the aforementioned problems, or at least to lessen them? The goal
of this chapter is to show the potential of utilising change for classifiers by presenting
an algorithm that uses a temporal model to learn decision trees in anticipation.

This chapter is structured as follows. Section 4.1 analyses the problems linked to decision
tree induction, which then results in a problem statement in Section 4.2. Section 4.3
introduces the terminology and notations used in this chapter. Section 4.4 then outlines
the induction algorithm for decision trees, followed by a discussion of typical approaches
from the literature for coping with the given problem. Section 4.7 then continues with a
detailed description of the proposed change utilisation approach. The final Section 4.8
then concludes this chapter.

4.1 Motivation

Comprehensibility is one of the major reasons why decision trees are chosen as classifi-
ers. This is particularly important in applications where decisions have to be traceable
and verifiable by human experts. Indeed, if insights on how the classifier operates are
irrelevant, why not choose a different one such as a neural network or a support vector
machine? Decision trees are predominantly comprehensible because they yield a set of
classification rules. It would also be desirable to have the smallest tree that describes
a certain problem. However, optimal learning of decision trees is NP-hard (Hyafil and
Rivest, 1976). Instead a local search for a local optimum in the space of all possible

72 CHAPTER 4. UTILISING CHANGE FOR CLASSIFIERS

a1 a2

b1

b2

Igain(A) = 0.531

Igain(B) = 0.007

(a) Period 1

a1 a2

b1

b2

Igain(A) = 0.278

Igain(B) = 0.030

(b) Period 2

a1 a2

b1

b2

Igain(A) = 0.118

Igain(B) = 0.066

(c) Period 3

a1 a2

b1

b2

Igain(A) = 0.007

Igain(B) = 0.191

(d) Period 4

Figure 4.1: Illustration of how change within a domain can lead to trends in information gain.

decision trees is conducted; decision tree algorithms employ a greedy search strategy
(see Section 4.4).

Concept drift is a major reason for a degrading classification accuracy. Chapter 1 showed
that virtually any domain is subject to changes, and that the data it generates changes
too. Over time, the concept, represented by a once learned decision tree (i.e. the concept
of what constitutes the classes), may match reality less and less, and eventually fail to
represent unclassified cases. To maintain a high classification accuracy regular relearning
or revision of the decision tree is advocated in the literature. Still, as concept drift
is continuous, training data is always, at least a bit, outdated. In consequence the
classification accuracy will never be optimal. From the perspective of a comprehensive
classifier the knowledge represented by the tree is (in a strict sense) only valid for the
past but it yields no insights about the present or future. Even worse, caused by their
inherent instability (see Breiman, 1996) the newly produced decision tree—even for a
very slight concept drift—may completely differ from the previous one.

Section 2.4 detailed, that analysing change based on tree comparisons is not straight-
forward and constitutes a difficult problem which arises from its computational intract-
ability. This, in combination with the aforementioned instability makes it impossible
to anticipate decision trees directly based on a sequence of past ones. Moreover, the
exploitation of temporal information in the data has not produced much research in the
context of decision trees.

These problems raise the following question in relation to the topic of this thesis: How
can knowledge about change be utilised during decision tree induction such that the
produced decision tree better reflects the present or near-future characteristics of an
evolving domain? The following two examples underline this idea.

Example 3. This example picks up on the example given in Section 2.4 and the cor-
responding Figure 2.4 on page 22. Figure 2.4 shows two decision trees learned at two
different points in time. The aim of each is to classify instances as circles or squares.
Or, from a different angle, it is to describe the concepts ‘circle’ and ‘square’ with the
help of the attributes A and B. As can be seen, the concepts at both time points T1

and T2 are completely different. For instance, at T1 a circle is primarily describable as
having the attribute value a1, whereas in T2 the description shifted to b1. This change
did not happen suddenly. Figure 4.1 shows the changes over four periods; period T4

here corresponds to what has previously been T2. Over time, the change appears to

4.2. PROBLEM STATEMENT 73

5 10 15

0.1

0.15

0.2

0.25

T

I g
ai

n

I
gain

(C,A
(1)

)

I
gain

(C,A
(2)

)

Figure 4.2: Histories of information gain val-
ues for two different attributes.
The history of A(1) is apart from
noise stable. The history of A(2)

shows an upward trend.

be gradual; B gains discriminative power, A loses it and B eventually outperforms A
somewhere between T3 and T4. The question is, whether one can already say in T3 that
B may be the better choice in the future.

Example 4. Figure 4.2 has been obtained from a real world data set which is described
in Böttcher et al. (2008b). It shows the discriminative power of the attributes A(1) and
A(2) over 15 time periods. Focussing only on period 6 (and forgetting about the others),
it appears that A(2) is superior to A(1). In fact, looking at all periods it becomes clear
that this superiority was only due to noise. The question is, whether the noise can be
identified as such and be removed by taking into account the functional relationship
between time and discriminative power.

4.2 Problem Statement

The previous discussion leads to the following problem statement: Given is a sequence
of data sets. Each data set corresponds to a time period. It is assumed that the time
periods are disjoint and no more than one data set exists for each. The problem is to find
a method which induces a decision tree from the sequence of data sets, thereby utilising
the changes hidden within the data. The so produced decision tree should have a higher
classification accuracy than a decision tree learned solely from the most recent data set
by a change-unaware algorithm. As was elaborated, decision trees have the shortcoming
of suffering from a degrading classification accuracy when learned in changing domains
(as any classifier). Compared to other classifiers, however, decision trees have a good
comprehensibility and usability. It is thus reasonable that a solution to the problem
should improve on this shortcoming, but at the same time maintain comprehensibility
and usability. The solution should be assessed by the following aspects:

• Accuracy: The classification accuracy is at least as good as those of trees which
are solely learned from the most recent data set available. Ideally, they outperform
the latter in the presence of a changing domain and noise.

• Consistency: The solution produces decision trees which look like as if they
had been induced by a change-unaware decision tree learner. This means, they
have the same general structure and do not exhibit any change-related properties.
Consistency thus entails comprehensibility.

• Usability: The solution should depend only on a few, understandable parameters.

74 CHAPTER 4. UTILISING CHANGE FOR CLASSIFIERS

Since any solution to the above problem is entirely novel, some simplifying assumptions
and decisions are made. First of all, the approach only deals with the mere induction
process, pruning approaches are not discussed and are left for future research. Fur-
thermore, the focus is on two-class, rather than multi-class classification. Because a
multi-class problem is transformable into a set of two-class problems, this does not con-
stitute a strong restriction. Lorena et al. (2008) review such transformation strategies.

4.3 Terminology and Notation

Throughout the chapter the following notation is used. A data set D of sample cases
is described by a set of nominal input attributes A := {A(1), . . . , A(m)} and a class
attribute C. The domain of an attribute A has nA values, i.e. dom(A) = {a1, . . . , anA},
and the domain of attribute C has nC values, i.e. dom(C) = {c1, . . . , cnC}. For stating
evaluation measures it is necessary to refer to the number of sample cases in the data
set having certain properties. This leads to the following notation:

pi· relative frequency of class ci
p·j relative frequency of attribute aj
pij relative frequency of the combination of the

values ci and aj
pi|j relative frequency of the value ci conditioned

on aj , i.e. pi|j =
pij
p·j

Since the focus lies in the temporal dimension, let D be a time-stamped data set and
[t0, tr] the minimum time span that covers all its samples. The interval [t0, tr] is divided
into r > 1 non-overlapping periods [ti−1, ti[, such that the corresponding subsets Di ⊂ D
each have a size |Di| ' 1. Further, let T̂ := {1, . . . , r, (r + 1), . . .} be the set of all past
(i ≤ r) and future (i > r) period indices.

4.4 Learning Decision Trees

Algorithms for decision tree induction, such as CART (Breiman et al., 1984) or C4.5
(Quinlan, 1993), grow the tree recursively starting from the top using a greedy strategy.
Figure 4.3 shows their basic structure (c.f. Borgelt and Kruse, 1998). The induction
process is controlled by two different types of decisions: Firstly, starting at the root node
an attribute A is selected that yields the highest score regarding an attribute evaluation
measure I (Lines 2–6). The data set is then split into nA subsets each corresponding
to one attribute value a ∈ dom(A) and a child node for each of them is created (Lines
10–12). Secondly, if all its cases have the same class label or a stop-criterion is reached,
a subset is not split further and hence no children are created (Line 8). The current
node then becomes a leaf and is assigned the majority class c ∈ dom(C) of its associated
subset (Line 9).

An attribute evaluation measure I(C,A) rates the value of an attribute A for predicting
the class attribute C. The most well-known measures are information gain (Quinlan,
1986) and information gain ratio (Quinlan, 1993). The information gain Igain(C,A)
measures the information gained, on average, about the class attribute C when the value
of the attributeA becomes known. Based on the Shannon entropyH = −

∑n
i=1 pi· log2 pi·

4.5. HANDLING CONCEPT DRIFT 75

GrowTree(D)
1 Ibest ← WORTHLESS
2 for all untested attributes A
3 do I ← I(D,A)
4 if I > Ibest
5 then Ibest ← I
6 Abest ← A
7 if Ibest = WORTHLESS
8 then create leaf node v
9 assign c = argmaxci(p1·, . . . , pi·, . . . , pnc·) to v

10 else assign test on Abest to v
11 for all a ∈ dom(Abest)
12 do v.child[a] ←
13 GrowTree(D|Abest=a)
14 return v

Figure 4.3: Basic structure of algorithms for decision tree induction (Borgelt and Kruse, 1998)

as a measure for the information content (see Appendix C.1 for some background know-
ledge), the information gain is defined as

Igain(C,A) = HC −HC|A (4.1)

= −
nC∑

i=1

pi· log2 pi· −
nA∑

j=1

p·j

nC∑

i=1

pi|j log2 pi|j

A disadvantage of information gain is its bias towards attributes with many values. To
overcome this problem the information gain ratio Igr(C,A) was proposed which penalises
many-valued attributes by dividing the information gain Igain(C,A) by the entropy HA

of the attribute itself.
Igr(C,A) = Igain(C,A)/HA (4.2)

Many other attribute evaluation measures have been published. Still, no single best
measure exists and in practise often several are tried in order to find the one leading to
be best decision tree (Borgelt and Kruse, 1998).

4.5 Handling Concept Drift

Almost since the early days of machine learning it is known that changing domains lead
to a degradation in classifier performance. The classifier, seen as representing a model
for a real concept, does not match the reality anymore. This is why research introduced
the terms ‘concept drift’ and ‘concept shift’. Section 2.5 (p. 24) already provided an
introduction into these topics together with links to some classical readings, in the con-
text of the question: How can be determined when a domain has changed considerably?
The following section sheds light on contributions regarding another aspect: How can a
degrading classifier performance be prevented? In particular, two types of approaches
are discussed. The first type focuses on the most recent data, the second type focuses

76 CHAPTER 4. UTILISING CHANGE FOR CLASSIFIERS

on the reuse of past classifiers. For both types their core ideas are revealed and their
drawbacks outlined.

4.5.1 Windowing and Forgetting

If a domain changes over time, it is sensible to assume that the more recent the training
data is, the better the learned classifier may reflect the present and hopefully the near
future. Thus, it comes with no surprise that the two basic techniques employed for
learning in the face of concept drift are moving temporal windows (Widmer and Kubat,
1996; Hulten et al., 2001; Klinkenberg, 2004) and age dependent weighting (Klinkenberg,
2004). The method of moving temporal windows learns the decision tree from samples
that were gathered within a certain, recent time window. For instance, in Widmer and
Kubat (1996) a framework is described which heuristically and dynamically adapts the
window size during the learning process. A moving temporal window approach to learn
decision trees – the CVFDT algorithm – which scales up to very-large databases was
proposed in Hulten et al. (2001). It maintains class counts in each tree node and when
new data arrives decides whether or not a subtree needs to be re-learned.

For window-based approaches the choice of an appropriate window size is a crucial and
difficult problem. In general, a compromise has to be found between small windows,
which are required for a fast adaptation to concept drift, and large windows, which are
required for a good generalisation. Kuh et al. (1990) and Helmbold and Long (1994)
theoretically determined upper bounds on the speed of concept drift which are acceptable
to learn a concept with a fixed minimum accuracy. Hence a window with a certain
minimal fixed size allows to learn concepts for which the speed of drift does not exceed
a certain limit.

Age dependent weighting simulates a data-ageing process by crediting more recent
samples higher than old ones during learning. A different interpretation is that the
learning process gradually forgets about older samples. In Klinkenberg (2004) methods
for age dependent weighting are shown and compared with temporal window approaches.
The weights are chosen such that learning emphasises for slowly changing domains on a
suitable large set of samples and fast changing domains on only the most recent samples.
In a way, age-dependent weighting is a ‘fuzzified’ version of the window-based approach.
The age expresses a sample having a degree of membership to the training set, whilst in
a window-based approach a sample is either contained, or not. This, however, leads to
the same problem as for window-based approaches: a poor performance if a domain is
more dynamic than initially expected.

4.5.2 Model Repositories

A different type of approaches is based on reusing past models. It rests on the assumption
that in the long run a domain may changes the same way twice, if not more. This means,
it assumes that classifiers repeat in the course of time.

In the broader context of pro-actively retrieving a future model the RePro system by
Yang et al. (2005) constitutes seminal work. Its core building block is a repository of
past classification models which is treated as a Markov chain. In RePro the Markov
chain describes transition patterns between classification models. Using the Markov

4.5. HANDLING CONCEPT DRIFT 77

chain RePro calculates the probability of each alternative model following the present
model. The Markov Chain is triggered when the error rate within a small window of
the most recent data drops below a threshold. If the chain predicts a model with a low
probability the system defaults to retrieve that model from the history which has the
highest classification accuracy on the same small window.

4.5.3 Assessment

The two discussed strategies have received varying levels of attention in the research
community. While in particular windowing approaches already emerged in the 1980s,
the usage of model repositories to retrieve recurring models is a rather new approach.
Likewise, the former sparked considerable research in enhancements and extensions,
whereas the latter seems to have received no greater attention.

Nevertheless, both strategies have their advantages and disadvantages. As discussed
earlier, their primary aim is to increase the classification accuracy in the presence of
concept drift. At the same time it is, however, desired to maintain comprehensibility
and usability. In the following these three requirements are used to assess windowing
and model repository approaches.

Consistency

All discussed approaches produce a single decision tree. This means, there is no difference
to the result from standard decision tree induction algorithms. In this regard, there is
no loss, but also no gain in consistency and comprehensibility.

However, the model repository approach does not predict a completely novel future
model but searches for the best match out of a repository of past models. A past model
is retrieved by conceptual equivalence to a former model. In the RePro system this
equivalence is defined by comparison of the classification verdict of both models on a set
of test instances. The meaning of the rules which the decision tree contains is completely
ignored. This may lead to the situation that a tree is considered equivalent albeit its
corresponding rules are not, based on the judgement of an expert.

The model repository approach further strongly assumes that models repeat in time
following a predictable repetition pattern. This, in turn, is only likely to occur if the
change triggering events repeat in time too—in the same order and each time with the
same impact on the domain. This assumption has to hold for a rather long duration
because unless data is collected very frequently and the domain changes often it will
take a considerable amount of time to derive the huge number of models necessary to
reliably learn transition patterns.

These characteristics not only fail to match a user’s intuition and thus make the ap-
proach less comprehensible, they also render model repository approaches unsuitable for
domains whose change is driven by a multitude of unknown, volatile and, in particular,
one-off events. One-off events are predominant in many domains; ideally, an approach
for dealing with dynamic domains should not have the above outlined restrictions.

78 CHAPTER 4. UTILISING CHANGE FOR CLASSIFIERS

Usability

Window-based approaches require a window size to be specified, or, if the window size is
adaptable, the corresponding algorithm’s parameters need to be chosen. Moreover, for
a user it is difficult to decide whether a small or large window is preferable, in particular
because the user is in the conflicting situation to choose between fast adaption to concept
drift, and hence a small window size, or a statistically reliable model, and hence a large
window size. Similar arguments hold for automatically adapted window sizes. Here the
user needs to decide how fast it should react to a changing domain.

For the model repository approach a user must specify a metric for the conceptual
equivalence of two models. Because computing the structural similarity on decision trees,
like the tree edit distance, is MAX SNP-hard (see Bille, 2005), defining a meaningful
but still computational feasible metric is a challenge.

Accuracy

The previously cited theoretical results by Kuh et al. (1990) and Helmbold and Long
(1994) imply that window-based approaches – independent from whether they use a
fixed or adaptive window size – perform well in domains with slow concept drift but
may result in models with a low accuracy in very dynamic domains. Moreover, these
approaches devise a global sample weighting scheme. For this reason they are unable to
account for concept drift having considerably different speeds amongst subspaces of a
domain. This means, a domain may change in certain aspects more drastically than in
others. This inflexibility may have a negative impact on classification accuracy.

4.6 Process-centric Change Utilisation

Two strategies are conceivable to utilise change in the scope of decision tree induction;
either the utilisation takes place as a post-processing step and combines the decision
trees from each individual time period, or the utilisation takes place during the process
of decision tree induction and exploits the time stamps contained in the data. The first
strategy turns out to be practically unfeasible for the same reasons that also prevented
the emergence of change mining methods for trees: tree comparison has a very high
computational complexity and, moreover, decision trees learned by the typical top-down
greedy approach are inherently instable. Section 2.4.1 provides more details on those
two problems.

