
First-class Features

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von M.Sc. Sagar Sunkle

geb. am 27. September 1980 in Mumbai, Indien

Gutachter:
Prof. Dr. Gunter Saake
Prof. Dr. Uwe Aßmann
Prof. Dr. Olaf Spinczyk

Promotionskolloquium: Magdeburg, den 08. April 2011

Sunkle, Sagar:

First-class Features

Dissertation, Otto-von-Guericke-Universität Magdeburg, 2011.

Abstract

The term software engineering originated with the intent to apply engineering
principles to the development of software. In the four decades after its birth,
a multitude of efforts have been made to counter what has been known as
the software crisis. Software possesses essential difficulties such as complexity,
conformity, changeability, and invisibility. To this date, creating good software
all the while addressing all of its essential difficulties in a disciplined manner
requires substantial effort.

In general, attempts to thwart failures in software development are guided by
a set of fundamental principles. The principle of separation of concerns is one
such principle. The basic idea behind this principle is that any software cre-
ated to solve a problem needs to address specific issues, called concerns, which
should be separated and treated in isolation. Such separated concerns are easy
to customize, maintain, reuse, and comprehend. This principle led to the de-
velopment of concepts such as program families and in turn to the concept of
software product lines (SPLs). Instead of creating a single software system,
the stress is given on planning for and enabling an SPL of a software system
from which individual software products can be obtained that are suited to
specific functionality. Feature-oriented software development (FOSD) is soft-
ware development paradigm used to create SPLs and focuses on features as the
mechanism of separation of concerns.

Features represent a specific functionality targeted at satisfying a particular
requirement. The process of creating SPLs using FOSD is guided by two
principal activities aimed at modeling the features of a software system and
implementing the features thus modeled. In spite of being a relatively young
discipline, FOSD is marked by a bewildering array of proposals for modeling
and implementing features. The conceptual simplicity of features has led to
adopting ideas from every conceivable programming paradigm, language, and
tool that can aid in modeling and implementing features. There is a need to
reconcile this enormous effort and this would require deciphering the precise
roles played by feature modeling and feature implementation in FOSD. This
dissertation aspires to contribute in this direction.

While a multitude of feature modeling and feature implementation techniques
provide paradigm-level, language-level, and tool-level means to deal with fea-

i

ii

tures, they do so in strikingly different ways. In this dissertation, we go back to
the basics and investigate the nature of features in terms of their representation
and composition. We review a variety of ways in which features and related
entities are represented and composed to obtain software products. We strive
to provide answers to such questions as what kind of representation of features
is appropriate from both their modeling and implementation perspective? Is
it possible to reconcile representation of features to so that they can be ad-
dressed uniformly during modeling and implementation? How to implement a
technique so that features from modeling and implementation perspective are
represented and composed in a coherent manner?

We attempt to answer these questions in the form of first-class features aimed
at uniform representation and coherent composition of features from both mod-
eling and implementation perspectives. We implement first-class features in two
diverse programming languages. A set of case studies demonstrate the prac-
tical applicability of first-class features and also provide further insights into
the nature of features in general and first-class features in particular. With the
implementations of first-class features and case-studies in them, we show that
first-class features aid in a clean separation of feature concern, preserve the
conceptual integrity of features due to uniform representation, provide clear
traceability links between feature models and feature implementation and sup-
port easy accommodation of other extensions of the host language.

Finally, after studying the nature of features closely, we suggest further avenues
of development in first-class features and note what we think to be the core
issues in FOSD that would attract major research in future.

Acknowledgements

What brought me from India to Germany was my desire to pursue Ph.D. in
Computer Science. It has been quite some time since this journey began and
it has been a fascinating journey all the way. In this journey, I met many
people who traversed the path with me and those who had already reached the
destination and thus knew more about it than me and helped me reach it. I
want to thank all my companions in this journey now that my final destination
is in sight.

First of all, I want to thank my advisor Prof. Gunter Saake. We got introduced
during my Master’s degree in Data and Knowledge Engineering at the Otto-
von-Guericke University of Magdeburg. I used to be flabbergasted by his grasp
of concepts and how quickly he could arrive at the most essential part of any
subject matter that he was discussing. In time, he called me up to join his
group and ever since he has been supportive in most important aspects of my
life from then on. He always believed in my abilities and stood by me in all
situations.

Next, I want to thank my colleagues Marko Rosenmüller, Norbert Siegmund,
Martin Kuhlemann, and Christian Kästner. It was because of them that I got
introduced to the field of software product lines in the first place. During my
Master’s thesis, they helped in strengthening my conceptual understanding of
features. Later in the Ph.D., we attended many events together and those were
the most enjoyable times filled with countless discussions and tons of fun.

I would also like to thank Sven Apel. We only had a handful of discussions in
person during my research. But his enormous body of work always inspired
me and worked like a guidepost to show me the path and to encourage me to
carry on even when I could not see afar. His influence on my thinking has been
capital in the way I approached my the concept of features.

I also want to thank Mario Pukall, Syed Saif ur Rehman, Ateeq Khan, and
Ingolf Geist. I had a very fruitful collaboration with Mario in a combined
research theme. Saif and Ateeq have always been there, particularly Ateeq
who also arrived in Germany at the same time that I did and we have been
friends since then. Ingolf has been supportive in a unique way. He was always
there at the office when my hours ran late and I never felt alone because Ingolf
was there, even on Saturdays and Sundays, and we would share some funny

iii

iv

tidbits about Indian and German culture, climate, and people. I also want
to thank all my colleagues at the database group including Andreas Lübcke,
Sandro Schulze, and Azeem Lodhi.

I met Sebastian Günther by coincidence. We immediately found out that we
had common interests and our thought processes were much alike. Over the
period, we shared numerous discussions, epiphanies, goals, and a lot of laughter.
He has been a great colleague and a true friend. I want to thank him profusely
for the fantastic collaboration we have had and one that we both hope to
continue even if we go on separate paths post research.

This entire endeavor would have been too difficult had it not been for the
support of my family. I want to thank my father, my mother, my brother and
my sister-in-law, my nephew and all my relatives. My profoundest thanks go
to my long-time girlfriend Radhika, who is now my wife. She supported me in
incalculable number of ways and I thank her from the depth of my heart for
being literally the better half of me.

Contents

Contents v

List of Figures ix

List of Code Listings xi

List of Abbreviations xiii

1 Introduction 1
1.1 Overview . 1
1.2 Contributions . 4
1.3 Structure . 5

2 Background 7
2.1 Separation of Concerns . 7

2.1.1 Separating the Concerns 9
2.1.2 Concerns . 11
2.1.3 Representation and Composition of Concerns 12

2.2 Family of Programs . 13
2.2.1 Stepwise Refinement and Module Specification 14
2.2.2 Using Separation of Concerns as the Design Principle . 14

2.3 Software Product Line Engineering 15
2.3.1 Domain Engineering and Application Engineering . . . 16
2.3.2 Other Software Development Paradigms and SPLs . . . 19

2.4 Developing SPLs Using Features 20
2.4.1 Problem Space and Solution Space 21
2.4.2 Features . 22
2.4.3 Feature Modeling . 23
2.4.4 Feature Implementations 24
2.4.5 Phases in FOSD . 25
2.4.6 Challenges in FOSD . 26

2.5 Summary and Outlook . 26

3 First-class Features 27
3.1 Nature of Features . 27

v

vi Contents

3.1.1 Conceptual and Concrete Features 28
3.1.2 Views on Mapping Between Problem and Solution Spaces 28

3.2 Capabilities of Features - Current State of the Art 31
3.2.1 Toward Modeling Conceptual Features 32
3.2.2 Toward Implementing Concrete Features 33
3.2.3 Traceability between Conceptual and Concrete Features 34
3.2.4 Problem Statement . 36
3.2.5 Proposing a Solution . 39

3.3 Analysis of Feature Representation and Composition 39
3.3.1 Feature Modeling Techniques 40
3.3.2 Feature Implementation Techniques 43

3.4 Concept of First-class Features 48
3.4.1 Nature of First-class Language Entities 49
3.4.2 Requirements of First-class Representation 50
3.4.3 Integrating the Views Using First-class Features 51
3.4.4 Choice of Host Language 53

3.5 Summary . 54

4 FeatureJ 55
4.1 JastAdd- An Extensible Java Compiler 55

4.1.1 Object-oriented AST and Aspects 56
4.1.2 Rewritable Reference Attribute Grammars 58
4.1.3 Name and Type Analysis in JastAdd 61
4.1.4 JastAdd Implementation of Java Compilers 64
4.1.5 Extending JastAdd’s Implementation of Java 70
4.1.6 JastAdd as the Compiler Construction System of Choice 71

4.2 FeatureJ Language Internals . 73
4.2.1 Feature Domain Entities as JastAdd Types 73
4.2.2 Syntactic Extension . 76
4.2.3 Name/Type Analysis and Error Checking in FeatureJ . 80

4.3 Architecture for First-class Features in FeatureJ 87
4.3.1 JVM and Class-loading 87
4.3.2 Variant Composition and Generation Architecture in Fea-

tureJ . 90
4.3.3 FeatureJ Compiler for Java 1.4 93
4.3.4 Extending FeatureJ to Support Java 1.5 94
4.3.5 Implementation Statistics 96

4.4 Summary . 98

5 rbFeatures 99
5.1 Ruby - Dynamic Extensible Host Language 99

5.1.1 Core Language Entities in Ruby 100
5.1.2 Ruby Mechanisms for First-class Features 102

5.2 rbFeatures Language Internals 109
5.2.1 Syntactic Extension . 109
5.2.2 Feature Domain Entities in rbFeatures 112

Contents vii

5.2.3 Testing in rbFeatures 117
5.3 Architecture and Implementation Statistics 118

5.3.1 Architecture for rbFeatures 118
5.3.2 Implementation Statistics 120

5.4 Summary . 120

6 Evaluation 121
6.1 FeatureJ . 122

6.1.1 Case Studies . 122
6.1.2 Conformance to Requirements of First-class Features . . 137

6.2 rbFeatures . 139
6.2.1 Case Studies . 139
6.2.2 Conformance to Requirements of First-class Features . . 148

6.3 Summary . 149

7 Discussion 151
7.1 Comparing FeatureJ and rbFeatures 151
7.2 Comparing First-class Features with Other Techniques 154

7.2.1 Feature Modeling Techniques 154
7.2.2 Feature Implementation Techniques 156
7.2.3 Traceability in Feature Modeling and Implementation

Techniques . 158
7.3 Merits . 159

7.3.1 Merits as an FOSD Technique 159
7.3.2 Merits of Separation of Concerns with First-class Features161

7.4 Limitations . 162
7.5 Summary . 164

8 Concluding Remarks 165
8.1 Summary of the Dissertation 165
8.2 Contributions . 167
8.3 Future Work . 168
8.4 Perspectives . 170

8.4.1 Verification in FOSD . 170
8.4.2 Language Vs. Design in FOSD 171

Bibliography 173

List of Figures

2.1 Domain and Application Engineering 16
2.2 Problem Space and Solution Space [Czarnecki 2004] 21
2.3 A Feature Model Representing a Text Editor Product Line 24

3.1 Configuration View on Mapping 29
3.2 Transformational View on Mapping 30
3.3 Traceability in SPLs - I . 35
3.4 Traceability in SPLs - II . 36
3.5 Traceability View on Mapping . 37
3.6 Integrating Feature Domain Entities with First-class Representation 52

4.1 JastAdd Compiler Generation Architecture [Ekman and Hedin 2007c] 57
4.2 Type Hierarchy for while Statement 57
4.3 Java 1.4 Compiler using JastAdd 63
4.4 Java 1.5 Compiler using JastAdd 68
4.5 Type Hierarchy of Feature Domain Entities in FeatureJ 74
4.6 Containment Hierarchy of Language Constructs in Java 75
4.7 Notepad Product Line . 76
4.8 Containments for Multiple, Nested, and Alternative feature types . 83
4.9 Multiple Variants in a FeatureJ Program 88
4.10 Different Notepad Classes per variant Type 89
4.11 FeatureJ Architecture for Variant Composition 91
4.12 Complete Structure of FeatureJ Compiler using JastAdd 94
4.13 Supporting Java 1.5 with FeatureJ 95
4.14 Folder Hierarchy of FeatureJ Implementation using JastAdd 97

5.1 Ruby Object Model . 102
5.2 A Feature Model of Graph Product Line 110
5.3 Structure of the Feature Module in rbFeatures 114
5.4 Structure of the ProductLine Class in rbFeatures 115
5.5 Structure of the ProductVariant class in rbFeatures 116
5.6 Other Important Modules and Classes in rbFeatures 116
5.7 Relations Between Feature Domain Entities in rbFeatures 117
5.8 rbFeatures Architecture for First-class Features 119

ix

x List of Figures

6.1 Expression Problem as Two-Dimensional Matrix 123
6.2 Expression Product Line in FeatureJ 123
6.3 Two Notepad Variants . 130
6.4 Graph Product Line in FeatureJ 132
6.5 Expression Product Line in rbFeatures 140
6.6 Calculator Product Line . 142
6.7 Two Calculator Variants using Shoes Framework 143
6.8 Adapting an Existing Graph Instance with DFS Feature 145
6.9 Twitter Application Product Line in rbFeatures 146

8.1 UML Metamodel for Feature Modeling Extensions [Czarnecki et al.
2004] . 169

List of Code Listings

4.1 JastAdd Abstract Grammar for while Statement 56
4.2 Beaver Parser Generator Grammar for while Statement 58
4.3 A Synthesized Attribute in JastAdd 59
4.4 An Inherited Attribute in JastAdd 60
4.5 AST Rewrite Specification in JastAdd 60
4.6 Name analysis of Local Variables in while Statement 62
4.7 Error Checking in Java 1.4 Frontend of JastAdd 64
4.8 Name Checking Class Instance Creation Expressions 65
4.9 Checking Access Control in Class Instance Creation Expressions 65
4.10 Type Checking Class Instance Creation Expressions 66
4.11 Extending Name Checking to Accommodate Enum Types . . . 68
4.12 Using Rewrites to Generate Internal Classes for Enum Types . 69
4.13 Abstract Grammar for Feature Domain Entities in FeatureJ . . 74
4.14 Representing Feature Entities based on Containment Hierarchy 75
4.15 FeatureJ Syntax for productline Type Definition 77
4.16 FeatureJ Syntax for variant Type Definition - I 77
4.17 FeatureJ Syntax for variant Type Definition - II 78
4.18 A Feature Containing an Inner Class inside a Class 78
4.19 A Feature Containing Statements in a Constructor 79
4.20 FeatureJ Syntax for Generating and Executing a variant 80
4.21 Method to Initialize the Notepad 80
4.22 Abstract Grammar for productline and variant Types inside Classes 81
4.23 Using Rewrites to Transform a productline Type 82
4.24 Using Rewrites to Transform a feature Type Definition in a Class 82
4.25 Reporting variant-specific NameChecking Errors for ClassInstance-

Expr . 86
4.26 Original variant and Application Class Instance Method Call . 91
4.27 Transformed Syntax for variant simpleNotepad 91
4.28 Adding Features to a variant type 92
4.29 Abstract Grammar for Generic Classes in Java 1.5 95
4.30 Parser Grammar for Generic Classes in Java 1.5 95

5.1 Mixin Functionality with Modules [Thomas and Hunt 2000] . . 103
5.2 Module as Namespace defined in File trig.rb 103

xi

xii List of Code Listings

5.3 Using a Trigonometry Method from Module Trig 104
5.4 Converting a Block of Code to an Object 104
5.5 Bound Method Objects . 104
5.6 Unbound Method Objects . 105
5.7 Adding and Redefining Methods by Reopening a Class 106
5.8 Using class eval to Add a Method to a Class 108
5.9 Hook Methods in Ruby [Perrotta 2010] 108
5.10 ProductLine Definition for GPL in rbFeatures 110
5.11 Feature Definition for Root Feature GPL in rbFeatures 110
5.12 Declaring Feature Entities inside Ruby Code in rbFeatures . . . 111
5.13 Containment for Feature Directed and Feature Undirected inside

Class Graph . 111
5.14 Feature Weighted inside Class Edge 111
5.15 ProductVariant SimpleGraph of ProductLine GPL 112
5.16 Defining Multiple Variants of ProductLine GPL 112
5.17 Initializing ProductVariants of the GPL 113

6.1 Definition of Feature le in AspectJ 124
6.2 Definition of Feature le in Hyper/J 124
6.3 Definition of Feature le in AHEAD 125
6.4 Definition of Feature le in Jiazzi - I 125
6.5 Definition of Feature le in Jiazzi - II 126
6.6 Definition of productline EPL in FeatureJ 126
6.7 Definition of feature le in FeatureJ 127
6.8 Composition of Variant LitAdd in Hyper/J 128
6.9 Composition of variant LitAdd in FeatureJ 128
6.10 Composition of Variant lelp in Jiazzi 129
6.11 Composition of variant lelp in FeatureJ 129
6.12 An Unreachable Statement in NPL 131
6.13 Definition of productline GPL in FeatureJ 132
6.14 Unit Testing BFS feature in a variant of GPL 133
6.15 Getting a Graph Object using AST Rewriting and Java Reflection133
6.16 Berkeley DB productline Definition - I 135
6.17 Berkeley DB productline Definition - II 136
6.18 A variant of productline BDBPL 137
6.19 Providing the Print and Eval Functionality for Add Feature . . 140
6.20 Testing Containments in code{} in EPL 141
6.21 Testing for Errors in EPL - I 141
6.22 Testing for Errors in EPL - II 142
6.23 Rendering Numbered Buttons of a Calculator 142
6.24 Containments of CPL Features 143
6.25 Initializing ProductVariant DFSVariant 144
6.26 Executing Non-activated Feature in DFSVariant 144
6.27 Adapting Existing Graph Instance to a Feature at Run-time . . 145
6.28 Sinatra-HAML-DataMapper-rbFeatures Interaction 148

List of Abbreviations

AST Abstract Syntax Tree

DSL Domain-specific Language

FOSD Feature-oriented Software Development

IDE Integrated Development Environment

JLS Java Language Specification

SLOC Source Lines of Code

SPL Software Product Line

UML Unified Modeling Language

xiii

Chapter 1

Introduction

1.1 Overview

Software engineering is the application of engineering principles to the devel-
opment of software [Naur and Randell 1969]. Although intended to be a sys-
tematic, disciplined, quantifiable approach to software, software development
process has been viewed as one fraught with perils. Software has certain char-
acteristics that make applying engineering principles to it difficult; software is
in general complex, it must conform to a variety of elements, it changes along
many dimensions, and last but not the least, it is invisible [Brooks Jr. 1987].

Nevertheless, considerable progress has been made in taming the software beast
in the four decades after the term software engineering first originated. This
effort has been mainly driven by a set of fundamental principles that enable
addressing the aforementioned essential difficulties involved in creating good
software [McConnell 1999]. Separation of concerns is one such fundamental
principle. It identifies the fact that creating a piece of software constitutes
addressing many concerns and provides guidelines on how this can be achieved
effectively and efficiently.

A concern is any semantically coherent issue in a given problem domain asso-
ciated with a software system [Apel 2007]. It is any facet of a software system
that requires special consideration. It can be anything specific such as per-
sistence and concurrency [Hürsch and Lopes 1995] to a more general category
such as functional concerns that are related to functionality provided to a spe-
cific client [Aldrich 2000]. While a problem domain consists of set of problems,
the solution domain related to it consists of a set of solutions. An efficient
treatment of involved concerns leads to a clean mapping between the problem
domain and the solution domain [Czarnecki 2004].

This efficient treatment of concerns can be carried out by the principle of
separation of concerns [Dijkstra 1976; 1982; Parnas 1976; 1979]. The separation

1

2 1. Introduction

of concerns is centered around the idea that various concerns to be addressed
by a software system should be separated or isolated and their representation
should be untangled and localized. Concerns that are well separated can be
maintained individually thereby reducing the overall complexity. It would be
easy to customize them in isolation to conform to diverse requirements. An
appropriate localization of concerns would present an opportunity to reuse
them in changing situations. And finally, separated concerns would be easier
to comprehend. It would lead first to a better understanding of individual
concerns and eventually all concerns, enabling the developers to produce good
software.

While the initial efforts to produce good software were helped by such advances
as high level languages, time-sharing devices, and the use of an integrated devel-
opment environments [Brooks Jr. 1987], the principle of separation of concerns
offered a more fundamental solution at the level of design of a software system
[Parnas 1976]. A software system would be designed keeping in mind important
concerns and making allowance for their individual treatment [Parnas 1979].
Since the interface between a device on which a software runs and the de-
sign in the mind of developer is a programming language, the consideration of
separation of concern led to two concepts namely, a specific representation of
individual concerns in a given programming language and the composition of
concerns thus represented.

Using the principle of separation of concerns, a software system could be de-
signed for change [Parnas 1979] such that the developer could represent a
concern by localizing the related code in a given programming language in a
meaningful unit. Such a unit of code or a module would conform to a specifica-
tion of externally visible collective behavior of program groups [Parnas 1972a;b].
This kind of modular decomposition of a software system targeting separation
of concerns in a given programming language would enable the developer to
combine and compose functionality addressed by individual concerns as per
requirements. It would also enable him to create a family of software systems
instead of a single system such that different members of this family contained
pieces of functionality offered by the whole family [Parnas 1976].

While the concept of modules aided the advances in programming languages
and practices such as structured programming [Dahl et al. 1972] and further
advances in software design such as structured design [Stevens et al. 1974;
Yourdon and Constantine 1979], the concept of program families led to bet-
ter analysis and modeling of the problem domain of a software system [Kang
et al. 1990]. A software system could have a number of stakeholders [Czarnecki
and Eisenecker 2000], persons or entities interested in this software, each inter-
ested in a specific functionality within a problem domain. The requirements
of stakeholders could be identified as features, individual members of family
that contained specific features as software products, and the entire family as
a software product line (SPL).

Software product line engineering (SPLE) thus emerged as a branch of soft-

1.1. Overview 3

ware engineering with focus on planning for and achieving product lines or
families of software system instead of single systems, at the same time con-
sidering economic aspects [Clements and Northrop 2000; 2001; Czarnecki and
Eisenecker 2000]. Many other software development paradigms can be used to
develop SPLs such as, e.g., component-based software engineering [Szyperski
2002] and model-driven development [Clements and Northrop 2000; Czarnecki
2004]. A set of modeling techniques such as feature modeling [Czarnecki and
Eisenecker 2000; Kang et al. 1990] and a set of implementation and program-
ming paradigms such as feature-oriented programming [Batory 2004; Prehofer
1997] could be used that focused specifically on features as a kind of concern
and their representation and composition to develop SPLs which have given rise
to the development paradigm known as feature-oriented software development
(FOSD).

While the phased-life cycle approach is also applied to SPLE with various
phases trying to achieve development for reuse and development with reuse
[Czarnecki 2004; Czarnecki and Eisenecker 2000], in FOSD all phases focus
specifically on features as the de facto mechanism of reuse [Apel and Kästner
2009]. The roles of feature modeling and feature implementation techniques
often cross the boundaries of phases for which they were initially intended.
Feature models are often the product of analysis phase used for communica-
tion between stakeholders and at the same time they can be used to guide the
product generation process [Apel and Kästner 2009]. Similarly, feature imple-
mentation techniques implicitly or explicitly refer to the feature model that
underlies an SPL to obtain its products.

This dissertation aspires to make contribution to the ongoing research in this
direction, i.e., how feature modeling and feature implementation can be best
utilized in concert. It attempts to provide conceptual and practical answers to
such questions as which kinds of models are needed in the overall development
of SPLs? Is the model of an SPL sufficient or more models need to be mapped
to the implementation? Which entities are important from the perspective of
modeling and implementation of an SPL and at what level of granularity?

A multitude of feature modeling techniques for analysis and design of SPLs
and feature implementation techniques for their implementation have been sug-
gested for this purpose. The research on how to integrate techniques suggested
for feature modeling and feature implementation continues to draw attention of
researchers interested in leveraging feature models and feature implementation
to the best of their abilities [Apel and Kästner 2009; Czarnecki 2004].

Even now the most desirable ways in which features can be modeled are being
studied [Sinnema and Deelstra 2007] and how to best modularize features when
implementing them is a topic of hot discussion [Lopez-Herrejon et al. 2005a].
This dissertation focuses on feature modeling and feature implementation and
the relationship between them by considering the domains in which they oper-
ate, namely problem domain and solution domain respectively [Czarnecki 2004].
Instead of comparing individual techniques for modeling and implementing fea-

4 1. Introduction

tures, we focus on features as a kind of concern and study its representation and
composition in various techniques. Our analysis boils down to a set of require-
ments that when implemented enable integrating feature modeling and feature
implementation while enabling the use of their core capabilities. The require-
ments thus obtained culminate in a representation and composition mechanism
for features which we call first-class features. This dissertation presents an
overview of our research efforts in the conceptual motivation behind first-class
features, how we implement them, and our case-studies and observations that
substantiate their merits.

1.2 Contributions

1. We present an analysis of which entities related to and including features
are represented, how they are represented, and how they are composed
in various feature modeling and feature implementation techniques. This
analysis is preceded by a review of the current state of the art in the
capabilities of features in modeling and implementation techniques from
the perspective of problem domain and solution domain. The analysis
itself is aimed at an evaluation of the relative merits which specific repre-
sentations demonstrate and how these representations affect composition
in each of the techniques.

2. Based on our analysis, we derive five requirements targeted at a new
representation of features which we call first-class features. The imple-
mentation of first-class features would consist of an extensible and unified
representation of modeling and implementation counterparts of features
and feature models of an SPL and its products with first-class status in
a host language with subsumed checking and identity retention. These
requirements are coined in such a way as to be implementable in any
given host language.

3. We implement first-class features in version 1.4 and version 1.5 compilers
of static programming language Java using the JastAdd extensible com-
piler system [Ekman and Hedin 2007b;c]. This implementation is called
FeatureJ. While FeatureJ is completely implemented by the author of
this dissertation, the concept of first-class features is also implemented
in dynamic programming language Ruby by a colleague in collaboration
with the author. This implementation is called rbFeatures.

4. We demonstrate the practical applicability of using first-class features
with four small to large size SPL case studies in each of FeatureJ and
rbFeatures. First-class features prove advantageous due to cleanly sep-
arated semantics, clear and comprehensible syntax, implicit traceability
links, ability for both composition and adaptation, and neatly achievable
extensibility.

1.3. Structure 5

5. We provide a comparison of FeatureJ and rbFeatures in terms of how
they are implemented. This comparison reveals the basic ways in which
first-class features can be implemented and can be used toward imple-
menting them in other host languages. It also throws light on the neces-
sity of meta-level processing of different products of an SPL in terms of
AST manipulation and metaprogramming mechanisms and indicates how
compilation/interpretation models in the host language affect realization
of various requirements of first-class features.

1.3 Structure

Chapter 2 lays the foundations for understanding the central ideas of this
dissertation. Instead of providing exhaustive details of various software
development paradigms, it focuses on describing the conceptual devel-
opment within software engineering research, starting with the principle
of separation of concerns, followed by representation and composition of
concerns, leading eventually to SPLE and FOSD.

Chapter 3 discusses the the dual nature of features from the perspective of
problem and solution domains. It presents the current state of the art
in the capabilities of features classified by feature representation and fea-
ture composition. It then analyses various feature modeling and feature
implementation techniques based on how features are represented and
composed in each technique culminating into a set of requirements for
first-class features. Finally, it discusses how the requirements of first-
class features may be implemented.

Chapter 4 elaborates how FeatureJ is implemented atop Java 1.4 and 1.5
compilers using the JastAdd extensible compiler system. It first describes
JastAdd’s extensibility mechanisms followed by FeatureJ implementation
specifics and finally its overall architecture using a running example of
an SPL.

Chapter 5 elaborates how rbFeatures is implemented atop Ruby using Ruby’s
own syntax and semantics. It first describes Ruby’s extensibility mecha-
nisms followed by rbFeatures implementation specifics including its syn-
tax and semantics and finally its overall architecture using a running
example of an SPL.

Chapter 6 reviews the results of applying first-class features to four SPL case
studies in each of FeatureJ and rbFeatures and reflects on how FeatureJ
and rbFeatures conform to the requirements of first-class features based
on our implementations and case studies.

Chapter 7 compares first-class features, first as they are implemented in Fea-
tureJ and rbFeatures and then with various feature modeling and imple-

6 1. Introduction

mentation techniques classified earlier in Chapter 3 into different cate-
gories based on the nature of feature representation and composition and
presents merits and limitations of first-class features.

Chapter 8 summarizes the dissertation and its contributions, lists suggestions
for further work, and puts forth perspectives for FOSD in general.

Chapter 2

Background

Go back to basics; remember the goals.

David Parnas
in the Keynote to Software Product Line

Conference, 2008

In this chapter we lay the background for understanding the central ideas of the
dissertation. Our attempt is to trace the historical origins of the concepts used
in this dissertation and briefly indicate the conceptual development starting
from separation of concerns leading to SPLE and FOSD.

2.1 Separation of Concerns

The term software engineering first appeared in the report of the NATO sci-
ence committee conference in 1968 [Naur and Randell 1969]. In the ensuing
years, many researchers and committees have opined about what software en-
gineering means. One of the oldest definitions says that software engineering
is the establishment and sound use of engineering principles to obtain software
that works on real machines reliably and efficiently [Naur and Randell 1969].
The definition by Sommerville adds that software engineering is an engineering
discipline which concerns itself with all stages of software development, from
specification to maintenance [Sommerville 2004]. Bjørner combines these def-
initions and provides the following definition of software engineering [Bjørner
2006]:

Software engineering is the establishment and use of sound meth-
ods for the efficient construction of efficient, correct, timely, and

7

8 2. Background

pleasing software that solves the problems such as users identify
them, built by first understanding the problem domain and the
user requirements and then designing the software to actually im-
plement the desired solutions in a cost effective manner.

The software engineering movement as it were, was started in response to the
perceived software crisis at the time [Naur and Randell 1969]. The term soft-
ware crisis describes the mismatch between the rapid increase in computing
power and the ability of the discipline of software engineering to deliver func-
tional and efficient software on time. Specifically it addresses the perceived
deficiencies in software projects that run over-time, over-budget and do not in
fact meet requirements or prove inefficient and in some cases remain undeliv-
ered. The reports by the Standish groups tried to substantiate these claims over
many years in their software failure reports [Glass 2006; Group 2003; Jørgensen
and Moløkken-Østvold 2006; StandishGroupReport].

One may observe that software engineering is a process applied to obtain soft-
ware that has specific characteristics: conformance to requirements, manage-
ability and evolvability, cost effectiveness and efficiency. Good software would
conform to the requirements of the users in order to serve its purpose. It would
have manageable complexity so that it is easily maintained. It would enable
reuse so that evolving requirements of users are addressed efficiently [Tarr et al.
1999]. Although the term engineering in software engineering implies the ap-
plication of engineering to software, i.e., the application of a systematic, disci-
plined, quantifiable approach to the development, operation, and maintenance
of software; there are some inherent differences between other engineering fields
and software engineering. Brooks identifies these as the essential difficulties
involved in creating good software. These are centered around the themes
of conformity, complexity, changeability, and invisibility [Brooks Jr. 1987] as
discussed below:

Conformity of software presumes that not only does a software need to
conform to its specified usage, but that its easy mutability enables it to
support extraneous demands. A software is created because someone or
something (other software systems) needs it. Its interfaces must conform
to the specific as well as changing demands of different users, increasingly
involved scenarios, and increasingly evolving hardware technology. Much
complexity in software arises because of the natural expectation that
software can be made to conform any situation.

Complexity of software is apparent in the fact that no two parts of software
are alike (at the level of statements in code). Scaling of software is not
just a repetition of same elements in larger sizes rather it is an increase in
the number of different elements and the complexity of the whole is more
the sum of the complexity of parts. Technical problems such as product
flaws, cost overruns, schedule delays, unreliability of software (because
all possible states of the program are not understood), inability to easily

2.1. Separation of Concerns 9

extend the software without side effects and management problems such
as difficulty in maintaining the conceptual integrity of the software such
that it functions as intended and inability to easily use other personnel to
work with current software, can all be traced to the inherent complexity
of software.

Changeability of software refers to the fact that the software of a system
represents its function which is subjected to pressures of change along
many dimensions. Successful software is tried beyond the confines of
original intent and new uses are invented for it. While tangible objects
are replaced by new objects beyond their normal life, a software is instead
modified to fit new environment, evolved for new technologies, retrofitted
with new requirements. It has been observed that the worst form of
complexity results from software evolution [Nierstrasz and Achermann
2000].

Invisibility of software restricts the ways in which an exact specification of
its function may be realized which will aid in verifying its correctness.
The structure of software may constitute multiple views such as flow of
control and flow of data and patterns of dependency [Brooks Jr. 1987] and
it is difficult to coin a specification on the basis of which contradictions
and flaws in the actual objects become immediately evident.

To enable software developers to create good software i.e., software that adheres
to requirements of users, software that is of manageable complexity, software
that can be evolved to cope with changes, and software that can be guaranteed
to work as intended, many researches have suggested guiding principles. While
many of these focus on characteristics of software development process such
as phased life-cycle, continuous validation, and modern programming practices
[Gould and Lewis 1985], iterative modify-test-modify cycle [Davis 1994], it is
the principles which address the aforementioned difficulties inherent to software
that are most vital [McConnell 1999]. One such principle known as separation
of concerns stands out because of its pervasive use and its influence on software
development methodologies since the time of its inception. In the following
section, we take a review of this fundamental principle of software engineering
and how it addresses conformity, complexity, changeability, and invisibility of
software.

2.1.1 Separating the Concerns

The principle of separation of concerns was proposed in the 70’s by Dijkstra
[Dijkstra 1976; 1982] and utilized by Parnas [Parnas 1976; 1979]. In the paper
in which he first presented the term separation of concerns [Dijkstra 1982],
Dijkstra was referring to a way of thinking efficiently about any subject matter.
A concern is a particular aspect of the subject matter under consideration
[Dijkstra 1982]. Applied to software in general, it can be any issue related to
the desired functionality of a software system. Dijkstra asserted that if one

10 2. Background

were to address many aspects of the subject matter simultaneously, it would
be difficult to do justice to all of them. Consequently, one should focus on a
single aspect of the subject matter at a time.

Separation of concerns in software systems is achieved by separating, untan-
gling, and localizing concerns in that system. It has been attributed to address
the difficulties inherent to software in the following manner:

Customization to address conformity A stakeholder of software system
is an individual, team, or organization (or classes thereof) with interests
in, or concerns relative to, a system [IEEE-1471-2000]1. A piece of soft-
ware can have many different stakeholders with specific requirements. In
order to be usable for all stakeholders, i.e. to conform to various require-
ments, software system must be customizable. Customization means the
adaptation of a software product to the needs of a particular audience
[ISO/IEC-26514:2008]. Separation of concerns proves beneficial for this
purpose because separated concerns can be adapted in isolation and com-
bined as required.

Maintenance to address complexity Maintenance of software systems is
the process of modifying the software system or a component after deliv-
ery to correct faults, improve performance or other attributes, or adapt
to a changed environment [ISO/IEC 2009]. With separation of concerns,
the modification of software system can be perceived as the modification
of implemented concerns. Complexity of software systems is the degree
to which the system or a component has a design or implementation that
is difficult to understand and verify [ISO/IEC 2009]. Separation of con-
cerns into well defined entities at the implementation level enables finding
potential flaws and their origins, since the concern implementation is iso-
lated. Assuming that various concerns are well separated, maintenance
activities can be carried out in a more orderly manner by modifying and
testing required concern implementations in isolation.

Reuse to address changeability Reuse in software systems is the process of
creating new software systems using existing software artifacts. Changes
along various dimensions can be identified in terms of separated concerns.
To the degree that the implemented concerns are isolated and indepen-
dent, the process of affecting the required changes becomes easier because
separated concerns can be more easily reused in different contexts and
situations. Concerns separated into localized components can be modi-
fied independently and software can be built by different configurations
of such components [Ernst 2003].

Comprehension to address invisibility When concerns are separated into
a well structured system, it becomes easier for developers to understand

1We give references to specific standards from the Software and Systems Engineering
Vocabulary at http://pascal.computer.org/ for some terms for which many sources exist.
Software and Systems Engineering Vocabulary is a project of the IEEE Computer Society
and ISO/IEC aimed at making authoritative definitions for software and systems engineering
terms available from international standards.

2.1. Separation of Concerns 11

them. Cleanly localized concerns can be treated in isolation from other
concerns. This makes it possible to modify, adapt, reconfigure, and test
concerns separately from one another. Apart from bringing order at the
code level, well separated concerns also enable preserving the conceptual
integrity of the software system, the functionality of which is represented
by concerns at the implementation level.

2.1.2 Concerns

A problem domain of software system represents all issues of importance to be
considered in order to create functional software. It is a set of similar problems
that occur in an environment and lend themselves to common solutions [IEEE-
1362-1998]. The environment where a solution or set of solutions resides is
called the solution domain [IEEE-1362-1998]. The principle of separation of
concerns states that various parts of software systems should be separated
into meaningful units, which serve a singular purpose and enable addressing a
specific issue of the problem domain. Every semantically coherent issue, the
treatment of which should follow a certain set of behaviors, is known as a
concern [Apel 2007].

A concern represents any facet of a software system that requires a special
treatment. A concern can be anything from concurrency, persistence, failure
recovery and exception handling to real-time constraints, distribution, and lo-
cation control [Hürsch and Lopes 1995]. Multi-language support in software
systems, platform-specific graphical look and feel, heterogeneous system poli-
cies are examples of some more concerns [Nierstrasz and Achermann 2000]. A
higher level categorization of concerns is functional concerns such as piece of
functionality provided for a specific client, program organization which repre-
sents the large scale structure of the program at the level of large interacting
group of objects, global and system-wide properties that need custom code to be
properly modified in specific situations, repetitive code such as invariant check-
ing of a data structure or system of objects, logging of application behavior,
tracing execution of large number of behaviors, consistent handling common
errors throughout a common code base, system performance which refers to
the performance of an entire subsystem of a program or load balancing of a
number of system clients, and context dependent behavior [Aldrich 2000].

A broader classification of concerns is that in any software system, there are
basic concerns and special purpose concerns [Hürsch and Lopes 1995]. A basic
concern is responsible for supporting fundamental computational facilities and
is used to implement the basic functionality. Special purpose concerns can be
identified as fulfilling special requirements of an application, or managing and
optimizing computational facilities provided by the basic concern.

Concerns are prevalent and pervasive in software systems. The commonalities
in issues related to diverse software systems necessitates specific representation

12 2. Background

and composition of concerns so that their implementation is well understood.
The next section describes representation and composition of concerns in detail.

2.1.3 Representation and Composition of Concerns

The process of separation of concerns is achieved by identifying, encapsulating,
and manipulating only those parts of software that are relevant to a particular
concept [Ossher and Tarr 2000a]. The need for organizing and decomposing
software into manageable and comprehensible parts necessitates a specific rep-
resentation of concerns. The space of all relevant concerns in a software system
is known as the concern space. A specific kind of concerns is referred to as a
concern dimension [Ossher and Tarr 2000a]. Various concerns in concern space
along the same dimension are one of a kind and share the same representation
at the implementation level.

The process of identification of parts of systems that belong to a kind of con-
cern is known as a decomposition mechanism. The parts of the systems that
are identified as constituting a concern are then encapsulated using a specific
representation at the implementation level and depending on the programming
language used. For instance, with functional decomposition, a system is broken
down into components that correspond to system functions and sub-functions.
In an object-oriented decomposition, a system or component is expressed in
terms of objects and connections between those objects.

Such decomposition of software systems along a single dimension results in
what is termed as tyranny of dominant decomposition. Programming lan-
guages and methodologies tend to permit separation and representation of a
single concern at a time. Encapsulation of basic concerns discussed earlier are
examples of such dominant decompositions. For example, classes represent a
basic concern which provides the basic functionality in an object-oriented pro-
gramming language. Functions in functional languages and rules in rule-based
languages similarly indicate basic concerns. Whenever a special purpose con-
cern needs to be encapsulated and manipulated, in the absence of dedicated
representation of these concerns, it becomes necessary to do so using decompo-
sition mechanism available for basic concerns [Ossher and Tarr 2000a;b; Tarr
et al. 1999].

In order to achieve the required functionality, the decomposed concerns repre-
sentations must be combined using specialized composition mechanisms [Os-
sher and Tarr 2000a; Tarr et al. 1999]. The composition mechanism of sepa-
rated concerns is directly dependent upon the representation of the separated
concerns [Mulet et al. 1995]. For instance, object-oriented decomposition in
which concerns are separated using classes and objects, enables composition of
such concerns in following ways: (1) in the implementation part of an object,
nested implementation objects are composed under the definition of encapsu-
lating object, (2) composition of behavior takes place using inheritance and
delegation mechanisms, and (3) interfaces enable creating set of protocols that

2.2. Family of Programs 13

must be followed by each implementing class. The objects of such classes can
be utilized in constructing complex structures [Aksit 1996]. When a system
is developed using classes and objects as basic concerns, other special purpose
concerns need to be represented in terms of classes and objects which results
in using object-oriented composition for constructing software that addresses
special purpose concerns. In other words, in the absence of specialized and
dedicated representation of special purpose concerns, their composition is re-
stricted by the composition abilities of the basic concern representations.