As an alternative to the intractable direct model comparison this section follows the
second of the above strategies and proposes a tractable, generic approach that is based
on a decomposition of the model induction process. Consider the induction process of a
decision tree as an example. It can be described as a sequence of decisions comprising
which attribute to take for the next split, when to stop growing the tree and which class
label to assign to a leaf node. Decisions are driven by an attribute selection measure I
like the information gain and the class label distribution P . Following the algorithm of
tree induction, the sequence of decisions then uniquely determines the model. In other
words, if all possible values – the image – of the information gain and the class label
distribution are known, a direct computation of the model is possible without going

4.6. PROCESS-CENTRIC CHANGE UTILISATION 79

Time t1 . . . tr tr+1

Data D1 . . . −−−−→ Dr −−−−→ Dr+1

$I,P

$I,P

$I,P

Intermediate
Representation

IR1 . . . −−−−→ IRr predict−−−−→ IRr+1

$
$

$induce

Model P1 . . . −−−−→ Pr −−−−→ Pr+1

Figure 4.4: Process-centric change mining analyzes the sequences of intermediate representations IRi

back to the data. In this respect, the image of I and P together form an intermediate
representation of a decision tree that is sufficient for tree induction. An example for
such an intermediate representation is the well known concept of sufficient statistics in
probability theory. For instance, statistics can be sufficient to uniquely determine a
probability distribution being the equivalent of our model.

More formally, when deciding on the attribute for the next split, I is evaluated on the
data subset D′ ⊆ D of the current branch of the tree for all attributes A in the set of
attributes A. Then, the attribute is picked that maximises (or minimises) I. In other
words, if the image I := I(A, 2D) of all possible combinations of attributes and subsets
of D is known, all the required information is available to pick the best attribute for a
split at any stage of growing the tree. Adding the image P := P (2D) of the class label
distribution P forms the intermediate representation IR = (I,P).

In order to predict a future model it is therefore sufficient to look at how the intermediate
representation changes over time, predict their future values and then follow the usual
model induction process to derive the future model. Having a sequence of data sets
(D1, . . . , Dr) a sequence of intermediate representations (IR1, . . . , IRr) can be generated.
Almost always, the values in IRi will change over time, so do the decisions based on them
and, finally, so does the resulting model. This means, by analysing how the values of
IRi and thus the corresponding decisions change over time in each step of the induction
process information about how the model will change can be retrieved. Figure 4.4
illustrates the proposed decomposition with predicted intermediate representation IRr+1

and induced future model Pr+1.

In fact, as will be seen in Section 4.7.4 in case of decision trees there is no necessity to
compute and store the complete intermediate representation which can be computation-
ally expensive. Instead, the algorithm generates the required parts of the IRi on the fly,
when they are needed.

It is obvious that such an approach needs to be embedded into the learning process itself
rather than being a subsequent analysis step as the idea of direct model comparison.
Because this approach to change utilisation is tightly coupled with the learning process
it is named process-centric.

The approach is useful only, if the intermediate representation is sufficient to derive the
model, i.e. if the decomposition is well defined, and if the intermediate representation
is of such a form that it can easily be predicted. As can be seen from the generic

80 CHAPTER 4. UTILISING CHANGE FOR CLASSIFIERS

Figure 4.5: The histories from Figure 4.2
modelled by quadratic polynomi-
als and displayed as dashed lines.
In period 16 the values to be pre-
dicted are shown.

5 10 15

0.1

0.15

0.2

0.25

T

I g
ai

n

I
gain

(C,A
(1)

)

I
gain

(C,A
(2)

)

structure of algorithms for decision tree induction in Figure 4.3 both requirements are
met for decision trees. The second requirement shows that decision trees are indeed
well suited as an example. Since the measures I and P form real-valued time series for
every attribute-data subset combination, we can apply standard prediction methods to
determine IRr+1.

4.7 Predicting Decision Trees

The approach proposed in this section employes process-centric change utilisation. The
later presented PreDeT 1 algorithm models how the measures which control the decisions
during the tree induction process change over time, predicts their values and derives a
decision tree from the prediction. Predicting future values, it is capable of anticipating
future decision trees which may not have occurred before. Predicting present values it
makes the induction of decision trees more robust against noise. Unlike the aforemen-
tioned methods it does not rely on a repository of past trees and thus has the capability
to deal with change initiated by one-off events.

Example 3 (continued). Figure 4.1 (p. 72) illustrates the change in a data set and
the resulting change in information gain. It shows the distribution of samples over the
attribute space at four consecutive time periods. Each sample belongs to one of two
classes, squares or bullets, each described by two attributes A and B with domains
{a1, a2} and {b1, b2}, respectively. Assume a decision tree is being learned at the end
of each period which predicts the samples in the next period. In period 1, shown in
Figure 4.1(a), the information gain of A is much higher than that of B and it therefore
would have been chosen as the split attribute. However, the distribution of samples shifts
over time which is indicated by arrows in Figure 4.1(a) to Figure 4.1(c). In period 3 the
information gain of A is still higher than the one of B and therefore A would be the split
attribute. This would lead to a classification error of 8 using the samples from period 4
for testing. However, in period 4 attributeB would have been the superior split attribute.
The choice solely based on the samples from period 3 was sub-optimal. Looking at how
the information gain developed between periods 1 and 3 reveals a downward trend for
A and an upward trend for B. Using an appropriate model for both time series it would
have been possible to anticipate the change in the split attribute and to choose B. This
choice leads to a much smaller classification error of 5.

1Acronym for ‘Predicting Decision Trees’

4.7. PREDICTING DECISION TREES 81

Example 4 (continued). Figure 4.2 (p. 73) shows an example obtained from a real-
world data set. The information gain history of the attribute A(1) is stable apart from
noise whereas the information gain history of A(2) shows an upward trend. Furthermore,
it can be seen that for the vast majority of time periods T = 1, . . . , 15 attribute A(1) has
more predictive power and would therefore be chosen as the split attribute. However,
due to the observed upward trend in the information gain of A(2) both histories will
intersect and A(2) will become the split attribute in the near future. Figure 4.5 shows
the two histories from Figure 4.2 each modeled by a quadratic regression polynomial.
In period 16 the – at the time of modeling unknown – information gain values of both
attributes are marked. As it can be seen, the predictions made by the regression models
anticipate the change in the ranking of candidate split attributes which happens between
period 15 and 16.

In summary, the basic idea of the subsequently presented PreDeT algorithm is to learn
models which describe the relationship between time and attribute evaluation measure,
respectively class label distribution in each step of the decision tree induction. The
models are then used to predict the value of the particular quantity for the next, future
time period. Subsequently, the predictions are used to decide whether to grow a subtree
and which class label to assign to a leaf node. As Section 4.3 already pointed out these
two decisions are the main building blocks of the vast majority of decision tree learners.
With the assumption that the predictions reflect the changes in the underlying domain, it
is sensible to conjecture that PreDeT is capable to predict how a decision tree may look
like in the future. In the presence of a changing domain this means that the produced
classifiers should exhibit a higher accuracy than those which are solely reflecting the
characteristics of historic data.

4.7.1 Models and Methods for Prediction

The PreDeT algorithm faces an inference problem involving data {(ti, yi) | i =
1, . . . , r, ti ∈ R, yi ∈ R} where the ti are the inputs representing time, and the yi
are the targets representing either attribute evaluation measure values or the relative
frequencies of a class label. The algorithm requires predictions y∗ for new inputs t∗.
Because in any practical application the true underlying relationship ϕ′ : R −→ R with
ϕ′(t) = y is an unknown function, such predictions are only feasible on basis of a model
ϕ : R −→ R with ϕ(t) = y which reasonably approximates ϕ′.

Detailed knowledge about a domain would enable an informed choice regarding themodel
structure, that is the family of functions ϕ′ belongs to. One possibility of defining such
a family is by using a parameterised function, for instance ϕ(t) = a2t2 + a1t + a0. The
inference task then is to determine values for the parameters ai such that the resulting
function ϕ best fits the given data. In practise such detailed domain knowledge rarely is
available and consequently the informed choice of a parameterised function is not prac-
ticable. In the particular case of the PreDeT algorithm the reason is the vast amount
of models that are required during decision tree induction. In each step of the induction
process a model and a prediction is required for each of the considered attributes. Fur-
ther models are required for the class labels in each leaf node. Because each model may
be significantly different from any other, the use of the same parameterised function as
the basis for all models is not sensible.

82 CHAPTER 4. UTILISING CHANGE FOR CLASSIFIERS

The huge number of required models imposes the following four requirements on the
choice of an approximation and prediction method. First, the method should be able to
consider a large set of different families of functions. Second, it should be applicable even
if not much data is available, i.e. if r is low. Third, it should work without sophisticated
parameters and the manual tuning and model validation effort they entail. Fourth, it
should be sufficient for predicting the present or the very near future.

At its core, the history {(ti, yi) | i = 1, . . . , r} is a time series. However, the above
requirements render typical methods for time series forecasting unsuitable, such as AR-
IMA. The reasons are the manual effort that is required for their application and their
reliance on the availability of long time series. These issues have already been discussed
in Section 2.3.2 (p. 19).

Two different methods which meet the requirements above, are linear regression with
basis functions in combination with a model selection measure, and Gaussian process
regression. Appendix C.2 describes these methods in detail. Both methods consider
functions

ϕ(t) =
q∑

i=0

aiζi(t) (4.3)

with ai being the parameters and independent basis functions ζi(t). Any choice of q in
combination with any selection for the ζi yields a different family of functions. Linear
regression with a model selection measure requires an explicit choice of the ζi and also a
limit for their number using an upper bound for q. Gaussian process regression considers
an unlimited number of ζi and thus no bounds for q are required. The ζi are defined
implicitly using a kernel function which encodes basic knowledge about the unknown
function ϕ′ such as stationarity or degree of smoothness.

The main difference between linear regression with a model selection measure and Gaus-
sian processes concerns how the model ϕ is selected. A model selection measure, such as
the Akaike criterion, aims to balance the complexity of a model against goodness of fit.
Its idea is to use a limited set of families of functions, obtain a model candidate from
each and select the final model by scoring the candidates’ goodness of fit against their
complexity. Figure 4.6 shows three functions fitted to the same data. The families of
functions are linear, quadratic and cubic polynomials

ζi(t) = ti (4.4)

for q = 1, 2, 3. A choice of q = 2, 3 already may impose the risk of overfitting the data,
which may lead to predictions of poor quality, in particular because polynomials get
highly oscillatory with increasing degree. A model q = 1 has a lower complexity but
may lead to ϕ only coarsely reflecting ϕ′.

Gaussian process regression accounts for functions appearing equally adequate in light
of the available data without enforcing the strict selection of one. Its idea is to define
a distribution over all possible functions, apply Bayes’ rule given some data to infer a
posterior distribution, and obtain a predictive distribution for an input by averaging
over all individual functions’ predictions weighted by their corresponding probability.
Figure 4.7 shows two functions fitted to the same data as in Figure 4.6 but only this
time randomly selecting

ζi(t) = e−
1
2 (t−ci)2 (4.5)

4.7. PREDICTING DECISION TREES 83

0 2 4 6 8 10
x

−2

−1

0

1

2

3

4

5
ϕ
(x
)

q = 1
q = 2
q = 3

Figure 4.6: Regression using polynomials of differ-
ent degree.

0 2 4 6 8 10
x

−2

−1

0

1

2

3

4

5

ϕ
(x
)

q = 2
q = 2

Figure 4.7: Regression using radial basis functions
with randomly chosen centres.

0 2 4 6 8 10
x

−1
0
1
2
3
4
5
6
7

ϕ
(x
)

Figure 4.8: The dotted line shows the Gaussian
processes’ mean, which corresponds to
the predicted value for each x for the
posterior.

for q = 2 (i.e. radial basis function networks with two nodes). Both functions reasonably
fit and have the same complexity. Nevertheless, they are so different that only one or
even none of them may reflect the unknown function ϕ′. Gaussian process regression,
instead of arbitrarily selecting one model, takes both models (and an infinite number of
other ones) into account by assigning to each model a posterior probability. Figure 4.8
shows the Gaussian process that results from the example data by considering an infinite
number of radial basis functions.

On the one hand, Gaussian process regression is more flexible than linear regression
with a model selection measure as it only requires basic knowledge about the function
ϕ′ such as stationarity or degree of smoothness and considers a much larger number of
families of function. On the other hand, it is much more computational demanding. As
the experiments in Appendix A.2 show, good results can be obtained for both methods.

84 CHAPTER 4. UTILISING CHANGE FOR CLASSIFIERS

4.7.2 Predicting Attribute Evaluation Measures

Let (D1, . . . , Dr) be a sequence of time-dependent data sets each described by the same
attributes A(i), i = 1, . . . ,m having the same domains in each time period. Quantit-
ies crucial for decision tree induction like the attribute selection measure (and also the
distribution of class labels) are now related to a specific data set Di and thus to a cer-
tain time period ti. For this reason they form sequences of values which are denoted
by {(t1, I1(C,A)), . . . , (tr, Ir(C,A))}, or short I := (I1(C,A), . . . , Ir(C,A)). These se-
quences are referred to as attribute evaluation measure histories.

Assume that the relationship between t ∈ T̂ ⊂ R and the attribute evaluation measure
I ∈ R at a particular node in the decision tree is expressible by a function ϕ′ : R −→ R.
By employing the methods described in Section 4.7.1 a model ϕ(t) for an attribute
evaluation measure that approximates ϕ′(t) is obtained by inference from the data I.
Due to T̂ ⊂ R, ϕ(t) is a function ϕ : R −→ R. To emphasise that it is based on a history
I of attribute evaluation measures it will also be denoted by ϕ[I].

Let t∗ be the time for which a prediction has to be produced. In the PreDeT algorithm,
during decision tree learning at each inner node a model ϕ(t) is employed to obtain a
prediction ϕ[I](t∗) for the attribute evaluation measure’s value at time t∗. This prediction
is then used to decide for the split attribute at the particular node.

4.7.3 Predicting the Class Label Distribution

As in Section 4.7.2, let (D1, . . . , Dr) be a sequence of time-dependent data sets each
described by the same attributes A(i), i = 1, . . . ,m having the same domains in each
time period. Like for attribute evaluation measures, the class label distributions are
now related to a specific data set Di. Through their time dependence they form se-
quences, also called class label distribution histories, {(t1, P 1), . . . , (tr, P r)}, or short
P := (P 1, . . . , P r). Therein, P k := (pk1·, . . . , p

k
nC ·) is the distribution of class labels and

pki· is the relative frequency of class attribute value i in time period k.

A model ψ for histories of class label distributions is a function ψ : R −→ [0, 1]nC , due
to T̂ ⊂ R. It is learned from the history of class label distributions P. The dependency
of ψ on P is denoted by ψ[P]. Within the PreDeT algorithm a model ψ is used in each
leaf node to predict the class label distribution at time point tr+1.

The model ψ is a vector of functions ψi : R −→ [0, 1] each of which models a dependency
between the time period and the relative frequency (estimated probability) of a class
label. Because the relative frequencies must sum up to one

∑nC
i=1 ψi(t) = 1 must hold,

i.e.

ψ(t) =

ψ1(t)
ψ2(t)
...

ψnC (t)

=

ψ1(t)
ψ2(t)
...

1−
∑nC−1

i=1 ψi(t)

(4.6)

Because values ψi(t) are relative frequencies additional constraints have to be imposed
on the choice of the function ψi. Let t∗ be the time for which a predicted is to be

4.7. PREDICTING DECISION TREES 85

obtained, the following should always hold.

∀t ∈ {t1, . . . , tr, t∗}∀i ∈ {1, . . . , nC} : 0 ≤ ψi(t) ≤ 1 (4.7)

∀t ∈ {t1, . . . , tr, t∗} :
nC∑

i=1

ψi(t) = 1 (4.8)

In practise, these constraints may turn out to be too strict. For illustration, in the case
pki = pk+1

i = pk+2
i = 1 and pji 8 1 for j)∈ {k, k + 1, k + 2} it may be difficult to find

a continuous, low-complexity and non-volatile model for ψi. As consequence and under
consideration that the only aim is to predict values for the period t∗ the following weaker
constraints are given preference over the above:

0 ≤ ψi(t∗) ≤ 1 (4.9)

nC∑

i=1

ψi(t∗) = 1 (4.10)

Applying either constraint (4.8) or (4.10), renders the sub-models ψi mutually dependent.
Learning a model for the class label distribution thus requires to learn each sub-model
ψi taking into account the others. For instance, for determining the coefficients a :=
(a0, . . . , aq)T of ψi(t) =

∑q
j=0 ajζj(t), this turns the linear least squares problem (see

Appendix C.2.1), into a constrained linear least-squares problem. There exist several
methods from the field of optimisation for solving this sort of problem. They will not
be discussed here in greater detail. For further reading see, for example, Gill et al.
(1989). It still is an open research question how Gaussian processes can be learned
under constraints such as the ones above.

If focussed on two-class problems only, learning a model for histories of class label distri-
butions turns out to be more tractable. A look into (4.6) and (4.8), respectively (4.10),
reveals that for nC = 2 it is ψ2 = 1− ψ1. This implies that if ψ1 meets constraint (4.7),
respectively (4.9), ψ2 meets it too. Thus, only one model, e.g. ψ1, needs to be learned.
The methods discussed in Section 4.7.1 are applied to model ψ1, respectively ψ2. In
the PreDeT algorithm the predicted class distribution then determines the class label
assignment at a leaf node.

4.7.4 Putting the Parts Together

Having explained the main building blocks of how to predict future decision trees in the
previous two sections, this one explains how they can be used in combination with a
decision tree learner to anticipate future decision trees. This will eventually lead to the
PreDeT algorithm.

Figure 4.9 shows the PreDeT algorithm. Similar to the vast majority of decision tree
learners it consists of two consecutive stages. In the first stage (Lines 1–8) the split
attribute for the current node is searched. In the second stage (Lines 9–18) it is decided
whether the current node is a leaf (Line 9) or inner node (Line 15). Respectively, either
a class label is assigned to the leaf node based on the majority class in this node, or the
data sets are split according to the split attribute and the PreDeT algorithm continues

86 CHAPTER 4. UTILISING CHANGE FOR CLASSIFIERS

PreDeT((D1, . . . , Dr), t∗)
1 Ibest ← WORTHLESS
2 for all untested attributes A
3 do I ← (I(D1, A), . . . , I(Dr, A))
4 learn prediction model ϕ[I]
5 Ĩ ← ϕ[I](t∗)
6 if Ĩ > Ibest
7 then Ibest ← Ĩ
8 Abest ← A
9 if Ibest = WORTHLESS
10 then create leaf node v
11 P k ← (pk1·, . . . , p

k
nC ·), k = 1, . . . , r

12 learn prediction model ψ[(P 1, . . . , P r)]
13 (p̃∗1·, . . . , p̃

∗
nc·) ← ψ[(P 1, . . . , P r)](t∗)

14 assign c = argmaxci(p̃
∗
1·, . . . , p̃

∗
nc·) to v

15 else assign test on Abest to v
16 for all a ∈ dom(Abest)
17 do v.child[a] ←
18 PreDeT((D1|Abest=a, . . . , Dr|Abest=a), t∗)
19 return v

Figure 4.9: Outline of the PreDeT algorithm

recursively (Line 17). It should be clear that the basic ideas laid out in Section 4.7.2 and
Section 4.7.3 can be used in connection with any decision tree learner that uses attribute
evaluation measures to determine splits.

In contrast to other decision tree learners PreDeT takes as input a sequence of data sets
(D1, . . . , Dr) representing time periods t1, . . . , tr and the time t∗ for which a decision
tree is to be predicted. It uses these data sets to predict the value of the attribute
evaluation measure in the time period t∗ using a learned model ϕ (Lines 4–5). The class
label distribution within each data set is used to predict the class label distribution in
time period t∗ using a learned model ψ (Lines 11–13). Note that every decision about
the structure of the tree – the choice of the split attribute in inner and of the class label
in leaf nodes – is solely based on estimated future values of the used metrics. For this
reason the tree learned by PreDeT is a prediction of the decision tree in period t∗.

4.8 Conclusion

This chapter provided a first research step into the field of utilising change for classifiers.
Taking the example of decision trees it presented the PreDeT algorithm which predicts
decision trees for a given time period by utilising models which describe the functional
relationship between time and attribute evaluation measures and class label distribu-
tions, respectively. PreDeT utilises the change embodied within the temporal dimen-
sion without explicitly producing knowledge about it. In doing so, it improves existing
decision trees in terms of classification accuracy and noise robustness. For these reasons,
the advocated approach belongs to the in Chapter 1 proposed novel third perspective on
change. Appendix A (p. 101ff) is laying out the obtained experimental results; they are

4.8. CONCLUSION 87

promising as they show that the approach is able to learn decision trees with a higher
classification accuracy than approaches which only use the most recent data available.
Notably, part of the experiments only used a simple polynomial regression function to
achieve those results.

The PreDeT algorithm has several distinctive properties which will be enumerated
next and that are linked to the requirements stipulated in the problem statement in
Section 4.2.

• Consistency: The trees are the same as the ones produced by established meth-
ods. This is a consequence of the temporal dimension having only influence on
the decision made during decision tree induction; but not on the general structure
of the tree itself. Indeed, the algorithmic skeleton of PreDeT is identical to the
one used in many other decision tree learning algorithms. If PreDeT would be
used with models which always return the most recent element of the attribute
evaluation measure and class label distribution history, the PreDeT would re-
semble a typical windowing approach. Overall, PreDeT thus is consistent with
change-unware decision tree learners and windowing approaches.

• Usability: To use PreDeT several parameters need to be fixed. First and fore-
most, it requires decisions on the length of the time periods covering the individual
data sets and the actual point in time to be predicted. Nonetheless, these decisions
are driven by the domain (e.g. intervals of data collection) and the problem to be
analysed (e.g. time points of specific interest). Often, the corresponding paramet-
ers are not free of choice. Another parameter is the prediction model to be used
for attribute evaluation measures and class labels. As discussed in Section 4.7.1, if
having only vague domain knowledge, Gaussian process regression is the preferred
choice, because it is non-parametric and is very flexible. Experiments on different
data sets indicate that good predictions are obtained by using a squared exponen-
tial kernel. In sum, no additional parameters are required compared to established
decision tree learners, thus PreDeT has the same level of usability.

• Accuracy: PreDeT learns at each node and leaf of the decision tree a model of
the change in the data. Because each node represents a certain subspace of the
data, PreDeT is capable of dealing with change that in its pace is heterogeneously
distributed across the data, i.e. some regions of the data change faster than others.
Because windowing approaches define only one window for the whole tree, they do
not have this capability of a fine grained-adaption. Overall, this added flexibility
leads to a higher accuracy of the learned decision trees. The experimental results in
Appendix A.2 support this claim. They show that the improvement in classification
accuracy depends on the chosen attribute evaluation measure and on the number
of periods. For each of the data sets at least one combination of these parameters
was found which leads to a statistically significant improvement. For the other
settings no statistically loss in classification accuracy was observed.

At last, it must be noted that the described approach of process-centric change utilisation
does not only apply to decision tree learners. It is suitable for other algorithms, for
instance in the area of Bayesian networks. An example is the K2 algorithm. In general,
every algorithm that builds upon a greedy strategy can be described as such a sequence of
measure dependent decisions. More generally, the approach works wherever the mapping

88 CHAPTER 4. UTILISING CHANGE FOR CLASSIFIERS

of data onto models can be decomposed into more or less complex sequences of mappings
with intermediate representations. The basic mechanism remains the same, as long as
an intermediate representations is available that can easily be predicted and that fully
determines the model.

Chapter 5

Summary

“‘Who controls the past,’ ran the Party slogan, ‘controls the future: who
controls the present controls the past.’ And yet the past, though of its nature
alterable, never had been altered. Whatever was true now was true from
everlasting to everlasting. It was quite simple.”

George Orwell, 1984, Chapter 3

This thesis started with three observations concerning the current state-of-the-art in
data mining. First, change is ubiquitous in any domain and is thus reflected in data sets
collected over time. Collecting data over time is the norm in many applications, rather
than the exception. Second, data mining handles changes following either one of two
perspectives: ignoring change and analysing change. The first perspective is attributed
to ‘classical’ data mining tasks, the latter leads to areas such as concept drift detection,
contrast and change mining. Third, some data mining approaches are known for having
long-standing shortcomings, for which no satisfying solution approaches exist yet.

Extending from these observations this thesis advocated a novel, third perspective on
change in data mining, which fits into the middle of the previously mentioned ones:
utilising change. This perspective treats change as yet another, but special feature of
data, that helps to assist in the learning of patterns and models with the potential
of lessening the shortcomings of the applied learning method. From a bird’s eye view
this novel perspective is justified by the fact that anything past, though not of primary
interest, has a strong influence on how the present is and the future will be. Hence,
when learning models or patterns in the present, to be applied in the future, the present
state of a domain is equally as important as the past and the changes that led to the
present.

The viability of this third perspective on change was demonstrated by introducing two
novel methods: the discovery of temporally closed item sets as a change-aware condensed
representation of item sets and the PreDeT algorithm which learns decision trees by
anticipation. As detailed in the following, both methods meet the requirements that were
set at the beginning of this thesis. Overall, the results testify that change utilisation is
a promising new direction in data mining research.

5.1 Contributions

Because this thesis focused on both item sets and decision trees in the context of change
utilisation, summary and main contributions are separately presented for each of these
areas.

90 CHAPTER 5. SUMMARY

Change Utilisation for Item Sets

As an example for change utilisation in the context of frequent item set discovery, tem-
porally closed item sets were proposed. They target the shortcoming of frequent item
set discovery to produce vast numbers of item sets. The improvement through change-
utilisation therefore was measured by the number of produced item sets and the method
compared to the change-unaware condensed representation of closed item sets.

As concerns the requirements from this thesis’ objective in Section 1.3 the following can
be stated:

Improvement: It was theoretically proven that temporally closed item sets are a subset
of the closed item sets. In particular, this implies that their number is never larger than
those of the closed item sets. Experiments confirmed that the number of the former can
be significantly smaller than those of the latter. Even in cases where closed item set
discovery fails, temporally closed item set discovery still leads to a reduction.

Consistency: Closed item set discovery is a special case of temporal item set discovery.
In particular, temporally closed item sets extend the notion of redundancy used by
closed item sets towards the temporal dimension. For these reasons, both approaches
are comparable and their results are not contradictory.

The main contributions in Chapter 3 are the following:

• The concept of temporally closed item sets as a condensed representation of item
sets which accounts for temporal redundancies in the data.

• A proof that temporally closed item sets are a subset of the closed item sets. The
concept thus bridges the gap between ‘classical’ data mining and change mining
approaches.

• A method that allows for faster creation of item set histories compared to the
‘matchmaking’ approach suggested in other publications.

• An algorithm Charm-T for mining the set of temporally closed item sets from a
transaction data set.

• The general framework of ‘data-centric change utilisation’ which focuses on enhan-
cing data with specifically encoded temporal information.

Change Utilisation for Decision Trees

As an example for change utilisation in the context of decision trees, the PreDeT al-
gorithm which anticipates decision trees was proposed. It targets the shortcoming of
decision tree induction that in a changing domain decision trees are already outdated
as soon as they are produced and then degrade in their performance as time proceeds.
The improvement through change utilisation therefore was measured by the classification
accuracy and the algorithm compared to a standard decision tree learner.

As concerns the requirements from this thesis’ objective in Section 1.3 the following can
be stated:

5.2. FUTURE DIRECTIONS 91

Improvement: Experiments show that the decision trees produced by PreDeT may
have a higher classification accuracy than trees produced by a change-unaware algorithm
which operates on the most recent data. The achievable gain in classification accuracy
depends on the choice of the attribute evaluation measure and the number of considered
time periods. Nonetheless, independent of this configuration the experiments did not
show a significant drop in classification accuracy. This means, in terms of classification
accuracy PreDeT is as least as good as the change-unaware decision tree learner.

Consistency: The trees produced by PreDeT have the same structure as the trees of
any other decision tree learner: the inner nodes represent decisions on attribute values
and the leaf nodes represent class labels. This is because PreDeT utilises change only
during the process of decision tree induction, for the prediction of attribute evaluation
measures and class label distributions. Due this structural consistency, advantages of
decision trees, such as their comprehensibility, are kept.

The main contributions in Chapter 4 are the following:

• The PreDeT algorithm which predicts decision trees for future time periods by
modelling how attribute evaluation measure and class label distribution evolve over
time.

• To the author’s knowledge the first combination of Gaussian process models with
decision tree and also one of the first approaches for accessing the change of decision
trees over multiple time periods.

• The general framework of ‘process-centric change utilisation’ which focuses on the
analysis of changes in the decisions made during model induction.

Some more contributions concern the data mining community and those people who are
interested in conducting research in change mining or change utilisation:

• Chapter 2 is to the author’s knowledge the first survey covering the current state-
of-the-art of methods for change analysis in data mining, with an emphasise on
change mining.

• Appendix A contains the reference to and the description of two publicly available,
real-world and real-size data sets which have been collected over multiple years.
In particular change mining research so far only uses non-disclosable, artificial or
small sized data sets, due to a lack of appropriate public data.

5.2 Future Directions

Research on change utilisation still is in its early stages and consequently there are
many open questions which still need to be addressed and answered. The following
two lists identify several areas that the author believes merit future work which would
significantly enhance the capabilities of the methods this thesis proposes. The last
paragraph addresses the general prospects of change utilisation with regard to other
data mining tasks.

92 CHAPTER 5. SUMMARY

Change Utilisation for Item Sets

• Temporally closed item sets require a rule set as their supplemental structure. Sec-
tion 3.6.2 showed that these rules can be interpreted as conditional probabilities
which are constant over time. The supplemental structure may be further reducible
by considering probabilistic conditional independence between items in combina-
tion with probabilistic inference based on, for example, the graphoid properties
known from the theory of graphical models (see Borgelt and Kruse, 2002).

• The use of mutual information in combination with the information theoretic in-
terpretation of temporal derivability (see Section 3.6.2) may be extendable to a
general approach for measuring the conciseness of condensed representations by
description length rather than by mere item set counting.

• Because sometimes association rules are generated from frequent item sets it would
be interesting to investigate how the concept of temporal closedness carries over to
them with the aim of developing a notion of ‘temporally non-redundant’ association
rules.

Change Utilisation for Decision Trees

• To decide upon the best split attribute PreDeT models the history of each attrib-
ute evaluation measure separately, thus makes separate predictions and then uses
these predictions for a decision. It would be interesting to see whether a single
model could be created which takes as input the attribute evaluation measure his-
tories of all attributes and then directly delivers a decision for the split attribute.
Since less models are learned, more data would be available for the single model.
This could have the potential of enhancing the reliability of the method.

• A by-product of Gaussian process models is a Gaussian probability distribution
for the (predicted) attribute selection measure at a certain point in time. The
confidence intervals derived from this distribution serve as an indicator for the
certainty that in the future an attribute indeed separates classes as strong as
expected by the actual attribute selection measure. This could be utilised to
develop a pruning strategy for the trees produced by PreDeT . As an idea, a sub-
tree is pruned, if aggregated over all its nodes, the confidence in the respective
evaluation measures is lower than the confidence in those of the root node.

• Decision tree learners are known to be highly susceptible to data perturbation.
The tree undergoes radical changes in response to minor changes in the training
data, rather than being stable. This constitutes a practical problem, because it
contradicts human intuition to have entirely different sets of classification rules
from statistically equivalent data sets. Finding a method to construct stable trees
is seen as a pressing research issue in data mining (Wu et al., 2008). One step in
this direction could result from considering that the prediction models used within
PreDeT in a sense ‘average out’ the influences of noise and thus may lead to trees
which are less susceptible to it.

Last but not least, while this thesis focused on classification and frequent pattern dis-
covery, change utilisation is not limited to these. Investigating the application of change

5.2. FUTURE DIRECTIONS 93

utilisation to other data mining tasks, or particular data mining methods they embrace,
therefore offers a virtually unlimited number of starting points for future research ef-
forts. One data mining task to start with is cluster analysis, because particularly in
higher dimensional data sets it still has many shortcomings, such as a lack of methods
to differentiate between ‘good’ and ‘bad’ clusterings, or between noise and real structure.
Evidence that this direction also delivers what it may promise was provided in a seminal
work by Höppner and Böttcher (2007) who employed change utilisation to cater for the
latter of these shortcomings.

Appendix A

Experimental Results

This chapter provides a detailed documentation of the experiments carried out with
Charm-T and PreDeT .

A.1 Utilising Change for Item Sets

The CHARM-T-Algorithm addresses the item set quantity problem by reducing the
number of produced item sets through facilitation of temporal redundancies. It builds
upon the notion of temporally closed item sets which is derived from the well-known
concept of closed item sets. CHARM-T itself extends the closed item set miner CHARM.
Temporally closed item sets provable are a subset of closed item sets. Applying CHARM-
T to a sequence of data sets yields a smaller number of item sets than the application of
a closed item miner to their union. In this regard CHARM-T outperforms CHARM to
a significant extent, and the following sections present the corresponding experimental
evidence.

A.1.1 Description of Data Sets

Two different data set are employed to evaluation CHARM-T, both being large real-life
data sets collected by public authorities. The data sets and the pre-processing steps
applied to them are detailed in the remainder of this section.

IPUMS Data

The IPUMS project1 is dedicated to collecting, harmonising and freely distributing
census data. The subsequently described experiments use an extract from IPUMS which
is restricted to data from the US states New Jersey, New York and Pennsylvania and
the census years 2001–2006. From the available attributes a subset of 14 was chosen
(plus the census year). The attributes describe the interviewee (e.g. age, race, sex), the
housing conditions (e.g. number of bedrooms, year of built), and the person’s profession
(e.g. weekly travel time to work, avg. hours worked per week, net income).

Numeric attributes were converted into nominal ones. The domain size of the attributes
varies between 2 (e.g. for sex) and 9 (for age). Splitting the data set year-wise results
in a sequence of six data sets each containing on average 226,082 records. Table A.1
lists the attributes used in the experiments and provides details on the pre-preprocessing
that has been applied to numerical ones.

1http://usa.ipums.org/usa

http://usa.ipums.org/usa

96 APPENDIX A. EXPERIMENTAL RESULTS

Data Set Attributes

IPUMS rooms (0, 4, 5, 6, 7, 8, 9); builtyr (1940, 1950, 1960, 1970, 1980,
1990); homestr; bedrooms (0, 1, 2, 3, 4, 5); fuelheat; vehicles; age
(0, 10, 20, 30, 40, 50, 60, 70, 80); sex; marstat; rracwht; school;
hourswrk (0, 10, 20, 30, 40, 50); income2 (0, 10000, 20000, 40000,
70000); travtime (0, 1, 11, 21, 31)

Road Accident A1.2 (Police Force Code); A3 (Accident Severity); A1.5 (Number
of Vehicles); A1.6 (Number of Casualties); ACCMTH (Month);
A7 (Day of week); A8H (Hour of Accident); A1.12 (1st Road
Class); A1.14 (Road Type); A1.15 (Speed Limit); A1.16 (Junc-
tion Detail); A1.17 (Junction Control); A1.18 (2nd Road Class);
A1.20A (Pedestrian Crossing - Human Control); A1.20B (Ped-
estrian Crossing - Physical Facilities); A1.21 (Light Conditions);
A1.22 (Weather Conditions); A1.23 (Road Surface Conditions);
A1.24 (Special Conditions at Site); A1.25 (Carriage Way Haz-
ards)

Table A.1: Attributes of the data sets. For the IPUMS data the (lower-inclusive) interval borders
used for discretisation are given in brackets. For the road accident data the attributes are
listed by their original name, followed by their description in brackets.