2.2 Family of Programs

A design methodology is a systematic approach to creating a design consist-
ing of the ordered application of a specific collection of tools, techniques, and
guidelines [ISO/IEC 2009]. Program families [Parnas 1976] a design method-
ology that enables creating a family of programs based on common properties.
The concept of program families was motivated by the fact that if a set of
programs are being developed, whose common properties are extensive, then
it is beneficial to study the common properties of programs before analyzing
them individually. This is further substantiated based on variations in appli-
cation demands, variations in hardware configurations, possibilities to improve
a pre-existing program based on alternate algorithms or application logic, and
many experimental versions of a program [Parnas 1976].

The conceptual background for program families was laid out by Parnas [Par-
nas 1976] using two other design methodologies, namely stepwise refinement
[Wirth 1971] and information hiding module specification [Parnas 1972a]. Us-
ing these methodologies, software is developed in incremental steps such that
the principle of separation of concerns guides the design choices in each step of
the development.

Parnas compared program family development using stepwise refinement and
module specification with the classical sequential method of program develop-
ment. He showed that both provide complementary advantages compared to
the classical sequential method in which various complete programs are devel-
oped sequentially. Consequently, descendants of a given program share some
of its ancestor’s traits which can not be separated out even though deemed
unnecessary because in the classical sequential programming, this would imply
major re-programming [Parnas 1976].

In the following sections, we review how these two methodologies, namely step-
wise refinement and module specification, apply the principle of separation of
concern as the design principle to the development of families of programs.

14 2. Background

2.2.1 Stepwise Refinement and Module Specification

To develop software based on the stepwise refinement methodology means the
system is gradually developed in a sequence of refinement steps [Wirth 1971].
In each step, program elements such as data and instruction that operate on
data, are decomposed and represented in terms of more detailed elements. This
implies refinements to the specification of a program that are carried out until
the elements are specified in terms of some programming language.

The specifications for instructions and data may be refined in parallel guided by
design decisions based on an underlying criterion or a design principle [Wirth
1971]. Wirth states that programmers should be aware of the design principle
and the alternative solutions that may exist (possibly due in part to the design
principle used). Possible solutions can be envisioned as leaves of tree where
each node basically indicates a decision guided by a design principle.

Parnas differentiated the method of information hiding module specifications
[Parnas 1972a] from stepwise refinement in its ability to develop program fami-
lies by stating that intermediate stages are not incomplete programs rather each
of these node is a module which is a specification of externally visible collective
behavior of program groups. Design decisions not common to the members of
program family are identified and encapsulated into a module. The purpose
of module specifications is not to make early decision about a program but to
make it possible to postpone the decisions. As a result, module specifications
enable relatively broad family compared to using stepwise refinement approach
which progresses quickly to a narrow family based on limited variations due to
early decisions.

Using module specification to define a program family, any of combination of set
of programs that meets module specification can be treated as a member of the
family. Similarly, module specifications can be parameterized to obtain family
of specifications. A program based on a member of family of specifications
is also a member of family of programs. Furthermore, programs consisting of
set of programs based on subset of module specifications can be considered as
members of a family.

2.2.2 Using Separation of Concerns as the Design Principle

Both stepwise refinement and module specification design methodologies are
based on two concepts: representing an intermediate stage in program design
and postponing decisions about actual implementation. When using separation
of concerns to guide design choices in stepwise refinement, intermediate stages
represent functionalities of the system. Actual implementations are added in
stepwise manner to obtain a member of a program family. In order to use
the principle of separation of concerns to guide the design choices in module
specification, the criterion of information hiding [Parnas 1972b] is applied. A
module is characterized by a design decision pertaining to a concern which it

2.3. Software Product Line Engineering 15

hides from other modules which represent other concerns. The decomposition
of system into modules uses another criterion which is design for change [Par-
nas 1979]. System details that are likely to change are treated as secrets of
modules, i.e., changeable aspects of the system under consideration are the
major candidates for modules [Parnas 1979; Parnas et al. 1984].

Toward the Concept of Software Product Lines

The core concepts related to separation of concerns and program families grad-
ually evolved. Intermediate stages could be thought of as part of software
system where functionality differed. The actual implementations could be se-
lected to compose specific members of the program family. The engineering of
program or system families pertaining to a specific application domain based
on reuse was thought of as domain analysis [Gilroy et al. 1989; Prieto-Diaz
1987]. The concepts of concerns and design for change paved way to think of
commonalities and variations in the family of systems. The common aspects
of the domain and the differences between related systems in the domain were
thought of as features that can be used to define mandatory, optional, and
alternative characteristics of these related systems [Kang et al. 1990]. The
concept of program families evolved into what is known as family-based soft-
ware development or system-family engineering (SFE) [Weiss and Lai 1999]
and later to software product line engineering (SPLE) [Clements and Northrop
2001].

2.3 Software Product Line Engineering

In literature, SFE and SPLE are used synonymously [Czarnecki 2004]. While
SFE explores the commonalities among systems in a given problem domain,
SPLE also concerns itself with scoping and management of products from an
economic perspective. The Software Engineering Institute at Carnegie Mellon
University defines a software product line (SPL) as follows:

A software product line is a set of software-intensive systems that
share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are de-
veloped from a common set of core assets in a prescribed way.

In SPLE, software products that differ in functionality, called variants, can
be rapidly created using reusable assets that can be anything from a common
architecture to individual components [Czarnecki and Eisenecker 2000]. The
ability of SPLs to change or customize an underlying software system is called
variability [van Gurp et al. 2001]. A variation point indicates where the vari-
ation in the software system takes place [Jaring and Bosch 2002]. A variation

16 2. Background

point is used to delay design decisions to a later phase in software develop-
ment process such that each design decision constrains the number of possible
variants [Coplien et al. 1998; van Gurp et al. 2001]. The concept of variation
points clearly identifies the roots of SPLE to the separation of concerns and
program families.

The engineering of SPLs is divided into two development processes: domain
engineering (DE) and application engineering (AE). While DE is characterized
as development for reuse, AE is identified as development with reuse [Czarnecki
2004]. We discuss each of these in the following sections.

Domain

Requirements

Engineering

Domain Design
Domain

Realization
Domain Testing

Application

Requirements

Engineering

Application

Design

Application

Realization

Application

Testing

Requirements Architecture Implementation Artifacts Tests

Architecture Implementation Artifacts TestsRequirements

Application 1

Application 2

Application N

Product

Management

D
o
m

a
in

 E
n
g
in

e
e
ri

n
g

A
p
p
li
c
a
ti

o
n
 E

n
g
in

e
e
ri

n
g

Figure 2.1: Domain and Application Engineering

2.3.1 Domain Engineering and Application Engineering

DE is also known as product-line development or core asset development. DE
comprises four phases namely, domain analysis or domain requirements engi-
neering, domain design, domain realization, and domain testing [Pohl et al.
2005] as shown in Figure 2.1:

Domain analysis or Domain requirements engineering consists of com-
monality and variability analysis. The sources of requirements are differ-
ent stakeholders, existing applications, their documentation and failure
reports. Commonality analysis determines which requirements are in fact

2.3. Software Product Line Engineering 17

common to all applications. The specification of common requirements
must maintain high quality because the work of different stakeholders
depends on it. The goal of commonality analysis is to achieve as much
commonality as possible [Ardis and Weiss 1997]. Following this, variabil-
ity analysis is performed in order to identify variable requirements. The
requirements that differ from each other indicate the need to introduce a
variation point. Both common and variable requirements are documented
using suitable notations [Kang et al. 1990] which include variability and
constraint dependencies. In contrast to single system engineering, the
commonality and variability analysis cater to the requirements of all en-
visioned SPL variants.

Domain design consists of producing main software structure and determine
how common and variable requirements are reflected in it. It is used to
create a common reference architecture for developing the members of the
SPL that can be used to create individual product variants. Requirements
that may conflict with each other are also reflected in the architecture.
The reference architecture may be under-specified meaning that certain
artifacts may not be addressed, e.g., artifacts that are variant-specific
rather than being shared by all other variants of an SPL. In contrast to
single system engineering, domain design tries to create architecture that
can support mass customization.

Domain realization aims at providing detailed design and implementation
of reusable software assets, based on the reference architecture obtained
in domain design. It incorporates configuration mechanisms that will en-
able application realization to configure variants with the reusable assets.
It distributes variability over reusable assets and also defines the bind-
ing times of variability such as whether the variation points are bound
at compile-time, link-time, load-time, or run-time. In contrast to single
system engineering, instead of building an executable variant, domain re-
alization provides configuration and selection mechanisms for application
realization.

Domain Testing consists of validating the realization artifacts and the out-
put of other domain engineering sub-processes. The goal of domain test-
ing is to ensure that requirements and design support testing. It aims
at uncovering the evidence of defects in domain artifacts and creating
reusable test artifacts for application testing. In contrast to single system
engineering, domain testing faces the difficulty that no single executable
configuration of reusable asset is to be tested and variability must be
considered when performing testing.

AE is also known as product development. The main focus of AE is to use the
reusable assets implemented in DE to build concrete applications. It consists of
four phases namely, application requirements engineering, application design,
application realization, and application testing [Pohl et al. 2005] as illustrated
in Figure 2.1:

18 2. Background

Application requirements engineering aims at eliciting and documenting
the requirement artifacts for a particular application by reusing the do-
main requirements artifacts as much as possible. It consists of communi-
cation of domain requirement artifacts to stakeholders, specifically, cus-
tomers. In contrast to single system engineering, application engineering
must plan for external variability [Pohl et al. 2005]. It is possible that ex-
ternal variability requirements may arise leading to requirement deltas be-
tween application requirement artifacts and domain requirement artifacts
which must be managed by application engineering. Furthermore, appli-
cation engineering consists of documenting the traceability links between
the domain requirement artifacts and application requirement artifacts.
Finally, application engineering must create an application variability
model based on variation points defined in domain variability model.

Application design consists of producing the application architecture. The
application architecture is a specialization of the reference architecture
developed in domain design. Given that reference architecture produced
by domain design may be under-specified, application-specific artifacts
may have to be designed by the application architect. In contrast to sin-
gle system engineering, many application-specific requirements are spe-
cializations of domain requirements. Activities of application architect
require less effort compared to single-system software and given that
application-specific adaptations are not needed, the application archi-
tecture can be established by binding pre-defined variation points.

Application realization means developing applications that can be tested
and brought to market. It consists of providing detailed design and im-
plementation of application-specific components and configuring/select-
ing them to compose an application that is ready for testing. Contrary
to single system engineering, the application developer selects reusable
domain assets that conform to application architecture and builds an
application by configuring application-specific components.

Application Testing is about achieving a sufficient quality of the application
under test. It reuses the domain test artifacts and consists of unit and
integration testing [McGregor 2001].The task of application testing is
to validate the binding of variability and the configuration realized in
the application. In contrast to single system engineering, application
testing in SPLE must take into account the fact that application to be
tested is created partly in domain engineering and partly in application
engineering.

In addition to DE and AE, SPLE process also contains system tailoring. In
system tailoring, application engineering delegates the new requirements, par-
ticularly those that are not covered by existing reusable assets back to domain
engineering. The same steps of analysis, design, and implementation are ap-
plied to these new requirements and the implementation of reusable assets are
updated so that they are capable of representing new requirements.

2.3. Software Product Line Engineering 19

Benefits and Uses of SPLs

SPLs enable tactical engineering benefits which translate into set of strate-
gic business benefits [Clements and Northrop 2000]. The tactical benefits in-
clude reduction in average time in creating and deploying a software product
which implies improved productivity, reduction in average number of defects
per product which results in increased quality, and reduction in average cost
per product. These benefits translate into reduced time-to-market and time-
to-revenue for new products, improved competitive product value, improved
scalability of business model for given products and markets [Pohl et al. 2005;
Van der Linden et al. 2007].

Dynamic Software Product Lines

In some domains, the underlying software requires extensive variation based
on requirements as well as resource constraints, e.g., ubiquitous computing,
medical and life-support devices, etc. The SPLs that are capable of adapting to
changes in user needs and resource constraints are known as dynamic software
product lines (DSPLs) [Hallsteinsen et al. 2008]. DSPLs are distinguished from
SPLs by the fact that variation points are bound at run-time so that they can be
adapted to the changes in the environment. Contrary to SPLE, engineering of
DSPLs is not concerned with pre-runtime variation points. Instead of economic
perspective, the ability to adapt to individual needs and situation is its main
focus. It is also possible that different variation points are bound at different
times including binding some variation points statically and others dynamically
based on the domain-specific context [Alves et al. 2009].

2.3.2 Other Software Development Paradigms and SPLs

Many well-known software development paradigms can be used to create SPLs.
In this section we take a quick review of these and state which characteristics
differentiate them from SPLE.

Component Based Software Engineering The main goal of Component
Based Software Engineering (CBSE) is to construct software systems on
demand using off-the-shelf components. Szyperski [Szyperski 2002] de-
fines components as a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third
parties. Components can be treated as reusable assets with which to
build SPLs from [Clements and Northrop 2000]. They can be treated
as units of software that can be combined to form software products as
specified by the SPL architecture. Independent deployment can be inter-
preted such that components are installed into a product line’s core asset

20 2. Background

base where they are available for use in one or more software products.
Such components must support the flexibility required to satisfy the vari-
ation points in the SPL architecture and/or SPL requirements. SPLE is
sometimes mistakenly assumed to be another form of component-based
development. While both component-based development and SPL devel-
opment rely on the notion of components, SPLE consists strategic reuse
and systematic and planned deployment of components, which are miss-
ing in component-based development [Clements and Northrop 2000].

Model-driven Development Model-driven Development aims at capturing
all important aspects of a software system through appropriate models
where a model is an abstract representation of system and its environ-
ment [Czarnecki 2004]. Models can be compiled into executable code and
deployed at a customer’s site. Model-driven approach to SPLs empha-
sizes automatic product derivation. The commonalities and variabilities
in SPLs are expressed using models. The platform-independent mod-
els are translated into platform-specific models. Such models are used
along with tool-supported translation to obtain the executable code of a
product [Clements and Northrop 2000].

Many other methods for SPLs exist that support SPL development from archi-
tectural point of view [Matinlassi 2004]. These are distinguished as SPL archi-
tecture design methods. Examples include component-oriented platform archi-
tecture method for product family engineering (COPA) which is component-
oriented but architecture-centric method for developing SPLs [Obbink et al.
2002], and Quality-driven architecture design and analysis (QADA) which aims
at providing traceable product quality and quality assessment in developing
SPLs [Matinlassi et al. 2002]. Our interest lies, on the other hand, in develop-
ing SPLs where the concept of features is of central importance, as we discuss
next.

2.4 Developing SPLs Using Features

The development paradigm that focuses on the use of features for the con-
struction, customization, and synthesis of SPLs is known as feature-oriented
software development (FOSD) [Apel and Kästner 2009]. FOSD distinguishes
itself from other methods of realizing SPLs in the pervasive treatment of fea-
tures as the reusable assets. The basic idea behind FOSD is to decompose a
software system in terms of features it provides and construct well-structured
and customizable software using these features.

The concept of features is extremely involved. In simplest terms, it denotes a
unit of functionality of a software system. Additionally, it may encapsulate a
requirement, represent a design decision, and provide a potential configuration
option [Apel and Kästner 2009]. The paradigm of FOSD itself emerged from
different lines of research and this has resulted in multitude of definitions of

2.4. Developing SPLs Using Features 21

the concept of features. Before we take a review of these definitions, we quickly
establish the background with the discussion of the concepts which are of pri-
mary importance to features, namely problem space and solution space and
the mapping between them.

2.4.1 Problem Space and Solution Space

We have already seen the more general definitions of problem domain and
solution domain (they are synonymous with problem space and solution space
respectively)2. A problem space of software systems represents all relevant
issues of importance to be considered and denotes a set of similar problems
that occur in an environment related to a software system / software systems
and lend themselves to common solutions. A solution space is the environment
where these common solutions reside. We now revisit these concepts within
the context of FOSD.

Problem Space Solution Space

Domain-specific

Abstractions

Implementation-

oriented Abstractions

Mapping

Figure 2.2: Problem Space and Solution Space [Czarnecki 2004]

The domain-specific abstractions in problem space enable a developer to ad-
equately express the requirements in a manner natural to the domain. The
problem space can be used to specify a desired variant from an SPL. The solu-
tion space defines how the requirements that conform to the intended behavior
are realized. The solution space represents implementation-oriented abstrac-
tions with which to implement the requirements. A specific variant of an SPL

2The concepts of problem space and domain space were first used by Czarnecki and
Eisenecker in the context of generative programming using components [Czarnecki and Eise-
necker 1999] and later exemplified within the context of generative software development
(GSD) paradigm. GSD is an SFE approach [Czarnecki 2004] and shares many similarities
with FOSD except its stress on any implementation components or artifacts instead of fea-
tures. The concepts of problem space and solution space are nevertheless applicable to FOSD
as well and have been used for better conceptual understanding of FOSD [Apel and Kästner
2009].

22 2. Background

can be generated by instantiating the related implementation-oriented abstrac-
tions.

Equally important as the problem and solution spaces is the mapping between
them as shown in Figure 2.2. Within the context of SPLs, the mapping can be
interpreted as a function that takes a variant composition specification as an
input and outputs the implementation of the corresponding variant.

The domain-specific abstractions that describe the requirements of a software
system and implementation-oriented abstractions that realize these require-
ments are known as features. We elaborate the concept of features in the next
section.

2.4.2 Features

Features represent abstract concepts of a target domain and capture the re-
quirements of software systems within that domain. At the same time, they
also represent concrete artifacts which are composed together to actually re-
alize the requirements. The abstract nature of features can be attributed to
features being concepts in the problem space. The concrete nature of features
can be attributed to features being realizations of these concepts in the solution
space. When features are viewed only from one angle, it results in definitions
of features that are more problem space-specific or solution space-specific. In
the literature related to FOSD, features are predominantly treated as repre-
senting concepts from either the problem space or the solution space and this
is reflected in the definitions offered for features. Many definitions exist for fea-
tures. Below, we show definitions found in [Apel and Kästner 2009]. We divide
these definitions according to the perspective of either the problem space or
the solution space and re-arrange them according to when they were proposed
in ascending order as follows:

1. From the perspective of the problem space, a feature is-

a) a prominent or distinctive user-visible aspect, quality, or charac-
teristic of a software system or systems [Kang et al. 1990]

b) a distinctively identifiable functional abstraction that must be im-
plemented, tested, delivered, and maintained [Kang et al. 1998]

c) a distinguishable characteristic of a concept (e.g., system, compo-
nent, and so on) that is relevant to some stakeholder of the concept
[Czarnecki and Eisenecker 2000]

d) a logical unit of behavior specified by a set of functional and non-
functional requirements [Bosch 2000]

e) a product characteristic that is used in distinguishing programs
within a family of related programs [Batory et al. 2004]

2.4. Developing SPLs Using Features 23

f) a product characteristic from user or customer views, which essen-
tially consists of a cohesive set of individual requirements [Chen
et al. 2005]

g) a triplet, f = (R, W, S), where R represents the requirements the
feature satisfies, W the assumptions the feature takes about its
environment and S its specification [Classen et al. 2008]

2. From the perspective of the solution space, a feature is-

a) an optional [Zave 2003] or incremental unit of functionality [Batory
2004]

b) any structure that extends and modifies the structure of a given
program in order to satisfy a stakeholders requirement, to implement
and encapsulate a design decision, and to offer a configuration
option [Apel et al. 2008b]

We have highlighted parts of each feature definition that bring forth important
facets of the concept of features whether from the perspective of the problem
space or the solution space. When developing a software system based on fea-
tures, it is viewed as a collection of distinguishable characteristics specified in
terms of abstractions that capture the intended functionality. These abstrac-
tions are implemented to realize the functional or non-functional requirements
they identify. A family of products can be created (i.e., an SPL) and spe-
cific members (i.e., product variants) of this family can be composed using
specifications of the same. A product is then a set of features and a variant
of this product can be obtained by adding another feature incrementing the
functionality offered by the product.

Features as domain-specific abstractions are modeled using feature models
[Kang et al. 1990]. Feature models are the de-facto standard when it comes to
graphically representing features in terms of requirements of a software system
or distinguishable characteristics in a target domain. In the next section, we
take review of feature modeling.

2.4.3 Feature Modeling

Feature modeling is a method and notation to elicit and represent common
and variable features of the products in an SPL [Kang et al. 1990]. A feature
model describes the relationships and dependencies of a set of features in a
target domain [Czarnecki 2004]. Figure 2.3 illustrates a feature model of a text
editor system [Czarnecki et al. 2005]. Such a feature model essentially denotes
an SPL (in this case an SPL of text editors) and identifies the space of all
possible variants that can be composed by selecting specific features from this
model (in this case, individually configured text editors). Feature models are
trees where the root of the tree represents the core concept in the system being

24 2. Background

modeled. All nodes of the tree have parent-child relationship. The notations
for the relationships between the children of the same parent indicate the ways
in which these features can be selected if their parent was also selected in a
variant.

Editor

File.bak.ext

CommandsFileExtensionBackupExtension

File.bak File.ext.bak

Autosave

DocumentBackup

BackupOnChange

RemoveBlankLines CrLfConversion

AND MandatoryOptionalXOROR

Figure 2.3: A Feature Model Representing a Text Editor Product Line

Feature models are central artifacts in FOSD. Over the time feature modeling
notation has evolved to include many novel concepts [Czarnecki and Kim 2005;
Czarnecki et al. 2002; 2004; 2005; Kim and Czarnecki 2005; Riebisch et al. 2002],
e.g., the original feature model of the text editor shown above uses advanced
modeling conepts [Czarnecki et al. 2005]. However, throughout this dissertation
we refer to the original notation in [Kang et al. 1990]. A number of feature
modeling techniques for engineering SPLs exist in which the use of feature
models drive variant specification and generation [Asikainen et al. 2003; Becker
2003; Beuche et al. 2004; Boucher et al. 2010; Czarnecki et al. 2005; Deursen and
Klint 2002; Loughran et al. 2008; Sinnema et al. 2004b;b]. They can be used to
address different levels of abstractions including requirements, architecture and
design, components and platforms, as well as different artifacts such as code,
documentation, and other models, etc. The topic of feature modeling is one of
the core topics of this dissertation and we return to it in the next chapter in
detail.

2.4.4 Feature Implementations

Features are treated as concerns of primary importance in FOSD [Apel and
Kästner 2009]. Beginning with Prehofer [Prehofer 1997], the need to explicate
features in code has been realized using a variety of implementation mecha-
nisms which contain different ways of representing features. Correspondingly,
composition mechanisms are provided that enable composing features repre-
sented in specific ways. A bewildering array of methods, tools, and techniques
exist for implementing features [Apel 2007; Apel and Batory 2006; Apel et al.

2.4. Developing SPLs Using Features 25

2005; 2009b; Batory 2004; Hundt et al. 2007; Kästner and Apel 2009; Kästner
et al. 2007; Lai et al. 2000; Lopez-Herrejon et al. 2005a; McDirmid et al. 2001;
Mezini and Ostermann 2004; Ossher and Tarr 2000b; Spencer and Collyer 1992;
Xin et al. 2004]. The topic of feature implementations is one of the core topics
of this dissertation and we return to it in the next chapter in detail.

2.4.5 Phases in FOSD

Similar to the two process model of SPLE, FOSD contains phases that concen-
trate on planning and developing families of products instead of single systems.
Unlike the phases in SPLE, the phases of FOSD are more tightly interwoven
and the thread that binds them is the concept of features. As discussed earlier,
features are used pervasively in all phases of SPL development using FOSD.
They are as follows [Apel and Kästner 2009]:

Domain Analysis in FOSD is based on feature modeling. It aim at identi-
fying and capturing the commonalities and variabilities in the form of a
feature model. As discussed earlier, from the initial conception, feature
models have been extended in a variety of ways. This additional informa-
tion is used later in the application configuration and generation process
to rule out invalid product variants.

Domain Design is seldom treated as a separate phase in FOSD unlike its
counterpart in the domain engineering process of SPLE. In contrast to
domain design in SPLE, which focuses on creating a reference architec-
ture, features are presumed to structure the design of the software system
under consideration. Although first steps have been taken toward speci-
fication of structural and behavioral properties of involved features, the
stress is given instead on using feature models as representing the struc-
ture where invalid requirements as well as required features are indicated
through constraints on features in feature models.

Domain Implementation in FOSD aims at creating one-to-one mapping be-
tween the features identified in domain analysis to the features at the
implementation level. Its focus is on recognizing code at varying level of
granularities that captures the intended functionality of every feature in
the feature model.

Application Configuration and Generation aims at achieving complete
automation in generating specific applications from a software system.
This is in contrast to its counterpart in SPLE, where stakeholders par-
ticipate in assembly, integration, and adaption of reusable assets.

FOSD is a field of study with many challenges and a lot of active research [Apel
and Kästner 2009]. We discuss these challenges in the next section.

26 2. Background

2.4.6 Challenges in FOSD

As seen before, a number of techniques exist for feature modeling and feature
implementation. Feature models are usable as communication artifacts and
at the same time they can be used to drive the variant generation process.
Feature modeling techniques use them to varying degrees. Similarly feature
implementation techniques implement features in a variety of ways with some
techniques being better at some facet such as than the others. Feature models
represent both an SPL and a variant of that SPL when configured. Which
kind of entities should be used in feature modeling and feature implementation
is yet being explored in various techniques. Individual feature modeling and
feature implementation techniques are yet difficult to integrate so as to provide
a uniform perspective for all the phases of FOSD. This is the central challenge of
FOSD which we address in this dissertation. In the next section we summarize
this chapter and provide an outlook as to how we proceed in finding a balance
of feature modeling and implementation towards a uniform FOSD technique.

2.5 Summary and Outlook

While software engineering is around four decades old (counting from the time
of origin of the term [Naur and Randell 1969] to present), most of the FOSD-
specific results have been obtained over last two decades (counting from [Kang
et al. 1990] and [Prehofer 1997] to present). The origins of FOSD lie in the
principle of separation of concerns, from which eventually the concept of pro-
gram families evolved. It in turn gave rise to SPLE. Within the techniques
used to engineer SPLs, those that focus on the concept of features are the
basis of this dissertation. We take advice from Parnas stated in the epigraph
to this chapter and go back to the concepts of concerns and their representa-
tion and composition. In the next chapter, we investigate how features and
other entities are represented and composed in various feature modeling and
implementation techniques and use this investigation toward the technique of
first-class features in which we attempt to unify feature modeling and feature
implementation.

Chapter 3

First-class Features

Intelligence has two parts, which we shall call the epistemo-
logical and the heuristic. The epistemological part is the rep-
resentation of the world in such a form that the solution of
problems follows from the facts expressed in the representation.
The heuristic part is the mechanism that on the basis of the
information solves the problem and decides what to do.

John McCarthy
in Some Philosophical Problems from the Standpoint of

Artificial Intelligence

In this chapter we elaborate conceptual and concrete nature of features when
viewed from the perspective of problem and solution spaces respectively. We
review the current state of the art in the capabilities of features when modeling
and implementing them as well as toward establishing traceability between con-
ceptual and concrete features. We derive a problem statement toward achieving
a unified perspective in FOSD and propose first-class features toward this end.1

3.1 Nature of Features

The two pivotal concepts in FOSD, namely feature modeling and feature im-
plementation directly depend upon the domain-specific abstractions in problem
space and implementation-oriented abstractions in solution space respectively.
The aim of feature modeling is to provide methods and notations to elicit the
common and variable features of an SPL targeted at a specific problem space

1 This chapter shares material with the MCGPLE’08 paper ‘Features as First-class En-
tities - Toward a Better Representation of Features’ [Sunkle et al. 2008b] and the technical
report ‘Representing and Composing First-class Features with FeatureJ’ [Sunkle et al. 2009].

27

28 3. First-class Features

[Czarnecki and Eisenecker 2000; Kang et al. 1990]. The aim of feature imple-
mentations is to provide mechanisms to represent features at the level of imple-
mentation in terms of solution space-specific platforms, languages, paradigms,
etc. [Apel and Kästner 2009]. Features that are recognized as concepts from
the problem space and implemented as entities in the solution space represent
two sides of the same coin. We elaborate this in the following section.

3.1.1 Conceptual and Concrete Features

Features from the perspective of problem space denote concepts. The user-
visible aspects, qualities, or characteristics [Kang et al. 1990], distinctively
identifiable functional abstractions [Kang et al. 1998], characteristics distin-
guishable by stakeholders [Czarnecki and Eisenecker 2000], logical rather than
physical units of behavior [Bosch 2000], and representation of a cohesive set
of individual requirements [Chen et al. 2005] are all conceptual in nature. We
refer to these features as the conceptual features. The conceptual features are
often modeled using feature models.

On the other hand, features from the perspective of solution space denote
concrete entities at the level of implementation. We refer to these features
as the concrete features. Concrete features are code units that signify incre-
ment in functionality [Batory 2004; Zave 2003]. They are program entities
or structures that extend and modify the structure of a given program [Apel
et al. 2008b]. These features have an actual and concrete representation at
the level of implementation. The concrete features can be represented by any
code unit or program structure depending on the implementation language or
a given programming paradigm. Henceforth in the dissertation, whenever we
refer to conceptual features, we want to indicate features in problem space and
whenever we refer to concrete features, we wish to indicate features in solution
space.

The distinction between conceptual and concrete features and the resulting di-
vide between feature modeling and feature implementation is the core problem
of FOSD. As discussed in Chapter 2, the challenge is to provide a unified per-
spective for feature modeling and feature implementation. In order to clarify
the distinction between conceptual and concrete features and how it divides fea-
ture modeling from feature implementations, we start by discussing the views
on mapping between problem and solution spaces [Czarnecki 2004]. Our objec-
tive is to find where the division originates and what can be done to reconcile
it.

3.1.2 Views on Mapping Between Problem and Solution Spaces

We have discussed earlier that problem space is a set of domain-specific ab-
stractions and solution space is a set of implementation-oriented abstractions

3.1. Nature of Features 29

[Czarnecki 2004; Czarnecki and Eisenecker 1999]. Equally important to the
concepts of problem space and solution space is the mapping between them.
The mapping acts a bridge between the domain-specific abstractions in prob-
lem space and implementation-oriented abstractions in solution space. The
paradigm of FOSD depends on this mapping so that the composition specifi-
cation of a variant of a software system that originates in problem space can
be used to generate a specific variant in solution space. While the configura-
tion view on mapping focuses on problem space, the transformational view on
mapping focuses on solution space as explained next.

Configuration View

In the configuration view, problem space consists of domain-specific concepts
which signify the features of a software system under consideration. The prob-
lem space defines the relations between the features and the dependencies/-
constraints between the features. These help in sorting out valid and invalid
combinations of features.

The mapping which provides variant composition and generation rules and the
information about features, feature relations, and feature constraints combined
together make up what is known as the configuration knowledge [Czarnecki
2004; Czarnecki and Eisenecker 1999]. It can be observed that the configuration
knowledge is predominantly derived from the domain-specific abstractions in
problem space as shown in Figure 3.1.

Problem Space Solution SpaceMapping

Domain-specific

Concepts
Implementation

Artifacts

Valid/Invalid

Feature

Combinations,

Constraints

Variant Generation/

Composition Rules

Configuration Knowledge

Figure 3.1: Configuration View on Mapping Between Problem and Solution
Spaces[Czarnecki 2004]

The mapping between problem space and solution space provides a bridge be-
tween the features from problem space and implementation entities in solution

30 3. First-class Features

space. The input to the mapping between problem space and solution space is
a specification of the given system such that specific features are selected and
mapped to the implementation components in solution space. The output of
the mapping is a composition of the implementation components that provides
the functionality denoted by the selected features.

Transformational View

In the transformational view, problem space is represented by a domain-specific
language [Czarnecki 2004]. A domain-specific language (DSL) offers expressive
power targeted at a specific class of applications or facets of applications. When
using a DSL to represent a problem space, the concepts of problem space are
used as language entities. On the other hand, solution space is represented by
an implementation language. The information about transforming DSL repre-
sentation of features into the implementation components constitutes what we
refer to as the transformation knowledge.

We specifically distinguish the transformational view from the configuration
view by its focus on the concepts in solution space as opposed to focus on
the concepts in problem space by the latter. The transformation knowledge
then can be considered to be information about transforming any feature rep-
resentations to the implementation components as shown in Figure 3.2. The
mapping between the spaces can be considered to represent a transformation
process that yields an implementation of a variant in a host language when
input with a program with a specific representation of concrete features.

Problem Space Solution SpaceMapping

Domain-specific

Concepts and

Domain-specific

Language

Implementation

Artifacts and

Implementation

Language

Transformation Knowledge

Transforming

Domain-specific

Abstractions to

Implementation

Language

Requirements

Specification

Figure 3.2: Transformational View on Mapping Between problem and solution
spaces

3.2. Capabilities of Features - Current State of the Art 31

Distinguishing Configuration and Transformational Views

Both configuration and transformational views use the mapping, but obtain the
rest of the information required for the mapping to take place from problem
space and solution space respectively. The configuration view on mapping can
be assumed to take conceptual features as the starting point and maps them
to implementation components. The transformational view on the other hand
can be assumed to take the concrete representation of features as the starting
point. It transforms the concrete features in the form of code units/program
structures to implementation language entities.

The separation between problem space and solution space enables developers
to structure the abstractions in them differently [Czarnecki 2004] which is the
basic motivation behind having two different views on mapping between them.

The question remains as to what extent and with which characteristic capabil-
ities are conceptual and concrete features represented and composed in feature
modeling and feature implementation techniques and how they utilize the con-
figuration and transformation knowledge. In the next section, we discuss the
expected capabilities of conceptual and concrete features and how they relate
to the configuration and transformational views discussed above.

3.2 Capabilities of Features - Current State of the Art

Many researchers have compared methods, tools, and techniques to represent
conceptual and concrete features [Apel and Batory 2006; Apel et al. 2006; Lai
et al. 2000; Lopez-Herrejon et al. 2005a; Mezini and Ostermann 2004; Sin-
nema and Deelstra 2007; Xin et al. 2004]. We are specifically interested in
those studies that automatically have an FOSD perspective, i.e., studies that
consider modeling and implementing features to engineer SPLs in contrast to
studies that also include capturing variability in forms other than features.
Furthermore, these studies should consider more than two techniques for fea-
ture modeling and/or feature implementation. Sinnema and Deelstra present
a classification of modeling techniques for conceptual features [Sinnema and
Deelstra 2007]. Lopez-Herrejon et al. evaluate support for concrete features in
terms of various modularization technologies [Lopez-Herrejon et al. 2005a].

The methodology used by both these case studies is as following:

1. A particular problem is defined. In case of classification of feature model-
ing techniques, the problem is defined as an SPL in the domain of license
plate recognition on handhelds devices with different operating systems
and camera interfaces [Sinnema and Deelstra 2007]. In case of evaluation
of feature modularization techniques the problem is an SPL version of
the expression problem [Lopez-Herrejon et al. 2005a].

32 3. First-class Features

2. A set of properties are specified. These properties are used as categories
of classification framework [Sinnema and Deelstra 2007], or that can be
readily inferred from, illustrated by, and assessed [Lopez-Herrejon et al.
2005a] with respect to the defined problem.

3. Each feature modeling technique or a feature implementation technique is
evaluated and classified based on how it supports a given property while
resolving the defined problem.

The most notable aspect of these classification and evaluation studies is that
they bring forth capabilities and desirable properties of features, both concep-
tual and concrete as elaborated next.

3.2.1 Toward Modeling Conceptual Features in Problem Space

The techniques that aim at representing conceptual features in problem space
share similarities and differences in terms of core characteristics important in
terms of modeling concepts. When applying such techniques two aspects are
important to developers: what it is that they want to model and what con-
structs are available to do so and what kind of support is provided in creating
and using these models. These aspects are used to classify feature modeling
techniques toward how effectively they model the conceptual features in prob-
lem space [Sinnema and Deelstra 2007] as enlisted below:

Representation of Conceptual Features

• Ability to Choose - Variability is about choices that enable developers to
change, configure, customize, and extend product family artifacts for use
in a given context.

• Representation of Product/Variant Model - A product/variant model
refers to how selection/configuration of features available in problem
space is represented in the feature modeling technique.

• Constraint Representation - This signifies the ability to test valid variants
based on the inclusion and exclusion constraints amongst the conceptual
features in problem space.

Composition of Conceptual Features

• Abstraction Levels - This denotes how variability is modeled over different
abstraction levels such as features, architecture, and implementation and
what kind of transition is made available between the levels.

• Effectuation - The mechanism to actually obtain a product variant is
referred to as effectuation.

Further characteristics that would be helpful but are not absolutely necessary
include specification of quality attributes such as functional/non-functional

3.2. Capabilities of Features - Current State of the Art 33

properties, support of incompleteness/imprecision in information and specifi-
cation and configuration guidance (especially important in GUI-based feature
modeling tools) [Sinnema and Deelstra 2007].

Note that the representation capabilities of conceptual features largely draw
upon the configuration knowledge described earlier in the description of the
configuration view on mapping between problem and solution spaces. The
ability to choose, configure, and customize a representation of product/vari-
ant model, constraint representations etc. is what the configuration knowledge
consists of. Feature modeling techniques use this knowledge toward generating
variants. This indicates that the stress in feature modeling techniques is on
using configuration knowledge rather than transformation knowledge. The ca-
pabilities of concrete features on the other hand, mostly refer to transformation
knowledge as we discuss next.

3.2.2 Toward Implementing Concrete Features in Solution Space

The techniques that aim at implementing concrete features in solution space
have very different notions of how concrete features are modularized and how
they are represented and composed. The properties of feature modularity im-
portant for developers are how are features represented in the code and how
are they composed [Lopez-Herrejon et al. 2005a] as enlisted below:

Representation of Concrete Features

• Program Deltas/Code Fragments - This refers to the ability to capture
code fragments of wide range of granularity in the given programming
language.

• Naming and Identification - This is the ability to identify the code frag-
ments with the name of the feature to which they belong, so that they
can be referred to and manipulated.

Composition of Concrete Features

• Flexibility - This indicates that feature modules should be syntactically
independent from the rest of the code of an SPL such that it is not hard-
coded according to a specific composition. Flexible composition property
enables reuse of feature modules by enabling them to participate in any
valid composition.

• Order Independence - This signifies the ability to obtain a variant without
being tied up to a specific ordering of features when composing them.

34 3. First-class Features

• Static Typing - It should be possible to statically type check the compo-
sition of a variant to ensure that it is a valid variant (based on feature
relations and constraints) and it can compile without errors.

Note that the capabilities of concrete features do not explicitly refer to configu-
ration knowledge. What is given importance instead is the ability to transform
a concrete representation of features capturing code fragments from a wide
range of granularity to the host language representation in order to obtain a
variant. This indicates that in case of feature implementation techniques, the
stress is more on transformation knowledge rather than configuration knowl-
edge.

Until now, we discussed the capabilities of feature modeling and implementa-
tion techniques in representing and composing conceptual and concrete features
respectively. We have seen that feature modeling and feature implementation
techniques derive most of the required information from problem space and so-
lution space in terms of configuration knowledge and transformation knowledge
respectively. There is another aspect that directly depends on the mapping
between the spaces and on both configuration and transformation knowledge
known as traceability which we elaborate next.

3.2.3 Toward Establishing Traceability between Conceptual and Con-
crete Features

Traceability is defined as a discernible association among two or more logical
entities, such as requirements and system elements and represents the degree
to which requirements and design of a given system element match [ISO/IEC
2009]. A more detailed definition of requirements traceability is that it is the
ability to describe and follow the life of a requirement, in both forward and
backward directions [Gotel and Finkelstein 1994], i.e., from its origins, through
its specification and development, to its subsequent deployment and use, and
through all periods of on-going refinement and iteration in any of these phases.

In Section 2.3.1, we discussed that it is the responsibility of application engi-
neers to document the traceability links between domain requirements artifacts
and application requirement artifacts. At the same time, it has been established
in the literature that variabilities at different levels of abstraction and across
different development phases are associated with each other and that they need
to be linked to simplify evolution and maintenance of an SPL [Berg et al. 2005].
While approaches have been suggested that enable traceability links between
conceptual and concrete features using additional models and tools [Beuche
et al. 2004; Sochos et al. 2006], these only consider the traceability between a
feature and an artifact [Berg et al. 2005].

Lago et al. present an approach to traceability management in which they
identify core traceability paths between feature modeling and feature imple-
mentation [Lago et al. 2009]. Note that feature implementation that we have

3.2. Capabilities of Features - Current State of the Art 35

shown in Figures 3.3 and 3.4 is referred to as structural models by Lago et
al. Their terminology is based on the fact that whereas feature models denote
domain-specific properties, the structural models reflect architectural decisions
and basically identify implementation components. While we retain the gen-
eral idea behind various traceability paths, we chose to refer to the structural
models as feature implementation, keeping in mind the FOSD perspective.

Feature

Model

Product/Variant Level

SPL Level

Feature

Model

Feature

Implementation

Feature

Implementation

Feature

Model

Product/Variant Level

Feature

Model

Feature

Implementation

Feature

Implementation

SPL Level

(a) (b)

Figure 3.3: Traceability in SPLs - I

The traceability paths identified by Lago et al. are: from the conceptual fea-
tures to the concrete features, from a feature model to a product/variant model,
and from the implementation of an SPL to the implementation artifacts and
from the implementation of a product to the implementation artifacts [Lago
et al. 2009]. We elaborate these in the following:

1. Traceability between conceptual and concrete features This type
of traceability is required when we need to understand the impact of a
change to an SPL. An example is when a feature is removed, we need
to know the affected entities and this information must come from the
feature model (to evaluate impact on dependencies between conceptual
features) as well as the feature implementation (to evaluate how removal
of a feature affects the implementation of other concrete features). This
is shown in Figure 3.3-(a).