Road Accident Data

The Road Accident Data is available from the UK data archive2. It contains details
for all road accidents in the UK that led to human death or personal injury, notified to
the police within 30 days of occurrence and involving one or more vehicles. The data
is annually published for the previous year’s accidents. For each year the data consists
of three parts distributed in individual files, providing details concerning the accident
itself (e.g. road and weather conditions, number of vehicles and casualties), the casualties
(e.g. sex, age) and the involved vehicles (e.g. type and damaged parts), respectively.

The data for the experiments is based on the accident part of the data and covers
the publication years 2000–2009. Table A.1 details the considered subset of attributes.
It constitutes of those attributes that over the years only had minor changes in the
meaning of their values and thus required only a minimum on harmonisation effort. The
documentation which accompanies the data details what has changed with respect to
the previous year. The attributes all have a symbolic (sometimes ordered) value range,
such that no discretisation is necessary. Overall, this results in a sequence of ten data
sets having an average size of 202,008 records.

A.1.2 Experimental Setup

The question to be answered is how much the set of temporally closed item sets is smaller
than the set of closed item sets and how both compare to the set of frequent item sets.

2Department for Transport. Road Accident Statistics Branch, Road Accident Data, 2000–2009
[computer files]. Colchester, Essex: UK Data Archive [distributor]. GN: 33267, http://discover.
ukdataservice.ac.uk/series/?sn=2000045

http://discover.ukdataservice.ac.uk/series/?sn=2000045
http://discover.ukdataservice.ac.uk/series/?sn=2000045

A.1. UTILISING CHANGE FOR ITEM SETS 97

To produce temporally closed item sets, CHARM-T was implemented in C++ on basis
of the original CHARM source code kindly provided by Zaki. This implementation
of CHARM was also used to produce the closed item sets. The frequent item sets are
produced using the Eclat algorithm (Zaki, 2000), because CHARM originates from it and
its implementation still is contained within the previously mentioned CHARM software
package.

The three software tools need as input a transaction set. For each element in the IPUMS
and Road Accident sequence of data sets a transaction set was constructed by encod-
ing every (attribute, attribute value) combination as an item represented by a unique
number. This results in two sequences of transaction sets, each stemming from one of
the two data sources. CHARM and Eclat receive as input the union of the transaction
sets, whereas CHARM-T receives the temporally augmented transaction set, construc-
ted according to Definition 3.6 (p. 47). That is, the union of the transaction sets in the
sequence enriched by artificial items representing each transaction’s time.

Each algorithm (CHARM-T, CHARM, Eclat) was run using different (ab-
solute) support thresholds. For CHARM-T these thresholds are σa =
10000, 11000, . . . , 15000, 20000, . . . , 100000 representing the minimum number of trans-
actions allowed in a time period. Because CHARM and Eclat are unaware of time
periods, for their runs these thresholds must be scaled up to be relative to the whole
data set, and for this reason are multiplied by the number of time periods in the respect-
ive data set. It should be noted that this approach is heuristic based on the assumption
that each time period contains a similar number of transactions and that there are no
drastic support differences across time periods for an item set.

For each run of CHARM-T, CHARM and Eclat the number of returned item sets is
counted. For CHARM-T two additional measurements are taken: the factor ε (see
Definition 3.8), which maps its history to the smallest temporally closed item set deriv-
able from it, and the test statistic G2 (see Theorem 3.7), which describes the similarity
of both histories.

A.1.3 Experimental Results

Figure A.1(a) shows the experimental results for the IPUMS data and Figure A.1(b)
those for the Road Accident data. Each figure shows the number of returned temporally
closed, closed and frequent item sets for different absolute support thresholds. As can be
seen, the approach of temporally closed item sets leads to a significant reduction in the
number of item sets compared to the other item set representations. Picking the runs
with an absolute support threshold of σa = 10000, while mining only for closed item
sets reduces the IPUMS result set’s initial size to roughly 80% and those of the Road
Accident result set not at all (i.e. 0%), the temporally closed item set approach reduces
it to 46% and 45%, respectively. This means, for the IPUMS data the set of temporally
closed item sets is by a factor of 1.7 smaller than the set of strictly closed item sets. For
the Road Accident data this factor is with 2.2 even better.

Figure A.3 shows how the factor ε is distributed which maps the history of a non-
temporally closed item set to the smallest temporally closed item set derivable from it.
The figure only shows non-temporally closed but not closed item sets, i.e. it leaves out
those with ε = 1. For both data sets the range of ε is spread over its complete value range

98 APPENDIX A. EXPERIMENTAL RESULTS

12345
x 104

0

500

1000

1500

min. support (absolute)

#i
te

m
se

ts

frequent
closed
temp. closed

(a) IPUMS

12345
x 104

0

2

4

6

8x 104

min. support (absolute)

#i
te

m
se

ts

frequent
closed
temp. closed

(b) Road Accident

Figure A.1: Number of discovered frequent, closed and temporally closed itemsets

of (0, 1). Both histograms exhibit a pronounced peak at ε ≈ 1 which indicates the rough
number of item sets that could have been non-closed, but are not, due to some noisy
transactions, for instance. If the strict equality comparison in the definition of closed
item sets would be relaxed to account for noise, these item sets would be non-closed,
thus not appear in the result set and eventually leading to the respective data having a
considerable smaller set of closed item sets produced from it than it has now. CHARM-
T, in contrast, discards each item set the histogram represents and thus reduces the
number of closed item sets even further.

For the Road Accident data, the condensed representation approach of producing closed
item sets fails. There are no non-closed item sets and consequently the sets of closed
and frequent item sets are identical. This illustrates and practically underlines the in
Section 3.4.5 (p. 42) issued criticism on condensed representations which rely on strict
equality comparisons: One erroneous transaction can turn, for instance, an actually non-
closed item set into a closed one. Indeed, the bar on the far right in Figure A.3(b) shows
that the number of such ‘almost closed’ item sets takes on an extremely large value.

Figure A.2 shows the distribution of theG2 metric which expresses the similarity between
the histories of a non-temporally closed item sets and the smallest temporally closed item
set derivable from it. The smaller G2 the more similar the histories are. Contrasting
Figure A.2(a) and Figure A.2(b) shows that for the IPUMS data G2 is rather evenly
distributed while for the Road accident data the number of non-temporally closed item
sets in each histogram bin increases monotonically with decreasing dissimilarity. This
difference is explained by the Road accident data being made of more time periods that
cover a longer time range than the IPUMS data. For the Road accident data it is thus
unlikelier to have properties that have stayed strictly invariable over the full time range;
but only such properties entail very similar histories (see Section 3.6.1 and Section 3.6.2).

Note, that G2 and ε both measure different characteristics of the same relation between
a non-temporally closed item set and a temporally closed one; the first one measures
the similarity and the second one the ‘distance’ between the two corresponding histories.
Intuitively, one would assume that both are correlated: the farther one history is away

A.1. UTILISING CHANGE FOR ITEM SETS 99

from the other by means of support, the likelier they are dissimilar. However, looking
for both data sets at the scatter plot of ε against G2, displayed in Figure A.4, no such
correlation is apparent. This means, first of all, non-temporally closed item sets are
more than just a ‘noise-tolerant’ version of non-closed item sets and, second, both data
sets contain a considerable number rules with confidences significantly lower than 1 and
these confidences are over time (almost) constant. (see Section 3.6.2).

100 APPENDIX A. EXPERIMENTAL RESULTS

2 4 6 8 10
G2

0

5

10

15

20

25

A
bs

.F
re

qu
en

cy

(a) IPUMS (σa = 10000)

2 4 6 8 10 12 14 16
G2

0

500

1000

1500

2000

A
bs

.F
re

qu
en

cy

(b) Road Accident (σa = 10000)

Figure A.2: Histogram of the similarity G2 between the histories of non-temporally and corresponding
temporally closed item sets

0.2 0.4 0.6 0.8
ε

0

10

20

30

40

50

60

70

A
bs

.F
re

qu
en

cy

(a) IPUMS (σa = 10000)

0.2 0.4 0.6 0.8
ε

0

2000

4000

6000

8000

10000

12000

A
bs

.F
re

qu
en

cy

(b) Road Accident (σa = 10000)

Figure A.3: Histogram of the distance ε between the histories of non-temporally and the corresponding
temporally closed item sets

0.2 0.4 0.6 0.8
ε

2

4

6

8

10

G
2

(a) IPUMS (σa = 10000)

0.2 0.4 0.6 0.8
ε

2
4
6
8

10
12
14
16

G
2

(b) Road Accident (σa = 10000)

Figure A.4: Scatter plot of distance ε against similarity G2 between the histories of non-temporally
and the corresponding temporally closed item sets

A.2. UTILISING CHANGE FOR CLASSIFIERS 101

(a) Credit Card (Income)

(0
,1

80
]

(1
80

,2
00

]
(2

00
,2

20
]

(2
20

,2
50

]
(2

50
,2

70
]

(2
70

,3
00

]
(3

00
,3

10
]

(3
10

,3
50

]
(3

50
,3

80
]

(3
80

,4
00

]
(4

00
,4

53
]

(4
53

,5
00

]
(5

00
,5

64
]

(5
64

,6
23

]
(6

23
,7

41
]

(7
41

,8
40

]
(8

40
,1

00
0]

(1
00

0,
12

15
]

(1
21

5,
17

65
]

[1
76

5,
)

Personal Income

0

500

1000

1500

2000

2500

3000

3500

4000

4500

#R
ec

or
ds

good score
bad score

(b) Credit Card (Age)

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Age

0

200

400

600

800

1000

1200

1400

#R
ec

or
ds

good score
bad score

(c) GHS

19
72

19
73

19
74

19
75

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
01

20
02

20
03

20
04

Year

0

500

1000

1500

2000

2500

#R
ec

or
ds

non-smokers
smokers

Figure A.5: Number of records, subset sequence
and class label distribution of the
used data sets.

A.2 Utilising Change for Classifiers

The aim of the PreDeT algorithm is to improve on the classification accuracy of decision
trees by utilising the temporal dimension and the change it represents. This section
presents the results of experiments which show that decision trees produced by PreDeT
statistically significant outperform those induced by a ‘conventional’ decision tree learner
which ignores the temporal dimension.

A.2.1 Description of Data Sets

Three different data sets are employed to evaluate the PreDeT algorithm. All of them
being real-life data sets that have been collected by corporations and public authorities.
The data sets, their associated classification task and pre-processing steps applied to
them are laid out in the following.

102 APPENDIX A. EXPERIMENTAL RESULTS

Data Set Attributes

Credit Card (Income/ Age) age, area code residencial phone, flag card -
insurance option, flag fathers name, flag -
mothers name, flag other card, flag residence -
state=working state, flag residence town-
=working town, flag residencial address-
=postal address, flag residencial phone, mar-
ital status, months in residence, months in -
the job, payment day, personal net income,
quant additional cards in the application,
residence type, sex, target label bad=1

GHS degree, page, pcigsmk1, pcob1, pdvilo3a, pdv-
mardf, phrpseg3, pn0to4, pn5to15, pnumveh,
psex, ptenure, year

Table A.2: Attributes used for the experiments. A bold font indicates the target attribute and an
italic font indicates the attribute used for splitting the data.

CRM Data

This representative data set is from the domain of Customer Relationship Management
(CRM). It contains answers of customers to a survey conducted by a telecommunications
company over a period of 25 weeks. Each sample is described by 13 nominal attributes
with a domain size between 2 and 9. One attributes describes the week in which the
survey data was collected.

The classification task is to predict whether a customer is satisfied or dissatisfied with
the services he uses based on the remaining 12 attributes, i.e. the data set has two classes
to predict.

In order to have an equal class distribution the original data set has been balanced
by removing samples of satisfied customers. It was then split into 25 subsets Di, each
corresponding to a time period of one week. The subsets contain between 243 and 399
samples. Unfortunately, disclosure of further details regarding the data set’s attributes
and class label distribution is not possible for reasons of data protection.

Credit Card Data

The 2009 PAKDD Data Mining Competition3 published this data set. A bank collected
the data from people to which it granted a credit card. Its attributes detail the customer’s
demographic and economic background, such as their age and income. Table A.2 shows
the attributes that are used for the experiments.

The classification task (the same the competition focused on) is to determine whether a
customer will default in paying his/her credit card bill. Each record in the data set is
labelled according whether the customers is deemed being a ‘good’ or a ‘bad’ one. The

3http://sede.neurotech.com.br/PAKDD2009/

http://sede.neurotech.com.br/PAKDD2009/

A.2. UTILISING CHANGE FOR CLASSIFIERS 103

published solutions to the competitions indicate that finding a good classifier is tough,
even sophisticated models only attain a apparently low performance.

The credit card data set lacks a real time attribute, maybe the data has not been
gathered over time. To nevertheless create a sequence of data sets, the mandatory
input to PreDeT , two alternative split attributes are available: age and income. This
way, the credit card data set yields two distinct subset sequences for PreDeT , in the
following referred to as credit card (income) and credit card (age). Their size and class
label distributions are shown in Figure A.5(a), respectively Figure A.5(b). The class
label distribution is in all subsets of each subset sequence highly imbalanced, because
regardless of income and age defaulting customers are rare. This make it necessary
to grow decision trees so deep that only a few records fall into the leaf nodes. As
a consequence the history of the class label distributions in these nodes will expose
dramatic changes even if only one record’s class label would be changed. Adequately
modelling these histories thus is hard, if not impossible. For this reason, the experiments
with credit card (income) and credit card (age) do not utilise predictions of class label
distributions but take the majority class of the most recent subset.

GHS Data

The General Household Survey (GHS) time series data set is available from the UK data
archive4. It is a continuous, annual survey of people living in private households in the
UK which comprises information regarding household, family, employment, education
and health, and many more topics. The data set covers the years 1972 to 2004 and
includes only those attributes that have not seen major changes in their corresponding
survey questions over the years. Table A.2 shows the attributes that are used for the
experiments.

The classification task is to determine whether a young adult (that is, a person in the
age of 18 to 24) currently smokes, or never has smoked before.

Not all available attributes where used, but focused on those which are available for
most of the years and that appear decisive concerning the classification task. Records
with missing values in these attributes were removed and the data set split year-wise
in 21 subsets. Their size and class label distribution is shown in Figure A.5(c). Some
years are missing, even though they are contained in the raw data. The reason is that
questions related to smoking behaviour have not been asked in these years.

A.2.2 Experimental Setup

The goal of the experiments is to demonstrate on the example of decision trees that
utilisation of changes yields a gain in classification accuracy. For this reason, the trees
produced by PreDeT are compared to trees produced by a benchmark decision tree
learner that ignores the temporal dimension.

4Office for National Statistics. Social and Vital Statistics Division, General Household Survey: Time
Series Dataset, 1972-2004 [computer file]. Colchester, Essex: UK Data Archive [distributor], July 2007.
SN: 5664, http://dx.doi.org/10.5255/UKDA-SN-5664-1

http://dx.doi.org/10.5255/UKDA-SN-5664-1

104 APPENDIX A. EXPERIMENTAL RESULTS

In order to make a fair and realistic comparison three arguments need to be considered.

First, when learning decision trees in the presence of concept drift it is common practise
to use only the most recent data available because their characteristics are very likely
to be best reflecting those of (unknown) near future data. It has been demonstrated by
several authors that such a temporal moving window approach almost always outperforms
trees which have been learned from all of the available data (cf. Section 4.5)

Second, from an abstract perspective PreDeT (implicitly) learns a sequence of r decision
trees each corresponding to a data set Dj , j = 1, . . . , r and then anticipates the tree
in the future period r + 1 using a prediction model (cf. Sections 4.7.4 and 4.6). As
with any prediction model, the obtained prediction cannot have a better quality than
its inputs. The quality of a decision tree, in particular its generalisation ability, does
strongly depend on the size of the data set used for training. From this it follows that
the trees anticipated by PreDeT do have a similar quality to trees that would have been
learned directly on a data set with a size similar to those of each Dj , j = 1, . . . , r.

Third, a fair comparison requires that PreDeT and the benchmark decision tree learner
differ only in that one utilises time and the other one not. Apart from that they should
be structurally similar. Otherwise, there would be the risk whether observed changes
in accuracy are either due to tweaks in the benchmark learner or indeed attributable to
the utilisation of change.

For these reasons, PreDeT is compared with the decision tree learner which results from
setting in the algorithm in Figure 4.9 the models ϕ and ψ for the attribute evaluation
measure, resp. class label distribution, to ϕ[(I(D1, A), . . . , I(Dr, A))](t∗) := I(Dr+1)
and ψ[(P 1, . . . , P r)](t∗) := P r. With this configuration the tree induction process uses
only the most recent data set of each sequence; the algorithm resembles a conventional
decision tree learner, like the one in Figure 4.3. The accuracy of the resulting decision
trees are used as the benchmark for the trees produced by PreDeT .

The previous section described three raw data sets and how from them four temporally
ordered sequences of (sub-)data sets (D1, . . . , Ds) are created. They have lengths s = 25
for the CRM, s = 21 for the GHS, s = 20 for the Credit Card (Income) and for s = 26
the Credit Card (Age) data. Each experiment uses a sub-sequence of r consecutive data
sets (Di, . . . , Di+r−1) within the available s ones. For each i, i = 0, . . . , s−r the PreDeT
algorithm learns a decision tree and obtains classifications for the samples in the data
set Di+r that chronologically follows the sub-sequence. The data set Di+r thus serves
as the test data set.

Consider, for instance, the GHS data. Section A.2.1 outlines how this data yields a
sequence of s = 21 sub-data sets. Choosing an experimental set-up r = 5 gives 16
sub-sequences. For each sub-sequence PreDeT and the benchmark decision tree learner
induce a decision tree each. Overall, this amounts to 16 classification accuracy comparis-
ons. This experimental setup is the same for information gain ratio and the information
gain. For r = 10 and r = 15 only the number of classification accuracy comparisons
would be less (11, respectively 6), but the general approach stays the same.