2. Traceability between a feature model and a product/variant model
The second type of traceability indicates the need for explicit links be-
tween the SPL level models and the variation decisions taken for each
product. Such traceability (illustrated in Figure 3.3-(b)) is required to
be able to ascertain whether the properties of an SPL are reflected in a
product [Lago et al. 2009].

3. Traceability between SPL and Product Code and Implementa-
tion artifacts This type of traceability identifies the need for explicit
links between the application code and code that makes up an SPL and

36 3. First-class Features

Feature

Model

Product/Variant Level

Feature

Model

SPL Level
Feature Implementation

Feature Implementation

SPL

Code

Product

Code

Implementation

Artifacts

Implementation

Artifacts

Figure 3.4: Traceability in SPLs - II

a product of that SPL as shown in Figure 3.4. This kind of traceability
is particularly meaningful in case of legacy applications that are to be
converted to SPLs, e.g., when generating variants from an application
by overlaying an SPL architecture on it. Furthermore, during reuse it
is often necessary to recognize products that are compliant with certain
architectural style or coding and other standards [Lago et al. 2009].

Note that the dashed arrow in Figures 3.3 and 3.4 from feature model at
SPL level and feature implementation at product/variant level indicates the
derivation of a specific product/variant from an SPL [Lago et al. 2009]. In our
opinion, realizations of these traceability paths indicated in Figures 3.3 and
3.4 signify the desirable properties that feature modeling and implementation
techniques should have in order to establish traceability between feature models
and feature implementation. We illustrate this in what we call the traceability
view on the mapping between problem and solution spaces shown in Figure 3.5.

Notice that in Figure 3.5 we explicitly connect problem and solution spaces
instead of using unidirectional mapping to establish traceability. Furthermore,
we specifically wish to indicate the fact that in order to achieve traceability
along with proper modeling and modularization of features both configuration
knowledge in problem space and the transformation knowledge in solution space
are required.

3.2.4 Problem Statement

In the preceding sections, we discussed the desirable properties of feature mod-
eling and feature implementation techniques in modeling variability in problem
space and modularizing it in solution space. Along with the representation and
composition properties of conceptual and concrete features, we also discussed
the traceability properties these techniques should possess. Based on this dis-
cussion, we make the following observations:

3.2. Capabilities of Features - Current State of the Art 37

Problem Space Solution Space
Mapping

Domain-specific

Concepts
Implementation

Artifacts

Implementations

of SPL and

Product/Variants

Feature Models of

SPL and Product/

Variants

Traceabiltiy

Figure 3.5: Traceability View on Mapping

1. The feature modeling techniques for developing SPLs focus on the con-
ceptual features. The dominant view shared by these techniques is the
configuration view, since the information used by these techniques is de-
rived mainly from the configuration knowledge. These techniques use
representations of conceptual features, variation points, feature models,
product/variant models, and constraints. We refer to these as the feature
modeling entities.

2. The feature implementation techniques for developing SPLs focus on the
concrete features. The dominant view shared by these techniques is the
transformational view, since the information used when modularizing and
composing concrete features is derived mainly from the transformation
knowledge.

3. The traceability between problem space and solution space depends on
both conceptual and concrete features. Additionally, establishing trace-
ability links between feature models and feature implementation across
the SPL and the product levels requires representation for feature models,
product/variant models, and constraints at the level of implementation
apart from the concrete features. Furthermore, SPL code and product
code needs to be identified separately from the implementation artifacts.
We refer to these entities which are required to have their own represen-
tation or a means of identification at the level of implementation as the
feature implementation entities.

We refer to the feature modeling entities and feature implementation entities
collectively as the feature domain entities. We also observe that the desirable

38 3. First-class Features

properties of feature modeling techniques do not consider implications at the
level of implementation and vice versa. Similarly, both ignore the implications
toward the traceability properties. Furthermore, all of the case studies men-
tioned so far conclude that no single technique satisfies all properties [Lopez-
Herrejon et al. 2005a; Sinnema and Deelstra 2007]. Instead, various techniques
support the respective desirable properties to varying degrees.

We also observe that some representations of conceptual and concrete features
prove better at solving a specific problem related to FOSD. For instance, Mezini
and Ostermann compare the abilities of feature and aspect-based modulariza-
tion mechanisms with respect to the problem of requesting stock information
and discuss aspectual collaborations to tackle problems such as hierarchical fea-
tures, lack of reuse, and lack of support for composition at run-time faced by
refinement-based and aspect-based techniques [Mezini and Ostermann 2004].

Other comparative studies focusing on a smaller set of techniques similarly
show the strength of a particular representation and composition mechanism
for concrete features over the other [Apel and Batory 2006; Lai et al. 2000;
Xin et al. 2004]. Other researchers compare various techniques based on the
ease with which the set of desirable properties can be supported by a given
representation and composition mechanism for concrete features. For example,
while it is shown that combined aspects-refinements-based representations are
better at handling concrete features that crosscut the application code [Apel
et al. 2006; Mezini and Ostermann 2004], it is also discussed that approaches
in which features are represented as annotations score over approaches that
modularize and compose features in terms of ease with which crosscutting
features are handled [Kästner and Apel 2009]. It is possible that even though
all the desirable properties of feature modeling or feature implementation were
supported by two techniques, one technique scores more over the other.

We argue that in order to achieve a unified perspective for FOSD and provide
support for modeling, modularizing and implementing, and achieving trace-
ability, we need to investigate the core characteristics of representation and
composition of features that enable supporting the desirable properties of re-
spective techniques in the first place. We need to find the correct level of
abstraction for feature domain entities in these representations and reconcile
the focuses on either problem space or solution space. Toward this end, we
formulate the following research questions:

1. Which of the feature domain entities should be represented and what kind
of representation of feature domain entities is required toward a unified
perspective?

2. What level of abstraction would enable support for the desirable prop-
erties from modeling and modularization perspective as well as toward
establishing traceability?

3.3. Analysis of Feature Representation and Composition 39

The first question targets the fact that different techniques provide explicit
representation of some feature domain entities but vary in terms of which
feature domain entities are represented and how they are represented. The
second question aims at finding the level of abstraction of feature domain enti-
ties represented explicitly that proves to be suitable toward combining feature
modeling and feature implementation at the same time providing opportunity
for traceability between the two. In the following, we describe how we intend
to approach these questions.

3.2.5 Proposing a Solution

We approach the solutions to these questions in three steps outlined below:

1. Analysis of Feature Representation and Composition in Vari-
ous Techniques We present an analysis of feature modeling and feature
implementation techniques targeted at finding the core characteristics of
representation and composition of feature domain entities. We also indi-
cate whether these representations explicitly consider traceability prop-
erties discussed before.

2. Proposing New Representation and Establishing its Require-
ments Based on this analysis, we propose a representation of feature
domain entities at the level of abstraction we deem to be most suitable
for supporting feature modeling, modularization, and traceability proper-
ties. Furthermore, we establish a set of requirements in order to be able to
implement and test such a representation and accompanying composition
mechanism.

3. Implementing the New Representation and Evaluating with Case
Studies Based on these requirements, we implement the new represen-
tation of feature domain entities and evaluate it by applying it to various
scenarios related to creating and maintaining SPLs.

In the next section, we present the analysis of feature representation and com-
position in various modeling and implementation techniques as the first step
toward the solution.

3.3 Analysis of Feature Representation and Composition

In the following, we analyze and differentiate techniques based on the primary
kind of representation of feature domain entities. We then state which feature
domain entities are represented and how. In order to simplify the analysis, we
first categorize feature modeling techniques followed by feature implementation
techniques.

40 3. First-class Features

3.3.1 Feature Modeling Techniques

The feature modeling techniques used for managing variability in problem space
basically differ based on the properties specified earlier in Section 3.2.1 on
page 32. The ability to choose is presented as either multiplicity in struc-
ture in which choice is made between features or as choice models in which
choice is made between variation points instead of individual features. The
product/variant models are represented either as stand-alone entities without
any link to choices made or as decision models in which product/variant mod-
els are defined in the context of features/choices in the variability model. In
both cases they are feature description profiles in some format such as XML.
The constraints in variability models are represented as inclusion/exclusion
constraints or as algebraic expressions specified using an external constraint
language. The abstraction levels are arranged either in a hierarchical manner
or in multiple layers to manage large number of features and constraints. The
product/variant models created during configuration indicate descriptions of
which artifacts should be present in the final application. The XML or other
formats of description are transformed to set of artifacts that represent the
final product.

Based on an already available classification [Sinnema and Deelstra 2007] dis-
cussed above, we now distinguish various feature modeling techniques in terms
of representation and composition of feature domain entities.

1. GUI-based Feature Models

These are the techniques that represent various aspects of feature mod-
eling such as the features/variation points, the product/variant mod-
els, constraints amongst features as graphical entities. Examples include
CBFM (cardinality-based feature modeling) [Czarnecki et al. 2005], CO-
VAMOF (ConIPF (Configuration in Industrial Product Families) Vari-
ability Modeling Framework) [Sinnema et al. 2004b], and Pure::Variants
[Beuche et al. 2004]. While CBFM and pure::variants are implemented as
an Eclipse plugins, COVAMOF is implemented as a set of Visual Studio
plugins.

Feature Representation

While the conceptual features are represented as graphical entities, there
is no explicit representation of concrete features. Pure::Variants and
CBFM use multiplicity in structure while COVAMOF uses choice models
to represent features and SPLs as modeling entities. Products are repre-
sented as decision models i.e., a variant is defined within the context of
an SPL.

Feature Composition

The descriptions of product/variant models are obtained in textual for-
mat such as XML and used to compose artifacts in solution space. While

3.3. Analysis of Feature Representation and Composition 41

Pure::Variants uses preprocessor mechanism at the level of implementa-
tion to include code belonging to concrete features, COVAMOF’s descrip-
tion profiles consist of actions to be taken in order to obtain a variant by
composition of components [Sinnema et al. 2004b].

Traceability

Out of these techniques pure::variants provides a connector (termed an
addin) to IBM Rational DOORS R© which is a family of requirements
definition and management solutions, aimed at supporting traceability
between requirements selected in a variant [Systems 2010], i.e., trace-
ability between feature model to a product/variant model. COVAMOF
provides what is called as COVAMOF Variability View which can be used
for traceability [Sinnema et al. 2004a]. There is no explicit consideration
of traceability in CBFM [Czarnecki et al. 2005].

2. Features as Language Entities

These are techniques that represent some or all of modeling entities in
textual format such as a domain-specific language. In these approaches,
the use of language representation of modeling entities does not per-
vade all aspects of modeling specification and product generation. Ex-
amples include Variability Specification Language (VSL) [Becker 2003],
AMPL (Asset Model for Product Lines) modeling language [Sinnema
et al. 2004b], Feature Description Language (FDL) [Deursen and Klint
2002], and Text-based Variability Language (TVL) [Boucher et al. 2010].

Feature Representation

The conceptual features are represented in terms of feature definitions and
operations at the level of a DSL. Various algebraic transformations may
be applied to features as language entities. The concrete features again
do not have an explicit representation. For example, VSL uses a general
meta-model of variability along with preprocessor inspired XML based
language descriptions. AMPL is used internally in COVAMOF modeling
to represent a product model in terms of mandatory and optional features,
feature parameters (selected from graphical front-end) and restrictions
(i.e., constraints). FDL represents all modeling entities as DSL constructs
and proposes feature diagram algebra to be used with these constructs.
TVL proposes to represent feature modeling entities with C-like syntax
[Boucher et al. 2010].

Feature Composition

The definitions of conceptual features have been proposed to be mapped
to artifacts such as Unified Modeling Language (UML) models using an
intermediate format (usually in XML) that transforms feature descrip-
tions to aggregation, associations, subclasses relations in UML [Becker
2003; Deursen and Klint 2002]. The UML models are used in generating
classes that represent the final application. The generated product/vari-
ant has no traceability link to the original feature model representing the

42 3. First-class Features

SPL. Feature composition has not been explored in VSL, FDL, and TVL
as all of them are at the proposal state while AMPL is used internally
and is not vital for composition of components.

Traceability

Out of these techniques only VSL considers traceability as a desirable
characteristic [Becker 2003], the rest of the techniques do not consider
any traceability properties described earlier.

3. First-class Architectural Variability

The feature modeling languages in this category differ from the second
category stated above by the fact that not only the use of modeling enti-
ties as language constructs pervades all stages of modeling including spec-
ification of SPLs and product models but the connection to implemen-
tation components are specified using special constructs in the language.
Examples of this type of modeling languages include Variability Modeling
Language (VML) [Loughran et al. 2008], and Koalish [Asikainen et al.
2003].

Feature Representation

The languages which enable first-class representation of architectural
variabilities represent all modeling entities as language constructs. In
VML e.g., an SPL, a variation point, a feature, constraints between fea-
tures as well as variation points are represented as language entities.
Furthermore, it contains references from variation points and features to
actual architectural components. Koalish language incorporates variabil-
ity into Koala components. While Koalish does not explicitly represent
features in terms of variation points and concrete features, like VML it
contains references to Koala components and establishes an explicit con-
nection between modeling and implementation via language constructs.

Feature Composition

In these techniques, composition of implementation components is car-
ried out using references from the modeling entities expressed in the
languages. Furthermore, implementation components are components
rather than features. While VML uses the concept of references and
actions [Loughran et al. 2008], which act as component activation and
component composition decisions, Koalish uses Kumbang configurator
and generates Koala description of products which is used to generate C
source files (a combination of make files, and .c and .h files) that can be
compiled into an executable.

Traceability

While developers of VML do not consider traceability originally [Loughran
et al. 2008], they are considering the implementation of trace-links [Zschaler
et al. 2009], but which traceability properties will be considered is un-
clear. Koalish itself does not provide traceability support but the Kum-
bang configurator used by it addresses traceability from requirements to

3.3. Analysis of Feature Representation and Composition 43

architecture and architecture to components [Asikainen et al. 2003], i.e.,
traceability properties (a) and (b) shown earlier in Figure 3.3 on page 35.

We see that there is a progression from representing feature modeling entities
as graphical entities, to representing some of the modeling entities at the level
of language, to representing all modeling entities as first-class language con-
structs. FDL, VSL, and TVL are based on the premises that (1) a language
representation is amenable to automatic processing of various kinds, (2) a lan-
guage representation enables managing variability in a uniform manner, and
(3) equivalent textual notations in the form of dedicated language constructs
enable scalability for feature models as well make them understandable to most
stakeholders.

We support these premises and approve the uniformity of notation, since using
a language representation it becomes possible to position both the modeling
and the implementation entities at the same level of abstraction. At the same
time, these techniques do not achieve what we believe to be another important
advantage of language representation which is to establish an implicit trace-
ability link to implementation components. In case of VML, this is achieved
to some extent using explicit references from the modeling entities to variation
points. Even in VML, the implementation entities are components rather than
features. Koalish achieves traceability to some extent but like VML implemen-
tation artifacts are components in Koalish rather than features.

Based on this analysis, we conclude that an explicit representation of feature
modeling entities at the level of language offers better opportunities than a
graphical representation towards achieving a unified perspective if instead of
components, feature implementation entities were represented at the level of
language along with feature modeling entities.

3.3.2 Feature Implementation Techniques

The techniques used for modularizing variability in solution space vary based
on the properties specified in Section 3.2.2. The fact that a specific code
fragment/program delta of given granularity belongs to a concrete feature is
expressed either using preprocessor directives, annotations, or as a separate
module that contains the said fragment based on the underlying modularity
mechanism/programming language. Static typing support is generally based
on type-checking provided in the underlying integrated development environ-
ment (IDE) such as Eclipse, or the type-checking in underlying programming
language. Dependence on order is based on whether features are added incre-
mentally or all at once such as in techniques that represent concrete features in
separate modules or as annotations respectively. In techniques in which order
of composition of concrete features cannot be determined a-priori, mechanisms
such as precedence operators may have to be used to indicate correct order.

44 3. First-class Features

Based on an already available classification [Lopez-Herrejon et al. 2005a] dis-
cussed above, we now distinguish various feature implementation techniques in
terms of representation and composition of feature domain entities.

1. Features in terms of Preprocessors and Annotations

In these techniques, the code belonging to different features is put inside
preprocessor directives or annotations and added to the source to be com-
piled depending on the features selected. Examples of such techniques
include #ifdef preprocessing [Spencer and Collyer 1992] and virtual sepa-
ration of concerns that uses colored annotations over Java code fragments
in the Eclipse IDE [Kästner and Apel 2009].

Feature Representation

While code fragments of a concrete feature are identified in terms of
directive identifiers or annotation names, there is no representation of
conceptual features in techniques using preprocessor directives.

The virtual annotations approach provides support for feature models
to which virtual annotations (that is Eclipse editor-based background
colors) are mapped and consistency is maintained between features in
the feature model and the virtual annotations, so that ad-hoc coloring of
code fragments is avoided. A maximum of 12 colors are repeatedly used
so that it is possible that multiple features are represented by the same
color [Kästner 2010]. Furthermore, modularity for concrete features is
emulated so that all code fragments belonging to a feature can be viewed
such that rest of the code is hidden in a Eclipse view called “views on
a feature”. Similarly, a product/variant model is emulated in terms of
“views on a variant” such that except the code fragments that belong
to selected features, the rest of the code is hidden [Kästner 2010]. The
views are editable in the sense that changes made to code fragments in a
view reflect in the original source code.

Feature Composition

The code belonging to different features is added to the source to be com-
piled depending on the features selected in a variant. Upon compilation
a specific variant is obtained. The composition is guided using configura-
tion scripts and other textual formats to indicate all the available features
as well the features selected in a variant.

In case of virtual annotations, colors are interpreted as conditional com-
pilation instructions [Kästner 2010] and code of a particular variant is
kept for compilation. While emulation of concrete features and variants
provide visual aid to a developer aimed at better comprehension of mul-
tiply colored code fragments, it is not clear what sort of programmatic
role they play in the feature composition process.

Traceability

3.3. Analysis of Feature Representation and Composition 45

The technique of virtual annotations has been proposed to support trace-
ability using views [Kästner 2010] which we identify as the third prop-
erty of traceability, namely traceability between SPL and product code
as views enable separating out code of a variant from that of SPL. Other
properties are not considered.

2. Features as Units of Modularity in a Given Modularity Mech-
anism In this category of feature implementations, features are repre-
sented using other modularity mechanisms. Any modularity representa-
tion that is capable of composing program deltas can be used to imple-
ment features (i.e., they can support the notion of features as optional
and/or incremental unit of functionality). Examples of this category of
techniques include implementing features in AspectJ via aspects [Kästner
et al. 2007], in ObjectTeams with teams and roles [Hundt et al. 2007;
Lopez-Herrejon et al. 2005a], in Jiazzi via atoms and units, in Scala via
traits, in Hyper/J via hyper-slices [Lopez-Herrejon et al. 2005a] and in
CaesarJ with aspects and roles [Mezini and Ostermann 2004].

Feature Representation

While concrete features are represented in terms of various modular-
ity representations such as aspects, teams and roles, atoms and units,
traits, and hyper-slices, none of them contain an explicit representation
of modeling entities. The specification of composition has to be given in
some format specific to the way feature are represented using the given
modularity representation [Hundt et al. 2007; Kästner et al. 2007; Lopez-
Herrejon et al. 2005a; Mezini and Ostermann 2004] and none of the tech-
niques consists of a general mechanism of specifying modeling entities as
it is possible with languages for feature modeling.

Feature Composition

When features are represented in terms of other modular entities, com-
position of such entities has to be modeled in such a way that it em-
ulates the composition of concrete features they represent. Since the
ability to add functionality (composed deltas together or with a base
program) is the focus, the rest of the concern-specific functionality re-
mains unused. Each modularity mechanism is in fact a representation
of a concern, e.g., aspects represent concerns that signify crosscutting
functionality [Apel 2007]. While aspects can aid in representing static
and dynamic crosscutting features, in an SPL where such features are
less in number compared to non-crosscutting features [Apel 2007; Mezini
and Ostermann 2004], many of the capabilities of aspects remain unused
[Kästner et al. 2007]. Similarly, modular entities called teams and roles in
ObjectTeams represent the concept of roles at the programming language
level [Herrmann 2007]. Traits in Scala are a modular representation of
reusable behavioral concerns [Ducasse et al. 2006; Scharli et al. 2003],
whereas atoms and units in Jiazzi are modular entities that capture the
essence of Java packages with external linking and separate compilation

46 3. First-class Features

abilities [McDirmid et al. 2001; Xin et al. 2004]. We can observe that
representing features is not the primary purpose of any of these modular-
ity mechanisms. To represent concrete features, the representation and
composition of each of these modular entities has to be adjusted which
introduces a level of indirection as it were in both the representation and
composition of concrete features.

The concrete features can also be implemented as hyperslices in Hyper/J
[Lopez-Herrejon et al. 2005a]. Hyper/J represents concerns at a level
of abstraction higher than that of individual concerns [Ossher and Tarr
2000b], or kinds of concerns. Its an implementation of multidimensional
separation of concerns (MDSOC). A software system in Hyper/J is im-
plemented with the idea that it can contain multiple concern dimensions
and these concerns can be separated by projecting individual programs of
the system by projecting their execution along concern hyperplanes [Os-
sher and Tarr 2000a;b]. Features can be implemented as hyperslices that
group all units implementing the feature [Lopez-Herrejon et al. 2005a].
While the idea of higher abstraction in MDSOC is appealing, there are
many drawbacks when the treatment of a individual concern such as fea-
tures is concerned. For example, Chitchyan et al. [Chitchyan et al. 2003]
found that in Hyper/J primary requirements, i.e., features, can not be
traced in the composed system and it is difficult to comprehend how the
composed system is affected when addressing additional requirements.

Traceability

None of the techniques above consider traceability explicitly, though
traceability approaches have been suggested for AspectJ and Hyper/J
[Clarke and Walker 2001].

3. Features as Explicit Language Entities

In this category of feature implementation techniques, concrete features
are implemented as language entities themselves as compared to other
two categories. Examples include the AHEAD tool suite [Batory 2004],
FeatureC++ [Apel et al. 2005] and FeatureHouse [Apel et al. 2009b].

Feature Representation

All the techniques specified above, treat features as refinements to base
classes. The feature-related code, i.e., the refinements, are stored in fold-
ers and the relations between features are emulated with a folder hierar-
chy. The fact that given program deltas belong to a feature is indicated
using layer constructs added to Java. The conceptual features are not
explicitly represented in AHEAD and FeatureHouse.

In addition to refinements stored in folder hierarchy, FeatureC++ also
provides support for XML-based description of an SPL. It contains an
external API that provides access to the feature model stored in XML
format and enables instantiating the SPL (i.e., generate variant). It pro-

3.3. Analysis of Feature Representation and Composition 47

vides checks to ensure that an SPL instance to be generated is valid based
on the feature model.

Feature Composition

The composition of concrete features represented as layers and class re-
finements is carried out using a textual description of features called
equation files. The equation files are also used to specify inclusion and
exclusion constraints. The equation file treats the folder hierarchy as a
feature model to determine whether features specified indicate a valid
variant. Given that a variant is valid, it is composed by adding refine-
ment code to base classes. AHEAD furthermore enables checking safe
composition of a given SPL, i.e., to determine whether all valid variants
can be compiled safely, by converting relation between features to propo-
sitional formulas and applying satisfiability solvers to them [Thaker et al.
2007].

FeatureC++ extends the concept of static composition to include dy-
namic composition of features from a single code-base [Rosenmüller et al.
2008b; 2009]. This is achieved by transforming all refinements of a class
(called refinement chain) to a delegation hierarchy using the decorator
pattern. Since refinements must consider ordering, instantiating an SPL
has to take into consideration the correct ordering of refinements before
transforming the refinement chain to corresponding delegation hierarchy.
Rosenmüller et al. have also presented an approach where an SPL con-
tains multiple inter-dependent SPLs [Rosenmüller and Siegmund 2010;
Rosenmüller et al. 2008a].

Traceability

Out of these techniques, only FeatureC++ achieves traceability between
feature models and implementations at both SPL and product/variant
level (i.e., traceability property (b) in Figure 3.3 on page 35) by using
XML-based description of an SPL at run-time [Rosenmüller and Sieg-
mund 2010; Rosenmüller et al. 2008a].

There is a progression in the feature implementation techniques from using pre-
processors and annotations for representing concrete features, to using other
modularity mechanisms for the same and representing them as language enti-
ties.

Based on this analysis, we conclude that using a language representation of
concrete features makes them explicit in the code. Compared to preprocessor-
based techniques, explicit language representation offers opportunities to sup-
port composition in a more streamlined manner. Between techniques that
represent concrete features in terms of other modularity mechanisms and those
that dedicate a specific representation such as refinement-based approaches,
the latter offer less convoluted and more direct semantics for composition. But
refinement-based approaches suffer problems some of which are representation-
specific such as hierarchical features, and other problems that we deem to be

48 3. First-class Features

related to the lack of explicit representation of the rest of the feature implemen-
tation entities apart from concrete features. For instance, lack of traceability
due to non-availability of explicitly represented SPLs and variants results in
lack of reuse and lack of support for run-time composition.

While there have been attempts to make modeling entities first-class in the
form of architectural variabilities [Loughran et al. 2008], similar attempts have
not been made toward modularizing concrete features as first-class entities.
All the implementation techniques, including those that represent features as
language entities focus specifically on concrete features, the rest of the feature
implementation entities as well as feature modeling entities are not explicitly
represented. In the following, as the second step of our solution, we propose
a language representation that integrates feature modeling and feature imple-
mentation entities in a language representation focused on raising their status
in a host language.

Toward a New Representation

The analysis of representation and composition of feature domain entities re-
veals that different techniques opt to represent different feature modeling and
implementation entities at various levels of abstraction depending on design
choices in these techniques. Furthermore, in both feature modeling and im-
plementation techniques, we notice that a language representation of various
feature domain entities, either as an external DSL or as a language extension,
offers explicit treatment of features with their own representation instead of an
indirect handling of required semantics.

We refer to the research questions we formulated in Section 3.2.4 on page 36.
Regarding the first question, we propose that following feature domain entities
should be explicitly represented at the level of language:

• In feature modeling entities, feature models of an SPL and it variants as
well as individual conceptual features should be explicitly represented.

• In the feature implementation entities, the exact counterparts of feature
modeling entities specified above should be explicitly represented.

Regarding the second question, we propose that the representation of these
entities be first-class. We explain what we mean by this in the next section.

3.4 Concept of First-class Features

In this section, we first elaborate the meaning of first-classness of entities in
programming language in general.

3.4. Concept of First-class Features 49

3.4.1 Nature of First-class Language Entities

The first-classness of certain entities in a given programming language indi-
cates the degree to which such entities can be addressed in different situations
using various expressions in the programming language and the extent to which
they can be manipulated, in some cases at different times during the execu-
tion of a program written in this language. The term first-class was coined by
Christopher Strachey in 1967 while describing the nature of procedures in AL-
GOL [Strachey 2000]. Procedures in ALGOL were deemed to be second-class
because they can appear in another procedure as an operator or as an actual
parameter but there are no other expressions involving procedures or whose
result are procedures (that is they cannot be used as return values).

The term first-class has later been used by many researchers to indicate in-
creased level of manipulation of certain representations in a programming lan-
guage. In some cases, attempt is made to raise the status of the representation
of specific concerns in the given programming language. Cointe showed that
classes can be implemented as first-class entities using meta-classes, giving
them a uniform and reflective definition [Cointe 1987].

Johnson and Duggan stated that continuations, entities that enable controlling
the execution order of computational steps, have been used in Scheme in a
variety of situations because of their first-class status and proposed to raise
stores, a version of computer memory, to first-class status in the GL program-
ming language so that they can be assigned as values of variables [Johnson
and Duggan 1988]. Ernst presented the concept of object sets, a collection of
objects of different classes, to be first-class entities in a language in which the
emphasis is on expressing the required primitives such that object sets can be
modified during their lifetime which would correspond to a change in a member
class [Ernst 2008].

Other researchers similarly indicate that giving an explicit and dedicated repre-
sentation for some concern aimed at exploring all possibilities related to that
concern is tantamount to making it first-class in a given programming lan-
guage, e.g., Shaw proposed to elevate component connectors, a representation
of interactions and connections amongst components, to be first-class entities
entitled to their own specification and abstractions [Shaw 1993].

We now combine the concept of first-classness of language entities with the idea
of language representation of feature domain entities. Our analysis pointed to
the fact that explicit and dedicated language representations are better than
other representations. But the language representation we came across could
be deemed to be passive in nature because not all required feature domain en-
tities are represented in these language representations and they do not present
the possibility of addressing feature domain entities in the program, increased
level of manipulation, and modifications during the life time of the program.
We believe that making the language representation of feature domain enti-
ties first-class would offer even better opportunities toward achieving unified

50 3. First-class Features

representation, composition, and traceability. We now extrapolate certain re-
quirements targeted at making the suggested feature domain entities first-class.

3.4.2 Requirements of First-class Representation

While first-class status of entities in a programming language enable better
usage and manipulation, when elevating features domain entities to first-class
status, we also have to integrate other facets that we found to be crucial in
our analysis toward merging feature modeling and feature implementation at
the same time providing support for traceability. Below, we enlist all facets of
such a representation as requirements to be fulfilled whenever features are to
be first-class. It is the combined treatment of these requirements that enable
features (and the rest of the feature domain entities) to be first-class.

1. First-classness in a Host Language Instead of using other mecha-
nisms to represent and compose features, features should be represented
as native first-class entities in the host language. This means that depend-
ing on the host language, feature domain entities should be represented
at the same level of abstraction as the entities that have maximum degree
of first-classness in the host language. A consequence of representation
at such a level of abstraction may be that feature domain entities can be
used not only as values that can be assigned to variables (discussed ear-
lier as a characteristic of first-class entities) but also be used to represent
instantiation.

2. Uniformity First-class features should represent conceptual and con-
crete features uniformly. More specifically, feature modeling and imple-
mentation entities should be represented by the same language entities.
That means, a first-class representation of an SPL represents the feature
model from the modeling perspective while at the same time it also repre-
sents the SPL at the level of implementation. A variant entity represents
product/variant model at the modeling level and at the same time it also
represents the variant from the feature implementation perspective. Us-
ing this variant entity, changes can be reflected to the product/variant
model as well as the actual variant code at the same time. A feature
entity represents a conceptual feature and its concrete counterpart si-
multaneously. The entities representing constraints become part of the
SPL entity and are used toward deriving a valid variant entity.

3. Subsumed Checking Semantics of the first-class features should be rich
enough to subsume safe composition of features. That means, as pro-
gramming language entities of their own right, various aspect of type
checking should be integrated as prerequisites toward safe composition of
features to obtain variants. An SPL entity should be checked so that the
underlying feature model is a valid feature model, e.g., it should not con-
tain a feature with two parents. A variant entity should be checked with
respect to its parent SPL (similar to decision models discussed earlier)

3.4. Concept of First-class Features 51

so that the variant entity contains exactly those features that are defined
in the SPL entity and the features chosen indicate a valid decision based
on relations and constraints. Similarly a feature entity is defined within
the context of an SPL entity and the reference of this feature entity are
checked to confirm that these uses refer to the original SPL entity.

4. Identity The identity of features should be retained throughout the life
cycle of an application to enable a more controlled manipulation of the
functionality of features. This requirements aims at the property of first-
class entities that they are manipulable at different times during the
execution of the program. This requirement also indicates that the iden-
tity of features that are composed to obtain a variant should not be lost
post composition. The identity requirement can be fulfilled using meta-
classes or metaprogramming based on what the host language supports
more readily.

5. Extensibility When implementing the four requirements stated above,
it is required, depending upon the host language, to extend its syntax and
semantics. New keywords indicating various feature domain entities need
to be added to host language syntax. Its semantics must be extended
so that it supports typing of various entities and provides mechanism to
retain the identity of various feature domain entities. This means that
a given host language should posses efficient means of language exten-
sion. This can be also be helpful toward integrating more capabilities of
features as they are discovered to their basic representation.

When feature domain entities are represented in a such a manner, we get
what we refer to as first-class features. First-class features indicate a first-
class representation of feature domain entities in a host language. In the next
section, we relate the concept of first-class features to our earlier discussion of
views on the mapping between problem and solution spaces.

3.4.3 Integrating the Views Using First-class Features

Earlier in Section 3.1.1 on page 28, we introduced the notions of conceptual
and concrete features and explained the divide between them in terms of the
dichotomy between problem space and solution space. Then, in Section 3.1.2
on page 28, we discussed the configuration view and the transformational view
on the mapping between problem and solution spaces favored by feature mod-
eling and feature implementation techniques respectively. We proposed and
elaborated on another view on this mapping in Section 3.2.3 on page 34, called
the traceability view, that requires both the configuration and transformation
knowledge in order to establish traceability paths between various feature do-
main entities.

We build on these concepts and explain how the requirements of first-class
features offer the opportunity to integrate these views. We illustrate this in

52 3. First-class Features

Problem Space Solution Space

Mapping

Feature Implementation

EntitiesDSL for Features

Unified Representation and

Composition as First-class

Entities

Feature Modeling Entities

Conceptual Features + Feature

Models of an SPL Including

Constraints and its Variants

Concrete Features + Concrete

Entities for an SPL and its

Variants along with the SPL

and Variant Implementations

Figure 3.6: Integrating Feature Domain Entities with First-class Representa-
tion

Figure 3.6 which shows that the requirements of first-class features can be
realized by integrating the representations of the concepts in problem space
with implementation artifacts in solution space.

This can be achieved using an internal DSL atop a host language. Such a DSL
would target domain-specific abstractions which in our case are the feature
domain entities and implement them at the same level of abstraction as the
entities with highest degree of first-classness in the host language. The implicit
mapping between problem space and solution space fulfills the uniformity re-
quirement as the same entity in this DSL represents both feature modeling and
feature implementation counterparts. Domain-specific concrete syntax of our
DSL would enable representing various domain entities, relationship between
them, as well as operations on them using a syntax that closely mirrors that of
the host language. Domain-specific checking in our DSL fulfills the subsumed
checking requirement by integrating type checking of feature domain entities
as type checking of DSL constructs.

We also propose to create an architecture around this DSL which is required
to ensure proper instantiation of various feature domain entities. For example,
when creating multiple variants using this DSL, we have to ensure that their co-
existence does not conflict with the natural execution of program as it happens
in the host language. This architecture would also take care of retaining the
identity of various feature domain entities so that they can be addressed at
different times during the execution of a program written in this DSL and they
can be modified in valid ways. In the next section, we describe our choices of

3.4. Concept of First-class Features 53

host language to complete the second step toward the solution to achieving the
unified perspective in FOSD.

3.4.4 Choice of Host Language

In the following, we describe which host language we choose to implement
first-class features in terms of requirements obtained earlier.

Java

Java is prolifically used in most of the feature modeling techniques (via UML
to Java code generation), as well as in the feature implementation techniques
in FOSD. Instead of enlisting them, we point out the only exceptions which
are COVAMOF [Sinnema et al. 2004b] implemented as Visual Studio plugins
targeting .NET platform, Koalish [Asikainen et al. 2003] generating C code in
feature modeling techniques, C-based #ifdef preprocessor [Spencer and Collyer
1992], FeatureC++ [Apel et al. 2005], and implementing features using traits in
Scala [Ducasse et al. 2006; Scharli et al. 2003]. We therefore choose Java as one
of the host languages to implement first-class features in. This would also give
us the opportunity to corroborate treatment of feature domain entities in Java
implemented as first-class features by comparing them with other Java-based
feature modeling and implementation techniques.

Ruby

Ruby is a dynamic programming language [RubyHome; Stewart 2001; Thomas
and Hunt 2000]. It has no compile-time and supports extensive metaprogram-
ming and unconventional paradigms (compared to Java) such as open classes
and modules that can be mixed-in (as opposed to super classes and interfaces
in Java) [Flanagan and Matsumoto 2008]. To our knowledge, there are no
feature implementation techniques in Ruby. Implementing first-class features
in Ruby would give us insights into how the difference in the execution model
and other capabilities affect the treatment of first-class features as opposed
to their implementation in Java and in turn give us better understanding of
core mechanisms in a host language that can be used to implement first-class
features.

In Chapters 4 and 5, we elaborate our implementation of first-class features in
Java and Ruby respectively as the third step toward the solution.

54 3. First-class Features

3.5 Summary

This chapter took a whirlwind tour of capabilities of features toward unearthing
their dual nature as conceptual and concrete entities. We found that most
FOSD techniques focus on feature modeling or feature implementation without
considering traceability properties. An explicit representation of a set of feature
domain entities at the level of language enables achieving a unified treatment
of all feature domain entities with implicit traceability. Moreover, dedicating
a representation that is focused at raising the status of feature domain entities
within a host language is better than implementing them indirectly in terms of
other modularity mechanisms. Such a representation would streamline compo-
sition as well. We extrapolated a set a requirements that would achieve such
representation of feature domain entities which we call first-class features. We
chose Java and Ruby as host languages to implement first-class features in. In
the next two chapters, we elaborate our implementations of first-class features,
first in Java called FeatureJ and then in Ruby called rbFeatures.

Chapter 4

FeatureJ

[...] when you actually sit down and code something, you
learn things that you didn’t get from thinking about them
in modeling terms [...] You realize that - oh - there are
other abstractions I can use that you only get from work-
ing with them.

Martin Fowler
in Agile Software Development Ecosystems

In this chapter we elaborate how the requirements of first-class features are
implemented in Java using the JastAdd extensible compiler system to obtain
FeatureJ. We first describe JastAdd’s extensibility mechanisms followed by im-
plementation details of FeatureJ including its syntax and semantics for feature
domain entities and its overall architecture.1

4.1 JastAdd- An Extensible Java Compiler

In this section, we elaborate the mechanisms available in JastAdd toward im-
plementing FeatureJ. Specifically, we explain JastAdd from the point of view
of how the domain-specific abstractions in FeatureJ can be implemented, how
JastAdd enables domain-specific concrete syntax for the same, and the ways
in which domain-specific checking is made possible in JastAdd.

1 This chapter shares material with the MCGPLE’08 paper ‘Features as First-class Enti-
ties - Toward a Better Representation of Features’ [Sunkle et al. 2008b], the technical report
‘Representing and Composing First-class Features with FeatureJ’ [Sunkle et al. 2009] and
the RAM-SE’10 paper ‘Using Reified Contextual Information for Safe Run-time Adaptation
of Software Product Lines’ [Sunkle and Pukall 2010].

55

56 4. FeatureJ

JastAdd is an aspect-oriented extensible compiler construction system [Ek-
man and Hedin 2007b;c; Hedin and Magnusson 2003]. It is based on the idea
that the abstract syntax tree (AST) of a program can be used as the main
data structure when implementing standard compiler analyses and adding new
analyses, hence the name Java ast Addition. It supports typed access meth-
ods for traversing the AST [Ekman and Hedin 2004b]. It enables the use of
both declarative and imperative programming techniques in implementing the
compiler [Ekman 2004]. The declarative specification of complier analyses is
achieved using Rewritable Reference Attribute Grammars (ReRAGs). The im-
perative programming is allowed using ordinary Java code which is woven into
AST nodes using aspects [Ekman and Hedin 2004a].

Over the period, concepts in JastAdd have been extended to include circular
ReRAGs that are used to implement a variety of metrics [Magnusson and Hedin
2007], declarative flow analysis which is used to implement innovative compiler
analyses such as dead assignment finding [Nilsson-Nyman et al. 2008], and
refactoring extension [Schäfer et al. 2009] which is used to implement various
refactorings to Java source code, etc. In the following, we elaborate precisely
those capabilities of JastAdd, which we use in implementing FeatureJ.

4.1.1 Object-oriented AST and Aspects

The most important characteristic of JastAdd is its use of the AST as the
main data structure. Any Java extension implemented using JastAdd contains
following parts: an abstract grammar that defines the structure of the AST,
behavior specifications that define the behavior of the AST nodes, a context-
free grammar that defines how text is parsed into ASTs, and an input program
written using the extension that reads the input file, runs a parser to build the
AST, compile it either by generating byte-code or transforming the AST to
Java files and compiling them [Ekman and Hedin 2007c]. This is illustrated in
Figure 4.1.

Nearly everything in JastAdd revolves around the AST, both figuratively and
literally. JastAdd treats the nodes in the AST as instances of Java classes
arranged in a subtype hierarchy [Ekman 2004]. We explain this with the help
of specifications of while statement in JastAdd.

Listing 4.1: JastAdd Abstract Grammar for while Statement
1 abstract Stmt ;
2 abstract BranchTargetStmt : Stmt ;
3 WhileStmt : BranchTargetStmt : := Condition : Expr Stmt ;

An AST class represents a nonterminal, a production, or a combination of
these two. JastAdd creates the subtype relations between the classes of the
AST depending on the left hand side of the production whereas subtree nodes

4.1. JastAdd- An Extensible Java Compiler 57

Abstract

Grammar

Behavior

using JastAdd

Aspects

Context- Free

Grammar

JastAdd

Parser

Generator

AST

Parser

Main

Figure 4.1: JastAdd Compiler Generation Architecture [Ekman and Hedin
2007c]

are generated using the right hand side. Starting with any node specified
as abstract in the abstract grammar, all AST nodes inherit from the type
ASTNode. Listing 4.1 results in the type hierarchy shown in Figure 4.2. This
enables generic AST traversals [Ekman 2004] using the generic getParent() and
getChild(int index) methods.