PreDeT primarily depends on two factors: the attribute evaluation measure and the
number r of past periods taken into account (i.e. the length of the sub-sequence). There-
fore, the experiments are carried out using the information gain ratio Igr and the inform-

A.2. UTILISING CHANGE FOR CLASSIFIERS 105

ation gain Igain. For the length r = 5, 10, 15 is used. Furthermore, for the CRM data
PreDeT internally uses regression polynomials in combination with the Akaike criterion
to produce prediction models, whereas all other data sets use Gaussian process regres-
sion. As the kernel for the Gaussian process models the sum of a squared exponential
kernel with a noise kernel was chosen, as it yielded the best results compared to, for
example, neural network and Matern kernels. The reason that regression polynomials
are only used for the CRM data set has historic reasons. For early versions of PreDeT
only this data set was available. Later, Gaussian process regression was integrated into
PreDeT, but at this point the CRM data set was not accessible anymore due to its
confidentiality. The other data sets were also tested using polynomial regression with
the Akaike criterion, but the resulting trees had a similar classification accuracy to the
trees induced by the benchmark learner.

A.2.3 Experimental Results

Figure A.6 reports the experimental results in several charts organised in rows and
columns. Each row refers to one data set, such as GHS, Credit Card (Age) or Credit Card
(Income). Each column corresponds to an attribute evaluation measure; information
gain on the left, and information gain ratio on the right. Each chart displays a box plot
for each r = 5, 10, 15. The ordinate axis shows the difference in classification accuracy
between PreDeT and the benchmark decision tree learner. A difference greater than
zero expresses that PreDeT performs better than the benchmark decision tree learner.
In turn, a difference lower than zero expresses that the benchmark learner outperforms
PreDeT . The underlying classification accuracies are measured in percent; hundred
percent thus mean that no misclassifications occur.

The box plots are simple to understand: The central bold line is the median of the
accuracy differences. Its numerical value is also shown on top of the chart above each
box plot. In addition, the mean is shown as a star-like symbol. The horizontal line above
and below the median represent the upper and lower quartile. This means, 25 percent,
accuracy differences fall above, respectively below these quartile lines. The so-called
whiskers, which extend from the quartile lines, indicate the overall range of the accuracy
differences. The cross symbols above and below the whiskers represent outliers.

If the claim is true that utilisation of the temporal dimension yields a gain in classification
accuracy, then the median of the accuracy differences must be significantly greater than
zero in the majority of experiments. In those cases PreDeT outperforms the decision
tree learner on more than fifty percent of the sub-sequences. As the Figure A.6 shows,
this is the case in 21 experiments, in two experiments the median is lower (Figure A.6(c)
for r = 15 and Figure A.6(d) for r = 10), and in one there is a tie (Figure A.6(h) for
r = 15).

To assess the statistical signicance of the observed gains in classification accuracy, a
(one-tailed) Wilcoxon’s signed ranks test (Wilcoxon, 1945) is carried out for the results
of each experiment in order to gain a p-value for the following hypothesis:

H0 : The difference ∆ = Accuracy(PreDeT) - Accuracy(DTree)

has a median value lower equal zero.

H1 : The median value of the difference ∆ is greater than zero.

106 APPENDIX A. EXPERIMENTAL RESULTS

r=5 r=10 r=15
Configuration

−5

0

5

10

∆
A

cc
ur

ac
y

0.63 1.071 0.804

(a) CRM/ Information Gain

r=5 r=10 r=15
Configuration

−4
−2

0
2
4
6
8

10

∆
A

cc
ur

ac
y

1.082 0.364 2.164

(b) CRM/ Information Gain Ratio

r=5 r=10 r=15
Configuration

−1

0

1

2

3

∆
A

cc
ur

ac
y

0.532 0.095 -0.12

(c) Credit (Income)/ Information Gain

r=5 r=10 r=15
Configuration

−3

−2

−1

0

1

2

∆
A

cc
ur

ac
y

0.2 -0.12 0.04

(d) Credit (Income)/ Information Gain Ratio

r=5 r=10 r=15
Configuration

−2

0

2

4

6

∆
A

cc
ur

ac
y

0.754 0.22 0.783

(e) Credit (Age)/ Information Gain

r=5 r=10 r=15
Configuration

−2
−1

0
1
2
3

∆
A

cc
ur

ac
y

0.112 0.298 0.281

(f) Credit (Age)/ Information Gain Ratio

r=5 r=10 r=15
Configuration

−2

0

2

4

6

∆
A

cc
ur

ac
y

1.231 2.114 0.91

(g) GHS/ Information Gain

r=5 r=10 r=15
Configuration

−1
0
1
2
3
4

∆
A

cc
ur

ac
y

1.502 0.467 0.0

(h) GHS/ Information Gain Ratio

Figure A.6: Box plots of the gain (or loss) in classification accuracy when using PreDeT compared
to a Decision Tree learner

A.2. UTILISING CHANGE FOR CLASSIFIERS 107

(a) Information Gain

r = 5 r = 10 r = 15

p-value W (n) p-value W (n) p-value W (n)

CRM 0.0909 61 (19) 0.0365 28 (15) 0.0820 10 (9)
Credit Card (Income) 0.0177 23 (15) 0.4551 21 (9) 0.5934 9 (5)

Credit Card (Age) 0.1519 85 (21) 0.1796 43 (15) 0.0273 6 (9)
GHS (Year) 0.0006 18 (16) 0.0210 10 (11) 0.0781 3 (6)

(b) Information Gain Ratio

r = 5 r = 10 r = 15

p-value W (n) p-value W (n) p-value W (n)

CRM 0.0407 45 (18) 0.0520 26 (14) 0.0654 12 (10)
Credit Card (Income) 0.5000 45 (13) 0.6875 33 (10) 0.500 7 (5)

Credit Card (Age) 0.2810 98 (21) 0.2019 51 (16) 0.2065 23 (11)
GHS 0.0002 3 (15) 0.0068 6 (11) − 0 (2)

Table A.3: Statistical significance of the results from Figure A.6 measured by a Wilcoxon-Signed Rank
Test.

According to Demsar (2006) the Wilcoxon’s signed ranks test is the recommended test for
comparing two models. Table A.3 shows the resulting test statistics and their associated
p-value for each experiment.

Regarding all experiments carried out using the information gain, for each data set
at least one setting of r can be found on which the null hypothesis is rejected with
a statistical significance of 0.05. For the GHS data set even all p-values are below
a significance level of 0.1, and still for the Credit Card (Age) data all p-values are
moderately significant with a level of 0.2. Only the Credit Card (Income) data falls
short of the other results. Even though it has a p-value of 0.0177 for r = 5, the p-values
for r = 10 and r = 15 are large. Nonetheless, they indicate that PreDeT does not
lead to worse results than the benchmark decision tree learner. The main reason is that
income, in strong contrast to age, is only very weakly correlated with the class attribute.
During decision tree learning this may lead to attribute evaluation measure and class
label distribution histories which are unsteady and thus very challenging to predict.

Regarding the information gain ratio, the p-values for the GHS and CRM data are below
a significance level of 0.01, respectively 0.1, leading to a clear rejection of the above null
hypothesis. However, for Credit Card (Income) and Credit Card (Age) the p-values are
worse than the ones for information gain; even the best one does exceed a significance
level of 0.2. But still, the trees produced by PreDeT do not perform worse than the
benchmark ones. One explanation for these results could be that the information gain
ratio is more sensitive to noise, in the sense that minor changes in the data lead to
drastic changes in information gain ratio and hence in histories of it, eventually making
prediction less reliable. This claim is left unproved in this thesis and should the subject
of future research.

In contrast to the CRM and GHS data, the credit card data does not contain a proper

108 APPENDIX A. EXPERIMENTAL RESULTS

time attribute, but instead uses age, respectively income, to ‘simulate’ it. Herein lies the
reason why PreDeT performs worse on the credit card data sets compared to the other
two. Consider the Credit Card (Age) data and the concept of a ‘defaulting customer’
which stems from the classification task. This concept does not always change smoothly
and steadily over the years, but sometimes abruptly. The reason are life events which
primarily occur at a certain age and that may dramatically change the possibility of
a default. Such events are, for example, the first well-paid job after university, the
purchase of a home and retirement. But there exist many more. As a result of these
events, the attribute evaluation measure and class label histories for these data sets show
many abrupt changes. These changes are difficult to model and almost impossible to
predict, which eventually leads to PreDeT ’s poor performance on the data. In general,
this is a limitation of PreDeT . It is more suited for domains which exhibit steady and
smooth change, and less suited for ones which suddenly change to a large extent.

Overall, the experiments indicate that utilising the temporal dimension during decision
tree induction often leads to trees with a significantly higher accuracy than trees that do
not utilise it. The experiments further show that even in the case of no improvement,
the trees learned by PreDeT do not perform worse than conventional ones. The degree
of improvement depends on the attribute evaluation measure and the choice of r. Gen-
erally, the exploitation of this and other dependencies between parameters leaves space
for further optimisations of the PreDeT algorithm and should be a subject of future
research.

Appendix B

Proofs

B.1 Proof of Theorem 3.1

Theorem 3.1. Let D be a data set and D′ ⊆ D, then it is Closed(D′) ⊆ Closed(D).

Proof. It is Closed(D′) ⊆ Closed(D) if and only if X ∈ Closed(D′) ⇒ X ∈ Closed(D).
In the following the contraposition X)∈ Closed(D) ⇒ X)∈ Closed(D′) is proven.

Suppose X)∈ Closed(D). By Definition 3.1 this is the case if

∃Y : Y ⊃ X : supp(X) = supp(Y)

Using the definition of support and multiplication with |D| yields

∃Y : Y ⊃ X : |{I ∈ D|X ⊆ I}| = |{I ∈ D|Y ⊆ I}|

Using the notion t(X,D) := {I ∈ D|X ⊆ I} to describe the subset of transactions in D
that contain X this can be rewritten as

∃Y : Y ⊃ X : t(X,D) = t(Y,D)

Independent of whether this proposition is satisfied, or not, it is always true that

∀Y : Y ⊃ X : t(X,D′) ⊇ t(Y,D′)

because for I ∈ t(Y,D′) it follows from X ⊂ Y that X ⊂ I and then I ∈ t(X,D′).

Hence, it remains to be shown that whenever

∃Y : Y ⊃ X : t(X,D) ⊆ t(Y,D) (B.1)

it follows
t(X,D′) ⊆ t(Y,D′)

Assume that (B.1) is true and that I ∈ t(X,D′). Because D′ ⊂ D it is I ∈ t(X,D).
According to (B.1) there exists an item set Y ⊃ X such that I ∈ t(Y,D). Note that Y
does not depend on D′ but only on the choice of X and thus could be the same for any
subset of D. It is D = D′ ∪D \D′ and thus t(Y,D) = t(Y,D′)∪ t(Y,D \D′). Since it is
I ∈ t(Y,D) and also I ∈ D′ (due to I ∈ t(X,D′)) it follows I ∈ t(Y,D′).

110 APPENDIX B. PROOFS

B.2 Proof of Theorem 3.2

Theorem 3.2. Given a time-stamped data set D and a corresponding partition of the
time axis into periods T̂ := {T1, . . . , Tn}, the set of closed item sets contained in D equals
the set of item sets that are closed over the sequence T̂ , in other words SeqClosed(D, T̂) =
Closed(D).

Proof. We prove the above set equality by showing that each set is a subset of the
other, i.e. Closed(D) = SeqClosed(D, T̂) if and only if Closed(D) ⊆ SeqClosed(D, T̂)
and SeqClosed(D, T̂) ⊆ Closed(D).

1. It is Closed(D) ⊆ SeqClosed(D, T̂) if and only if X ∈ Closed(D) ⇒ X ∈
SeqClosed(D, T̂). This is equivalent to X)∈ SeqClosed(D, T̂) ⇒ X)∈ Closed(D).

Suppose X)∈ SeqClosed(D, T̂). By Definition 3.5 this is the case if

∃Y : Y ⊃ X : ∀Ti : Ti ∈ T̂ : suppi(X) = suppi(Y)

Using the definition of support yields

∃Y : Y ⊃ X : ∀Ti : Ti ∈ T̂ :
|{I ∈ Di|X ⊆ I}|

|Di|
=

|{I ∈ Di|Y ⊆ I}|
|Di|

By multiplying both sides with Di and summation over Ti this implies

∃Y : Y ⊃ X :
n∑

i=1

|{I ∈ Di|X ⊆ I}| =
n∑

i=1

|{I ∈ Di|Y ⊆ I}|

Because it isDi∩Dj = ∅, i)= j and ∪n
i=1Di = D (see Section 3.3) this is equivalent

to
∃Y : Y ⊃ X : |{I ∈ D|X ⊆ I}| = |{I ∈ D|Y ⊆ I}|

Division by |D| and consideration of the definitions of support and closed item sets
(Definition 3.1) then yields X)∈ Closed(D).

2. Like in the first part of the proof, we prove the contraposition X)∈ Closed(D) ⇒
X)∈ SeqClosed(D, T̂) .

Using the same notation as in the proof of Theorem 3.1 this can be rewritten:

∃Y : Y ⊃ X : t(X,D) = t(Y,D)

implies
∃Y : Y ⊃ X : ∀Ti : Ti ∈ T̂ : t(X,Di) = t(Y,Di)

Theorem 3.1 already states that if X is non-closed in D it is also non-closed in any
subset and thus also in Di. For this reason, it only remains to be shown that the
superset Y of X, which renders X non-closed, is the same for any Di.

This is proven by contraposition. Assume that there is an item set Xxl ∈ Dl

such that t(X,Dl) = t(Xxl, Dl) and an item set Xxk ∈ Dl such that t(X,Dk) =
t(Xxk, Dk) with xl)= xk and X ∩ {xk, xl} = ∅. Further, assume that there is
no item x ∈ L \X such that t(X,Dl) = t(Xx,Dl) and t(X,Dk) = t(Xx,Dk). In

B.3. PROOF OF THEOREM 3.3 111

words, X is non-closed in time periods Tk and Tl but there is no common superset of
X which is responsible for their non-closedness. Based on these assumptions, there
must be transactions Il ∈ t(X,Dl) with xk)∈ Il and Ik ∈ t(X,Dk) with xl)∈ Ik.
From Dl ⊂ D and Dk ⊂ D follows Il ∈ t(X,D) and Ik ∈ t(X,D). Consequently,
it is Il)∈ t(Xxk, D) and Ik)∈ t(Xxl, D). This implies t(X,D) ⊃ t(Xxk, D) and
t(X,D) ⊃ t(Xxl, D). From this it follows that X must be closed in D.

B.3 Proof of Theorem 3.3

Theorem 3.3. Let X be an item set and Y ∈ Closed(Di) its closure in time period Ti.
If suppi(X) > 0 then Y ti ∈ Closed(DT) and suppi(X) = suppT (Y ti)/ suppT (ti) .

The proof of the theorem needs the following two lemmata:

Lemma B.1. Let X ⊆ L, and let suppTi denote an item set’s support in regard to DT
i .

The following two properties hold:

1. suppi(X) = suppTi (Xt)

2. supp(X) = suppT (X)

Proof. Definition 3.6 of DT
i states that each transaction I ∈ Di bijectively maps to a

transaction I ∪ {ti} ∈ DT
i giving an exact pairing of the transactions in both data sets.

Note that in the construction of DT
i , respectively DT , neither are transactions added or

removed, nor are items deleted from them. This implies

|Di| = |DT
i | (B.2)

and also that item sets which not contain ti have the same support in both data sets:

suppi(X) = suppTi (X) (B.3)

1. By Definition 3.6 each transaction in DT
i contains ti. From this it follows that

{I ∈ DT
i : X ⊆ I} ⊆ {I ∈ DT

i : ti ∈ I}

This in combination with Theorem 1 in Zaki and Hsiao (2005) implies that X and
Xti have the same closure in DT

i . Using the Definition 3.1 of closed item sets yields

suppTi (X) = suppTi (Xti) (B.4)

Assuming that ti)∈ X and combining (B.3) with (B.4) implies

suppi(X) = suppTi (Xt)

2. Due to D = D1 ∪ . . . ∪Dn and Di ∩Dj = ∅, i)= j it is

supp(X) =
1

|D|

n∑

i1

|Di| suppi(X) =
1∑n

i=1 |Di|

n∑

i1

|Di| suppi(X)

112 APPENDIX B. PROOFS

Substituting from (B.2) and (B.3) yields

supp(X) =
1∑n

i=1 |DT
i |

n∑

i1

|DT
i | suppTi (X)

which is equivalent to
supp(X) = suppT (X)

Lemma B.2. It is X ∈ Closed(Di) if and only if Xti ∈ Closed(DT
i).

Proof. The lemma is logically equivalent to the statement X)∈ Closed(Di) if and only
if Xti)∈ Closed(DT

i) which is prove in the following. Xti)∈ Closed(DT
i) is defined as

there exists an item set Y,X ∩ Y = ∅ such that suppTi (Xti) = suppTi (XY ti) (see Defin-
ition 3.1). Applying Lemma B.1 this is the case if and only if suppi(X) = suppi(XY).
By Definition 3.1 it is therefore X)∈ Closed(Di).

Proof. (of Theorem 3.3) From Lemma B.2 it is known that Y ∈ Closed(Di) implies
Y ti ∈ Closed(DT

i). Recalling that DT = DT
1 ∪ . . . DT

n and applying Theorem 3.1 leads
to Closed(DT

i) ⊆ Closed(DT) and thus Y ti ∈ Closed(DT). This proves the first part of
the theorem.