ASTNode<T extends ASTNode>

Stmt

BranchTargetStmt

WhileStmt

ASTNode<T> getParent()

T getChild(int i)

Expr getCondition()

Stmt getStmt()

Figure 4.2: Type Hierarchy for while Statement

JastAdd is independent of the parser used to generate the AST [Ekman and
Hedin 2004b]. Any parser generator can be used to create a parser so long as
it generates the same AST as expressed in the abstract grammar. For exam-
ple, CUP and JavaCC parser generators have been used to generate parsers
with an LALR parser grammar and LL(k) parser grammar respectively in Jas-
tAdd [Ekman and Hedin 2004b]. JastAdd uses the Beaver parser generator
(an LALR-based parser generator) to generate parsers for both Java 1.4 and
Java 1.5 compilers as well to represent other extensions. Listing 4.2 shows the

58 4. FeatureJ

parser grammar for the while statement which is used along with the abstract
grammar specified in Listing 4.1 to obtain AST node classes as shown in Figure
4.2.

Listing 4.2: Beaver Parser Generator Grammar for while Statement
1 Stmt statement = while_statement . w { : return w ; :} ;
2 WhileStmt while_statement =
3 WHILE LPAREN expression . e RPAREN statement . s
4 { : return new WhileStmt (e , s) ; :} ;

JastAdd supports static aspect-oriented specifications [Ekman and Hedin 2004a]
along with imperative Java code. All the behavioral additions including the
compiler analysis-specific code such as name and type analysis, error checking,
etc., is put together in JastAdd’s own aspect mechanism which is based on
AspectJ’s introduction and inter-type declaration mechanisms [Kiczales et al.
2001].

4.1.2 Rewritable Reference Attribute Grammars

In the following we first review JastAdd’s mechanism of RAGs followed by
ReRAGs which extend RAGs with a conditional rewrite system.

Reference Attribute Grammars

The reference attribute grammars (RAGs) is an object-oriented extension to
Knuth-style attribute grammars [Knuth 1990]. Attribute grammars are char-
acterized by the fact that each node in the AST has an attribute. The rela-
tions between different attributes are defined using equations. The attribute
evaluator in JastAdd computes the attribute values so that the AST becomes
consistently attributed. This is checked statically and any missing attributes
are requested to be defined. The attributes are defined as methods of classes
of AST nodes. An attribute is accessed by calling the method it represents
[Ekman and Hedin 2004a]. Such attribute evaluation may result in non-trivial
traversals of the AST where the same node is accessed many times. Therefore,
JastAdd caches the computed value of an attribute so that the same attribute
is not computed twice. JastAdd’s uses RAGs ubiquitously in its implementa-
tion of the Java compilers. For instance, whenever an access of an entity is to
be connected to its declaration it is done so using RAGs. There are two types
of attributes used in JastAdd, synthesized and inherited attributes as discussed
next.

4.1. JastAdd- An Extensible Java Compiler 59

Synthesized Attributes

A synthesized attribute of an AST node resides in the node itself. These at-
tributes can be accessed from a node’s ancestors. This way, the information can
be propagated upwards e.g., type information from an operand to its enclosing
expression [Ekman 2004]. The keyword syn denotes a synthesized attributes
and its equation is specified using the keyword eq as shown in Listing 4.3.
The keyword lazy indicates that value of this attribute is cached by JastAdd
[Ekman and Hedin 2007b].

Listing 4.3: A Synthesized Attribute in JastAdd
1 aspect UnreachableStatements {
2 syn lazy boolean Stmt . canCompleteNormally () = true ;
3 eq WhileStmt . canCompleteNormally () =
4 reachable () &&
5 (
6 ! getCondition () . isConstant () | |
7 ! getCondition () . isTrue ()
8) | |
9 reachableBreak () ;

10 . . .
11 }

Synthesized attributes act like virtual methods [Ekman and Hedin 2007c].
Listing 4.3 shows the definition of normal completeness of while statement
(see Java Language Specification (JLS), Section 14.20 Unreachable Statements
[Gosling et al. 2005]). The canCompleteNormally() attribute (which is imple-
mented as a method) returns true by default for the Stmt class whereas for
WhileStmt class, a definition is provided according to the JLS.

Inherited Attributes

The inherited attributes of an AST node reside in an ancestor of the node.
Such inherited attribute of node A defines the behavior of the corresponding
declaration of the same attribute in the subtree where a node of the same type
as A is the root [Ekman 2004]. The result of this is that inherited attribute
enable child nodes to obtain information about their context (position in the
AST, surrounding AST node, hosting type, etc.)

Listing 4.4 shows the definition of the reachable attribute for WhileStmt which
was used in Listing 4.3. The keyword inh indicates an inherited attribute and
the equation defines the reachable() attribute for each statement in the block of
a while statement. Such combined usage is evident in many places in JastAdd
where synthesized and inherited attributes are employed together as shown in
Listings 4.3 and 4.4 to move information around in the AST.

60 4. FeatureJ

Listing 4.4: An Inherited Attribute in JastAdd
1 aspect UnreachableStatements {
2 inh boolean Stmt . reachable () ;
3 eq WhileStmt . getStmt () . reachable () = reachable ()
4 && ! getCondition () . isFalse () ;
5 }

Context Dependent Rewrites

ReRAGs extend RAGs with the ability to rewrite certain nodes automatically
and transparently. Instead of the demand driven evaluation of attributes in
RAGs, which consists of evaluating an attribute when its value is read, ReRAGs
extends the basic evaluation scheme by enabling rewriting AST during attribute
evaluation.

The rewriting of a node is triggered by the first access of that node. Internally,
getting to any node (also for the first visit) takes place using the getChild(int
index) method, which is also used to trigger rewrites. The rewrite rules for
each node type are translated into a rewireTo() method that checks rewrite
conditions and returns the rewritten tree. A rewriteTo() method of a node
is called iteratively until all rewrite conditions are false. This results in a
rewritten subtree where the original node was the root [Ekman and Hedin
2004a]. Any latter accesses of the node view the rewritten node rather than
the original. When using ReRAGs, it is possible that a rewrite that alters
the tree structure affects an already computed attribute value, JastAdd caches
only those attributes that cannot be affected by later rewrites.

Listing 4.5: AST Rewrite Specification in JastAdd
1 rewrite N {
2 when (condition)
3 to

4 R {
5 . . .
6 return expression ;
7 }
8 }

A rewrite rule is specified using a condition that states when the rewrite is
applicable and the resulting tree. The rewrite rule application order and the
related tree traversals are defined based on relations between attributes [Ekman
2004]. ReRAGs therefore form a conditional rewrite system where conditions
and rules can utilize the contextual information in the AST using the attributes
[Ekman and Hedin 2004a]. E.g., in Listing 4.5, it is indicated that a node of type

4.1. JastAdd- An Extensible Java Compiler 61

N is to be replaced by a subtree with the root of the type R when condition
is true. JastAdd ensures that the rewrites are type consistent, which means
that regardless of the context of the node, the replacement of N by R results
in a type consistent AST with subtype relation preserved [Ekman and Hedin
2004a].

ReRAGs simplify compiler implementation in many ways such as semantic
specialization, e.g., differentiating between the qualified names during name
analysis [Schäfer et al. 2008], making implicit behavior explicit, e.g., implicit
constructors of classes in Java such that a class without a constructor is rewrit-
ten at the level of AST to a class with an implicit constructor, and replacing
concrete syntax with the intended semantics, e.g., overloaded binary addition
operator for strings is replaced by call to the concat() method [Ekman and
Hedin 2004a].

4.1.3 Name and Type Analysis in JastAdd

In this section, we review how name and type analysis for Java is carried out
in JastAdd using the AST is the main data structure.

Name analysis

The name analysis of Java source means binding each access of an entity
through its identifier to the declaration of the entity [Ekman and Hedin 2007c].
The name analysis aspects in JastAdd are implemented in Lookup*.jrag files
where * indicates separate .jrag files (where jrag extension indicates RAG-
based attributed specification in JastAdd) for name analysis of types, variables,
methods, and constructors. The problem of name analysis is divided into two
subproblems:

Visibility and Scopes of Entities The visibility rules in Java must handle
various scopes as well as their combinations such as inheritance and
nested scope and qualified access to remotely defined entities. These
rules are implemented using a combination of inherited and synthesized
attributes. While the inherited attributes lookup* define the scope of an
entity, the synthesized attributes return entities defined in that scope.
This is illustrated in Listing 4.6. Lines 2 and 3 in Listing 4.6 declare
the inherited attribute lookupVariable for Stmt and Block classes. Lines
4-10 define this attribute for Block class which calls a method localVari-
ableDeclaration(String name). This method is defined as a synthesized
attribute in Lines 11-17 and returns the set of local variable declarations
in a Block with the given name of a local variable. Lines 18 and 20 declare
and define method declaresVariable() which returns true if a VariableDec-
laration has the same name as the given name which is being looked-up.

62 4. FeatureJ

Recall that the block of while statment is obtained through getStmt()
method and local variables can be looked up by calling lookupVariable()
method of that block.

Listing 4.6: Name analysis of Local Variables in while Statement
1 aspect VariableScope {
2 inh SimpleSet Stmt . lookupVariable (String name) ;
3 inh lazy SimpleSet Block . lookupVariable (String name) ;
4 eq Block . getStmt (int index) .
5 lookupVariable (String name) {
6 VariableDeclaration v = localVariableDeclaration (←↩

name) ;
7 if (v != null && declaredBeforeUse (v , index))
8 return v ;
9 return lookupVariable (name) ;

10 }
11 syn lazy VariableDeclaration

12 Block . localVariableDeclaration (String name) {
13 for (int i = 0 ; i < getNumStmt () ; i++)
14 if (getStmt (i) . declaresVariable (name))
15 return (VariableDeclaration) getStmt (i) ;
16 return null ;
17 }
18 syn boolean Stmt . declaresVariable (String name)
19 = false ;
20 eq VariableDeclaration . declaresVariable (String name)
21 = name () . equals (name) ;
22 }

Meaning of Names As seen earlier, JastAdd uses a parser generator to gen-
erate a parser which is used along with the AST generated by JastAdd
itself. While a parser generator builds general Access nodes (each denot-
ing an access of a named entity) for all named entities, JLS states that
these should be classified based on their context (see JLS [Gosling et al.
2005], Section 6.5). This is treated as a case of semantic specialization as
stated earlier, for which context-dependent rewrites are used for differen-
tiating between names based on their context, i.e., where the nodes that
define the named entities are situated in the AST [Schäfer et al. 2008].

Type analysis

The type analysis of Java source means to resolve types of various entities
including conversions between typed entities and verify their correctness ac-
cording to the JLS [Ekman and Hedin 2007c]. The type analysis aspects in
JastAdd are implemented in TypeAnalysis.jrag, TypeHierarchyCheck.jrag, and
TypeCheck.jrag files. The problem of type analysis in JastAdd is divided into
two subproblems:

4.1. JastAdd- An Extensible Java Compiler 63

Computing the Type of Expression Java contains explicitly and implic-
itly declared types. Classes and interfaces are examples of explicitly
declared types for which, the declaration nodes are treated as type repre-
sentations. Primitive types and arrays are examples of implicitly declared
types for which, JastAdd adds AST nodes as part of the attribute eval-
uation [Ekman and Hedin 2007c].

Determining the Subtype Relation The subtype relation is implemented
in JastAdd by looking up the direct supertypes transitively. As all types
are represented as AST nodes, such lookup is implemented as a traversal
of AST using reference attributes that bind type declaration to their
direct supertypes [Ekman and Hedin 2004a].

At the core of both the name and type analysis in JastAdd is the basic design
principle of using the AST as the only data structure. Using the AST as the
only data structure requires that types are represented by the nodes in the
AST and the type of an expression is represented by a reference attribute that
refers to the appropriate type node. Similarly, names are resolved based on
looking up subtrees of the nodes in the AST that introduce a scope such as a
while statement.

J
a
v
a
 1

.4
 F

ro
n
te

n
d

Java 1.4 to .class

Transformation

Java 1.4 Syntax

Specifications for JFlex

Scanner Generator and Beaver

Parser Generator

J
a
v
a
 1

.4

B
a
c
k
e
n
d

Java 1.4 Semantics

ReRAG Specifications for Name

and Type Analysis and

Checking, Modifiers and Access

Control, Exception Handling,

Reachability, Definite

Assignment, etc.

Figure 4.3: Java 1.4 Compiler using JastAdd

64 4. FeatureJ

4.1.4 JastAdd Implementation of Java Compilers

In this section, we review how JastAdd puts together abstract and parser gram-
mars, the AST and the parser, and all the compiler analyses to implement Java
1.4. Following this, we review how JastAdd demonstrates its extension capa-
bility by extending the Java 1.4 compiler to Java 1.5 compiler.

Java 1.4 Compiler

The Java 1.4 compiler in JastAdd is implemented as a combination of a frontend
and a backend as shown in Figure 4.3 on the previous page. The arrows with
filled triangles indicate that semantic component uses the syntactic component
and later semantic component is used by byte-code generation. A set of Java
files are input to the frontend which performs lexing, parsing, name and type
analyses as well as other analyses and error checking, while the responsibility
of the backend is to transform the AST into a set of .class files.

Scanner and parsers for Java 1.4 source are obtained using the JFlex scanner
generator and Beaver parser generator respectively. As described earlier, while
Beaver parser generator uses the JFlex scanner generator, JastAdd interfaces
with the Beaver parser generator to build an AST from Java 1.4 source using the
abstract grammar and the generated parser. Any syntactic errors are caught
and reported during parsing itself. When there are no syntactic errors, various
analyses are performed on the generated AST.

Listing 4.7: Error Checking in Java 1.4 Frontend of JastAdd
1 aspect ErrorCheck {
2 public void ASTNode . collectErrors () {
3 nameCheck () ;
4 typeCheck () ;
5 accessControl () ;
6 exceptionHandling () ;
7 checkUnreachableStmt () ;
8 definiteAssignment () ;
9 checkModifiers () ;

10 for (int i = 0 ; i < getNumChild () ; i++) {
11 getChild (i) . collectErrors () ;
12 }
13 }
14 }

The basic entry point to all compiler analyses in the Java 1.4 compiler imple-
mentation of JastAdd is the ErrorCheck aspect shown in Listing 4.7. The entire
AST is traversed using collectErrors() method. Depending upon a Java lan-
guage entity and its corresponding specification in the JLS, the AST node that
represents this entity provides an implementation for zero or more of methods
in the collectErrors() method.

4.1. JastAdd- An Extensible Java Compiler 65

Listing 4.8: Name Checking Class Instance Creation Expressions

1 aspect NameCheck {
2 public void ClassInstanceExpr . nameCheck () {
3 super . nameCheck () ;
4 if (decls () . isEmpty ())
5 error ("can not instantiate " + type () . typeName () +
6 " no matching constructor found in " +
7 type () . typeName ()) ;
8 else if (decls () . size () > 1 && validArgs ()) {
9 error ("several most specific constructors found") ;

10 for (Iterator iter = decls () . iterator () ;
11 iter . hasNext () ;) {
12 error (" " +
13 ((ConstructorDecl) iter . next ()) . signature ()) ;
14 }
15 }
16 }
17 }

JastAdd contains a ReRAGs specification of each of the methods called in the
collectErrors() method. There are .jrag files NameCheck.jrag, TypeCheck.jrag,
AccessControl.jrag, ExceptionHandling.jrag, UnreachableStatements.jrag, Def-
initeAssignment.jrag, and Modifiers.jrag in the Java 1.4 compiler implementa-
tion in JastAdd that contain one or more related aspects. These methods
in turn invoke name analysis, type analysis, and other required functionality
defined in the rest of aspect in other .jrag files.

Listing 4.9: Checking Access Control in Class Instance Creation Expressions

1 aspect AccessControl {
2 public void ClassInstanceExpr . accessControl () {
3 super . accessControl () ;
4 if (type () . isAbstract ())
5 error ("Can not instantiate abstract class "

6 + type () . fullName ()) ;
7 if (! decl () . accessibleFrom (hostType ()))
8 error ("constructor " + decl () . signature ()
9 + " is not accessible") ;

10 }
11 }

As an example, consider the AST node ClassInstanceExpr which represents
class instance creation expressions in Java using the new keyword. The ClassIn-
stanceExpr class contains nameCheck(), typeCheck(), and accessControl() meth-
ods that mirror specifications in the JLS related to class instance creation ex-
pressions (see JLS [Gosling et al. 2005], Section 15.9). We explain each of the
nameCheck(), accessControl(), and typeCheck() methods of ClassInstanceExpr
in the following. Note that similar mechanisms are use in error checking nodes

66 4. FeatureJ

of the entire AST, where attribute values for specific nodes are computed once
when called first and then for subsequent queries if any, the cached values are
returned.

Listing 4.8 shows nameCheck() method of ClassInstanceExpr in the aspect
NameCheck defined in the NameCheck.jrag file. The attribute type() in Line 5
uses type lookup mechanism to find the node of TypeDecl or its subclasses using
the access in the class instance expression, e.g, given new T(); T is the access,
the declaration of which is returned by the type() attribute. The attribute
decls() in Line 4 on the other hand, returns the declarations of constructor T()
for type T.

Lines 4-15 in Listing 4.8 check that (a) there is a constructor matching con-
structor T(), and if not, instantiation is not allowed and (b) there is exactly one
constructor in T that matches the signature of T() in the expression new T();.

The accessControl() method ensures that the new keyword is not used with
respect to an abstract class constructor (Lines 4-6) and that the expression
new T(); is not using a constructor that is not accessible from the current type
(Lines 7-9) where the expression new T(); is situated as shown in Listing 4.9.

Listing 4.10: Type Checking Class Instance Creation Expressions
1 aspect TypeCheck {
2 public void ClassInstanceExpr . typeCheck () {
3 if (isQualified () && qualifier () . isTypeAccess ()
4 && ! qualifier () . type () . isUnknown ())
5 error ("*** The expression in a qualified

6 class instance expr must not be a type name") ;
7 if (isQualified () && ! type () . isInnerClass () &&
8 ! ((ClassDecl) type ()) . superclass () . isInnerClass ()
9 && ! type () . isUnknown ()) {

10 error ("*** Qualified class instance creation can only

11 instantiate inner classes and their

12 anonymous subclasses") ;
13 }
14 if (! type () . isClassDecl ()) {
15 error (" Can only instantiate classes , which "

16 + type () . typeName () + " is not") ;
17 }
18 typeCheckEnclosingInstance () ;
19 typeCheckAnonymousSuperclassEnclosingInstance () ;
20 }
21 }

The typeCheck() method of ClassInstanceExpr in Listing 4.10 ensures that
(a) if the class instance creation expression is qualified, then it must refer to
inner member classes or their anonymous subclasses, (b) if it not qualified,
then it must refer to a class (for both (a) and (b), see JLS [Gosling et al. 2005],
Section 15.9.1). Furthermore, the typeCheckEnclosingInstance() method (Line

4.1. JastAdd- An Extensible Java Compiler 67

18) checks the compilation errors related to determining the correct enclosing
instances and the typeCheckAnonymousSuperclassEnclosingInstance() method
(Line 19) checks compilation errors related to the class instance expression
occurring in a static context (see JLS [Gosling et al. 2005], Section 15.9.2).

According to the JLS, the semantics of class instance creation expressions
need not directly consider exception handling, reachability conditions, definite
assignments, and modifier checking which means that exceptionHandling(),
checkUnreachableStmt(), definiteAssignment(), checkModifiers() are not de-
fined in ClassInstanceExpr. All AST nodes similarly implement specific meth-
ods for checking a Java program for compilation errors. The source for the
implementation of Java 1.4 and 1.5 compilers in Java actually contain com-
ments specifying which JLS specification is being implemented. Using declar-
ative form of JLS specifications, JastAdd maintains a very high compliance to
the JLS [Ekman and Hedin 2007c]. Note that the order of method calls in the
aspect ErrorCheck in Listing 4.7 is not important as the attribute evaluation
is demand-driven as well as cache supported [Ekman and Hedin 2007b;c].

Extra libraries can be specified as .jar files to the frontend. It contains the
functionality to load classes from .jar files which are used in various analyses.
When there are no semantic errors, the AST can be input to the backend.
The backend is implemented as an extension of the frontend. It extends the
frontend and contains aspects for transforming each AST node to its byte-code
equivalent which is written to a .class file. These .class files can be interpreted
with the java.exe interpreter.

Java 1.5 Compiler

The frontend and backend in Java 1.5 compiler in JastAdd are implemented
as extensions to Java 1.4 frontend and backend. The Java 1.5 implementation
in JastAdd is shown in Figure 4.4. The arrows with filled triangles indicate
how each component is used. Java 1.5 extensions such as enums, enhanced for
statement, autoboxing, varargs, static imports, and generics with wild cards
are implemented by extending pre-existing AST nodes, or adding new nodes
to AST when required. Listing 4.11 is an example of how existing analyses are
extended using aspect refinements.

The JLS requires that enum types can not be instantiated using the new key-
word (see JLS [Gosling et al. 2005], Section 8.9). The expressions containing
the new keyword are represented in JastAdd by the class ClassInstanceExpr.
In order to enforce additional constraint on the enum types, the nameCheck
method of ClassInstanceExpr in the aspect NameCheck is refined as shown in
Listing 4.11.

The Java compiler javac in J2SE version 5.0 (implementation of Java 1.5)
internally generates a class for an enum type. JastAdd’s implementation of
enums is represented by EnumDecl which extends ClassDecl. The fact that

68 4. FeatureJ

J
a
v
a
 1

.4
 F

ro
n
te

n
d

J
a
v
a
 1

.4

B
a
c
k
e
n
d

Java 1.5 to .class

Transformation

Java 1.5 Syntax

Specifications for JFlex

Scanner Generator and Beaver

Parser Generator

Java 1.5 Semantics

Enums, Enhanced For

statement, Generics,

Autoboxing, Static Imports etc.

J
a
v
a
 1

.5
 F

ro
n
te

n
d

J
a
v
a
 1

.5

 B
a
c
k
e
n
d

extension

Figure 4.4: Java 1.5 Compiler using JastAdd

internally a class is generated based on an enum type is implemented using
rewrites in Java 1.5 compiler implementation in JastAdd as shown in Listing
4.12.

Listing 4.11: Extending Name Checking to Accommodate Enum Types

1 aspect Enums {
2 syn boolean TypeDecl . isEnumDecl () = false ;
3 eq EnumDecl . isEnumDecl () = true ;
4 syn boolean BodyDecl . isEnumConstant () = false ;
5 eq EnumConstant . isEnumConstant () = true ;
6 refine NameCheck public void

7 ClassInstanceExpr . nameCheck () {
8 if (getAccess () . type () . isEnumDecl () &&
9 ! enclosingBodyDecl () . isEnumConstant ())

10 error (‘ ‘ enum types may not be instantiated explicitly←↩
’’) ;

11 else

12 NameCheck . ClassInstanceExpr . nameCheck () ;
13 }
14 }

Lines 5-32 in Listing 4.12 indicate that when no constructor has been specified

4.1. JastAdd- An Extensible Java Compiler 69

for an enum type, a default private and synthetic constructor with two param-
eters including p0 of String type and p1 of int type is generated (indicating the
name and the value of the enum constant) with a call to superclass constructor
super(p0,p1). This class is used by Java 1.5 backend to emit proper byte-code.

Listing 4.12: Using Rewrites to Generate Internal Classes for Enum Types

1 aspect Enums {
2 rewrite EnumDecl {
3 when (! done ())
4 to EnumDecl {
5 if (noConstructor ()) {
6 List parameterList = new List () ;
7 parameterList . add (
8 new ParameterDeclaration (new TypeAccess ("java.lang" , "←↩

String") , "p0")) ;
9 parameterList . add (

10 new ParameterDeclaration (new TypeAccess ("int") , "p1"))←↩
;

11 addBodyDecl (
12 new ConstructorDecl (
13 new Modifiers (new List () . add (new Modifier ("private")←↩

) . add (new Modifier ("synthetic"))) ,
14 name () ,
15 parameterList ,
16 new List () ,
17 new Opt (
18 new ExprStmt (
19 new SuperConstructorAccess (
20 "super" ,
21 new List () . add (
22 new VarAccess ("p0")
23) . add (
24 new VarAccess ("p1")
25)
26)
27)
28) ,
29 new Block (new List ())
30)
31) ;
32 }
33 else {
34 transformEnumConstructors () ;
35 }
36 addValues () ;
37 return this ;
38 }
39 }

70 4. FeatureJ

Listings 4.11 and 4.12 show that the enum type extension is implemented by (a)
adding an AST node EnumDecl (which is added using the abstract grammar of
Java 1.5), (b) refining pre-existing analyses as required, and (c) using rewrites
to generate internal classes if required. Other Java 1.5 specific extensions are
similarly implemented in JastAdd Java 1.5 compiler using a combination of
these techniques.

4.1.5 Extending JastAdd’s Implementation of Java

In this section, we elaborate the standard ways of adding language features to
Java using JastAdd.

Our objective is to point out specific manner in which new functionality per-
taining to the extensions is accommodated in JastAdd and which are also useful
in implementing feature domain entities as required in FeatureJ. We enlist the
same in the following:

Extending Java Types Whenever functionality of types in Java is to be ex-
tended or new kinds of types are to be added to Java, they can be repre-
sented as subclasses of TypeDecl or its subclasses in the JastAdd AST.
For instance, enum types and generic types [Ekman and Hedin 2007c],
non-null types [Ekman and Hedin 2007a] are all represented as subclasses
of TypeDecl and its subclasses.
Another candidate for extending TypeDecl and its subclasses is domain-
specific language extensions to Java [Ekman and Hedin 2004b]. For in-
stance, in order to create a DSL for Matrix computation, matrices can
be represented by a type in JastAdd by extending TypeDecl or its sub-
classes. The Matrix type would be a built-in type in such case and can
reuse functionality and existing ways of implementing typed extensions
to Java using JastAdd as described in the preceding section. This cor-
responds to the concept of implementing domain-specific abstractions as
language entities [Czarnecki 2004].

Extending Name and Type Analysis and Error Checking Whenever an
extension demands customized error checking, it can be implemented
atop JastAdd Java compilers such that existing error checking analyses
are refined and new analyses can be added as shown earlier in case of
enum types (cf. Section 4.1.4 on page 67). Boustani and Hage have
extended the Java 1.5 analyses in JastAdd to include extended type in-
ference for better error diagnostic and error messages for generic method
invocations [Boustani and Hage 2009]. Unlike other standard Java com-
piler implementations, JastAdd’s analyses are modular and extensible
[Ekman and Hedin 2007b]. Error checking can be implemented on per
node basis and whenever required, can be refined. This ability is also be-
ing utilized for run-time assertion checking for modeling annotations in
Java Modeling Language (JML) [Haddad and Leavens 2008]. Similarly,

4.1. JastAdd- An Extensible Java Compiler 71

support for multiple inheritance with new language constructs such as
requires is provided [Malayeri 2008] in CZ language. The core implemen-
tation is based on extended name and type analysis and error checking
to accommodate multiple inheritance by extending JastAdd’s analyses
(specified in the presentation slides accompanying the paper).
In case of DSLs, domain-specific checking [Czarnecki 2004] can be im-
plemented as an extension of name and type analysis and error checking
of the host language. The interaction of domain-specific entities repre-
sented as types in JastAdd with regular Java types can be safeguarded
by extending JastAdd’s analyses.

AST Transformation of the Extension Source to Java Whenever it is
required to generate new classes from the existing Java source either
for internal compiler usage (such as in the case of enum types shown
earlier in Listing 4.12 on page 69), or explicitly, it is desirable to use
JastAdd’s conditional rewrite system. For instance, ContextJ which a
context-oriented programming extension to Java uses JastAdd’s AST
transformation capabilities using rewrites to generate classes for its layer
constructs [Appeltauer et al. 2010]. Similarly, if the extension demands
additional classes to be generated when the original AST is processed,
JastAdd’s rewrite system can be used for this purpose.

In JastAdd, a new language feature is built based on existing AST hierarchy.
All of the Java 1.5 extensions are implemented with subclasses of existing AST
nodes [Ekman and Hedin 2007b;c]. Other Java-specific extensions are simi-
larly implemented by JastAdd developers [Ekman and Hedin 2007a; Nilsson-
Nyman et al. 2008] and other researchers [Boustani and Hage 2009; Malayeri
2008]. Combined with the implementations of non-standard language features
[Ȧkesson et al. 2010; Appeltauer et al. 2010; Avgustinov et al. 2008; Haddad
and Leavens 2008; Hedin et al. 2010] atop JastAdd Java 1.4 and 1.5 compilers,
the JastAdd-based Java extensions consistently exhibit the same pattern of
extensibility as discussed above.

4.1.6 JastAdd as the Compiler Construction System of Choice

As seen in the preceding sections, JastAdd provides a variety of concepts that
are quite helpful in representing extensions to Java 1.4 and 1.5 compilers. While
the initial learning curve may be steep due to the sheer number of the concepts
involved, a developer can soon get comfortable with JastAdd as particular
facets of extension can be implemented in specific ways. In the following, we
elaborate why we preferred to use JastAdd instead of other extensible compiler
construction systems:

Extensions at Both Syntactic and Semantic Levels While IDE-specific
compiler implementations such as Eclipse Java Development Tools (JDT)

72 4. FeatureJ

may provide suitable APIs for additional compiler analyses, they are
less suited for language extensions that affect all parts of the host lan-
guage. Source to source translators for Java similarly provide support
only for syntactic extensions and do not support semantic extensions
e.g., MetaBorg [Bravenboer and Visser 2004], Java Syntactic Extender
[Bachrach and Playford 2001], and Jakarta Tool Suite [Batory et al.
1998]. The problem with these tools is the lack of context-sensitive trans-
lation capability [Ekman and Hedin 2007c]. Furthermore, error checking
is performed on the translated code (from the extended source to Java
source) which results in alignment mismatch between errors in the ex-
tended source and the translated source. Other approaches provide sup-
port on the semantic level but not at the syntactic level, e.g., OpenJava
[Tatsubori et al. 2000] which uses a class-based macro system to imple-
ment a meta-object protocol in which semantic analyses are extended
using metaobjects. Although this idea is quite novel in enabling manip-
ulation of Java entities at various times during execution, it does not
provide support for syntactic extensions. JastAdd on the other hand,
enables extremely modular and intuitive syntactic extensions (separated
into lexical and parsing components as shown in Figures 4.3 on page 63
and 4.4 on page 68) as well modular semantic extensions based on Jas-
tAdd aspects and ReRAGs.

Automated Scheduling of Compiler Analyses While there are extensi-
ble compiler construction systems that enable both syntactic and se-
mantic extensions such as e.g., Polyglot [Nystrom et al. 2003] and JaCo
[Zenger and Odersky 2001], they require manual scheduling of compiler
analyses. For instance, while the AspectBench compiler for AspectJ was
first implemented in Polyglot, it was re-implemented in JastAdd and the
developers noted that the new implementation was half the size, twice as
fast, modular (with better localization of concerns), supported compos-
able extensions, and provided automated scheduling of complex compiler
passes [Avgustinov et al. 2008].

Complete Implementation of Java 1.4 and Java 1.5 Compilers JastAdd
is backed-up by compiler implementations of Java 1.4 and Java 1.5 which
serve not only as an excellent source of examples but also prove the ease
brought by novel idioms used in JastAdd. In case of large software such
as extensible compiler construction system, it is often quite difficult to
assess what happens where in the entire source code. How to achieve
a particular task whether it is syntax or semantics related is difficult to
fathom. With JastAdd’s complete implementation of Java 1.4 and 1.5
compiler, one has to only accustom oneself with the basic concepts and
see their implementation in the source code for Java 1.4 and 1.5 compilers.
This makes the task of compiler extension quite easy and streamlined.

All the characteristics of JastAdd specified above come into play when imple-
menting FeatureJ as we will explain in the next section.

4.2. FeatureJ Language Internals 73

Utilizing JastAdd Mechanisms for First-class Features

The focus of Section 4.1 was to investigate JastAdd’s abilities and various
mechanisms available in it toward implementing first-class features. We have
elaborated the standard ways in which extensions and internal DSLs can be
implemented in Java using JastAdd. We use JastAdd’s way of representing
extensions by extending types with extension to the AST and corresponding
extensions at syntactic level to represent the domain-specific abstractions and
their syntax in FeatureJ. Similarly, we use JastAdd’s mechanisms of name
and type analysis and error checking as well as its conditional rewrite system
to implement domain-specific checking and overall semantics of FeatureJ. We
elaborate how this is done starting with the next section.

4.2 FeatureJ Language Internals

FeatureJ is an internal DSL implementation of first-class features in Java, im-
plemented using JastAdd’s implementation of Java 1.4 and 1.5 compilers. Fea-
tureJ uses domain-specific abstractions which are feature domain entities, cre-
ates a domain-specific concrete syntax for them, and provides domain-specific
checking in terms of checking validity and correct compilation of variants. In
the following sections, we elaborate each of these and then discuss the archi-
tecture that makes it possible for multiple variants as different versions of a
Java program to co-exist and being acted upon at the same time.

4.2.1 Feature Domain Entities as JastAdd Types

As discussed earlier in Section 4.1, one of the ways in which JastAdd’s exten-
sibility features are utilized is by implementing new extensions as subclasses
of TypeDecl node in the AST. Based on our discussion in the last chapter (cf.
Section 3.4.3 on page 51), we need to represent feature domain entities in terms
of semantically richest constructs in the host language. In Java these are types.

While it is controversial whether classes and the class type in Java are first-class,
the Java Language Environment white paper specifies arrays to be first-class
entities [Gosling and McGilton 1996]. More specifically, they are called first-
class language objects, which have actual typed representation also available
for run-time access implying that objects and classes are considered first-class
in Java. Arrays are represented as subclasses of ClassDecl in the JastAdd rep-
resentation, and as seen in Figure 4.5, ClassDecl is itself a descendent of the
abstract class TypeDecl. We similarly implement the feature domain entities as
descendants of the TypeDecl node, which in JastAdd parlance means that fea-
ture domain entities are implemented as types. Figure 4.5 illustrates the type
hierarchy of various feature domain entities. This type hierarchy is expressed
through the JastAdd abstract grammar specification as shown in Listing 4.13.

74 4. FeatureJ

TypeDecl

ASTNode

FeatureDecl

FeaturePLorVariantDecl FeatureVariableDecl

ReferenceType

FeaturePLDecl FeaturePLVariantDecl

ClassDecl InterfaceDecl

Figure 4.5: Type Hierarchy of Feature Domain Entities in FeatureJ

Listing 4.13: Abstract Grammar for Feature Domain Entities in FeatureJ
1 abstract FeatureDecl : TypeDecl ;
2 abstract FeaturePLorVariantDecl : FeatureDecl ;
3 FeaturePLDecl : FeaturePLorVariantDecl : :=
4 featurePLInnerExprs : FeatureExpr∗
5 FPLCrOuterAccessExpr : FeatureExpr

6 [FPLConstraintExpr : FeatureExpr] ;
7 FeaturePLVariantDecl : FeaturePLorVariantDecl : :=
8 productLineUse : Access <ID : String>
9 fVarSelectExpr : FeatureExpr ;

10 FeatureVariableDecl : FeatureDecl : := <ID : String> ;

Note that FeaturePLDecl and FeaturePLVariantDecl are subclasses of an ab-
stract class FeaturePLorVariantDecl. We present an SPL and a product variant
in this way because both represent feature models, the first representing the
base feature model for an SPL and the second representing a feature model
selection i.e., a product/variant model. The contents of a feature model and
a product/variant model are represented through various feature expressions
which are represented by the class FeatureExpr which itself subclasses the Jas-
tAdd abstract class Expr for all Java expressions.

4.2. FeatureJ Language Internals 75

The FeatureVariableDecl class represents a feature entity. In order to under-
stand how we represent various code fragments that can be indicated to be part
of one or more features, consider Figure 4.6, which shows various structures in
a Java program that form a containment hierarchy.

Classes represented by ClassDecl

Body Declarations (e.g., methods) represented by BodyDecl

Blocks (e.g., method body) represented by Block

Statements represented by Stmt and

inner blocks (e.g., block in for

statement) represented by Block

Figure 4.6: Containment Hierarchy of Language Constructs in Java

The body declarations in a class or interface that are part of a feature are
represented by the class FeatureAsMemberInClassesDecl and FeatureAsMem-
berInInterfacesDecl respectively. In JastAdd, a block is treated as a statement
of statements, as shown in Figure 4.6 and expressed in Lines 5 and 6 in Listing
4.14. To represent a statement or set of statements as well as a block to be
part a feature, we use the FeatureAsMemberInMethodDecl class.

Listing 4.14: Representing Feature Entities based on Containment Hierarchy
1 FeatureAsMemberInClassesDecl : BodyDecl : :=
2 featureAsMemberOfClass : FeatureContainment ;
3 FeatureAsMemberInInterfacesDecl : BodyDecl : :=
4 featureAsMemberOfInterface : FeatureContainment ;
5 abstract Stmt ;
6 Block : Stmt : := Stmt ∗ ;
7 FeatureAsMemberInMethodDecl : Stmt : :=
8 featureAsMemberOfMethod : FeatureContainment ;

With these three classes it is possible to represent one or more body declara-
tions inside a class (including fields, methods, constructors, and inner class-
es/interfaces, etc.), one or more body declarations inside an interfaces (includ-
ing constants, method signatures, inner classes/interfaces, etc.), and one or
more statements, and blocks inside methods, constructors, and block state-
ments (such as for and while) to be part of features thus covering a range of
granularity from entire classes to individual statements. In order to indicate
that a class itself is part of a feature, we use the convention of containing all
its body declarations inside that feature. We show the concrete syntax for all
the above constructs in the next section.

76 4. FeatureJ

4.2.2 Syntactic Extension

In order to simplify the discussion of the domain-specific concrete syntax adopted
by FeatureJ, we make use of an example SPL. This is an SPL of notepad ap-
plications. It is based on the idea that variants of notepad application can be
generated by selecting various formatting features. It is illustrated in Figure
4.7. It consists of all relations and operators generally found in a feature model
[Kang et al. 1990].

Notepad

Product

Line

Font Color

New Open

Create

EditFile

Save

Format Help

FontColor BGColor

ClipBoardPaste

Cut Copy

Figure 4.7: Notepad Product Line

As discussed in the previous section, an SPL is represented by the node Fea-
turePLDecl. At the level of syntax, the Notepad Product Line (NPL) is rep-
resented as shown in Listing 4.15. A productline type is used to represent the
FeaturePLDecl at the level of syntax (similar to using class for a ClassDecl).
The productline type identifier signifies the actual SPL being mirrored at the
syntactic level.

A productline type consists of features and constraints blocks in which features
and constraints of the base feature model are enlisted. The relations between
a single parent node and its children is specified in each expression inside
the features block. The all, more, and one keywords signify the and, or, and
alternative relations between the children of a given node. The optionality of
a feature is indicated by a question mark ’?’. Altogether, the productline type
notepadPL contains 16 features which mirror the features and the relations
and constraints between them shown in Figure 4.7. The top level features
and the relation between them are enlisted outside the features block. This is
followed by the constraints block in which, inclusion and exclusion constraints
in the base feature model can be specified using special operators <−> and
>−< respectively.

The selection of features based on the relations and constraints is represented
by the node FeaturePLVariantDecl as discussed in the preceding section. At

4.2. FeatureJ Language Internals 77

Listing 4.15: FeatureJ Syntax for productline Type Definition
1 productline notepadPL {
2 features {
3 File : more(Create , Save) ,
4 Create : more(New , Open) ;
5 Edit : more (ClipBoard , Paste) ,
6 ClipBoard : more(Cut , Copy) ,
7 Format : more(Font , Color) ,
8 Color : one (FontColor , BGColor) ,
9 Help

10 }
11 a l l (File , Edit , Format , Help ?)
12 constraints {
13 FontColor <−> Font ,
14 Save <−> New

15 }
16 } ;

the level of syntax, it is indicated by a variant type. A variant type is always
defined within the context of a productline type by specifying productline type
name along with the variant type name.

Listing 4.16: FeatureJ Syntax for variant Type Definition - I
1 variant notepadPL simpleNotepad {
2 File = [Create and Save] ,
3 Create = [New] ,
4 Edit = [ClipBoard] ,
5 ClipBoard = [Cut and Copy] ,
6 Format = [Font] ,
7 Help

8 } ;

With this convention, it is indicated that the variant type simpleNotepad is a
variant of the SPL represented by the productline type notepadPL. A variant
type essentially indicates selection between the children for each parent node
in the base feature model. Instead of using a comma to indicate the selected
children, we use the keyword and for the same. This mirrors the natural way
of selecting features, such as when a user wants to say that he needs to se-
lect features b and c from a parent feature a. The equality operator ‘=’ is
used to indicate which children a parent feature consists of in this variant.
The simpleNotepad variant type thus consist of 11 out of 16 features from the
notepadPL productline type as shown in Listing 4.16.

Similarly, Listing 4.17 shows another variant type colorNotepad of the product-

78 4. FeatureJ

Listing 4.17: FeatureJ Syntax for variant Type Definition - II
1 variant notepadPL colorNotepad {
2 File = [Create] ,
3 Create = [New] ,
4 Edit = [ClipBoard] ,
5 ClipBoard = [Cut and Copy] ,
6 Format = [Color] ,
7 Color= [FontColor]
8 } ;

line type notepadPL consisting of 10 out of 16 features in the base feature
model. Any other variant type definition indicating another selection from
the base feature model represented by the productline type notepadPL can be
expressed in the same manner.

While the productline and variant types indicate an SPL and its variants, the
code fragments in this application, that belong to one of the features specified
in the features block are expressed using the feature type definition as shown
in Listing 4.18.

Listing 4.18: A Feature Containing an Inner Class inside a Class
1 public class Notepad extends JFrame {
2 feature notepadPL Cut {
3 class EditCut implements ActionListener {
4 public void actionPerformed (ActionEvent e) {
5 String selText=text . getSelectedText () ;
6 if (selText==null)
7 return ;
8 StringSelection stringSel=
9 new StringSelection (selText) ;

10 board . setContents (stringSel , stringSel) ;
11 text . replaceSelection ("") ;
12 }
13 }
14 }
15 . . .
16 }

We use the convention that while the features of a productline type are de-
clared in the features block, their definitions are represented by a feature type
definition.

A feature type definition is represented internally by the nodes FeatureAsMem-
berInClassesDecl, FeatureAsMemberInInterfacesDecl, and FeatureAsMember-
InMethodDecl as discussed in the preceding section. All three nodes represent

4.2. FeatureJ Language Internals 79

a feature type at a varying granularity as discussed earlier. Accordingly, Listing
4.18 shows the definition of feature type Cut that contains a body declaration
(in this case an inner class that implements the ActionListener interface to
emulate cut operation) inside the Notepad class.

Listing 4.19 shows another definition of the feature type Cut. Notice that while
a feature of a productline is declared once, definitions for it can be provided as
many times as required, to assign all code fragments that contain the func-
tionality expressed by the feature type. Furthermore, a feature type is always
defined within the context of productline type, which must be the same as the
productline type where this feature was declared. Other definitions for the Cut
feature as well as other feature types are similarly defined in the application
classes of the notepad application.

Listing 4.19: A Feature Containing Statements in a Constructor
1 public class Notepad extends JFrame {
2 private JMenuItem cut ;
3 public Notepad () {
4 feature notepadPL Cut {
5 cut=new JMenuItem ("Cut Ctrl+X") ;
6 }
7 . . .
8 }
9 }

Both the productline and variant type definitions occur as body declarations,
which means that they must be defined inside a class. It must be noted that
like simpleNotepad and colorNotepad, many other variant types may be defined
in a single program. Each variant type essentially denotes a version of the
complete notepad application with application specific classes based on the
selected features. In order to invoke a method of any of the application classes,
i.e., Notepad, TextFilter, and NotepadGUI classes which make up the notepad
application, the syntax shown in Listing 4.20 can be used.

Line 12 in Listing 4.20 shows that to call the method run() of the NotepadGUI
class of the variant type simpleNotepad, it is indicated that the variant type is
a variant of the productline type notepadPL and furthermore, the NotepadGUI
is a class with its specific version from the variant type simpleNotepad. With
this syntax an instance of NotepadGUI is obtained and method run() is called
on it. Alternatively, an identifier for the instance can be specified instead of
directly specifying method name. In this case, the instance can be used to call
specific methods with regular Java syntax.

Considering that the NotepadGUI class of the variant simpleNotepad has a
run() method as shown in Listing 4.21, upon its execution a notepad GUI
application starts that is the simpleNotepad variant.

80 4. FeatureJ

Listing 4.20: FeatureJ Syntax for Generating and Executing a variant

1 public class Launcher{
2 productline notepadPL {
3 . . .
4 } ;
5 variant notepadPL simpleNotepad {
6 . . .
7 } ;
8 variant notepadPL colorNotepad {
9 . . .

10 } ;
11 public static void main (String args []) {
12 notepadPL : : simpleNotepad NotepadGUI−>run () ;
13 notepadPL : : colorNotepad NotepadGUI−>run () ;
14 }
15 }

Listing 4.21: Method to Initialize the Notepad
1 public class NotepadGUI {
2 public void run () {
3 Notepad n=new Notepad () ;
4 n . setDefaultCloseOperation (JFrame . EXIT_ON_CLOSE) ;
5 n . setSize (300 ,200) ;
6 n . setVisible (true) ;
7 }
8 }

Having acquainted ourselves with the concrete syntax, in the next section, we
elaborate how we support the domain-specific checking in FeatureJ.

4.2.3 Name/Type Analysis and Error Checking in FeatureJ

As discussed earlier on page 61, the name analysis in Java aims at establishing
the visibility and scope of various Java entities and ascertaining the meaning of
names as they appear in different syntactic contexts, and on page 62, the type
analysis in Java consists of computing the type of an expression and determin-
ing subtype relations. From the perspective of productline, variant, and feature
types, we need to establish their visibility and determine the interrelationship
between them.

We use a combination of AST node attributes and an external data structure
called FeatureDeclsCollection to store all information related to productline
type as well as the variant and feature types that are defined in its context. Note

4.2. FeatureJ Language Internals 81

that the purpose of the external data structure is to store information about
feature domain entities in an interconnected manner. Every feature type knows
which productline it belongs to and its relative position within the feature model
of this productline type. Similarly, every variant type knows which productline
type it belongs to and productline type keeps record of how many variant types
are defined based on it. We make a design choice that as soon as the nodes
representing these types are visited, the external data structure is populated
with all the relevant information using specialized attributes and these nodes
are rewritten so that latter traversals of the AST see pure Java AST while all
the information related to feature domain entities is preserved and is available
to use separately. Toward this end, we use JastAdd’s rewrite mechanism. We
elaborate this in the following.

Name/Type Analysis of Feature Domain Entities

As the variant and feature types are defined within the context of a productline
type, we need to establish the visibility and scope of this productline type and
with it, we can ascertain the meaning of the names of the variant and feature
types defined within its context.

Listing 4.22: Abstract Grammar for productline and variant Types inside Classes
1 abstract FeatureMember : BodyDecl ;
2 LocalFPLDeclMember : FeatureMember : :=
3 productLineDecl : FeaturePLorVariantDecl ;
4 LocalFVariantDeclMember : FeatureMember : :=
5 variantDecl : FeaturePLorVariantDecl ;

The actual definitions of productline and variant types in FeatureJ take place in-
side a class, as body declarations. These body declarations are represented us-
ing the AST node classes LocalFPLDeclMember and LocalFVariantDeclMem-
ber as shown in Listing 4.22.

The class LocalFPLDeclMember indicates a productline type definition that
occurs inside a class. This node is rewritten as shown in Listing 4.23, so
that the complete structure of the productline type is stored in the external
data structure. Using this information the productline type is scoped in such
a way that it is visible application-wide. We do not restrict the scope of the
productline type to a class or a package, because it is referred in both the variant
and feature type definitions which can occur across classes and packages of the
same application.

The class LocalFVariantDeclMember indicates a variant type definition that
occurs inside a class, which is rewritten so that the complete structure of the
variant is stored in the external data structure. A variant type is scoped inside

82 4. FeatureJ

Listing 4.23: Using Rewrites to Transform a productline Type
1 rewrite LocalFPLDeclMember {
2 to EmptyBodyRewrite {
3 // i n i t Fea tu r eDec l sCo l l e c t i on f d c l
4 . . .
5 // populate product l i n e in fo rmat ion
6 FeaturePLDecl fpdl=(FeaturePLDecl) getproductLineDecl () ;
7 fpdl . setFeaturebag () ;
8 fdcl . getFeatureDeclsMap () .
9 put (fpdl . name () , fpdl . getFeaturebag ()) ;

10 fdcl . getPlConstraintMap () .
11 put (fpdl . name () , fpdl . constraints ()) ;
12 return new EmptyBodyRewrite () ;
13 }
14 }

the class where it is declared and can be referred to in other classes using an
import statement that specifies the class of this variant type.

The rewrites are also applied to FeatureAsMemberInClassesDecl, FeatureAs-
MemberInInterfacesDecl, and FeatureAsMemberInMethodDecl nodes that rep-
resent feature type definitions inside a class, an interface, and methods, con-
structors, block structures respectively. Listing 4.24 shows how a FeatureAs-
MemberInClassesDecl node is rewritten that contains exactly one body decla-
ration.

Listing 4.24: Using Rewrites to Transform a feature Type Definition in a Class
1 rewrite FeatureAsMemberInClassesDecl {
2 when(((featureAsMemberInClassesCont)
3 getfeatureAsMemberOfClass ()) . getNummemberBodies () == 1)
4 to BodyDecl {
5 // i n i t f e a t u r e s that conta in t h i s body d e c l a r a t i o n
6 . . .
7 // s e t f e a t u r e containment r e c u r s i v e l y
8 featureAsMemberInClassesCont .
9 getmemberBodies (0) . setWrapperFeatures (features) ;

10 featureAsMemberInClassesCont .
11 getmemberBodies (0) . visitFineGNodesToWrap (features) ;
12 return featureAsMemberInClassesCont . getmemberBodies (0) ;
13 }
14 }

When rewriting a feature type definition in a class, for each AST node that is
contained within the feature type definition, the name of the feature is stored
in the AST node. This is done recursively. For instance, recall that in Listing

4.2. FeatureJ Language Internals 83

4.18, we showed an inner class EditCut contained in the definition of feature
type Cut. When rewriting this feature type definition, the AST node repre-
senting the inner class EditCut as well as all the AST nodes representing its
contents are attributed with the name of feature type which is Cut. The same
process is applied when rewriting FeatureAsMemberInInterfacesDecl and Fea-
tureAsMemberInMethodDecl nodes. In each case the information about the
feature types is distributed recursively to contents of body declarations and
blocks contained in them.

Syntax for Multiple, Nested, and Alternative Feature Containments

Since the FeatureJ implementation of the NPL does not contain situations
such as multiple features containing same code fragment, nested feature con-
tainments, and alternative feature containments we describe the syntax and
the treatment for the same using a general example as shown in Figure 4.8.

class Foo {

 feature FooPL A, FooPL B {

 ...

 }

}

class Foo {

 feature FooPL A {

 ...

 feature FooPL B {

 ...

 }

 }

}

Class Foo {

 feature FooPL A {

 public int someMethod() {

 ...

 }

 }

 feature FooPL B {

 public int someMethod() {

 ...

 }

 }

}

(a) (b) (c)

Figure 4.8: Containments for Multiple, Nested, and Alternative feature types

When multiple feature types contain same code fragments as shown in Figure
4.8 (a) in which feature A and feature B of productline FooPL, the code frag-
ments are included in avariant of FooPL when at least one feature is selected
in that variant among these features.

When feature containments are nested as shown in Figure 4.8 (b), code frag-
ments of feature B are included in a variant only if feature A is also selected along
with feature B in that variant. Any level of nesting is possible because rewrites of
FeatureAsMemberInClassesDecl, FeatureAsMemberInInterfacesDecl, and Fea-
tureAsMemberInMethodDecl are carried out at the moment they are accessed
thus rewriting of these AST nodes operates from outermost level to the inner-
most.

Two unique situations may occur that may lead to compile-time errors:

1. As shown in Figure 4.8 (c) feature A and feature B contain the same
method but possibly different implementations. If feature A and feature

84 4. FeatureJ

B are not indicated to be alternative in the definition of productline FooPL
and they get selected in a variant then method someMethod() is multiply
defined. If feature A and feature B are indicated to be alternative in the
definition of productline FooPL but still selected in a variant then this
variant is not valid according to productline FooPL.

2. In Figure 4.8 (b), feature B is selected but not feature A in a variant.
This will result in not including the code fragments in feature B because
A is not selected. If this is not the desired behavior, it may lead to
incomplete implementation and may require reassessing the containments
or the design of the code base of productline FooPL.

In both these cases, FeatureJ provides support in the form of checks that
a variant is valid and no compile-time error may occur in the program to be
generated that represents this variant. After applying rewrites to all productline,
variant, and feature types in a FeatureJ application, we get the program AST
that represents the original Java application, one or more SPLs of which are
to be constructed, and the external data structure. The information in the
external data structure is used for implementing domain-specific error checking
while the information about which feature a given AST node belongs to is
stored in the AST is used in generating variants. We explain the domain-
specific error checking in the next section, followed by the architecture used to
generate variants.

Error Checking in FeatureJ

The error checking in FeatureJ consists of two steps. First, for each variant
type, determine it is a valid variant based on the productline type. This ensures
that the selection of feature types from the productline type is according to the
relations and constraints between the feature types that leads to the definition
of this variant type. Second, the information stored in the AST nodes about
which feature types contain them, is used in relating possible compilation errors
to these features. We explain both in the following.

The information stored in the external data structure mimics the tree structure
of the productline and variant types with parent-child relationships between
various feature types. With this information, it is possible to check that a
variant type is a valid variant according to various relations and constraints
between the feature types declared inside the productline type. For instance,
consider the variant type simpleNotepad in Listing 4.16 which is based on the
productline type notepadPL shown in Listing 4.15. The feature types Create
and Save are selected from the parent feature type File. This is checked against
the more operator specified in productline type notepadPL for the feature type
File. The more operator is implemented as a method that checks that one or
more of the feature type File’s children are selected. Furthermore, the feature
type Save requires the feature type New, according to the first constraint in the

4.2. FeatureJ Language Internals 85

constraints block of the notepadPL productline type. Like relation operators,
constraints are checked through a method that ensures that if the feature type
T that requires feature type T’ is selected in a variant type, then the feature
type T’ must also be selected otherwise a compilation error is reported.

In order to ensure that a valid variant of an SPL in FeatureJ would compile
without errors, we extend the error checking methods in JastAdd for all AST
nodes. Since a FeatureJ application can contain multiple productline and variant
type definitions, we choose to consider this situation when implementing the
error checking in FeatureJ. We separate the errors in FeatureJ to variant-specific
and productline-specific errors. We basically distinguish between those code
fragments in a FeatureJ program that are contained in features and those that
are not.

The rationale behind this distinction is that when a compilation error originates
in the code fragments that are contained in one or more features, these errors
will be present in the actual variants to be generated based on variant types
in which these features are selected. Such compilation errors are referred to
as variant-specific errors. These errors are reported by specifying the names of
those variant types along with the features selected in them that contain code
fragments where the compilation errors originated.

Furthermore, note that not all code fragments in an application are contained
in features. The code fragments that are not contained in any features can be
assumed to make up the base program, i.e., these code fragments will be present
in any variant to be generated irrespective of which features are selected in the
corresponding variant types. The compilation errors that originate in the base
program are referred to as productline-specific errors. These errors are reported
by specifying the name of the productline type and location.

When an error originates in code fragments contained in one or more features,
but none of these features are selected in any of the variant types defined in the
FeatureJ program, then such errors are ignored. Again, the rationale behind
our design in error reporting is that such errors will not affect the proper
execution of any variant types defined in the program and therefore they need
not be considered. In the current implementation of FeatureJ, errors of this
kind are not reported.

Recall that for each AST node class in JastAdd, implementation of one or more
of the error checking methods are provided depending on corresponding JLS
specifications [Gosling et al. 2005] (see the aspect ErrorCheck 4.7 on page 64
and examples of error checking methods 4.8 to 4.10 on pages 65–66 for AST
node class ClassInstanceExpr). We need to extend these error checking meth-
ods in such a way that we can distinguish between and report the productline-
and variant-specific errors separately as they occur. For this, we use the in-
formation in each AST node about the features it is contained in as discussed
on page 82 (In the explanation of Listing 4.24). To get the information about
productline type these features are declared in and which variant types they
are selected in, we use the information stored in the external data structure as

86 4. FeatureJ

Listing 4.25: Reporting variant-specific NameChecking Errors for ClassIn-
stanceExpr

1 aspect FeatureSCErrorReporting {
2 public void ClassInstanceExpr . nameCheck_ContainedSelected
3 (String variantID , ArrayList<String> inFeatures) {
4 super . nameCheck () ;
5 if (decls () . isEmpty ())
6 error ("In the variant " + variantName + " " +
7 "can not instantiate " + type () . typeName () +
8 " no matching constructor found in " +
9 type () . typeName () + " in " + inFeatures) ;

10 else if (decls () . size () > 1 && validArgs ()) {
11 error ("In the variant " + variantName + " " +
12 "several most specific constructors found") ;
13 for (Iterator iter = decls () . iterator () ;
14 iter . hasNext () ;) {
15 error (" " + ((ConstructorDecl) iter . next ()) .←↩

signature ()
16 + " in " + inFeatures) ;
17 }
18 }
19 }
20 }

discussed on page 80. We subject the program AST of a FeatureJ program to
error checking through a method called featureSafelyComposeCheck() whose
responsibility is to separate the calls to error reporting methods based on our
distinction between feature contained and non-contained code fragments and
consequently errors that are variant-specific and productline-specific.

The error() method in JastAdd adds the error message to a list stored in
the Program node and adds error messages originating in any AST nodes to
this list. In order to customize the error reporting, we create alternate meth-
ods for each AST node that specify whether the error message should indi-
cate it is a variant-specific or productline-specific error. Listing 4.25 shows the
nameCheck ContainedSelected() method of ClassInstanceExpr. It is called for
a given ClassInstanceExpr node when the node is contained in one or more
features that are selected in the variant type whose name is variantID. If
the node contains an error, then variant-specific errors are recorded as in-
dicated in Lines 6-9 and 11-16. This also enables us to specify which fea-
tures are broken as shown in Lines 9 and 16. The default implementation
of the error() method in JastAdd also adds the location information. Ad-
ditional versions of nameCheck() method include one method that reports
errors in nodes that are contained but are part of features that are not se-
lected in a variant and another method in which a node is not contained in

4.3. FeatureJ Architecture 87

a features thus making it a productline-specific errors. All AST nodes con-
tain these three versions of methods that make up error checking in Jas-
tAdd. For instance, in the node ClassInstanceExpr, * ContainedSelected(),
* ContainedNotSelected(), and * NotContained() methods are included for
FeatureJ error reporting where * is each one of the nameCheck(), typeCheck(),
and accessControl() methods.

In this way, using the information stored in the external data structure, Fea-
tureJ is able to specify informative error messages that include the kind of error,
which features contain the node where the error originates and the location in
the original FeatureJ source files.

4.3 Architecture for First-class Features in FeatureJ

In the preceding sections, we explained the FeatureJ language internals in-
cluding the syntactic and semantic extensions of the Java compiler in JastAdd
that enable integrating domain-specific concrete syntax and domain-specific
checking related to feature domain entities. A consequence of a first-class rep-
resentation of feature domain entities is that multiple productline and variant
types may be defined and referred to at the same time. In case of Java, this
has important implications. Given a FeatureJ application, which is basically a
Java application with definitions of one or more productline, variant and feature
types, generating multiple variants implies that there will be different versions
of the same set of classes of the application for each variant to be generated.
This situation is depicted in Figure 4.9.

In order to address multiple versions of the same set of Java classes, we need to
overcome the hurdle of Java class-loading conflicts, which we elaborate next.

4.3.1 JVM and Class-loading

In Java, an application is executed using Java Virtual Machine (JVM). A
JVM is an abstract computing machine. Similar to real machines, it has an
instruction set and enables manipulation of various memory areas at run-time.
A JVM provides platform-independent method of executing Java programs. It
knows nothing of the Java programs it executes, rather it understands only the
.class file format. The .class file format is hardware- and operating system-
indepependent binary format. A .class file contains JVM instructions also
called byte-codes and a symbol table with other auxiliary information necessary
for execution of a Java program [Lindholm and Yellin 1999]. The Java class-
loading in JVM is a process of finding the binary representation of a class or
interface type with a specific name and creating a class or interface from that
binary representation. Such a class or interface is introduced into the run-time
state of the JVM, i.e., linked, so that it can be executed. The process of Java

88 4. FeatureJ

Notepad Application

class Notepad extends JFrame

class TextFilter extends FileFilter

class NotepadGUI

class Launcher

Productline notepadPL
variant simpleNotepad

variant colorNotepad

Versions of Notepad

Application Classes specific

to the simpleNotepad

variant

Versions of Notepad

Application Classes specific

to the colorNotepad

variant

Class Notepad extends JFrame

class TextFilter extends FileFilter

class NotepadGUI

Class Notepad extends JFrame

class TextFilter extends FileFilter

class NotepadGUI

Figure 4.9: Multiple Variants in a FeatureJ Program

class-loading is highly idiosyncratic. Particularly, there are following notable
aspects of Java class-loading:

Class loaders In JVM, each and every class is loaded by an instance of
java.lang.ClassLoader class and its subclasses. This class uses a dele-
gation model to search classes and resources. Each instance of a Class-
Loader class has a parent class loader. When locating classes and re-
sources, a ClassLoader instance delegates the search to its parent class
loader before attempting to find the class or resource itself. The class-
loading process begins with the bootstrap class loader which loads the
classes of Java platform including classes in rt.jar. This is followed by
extension classes which are located as .jar files in the Java extensions
directory. Finally, the classes defined by developers and located in other
.jar files are loaded using the classpath environment variable. When a
class is loaded, all classes it references are loaded recursively. A class is
loaded once and then cached by the JVM to ensure that its byte-code
does not change.

Class/Interface Names and Namespaces In the JVM, a class type is
uniquely determined by the combination of the class name and the class
loader. The execution of Java byte-codes can be visualized as a set
of classes partitioned into separate namespaces [Gosling and McGilton
1996]. The Java security features ensure that when a class is loaded from
a location either from a local file system or a network location, it is placed
into its private namespace associated with its origin. When a class ref-

4.3. FeatureJ Architecture 89

erences another class, it is first looked up in the namespace of the local
system and then the namespace of the referencing class. Classes imported
from different places are separated from each other. Using the delegating
class loaders makes it possible to maintain namespace separation while
sharing a common set of classes [Liang and Bracha 1998].

From the situation shown in Figure 4.9, it is clear that we need to take care of
multiple versions of the same set of SPL classes. Based on the discussion above,
we employ a solution in which we generate variant-specific classes in different
locations on the file system and load them when required using separate class
loaders using Java reflection. Each variant type is associated with an AST
which represents feature selection specific to it. All variant-specific ASTs are
obtained from the main program AST and transformed to individual sets of
.class files using the JastAdd backend.

public class Notepad extends JFrame {
 ...
 class FormatFontColor implements

 ActionListener {

 public void actionPerformed(ActionEvent e) {

 JTextPane selected = new JTextPane();

 Color c = JColorChooser.

 showDialog(null, ``Font color'',

 Color.BLACK);

 text.setForeground(c);

 }

 }

 ...
}

public class Notepad extends JFrame {
 ...

 // No definition for FormatFontColor

 // class

 ...

}

variant colorNotepad variant simlpeNotepad

Figure 4.10: Different Notepad Classes per variant Type

For instance, consider the versions of class Notepad from the simpleNotepad
variant type and colorNotepad variant type. While the Notepad class that is
part of variant simpleNotepad does not consist of the inner class FormatFont-
Color, the Notepad class that is part of variant type colorNotepad does. The
variant-specific classes are generated by first creating an AST that represents
the variant type. This is illustrated in Figure 4.10.

These two classes and all other classes that comprise the variant types defined in
a FeatureJ program are generated in different folders on the file system where
a FeatureJ program is being executed. The default directory used by FeatureJ
for this purpose is the temp directory of the operating system. Inside the temp
directory, FeatureJ creates folders that correspond to variant type names. For
instance, in the ongoing example, two directories called simpleNotepad and
colorNotepad are created under the temp directory. Under each of these di-
rectories, a subdirectory structure is created that corresponds to the package

90 4. FeatureJ

hierarchy of the original application, in this case the Notepad application. Var-
ious classes pertaining to a variant are placed according to their locations in
the package.

4.3.2 Variant Composition and Generation Architecture in FeatureJ

Notice that we have excluded the Launcher class from the variant-specific ap-
plication classes in Figure 4.9. The Launcher class is what we call an entry
point for a FeatureJ application. After starting a FeatureJ application with the
Launcher class specified as an application main, internally, FeatureJ launches
another process to actually execute the application with the variant types de-
fined in it.

The responsibility of loading variant-specific classes as well as obtaining in-
stances of these classes is given to a class called PLVariant. Similarly, two
other classes PL and Feature provide access to the underlying productline and
feature types. Since data can no be shared between processes, we re-parse the
main program and obtain the main AST once at run-time irrespective of the
number of productline and variant types defined. The structural information
stored in the external data structure is made available to specific instances of
the PL, PLVariant, and Feature classes based on which productline, variant,
and feature types they are used to represent. We call classes PL, PLVariant,
and Feature as meta-classes in the sense that they are used to manipulate
underlying productline, variant, and feature types respectively, as we explain
shortly.

FeatureJ application initiation by executing the application main and deploying
various variants using a separate process are the responsibilities of the FeatureJ
application container. The application container acts as platform from which
variants are generated and executed. This is illustrated in Figure 4.11. The
arrows in Figure 4.11 indicate general flow of control. With this design, it is
possible to differentiate between variants generated by composing features at
compile-time and at run-time as described below:

Variant composition at compile-time When a variant is composed stati-
cally, the variant AST is generated after creating a folder hierarchy for its
.class files as discussed earlier. The .class files generated from the AST
are stored in the PLVariant instance for this variant type as a pair of qual-
ified class/interface name and a class Class object obtained by loading
the .class file. An object of any SPL class is obtained using reflection and
can be used as a regular object even though it is variant-specific.
An excerpt of the code shown in Listing 4.20 is presented in Listing 4.26.
Using rewrites as discussed earlier in Section 4.2, this syntax is trans-
formed into an equivalent code shown in Listing 4.27. Note that Line 3
in Listing 4.26 obtains a NotepadGUI object based on a constructor with
no arguments. If the constructor of the application class whose objects

4.3. FeatureJ Architecture 91

Application

Container

Application

Main

variant

Composition at

Run-time

variant

Composition at

Compile-time

Validating

variant Types

Productline-

and variant-

specific Error

Checking and

Reporting

variant-specific

Implementation

Classes

...

P
a
rs

in
g
 .

fj
a
v
a
 F

il
e
s

in

F
e
a
tu

re
J
 P

ro
g
ra

m

Figure 4.11: FeatureJ Architecture for Variant Composition

Listing 4.26: Original variant and Application Class Instance Method Call
1 public class Launcher {
2 public static void main (String args []) {
3 notepadPL : : simpleNotepad NotepadGUI−>run () ;
4 }
5 }

are to be obtained has parameters, they can be specified in parentheses
following application class name in Line 3 and they are included in the
rewriting process and later when getting objects via reflection in Line 6
of Listing 4.27.

Listing 4.27: Transformed Syntax for variant simpleNotepad
1 public class Launcher {
2 public static void main (String args []) {
3 PL NotepadPL= new PL("notepadPL") ;
4 PLVariant simpleNotepad=
5 new PLVariant(NotepadPL , "simpleNotepad") ;
6 simpleNotepad . call ("NotepadGUI" ,"run") ;
7 . . .
8 }
9 }

Variant composition at run-time A variant in FeatureJ that is generated

92 4. FeatureJ

at compile-time can be modified at run-time by adding or removing fea-
ture types from it. This is results in a new variant. The addition and
removal of features from a variant is carried out using PLVariant class
methods add() and remove() respectively. Recall that a PLVariant class
is associated with a PL instance that represents the productline type at
run-time. The PL instance contains the original AST which is used to
affect modifications to the current PLVariant instance. Internally, a new
AST is generated that reflects the changes. Following this, similar pro-
cess is followed for generating .class files from the AST and loading and
mapping Class objects as in compile-time generation. Instead of compil-
time, a new PLVariant instance is obtained at run-time that represents
the modified variant type. This variant modification syntax shown in
Listing 4.28 is transformed using JastAdd rewrites to syntax that makes
use of the PLVariant class’s add() method with which one or more fea-
ture types can be added to a variant. The modified variant is referred
with a different name as simpleNotepadModified. This variant contains
all feature types selected in the simpleNotepad variant as well as feature
types Color and FontColor. When returning a modified variant type, it is
checked for being valid and without errors as discussed in Section 4.2.3
on page 84.

Listing 4.28: Adding Features to a variant type
1 public class Launcher {
2 public static void main (String args []) {
3 notepadPL : : simpleNotepad
4 −>add (FontColor)>>simpleNotepadModified ;
5 notepadPL : : simpleNotepadModified NotepadGUI−>run () ;
6 }
7 }

This kind of design enables us to provide access to various feature domain
entities at different times in program execution, without having to represent
information related to feature domain entities in the byte-code and later use
byte-code instrumentation tools to gain access to these entities.

The public methods of class PL include methods like allFeatures(), manda-
toryFeatures(), optionalFeatures() getVariantList() whose purpose is clear in
their names. It also contains a method called getFeature(String name) that
returns a Feature object of named feature. The public methods of PLVariant
include getVariantClass(String className) that returns the Class of the named
application class, getVariantObject(String className) that returns an object
of the named application class and selectedFeatures() which returns names
of features selected in the underlying variant types. The Feature class sim-
ilarly contains methods for getting the name of the feature, and whether its

4.3. FeatureJ Architecture 93

mandatory or optional. Both PLVariant and Feature classes contain a get-
ParentPL() method that returns the parent PL object. These classes contain
many protected methods used internally for purposes such as calling specific
methods of application class objects as shown in Listing 4.27 and when adding
features to a variant as shown in Listing 4.28. Note that a FeatureJ program
may contain statements for composition of a variant type with the syntax as
shown in Listings 4.26 and 4.28 as well as statements using PL, PLVariant,
and Feature classes as shown in Listing 4.27 at the same time. Furthermore,
objects of PL, PLVariant, and Feature classes can be passed as parameters to
a method and can be returned from a method just like regular Java objects.

Differentiating Adaptation from Composition at Run-time

One important point to note is that the state of objects from the original variant
type is not preserved when modifying a variant. That is, while a modified
variant is generated by run-time composition of features in the underlying
AST, the run-time adaptation is not supported. In order to use objects of SPL
classes of this variant, they have to be obtained anew. Therefore, when variant
simpleNotepad is modified to obtain simpleNotepadModified, an instance of
NotepadGUI is obtained again and run() is called. If run-time adaptation
were supported then the NotepadGUI class of simpleNotepad variant would be
updated to support additional feature FontColor.

4.3.3 FeatureJ Compiler for Java 1.4

We described on page 70, how the capabilities provided by JastAdd are used
when implementing a Java language extension. We asserted that extending
Java types, extending the name/type analysis, and using rewrites to transform
extension source to Java are the three often-used ways of extending Java us-
ing JastAdd. We use each of these capabilities when implementing FeatureJ
atop JastAdd Java 1.4 compiler. The syntactic and semantic components are
structured as illustrated in Figure 4.12. First, we provide the domain-specific
abstractions in FeatureJ by extending JastAdd representation of Java types.
Second, the domain-specific concrete syntax and checking in FeatureJ is sup-
ported by extending JastAdd implementation of Java name/type analysis and
error checking. And third, we use JastAdd’s rewrite system for transforming
the domain-specific concrete syntax when initially storing information related
to various feature domain entities and later in expressing variant generation
and modification in terms of meta-classes PL, PLVariant, and Feature.

Java 1.4 lexical and syntactic components are extended using FeatureJ-specific
lexer and parser written in JFlex and Beaver parser generator respectively.
FeatureJ-specific semantic analyses are arranged in various .jrag files. Meta-
classes and external data structures for storing information about feature do-

94 4. FeatureJ

J
a
v
a
 1

.4
 F

ro
n
te

n
d

FeatureJ Syntax

 JFlex Scanner Generator

Specification in FeatureJ.flex

and Beaver Parser Generator

Specification In FeatureJ.parser

FeatureJ Semantics

AST Representation in

FeatureJ.ast,

Name/Type Analysis and Error

Checking, and Rewrites In

FeatureJ*.jrag

extension

Meta-classes

Representing

FeatureJ types

productline,

variant, and

feature

variant-specific Sets of

.Class Files

Figure 4.12: Complete Structure of FeatureJ Compiler using JastAdd

main entities are implemented separately as a library of classes. The arrows
with filled triangle indicate how each component is used.

Our decision to implement the meta-classes and the external data structures
separate from AST is taken on the basis that it enables us to accommodate any
extensions to base Java 1.4 compiler. Whenever adding extensions to Java 1.4
compiler, the architecture explained earlier in Section 4.3.2 on page 90 remains
untouched. We utilize this facet of the FeatureJ architecture in extending it to
accommodate JastAdd’s Java 1.5 extension of Java 1.4 compiler.

4.3.4 Extending FeatureJ to Support Java 1.5

Earlier in Listings 4.11 to 4.12 on pages 68–69, we showed that JastAdd im-
plements Java 1.5 compiler atop Java 1.4 compiler by (a) adding as required,
new AST nodes that represent Java 1.5 extensions using abstract grammar, (b)
refining pre-existing analyses when needed, and (c) using rewrites to generate
classes when required, e.g. for enum types as well as to replace concrete syntax
with intended semantics, e.g., internally representing enhanced for statements
in Java 1.5 in terms of Java 1.4 for statement syntax.

All the new AST nodes added in Java 1.5 compiler extension of Java 1.4 com-
piler are subclasses of existing nodes. This means that FeatureJ does not
have to take care of Java 1.5 syntax additions for representing feature contain-
ments in Java 1.5, because parsing of nodes representing extensions returns
superclasses by default. For instance, generic type declarations in Java 1.5 are

4.3. FeatureJ Architecture 95

represented by GenericClassDecl class which is a subclass of ClassDecl. Listing
4.29 shows its declaration in the abstract grammar.

Listing 4.29: Abstract Grammar for Generic Classes in Java 1.5
1 GenericClassDecl : ClassDecl : := Modifiers <ID : String>
2 [SuperClassAccess : Access] Implements : Access∗ BodyDecl∗
3 TypeParameter : TypeVariable∗ /ParTypeDecl : ParClassDecl ∗/ ;

Note that ParClassDecl indicates a parameterized type. Rest of the nodes are
part of the Java 1.4 specification upon which abstract grammar of Java 1.5 is
built. When parsing a generic type declaration, a ClassDecl node is returned
as shown in Listing 4.30.

Listing 4.30: Parser Grammar for Generic Classes in Java 1.5
1 ClassDecl class_declaration =
2 modifiers . m? CLASS IDENTIFIER type_parameters . p super . s?
3 interfaces . i? class_body . b
4 { :
5 return new GenericClassDecl (new Modifiers (m) ,
6 IDENTIFIER , s , i , b , p) ;
7 : } ;

FeatureJ Error

Checking Support

for Java 1.4

Java 1.4 Compiler

in JastAdd

FeatureJ atop

Java 1.4 Compiler

FeatureJ Error

Checking Support

for Java 1.5

Java 1.5 Compiler

in JastAdd

FeatureJ atop

Java 1.5 Compiler

extends

Figure 4.13: Supporting Java 1.5 with FeatureJ

Consequently, FeatureJ does not have to account for the syntax of generic
class declarations when representing feature containment, such as e.g., feature
containment of a generic inner class declaration. The amendments to FeatureJ
compiler for Java 1.4 are therefore restricted to (a) subsuming the semantic

96 4. FeatureJ

analyses of newly added AST nodes in FeatureJ name/type analysis and error
checking and (b) accounting for refined pre-existing analyses.

The semantic analyses of newly added nodes are subsumed by providing an
implementation of the featureSafelyComposeCheck() method for them which
is carried out in a manner similar to explained earlier (cf. Error Checking in
FeatureJ in Section 4.2.3 on page 84). To account for the refined pre-existing
analyses, the featureSafelyComposeCheck() method refers to the refined version
of an attribute instead of the original one. For instance, name checking of
ClassInstanceExpr which is refined to accommodate enum types as shown in
Listing 4.11 on page 68, is considered inside the featureSafelyComposeCheck()
method for ClassInstanceExpr in the the Java 1.5 extension of the FeatureJ
compiler when coding various versions that report variant- and productline-
specific errors. Treatment of (a) and (b) thus give rise to structure shown
in Figure 4.13 for extension to FeatureJ supporting Java 1.5 source. Note
that FeatureJ atop Java 1.5 compiler component is obtained automatically as
explained in the discussion above and only error checking for Java 1.5 source
is extended.

Note that the FeatureJ architecture shown in Figure 4.11 on page 91 is not
affected by the extension to FeatureJ to support Java 1.5 source because infor-
mation related to feature domain entities and meta-classes is stored separately
from AST which is extended in Java 1.5 and the changes are accommodated
by FeatureJ extension to support Java 1.5 source.

4.3.5 Implementation Statistics

The SLOC (source lines of code) of FeatureJ implementation atop the Jas-
tAdd Java 1.4 and 1.5 compilers is shown in Table 4.1. It shows the SLOC
in .jrag specification of Java 1.4 and 1.5 compilers and FeatureJ implemen-
tation. Figure 4.14 shows the folder hierarchy of Java 1.4 and 1.5 compilers.
JastAdd generates Java code using the AST (.jrag files), parser (.parser files),
and scanner (.flex files) specifications in the AST, parser, and scanner folders
which consist of Java classes of all AST nodes and parser and scanner for the
designated compiler respectively.

Compiler Module JastAdd SLOC FeatureJ SLOC Compiler
Base Compiler 6K 2K 1.4
Error Checking 3K 4K 1.4
Base Compiler +
Error Checking

6K 2K 1.5

Table 4.1: FeatureJ Implementation

All FeatureJ-specific components that extend the AST are arranged in the Fea-
tureJ folder including the FeatureJ.ast file for AST specification, FeatureJ.parser

4.3. FeatureJ Architecture 97

Java1.4Frontend

AST

FeatureJ

com

Java14.parser

JavaScanner.flex
scanner

FeatureJ.flex

*.jrag (Java 1.4)

FeatureJ.ast

java.ast (1.4)

parser

FeatureJ.parser

FeatureJ*.jrag

Java1.5Backend

Java1.5Frontend

Java1.4Backend

 Hierarchy like Java1.4Frontend ...

*.jrag (Java 1.4 Bytecode)

*.jrag (Java 1.5 Bytecode)

External Data

Structure

Meta-classes

Figure 4.14: Folder Hierarchy of FeatureJ Implementation using JastAdd

for parser specification, and FeatureJ.flex for lexer/scanner specification. The
meta-classes and the FeatureJ compiler frontend are not part of the AST rather
they use and manipulate the AST node classes in the AST folder. They are
therefore separated out into another folder called com.

An ant build file is used to direct the composition of specific kinds of language
components. Thus Java 1.4 and FeatureJ parser specifications are merged.
Similarly Java 1.4 and FeatureJ lexer specification are combined. Then using
Java 1.4 and FeatureJ AST specifications the AST is generated using JastAdd’s
interface to Beaver parser generator and JFlex scanner generator. This AST is
then extended with attribute definitions from both Java 1.4 and FeatureJ .jrag
specifications. The final output is an attributed AST stored in terms of AST
node classes in the folder AST and combined parser and scanners stored in
parser and scanner folders respectively. Recall that Java 1.5 frontend extends
Java 1.4 frontend. The FeatureJ parser and scanner specifications are not
required to be included in Java1.5Frontend folder. Only the .jrag files that
take care of new language constructs in Java 1.5 from the point of view of
feature containments and name/type analysis and error checking are kept in

98 4. FeatureJ

the FeatureJ folder of Java1.5Frontend folder. The rest of the structure in
Java1.5Frontend folder is same as that of the Java1.4Frontend folder.

4.4 Summary

In this chapter, we elaborated how FeatureJ implements feature domain enti-
ties atop JastAdd Java 1.4 and 1.5 compilers. We used three extensibility tech-
niques common in JastAdd, namely extending Java AST with typed representa-
tion, extending name/type analysis and error checking, and using AST rewrites
for transforming extended syntax to Java equivalent source. Error checking and
reporting is arranged so that variant-specific and productline-specific errors are
conveyed separately for the variant types defined in a FeatureJ program. Com-
bined with an architecture that overcomes Java class-loading idiosyncrasies and
enables both compile-time and run-time composition of variant types, we get
an easily extensible implementation of first-class features.

Chapter 5

rbFeatures

Because of the Turing completeness theory, everything one
Turing-complete language can do can theoretically be done by
another Turing-complete language, but at a different cost. [...]
Instead of emphasizing the what, I want to emphasize the how
part: how we feel while programming.

Yukihiro Matsumoto
in Philosophy of Ruby - A Conversation with Yukihiro

Matsumoto

In this chapter we elaborate how requirements of first-class features are imple-
mented atop Ruby using Ruby’s own syntax and semantics to obtain rbFea-
tures1. We first describe Ruby’s extensibility mechanisms followed by rbFea-
tures implementation specifics including its syntax and semantics and its overall
architecture.2

5.1 Ruby - Dynamic Extensible Host Language

Ruby is a dynamic programming language. Its creator Yukihiro “Matz” Mat-
sumoto included language features from his favorite languages such as Perl,

1Sebastian Günther, an esteemed colleague of the author of this dissertation, imple-
mented rbFeatures in collaboration with the author. The author thanks his colleague for
a fruitful collaboration and appreciates many enjoyable hours of discussion that led to the
implementation of first-class features in Ruby.

2 This chapter shares material with the FOSD’09 paper ‘Feature-oriented programming
with Ruby’ [Günther and Sunkle 2009], its extended Journal paper version [Günther and
Sunkle 2011] and the FOSD’10 paper ‘Dynamically Adaptable Software Product Lines Using
Ruby Metaprogramming’ [Günther and Sunkle 2010].