Next, suppi(X) = suppT (Y ti)/ suppT (ti) is shown:

suppT (Y ti) =
|{I ∈ DT : Y ti ⊆ I}|

|DT |

=
|{I ∈ DT

i : Y ti ⊆ I}|
|DT | (Each Ti has its unique ti)

=
suppTi (Y ti)

|DT | |DT
i |

= suppTi (Y ti) suppT (ti)

According to Lemma B.1 it is suppTi (Y ti) = suppi(Y) and hence suppi(Y) =
suppT (Y ti)/ suppT (ti).

B.4 Proof of Theorem 3.4

Theorem 3.4. If X ∈ Closed(D) and there exist i)= j such that suppi(X) > 0 and
suppj(X) > 0 then it follows X ∈ Closed(DT).

Proof. In the following, let X ⊆ L, i.e. X does not contain any item t ∈ LT \ L. The
theorem assumes that X is present in at least two time periods, i.e. suppi(X) > 0 and
suppj(X) > 0, i)= j.

The statement
X ∈ Closed(D) =⇒ X ∈ Closed(DT)

B.4. PROOF OF THEOREM 3.4 113

is logically equivalent to the statement

X)∈ Closed(DT) =⇒ X)∈ Closed(D)

which is subsequently proven.

Suppose X)∈ Closed(DT). By Definition 3.1 this is the case if

∃Z : Z ⊃ X : suppT (Z) = suppT (X) (B.5)

According to Lemma B.3 (to be found below this proof) Z ⊆ L must hold, because
otherwise this would contradict the above assumption of X being present in at least two
time periods. Applying now Lemma B.1 to (B.5) yields

∃Z : Z ⊃ X : supp(Z) = supp(X)

which entails
X)∈ Closed(D)

Lemma B.3. Assume X ⊂ L and in DT there exists an item set Z ⊃ X with
suppT (Z) = suppT (X))= 0. If suppi(X) > 0 and suppj(X) > 0, i)= j, then Z ⊆ L.

Proof. This proof is by contraposition. Assume it is t′ ∈ Z such that Z := Y t′ with
t′ ∈ LT \ L. From Z = Y t′ ⊇ Xt′ ⊃ X and suppT (Z) = suppT (Y t′) = suppT (X) it
follows suppT (Xt′) = suppT (X) (for a proof see Lemma 3.5 in Pei et al. (2000)).

Each transaction belongs to exactly one time period and time periods do not overlap.
Hence, the DT

i are disjoint and it is

suppT (X) =
∑

t∈LT \L

suppT (Xt)

=
∑

t∈LT \(L∪{t′})

suppT (Xt) + suppT (X)

Which is equivalent to ∑

t∈LT \(L∪{t′})

suppT (Xt) = 0

The support measure always is greater equal zero. If therefore the initial assumption
t′ ∈ Z holds the following must hold too

∀t ∈ LT \ (L ∪ {t′}) : suppT (Xt) = 0 (B.6)

The latter statement leads to the negation of the lemma’s assumption suppi(X) > 0 and
suppj(X) > 0, i)= j as shown next. Let k ∈ {i, j}. Using Lemma B.1 it is

suppTk (Xtk) = suppk(X) > 0 (B.7)

Because of suppk(X) > 0, Dk is non-empty and thus suppT (tk) > 0. Further it is

suppk(X) =
suppT (Xtk)

suppT (tk)

114 APPENDIX B. PROOFS

Substitution into (B.7) followed by some basic transformations thus results in

suppT (Xtk) = suppTk (Xtk) supp
T (tk) > 0

B.5 Proof of Theorem 3.5

Theorem 3.5. The item set XY is temporally derivable from the item set X if and only
if ∀Ti ∈ T̂ : P (Y |X = 1, T = Ti) = P (Y |X = 1).

Proof. It needs to be shown that

X↪→XY ⇔ P (Y |X = 1, T) = P (Y |X = 1)

By Definition 3.8 it is X↪→XY if and only if

∃ε ∈ [0, 1] : ∀Ti ∈ T̂ : suppi(XY) = ε suppi(X)

Using the probabilistic interpretation of support this is equivalent to

∃ε ∈ [0, 1] : ∀Ti ∈ T̂ : P (Y = 1, X = 1 | T = Ti) = εP (X = 1 | T = Ti)

and, as a first step, it will be shown that this is equivalent to

∀Ti ∈ T̂ : P (Y = 1 |X = 1,T = Ti) = P (Y = 1 |X = 1)

.

Next, each direction of the latter equivalence relation is proven individually.

(⇒) ∃ε ∈ [0, 1] : ∀Ti ∈ T̂ : P (Y = 1,X = 1 | T = Ti) = εP (X = 1 | T = Ti)

⇔ ∃ε ∈ [0, 1] : ∀Ti ∈ T̂ :
P (Y = 1,X = 1,T = Ti)

P (T = Ti)

= ε
P (X = 1,T = Ti)

P (T = Ti)

⇔ ∃ε ∈ [0, 1] : ∀Ti ∈ T̂ : P (Y = 1,X = 1,T = Ti)

= εP (X = 1,T = Ti)

⇒ ∃ε ∈ [0, 1] :
∑

Ti∈dom(T)

P (Y = 1,X = 1,T = Ti)

= ε
∑

Ti∈dom(T)

P (X = 1,T = Ti)

⇔ ∃ε ∈ [0, 1] : P (Y = 1,X = 1) = εP (X = 1)

From this it follows that ε = P (Y = 1 | X = 1) which substituted into the above
equation and after division by P (X = 1 | T = Ti) yields the assertion.

B.6. PROOF OF THEOREM 3.8 115

(⇐) ∀Ti ∈ T̂ : P (Y = 1 |X = 1, T = Ti) = P (Y = 1 |X = 1)

⇔ ∀Ti ∈ T̂ :
P (Y = 1,X = 1 | T = Ti)

P (X = 1 | T = Ti)

=
P (Y = 1,X = 1)

P (X = 1)

⇔ ∀Ti ∈ T̂ : P (Y = 1,X = 1 | T = Ti)

=
P (Y = 1,X = 1)

P (X = 1)
P (X = 1 | T = Ti)

⇒ ∃ε ∈ [0, 1] : ∀Ti ∈ T̂ : P (Y = 1,X = 1 | T = Ti)

= εP (X = 1 | T = Ti)

Utilising the binary nature of Y and the universal quantification over Ti the proven
equivalence relation can be reformulated such that the theorem results.

B.6 Proof of Theorem 3.8

Theorem 3.8. Given a time-stamped data set D and a corresponding partition of the
time axis into periods T̂ := (T1, . . . , Tn), the set of temporally closed item sets contained
in D is a subset of the set of item sets that are closed over the sequence T̂ , in other
words TClosed(D, T̂) ⊆ SeqClosed(D, T̂).

To proof this theorem the definition of an item set which is closed over a sequence of
time periods needs to be linked to the notion of temporal derivability. Comparison of
Definition 3.5 with Definition 3.8 suggests to express the link between the two concepts
as follows:

Lemma B.4. An item set X is closed over the sequence of time periods {T1, . . . , Tn} iff

there exists no item set Y ⊃ X such that X
1
↪→ Y .

Proof. Follows directly from the definition of a temporally derivable item set (see Defin-
ition 3.8, page 51).

Using this lemma the above theorem is provable.

Proof. By Definition 3.9 it is

X ∈ TClosed(D, T̂) ⇐⇒ "Y ⊃ X : ∃ε ∈ (0, 1] : X
ε
↪→ Y

from this it follows
"Y ⊃ X : X

1
↪→ Y

Application of Lemma B.4 then yields

X ∈ SeqClosed(D, T̂)

From X ∈ TClosed(D, T̂) ⇒ X ∈ SeqClosed(D, T̂) it follows that TClosed(D, T̂) ⊆
SeqClosed(D, T̂).

Appendix C

Background

The following topics may be considered typical textbook knowledge and for this reason
they have been moved to the end of this thesis and into the appendix. They provide
background knowledge on some of the concepts and methods employed in this thesis and
are intended to help the less knowledgeable reader.

C.1 Background on Entropy and Mutual Information

Central to information theory is the concept of the entropy of a random variable as a
measure of its information content (Shannon, 1948).

Definition C.1 (Shannon Entropy). Let A be a discrete random variable with domain
dom(A) and P its probability distribution. Then

H(A) = −
∑

a∈dom(A)

P (A = a) logP (A = a)

is called the (Shannon) entropy of A w.r.t. P .

Entropy reflects the uncertainty associated with a random variable. Consider a random
variable that describes an experiment with two different outcomes, like the flip of a coin.
If one outcome has probability one, and the other never occurs then the entropy is zero.
There is no uncertainty about the value of the random variable and thus the information
it contains is zero. On the contrary, if it is a fair coin and both outcomes have equal
probability, the entropy is one. This is the situation of maximum uncertainty, hence the
random variable contains the most information.

An alternative interpretation of entropy is that of a lower bound on the average descrip-
tion length of a random variable. In detail, it measures the average number of bits needed
at least to describe its values. Note that the unit ‘bit’ is only used in conjunction with
a logarithm of base 2 in Definition C.1. Unless otherwise stated all logarithms in this
chapter will be to this base. Intuitively, an efficient code should assign long descriptions
to less probable values and short descriptions to highly probable and thus frequent val-
ues. In this way, having a sequence of values information compression can be achieved.
For example, in Morse code the most frequent letter in the English language, that is the
‘e’, is assigned the shortest description, a single ‘dot’; whereas infrequent letters, like the
‘j’ have the longest description (“dot, dash, dash, dash”). Morse code, although being
reasonably efficient, still has an average description length above the theoretical limit
given by the entropy of the English language (Cover and Thomas, 2006, p. 104-5).

The uncertainty about a random variable and hence its average description length can
be reduced by knowledge of another random variable. The resulting entropy thus is
conditional on the values of the other. As such it is defined as the expected value of

118 APPENDIX C. BACKGROUND

the entropies of the conditional distributions averaged over the conditioning variable
(Shannon, 1948).

Definition C.2 (Conditional Entropy). Let A and B be discrete random variables with
domains dom(A) and dom(B), and P their (joint) probability distribution. Then

H(A |B) =
∑

b∈dom(B)

P (B = b) H(A|B = b)

=−
∑

b∈dom(B)

P (B = b)
∑

a∈dom(A)

P (A = a|B = b) logP (A = a|B = b)

is called the conditional entropy of A w.r.t. B.

Taking into consideration that the (unconditioned) entropy as in Definition C.1 expresses
the information content prior to obtaining any other knowledge, the difference between
both quantities appears suitable as a measure on how much information a random vari-
able contains about another one. Indeed, in information theory this measure is known
as mutual information (Shannon and Weaver, 1949).

Definition C.3 (Mutual Information). Let A and B be discrete random variables with
domains dom(A) and dom(B), and P their joint probability distribution. Then

I(A , B) = H(A)−H(A |B) (C.1)

=
∑

a∈dom(A)

∑

b∈dom(B)

P (A = a, B = b) log
P (A = a, B = b)

P (A = a)P (B = b)
(C.2)

is called the mutual information of A and B.

Note that the argument of the logarithm is the ratio of the joint probability distribution
and the product of the marginal distributions. Thus, the mutual information is zero if
and only if A and B are probabilistically independent since this means P (A = a, B =
b) = P (A = a)P (B = b). In turn, mutual information grows with the strength of the
dependence between A and B. In a sense, the assumption of A and B being independent
serves as a baseline against which P (A = a, B = b) is assessed.

C.2 Background on Regression Methods

Given is an inference problem involving data {(ti, yi) | i = 1, . . . , r, ti ∈ R, yi ∈ R} where
the ti are the inputs, and the yi are the targets. The task is to obtain predictions y∗ for
new inputs t∗. Because the true underlying relationship ϕ′ : R −→ R with ϕ′(t) = y is
an unknown function, such predictions are only feasible on basis of a model ϕ : R −→ R
with ϕ(t) = y which reasonably approximates ϕ′. In the following two methods for
approximation and subsequent prediction are detailed. The first is linear regression in
combination with a model selection heuristic, the second are Gaussian processes.

C.2.1 Linear Regression with Basis Functions

This method requires a set of family of functions being specified in advance, by selecting
in (4.3) different types of functions ζi and values for q. Two popular types of functions

C.2. BACKGROUND ON REGRESSION METHODS 119

are shown in (4.4) and (4.5) in the previous section. Commonly, the ζi are fixed to a
certain type of function and only q is varied. Utilising sample data, for each family
parameter values are calculated that yield a ‘best fit’ of ϕ. Least square regression
accomplishes this.

The objective of least square regression is to determine the parameters amin :=
(a0, . . . , aq)T in (4.3) such that

amin = argmin
a

1

2
‖Ca− p‖22 (C.3)

with C :=

ζ0(t1) · · · ζq(t1)

...
. . .

...
ζ0(tr) · · · ζq(tr)

 and p :=

y1
...
yr

Having a fitted function for each selected family the ‘best’ one needs to be selected.
Several heuristics have been developed for this purpose which serve a variety of definitions
of ‘best’. They all are agglomerated under the term model selection heuristics.

One is the Akaike information criterion (AIC) (Akaike, 1974). For it, ‘best’ means that
function which provides the best trade-off between goodness of fit and complexity and
is, for this reason, assumed to be less prone to overfit the data. Notably, Böttcher et al.
(2008b) used linear regression with polynomials in combination with AIC in the context
of PreDeT . Let r be the number of observations, e.g. the length of the history, q+1 the
number of parameters and RSS the residual sum of squares of a fitted function. Then,
AIC is defined as:

AIC = 2(q + 1) + r ln
RSS

r
(C.4)

In particular when dealing with histories the number of time periods for which data is
available is sometimes small. The original Akaike information criterion, however, should
only be applied to data sets with large sample sizes (Burnham and Anderson, 2004),
i.e. if r/(q+ 1) > 40. To overcome this limitation a number of corrections of the Akaike
criterion for small sample sizes have been developed, such as the following known as
AICC (Hurvich and Tsai, 1989):

AICC = AIC +
2(q + 1)(q + 2)

r − q − 2
(C.5)

For large sample sizes r AICC converges to AIC, therefore it can always be used re-
gardless of sample size (Burnham and Anderson, 2004).

C.2.2 Gaussian Process Regression

Gaussian process regression learns a model from sample data by an approach that is not
dependent on strong prior assumptions regarding ϕ′, such as assumptions concerning
the specific family of functions. The remainder of this section provides an illustrative
introduction into some of its core concepts. It should be stressed that Gaussian process
regression involves many more aspects than the ones sketched here; the discussion of
those would by far go beyond the scope of this thesis. These aspects, among many

120 APPENDIX C. BACKGROUND

others, concern noise handling and hyper-parameter learning for kernel functions. For a
detailed discussion of those the reader is referred to the book by Rasmussen and Williams
(2005).

Loosely speaking, a Gaussian process is a probability distribution over functions. It
generalises the well-known (multivariate) Gaussian probability distribution. This means,
while the latter is defined on a finite number of random variables, a Gaussian process
defines a distribution over an infinite number of random variables. Drawing samples
from a Gaussian process yields functions; not single values or vectors as for univariate
respectively multivariate Gaussian distributions. Analogue to a Gaussian probability
distribution, a Gaussian process is defined by a mean and a covariance, only that both
are not expressed by a value but are functions themselves.

Given sample data (e.g., a history of attribute evaluation measures), Gaussian process
regression is carried out using Bayesian inference. It assumes that the observed function
values differ from the unknown real ones by additive Gaussian noise. The aim of Bayesian
inference is to yield a posterior distribution over the function space by combining a prior
distribution (which encodes the initial believes about the particular problem) with the
sample data (which represents information regarding the unknown function ϕ′).

Figure C.1(i) shows three functions drawn from a Gaussian process with a mean of zero.
The mean is shown as a black dotted line. The dark shaded area covers once and the
light shaded area twice the standard deviation at each input x. Figure C.1(j) shows three
functions drawn from the posterior Gaussian process which results from combining the
prior in Figure C.1(i) with the sample data shown as black squares and assuming no
noise. Apparently, the uncertainty is reduced, close to the samples but also between
them.

Applied to the search for a model ϕ : R −→ R with ϕ(t) = y, a Gaussian process defines
for each t ∈ R in input space a (univariate) Gaussian distribution over ϕ(t) = y ∈ R
in output space. This means, ϕ(t) is seen as a random variable which is indexed by t.
A characteristic property of Gaussian processes is that for any finite subset of indices
{t1, . . . , tm} ⊂ R the corresponding random variables follow a multivariate Gaussian
distribution. Thus, multivariate Gaussian distributions are a special case of Gaussian
processes.

The mean of the Gaussian process at t∗ is used as prediction for the value ϕ′(t∗). Fig-
ure C.1(k) and Figure C.1(j) show the mean of Gaussian processes which account, re-
spectively not account, for noise. Because a Gaussian process sees ϕ(t∗) as a normally
distributed random variable, the standard deviation is an indicator for the goodness of
the prediction. For example, in Figure C.1(j) a prediction at t∗ = 7.5 has a standard
deviation of almost zero, whereas a prediction at t∗ = 3.8 has a much greater standard
deviation; this prediction thus is connected with a significantly higher uncertainty. In
Figure C.1(k) the input value (7, 1.5) is more than twice the standard deviation away
from the mean, indicating that this could be an outlier. Note that such assertions are not
possible with standard linear least squares regression discussed in the preceding section.

The covariance function, cov : R × R −→ R of the Gaussian process defines a prior
over functions based on properties, such as the above stated. Precisely, cov(ϕ(t),ϕ(t′))
specifies the covariance between the output of the function ϕ at a pair of indices (t, t′).
It measures how much the random variables ϕ(t) and ϕ(t′) influence each other. For

C.2. BACKGROUND ON REGRESSION METHODS 121

0 2 4 6 8 10
x

−1
0
1
2
3
4
5
6
7

ϕ
(x
)

(i) Samples from the prior

0 2 4 6 8 10
x

−1
0
1
2
3
4
5
6
7

ϕ
(x
)

(j) Samples from the posterior

0 2 4 6 8 10
x

−1
0
1
2
3
4
5
6
7

ϕ
(x
)

(k) Mean of the posterior with noise.