99

100 5. rbFeatures

Smalltalk, Eiffel, Ada, and Lisp with focus on balancing functional program-
ming with imperative programming. Matz started developing Ruby on Febru-
ary 24, 1993 [Stewart 2001]. It was released publicly first in 1995. Ruby is
open source, free to use, copy, modify, and distribute. By 2006, Ruby achieved
mass acceptance.

Ruby is based on the principle of least surprise3, which means that it is very
easy to express programmers’ intent with Ruby. It reduces a programmer’s
efforts in programming. It is designed to be human-oriented [Stewart 2001],
i.e., programmers concentrate on the problem to be solved rather than having
to write boilerplate code to get started. Ruby picks up the dynamic scripting
features of python. At the same time, it enables programmers to do a certain
task in more than one way, a feature which it borrows from Perl [Venners
2003a]. Most notable features in Ruby include the ability to change interface at
run-time by adding methods and variables to objects at run-time, mixins which
enable sharing methods between classes outside a single inheritance structure
[Venners 2003c], blocks which are anonymous functions, and closures which are
blocks of code that can be used as value, passed as parameters, executed on
demand, and are able to refer to variables from the context in which they were
created [Venners 2003b].

In the following, we focus on those characteristics of Ruby that we use in im-
plementing rbFeatures. Unlike the implementation of FeatureJ using JastAdd,
rbFeatures is neither implemented using an extensible compiler technology in
Ruby nor uses separate lexer and parser components. Instead, we make use of
the syntax and semantics of various Ruby language entities toward implement-
ing a language extension. In the following, we explain the core Ruby language
entities. These entities play a substantial role in representing feature domain
entities at the language level which we explain in latter sections.

5.1.1 Core Language Entities in Ruby

The core language entities in Ruby are classes, methods, modules, and blocks.
All Ruby data comprises of objects that are instances of some class [Matsumoto
2001]. Instances of classes are created with the new keyword. A method in
Ruby is a named operation and contains the code that a specific class provides
to perform the operation. Two kinds of methods exist in Ruby namely, class
methods and instance methods. Class methods are methods that belong to
class and must be called with respect to the class in which they are defined.
Instance methods on the other hand are methods that must be called using
an instance of a class, i.e., with respect to an object of the class in which the
instance methods are defined.

3Ruby’s creator Yukihiro Matsumoto says that he didn’t particularly refer to this princi-
ple, rather it was attributed to him. However, he did create Ruby with the goal of minimizing
the programming effort [Venners 2003a].

5.1. Ruby - Dynamic Extensible Host Language 101

A module is similar to a class except that it does not have any superclass and
cannot be instantiated. A module contains methods and constants which can
be added to a class as well as an object. Ruby provides two ways to express
inheritance relationships. The first is the standard inheritance relationship
whereby a class extends or subclasses another class. The second is the mixin
relationship which is a specialized implementation of multiple inheritance in
which only the interface portion is inherited [Fulton 2006]. Unlike Java in
which multiple inheritance is implemented indirectly using interfaces, the mixin
relationship is realized in Ruby using a module as a mixin. A class can include
a module and thereby its instance methods. A module’s methods can be mixed-
in with a class as both class methods and instance methods. Modules provide
a secure namespace mechanism for classes at the same time enabling sharing
of functionality and constants with other modules and classes.

Among its many ancestors, Ruby is said to inherit various aspects of object ori-
entation from Smalltalk, whereas its functional programming capabilities have
been taken from Lisp [Baird 2007]. These are based mainly on the concepts of
blocks and procs. A block is an anonymous function. A block can be converted
to and manipulated like an object using the Proc class. Such objectified blocks
are referred to as procs. Although initially implemented as a way of providing
loop abstraction, i.e., letting a programmer define his own way of iterating over
any set of items, blocks have been used also as closures. A closure is a block
that can be passed to a method to customize the behavior of that method
[Venners 2003b].

In a preceding chapter, we discussed the concept of first-classness of certain
entities in a given language (cf. Section 3.4.1). In Ruby, classes and objects are
first-class entities. Ruby’s most distinctive characteristic is that “Everything
in Ruby is an object”. The fact that all language entities in Ruby can be
governed in terms of objects of some class can be made clear by the Ruby
object model illustrated in Figure 5.1. The classes shown in Figure 5.1 are the
foundation of Ruby. The BasicObject class defines methods to create objects.
It is extended by the Object class from which all classes and modules are
inherited in Ruby. While Object is the parent class of all classes in Ruby, its
core functionality is implemented in the Kernel module which it mixes-in and
thus makes available to all classes. The Module class provides various reflection
and metaprogramming facilities as we will discuss in the next section. Figure
5.1 also shows that the class Class which represent a Ruby class is a subclass
of the Module class which is itself a subclass of the Object class. The two
expression namely, Class.is_a? Object and Object.is_a? Class, are evaluated as
true because of this hierarchy of core classes in Ruby. The fact that everything
in Ruby is a object is of primary importance in the way in which we represent
various feature domain entities in Ruby as we will discuss in the next section.

102 5. rbFeatures

objects with minimal behavior. Object is the superclass
from which all other classes and modules inherit. How-
ever, most of its functionality (like to copy, freeze, mar-
shal and print objects) is actually derived from Kernel.
Furthermore, Object is a subclass of BasicObject. An-
other important class is Module, which mainly provides
reflection mechanisms, like getting methods and variables,
and metaprogramming capabilities, e.g. to change mod-
ule and class definitions. Finally, Class defines methods
to create instances of classes. !Figure 1 summarizes the
relationships.

Module

Object

BasicObject

Kernel

Class

Legend

Inheritance
Is­a
Mixin

Figure 1: Rubys Class Model

3.2. Core Objects
We discuss the objects of the classes Proc, Method,

Class, and Module. The core objects play a fundamental
part in rbFeatures. Most of these objects should be famil-
iar to readers experienced with object-oriented program-
ming. However, Ruby’s dynamic nature makes following
objects more versatile compared to static languages.

• Proc A proc is an anonymous block of code. Like
other objects, Procs can either be created explicitly
(referenced by a name) or implicitly (argument to a
method). Procs allow two kind of usages: On the
one hand they can reference variables in their cre-
ation scope as a closure4, and on the other hand they
can reference variables which at their creation do not
exist. Procs are executed with the call method in
any place.

• Method Method declarations consist of the method’s
name, a set of optional parameters (which can have
default values), and a body. Methods belong to the

4Closures stems from functional programming and capture values
and variables in the context they are defined in.

module or class they are declared in. There are
two kinds of method objects. The normal Method is
bound to a certain object upon which it is defined.
The UnboundMethod has no such object, and, for ex-
ecuting it, must be bound to an object of the same
class in which the method was originally defined.

• Class A class declaration consists of a name and a
body. Each declaration either creates a new object
of class Class or modifies an existing one. Classes
can have different relationships. First, they can form
a hierarchy of related classes via single sub-classing,
inheriting all methods of their parents. Second, they
can mix-in arbitrary modules. New instances form
classes are created with the new method.

• Module Like classes, module declarations consist of a
name and a body. Modules can not have subclassing
like inheritance relationships - they can only mix-in
other modules.

Ruby is furthermore a structural typed language – ob-
jects belong to a “type” if they respond to types provided
methods. The explained classes together with runtime
modifiability define a good portion of Ruby’s flexibility.
We will now see how it is applied to implement FOP.

4. rbFeatures

rbFeatures is a language extension which provides new
entities and operations to represent features at the lan-
guage level. To convey our ideas, we choose to present
a side-by-side rbFeatures walkthrough. We start with in-
troducing the Expression Product Line as the running ex-
ample, and then explain its implementation using rbFea-
tures. The implementation is split into three parts: First
the feature declaration, then the program initialization,
and finally the (runtime) configuration.

4.1. Example: Expression Product Line
The Expression Product Line (EPL) is a common prob-

lem used in programming language design as exemplified
by Lopez et. al. in [17]. The expression problem considers
how to extend existing data structures with novel data ab-
stractions and operations. Forged to a product line, EPL
considers the case of different types of numbers, expres-
sions and operations, which are used to compare design
and composition of variants [17]. The product line is pre-
sented as a feature diagram in !Figure 2. We see that
two different Numbers exist: Lit (literal) and Neg (neg-
ative literal). The numbers are usable in Add (addition)
and Sub (subtraction) Expressions. The Operations
imposed upon an expression are Print for showing the
string containing the expression and Eval for evaluating
the expression. As can be seen in the feature diagram in
!Figure 2, we define the product line with many of its
features as being optional, so no strict rules governing the
composition need to be considered.

3

Figure 5.1: Ruby Object Model

5.1.2 Ruby Mechanisms for First-class Features

In this section, we review mechanisms available in Ruby that can be used to-
ward implementing functionality of various feature domain entities with first-
class status. We divide these into three kinds namely, basic mechanisms that
use regular Ruby expressions but differ from other mainstream languages such
as Java, reflection and metaprogramming mechanisms that can be used to ad-
dress and query properties of entities in a Ruby program as well as manipulate
them, and string manipulation mechanisms that enable selecting and modi-
fying arbitrary pieces of code by treating parts of program as a string and
manipulating this string representation. In the following, we discuss each of
these mechanisms in turn.

Basic Ruby Mechanisms

Basic Ruby mechanisms consist of using a module as mixin and namespace
mechanism, using callable objects including procs and method objects, and
class reopening. We elaborate each in the following:

Modules as mixins and namespace mechanism Modules provide a mech-

5.1. Ruby - Dynamic Extensible Host Language 103

anism of grouping together methods, classes, and constants. A module
cannot be instantiated but when mixed-in with a class, its methods be-
come instance methods of the class. This is illustrated in Listing 5.1.
The text after # => indicates the output. The include statement only

Listing 5.1: Mixin Functionality with Modules [Thomas and Hunt 2000]
1 module Debug

2 def whoAmI?
3 "#{self.type.name} (\##{self.id}): #{self.to_s}"

4 end
5 end
6 class Person

7 include Debug

8 # . . .
9 end

10 class Thing

11 include Debug

12 # . . .
13 end
14 person = Person . new ("Bob")
15 thing = Thing . new ("Chair")
16 person . whoAmI? # => ” Person (#537766170) : Bob”
17 thing . whoAmI? # => ”Thing (#537765860) : Chair ”

makes reference to a named module. In order to include a module from
another file, require statement can be used. If the methods of modules
are needed to be added as class methods instead of as instance methods,
the extend statement can be used instead of an include statement.

Another usage for modules is to act as a sandbox in which methods and
constants that don’t naturally form a class can be put together. For
instance, module Trig defined in Listing 5.2 collects together methods
and constants related to trigonometry.

Listing 5.2: Module as Namespace defined in File trig.rb
1 module Trig

2 PI = 3.141592654
3 def Trig . sin (x)
4 # . .
5 end
6 def Trig . cos (x)
7 # . .
8 end
9 end

104 5. rbFeatures

A module thus provides a namespace for these methods and constants.
The trigonometry methods can be used as shown in Listing 5.3.

Listing 5.3: Using a Trigonometry Method from Module Trig
1 require "trig"

2 y = Trig . sin (Trig : : PI /4)

Callable objects In Ruby, objectified methods as well as procs which are ob-
jectified blocks are treated as callable objects [Flanagan and Matsumoto
2008]. As discussed earlier, blocks of code can be objectified using the
Proc class. Listing 5.4 shows that any block of code that is passed to
the method procFrom() will be returned as an object which can then be
called using the call method of the Proc class.

Listing 5.4: Converting a Block of Code to an Object
1 def procFrom

2 Proc . new
3 end
4 aProc = procFrom { "Hello" }
5 aProc . call # => ” He l lo ”

Similarly, two forms of objectified methods are supported in Ruby. An
instance of the Method class represents a method bound to an object.
The Object class defines a method called method which returns an object
of Method class that represents the method bound to an object. This
is shown in Listing 5.5. In it, :greeting is a symbolic name. It is used
to refer to the greeting method bound to the object obj of Person class.
Unbound method on the other hand are methods objects that are not

Listing 5.5: Bound Method Objects
1 class Person

2 def greeting

3 "Hello"

4 end
5 end
6 obj = Person . new
7 greeting = obj . method (: greeting)
8 greeting . call # => ” He l lo ”

associated with a particular object. These are created using the method
instance method of the Module class. To call an unbound method, it

5.1. Ruby - Dynamic Extensible Host Language 105

must be bound. This is shown in Listing 5.6 where area unbound rep-
resents an unbound method object which is bound to the object s of
class Square before calling it. Callable objects enable addressing blocks

Listing 5.6: Unbound Method Objects
1 class Square

2 def area

3 @side ∗ @side

4 end
5 . . .
6 end
7 area_unbound = Square . instance_method (: area)
8 s = Square . new (12)
9 area = area_unbound . bind (s)

10 area . call # => 144

of code and both bound and unbound methods. With callable objects
functionality can be added to an object or a method can be called in a
free context.

Class reopening In Ruby, classes are available for modification at any stage
of program execution. This applies to user classes as well as system
classes. A class can be reopened to add a method or to redefine a method.
Like everything else, there are many ways to add and redefine a method,
e.g. using Ruby metaprogramming mechanisms, but class reopening pro-
vides a pre-runtime option to do the same. Listing 5.7 shows that the
Person class is defined without any methods. Then method greeting is
added to it and called. It is then redefined and called again with different
result.

The basic Ruby mechanisms discussed so far already show how some function-
ality can be grouped and added (using modules), objectified (using objectified
blocks and methods), and modified (using class reopening). In the next section,
we elaborate the reflection and metaprogramming mechanisms in Ruby that go
beyond basic mechanisms in terms of the capability to address and manipulate
functionality.

Reflection and Metaprogramming in Ruby

Ruby provides comprehensive support for reflection and metaprogramming. In
Ruby it is possible to use reflection to query properties of various language
entities. For instance, it is possible to group methods for objects by their
visibility and type, query about global and instance variables, and constants in
a Ruby program. Table 5.1 enlists various reflection methods in Ruby. It shows

106 5. rbFeatures

Listing 5.7: Adding and Redefining Methods by Reopening a Class
1 class Person

2 end
3

4 class Person

5 def greeting

6 "Hello"

7 end
8 end
9 obj = Person . new

10 obj . greeting # => ” He l lo ”
11

12 class Person

13 def greeting

14 "Bye!"

15 end
16 end
17 obj . greeting # => ”Bye ! ”

which properties of modules, classes, methods, and procs can be queried using
various methods of Object, Class, Module, and Kernel which we described in
the Ruby object model in Figure 5.1 on page 102.

Information can be obtained regarding most properties except the body in-
ternals. ObjectSpace module enables traversing all the living objects. The
Kernel#local variables returns the names of the local variables. While re-
flection methods in Ruby enable obtaining information, in order to modify
functionality of various language entities we have to turn to metaprogramming.

Metaprogramming in Ruby is defined in [Perrotta 2010] as “writing code that
writes code”, more specifically, “writing code that manipulates language con-
structs at run-time”. Table 5.2 shows methods of classes BasicObject, Class,
and Module that can be used to modify variables, methods, and arbitrary
blocks of code.

Ruby metaprogramming provides evaluation capabilities along with modifi-
cation capabilities for various language constructs. The Module#class eval
evaluates a block of code in the context of an existing class. Listing 5.8 shows
how class eval can be used to add method greeting to the Person Class. It
also shows how class reopening can be carried out dynamically instead of at
pre-runtime as it was done in Listing 5.7.

Further support for capturing events in the object model is provided by Ruby
in terms of hook methods. Hook methods are instance methods in Class and
Module classes that can be overridden by a developer as required.

Listing 5.9 shows how Class#inherited() is overridden in String class so
that whenever the String class is inherited a message is printed. In gen-

5.1. Ruby - Dynamic Extensible Host Language 107

!"#$% &' ()#*+, -%.%/0123 4%0526,

!"#$%& !"#$%& '()*$(&+ ,**-.%/"-$ 0$&1)23

4)25-$67-/33

!"#$

!"#$%&'()%$*$)%+ ,"#$%&-
./)00*01($2%/)00-
3,41/$*%/)00-
3,41/$*5$0&657-
3,41/$*)5%$0&,20-
3,41/$*65%/14$4 8,41/$0

%$&'()*

!"#$%&*(2,&$%&$4 8$&+,40-
!"#$%&*(1"/6% 8$&+,40-
!"#$%&*(269)&$ 8$&+,40-
3,41/$*(1"/6% 650&)5%$ 8$&+,40-
3,41/$*(269)&$ 650&)5%$ 8$&+,40-
3,41/$*(2,&$%&$4 650&)5%$ 8$&+,40

+,"** -"./"0,$* 3,41/$*%/)00 9)26)"/$0
12*&"23$ -"./"0,$* !"#$%&*650&)5%$ 9)26)"/$0
4()5 67"./"0,$*89.(3*: :;$25$/*/,%)/ 9)26)"/$0<
4()5 6;&'$.: =

4$&1)2
!"#$:96) 3,41/$>./)00 8$&+,40<
9"."#$&$.* =
4()5 67"./"0,$*89.(3*: :;$25$/*/,%)/ 9)26)"/$0<
4()5 6;&'$.: =

'()%3
!"#$ =
9"."#$&$.* =
4()5 67"./"0,$*89.(3*: :;$25$/*/,%)/ 9)26)"/$0<
4()5 6;&'$.: =

!" #"" $%&$ $%" '()*+"#, -+&##"# &.) '"$%()# -&. /" &))0"##"), /*$ $%"
/()1 2.$"0.&+# &0" .($ 32#2/+"4 5.+1 (." '"$%() 2# &66+2-&/+" $()"023" #('"
2.7(0'&$2(. &/(*$ $%" /()1 8 !"#$"%&%'()%*+)#,)-%". 8 /*$ $%2# '"$%() 2# &+#(
-(.#$0&2.") /"-&*#" 2$ -&. (.+1 /" -&++") 2.#2)" $%" /()1 &.) 0"$*0.# 9*#$.&'"#
(7 $%" 3&02&/+"#, .(6(2.$"0#4 :"-&*#" $%" '"$%()# &0" #$0&2;%$87(0<&0) $(*#",
<" 0"#$0&2. 70(' ;232.; &)"$&2+") "=6+&.&$2(., &.) -(.$2.*" <2$% "=6+&2.2.; $%"
'"$&60(;0&''2.; '"$%()# (7 >*/14

?"@.2.; '"$&60(;0&''2.; &--(0)2.; $(ABCD, E"$&60(;0&''2.; 2# $%" -(.8
-"6$ $%&$ 60(;0&' #1.$%"#2# 2# & -('6*$&$2(.4F >*/1 60(32)"# #(6%2#$2-&$")
'"$&60(;0&''2.; '"$%()#, <%2-% &++(< $%" 7(++(<2.;G

! H+&## &.) 2.#$&.-" 3&02&/+"# -&. /" &))") &.) 0"'(3"), &# <"++ &# -(.#$&.$#
! E"$%()# -&. /" &))") I2.#$&.-" &.) -+&## '"$%()J, -(62") (0)"+"$")
! K0/2$0&01 -()", "="-*$") 2. $%" -(.$"=$ (7 2$# 0"-"23"0, -&. /" *#") $()"@."

2.."0 -+&##"#, -%&.;" $%" 32#2/2+2$1 (7 '"$%()# &.) '(0" I$%" 3&02(*# "+)%

'"$%()#J4

L&/+" B +2#$# 2.)"$&2+ $%" &3&2+&/+" '"$%()# &.) #%(0$)"#-026$2(.#4
!" <&.$ $(;23" &. "=&'6+" %(< $(*#" $%" '"$&60(;0&''2.; '"$%()# 7(0

"=$".)2.; 7*.-$2(.&+2$1 (7 & -+&##4 M. !N2;*0" O, <" "=6+&2.") %(< $("=$".)
$%" /01" -+&## <2$% '"$%()# 7(0 #"$$2.; $%" ."2;%/(04 !" *#") $%" 0"(6".2.;
'"-%&.2#' /&-P $%"., &.) .(< #%(< %(< $()($%" '()2@-&$2(. <2$% '"$&60(8
;0&''2.;4

M. !N2;*0" Q, <" @0#$)"@." $%" '"$%() $(/" "=$".)") &# & #$02.; I+2." R
8 SJ &.) &# & 60(- I+2." Q8RBJ4 L%" &-$*&+ "=$".#2(. 2# & #2'6+" '"$%() -&++G 8
(%)..*"+)%, -&++") 2. +2." RQ &.) RT <2$% $%" #$02.; 0"#6"-$23" $%" 60(-4

RR

Table 5.1: Reflection Methods in Ruby

!"#$% &' ()*$+,-. /%+"01231"//*.3 /%+4256

!"#$%& '$&()* +,-./0/&1)0

2/31/".$4

!"#$%&'(")*+ *&+,
!"#$%&'-&."/& (")*+

0&+ 1)# -&."/& (")*+1)+*

!"#$%&'1++-,
!"#$%&'1++- -&1#&-,
!"#$%&'1++- 2-3+&-,
!"#$%&'1++- 1((&**"-

4-"/3#& -&1#, 2-3+& "- (".53)&# 1((&** +" 3)*+1)(&
/1-315%&*

657&(+'3)*+1)(& /1-315%& *&+,
657&(+'-&."/& 3)*+1)(& /1-315%&

0&+ 1)# -&."/& 3)*+1)(& /1-315%&*

!"#$%&'(%1** /1-315%& *&+,
!"#$%&'-&."/& (%1** /1-315%&

0&+ 1)# -&."/& (%1** /1-315%&*

'$&()*4

!"#$%&'1%31* .&+8"# 9":3&* .&+8"# 5"#; +" 1)&2%;)1.&# .&+8"#
!"#$%&'#&<)& .&+8"# =&<)&*)&2 .&+8"#*
!"#$%&'$)#&> .&+8"# 4-&/&)+* "57&(+ +" -&*:")# +" (1%%* "> +8& .&+8"#
!"#$%&'-&."/& .&+8"# =&%&+&* +8& .&+8"# >-". ."#$%&?"57&(+

53"1&3/36
@1*3(657&(+'3)*+1)(& &/1% A/1%$1+&* *+-3)B "- 5%"(C D#&<)&* (%1** .&+8"#*E

@1*3(657&(+'3)*+1)(& &F&(
A/1%$1+&* 5%"(C 23+8 1##3+3")1% :1-1.&+&-* D#&G
<)&* (%1** .&+8"#*E

!"#$%&'."#$%& &/1%,
!"#$%&'(%1** &/1%

A/1%$1+&* *+-3)B "- 5%"(C D#&<)&* 3)*+1)(& .&+8G
"#*E

78

!
H !"#$%&'()*+(#!$, -
I *$7 .//)!"#$%&'(0!'/"1
J 2!"#$%&'(33 !'/"
K $0*
L /&&3 3$/*$3 4!"#$%&'(-
M
N !"#$%&'()5('6 , 7.8&/. *)
O *$7 .//)!"#$%&'(0!'/"1
P 2!"#$%&'(33 !'/"

HQ $0*
HH /&&3 3$/*$3 4!"#$%&'(
HI $0*
HJ
HK %./44 9'/" 3 :.*#69'/"
HL $0*
HM
HN 9'/";67.**)"<.7 !"#$%&'()*+(#!$
HO 9'/";67.**)"<.7 =!"#$%&'()5('6

" #

9*3: ;' <=+%.5*.3 >$"66 !"#$?*+4 6+1*.3 21 012> 2#@%>+ +2 "55 +4% %##&'$()*+", /%+425

!"#$%&'() &*"$*('() %(+ #*,%$&")&%##'() -."/- ,.%, *%0. $&"1'+*- -'#2
'3%& #*,."+-4 5, 6&-,7 0"#8'('() &*9*0,'"(%(+ #*,%$&")&%##'() %33"/- ," :-*
&:(,'#* ;("/3*+)* %8":, +<(%#'0 0&*%,*+ "8=*0,- /.'0. 8*0"#* -:8=*0, ," #"+2
'60%,'"(-4 >',. &*"$*('() "& ",.*& 8%-'0 *?$&*--'"(-7 ,.* "8=*0,- ," 8* #"+'6*+
#:-, 8* ;("/('(%+1%(0*4 @*0"(+7 &*9*0,'"(%(+ #*,%$&")&%##'() :-* +*2
6(*+ ;*</"&+- ," 03*%&3< *?$&*-- ,.*'& '(,*(,4 A:(,'#* 0.%()*- %&* #"&* 0"(0'-*
," *?$&*-- /',. ,.'-4 B(-:##%&<7 +*1*3"$*&- -.":3+ :-* 8%-'0 *?$&*--'"(C"&
$&*2&:(,'#* #"+'60%,'"(7 %(+ #*,%$&")&%##'() C"& &:(,'#* #"+'60%,'"(4

D:, 3';* ,.* 8%-'0 *?$&*--'"(-7 &*9*0,'"(%(+ #*,%$&")&%##'() .%1* "(*
/*%;(*--E F(0* *1%3:%,*+7 ,.* 8"+< "C #"+:3*-7 03%--*-7 #*,."+- %(+ $&"0-
8*0"#* .%&+ ," *?,*(+ 2 %++'() %(+ "1*&/&','() %&* ,.* "(3< %3,*&(%,'1*-4 @'(0*

GH

Table 5.2: Built-in Metaprogramming Methods in Ruby

108 5. rbFeatures

Listing 5.8: Using class eval to Add a Method to a Class
1 class Person

2 end
3 def add_method_to (a_class)
4 end
5 def add_method_to (a_class)
6 a_class . class_eval do
7 def greeting ; ’Hello’ ; end
8 end
9 end

10 add_method_to Person

11 puts Person . new . greeting # => ” He l lo ”

Listing 5.9: Hook Methods in Ruby [Perrotta 2010]
1 class String

2 def s e l f . inherited (subclass)
3 puts "#{self} was inherited by #{subclass}"

4 end
5 end
6 class MyString < String ;
7 end
8 # => St r ing was i n h e r i t e d by MyString

eral, any Ruby code may be evaluated when a hook method is called. Like
Class#inherited() method, Ruby provides Module#included() which can be
used to track when a module is being included and Module#extend object()
which can be used to execute Ruby code when a module extends an object.
Other important hook methods include method added(), method removed(),
and method undefined() methods in Module which can be used to execute
method-related events [Perrotta 2010].

While the basic Ruby mechanisms provide pre-runtime facilities to modify func-
tionality of various language constructs, using reflection and metaprogramming
in conjunction enables modifying functionality and taking event-based actions
at run-time. However, it is still not possible to modify internals of Ruby’s core
objects when modification must happen in other ways than adding or over-
writing language constructs. In the following we discuss string manipulation
facilities in Ruby which can support modifications in terms of wider range of
granularity.

5.2. rbFeatures Language Internals 109

String Manipulation in Ruby

It is possible to process the static structure of a Ruby program, i.e., its source
code, prior to the execution. By evaluating parts of source code or the entire
source code again, modifications at run-time can be effectively addressed.

With such holistic manipulations, run-time modifications that take place thor-
ough user interactions can be handled. E.g. a Ruby library called Ruby2Ruby
can be used to transform arbitrary blocks of Ruby code to corresponding string
representation. Such string representations can be processed, e.g, using regular
expressions, altered and then re-evaluated by using various evaluation methods
such as class eval shown in Listing 5.8.

Utilizing Ruby Mechanisms for First-class Features

In the preceding sections, we reviewed various Ruby mechanisms that can be
used to modify parts of a Ruby program and thereby alter its functionality.
While basic Ruby mechanisms are capable of making modifications at pre-
runtime, reflection and metaprogramming facilities can be used to affect the
modifications at run-time. Modifications of arbitrary granularity are possible
with string manipulation capabilities of Ruby. We use these mechanisms in
conjunction to represent various feature domain entities. In the next section,
we describe first how we represent them at language level and then elaborate
the details of how the functionality of feature domain entities is implemented.

5.2 rbFeatures Language Internals

In order to describe the rbFeatures syntax and semantics for various feature do-
main entities, we make use of the Graph Product Line (GPL) [Lopez-Herrejon
and Batory 2001]. Figure 5.2 shows a feature model of the GPL. In the fol-
lowing, we describe how SPLs representing the feature model, features, and
product variants representing the product/variant models are represented at
the syntactic level in rbFeatures.

5.2.1 Syntactic Extension

In this section, we describe rbFeatures syntax in terms of various keywords
that represent various feature domain entities. We elaborate the actual imple-
mentation of these keywords in terms of module, classes, and procs in the next
section.

An SPL is represented in rbFeatures by the ProductLine keyword as shown
in Listing 5.10. Ruby’s syntactic malleability enables creating syntax that
corresponds to natural language. For instance, the intent of adding a feature

110 5. rbFeatures

GPL

NoneUnweightedWeighted

Search

BFS DFSDirected

WeightType

Undirected

Shortest

Path

Algorithms

Strongly

Connected
Number Connected

MST

Prime

Cycle
MST

Kruskal

Figure 5.2: A Feature Model of Graph Product Line

Listing 5.10: ProductLine Definition for GPL in rbFeatures
1 GPL = ProductLine . configure do
2 add_feature gpl_feature

3 add_feature type_feature

4 add_feature weight_feature

5 . . .
6 end

is indicated by add feature. Listing 5.11 shows how a Feature is defined in
rbFeatures. The name of a Feature is indicated by name. That the Feature GPL
is the root feature is indicated by root keyword.

Listing 5.11: Feature Definition for Root Feature GPL in rbFeatures
1 gpl_feature = Feature . configure do
2 name : GPL root
3 subfeatures : Type , : Weight , : Search , : Algorithms
4 requires : GPL =>
5 "more :Type , :Weight , :Search , :Algorithms"

6 end

The children of Feature are indicated by keyword subfeatures. The keyword
requires along with the keyword more indicates that it is required to select

5.2. rbFeatures Language Internals 111

one or more of Type, Weight, Search, and Algorithms Feature entities when
the Feature GPL is activated. There are no constraints in the feature model of
the GPL being referred to (a constraint can be indicated in a manner similar
to FeatureJ, i.e., using special operators <−> and >−<).

Listing 5.12: Declaring Feature Entities inside Ruby Code in rbFeatures
1 class Weighted

2 i s Feature
3 end
4 . . .
5 class Undirected

6 i s Feature
7 end
8 . . .

The underlying feature model is mirrored in the definitions of the rest of the
Feature entities indicated in Listing 5.10 by type feature and weight feature
etc. which are represented similarly as in Listing 5.11.

Listing 5.13: Containment for Feature Directed and Feature Undirected inside
Class Graph

1 class Graph

2 def initialize (gtype)
3 Directed . code { def directed ? ; true ; end i f gtype==1 }
4 Undirected . code { def directed ? ; fa l se ; end }
5 . . .
6 end

Listing 5.14: Feature Weighted inside Class Edge
1 class Edge

2 Weighted . code {attr_accessor : weight}
3 def intialize (params)
4 Weighted . code { @ weight = params . delete : weight }
5 params . delete : weight i f params . include ? : weight
6 . . .
7 end
8 end

Individual Feature entities in the code are indicated by the keyword Feature as
shown in Listing 5.12. The fact that the class Weighted is a Feature is indicated
using the is keyword. The optionality of a Feature can be indicated using
mandatory variable and setting it to false inside the definition of a Feature.

112 5. rbFeatures

Listing 5.15: ProductVariant SimpleGraph of ProductLine GPL
1 ProductVariant . configure
2 :name => "SimpleGraph" , : pl => GPL do
3 activate features : Directed , : Weighted , : DFS ,
4 : Strongly_Connected
5 end

The code fragments that belong to a specific Feature are indicated using the
keyword code and a pair of curly braces inside the regular Ruby code. Listing
5.13 shows the code in Graph class that belongs to Feature entities Directed
and Undirected. Listing 5.14 shows the code in Edge class that belongs to
Feature Weighted.

Listing 5.16: Defining Multiple Variants of ProductLine GPL
1 ProductVariant . configure
2 :name => "ShortestPathVariant" , : pl => GPL do
3 activate features : Directed , : Weighted , : ShortestPath ,
4 end
5 ProductVariant . configure
6 :name => "DFSVariant" , : pl => GPL do
7 activate features : Directed , : Weighted , : DFS ,
8 end

A variant of the GPL in rbFeatures is indicated by the keyword ProductVariant.
Listing 5.15 shows the definition for SimpleGraph ProductVariant. The fact that
it is a variant of the GPL is indicated by :pl => GPL. The intent of configuring
an SPL by selecting specific features is indicated by two keywords namely,
configure and activate feature. We use the keyword activate feature
instead of select feature with the rationale that owing to the dynamic nature
of Ruby, features can be assumed to be activated or deactivated dynamically
instead of being selected statically.

More than one variant of an SPL can be defined at the same time as shown in
Listing 5.16. Two ProductVariant entities namely, ShortestPathVariant and
DFSVariant, that indicate variants of the GPL ProductLine. Listing 5.17
shows how ShortestPathVariant- and DFSVariant-specific graphs are initial-
ized. These graph objects provide the functionality that is available according
to the underlying ProductVariant.

5.2.2 Feature Domain Entities in rbFeatures

Having described the syntax adopted by rbFeatures to represent various feature
domain entities, we now elaborate how these entities are implemented along

5.2. rbFeatures Language Internals 113

Listing 5.17: Initializing ProductVariants of the GPL
1 GPL . variant ("ShortestPathVariant") . instantiate !
2 ShortestPathVariant . class_eval do
3 graph=Graph . new
4 1 . upto (6) { | n | graph + node (n) }
5 graph + edge (1 => 2 , : weight => 1)
6 graph + edge (1 => 3 , : weight => 2)
7 graph + edge (2 => 5 , : weight => 4)
8 graph + edge (2 => 4 , : weight => 2)
9 graph + edge (4 => 6 , : weight => 12)

10 graph + edge (3 => 6 , : weight => 22)
11 ShortestPathGraph= graph

12 end
13

14 GPL . variant ("DFSVariant") . instantiate !
15 DFSVariant . class_eval do
16 graph=Graph . new
17 1 . upto (6) { | n | graph + node (n) }
18 graph + edge (1 => 2 , : weight => 1)
19 graph + edge (1 => 3 , : weight => 2)
20 graph + edge (2 => 4 , : weight => 3)
21 graph + edge (3 => 5 , : weight => 4)
22 graph + edge (4 => 5 , : weight => 4)
23 DFSGraph= graph

24 end

with various keywords that we mentioned in the preceding section. We begin
by describing the internals of three main entities in rbFeatures namely, Feature,
ProductLine, and ProductVariant.

The Feature Module

We implement Feature as a module, which is a combination of Core, Method-
AddedHook, and other modules. The most important modules and methods
in Feature module are shown in Figure 5.3. Each supports part of the func-
tionality for representing classes in terms features when the Feature module is
mixed-in with the classes such as Weighted, Directed, and Undirected etc. as
shown in Listing 5.12 on page 111. Below, we describe each of these modules:

Core This module provides the functionality to activate or de-activate a Fea-
ture with activate() and deactivate() methods that keep track of the acti-
vation status of a Feature using active and temp active instance variables.
The method code() is the keyword code shown in Listings 5.13 and 5.14.
The block of code surrounded by code{...} constitutes a feature contain-
ment. A feature containment is objectified by converting it to a proc.

114 5. rbFeatures

The objectified feature containment is used in evaluating Feature-specific
code when activating a Feature.

MethodAddedHook This module provides definitions for the hook meth-
ods method defined() and singleton method defined(). When feature
containments consist of a method, method defined() is called. When the
Feature that defines the containment on a block of code using .code{...}
has not been activated but the contained method is called, then the
method body is replaced with an error message which reports the details
about Feature which caused the error. For instance, method directed()
was called on an instance of class Graph but Feature Directed was not
activated, then the error message reports this situation. The error mes-
sage itself is constructed dynamically. The apply visibility method
retains the visibility of the original method in case it is replaced by an-
other method.

Other modules inside the Feature module similarly define hooks for other enti-
ties such as instance variables and provide syntactic sugar for multiple Feature
containments by overriding operators such as +.

The ProductLine Class

An SPL is represented in rbFeatures by an instance of ProductLine class. The
ProductLine class stores the name of the SPL it is referring to, the complete
application code as a string, and a list of the variants that are declared in
the program. This list is updated in a given instance of a ProductLine class
if a ProductVariant is created based on the SPL it refers to which is added
immediately to the list using the add variant() method. The structure of the
ProductLine class is shown in Figure 5.4.

+activate()

+deactivate()

+code()

Core

-active

-temp_active +method_defined()

+singleton_method_defined()

+apply_visibility()

MethodAddedHook

Feature

Figure 5.3: Structure of the Feature Module in rbFeatures

The name(), add feature(), and remove feature() methods are used to set
the name of the SPL referred to by an instance of a ProductLine class,
and add features to or remove features from the SPL definition itself. The

5.2. rbFeatures Language Internals 115

activate features in variants() and deactivate features in variants()
methods oversee activation and de-activation of features respectively, from in-
stances of ProductVariant class that represent variants of this product line. The
valid() method is applied after the required features have been added to an
instance of a ProductLine class that they represent a valid feature model, e.g.,
that it is a tree rather than a cyclic graph. The checks are similar to the checks
applied to a productline type in FeatureJ.

+name()

+add_feature()

+remove_feature()

+valid?()

+add_variant()

+deactivate_features_in_variants()

+activate_features_in_variants()

ProductLine

-name

-code

-variants

Figure 5.4: Structure of the ProductLine Class in rbFeatures

The ProductVariant Class

A product/variant entity is represented in rbFeatures by an instance of Pro-
ductVariant class. The ProductVariant stores the name of the variant entity
it represents and the name of the ProductLine class to which it belongs. It
contains the methods that represent keywords which we have seen earlier in
Listings 5.10 to 5.11 on page 110.

The ProductVariant class consists of method instantiate() which returns an
instance of this class. The method activate features is used to initially
choose features that make up a variant entity. On the other hand, method
activate features in instance is used to activate features in an already
instantiated variant entity, i.e., in an instance of the ProductVariant class. The
methods deactivate features and deactivate features in instance are
similarly used to deactivate features.

The variable feature tree stores the symbols of all activated features. This
variable as well as methods that represent one, any, more, all keywords are
used in validating the product/variant model that an instance of ProductVariant
class represents.

116 5. rbFeatures

+productline()

+activate_features()

+deactivate_features()

+instantiate()

+activate_features_in_instance()

+deactivate_features_in_instance()

+all()

+one()

+more()

+any()

+is()

+name()

ProductVariant

-name

-productline

-feature_tree

-instantiated

Figure 5.5: Structure of the ProductVariant class in rbFeatures

Other Important Modules and Classes in rbFeatures

A module called FeatureResolver and a class called FeatureModel are used inter-
nally in rbFeatures. The FeatureResolver module oversees the initial evaluation
of Feature related code and later modification at run-time. Its structure is
shown in Figure 5.6.

+name()

+root()

+node()

+leaf()

+subfeatures()

+requires()

+valid?()

+configure()

FeatureModel

-name

-type

-constraints

-subfeatures
+name()

+init()

+update()

+reset!()

+register()

FeatureResolver

-init_run

Figure 5.6: Other Important Modules and Classes in rbFeatures

The init() method in FeatureResolver module takes the entire program as an

5.2. rbFeatures Language Internals 117

objectified proc. The entire program is evaluated once so that each activated
Feature per ProductVariant registers itself to the FeatureResolver. In combina-
tion with the functionality provided in Feature module, any modifications to
the configuration of a ProductVariant instance can be recognized at run-time.
The current activation status of a Feature per ProductVariant is kept updated
with the update() method. With this functionality, FeatureResolver is able to
keep track of features that are activated or de-activated at run-time. When
the activation status of a Feature changes, FeatureResolver is used to re-evaluate
the application code including validation of ProductVariant with respect to its
parent ProductLine.

Like the FeatureResolver module, FeatureModel is used internally. Listings
5.10, 5.15, and 5.16 use the keyword configure, which is actually the method
configure in FeatureModel class which returns an instance of feature class that
is mixed-in with Feature module. Both the ProductLine and ProductVariant
classes use an instance of FeatureModel class that represents the feature model
of an SPL and a product/variant model respectively. The Feature module and
the ProductLine, ProductVariant, and FeatureModel classes are interconnected
as shown in Figure 5.7.

ProductLine

ProductVariant

FeatureModel Feature

Application
Code

consists off >>

ba
se
d
on
 >
>

<< implements

co
ns
is
ts
 o
ff
>>

ApplicationInstanceinstantiates >> based on >>

<< implements

Figure 1: Entity structure of rbFeatures.

rection was done earlier [5], where we presented a DSL that
declaratively express the tree-structured product line. We
incorporated this language into rbFeatures to obtain first-
class model features, concrete features, product lines, and
variants. The structure of these entities is shown in the fol-
lowing !Figure 1.

Using the extended form of rbFeatures requires going through
the following steps:

• Define the feature model of the application by express-
ing parent and child relationships as well as feature
constraints.

• Implement or feature-refactor the application:

– Add concrete features representing the model fea-
tures as identified.

– Form feature containments by enclosing all code
parts in a block and provide a containment condi-
tion expressing under which feature configuration
the containment is executed.

• Create a variant by configuring a set of activated fea-
tures that are valid to the feature model.

• Instantiate the variant in a defined scope and use rbFea-
tures semantics for runtime adaptation and modifica-
tion of the variant.

In essence, our approach provides a reflexive layer around
an application to express a product line, features, and its
variant. The layer not only adds these entities, but also pro-
vides additional semantics which use RubyâĂŹs metapro-
gramming facilities and multiparadigm programming sup-
port. The following sections detail how this concept works.
Thereby, we use the Graph Product Line (GPL) as the on-
going example. The GPL is a product line that provides
different variants for graphs and graph algorithms [15]. We
see the tree-like structure of the GPL in !Figure 2. As can
be seen, the product line differentiates the type and weight
of a graph, provides search algorithms, and implements nu-
merous other algorithms like determining whether the graph
is a connected graph.

3.1 Definition of the Feature Model
The first step is to provide a feature model. The dec-

laration uses a language that is close to the entities and
relationships defined in the feature diagram. Each model
feature needs to be declared with the following properties:
name, position in the tree (root, node, leaf), the subfeatures,
and a set of constraints (using the keywords is, one, more,
all, any). For example, the declaration of the root node GPL

takes the following form in !Figure 3.

Mandatory
feature

Optional
feature

More
relation

OR
relation

AND
relation

Weight

Weighted Unweighted

Type

Directed Undirected BFS DFS None

Connected
Components

Strongly Connected
Components Cycle MST

Prime
MST
Kruskal

Shortest
Path

Algorithms

Number

GPL

Search

Figure 2: Feature model of the GPL.

This declaration is easy to read for itself. Beginning in
Line 2, the name of the feature is defined, its relative posi-
tion in the feature tree declared, its subfeatures listed, and
finally a constraint defined. The constraint expresses that
the selection of the GPL feature requires selecting all its
subfeatures (Type, Weight, and Search).

After all features are declared in this way, we can de-
clare the product line object. It uses the syntax shown in
!Figure 4. After a short description in Line 2, the next
lines just add the model features to this product line. Once
the product line declaration is complete, the valid? method
checks whether all named subfeatures and features contained
in the conditions are included – this helps to detect incorrect
product line objects.

After these first steps we have a complete set of model
features and the product line available. The next step is
to provide the implementation of the product line, and later
combine the model and the implementation for creating vari-
ants.

3.2 Implementing the Application
The next step is to implement the concrete features. Ei-

!
1 gpl_feature = Feature.configure do
2 name :GPL
3 root
4 subfeatures :Type , :Weight , :Search , :Algorithms
5 requires :GPL => "all :Type , :Weight , :Search ,

:Algorithms"
6 end" #

Figure 3: Configuring the root feature of the GPL.!
1 GPL = ProductLine.configure do
2 description "The complete GPL"
3 add_feature gpl_feature
4 add_feature type_feature
5 add_feature weight_feature
6 #...
7 end" #

Figure 4: Creating a product line by adding all its
related features.

Figure 5.7: Relations Between Feature Domain Entities in rbFeatures

5.2.3 Testing in rbFeatures

To validate an instance of ProductVariant class representing a variant, the pro-
duct/variant model implicitly stored in the variable feature tree is used. The
variable feature tree stores the symbols of all activated features. When a Pro-
ductVariant instance is created, its feature tree is traversed using feature tree,
accessing each Feature in turn, executing various methods indicating the re-
lations. For instance the line "more :Type, :Weight, :Search, :Algorithms"

shown earlier in 5.11 on page 110 is in fact a method call for method more() in

118 5. rbFeatures

the ProductVariant class shown in Figure 5.4 on page 115. Entire feature tree
stored in feature tree is evaluated to check whether each relation is satisfied.

The testing of application code itself takes place using RSpec which is a Ruby
API for behavior/test-drivend development in Ruby [Chelimsky et al. 2010].
RSpec is based on the concept that behavior/tests drive the implementation
[RSpec 2010]. New tests are added to the specification and the application is
incrementally developed. The same style is used when developing an rbFeatures
SPL. Note that while validation of an instance of ProductVariant class takes
place by ProductVariant class’s specification, individual application classes such
as Weight and Directed etc. must be tested as they are coded. This is in
contrast to static error checking provided by FeatureJ. In rbFeatures tests for
the correct application of various semantic mechanisms take place inside these
classes. These include tests:

• to cover feature containments (in code surrounded blocks) for different
granularities.

• to check that methods retain their visibility after modification.
• to check the correct execution of feature activation using evaluation of

containments.
• to check that application is correctly working in the specified context and

modifications to ProductVariant class instances stay in the ProductVariant-
specific scope.

Contrary to error checking support in FeatureJ, the developer needs to pro-
vide a complete set of tests for the whole application when coding SPLs in
rbFeatures. We find the correct way to do this is to structure the test suite
according to features to be tested and then test those configurations that are
to be instantiated as ProductVariant instances. Errors in these tests are taken
as indication for incomplete feature containments.

5.3 Architecture and Implementation Statistics

In this section, we describe the architecture that enables more than one Pro-
ductVariant instances possible in rbFeatures and provides support for run-time
adaptation of application class instances.

5.3.1 Architecture for rbFeatures

Recall from our discussion of variant generation architecture in FeatureJ on
page 90, that generating versions of more than one variant-specific application
classes constitutes providing support for separate namespaces where variant-
specific application classes live and are loaded from. Unlike Java, Ruby has
no concept of loading classes using class loaders or a folder hierarchy that

5.3. Architecture and Implementation Statistics 119

mimics the package structure of a Java application. Owing to the dynamic
and interpretive nature of Ruby, instead of creating separate namespace per
variant type as in FeatureJ, we create separate scopes per ProductVariant in
rbFeatures. This is illustrated in Figure 5.8.

ProductVariant-

specific

Execution Scope

Feature

Containments

ProductLine

Code

Composition of

ProductVariant

Instances

Checking

ProductVariant

Instances

ProductVariant-

specific

Modification

Application

Code

Figure 5.8: rbFeatures Architecture for First-class Features

Like the FeatureJ architecture for composing variants shown in Figure 4.11 on
page 91, the arrows in Figure 5.8 indicate general flow of control within various
entities in rbFeatures. Initially, the complete application is stored as a string
object. Consider a statement that instantiates a ProductVariant as shown in
the first line GPL.variant("ShortestPathVariant").instantiate! in Listing 5.17.
When method instantiate is called following steps are triggered:

1. Check whether the features activated in ProductVariant instance are valid
based on the ProductLine.

2. Compose a string consisting of a module and the SPL code. The module
uses the configured name of the variant and serves as a namespace.

3. Add the string to the FeatureResolver.
4. Initialize the application by evaluating the string.

Note that while run-time composition of ProductVariant instances is default
in rbFeatures, separated scopes also enable run-time adaptation as feature
activation status of Feature mixed-in classes is synchronized. Due to the fact
that each ProductVariant instance and corresponding application classes reside
in an exclusive scope, modifications such as feature addition/removal affects
each ProductVariant instance individually.

120 5. rbFeatures

This is particularly effective when application class objects maintain state. For
instance, in the GPL, individual graph have states such as edge directions,
weight assignment of edges etc. Unlike FeatureJ, it is possible to alter the
schema of an application class (i.e., add or remove a method of the class) and
the modification is reflected immediately to an instance of this class. A detailed
example of modifications in GPL is provided in the next chapter in the review
of rbFeatures case studies (cf. Section 6.2.1 on page 144).

5.3.2 Implementation Statistics

Table 5.3 shows the implementation statistics for rbFeatures which is imple-
mented atop Ruby version 1.9. Note that the difference between code sizes
in Tables 4.1 and 5.3 is due to the fact that rbFeatures is implemented atop
Ruby using Ruby’s own syntactic and metaprogramming facilities whereas Fea-
tureJ implementation atop JastAdd consists of the implementations of Java
1.4 and 1.5 compilers which are extended with corresponding syntactic (lexer
and parser) and semantic (AST representation) components. It also demon-
strates facility provided by malleable syntax and metaprogramming techniques
in Ruby toward implementing an internal DSL.

Ruby Language
Extension

Syntax SLOC Semantics SLOC Testing SLOC

rbFeatures 47 768 1964

Table 5.3: rbFeatures Implementation

It is possible that if we had chosen to implement rbFeatures by extending the
base C implementation, we would have faced similar complexity and needed to
take care of larger code sizes as in FeatureJ implementation.

5.4 Summary

In this chapter we elaborated how we implemented first-class features in Ruby.
As a dynamic programming language, Ruby offers different execution model
from Java with some default language features such as open classes and mixins
which are used in the implementation of feature domain entities. The string
manipulation and metaprogramming support in Ruby enable equivalent treat-
ment of code and data which results in a concise implementation of first-class
features. Instead of composing AST, parser, and scanner specifications like in
FeatureJ with JastAdd, rbFeatures exploits Ruby’s malleable syntax. We also
leverage the fact that Ruby has no compile-time and enable run-time adapta-
tion of ProductVariant-specific application class instances using Ruby’s ability
to evaluate and execute code within a given context.

Chapter 6

Evaluation

However, it isn’t always necessary to choose between function
and elegance. [...] What is necessary is to design the product so
that newly added features do not eliminate useful capabilities,
make good use of capabilities already present for other purposes,
and can be ignored or deleted by people who don’t want them.

David Parnas
in Why software Jewels Are Rare

In this chapter, we explain the implementation of four SPLs each in FeatureJ
and rbFeatures and also show that both FeatureJ and rbFeatures conform to
the requirements of first-class features. We present two case studies, namely
Expression Product Line (EPL) and Graph Product Line (GPL) in both Fea-
tureJ and rbFeatures, while the rest two case studies in each are different. We
use alternate feature models for EPL and GPL in FeatureJ and rbFeatures.
The other case studies demonstrate application of first-class features in the
context of GUI-based SPLs such as Notepad Product Line (NPL) in FeatureJ
and Calculator Product Line (CPL) in rbFeatures and finally, one large case
study each, Berkeley DB Product Line (BDBPL) in FeatureJ and Twitter Ap-
plication Product Line (TAP) in rbFeatures.1

1EPL and NPL in FeatureJ were presented in [Sunkle et al. 2009] and [Sunkle and Pukall
2010] and CPL and GPL in rbFeatures were presented in [Günther and Sunkle 2009] and
[Günther and Sunkle 2010] respectively. An alternate feature model of GPL was used in
[Sunkle et al. 2008b] and TAP is presented in the extended Journal paper version [Günther
and Sunkle 2011].

121

122 6. Evaluation

6.1 FeatureJ

6.1.1 Case Studies

Table 6.1 shows each SPL, number of compilation units in each, number of
features and SLOC. The number of features indicate all features including the
root and intermediate features as well as the leaf features that actually contain
code fragments in the application code. We also present the origins of the
EPL and GPL as SPL problems. The EPL is coded in FeatureJ with the
same feature model implicitly used in the case studies in [Lopez-Herrejon et al.
2005a] which demonstrate application of AspectJ, Hyper/J, AHEAD, Jiazzi,
and Scala to implement the EPL. We use it to compare FeatureJ with these
feature implementation techniques.

The feature model of GPL used in FeatureJ is different from one already pre-
sented in rbFeatures in Chapter 5. It is a mid-size SPL which we used during
initial implementation of FeatureJ itself to test its functionality.

We demonstrate output of multiple notepad variants explained earlier with
NPL in FeatureJ in Chapter 4. The NPL is midway between EPL and GPL in
terms of code size, but provides opportunity to demonstrate FeatureJ syntax
and semantics which we capitalized in Chapter 4. We also give an example
of error checking in FeatureJ which we discussed earlier in Section 4.2.3 on
page 84.

Finally, we explain the adoption of the implementation of BDBPL originally
presented in [Kästner et al. 2007]. Although extremely large compared to other
SPLs, the effort involved was eased due to its original implementation.

SPL Compilation Units Features SLOC
EPL 8 10 169
NPL 4 17 500
GPL 8 15 1K
BDBPL 308 55 45K

Table 6.1: FeatureJ Case Studies

Expression Product Line

The EPL is based on the expression problem. The expression problem is a de-
sign problem concerned with extending data abstractions to support new data
operations and representations [Cook 1991; Wadler 1998]. Discussions related
to the expression problem consider type-safety issues when considered from
programming language design perspective. Lopez-Herrejon [Lopez-Herrejon
2004] presented it from design and synthesis perspective. They later treated

6.1. FeatureJ 123

it as a case-study where five feature modularization techniques were used to
implement it as an SPL (i.e., as EPL) in [Lopez-Herrejon et al. 2005a]. This
is the same SPL which we earlier referred to within the context of capabil-
ities of feature modularization techniques (cf. Section 3.2 on page 31). The

 Print Eval
Lit lp le
Add ap ae
Neg np ne

Figure 6.1: Expression Problem as Two-Dimensional Matrix

solution to the expression problem itself has been represented in terms of a two-
dimensional matrix [Cook 1991; Wadler 1998], that arranges data types along
the rows and data operations along the columns as shown in Figure 6.1. The
combinations of data types with operation are treated as features in [Lopez-
Herrejon et al. 2005a; Lopez-Herrejon 2004]. Lopez-Herrejon et al. do not
present a feature model of the EPL, since the stress in the solution in AHEAD
[Lopez-Herrejon 2004] and later in terms of other techniques [Lopez-Herrejon
et al. 2005a] is on feature modularization rather than feature modeling. We
convert the two dimensional matrix representation of the expression problem
in Figure 6.1 to a feature model representing the EPL as illustrated in Figure
6.2. This feature model is implicit in the implementation of the EPL in the five
feature modularization techniques compared in [Lopez-Herrejon et al. 2005a].

EPL

LP NELE

Eval

AP NP AE

Print

Figure 6.2: Expression Product Line in FeatureJ

The details of individual implementations of the EPL in each of AspectJ, Hy-
per/J, Jiazzi, Scala, and AHEAD can be found with nearly complete source
code in the extended version of [Lopez-Herrejon et al. 2005a] published as a
technical report [Lopez-Herrejon et al. 2005b]. Similarly, the source code for
the FeatureJ version of the EPL was first presented in [Sunkle et al. 2009].

124 6. Evaluation

Listing 6.1: Definition of Feature le in AspectJ
1 // LE. java
2 public aspect LE {
3 public abstract int Exp . eval () ;
4 public int Lit . eval () { return value ; }
5 pointcut LPRun (Test t) : execution (public void Test . run ())
6 && target (t) ;
7 void around(Test t) : LPRun (t) {
8 proceed (t) ;
9 System . out . println (t . ltree . eval ()) ;

10 }
11 }

Listing 6.2: Definition of Feature le in Hyper/J
1 // Exp . java
2 package le ;
3 interface Exp { int eval () ;}
4 // L i t . java
5 package le ;
6 class Lit implements Exp {
7 int value ; // stub lp
8 Lit (int v) { } // req cons t ruc to r
9 public int eval () { return value ; }

10 }
11 // Test . java
12 package le ;
13 class Test {
14 Lit ltree ; // stub lp
15 void run () {
16 System . out . println (ltree . eval ()) ;
17 }
18 }

Of the five feature modularization techniques detailed in [Lopez-Herrejon et al.
2005b], four build upon Java, i.e., they introduce new modular entities to Java
namely, aspects, hyper-slices, atoms and units, and refinements in AspectJ, Hy-
per/J, Jiazzi, and AHEAD respectively. Here, we only bring forth the salient
differences in terms of representation and composition of feature domain en-
tities in these techniques and FeatureJ with respect to the EPL using source
code excerpts from [Lopez-Herrejon et al. 2005b] and the FeatureJ EPL imple-
mentation.

The non-SPL version of the expression problem consists of Exp interface with
print() and eval() methods and three classes Add, Neg, and Lit that implement

6.1. FeatureJ 125

Listing 6.3: Definition of Feature le in AHEAD
1 // Exp . jak
2 ref ines interface Exp { int eval () ; }
3 // L i t . jak
4 ref ines class Lit implements Exp {
5 public int eval () { return value ; }
6 }
7 // Test . jak
8 ref ines class Test {
9 public void run () {

10 Super () . run () ;
11 System . out . println (ltree . eval ()) ;
12 }
13 }

Listing 6.4: Definition of Feature le in Jiazzi - I
1 // Exp . java
2 package le ;
3 public interface Exp extends lp . Exp { int eval () ; }
4 // L i t . java
5 public class Lit extends lp . Lit implements fixed . Exp {
6 public Lit (int n) { super (n) ; }
7 public int eval () { return value ; }
8 }
9 // Test . java

10 package le ;
11 public class Test extends lp . Test{
12 public Test () { super () ; }
13 public void run () {
14 super . run () ;
15 System . out . println ("= " + ltree . eval ()) ;
16 }
17 }
18 public class Test { public void run () ; }
19 }

Exp. Another class Test is used to test the printing and evaluation of additive,
negative, and integer expressions represented by Add, Neg, and Lit classes. We
use the source related to definitions of features LE, LP, AE, and AP. Note that
original source refers to both lowercase and uppercase names of these features
which we keep as they are in the original source.

In AspectJ, feature le is represented in an additional source file LE.java in
terms of an aspect LE as shown in Listing 6.1. The functionality of feature
le is concerned with evaluating integer expressions. Listing 6.1 shows inter-

126 6. Evaluation

Listing 6.5: Definition of Feature le in Jiazzi - II
1 // l e . un i t
2 atom le {
3 import lp : lpS ;
4 export le extends lp : leS ;
5 import fixed extends le ;
6 }
7 // l eS . s i g the s i g n a t u r e o f un i t l e
8 signature leS = l : lpS + {
9 package fixed ;

10 public interface Exp { int eval () ; }
11 public class Lit {
12 public Lit (int n) ;
13 public int eval () ;
14 }

Listing 6.6: Definition of productline EPL in FeatureJ
1 public class Launcher {
2 productline EPL {
3 features {
4 Print : more(lp , ap , np) ,
5 Eval : more(le , ae , ne)
6 }
7 a l l (Print , Eval)
8 } ;
9 }

type declarations in Lines 3 and 4 that add eval() method to Exp and Lit.
AspectJ pointcut and advice mechanism is used in Lines 5-10 in Listing 6.1
which execute additional code using around advice.

While in AspectJ, a separate source file containing an aspect represents a fea-
ture, each of Hyper/J, Jiazzi, and AHEAD represent feature le with in Exp,
Lit, and Test classes as shown in Listings 6.2, 6.3, and 6.4.

In Hyper/J, feature le is represented in terms of a hyper-slice coded as package
le as shown in Listing 6.2. While hyper-slices that introduce new classes and
interface represented in regular Java packages, representation of features such
as le that introduce methods and other entities ascribe extra semantics to Java
packages [Lopez-Herrejon et al. 2005b].

AHEAD uses refinements to interface Exp, and classes Lit and Test classes to
represent feature le. The Super keyword adds additional syntax and semantics
to a method call in regular Java [Lopez-Herrejon et al. 2005b]. For instance,
Super().run() calls the run() method of the super class before executing the

6.1. FeatureJ 127

Listing 6.7: Definition of feature le in FeatureJ
1 //Exp . f j a v a
2 public interface Exp {
3 feature EPL le { public int eval () ; }
4 }
5 // L i t . f j a v a
6 public class Lit implements Exp {
7 feature EPL lp , EPL le {
8 int value ;
9 public Lit (int v) {

10 value = v ;
11 }
12 }
13 feature EPL le {
14 public int eval () {
15 return value ;
16 }
17 }
18 }
19 // Test . f j a v a
20 public class Test {
21 feature EPL lp , EPL le { Lit ltree ; }
22 public Test () {
23 feature EPL lp , EPL le { ltree = new Lit (3) ; }
24 public void run () {
25 feature EPL le { System . out . println (ltree . eval ()) ; }
26 }
27 }

code that follows in the run() method of Test class as shown in Listing 6.3.
All the code fragments shown in Listing 6.3 are arranged in a folder on disk
(named le). The .jak extension acknowledges additional syntax such as the
refines keyword.

Jiazzi similarly represents feature le in Exp interface and Lit and Test classes.
Additionally, it extends the semantics of Java packages so that functionality
of feature le can be grouped together as in package le as shown in Listing 6.4.
fixed.exp indicates version of Exp that contains all extensions in a common
composition indicated feature le. Additionally two files namely le.unit and
leS.sig need to be coded to indicate feature le in terms of atom le [Lopez-
Herrejon et al. 2005b], as shown in Listing 6.5.

It can be observed in Listings 6.2-6.5 that each of the feature modularization
techniques extend the semantics of regular Java entities such as packages and
method calls. The fact that certain code fragments constitute a feature is
implicitly indicated in terms of packages or folders named after the features.

128 6. Evaluation

Listing 6.8: Composition of Variant LitAdd in Hyper/J
1 // LitAdd . hs
2 hyperspace LitAdd

3 composable class LP . ∗ ; composable class LE . ∗ ;
4 composable class AP . ∗ ; composable class AE . ∗ ;
5 // LitAdd . cm
6 package LP : Feature . LP package LE : Feature . LE
7 package AP : Feature . AP package AE : Feature . AE
8 // LitAdd .hm
9 hypermodule LitAdd

10 hyperslices :
11 Feature . LP , Feature . AP ,
12 Feature . LE , Feature . AE ;
13 relationships :
14 mergeByName ;
15 end hypermodule ;

Listing 6.9: Composition of variant LitAdd in FeatureJ
1 public class Launcher {
2 variant EPL LitAdd {
3 Print = [lp and ap] ,
4 Eval = [le and ae]
5 } ;
6 }

In FeatureJ, the EPL is indicated by productline type EPL and feature le by
feature type le. Listing 6.6 shows the productline type definition of EPL in
FeatureJ. Listing 6.7 shows the FeatureJ implementation of feature le. Code
fragments that constitute feature le are scattered in interface Exp and classes
Lit and Test and are indicated in them by feature containments.

Note that in Listing 6.7, some code fragments belong to multiple features in-
cluding feature le. The fact that a code fragment is part of a feature is indicated
by a feature containment. The semantics of none of the regular Java entities is
extended. The feature le is explicitly specified and furthermore, the fact that
it is a feature of productline EPL is also indicated.

When composing feature le with other features thus represented to obtain vari-
ants such as LitAdd which represents additive integer expressions, each of As-
pectJ, Hyper/J, Jiazzi, AHEAD need to take into consideration additional
meaning ascribed to regular Java entities. In [Lopez-Herrejon et al. 2005b],
composition examples are given only for Hyper/J and Jiazzi, which we con-
sider next.

Listing 6.8 shows that to compose a variant of EPL that is capable of adding

6.1. FeatureJ 129

Listing 6.10: Composition of Variant lelp in Jiazzi
1 // l e l p . un i t
2 compound lelp {
3 export compLELP : leS ;
4 bind package compLELP to compLELP@fixed ; }
5 {
6 l ink unit lpInst : lp , leInst : le ;
7 l ink package
8 leInst@le to ∗@fixed ,
9 lpInst@lp to leInst@lp ,

10 leInst@le to compLELP ;
11 }

Listing 6.11: Composition of variant lelp in FeatureJ
1 public class Launcher {
2 variant EPL lelp {
3 Print = [lp] ,
4 Eval = [le]
5 } ;
6 }

integer expressions in Hyper/J. It is required to specify it as a hyperspace,
packages must be ascribed to features, and then these feature packages are
merged at the byte-code level. On the contrary, the same variant is described
in FeatureJ as shown in Listing 6.9. The FeatureJ version of expressing a
variant as in Listing 6.9 is concise and to the point. The SPL and its variant
are clearly related and the developer is only concerned about selecting features
that make up a variant.

Similarly, in Jiazzi, composing a variant of EPL that is capable of evaluating
and printing integer expressions (i.e., composition of feature le with feature
lp) requires indicating a compound lelp that binds packages declared earlier
in Listing 6.4 (feature lp in Jiazzi is not shown here, which can be referred to
in [Lopez-Herrejon et al. 2005b]). Furthermore, various units must be linked
together as shown in Listing 6.10.

The same variant is represented in FeatureJ as shown in Listing 6.11. Only
feature types lp and le need to be selected from EPL and the variant is indicated
by variant type lelp.

Composition of variants of EPL in AspectJ and AHEAD is not shown in [Lopez-
Herrejon et al. 2005b]. In AspectJ, another ordering aspect is created that
indicates the precedence in which aspects indicating features need to be weaved.
Similarly in AHEAD, an equation file must specify the order of composition of
refinements representing features. The EPL case-study in FeatureJ showcases

130 6. Evaluation

the following characteristics as compared to other implementation techniques
as follows:

1. While other feature implementation techniques do not explicate the struc-
ture of the EPL or its variants, FeatureJ does in terms of productline type
EPL and variant types LitAdd and lelp.

2. In FeatureJ, semantics of feature composition is separated into product-
line, variant, and feature types unlike other feature implementation tech-
niques in which regular Java entities are overloaded with additional se-
mantics that must be taken into consideration when composing features.

3. Ordering is important particularly to AspectJ and AHEAD which use
ordering aspect and equation file respectively for the same. In FeatureJ,
ordering is not required. The developer only has to select features from
an SPL that make up a variant.

The EPL is a very small SPL. The code for the expression problem in terms
of Exp interface, and Lit, Neg, Add, and Test classes fits one page and the
SLOC number of EPL in FeatureJ is only 165. The consideration of additional
semantics of regular Java entities and lack of explicit representation of an SPL
and its variants can become very complex when larger SPLs are considered.
We now move on to the description of other case studies in FeatureJ with larger
code base starting with the NPL.

Figure 6.3: Two Notepad Variants

Notepad Product Line

We have used the NPL as the example SPL throughout Chapter 4 to demon-
strate FeatureJ syntax and semantics. We refer to the feature model of the

6.1. FeatureJ 131

NPL originally shown in Figure 4.7 on page 76. As specified earlier, it contains
four compilation units and measures 500 SLOC. It also showcases the applica-
tion of FeatureJ to GUI-based applications. We showed two NPL variant types
namely, simpleNotepad and colorNotepad in Listings 4.16 on page 77 and 4.17
on page 78 respectively.

As shown in Listing 4.20, objects of the NPL application class NotepadGUI
(i.e., one of the 4 compilation units that constitute the NPL), are obtained and
run() method shown in Listing 4.21 is called which initiates Java GUI. The
result is shown in Figure 6.3.

The NPL variant simpleNotepad is shown on the left in Figure 6.3. It provides
the functionality to select font through the Font feature, which is a child feature
of feature Format. The NPL variant shown on the right is colorNotepad variant.
It provides the functionality to select the color of the text but not the ability
to set the font type or size as in variant simpleNotepad.

Listing 6.12: An Unreachable Statement in NPL
1 public class Notepad extends JFrame {
2 feature notepadPL Font {
3 class FormatFont implements ActionListener {
4 public void actionPerformed (ActionEvent e) {
5 Mydialog md=new Mydialog (null) ;
6 return ;
7 md . show () ;
8 }
9 }

10 }
11 . . .
12 }

We also demonstrate error checking and reporting in FeatureJ with an example
of the same from the NPL. Listing 6.12 an excerpt of the NPL in which a code
fragment contained in feature Font contains an unreachable statement. Note
that while variant simpleNotepad contains feature Font, variant colorNotepad
does not. Recall from our discussion about FeatureJ error reporting that we
distinguish between variant- and productline-specific errors and report errors for
individual variants (cf. Section 4.2.3 on page 84). When a compilation-error
such as the one shown in Line 6 of Listing 6.12 is present, FeatureJ reports the
following error:

“Unsafe Composition Error : In the variant simpleNotepad statement is un-
reachable in .\testNotepad\Notepad.fjava at line 471:. ”

Note that in the actual implementation of NPL the code fragment between
Lines 2-10 in Listing 6.12 happens to be between Lines 466-474 and md.show←↩

(); is at Line 471. The fact that due to the return; statement at Line 470,

132 6. Evaluation

the statement at Line 471 becomes unreachable and that this will affect only
variant simpleNotepad is made clear in the error reported by FeatureJ.

Graph Product Line

The GPL was first introduced in [Lopez-Herrejon and Batory 2001] as a com-
mon computer science problem that can be tackled in terms of features so
that different variants representing specialized graphs could be obtained eas-
ily. The GPL was put forth as an easy to code SPL without requiring any
domain-specific expertise.

GPL

MST DFSBFS

Algorithms

ShortestPath MSTW

Search

TopSort

Weight

Figure 6.4: Graph Product Line in FeatureJ

Listing 6.13: Definition of productline GPL in FeatureJ
1 public class Launcher extends TestCase {
2 productline GPL {
3 features {
4 algorithms : more(ShortestPath , MST , MSTW ? , TOPSort) ,
5 search : more(BFS , DFS) ,
6 weight

7 }
8 more(algorithms , search , weight)
9 constraints {

10 MSTW <−> weight

11 }
12 } ;
13 }

In the FeatureJ version of the GPL, we showcase how standard coding practices
such as unit testing using JUnit can be used when coding SPLs in FeatureJ.
Listing 6.13 shows how the feature model shown in Figure 6.4 is represented
as a productline type GPL. The GPL code base consists of 8 compilation units

6.1. FeatureJ 133

namely, Graph, Vertex, Edge, Stack, Queue, PriorityQueue, Distance, and
Launcher class.

Listing 6.14: Unit Testing BFS feature in a variant of GPL
1 public class Launcher extends TestCase {
2 variant GPL BFSGraph {
3 search = [BFS] ,
4 } ;
5 public void testBFS () {
6 GPL : : BFSGraph Graph−>theGraph ;
7 theGraph . addVertex (’A’) ; // 0
8 theGraph . addVertex (’B’) ; // 1
9 theGraph . addVertex (’C’) ; // 2

10 theGraph . addVertex (’D’) ; // 3
11 theGraph . addVertex (’E’) ; // 4
12 theGraph . addEdge (0 , 1) ; // AB
13 theGraph . addEdge (1 , 2) ; // BC
14 theGraph . addEdge (0 , 3) ; // AD
15 theGraph . addEdge (3 , 4) ; // DE
16 assertEquals (theGraph . bfsString () . trim () ,"ABDCE") ;
17 }
18 }

The JUnit TestCase class is extended by class Launcher. Listing 6.15 shows a
JUnit test to check the output of breadth first search in graph that represents
a variant that consists of the BFS feature from the GPL.

The line GPL:: BFSGraph theGraph; is transformed to the corresponding Java
code that instantiates a Graph object named theGraph which is obtained us-
ing JastAdd’s rewrite system to transform FeatureJ syntax to Java equivalent.
Note that methods of class Graph can also be called without creating an in-
stance first, as first shown in Listing 4.20.

Listing 6.15: Getting a Graph Object using AST Rewriting and Java Reflection
1 public class Launcher extends TestCase {
2 . . .
3 public void testFeatureJ () {
4 // Transforming GPL : : BFSGraph Graph−>theGraph ; to −>
5 PL GPL=new PL("GPL") ;
6 PLVariant BFSGraph=new PLVariant(GPL , "BFSGraph") ;
7 Graph theGraph= BFSGraph . getVariantObject ("Graph") ;
8 . . .
9 assertEquals (theGraph . bfsString () . trim () ,"ABDCE") ;

10 }
11 }

134 6. Evaluation

While error checking in FeatureJ ensures that variant BFSGraph will compile
without errors, easy integration with JUnit, which only requires including JUnit
.jar files in the classpath of the FeatureJ GPL application, enables testing that
the breadth first search algorithm is implemented correctly.

More than one tests can be written that test different variants and functionality
of graphs that are specific to those variants. Furthermore, a new variant can
be composed by adding specific features and the functionality related to these
features can be tested. By integrating error checking at the language level,
it becomes possible to use error checking and testing in concert in FeatureJ
as it is done with Java in which compiler checks for compilation errors and
developers write tests for individual pieces of functionality.

Berkeley DB Product Line

Oracle Berkeley DB JE is a Java version of an embedded database system
written entirely in Java. The Berkeley DB product line was first presented in
[Kästner et al. 2007]. It is based on the concept of feature-refactoring of legacy
applications [Liu et al. 2006]. Berkeley DB Java Edition was feature-refactored
into an SPL using AspectJ [Kästner et al. 2007]. Current version of Berkeley
DB JE is 4.0.13, while the Berkeley DB Java edition that was refactored into
an SPL was 1.1.6. This version consisted of four main packages namely, je, util,
compat, and bind. Collectively, these packages presented the functionality to
use key/value pairs of arbitrary data based on internal B-tree implementation
and provided transaction logging and cacheing facilities. The latest version of
Berkeley DB Java Edition additionally provides direct persistence layers and
persistent collections API.

The original feature model implicit in the refactoring of Berkeley DB JE con-
tained 38 features. We used the #ifdef annotated version of Berkeley DB used
in the original feature-refactoring as the starting point to create the FeatureJ
version of Berkeley DB JE product line. We also included another package
called collections available in versions 1.6.x to test a variant of this SPL against
example programs given in Berkeley DB JE. This package was included as a
part of the base program for completeness without feature-refactoring it. Alto-
gether the FeatureJ version of Berkeley DB JE product line (BDBPL) consists
of 57 features (including the 38 leaf features as well as intermediate features
and the root feature) with 308 compilation units in 5 packages of Berkeley DB
JE with 45K SLOC.

Instead of showing the feature model of BDBPL, we show the productline defi-
nition of the BDBPL in Listings 6.16 and 6.17. Listing 6.18 shows a variant of
BDBPL. Listings 6.16, 6.17, and 6.18 show that productline and variant defini-
tions of a large SPL such as BDBPL can be represented concisely and that the
developer can be aware of which feature types constitute a variant even without
a visual aid.

6.1. FeatureJ 135

Listing 6.16: Berkeley DB productline Definition - I
1 public class BerkeleyDBLauncher {
2 productline BDBPL {
3 features {
4 OptionalDB ? : more(Logging , Statistics ? ,
5 DBMemoryBudgetJE ?) ,
6 Logging : more (LoggingFiner ? , LoggingConfig ? ,
7 LoggingSevere ? , LoggingEvictor ? , LoggingCleaner ? ,
8 LoggingRecovery ? , LoggingDBLogHandler ? ,
9 LoggingConsoleHandler ? , LoggingInfo ? ,

10 LoggingBase , LoggingFileHandler ? ,
11 LoggingFine ? , LoggingFinest ?) ,
12 ConcurrTrans : more (DBLatchesJE ? , Transactions ? ,
13 CheckLeaks ? , FSync ?) ,
14 Persistance : more (Checksum ? , IIO ,
15 EnvironmentLocking ? , IICleaner ,
16 Checkpointer , DiskFullError ? , FileHandleCache ?) ,
17 BTree : more (InCompressor ? , IEvictor ? , Verifier ?) ,
18 IIO : one (SIO , NDIO) ,
19 SIO : more (SynchronizedIO ? , IO) ,
20 NDIO : more(NIOAccess , DirectNIO ?) ,
21 NIOAccess : one (ChunkedNIO , NIO) ,
22 Checkpointer : more (CPBytes ? , CPTime ? ,
23 CheckpointerDaemon ?) ,
24 IICleaner : more (CleanerDaemon ? , Cleaner ,
25 DBLookAHEADCacheJE ?) ,
26 IEvictor : more (CriticalEviction ? , EvictorDaemon ? ,
27 Evictor) ,
28 Ops : more (DeleteOperation ? , RenameOperation ? ,
29 TruncateOperation ?)
30 }
31 more(OptionalDB , ConcurrTrans , Persistance , BTree , Ops)
32 } ;
33 constraints { . . . }
34 }

The original feature-refactoring of Berkeley DB JE was carried out by analyzing
the domain of database engines, referring to the Berkeley DB JE manual,
studying default configuration parameters and manual inspection of the source
code using various Eclipse-supported static analysis facilities.

It was found in the original feature-refactoring of that there were both fine-
grained and coarse-grained features. Extremely fine-grained features such as
method parameters required work-arounds that would lead to the redesign
of the base application. Also, optional feature problem was apparent due to
interaction between directly and indirectly dependent features [Kästner 2010].
Feature interaction is defined as a situation in which two or more features

136 6. Evaluation

Listing 6.17: Berkeley DB productline Definition - II
1 public class BerkeleyDBLauncher {
2 productline BDBPL {
3 features { . . . }
4 constraints {
5 Evictor <−> DBMemoryBudgetJE ,
6 EvictorDaemon <−> DBMemoryBudgetJE ,
7 DBLookAHEADCacheJE <−> DBMemoryBudgetJE ,
8 CriticalEviction <−> InCompressor ,
9 CPBytes <−> CPTime ,

10 DeleteOperation <−> Evictor ,
11 DeleteOperation <−> InCompressor ,
12 DeleteOperation <−> DBMemoryBudgetJE ,
13 DBMemoryBudgetJE <−> Evictor ,
14 DBMemoryBudgetJE <−> DBLatchesJE ,
15 TruncateOperation <−> DeleteOperation ,
16 Verifier <−> InCompressor

17 }
18 } ;
19 }

exhibit unexpected behavior that does not occur when the features are used
in isolation[Apel and Kästner 2009]. The same strategies applied to counter
feature interactions in the original case-study are also applicable in FeatureJ,
i.e., to separate the code of interacting features to a derivative which itself can
be represented as a feature.

The treatment of nested and alternative features takes place as described earlier
(cf. Section 4.2.3 on page 83). Note that while we support error checking for
invalid variant types as well as any compilation errors that may occur as a
result of nested and alternative feature definitions, we do not provide support
for various automated refactorings as suggested in [Kästner 2010]. In FeatureJ
after the errors have been found, the code needs to be redesigned manually.

Since we used version of Berkeley DB JE that was already feature-refactored,
we did not face the feature-refactoring effort as documented in [Kästner et al.
2007] and [Kästner 2010]. The primary difference between the original feature-
refactoring and FeatureJ version was that of the granularity of features allowed.
While FeatureJ enables the same level of granularity for coarse-grained features
as in virtual annotations, on the level of fine-grained features it enables contain-
ing statements rather than expressions. While it is possible to extend feature
containments in FeatureJ to finer levels of granularity, we did not opt for it
for the same reason as it was found in the original feature-refactoring, it would
render the code base obfuscated or lead to major redesign of the code.

Since FeatureJ is IDE-independent, we believe that a sound use of FeatureJ in

6.1. FeatureJ 137

Listing 6.18: A variant of productline BDBPL
1 public class BerkeleyDBLauncher {
2 variant BDBPL BDVariant {
3 OptionalDB = [Statistics and DBMemoryBudgetJE

4 and Logging] ,
5 Logging =[LoggingSevere and LoggingBase] ,
6 ConcurrTrans = [DBLatchesJE and Transactions

7 and FSync] ,
8 Persistance = [Checksum and IICleaner

9 and EnvironmentLocking and FileHandleCache] ,
10 IICleaner =[Cleaner and DBLookAHEADCacheJE] ,
11 BTree = [InCompressor and Verifier] ,
12 IEvictor = [CriticalEviction and Evictor] ,
13 Ops = [DeleteOperation and RenameOperation

14 and TruncateOperation]
15 } ;
16 . . .
17 }

large legacy applications would require extending it with various existing Jas-
tAdd static AST analyses including refactoring [Schäfer et al. 2009]. Similarly,
we do not provide a special consideration of feature interactions though they
are clearly a major issue [Apel and Kästner 2009] as found in BDBPL [Kästner
et al. 2009].

6.1.2 Conformance to Requirements of First-class Features

Our design choices in FeatureJ make it possible to express feature domain
entities as domain-specific abstractions. The operations over these entities are
expressed using domain-specific syntax. In the following, we elaborate on how
FeatureJ specifically satisfies each requirement from the set of requirements
laid out earlier in Chapter 3 towards achieving first-classness of feature domain
entities:

First-classness in a Host Language FeatureJ conforms to the first require-
ment of representing feature domain entities with first-class status in Java
as the host language. This is achieved by implementing feature domain
entities as types atop the JastAdd extensible compiler system for Java.
These entities are addressable at compile-time as productline, variant, and
feature AST node types as described earlier in Section 4.2.1 on page 73.
These are represented at run-time in terms of using objects of meta-
classes PL, PLVariant, and Feature as demonstrated in Section 4.3.2 on
page 90. Whereas productline type expresses the structure of an SPL
and feature type enables mapping code fragments to conceptual features,

138 6. Evaluation

variant entities represent actual program variants and can be modified
by adding or removing feature types. More than one variant types can
be defined based on a productline type. This indicates that the repre-
sentation of feature domain entities in FeautreJ is both addressable and
manipulable as required.

Uniformity The three feature domain entities productline, variant, and feature
represent feature models of the SPL under consideration and its variants,
and both conceptual and concrete features respectively. The relations
and constraints between conceptual features that are implicit in a fea-
ture model are made explicit in a productline type definition and utilized
toward validating a variant model represented by a variant type. When
more than one conceptual features map to the same concrete code frag-
ment, this is denoted by feature containment of multiple feature entities.
This representation of feature domain entities in FeatureJ satisfies the
second requirement such that conceptual and concrete counterparts are
represented by common language entities.

Subsumed Checking Various aspects of validation with regards to feature
domain entities are part of their representation in FeatureJ. Based on
common practice in JastAdd to represent extensions in terms of AST
node types, the representation of various feature domain entities in Fea-
tureJ contains corresponding validation functionality which is invoked
statically during error checking to ensure productline type indicating a
valid feature model, valid variant type based on a productline type that
satisfies relations and constraints made explicit in the productline type.
Actual program variants to be generated are checked for errors by ex-
tending error checking on per AST node basis with respect to feature
containments so that accurate errors regarding feature types in individ-
ual variant types are reported.