Figure C.1: Samples from Gaussian processes before and after considering sample data and noise.
The dotted line shows the Gaussian processes’ mean, which corresponds to the predicted
value for each x for the posterior.

Gaussian process regression cov(ϕ(t),ϕ(t′)) is represented by a so-called kernel func-
tion k(t, t′) = cov(ϕ(t),ϕ(t′)). Kernels for Gaussian process regression are discussed in
Rasmussen and Williams (2005), Chapter 4. One example is the squared exponential
kernel

kSE(t, t
′) = e−

(t−t′)2

2l2

The parameter l is called length scale. Informally, it specifies at which distance func-
tion values (or samples) roughly become uncorrelated along the input dimension. As
Figure C.2 shows, for this kernel the covariance is almost unity if the inputs are very
close and decreases slowly with increasing distance between them, eventually converging
to zero. Consequently, a Gaussian process with squared exponential kernel favours very
smooth functions over those that change suddenly. The functions in Figure C.1(i) are
drawn from a Gaussian process with squared exponential kernel.

In practical applications of Gaussian process regression it is often assumed that the
mean function of the prior is zero everywhere without loss of generality, because the
data can be always be shifted accordingly. For this reason, the main modelling task for
Gaussian process regression is the suitable choice of the kernel function which encodes

122 APPENDIX C. BACKGROUND

Figure C.2: Squared exponential kernel with differ-
ent length scales l

0 2 4 6 8 10
x− x′

0.0

0.2

0.4

0.6

0.8

1.0

k S
E
(x
,x

′)

l = 1
l = 2
l = 5

prior knowledge concerning ϕ′, specifically properties like derivability, smoothness or
periodicity. Because it is intuitively easier and also requires less knowledge to directly
judge such properties of a domain, rather than judging them indirectly via selecting the
basis functions ζ, obtaining a suitable model becomes likelier.

At last, Gaussian process regression has some correspondence with linear regression
with basis functions. Williams (1999) proved that general Gaussian process regression
is equivalent to generalised Bayesian linear regression, that is Bayesian linear regression
(see, e.g., Gelman et al., 2003) with an infinite number of basis functions ζi. Each
choice of kernel in the Gaussian process framework is linked to a particular type of
basis function in the linear regression framework ϕ(x) =

∑∞
i=0 aiζi(x). For many kernels

the corresponding family of basis functions is not analytically derivable and, in turn,
not every family of basis functions yields a valid kernel function. Conducting such
transformation, however, is only of theoretical interest.

For example, the squared exponential kernel is linked to radial basis functions as in (4.5)
with c denoting their centre (Rasmussen and Williams, 2005, p. 84). Considering models
with a finite number of these basis functions leads to radial basis function networks
(RBF) established in the field of Neural Networks (see). Radial basis functions also
have been discussed in the previous section as one example of basis function for linear
least squares regression. Outside the scope of Gaussian process regression, the quality
of a RBF model strongly depends on putting the centres at the right place prior to
learning its parameters, because at the end only one fitted function will be created.
In comparison, Gaussian process regression with squared exponential kernel implicitly
consider an infinite number of basis functions centred everywhere in R. Instead of
producing one fitted function the fit is described by a posterior probability over all
functions. Gaussian process regression thus is much more flexible and less restrictive
than linear regression with basis functions. Comparing Figure 4.7 with Figure C.1(k),
underlines its superiority.

Bibliography

Ackoff, R. L. (1981). Creating the corporate future : plan or be planned for. Wiley, New
York.

Agarwal, D., Barman, D., Gunopulos, D., Young, N. E., Korn, F., and Srivastava, D.
(2007). Efficient and effective explanation of change in hierarchical summaries. InKDD
’07: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 6–15, New York, NY, USA. ACM.

Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining association rules between
sets of items in large databases. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 207–216, Washington D.C. ACM.

Agrawal, R. and Psaila, G. (1995). Active data mining. In Fayyad, Usama, M. and Uthur-
usamy, R., editors, Proceedings of the 1st ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 3–8, Montreal, Quebec, Canada. AAAI
Press, Menlo Park, CA, USA.

Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In Proceedings of
the Eleventh International Conference on Data Engineering, ICDE ’95, pages 3–14,
Washington, DC, USA. IEEE Computer Society.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions
on Automatic Control, 19(6):716–723.

Au, W.-H. and Chan, K. (2005). Mining changes in association rules: a fuzzy approach.
Fuzzy Sets and Systems, 149(1):87–104.

Baron, S. (2004). Temporale Aspekte entdeckten Wissens – Ein Bezugssystem für die
Evolution von Mustern. PhD thesis, Humboldt University Berlin.

Baron, S. and Spiliopoulou, M. (2001). Monitoring change in mining results. In Pro-
ceedings of the 3rd International Conference on Data Warehousing and Knowledge
Discovery, Munich, Germany.

Baron, S. and Spiliopoulou, M. (2003). Monitoring the evolution of web usage patterns.
In 1st European Web Mining Forum, Workshop at ECML/PKDD 2003.

Baron, S., Spiliopoulou, M., and Günther, O. (2003). Efficient monitoring of patterns
in data mining environments. In Proceedings of the 7th East-European Conference on
Advances in Databases and Information Systems (ADBIS’03), volume 2798 of Lecture
Notes in Computer Science, pages 253–265, Berlin, Heidelberg, New York. Springer.

Bartolini, I., Ciaccia, P., Ntoutsi, I., Patella, M., and Theodoridis, Y. (2004). A unified
and flexible framework for comparing simple and complex patterns. In PKDD ’04:
Proceedings of the 8th European Conference on Principles and Practice of Knowledge
Discovery in Databases, volume 3202 of Lecture Notes In Computer Science, pages
496–499, New York, NY, USA. Springer-Verlag New York, Inc.

124 BIBLIOGRAPHY

Bartolini, I., Ciaccia, P., Ntoutsi, I., Patella, M., and Theodoridis, Y. (2009). The
PANDA framework for comparing patterns. Data and Knowledge Engineering,
68(2):244–260.

Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., and Lakhai, L. (2000). Mining
frequent patterns with counting inference. SIGKDD Explorations Newsletter, 2(2):66–
75.

Bay, S. D. and Pazzani, M. J. (1999). Detecting change in categorical data: mining
contrast sets. In KDD ’99: Proceedings of the 5th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 302–306, New York, NY,
USA. ACM.

Bay, S. D. and Pazzani, M. J. (2001). Detecting group differences: Mining contrast sets.
Data Mining and Knowledge Discovery, 5(3):213–246.

Bayardo, R., Agrawal, R., and Gunopulos, D. (2000). Constraint-based rule mining in
large, dense databases. Data Mining and Knowledge Discovery, 4(3):217–240.

Bayardo, Jr., R. J. (1998). Efficiently mining long patterns from databases. In SIGMOD
’98: Proceedings of the 1998 ACM SIGMOD International Conference on Management
of Data, pages 85–93, New York, NY, USA. ACM.

Berger, C. R. (2005). Slippery slopes to apprehension: Rationality and graphical depic-
tions of increasingly threatening trends. Communication Research, 32(1):3–28.

Bille, P. (2005). A survey on tree edit distance and related problems. Theoretical
Computer Science, 337(1-3):217–239.

Bonchi, F. and Lucchese, C. (2004). On closed constrained frequent pattern mining. In
Proceedings of the 4th IEEE International Conference on Data Mining, ICDM ’04,
pages 35–42, Washington, DC, USA. IEEE Computer Society.

Borgelt, C. and Kruse, R. (1998). Attributauswahlmasse für die Induktion von
Entscheidungsbäumen: Ein Überblick. In Nakhaeizadeh, G., editor, Data Mining:
Theoretische Aspekte und Anwendungen, pages 77–98. Physica-Verlag, Heidelberg,
Germany.

Borgelt, C. and Kruse, R. (2002). Graphical Models. John Wiley & Sons.

Böttcher, M. (2011). Contrast and change mining. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 1(3):215–230.

Böttcher, M., Nauck, D., Borgelt, C., and Kruse, R. (2006a). A framework for discovering
interesting business changes from data. BT Technology Journal, 24(3):219–228.

Böttcher, M., Nauck, D., Ruta, D., and Spott, M. (2006b). Towards a framework for
change detection in datasets. In Bramer, M., Coenen, F., and Tuson, A., editors,
Research and Development in Intelligent Systems XXIII, Proceedings of AI-2006, the
26th SGAI International Conference on Innovative Techniques and Applications of
Artificial Intelligence, pages 115–128. BCS SGAI, Springer London.

Böttcher, M., Spiliopoulou, M., and Höppner, F. (2008a). On exploiting the power of
time in data mining. SIGKDD Explorations Newsletter, 10(2):3–11.

BIBLIOGRAPHY 125

Böttcher, M., Spott, M., and Kruse, R. (2008b). Predicting future decision trees from
evolving data. In ICDM ’08: Proceedings of the 8th IEEE International Conference
on Data Mining, pages 33–42. IEEE Computer Society.

Böttcher, M., Spott, M., and Kruse, R. (2009). A condensed representation of itemsets
for analyzing their evolution over time. In ECML PKDD ’09: Proceedings of the
European Conference on Machine Learning and Knowledge Discovery in Databases,
volume 5781 of Lecture Notes In Artificial Intelligence, pages 163–178. Springer-Verlag.

Böttcher, M., Spott, M., and Nauck, D. (2005). Detecting temporally redundant as-
sociation rules. In Proceedings of the Fourth International Conference on Machine
Learning and Applications, pages 397–403, Washington, DC, USA. IEEE Computer
Society.

Böttcher, M., Spott, M., Nauck, D., and Kruse, R. (2009). Mining changing customer
segments in dynamic markets. Expert Systems with Applications, 36(1):155–164.

Boulicaut, J.-F., Bykowski, A., and Rigotti, C. (2000). Approximation of frequency
queris by means of free-sets. In Proceedings of the 4th European Conference on Prin-
ciples and Practice of Data Mining and Knowledge Discovery, number 1910 in Lecture
Notes in Computer Science, pages 75–85, London, UK. Springer-Verlag.

Boulicaut, J.-F., Bykowski, A., and Rigotti, C. (2003). Free-sets: A condensed repres-
entation of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery, 7(1):5–22.

Breiman, L. (1996). The heuristics of instability in model selection. Annals of Statistics,
24:2350–2383.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and Regres-
sion Trees. Wadsworth, Belmont.

Brodsky, B. and Darkhovsky, B. (2010). Nonparametric Methods in Change-Point Prob-
lems. Kluwer Academic Publishers, Dordrecht, Boston, London.

Burnham, K. P. and Anderson, D. R. (2004). Multimodel inference: understanding AIC
and BIC in model selection. Sociological Methods & Research, 33:261–304.

Bykowski, A. and Rigotti, C. (2001). A condensed representation to find frequent pat-
terns. In PODS ’01: Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, pages 267–273, New York, NY, USA. ACM.

Calders, T. and Goethals, B. (2002). Mining all non-derivable frequent itemsets. In
PKDD ’02: Proceedings of the 6th European Conference on Principles of Data Mining
and Knowledge Discovery, pages 74–85, London, UK. Springer-Verlag.

Calders, T. and Goethals, B. (2007). Non-derivable itemset mining. Data Mining and
Knowledge Discovery, 14(1):171–206.

Calders, T., Rigotti, C., and Boulicaut, J.-F. (2005). A survey on condensed representa-
tions for frequent sets. In Constraint Based Mining and Inductive Databases, Lecture
Notes in Artificial Intelligence, pages 64–80. Springer-Verlag.

Ceglar, A. and Roddick, J. F. (2006). Association mining. ACM Computing Surveys,
38(2):5.

126 BIBLIOGRAPHY

Chakrabarti, S., Sarawagi, S., and Dom, B. (1998). Mining surprising patterns using
temporal description length. In VLDB ’98: Proceedings of the 24th International
Conference on Very Large Databases, pages 606–617. Morgan Kaufmann Publishers
Inc.

Charikar, M., Indyk, P., and Panigrahy, R. (2002). New algorithms for subset query, par-
tial match, orthogonal range searching, and related problems. In ICALP ’02: Proceed-
ings of the 29th International Colloquium on Automata, Languages and Programming,
volume 2380 of Lecture Notes in Computer Science, pages 451–462. Springer-Verlag.

Chatfield, C. (1996). The Analysis of Time Series – An Introduction. Chapman and
Hall/CRC, Boca Raton, London, New York.

Chatfield, C. (2001). Time-Series Forecasting. Chapman and Hall/CRC, Boca Raton,
London, New York.

Chen, J. and Gupta, A. (2000). Parametric Statistical Change Point Analysis.
Birkhäuser Boston.

Chen, M.-C., Chiu, A.-L., and Chang, H.-H. (2005). Mining changes in customer beha-
vior in retail marketing. Expert Systems with Applications, 28(4):773–781.

Cheng, J., Ke, Y., and Ng, W. (2006). δ-tolerance closed frequent itemsets. In ICDM
’06: Proceedings of the 6th IEEE International Conference on Data Mining, pages
139–148, Washington, DC, USA. IEEE Computer Society.

Cheng, J., Ke, Y., and Ng, W. (2008). A survey on algorithms for mining frequent
itemsets over data streams. Knowledge and Information Systems, 16:1–27.

Chi, Y., Wang, H., Yu, Philip, S., and Muntz, Richard, R. (2006). Catch the moment:
maintaining closed frequent itemsets over a data stream sliding window. Knowledge
and Information Systems, 10(3):265–294.

Chu, C.-J., Tseng, V. S., and Liang, T. (2009). Efficient mining of temporal emerging
itemsets from data streams. Expert Systems with Applications, 36(1):885–893.

Cormode, G. and Muthukrishnan, S. (2005). What’s new: finding significant differences
in network data streams. IEEE/ACM Transactions on Networking, 13(6):1219–1232.

Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory, 2nd Edition.
Wiley-Interscience.

Dean, J. and Ghemawat, S. (2008). MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51:107–113.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7:1–30.

Dong, G. and Bailey, J., editors (2012). Contrast Data Mining: Concepts, Algorithms,
and Applications. CRC Press.

Dong, G. and Li, J. (1999). Efficient mining of emerging patterns: discovering trends
and differences. In KDD ’99: Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 43–52, New York, NY,
USA. ACM.

BIBLIOGRAPHY 127

Dong, G. and Li, J. (2005). Mining border descriptions of emerging patterns from dataset
pairs. Knowledge and Information Systems, 8(2):178–202.

Fan, H. and Ramamohanarao, K. (2003). Efficiently mining interesting emerging pat-
terns. In Advances in Web-Age Information Management, volume 2762 of Lecture
Notes in Computer Science, pages 189–201, Berlin, Heidelberg, New York. Springer.

Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth, P. (1996a). From data mining to
knowledge discovery in databases. AI Magazine, 17(3):37–54.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. (1996b). Advances
in Knowledge Discovery and Data Mining. AAAI/MIT Press.

Freyd, J. J. (1983). The mental representation of movement when static stimuli are
viewed. Perception & Psychophysics, 33(6):575–581.

Fürnkranz, J. and Knobbe, A. J. (2010). Guest editorial: Global modeling using local
patterns. Data Mining and Knowledge Discovery, 21:1–8.

Gaber, M. M., Zaslavsky, A., and Krishnaswamy, S. (2005). Mining data streams: a
review. SIGMOD Record, 34(2):18–26.

Ganti, V., Gehrke, J., and Ramakrishnan, R. (1999). A framework for measuring
changes in data characteristics. In PODS ’99: Proceedings of the 18th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pages 126–137,
New York, NY, USA. ACM.

Ganti, V., Gehrke, J., Ramakrishnan, R., and Loh, W.-Y. (2002). A framework for meas-
uring differences in data characteristics. Journal of Computer and System Sciences,
64(3):542–578.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian Data Analysis,
Second Edition (Chapman & Hall/CRC Texts in Statistical Science). Chapman and
Hall/CRC, 2nd edition.

Geng, L. and Hamilton, H. J. (2006). Interestingness measures for data mining: A
survey. ACM Computing Surveys, 38(3):9.

Gill, P. E., Murray, W., and Wright, M. H. (1989). Practical Optimization. Academic
Press, London.

Goldin, D. Q. and Kanellakis, P. C. (1995). On similarity queries for time-series data:
Constraint specification and implementation. In Proceedings of the 1st International
Conference on Principles and Practice of Constraint Programming, volume 976 of
Lecture Notes in Computer Science, pages 137–153. Springer.

Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., and Sharma, R. S.
(2003). Discovering all most specific sentences. ACM Transactions on Database Sys-
tems, 28:140–174.

Hagen, J. G. and Rom, S. J. (1930). Die zwei unabhängigen Beweise der Erddrehung
beim Foucaultschen Pendelversuch. Die Naturwissenschaften, 18(38):805–807.

Han, J. and Fu, Y. (1996). Exploration of the power of attribute-oriented induction
in data mining. In U.M. Fayyad, G. Piatetsky-Shapiro, P. S. and Uthurusamy, R.,

128 BIBLIOGRAPHY

editors, Advances in Knowledge Discovery and Data Mining, pages 83–115, Menlo
Park, California. AAAI/MIT Press.

Hand, D. (2002). Pattern detection and discovery. In Hand, D., Adams, N., and Bolton,
R., editors, Pattern Detection and Discovery, volume 2447 of Lecture Notes in Com-
puter Science, pages 161–173. Springer Berlin / Heidelberg.

Hand, D. J., Mannila, H., and Smyth, P. (2001). Principles of Data Mining. The MIT
Press.

Helmbold, D. P. and Long, P. M. (1994). Tracking drifting concepts by minimizing
disagreements. Machine Learning, 14(1):27–45.

Hido, S., Idé, T., Kashima, H., Kubo, H., and Matsuzawa, H. (2008). Unsupervised
change analysis using supervised learning. In Proceedings of the 12th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD 2008), volume 5012
of Lecture Notes in Computer Science, pages 148–159, Berlin, Heidelberg, New York.
Springer.

Hilderman, R. J. and Peckham, T. (2005). A statistically sound alternative approach to
mining contrast sets. In Proceedings of the 4th Australasian Data Mining Conference
(AusDM-05), pages 157–172.

Hipp, J., Guentzer, U., and Nakhaeizadeh, G. (2000). Algorithms for association rule
mining - a general survey and comparison. SIGKDD Explorations Newsletter, 2(1):58–
64.

Höppner, F. and Böttcher, M. (2007). Matching partitions over time to reliably capture
local clusters in noisy domains. In PKDD ’07: Proceedings of the 11th European
Conference on Principles and Practice of Knowledge Discovery in Databases, volume
4702 of Lecture Notes in Computer Science, pages 479–486. Springer-Verlag.

Hulten, G., Spencer, L., and Domingos, P. (2001). Mining time-changing data streams.
In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 97–106, New York, NY, USA. ACM Press.

Hurvich, C. M. and Tsai, C. L. (1989). Regression and time series model selection in
small samples. Biometrika, 76:297–307.

Hyafil, L. and Rivest, R. L. (1976). Constructing optimal binary decision trees is np-
complete. Information Processing Letters, 5(1):15–17.

Inokuchi, A., Washio, T., and Motoda, H. (2000). An apriori-based algorithm for mining
frequent substructures from graph data. In Proceedings of the 4th European Conference
on Principles of Data Mining and Knowledge Discovery, PKDD ’00, pages 13–23,
London, UK. Springer-Verlag.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review. ACM
Computing Surveys, 31(3):264–323.

Jiang, T., Wang, L., and Zhang, K. (1995). Alignment of trees - an alternative to tree
edit. Theoretical Computer Science, 143(1):137–148.

Kifer, D., Ben-David, S., and Gehrke, J. (2004). Detecting change in data streams.

BIBLIOGRAPHY 129

In VLDB ’04: Proceedings of the 13th International Conference on Very Large Data
Bases, pages 180–191.

Kim, J. K., Song, H. S., Kim, T. S., and Kim, H. K. (2005). Detecting the change of
customer behavior based on decision tree analysis. Expert Systems, 22(4):193–205.

Kimball, R. (1996). Data Warehouse Toolkit: Practical Techniques for Building High
Dimensional Data Warehouses. John Wiley & Sons.

Klinkenberg, R. (2004). Learning drifting concepts: Example selection vs. example
weighting. Intelligent Data Analysis, 8(3):281–300.

Kotsiantis, S. B., Zaharakis, I. D., and Pintelas, P. E. (2006). Machine learning: a review
of classification and combining techniques. Artificial Intelligence Reviews, 26(3):159–
190.

Kryszkiewicz, M. and Gajek, M. (2002). Concise representation of frequent patterns
based on generalized disjunction-free generators. In Proceedings of the 6th Pacific-
Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD
’02, pages 159–171, London, UK. Springer-Verlag.

Kubat, M. (1989). Floating approximation in time-varying knowledge bases. Pattern
Recognition Letters, 10(4):223–227.

Kuh, A., Petsche, T., and Rivest, R. L. (1990). Learning time-varying concepts. In NIPS-
3: Proceedings of the 1990 Conference on Advances in Neural Information Processing
Systems 3, pages 183–189, San Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Kullback, S. (1968). Information Theory and Statistics. Dover Publications, New York,
1997 edition.

Kuramochi, M. and Karypis, G. (2001). Frequent subgraph discovery. In Proceedings of
the 2001 IEEE International Conference on Data Mining, ICDM ’01, pages 313–320,
Washington, DC, USA. IEEE Computer Society.

Lanquillon, C. and Renz, I. (1999). Adaptive information filtering: detecting changes
in text streams. In CIKM ’99: Proceedings of the 8th International Conference on
Information and Knowledge Management, pages 538–544, New York, NY, USA. ACM.

Li, J., Dong, G., and Ramamohanarao, K. (2001). Making use of the most expressive
jumping emerging patterns for classification. Knowledge and Information Systems,
3(2):1–29.

Liu, B., Hsu, W., Han, H.-S., and Xia, Y. (2000). Mining changes for real-life applica-
tions. In Proceedings of the 2nd International Conference on Data Warehousing and
Knowledge Discovery, pages 337–346, London, UK. Springer.

Liu, B., Hsu, W., and Ma, Y. (2001a). Discovering the set of fundamental rule changes. In
KDD ’01: Proceedings of the 7th ACM SIGKDD International Conference on Know-
ledge Discovery and Data Mining, pages 335–340, New York, NY, USA. ACM.

Liu, B., Ma, Y., and Lee, R. (2001b). Analyzing the interestingness of association rules
from the temporal dimension. In Proceedings of the IEEE International Conference
on Data Mining, pages 377–384. IEEE Computer Society.

130 BIBLIOGRAPHY

Liu, B. and Tuzhilin, A. (2008). Managing large collections of data mining models.
Communications of the ACM, 51(2):85–89.

Liu, G., Li, J., and Wong, L. (2008). A new concise representation of frequent itemsets
using generators and a positive border. Knowledge and Information Systems, 17:35–56.

Lorena, A. C., Carvalho, A. C., and Gama, J. a. M. (2008). A review on the combination
of binary classifiers in multiclass problems. Artificial Intelligence Reviews, 30:19–37.

Mannila, H. and Toivonen, H. (1996). Multiple uses of frequent sets and condensed
representations (extended abstract). In Proceedings of the 2nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 189–194. AAAI
Press.

Mannila, H. and Toivonen, H. (1997). Levelwise search and borders of theories in know-
ledge discovery. Data Mining and Knowledge Discovery, 1:241–258.

McQueen, J. (1967). Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, pages 281–297.

Novak, P. K., Lavrač, N., and Webb, G. I. (2009). Supervised descriptive rule discovery:
A unifying survey of contrast set, emerging pattern and subgroup mining. The Journal
of Machine Learning Research, 10:377–403.

Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. (1999). Efficient mining of associ-
ation rules using closed itemset lattices. Information Systems, 24(1):25–46.

Pasquier, N., Bastide, Y., Taouil, R., Taouil, R., and Lakhal, L. (1998). Pruning closed
itemset lattices for association rules. In In Actes Bases de Donnèes Avancèes BDA’98,
Hammamet, Tunisie, pages 177–196.

Pei, J., Han, J., and Lakshmanan, L. V. (2001). Mining frequent itemsets with con-
vertible constraints. In Proceedings of the 17th International Conference on Data
Engineering, pages 433–442.

Pei, J., Han, J., and Mao, R. (2000). CLOSET: An efficient algorithm for mining frequent
closed itemsets. In ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, pages 21–30.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1):81–106.

Quinlan, J. R. (1993). C4.5: programs for machine learning. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA.

Rafiei, D. and Mendelzon, A. (1997). Similarity-based queries for time series data. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 13–25, New York. ACM Press.

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine Learn-
ing. MIT Press.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14:465–471.

BIBLIOGRAPHY 131

Rissland, E. L. and Friedman, M. T. (1995). Detecting change in legal concepts. In
ICAIL ’95: Proceedings of the 5th International Conference on Artificial Intelligence
and Law, pages 127–136, New York, NY, USA. ACM.

Roddick, J. F., Spiliopoulou, M., Lister, D., and Ceglar, A. (2008). Higher order mining.
SIGKDD Explorations Newsletter, 10(1):5–17.

Rüping, S. (2006). Learning Interpretable Models. PhD thesis, Universität Dortmund.

Russ, G., Böttcher, M., Nauck, D., and Kruse, R. (2007). Relevance feedback for associ-
ation rules by leveraging concepts from information retrieval. In Bramer, M., Coenen,
F., and Petridis, M., editors, Research and Development in Intelligent Systems XXIV,
Proceedings of AI-2007, the 27th SGAI International Conference on Innovative Tech-
niques and Applications of Artificial Intelligence, pages 253–266. BCS SGAI, Springer
London.

Sarawagi, S. (1999). Explaining differences in multidimensional aggregates. In VLDB
’99: Proceedings of the 25th International Conference on Very Large Data Bases,
pages 42–53, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Schlimmer, J. C. and Granger, R. H. (1986). Incremental learning from noisy data.
Machine Learning, 1(3):317–354.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system
technical journal, 27:379–423.

Shannon, C. E. and Weaver, W. (1949). The Mathematical Theory of Communication.
University of Illinois Press.

Silberschatz, A. and Tuzhilin, A. (1996). What makes patterns interesting in knowledge
discovery systems. IEEE Transactions on Knowledge and Data Engineering, 8(6):970–
974.

Song, H. S., Kim, J. K., and Kim, S. H. (2001). Mining the change of customer behavior
in an internet shopping mall. Expert Systems with Applications, 21(3):157–168.

Soulet, A. and Crémilleux, B. (2008). Adequate condensed representations of patterns.
Data Mining and Knowledge Discovery, 17(1):94–110.

Soulet, A., Crémilleux, B., and Rioult, F. (2004). Condensed representation of emerging
patterns. In Advances in Knowledge Discovery and Data Mining, 8th Pacific-Asia
Conference, PAKDD 2004, volume 3056 of Lecture Notes in Computer Science, pages
127–132, Berlin, Heidelberg, New York. Springer.

Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., and Schult, R. (2006). MONIC: modeling
and monitoring cluster transitions. In Proceedings of the 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 706–711, New
York, NY, USA. ACM.

Stanley, K. (2003). Learning concept drift with a committee of decision trees. Technical
Report UT-AI-TR-03-302, Department of Computer Science, University of Texas at
Austin, USA.

Steinbrecher, M. and Kruse, R. (2008). Identifying temporal trajectories of association

132 BIBLIOGRAPHY

rules with fuzzy descriptions. In Proc. Conf. North American Fuzzy Information
Processing Society (NAFIPS 2008), pages 1–6.

Terlecki, P. and Walczak, K. (2007). On the relation between rough set reducts and
jumping emerging patterns. Information Sciences, 177(1):74 – 83.

Tobin, W. (2003). The Life and Science of Léon Foucault: The Man who Proved the
Earth Rotates. Cambridge University Press.

Tsai, C.-Y. and Shieh, Y.-C. (2009). A change detection method for sequential patterns.
Decision Support Systems, 46(2):501–511.

Tsymbal, A. (2004). The problem of concept drift: definitions and related work. Tech-
nical Report TCD-CS-2004-15, Trinity College Dublin, Computer Science Depart-
ment.

Vazirgiannis, M., Halkidi, M., and Gunopoulos, D. (2003). Uncertainty Handling and
Quality Assessment in Data Mining. Springer.

Wang, J., Han, J., and Pei, J. (2003a). Closet+: Searching for the best strategies for
mining frequent closed itemsets. In KDD ’03: Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 236–245,
New York, NY, USA. ACM.

Wang, K., Zhou, S., Fu, A. W.-C., and Yu, J. X. (2003b). Mining changes of classification
by correspondence tracing. In Proceedings of the 3rd SIAM International Conference
on Data Mining (SDM-03), pages 95–106, Philadelphia, PA. SIAM.

Wang, L., Zhao, H., Dong, G., and Li, J. (2005). On the complexity of finding emerging
patterns. Theoretical Computer Science, 335(1):15–27.

Webb, G. I., Butler, S., and Newlands, D. (2003). On detecting differences between
groups. In KDD ’03: Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 256–265, New York, NY, USA. ACM.

Widmer, G. and Kubat, M. (1996). Learning in the presence of concept drift and hidden
contexts. Machine Learning, 23(1):69–101.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin,
1(6):80–83.

Wilks, S. S. (1935). The likelihood test of independence in contingency tables. The
Annals of Mathematical Statistics, 6(4):190–196.

Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing
composite hypotheses. The Annals of Mathematical Statistics, 9(1):60–62.

Williams, C. K. I. (1999). Prediction with gaussian processes: from linear regression to
linear prediction and beyond. In Jordan, M. I., editor, Learning in graphical models,
pages 599–621. MIT Press, Cambridge, MA, USA.

Wong, T.-T. and Tseng, K.-L. (2005). Mining negative contrast sets from data with
discrete attributes. Expert Systems with Applications, 29(2):401–407.

Wrobel, S. (1997). An algorithm for multi-relational discovery of subgroups. In PKDD
’97: Proceedings of the 1st European Symposium on Principles of Data Mining and

BIBLIOGRAPHY 133

Knowledge Discovery, volume 1263 of Lecture Notes in Computer Science, pages 78–
87, London, UK. Springer-Verlag.

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J.,
Ng, A., Liu, B., Yu, P. S., Zhou, Z.-H., Steinbach, M., Hand, D. J., and Steinberg,
D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems,
14:1–37.

Yang, G. (2004). The complexity of mining maximal frequent itemsets and maximal
frequent patterns. In Proceedings of the 10th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’04, pages 344–353, New York, NY,
USA. ACM.

Yang, Y., Wu, X., and Zhu, X. (2005). Combining proactive and reactive predictions for
data streams. In Proceedings of the 11th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 710–715, New York, NY, USA. ACM
Press.

Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering, 12(3):372–390.

Zaki, M. J. (2004). Mining non-redundant association rules. Data Mining and Knowledge
Discovery, 9(3):223–248.

Zaki, M. J. and Hsiao, C.-J. (2002). CHARM: An efficient algorithm for closed itemset
mining. In Proceedings of the 2nd SIAM International Conference on Data Mining,
Arlington, VA. SIAM.

Zaki, M. J. and Hsiao, C.-J. (2005). Efficient algorithms for mining closed itemsets
and their lattice structure. IEEE Transactions on Knowledge and Data Engineering,
17(4):462–478.

Zaki, M. J. and Ogihara, M. (1998). Theoretical foundations of association rules. In
In 3rd ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, pages 1–8.

Zhang, X., Dong, G., and Kotagiri, R. (2000). Exploring constraints to efficiently mine
emerging patterns from large high-dimensional datasets. In KDD ’00: Proceedings of
the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 310–314, New York, NY, USA. ACM.

Zimmermann, A. (2009). Mining Sets of Patterns. PhD thesis, Katholieke Universiteit
Leuven.

	1 Introduction
	1.1 Fundamentals about Change
	1.1.1 The Process of Change
	1.1.2 The Time Axis

	1.2 Perspectives on Change
	1.2.1 Vincenzo Viviani and Léon Foucault
	1.2.2 The Two Perspectives in Data Mining
	1.2.3 A Third Perspective

	1.3 Objective
	1.4 Outline

	2 Analysing Change
	2.1 Approaches for Analysing Change
	2.2 Contrast and Change Mining
	2.3 Change Analysis for Frequent Patterns
	2.3.1 Contrast Mining
	2.3.2 Change Mining

	2.4 Change Analysis for Decision Trees
	2.4.1 Contrast Mining

	2.5 Concept Drift Detection
	2.6 General Principles and Methodology
	2.6.1 Choosing the Time Periods
	2.6.2 Specifying the Objects of Change
	2.6.3 Establishing Correspondence across Time

	2.7 Conclusion

	3 Utilising Change for Item Sets
	3.1 Motivation
	3.2 Problem Statement
	3.3 Terminology and Notation
	3.4 Condensed Representations
	3.4.1 Closed Item Sets
	3.4.2 Delta-Free Item Sets
	3.4.3 Disjunction Free Item Sets
	3.4.4 General Principles
	3.4.5 Assessment

	3.5 Condensed Representations and Time
	3.5.1 Time Periods as Independent Data Sets
	3.5.2 Time Periods as Items

	3.6 Temporal Redundancy
	3.6.1 Invariance and Uninterestingness
	3.6.2 Definition and Probabilistic Interpretation
	3.6.3 Information Theoretic Assessment

	3.7 Temporally Closed Item Sets
	3.7.1 Definition and Properties
	3.7.2 Discovery
	3.7.3 Supplemental Structures

	3.8 Data-centric Change Utilisation
	3.9 Conclusion

	4 Utilising Change for Classifiers
	4.1 Motivation
	4.2 Problem Statement
	4.3 Terminology and Notation
	4.4 Learning Decision Trees
	4.5 Handling Concept Drift
	4.5.1 Windowing and Forgetting
	4.5.2 Model Repositories
	4.5.3 Assessment

	4.6 Process-centric Change Utilisation
	4.7 Predicting Decision Trees
	4.7.1 Models and Methods for Prediction
	4.7.2 Predicting Attribute Evaluation Measures
	4.7.3 Predicting the Class Label Distribution
	4.7.4 Putting the Parts Together

	4.8 Conclusion

	5 Summary
	5.1 Contributions
	5.2 Future Directions

	A Experimental Results
	A.1 Utilising Change for Item Sets
	A.1.1 Description of Data Sets
	A.1.2 Experimental Setup
	A.1.3 Experimental Results

	A.2 Utilising Change for Classifiers
	A.2.1 Description of Data Sets
	A.2.2 Experimental Setup
	A.2.3 Experimental Results

	B Proofs
	B.1 Proof of Theorem 3.1
	B.2 Proof of Theorem 3.2
	B.3 Proof of Theorem 3.3
	B.4 Proof of Theorem 3.4
	B.5 Proof of Theorem 3.5
	B.6 Proof of Theorem 3.8

	C Background
	C.1 Background on Entropy and Mutual Information
	C.2 Background on Regression Methods
	C.2.1 Linear Regression with Basis Functions
	C.2.2 Gaussian Process Regression

	 Bibliography