Identity A program variant in FeatureJ is referred through a variant type at
compile-time and at run-time it is executed as an instance of PLVariant
class. This ensures that identity of a program variant as it was composed
using feature entities is preserved. While run-time adaptation of variant
types and therefore of object of the underlying application classes is not
yet supported, separate namespace mechanism coupled with meta-classes
based design in FeatureJ enables modifying a variant by composing an-
other variant type as it is known which feature types make up the original
variant type, and whether the modification will lead to a valid or invalid
program variant based on the original feature model which is made ex-
plicit in a productline type that is available for reference as an instance
of PL class.

Extensibility This requirement of first-class features is achieved by using the
JastAdd extensible compiler system to implement FeatureJ. This not only
enables extending Java 1.4 with FeatureJ syntax and semantics but also
make possible extending FeatureJ itself to encompass Java 1.5 source
with minimal effort as detailed in Section 4.3.4 on page 94. JastAdd
provides a clean composition mechanism for AST, parser, and scanner

6.2. rbFeatures 139

specifications that can be used to make any JastAdd-based extension of
Java 1.4 and Java 1.5 feature-aware both syntactically and semantically.

6.2 rbFeatures

6.2.1 Case Studies

Table 6.2 shows each SPL, number of compilation units in each, number of
features and SLOC. The number of features indicate all features including the
root and intermediate features as well as the leaf features that actually contain
code fragments.

The EPL presented in rbFeatures is based on an alternate feature model which
is different from the one used in FeatureJ. With the EPL, we show how testing
is carried out along with the application code in rbFeatures.

The Calculator Product Line (CPL) in rbFeatures showcases its use with a
GUI-based SPL. We use Shoes framework for this purpose which is used in
Ruby for GUI-based applications. The CPL demonstrates the code and data
equivalence in Ruby and how it is utilized in rbFeatures.

We demonstrate the run-time adaptation capability of rbFeatures with the
GPL. Graph application class instances exist in ProductVariant-specific scope
and can be adapted to the modified structure of the ProductVariant within the
context of which they exist.

The Twitter Application Product Line (TAP) case study demonstrates how
rbFeatures interacts with other DSLs in Ruby to support SPL versions of web
applications. Due to its language-based implementation, rbFeatures is able
to make other Ruby-based DSLs feature aware so that their functionality is
utilized towards achieving features of a web application (in this case, Twit-
ter application) including communication with server, database handling, and
rendering of web pages.

SPL # Features # SLOC
EPL 10 116
CPL 5 111
GPL 19 324
Twitter PL 9 600

Table 6.2: rbFeatures Case Studies

140 6. Evaluation

Expression Product Line

We use an alternate feature model of the EPL in rbFeatures from the one
shown in Figure 6.5 and used as a FeatureJ case study to compare feature
representation and composition. This feature model is shown in Figure 6.5.
Instead of representing the functionality of the EPL in terms of printing and
evaluation operations, we apply traditional domain analysis and represent data
types in terms of integer numbers and addition and subtraction expressions and
data operations in terms of printing and evaluation.

EPL

Neg EvalPrint

Expression

Lit Add Sub

Numbers Operation

Figure 6.5: EPL in rbFeatures

The rbFeatures version of the EPL consists of 6 leaf features and 4 intermediate
features including the root feature EPL. In this representation, Ruby classes
Numbers, Expressions, and Operations include the Feature module. Each of
the pair of classes in Lit and Neg, Add and Sub, and Print and Eval extend
the Numbers, Expressions, and Operations classes. Listing 6.19 shows that the
method print eval() in class Add belongs to both the Print and Eval Feature
entities. When both the Print and Eval are activated in a ProductVariant the
print eval() method is added in an instance of ProductVariant class.

Listing 6.19: Providing the Print and Eval Functionality for Add Feature

1 class Add

2 (Print + Eval) . code do
3 def print_eval

4 print

5 Kernel . print "=#{eval}"

6 end
7 end
8 . . .
9 end

6.2. rbFeatures 141

Listing 6.20 shows how RSpec-based tests are used to code an SPL in rbFeatures
as described earlier in Section 5.2.3 on page 117.

Listing 6.20: Testing Containments in code{} in EPL
1 i t "Block containments" do
2 base = lambda {
3 class Print

4 is Feature

5 end
6 class Eval

7 is Feature

8 end
9 class Lit

10 is Feature

11 def initialize (val)
12 raise "IntegerError" i f val < 0
13 @value = val

14 end
15 (+Print) . code (s e l f) {def print ; @value . to_s ; end}
16 (+Eval) . code (s e l f) {def eval ; @value ; end}
17 end
18 }
19 FeatureResolver . init (base)
20 end

Listings 6.21 and 6.22 indicate tests that are members of the same test suite for
EPL in rbFeatures which contains test in Listing 6.20. In conjunction with the
test in Listing 6.20, test in Listing 6.21 ensures that code blocks in Print and
Eval classes (that mix-in the Feature module via Operations class) are executed
with a desired output when they are activated.

Listing 6.21: Testing for Errors in EPL - I
1 i t " * calling methods for activated features should have ←↩

correct output " do
2 Lit . activate
3 Print . activate
4 Eval . activate
5 Lit (1) . send (: print) . should eql "1"

6 Lit (1) . send (: eval) . should eql 1
7 Print . deactivate
8 Eval . deactivate
9 end

On the other hand, if certain features are not activated but the methods they
contain are called, then corresponding error is raised as shown in Listing 6.22.

142 6. Evaluation

While rbFeatures uses testing for the purposes of error checking, unlike Fea-
tureJ this code has to be written by the developer. Although this kind of
treatment of testing requires getting used to, we believe that it provides a
viable option in rbFeatures toward checking SPLs for errors.

Listing 6.22: Testing for Errors in EPL - II
1 i t " * calling methods of non-activated features should ←↩

result in FeatureNotActivatedErrors " do
2 lambda {Lit (1) . print } . should raise error (←↩

FeatureNotActivatedError)
3 lambda {Lit (1) . eval } . should raise error (←↩

FeatureNotActivatedError)
4 end

Calculator Product Line

Calculator

SubtractionAddition Division Multiplication

Figure 6.6: Calculator Product Line

Listing 6.23: Rendering Numbered Buttons of a Calculator
1 flow : width => 218 , : margin => 4 do
2 \%w (7 8 9 / 4 5 6 ∗ 1 2 3 − 0 Clr = +) . each do | btn |
3 button btn , : width => 46 , : height => 46 do
4 . . .
5 end
6 end
7 method = case btn

8 when / [0 −9]/ ; ’press_’+btn

9 when ’Clr’ ; ’press_clear’

10 . . .
11 end

The CPL showcases application of rbFeatures to GUI applications. The CPL
is based on the Shoes framework which enables creating user interfaces in Ruby
[Ruby Shoes Development Community at GitHub 2009]. The feature model

6.2. rbFeatures 143

Figure 6.7: Two Calculator Variants using Shoes Framework

used in CPL is simplistic. The primary difference from the GUI-based SPL in
FeatureJ such as the NPL is that activation/deactivation of GUI features and
corresponding functionality can be carried out dynamically.

Listing 6.23 shows how the buttons on a regular calculator are rendered in
Ruby using Shoes. The name of the event to be processed is generated as a
string which is called using Ruby metaprogramming methods.

Listing 6.24: Containments of CPL Features
1 ops = {}
2 Add . code {ops [’add’] = ’+’}
3 Sub . code {ops [’sub’] = ’-’}
4 Times . code {ops [’times’] = ’*’}
5 Div . code {ops [’div’] = ’/’}
6 ops . each do | meth , op |
7 define_method "press_#{meth}" do
8 i f @op

9 press_equals

10 end
11 @op = op

12 @previous , @number = @number , ni l
13 end
14 end

Listing 6.24 shows feature containment of CPL features. Various event pro-
cessing press {operation method name} methods are generated dynamically.
A controller interface is used to activate/deactivate features in CPL. Based
on which features are activated, corresponding rendering and event processing
code is generated dynamically and executed so that it is possible to dynam-

144 6. Evaluation

ically alter the appearance and functionality of a CPL variant as shown in
Figure 6.7.

Graph Product Line

We have described the rbFeatures version of GPL at length throughout chapter
5 to illustrate rbFeatures syntax and semantics. Similarly, we described the
origins of the GPL in Section 6.1.1 on page 132. The feature model of the GPL
used in rbFeatures differs from the feature model used in the FeatureJ version
of the GPL. We refer to the GPL feature model shown earlier in Figure 5.2 on
page 110.

In Listing 5.17 on page 113, we showed how a ProductVariant called DFSVari-
ant is instantiated. In Section 5.3.1 on page 118, we stated that in contrast
to FeatureJ, rbFeatures enables run-time adaptation of application class ob-
jects already obtained. In Listing 6.25 we reproduce the excerpt that shows
instantiation of DFSVariant.

Listing 6.25: Initializing ProductVariant DFSVariant
1 GPL . variant ("DFSVariant") . instantiate !
2 DFSVariant . class_eval do
3 graph=Graph . new
4 1 . upto (5) { | n | graph + node (n) }
5 graph + edge (1 => 2 , : weight => 1)
6 graph + edge (1 => 3 , : weight => 2)
7 graph + edge (2 => 4 , : weight => 3)
8 graph + edge (3 => 5 , : weight => 4)
9 graph + edge (4 => 5 , : weight => 4)

10 DFSGraph= graph

11 end

Note that in the DFSVariant ProductVariant, Feature shortest path had not
been activated (cf. Listing 5.16 on page 112). If we try to run the shortest path
method on the graph DFSGraph obtained in Listing 6.25, then we get the
FeatureNotActivatedError error as shown in Listing 6.26.

Listing 6.26: Executing Non-activated Feature in DFSVariant
1 DFSVariant . class_eval do
2 shortest_path (DFSGraph , 5)
3 end
4 # => FeatureNotActivatedError :
5 # => Feature s h o r t e s t p a t h i s not a c t i va t ed

6.2. rbFeatures 145

3 4

5

2

1

4 4

2 3

1

3 4

5

2

1

4 4

2 3

1
DFSGraph

Activating

ShortestPath

Feature in

DFSVariant and

applying it to

DFSGraph

Figure 6.8: Adapting an Existing Graph Instance with DFS Feature

Listing 6.27: Adapting Existing Graph Instance to a Feature at Run-time
1 GPL . variant ("DFSVariant") . activate_features
2 : shortest_path
3 DFSVariant . class_eval do
4 paths=shortest_path DFSGraph , 5
5 print paths

6 end
7 # => [1 , 2 , 3 , 5]

The run-time adaptation capability of rbFeatures is demonstrated in Figure 6.8.
The Graph class instance DFSGraph indicates an application class instance
that has state, including the edges between the nodes and the weights. If
now we alter the configuration of DFSVariant by activating the shortest path
Feature, it is possible to apply the shortest path method to DFSGraph because
it exists within the scope of DFSVariant as shown in Listing 6.27. The left
figure shows DFSGraph as it is before activating the shortest path Feature.
After activating shortest path Feature in DFSVariant, the modifications are
reflected in existing Graph class instance DFSGraph. In this regard rbFeatures
differs from FeatureJ, because in FeatureJ, after modifying a variant, a Graph
class instance would have to be repopulated with data for edge directions and
weight, which is not required in rbFeatures because of run-time adaptation
support.

146 6. Evaluation

Twitter Application Product Line

The Twitter Application Product Line (TAP) case study enables customiz-
ing the functionality offered by Twitter micro messaging platform in terms of
number of tweets and addition/removal of registered users. The feature model
of TAP is shown in Figure 6.9. The TAP showcases the application of SPL
concepts to web applications. Furthermore, it is used to demonstrate how the
feature domain entities represented in terms of an internal DSL in Ruby may
interact with other Ruby DSLs.

TAP

DeleteUser

Tweets

AddUser ViewTweets

Users

UpdateTweets

All Ten

Figure 6.9: Twitter Application Product Line

The core of TAP is built around various Ruby frameworks that are made
feature-aware so that features shown in Figure 6.9 can be selected toward
a customizable Twitter messaging interaction. These Ruby frameworks are
themselves represented as internal DSLs. We extend the concepts of rbFea-
tures as they are applied in general application to encompass these internal
DSLs to make the customization of TAP variants possible. The Ruby DSLs
consist of the following, which we specify along with their purpose:

• Sinatra - Sinatra is a Ruby web-framework2. It represents an internal
DSL that can be used to configure basic properties of a web server, han-
dle requests including query parameter parsing and responses including
MIME types and dynamic templates etc.

• DataMapper - DataMapper is used to provide database abstraction3.

2http://www.sinatrarb.com/
3http://datamapper.org/

6.2. rbFeatures 147

• HAML - HAML, which stands for HTML Abstraction Markup Language,
is a template engine that provides an interface to HTML with lesser
number of characters than HTML4.
• SASS - SASS, which stands for Syntactically Awesome Style-sheets, pro-

vides Ruby interface to CSS and provides the ability to dynamically up-
date CSS properties of a web application 5.

Since all these DSLs are implemented using Ruby syntax like rbFeatures, when
used in conjunction with rbFeatures, they merely represent themselves as an-
other piece of Ruby code at the syntactic level. We only have to accommodate
their semantics. We do this by integrating the semantics of these DSLs in
the rbFeatures architecture which we described earlier (cf. Section 5.3.1 on
page 118). Specifically the architecture of rbFeatures is extended for web ap-
plications so that following properties are supported:

• Features of a web application are defined externally in a configuration
file. These features are added dynamically to ProductVariant scope that
represents a variant of the web application under consideration.
• The ability to activate and deactivate features, i.e., feature configuration

is supported using URLs of the form {feature name}/{activate|deactivate}.
• Support for multiple web applications representing individual SPLs and

variants of these applications is provided by the use of middleware. For
this we use Rack which is a Ruby middleware and also known as web
framework framework (the repeated used of word framework implies that
Rack is framework that can be used to manipulate other web frame-
works). This makes it possible to support SPLs of web applications by
catering to the web application-specific requirements.

These requirements are supported by extending rbFeatures with requirement-
specific functionality in Rack in what we call RackFeature which is a rbFeatures
wrapper around Rack.

Listing 6.28 shows a scenario for adding a user. In order to add a new user to
TAP, an HTTP post request to the /adduser URL is issued. This results in
parsing the request for the submitted username, passing user name to the User
constructer, querying the Twitter API for the username and if the user exists
then adding the user to the database as shown in Listing 6.28 following which
a web page is rendered (not shown in Listing 6.28). TAP itself is run with
RackFeature. Thus, while RackFeature takes care of web application-specific
requirements, rbFeatures is used to obtain variants.

TAP demonstrates that class-module-based representation of feature domain
entities in rbFeatures enables it to blend with other DSLs which are imple-
mented in a similar manner.

4http://haml-lang.com/
5http://sass-lang.com/

148 6. Evaluation

Listing 6.28: Sinatra-HAML-DataMapper-rbFeatures Interaction
1 class Tap < Sinatra : : Base
2 # RackFeature
3 post ’/adduser’ do
4 AddUserFeature . code do
5 User . construct params [’username’]
6 redirect ’/tap/user_config’

7 end
8 redirect ’/tap/’

9 end
10 get ’/features’ do
11 @features = [AddUserFeature]
12 # HAML
13 haml : feature_config
14 end
15 configure : production do
16 database = File . join (File . dirname (FILE) ,
17 ’lib/tap.db’)
18 # DataMapper
19 DataMapper . setup (: default , "sqlite3:#{database}")
20 end
21 # Sinat ra Web Page Rendering
22 . . .
23 end

6.2.2 Conformance to Requirements of First-class Features

rbFeatures implements domain-specific abstractions for feature domain entities
in terms of classes and modules with domain-specific syntax implemented in
terms of various methods and domain-specific checking using testing. In the
following, we elaborate specifically how rbFeatures satisfies the requirements
of first-class features.

First-classness in a Host Language rbFeatures conforms to the first re-
quirement by implementing feature domain entities based on the Ruby
object model in which classes and objects are first-class entities. In-
stances of ProductLine and ProductVariant classes represent an SPL and
product/variant models respectively. The features of an SPL are rep-
resented by classes which mix-in the Feature module. More than one
ProductVariant instances based on ProductLine instances can exist repre-
senting multiple variants of an SPL. This class-based representation of
feature domain entities coupled with metaprogramming facilities of Ruby
enables addressing and manipulating feature domain entities in different
situations including run-time modification of ProductVariant instances as

6.3. Summary 149

discussed in Section 5.3 on page 118 and demonstrated in Section 6.1.1
on page 132.

Uniformity While the instances of ProductLine and ProductVariant classes
represent SPL and product/variant models, instance of classes that are
mixed-in with Feature module represent both the conceptual and concrete
features. This ensures that conceptual and concrete counterparts of fea-
ture domain entities remain in sync with each other during the execution
of an rbFeatures program.

Subsumed Checking Due to our design choice to implement feature domain
entities in terms of classes and modules in Ruby rather than extending
its implementation combined with it being a dynamically typed program-
ming language, we support checking in terms of testing as it is routinely
done in Ruby. Furthermore, even though class-based representations of
feature domain entities in rbFeatures interact with regular Ruby language
entities, they do not affect the semantics of regular Ruby entities. While
the functionality of features themselves needs to be checked with addi-
tional code, validation of a ProductVariant instance based on a Product-
Line is part of rbFeatures implementation as described in Section 5.2.3
on page 117.

Identity Being implemented atop a dynamic Ruby programming language
with extensive metaprogramming support that includes string manipula-
tion and run-time evaluation, feature domain entities as they are repre-
sented in rbFeatures retain their identities throughout the execution of an
rbFeatures program. By creating ProductVariant-specific execution scope
and evaluating Ruby code that pertains to variant within the context of
a ProductVariant class, not only run-time modification but also run-time
adaptation is supported.

Extensibility The final requirement is satisfied by leveraging Ruby’s mal-
leable syntax and its extensibility mechanisms including open classes and
string manipulation coupled with the ability to re-evaluate program struc-
ture. Since many other Ruby-based DSLs utilize similar mechanisms and
represent extensions in term of Ruby’s language entities instead of ex-
tending its C-based implementation, rbFeatures can be used comfortably
alongside other DSLs.

6.3 Summary

In this chapter, we presented various SPL case studies in FeatureJ and rbFea-
tures and showed that individually each both FeatureJ and rbFeatures conform
to all the requirements of first-class features we laid out earlier in Chapter 3.
The case studies demonstrate that first-class features can be applied in to dif-
ferent kinds of applications including GUI- and Web-based applications and it
is remarkably easy to code SPLs according to coding practices such as testing
utilized in regular Java applications.

150 6. Evaluation

While the uniform treatment of first-class features enable run-time composition
in FeatureJ, with rbFeatures run-time adaptation is possible. A cleanly sepa-
rated implementation of semantics for features means that the developer need
not be concerned with how FeatureJ and rbFeatures code, such as definitions
of various feature domain entities, interacts with the application code. This
results in concise specifications of an SPL as well as its variants.

Both FeatureJ and rbFeatures provide implementation of first-class features,
but the details of implementation vary. In the next chapter we compare Fea-
tureJ and rbFeatures to find out subtle differences that affect the implementa-
tion of first-class features in general. We then compare first-class features with
other techniques we classified based on feature representation and composition
earlier to show that first-class features make the process of engineering SPLs
much clearer and streamlined.

Chapter 7

Discussion

Simplicity is about subtracting the obvious and adding the
meaningful.

John Maeda
in The Laws of Simplicity

In this chapter, first we compare first-class features as they are implemented
in FeatureJ and rbFeatures. Our objective is to abstract basic ways in which
first-class features can be implemented in general. We then compare first-
class features with various feature modeling and implementation techniques
that we classified earlier in Chapter 3 into different categories based on the
nature of feature representation and composition. Finally, we present merits
and limitations of first-class features.

7.1 Comparing FeatureJ and rbFeatures

While there are differences in how FeatureJ and rbFeatures conform to the
requirements of first-class features, these can be boiled down to the different
ways in which feature domain entities are implemented in them and the way in
which host language offers certain capabilities for the same. In the following,
we enlist these differences:

AST Manipulation Vs. String Manipulation

While a given programming language offers modularity mechanisms that group
related code in meaning units, concrete features often cross over such modu-
larity boundaries. Since concrete features represent disparate code fragments,

151

152 7. Discussion

we need a mechanism given a programming language that can easily refer to
such code fragments and be able to manipulate them as required. FeatureJ
is based on JastAdd which treats AST as the core data structure to be used
in compilation and execution of a Java program. Various code fragments in a
Java program are represented in terms of AST nodes and FeatureJ interacts
with the main program AST to generate program variants containing specific
AST nodes representing code fragments in selected features.

Ruby on the other hand, is capable of representing a Ruby program as both an
AST and as a string. While there are Ruby libraries available that represent a
Ruby program in terms of s-expressions, there is native support for representing
a Ruby program as a string and evaluating it. We chose string manipulation
over AST representation in Ruby because of the simplicity with which parts of
programs can be represented as a string, modified, and re-evaluated to adapt to
the state of the running program. While Ruby metaprogramming mechanisms
in Ruby also enable evaluating code fragments in a specific scope which is an
ability required to address and manipulate many program variants, lack of the
support for the same in Java makes the concept of namespaces necessary which
we elaborate next.

Namespace Vs. Scopes

As discussed earlier, in FeatureJ it becomes necessary to implement separate
namespaces for variant-specific application classes so that number of versions
of the same classes can co-exist while taking care of the Java class-loading
idiosyncrasies (cf. Section 4.3 on page 87). Implementing separate namespaces
requires arranging variant-specific classes in different folders and loading them
using custom class loaders.

In Ruby on the other hand, classes are open to re-definition either simply by
re-opening them, or modifying them as strings and re-evaluating their code.
Furthermore, it is possible to execute/evaluate code fragments within the con-
text of a class using Ruby metaprogramming methods such as class eval.
This effectively provides means to generate ProductVariant-specific scope of
application classes that mix-in the Feature module. Run-time modifications
and adaptation of ProductVariant-specific objects of application classes are not
visible outside this scope and thus versions of Ruby application classes that are
part of other ProductVariant instances remain untouched.

Static Error Checking Vs. Testing

Java is a statically typed language whereas Ruby is a dynamically typed lan-
guage. Since we express feature domain entities in terms of entities with
first-class status in that language, we also follow the convention of checking
that is default in the language. Implementation of feature domain entities as

7.1. Comparing FeatureJ and rbFeatures 153

AST nodes atop JastAdd compiler implementation offers opportunity to extend
name/type analysis and error checking by an established pattern, i.e., feature
domain entities can be checked for errors before variant programs are generated
and only when the variant programs are found to contain no compilation errors
can they be compiled/interpreted.

Ruby on the other hand has no compilation time and therefore the checking
of feature domain entities for errors must also happen at run-time which we
carry out in terms of testing.

Composition Vs. Adaptation

While Java follows a dual model of compilation to byte-code and interpretation
of byte-code, Ruby code is interpreted directly. This means that the compi-
lation and execution model of Java offers opportunities to carry out various
activities involved in generating and executing program variant to spread over
compile-time and run-time whereas in Ruby, everything must take place at
run-time. We have seen that in FeatureJ composition of variant types is sup-
ported at both compile-time when generating program variants for the first
time and run-time when modifying existing variant types. Note that in both
cases, error checking that takes place is considered static because it takes place
with respect to the program AST before it is transformed to byte-code, i.e.,
before it is compiled.

We have also seen that composition and adaptation differ in the sense that
states of existing objects is not carried over when the variant to which they
belong (i.e., they are objects of application classes that are variant-specific) is
modified in FeatureJ. In Ruby however, it is possible to evaluate code in the
context of a class or an object so that separate scope exists where modifications
a in ProductVariant are immediately reflected to existing objects.

Internal Types Vs. Classes/Modules

When executing variant of a program, there is an implicit requirement to go
to a meta-level. This means that using a given program, variants of that pro-
gram need to be generated and execution of these program variants need to
be controlled from within the original program. This implicit requirement in
the treatment of feature domain entities is satisfied in FeatureJ by the dual
representation of feature domain entities as internal types with their own rep-
resentation in the AST and meta-classes that enable controlling their behavior
at run-time. For instance, a product/variant model is represented by a variant
type (that is used to generate variant-specific AST) as well as an instance of
a PLVariant class to represent the compiled classes that are specific to this
variant. In Ruby on the other hand, support for metaprogramming at the level
of regular classes and modules alleviates the need for such dual representation.

154 7. Discussion

Note that this point of difference is distinct from the earlier point of AST
manipulation vs. string manipulation. There are two related questions: (a)
whether it is possible to implement FeatureJ as an API, say only in terms of
meta-classes without an internal type representation of feature domain enti-
ties and (b) whether it is possible to implement rbFeatures like FeatureJ by
representing feature domain entities as Ruby types rather than in terms of
classes/modules. Our implementation based on explicit requirements of first-
classness and the implicit requirement of a meta-level stated above suggests
that the (a) is not possible. By using only meta-classes, it is not possible to
support pre-compilation checking, since instead of an AST, we would have to
deal with the byte-code which is available only post-compilation. Regarding
(b), while it is possible to represent feature domain entities in the Ruby in-
terpreter implementation, such a representation would be merely redundant in
case of Ruby because of its extensive metaprogramming support.

7.2 Comparing First-class Features with Other Techniques

In the following we present a comparison between first-class features and feature
modeling and implementation techniques we reviewed earlier (cf. Section 3.3 on
page 39). First-class features as they are implemented in FeatureJ and rbFea-
tures share similarities and also differ in certain respect from other modeling
and implementation techniques which we explain next. Toward this end, we
also recapitulate the capabilities in modeling and implementing features within
the context of first-class features.

7.2.1 Feature Modeling Techniques

The capabilities in modeling features in the problem space point at the ability
to choose and to represent product/variant model and constraints when rep-
resenting conceptual features and proper transition between abstraction levels
of features and their implementation and effectuation [Sinnema and Deelstra
2007].

First-class features provide the ability to choose by representing SPLs and fea-
tures that constitute them as language entities and providing the ability to
select/activate features to obtain variants. The feature domain entities are im-
plemented at a consistent level of abstraction depending on host language and
the effectuation process is built into the processing of language entities. With
this, we now compare first-class features with the feature modeling techniques.

GUI-based Feature Models

Following are the similarities and differences of first-class features with feature
modeling techniques that represent conceptual features as graphical entities:

7.2. Comparing First-class Features with Other Techniques 155

Similarities The representation of variants in FeatureJ and rbFeatures is sim-
ilar to decision models used in COVAMOF [Sinnema et al. 2004b], where
a variant is defined within the context of an SPL. CBFM [Czarnecki et al.
2005] supports validation of product/variant models similar to FeatureJ
and rbFeatures.

Differences Various feature modeling entities are graphical entities and con-
crete features are represented in terms of either code annotated with
preprocessing directives as in pure::variants [Beuche et al. 2004], or de-
scription profiles from which a specific product/variant is generated as in
COVAMOF [Sinnema et al. 2004b]. FeatureJ and rbFeatures represent
all feature domain entities at the level of language.
While CBFM [Czarnecki et al. 2005] does not support error checking/test-
ing of actual program variants, FeatureJ and rbFeatures provide support
for both validation of variants and checking/testing variant programs.
Finally, pure::variants, COVAMOF, and CBFM [Czarnecki et al. 2005]
are all implemented as IDE-specific plugins and extensions while Fea-
tureJ and rbFeatures are implemented atop a host language and are
IDE-independent.

Features as Language Entities

First-class features share similarities in terms of language representation and
differences in terms of composition with modeling techniques that represent
features as language entities.

Similarities FeatureJ and rbFeatures share the basic idea of language repre-
sentation of feature domain entities with techniques such as VSL [Becker
2003], AMPL [Sinnema et al. 2004b], FDL [Deursen and Klint 2002], and
TVL [Boucher et al. 2010].

Differences Unlike these techniques both modeling and implementation en-
tities are represented and at the level of language. Furthermore, compo-
sition is integrated in the representation instead of delegating it to code
generation via UML as in these techniques.

First-class Architectural Variability

While first-class features share the notion of first-classness with these tech-
niques there are certain difference as we enlist below.

Similarities The most important similarity with feature modeling languages
that aim at first-class architectural variability such as VML [Loughran
et al. 2008], and Koalish [Asikainen et al. 2003] is the notion of not only
having a language representation of features but also with the first-class
status.

156 7. Discussion

Differences The most important difference is that implementation entities
are components in VML and Koalish. This means that no direct treat-
ment is provided of the capabilities of feature implementation.

7.2.2 Feature Implementation Techniques

The capabilities in modularizing and implementing features in the solution
space point at being able to capture program deltas or code fragments from
a wide range of granularity, identifying and possibly naming them when rep-
resenting concrete features and being able to compose them flexibly, without
dependence on order, and with support for checking the variants to be gener-
ated [Lopez-Herrejon et al. 2005a].

First-class features as they are implemented in FeatureJ and rbFeatures support
wide range of granularity of code fragments (in FeatureJ, granularity supported
is statement-to-entire classes and in rbFeatures any code from expression to
entire programs can be contained in features), name and identify all feature
domain entities, do not depend on ordering when generating variants, can be
composed at both compile-time and run-time (and in case of rbFeatures can
be adapted at run-time) and finally, provide support for checking (validity of
variants as well as compile-time errors in variants to be generated in FeatureJ
and validity of variants and testing of SPL code in rbFeatures). With this we
now compare first-class features with feature implementation techniques.

Features in terms of Preprocessors and Annotations

First-class features share similarity with these techniques in terms of how code
fragments are contained in concrete features and differ in most other respects
as enlisted below.

Similarities The feature containments of concrete features in FeatureJ and
rbFeatures are similar to #ifdef preprocessor directives [Spencer and Col-
lyer 1992] and virtual annotations [Kästner and Apel 2009] in terms of
containing code fragments.

Differences As far as feature containments in FeatureJ and rbFeatures are
considered, they are part of the syntax and semantics of the host language
rather than being anchors for including or excluding textual code similar
to #ifdef preprocessors [Spencer and Collyer 1992] or being virtual in
nature [Kästner and Apel 2009].
FeatureJ and rbFeatures differ further from these techniques in terms
of the nature of the implementation of feature domain entities, as in-
ternal types and meta-classes and classes/modules and metaprogram-
ming instead of language-based [Spencer and Collyer 1992] or IDE-based
[Kästner and Apel 2009] external processing of only the concrete features.

7.2. Comparing First-class Features with Other Techniques 157

First-class features also differ from virtual annotations in terms of repre-
sentation of SPL and product/variant models as language entities instead
of being IDE-based views.
While automated refactoring of code in situations such as multiple/nested
containments and alternative features is supported by virtual annotations
[Kästner 2010], first-class features do not support them. Finally, virtual
annotation support checking which is solidified with a formal calculus
called Colored Featherweight Java (CFJ) and type rules [Kästner and
Apel 2008], whereas first-class features extend name/type analysis and
error checking of host language compiler in case of FeatureJ and utilize
testing as an indirect means to support checking in case of rbFeatures.

Features as Units of Modularity in a Given Modularity Mechanism

While concrete features are implemented in both these techniques and first-
class features, the differences outweigh the similarities.

Similarities The similarity between techniques which implement concrete
features such as in AspectJ via aspects [Kästner et al. 2007], in Ob-
jectTeams with teams and roles [Hundt et al. 2007; Lopez-Herrejon et al.
2005a], in Jiazzi via atoms and units, in Scala via traits, in HyperJ via
hyper-slices [Lopez-Herrejon et al. 2005a] and in CaesarJ with aspects and
roles [Mezini and Ostermann 2004] etc., and FeatureJ and rbFeatures is
that concrete feature are implemented with special consideration.

Differences Two important differences between these techniques and first-
class features are that, first, all feature domain entities are represented
instead of only the concrete features and second, unlike an indirect rep-
resentation of features employed by these techniques, concrete features
as well as the rest of the feature domain entities are first-class in their
status.

Features as Explicit Language Entities

While first-class features share the idea that features should be made explicit
as in these techniques, the differences arise due to the first-class status of all
feature domain entities.

Similarities First-class features are similar to these techniques in that fea-
tures are explicit language entities.

Differences Compared to the feature implementation techniques that only
represent concrete features (in terms of a dedicated feature modularity
mechanism of refinements) [Apel et al. 2009b; Batory 2004], FeatureJ and
rbFeatures represent all feature domain entities as language constructs

158 7. Discussion

including the SPL and product/variant models which are represented via
folder hierarchies in these techniques.
The order of refinements in refinement chain is important in these tech-
niques and requires to be carefully stated in the equation files to avoid
compilation errors.
FeatureC++ uses references to the feature model of an SPL stored in
XML format to enable composing variants dynamically and provides val-
idation checks for such dynamically composed variants. While the SPL
and product/variant models are expressed in terms of an API, they are
not integrated into the language. When using a reference to the exter-
nal feature model, the refinements still have to be stated in a specific
order by the developer. The variants to be generated are not checked for
compile-time errors. Furthermore, use of decorators for dynamic com-
position forces the developer to take care of inheritance ordering when
dynamically composing multiple variants [Rosenmüller et al. 2008b; 2009]
while in FeatureJ and rbFeatures semantics of features is localized in the
representation of feature domain entities and their composition which
requires no special consideration on the part of the developer.

7.2.3 Traceability in Feature Modeling and Implementation Tech-
niques

We compare traceability as it is supported by feature modeling and implemen-
tation techniques and by first-class features separately, because of the special
consideration given to it in the design of first-class features by presenting fea-
ture domain entities uniformly. We established various traceability paths as
the desirable properties (cf. Section 3.2.3 on page 34). In our analysis we found
that in most feature modeling and implementation techniques, traceability is
retrofitted rather than considered beforehand. We have seen that among fea-
ture modeling and implementation techniques some of the traceability proper-
ties are supported in pure::variants with IBM Rational DOORS R© connector
[Systems 2010], in COVAMOF with Variability View [Sinnema et al. 2004a], in
Koalish with the Kumbang configurator [Asikainen et al. 2003], in virtual anno-
tations using views [Kästner 2010], and in FeatureC++ using XML-based de-
scription of an SPL at run-time [Rosenmüller and Siegmund 2010; Rosenmüller
et al. 2008a].

By the uniform representation of various feature domain entities in the imple-
mentations of first-class features, we support all traceability properties. Trace-
ability between the conceptual and concrete features, between SPL and pro-
duct/variant models and between SPL and product code and implementation
artifacts are made available by feature domain entities integrated into a host
language as first-class entities with SPL and variant programs linked to SPL
and variant entities. Our design of feature domain entities makes sure that
each of feature, SPL, and variant entity is interconnected and can always refer

7.3. Merits 159

to its implementation counterparts as well as its relation to other entities. We
also use this ability when composing variants at run-time (in FeatureJ) and
when adapting application class objects to variant modifications at run-time
(in rbFeatures).

7.3 Merits

In this section, we first enlist merits of first-class features as an FOSD tech-
nique followed by explanation of how advantages of separation of concerns are
achievable by first-class features.

7.3.1 Merits as an FOSD Technique

In the following we enlist what we think to be the most important benefits of
first-class features as demonstrated in our implementations and case-studies.
We attribute these merits to the special treatment of representation and com-
position of feature domain entities in first-class features.

Clean Separation of Feature Concern

One of the primary advantages of first-class features is the clean separation of
features as a kind of concern. This is achieved by giving features their own
syntax and self-contained semantics. First-class features are implemented with
minimally invasive semantics, i.e., they do not alter the semantics of existing
language entities in the host language like other techniques (as exemplified by
the implementation of EPL in FeatureJ in Section 6.1.1 on page 122). Similarly,
in spite of the very nature of concrete features, i.e. syntactically they are spread
all over the code, the syntax for feature containments does not leave the code
unreadable.

Coherent Treatment of Feature Domain Entities

The combined and uniform treatment of concepts in the problem and solution
spaces means that the conceptual integrity is preserved all the time, from anal-
ysis phase to testing phase of SPL development. All the crucial components of
the domain of features, i.e., all feature domain entities, are uniformly accessible
and manipulable. This means that it can be easily comprehended what is going
on at any stage of SPL development. Some feature modeling techniques must
rely on correct working of external elements such as UML code generation and
some feature implementation techniques must depend on the SPL developer’s
skill to ensure that concrete feature are consistent with the feature model of the
SPL under consideration. The coherent treatment of feature domain entities in

160 7. Discussion

first-class features helps to cleanly distinguish between the responsibilities of
the developers and that of the technique. The SPL developer defines an SPL
and product variants and indicates which code fragments constitute which fea-
tures. The technique automates variant generation/modification. The SPL de-
veloper need not worry about the semantics of the host language or correctness
of SPL and product/variant models or generated variants because first-class
features take care of these responsibilities.

Support for Error Checking and Testing

In the analysis of capabilities of features from modeling and from implementa-
tion perspective, we found that only a handful of techniques provide support
domain-specific checking of feature domain entities [Kästner 2010; Thaker et al.
2007]. Furthermore, often the decision to include checking is taken a-posteriori.
This means that domain-specific checking is not considered from the beginning
and as a result it becomes quite difficult to offer checking support later.

First-class features have not been formalized yet. But in FeatureJ we rely on the
extensive error checking in JastAdd which is highly compliant with JLS [Ekman
and Hedin 2007c] and which is extended on per node basis to check errors in
variants that are defined in the program. The fact that base compiler (Java 1.4)
checking is extended in FeatureJ helps us in easily extending FeatureJ’s ability
to check Java 1.5 programs with similar capability for reporting variant- and
productline-specific error reporting. Similarly in rbFeatures we use testing for
validating and checking variants which adjusts nicely with other Ruby-based
DSLs which also use testing for the same purpose.

Clear Traceability Links

Like domain-specific checking, traceability is also usually thought of later rather
than including it in the design of feature modeling/implementation technique.
In first-class features, conceptual and concrete entities are one and the same.
This means that traceability is an inherent attribute of first-class features. Fur-
thermore, support for identity means that even post-composition, it is known
which features were selected in a variant, which code fragments each of these
features consisted of and to which SPL these features belonged to.

Feature-awareness and easy interoperability of DSLs

The fact that first-class features are integrated in a host language in an exten-
sible manner means that other extensions created using the same extensibility
mechanism can be made feature-aware with the minimum of efforts. This
was exemplified in FeatureJ by making Java 1.5 language extensions aware of

7.3. Merits 161

features. While being considerable in terms of code size, this process was con-
ceptually straightforward. The complexity of this effort was also reduced by
the fact that semantics of Java language entities was never altered which would
otherwise be a major concern.

Similar to extensions, it is also possible to interoperate with other DSLs that
are based on the same host language as demonstrated in the TAP case study
in rbFeatures. This is made possible again by language integration of fea-
ture domain entities and their self-contained semantics. The fact that same
patterns of extensibility are followed by FeatureJ and rbFeatures as other ex-
tensions/DSLs in Java and Ruby respectively, makes interaction between other
extensions/DSLs and implementations of first-class features uncomplicated and
easily achievable.

7.3.2 Achieving the Merits of Separation of Concerns with First-class
Features

Recall that we began this dissertation with the discussion of the essential diffi-
culties involved in creating good software and how the principle of separation
of concerns enables tackling these difficulties (cf. Section 2.1 on pages 8–10).
While we have discussed the specific merits of first-class features as an FOSD
technique in the preceding section, in this section our objective is to relate the
solutions of separation of concerns to first-class features toward resolving the es-
sential difficulties of creating good software in general and good feature-oriented
software in particular. In our opinion, first-class features enable achieving the
merits of separation of concerns in the following manner:

Customization to address conformity in SPLs We have demonstrated
the ability of first-class features toward flexible customization in SPLs
in terms of composition and adaptation possibilities for an SPL and its
variants. Using first-class features, it is possible to declare and modify
variants at different times during the execution. Furthermore, different
variants may be defined and used that cater to specific stakeholders and
their requirements.

Maintenance to address complexity in SPLs Integration into a host lan-
guage with first-class status as well as contained semantics offered by
leveraging host language’s extensibility mechanisms means that first-class
features can enable disciplined maintenance to tackle complexity of cre-
ating and maintaining SPLs. Although we have not studied the effects of
evolution of an SPL on first-class features or vice-versa, we believe that
because first-class features do not affect the semantics of regular host
language entities, it is possible to evolve the underlying application and
the SPL based on it separately and without introducing complications in
either.

162 7. Discussion

Reuse to address changeability in SPLs Because first-class features are
entities of their own right in a host language, we believe that they enable
reuse in a variety of ways toward addressing changeability in SPLs. For
instance, in an extreme case, it is possible to specify different SPLs with
their features and their variants in the same application, where same code
fragments contribute to multiple features from different SPLs. While
we have tested such capability on smalls applications such as e.g., the
notepad application, we acknowledge that further experiments may be
required to test how first-class features fair in case of reasonably large
applications with multiple SPLs and their variants.

Comprehension to address invisibility in SPLs Particularly two facets of
first-class features enable better comprehension, namely self-contained se-
mantics and implicit traceability links. We believe that when using first-
class features, an SPL developer can easily maintain the link between his
intention in conceptualizing a characteristic of a software system as a fea-
ture, implementing it, and reusing it, all the while keeping his intentions
and the code comprehensible to other developers.

We have seen that first-class features offer many interesting possibilities, yet
there is always room for improvement as we describe in the next section.

7.4 Limitations

In the following we discuss what we think to be the limitations of first-class
features.

Support for Non-code Artifacts

Until now, in our implementations of first-class features as well as case stud-
ies, we have not considered composition of non-code artifacts. Examples of
non-code artifacts include build files and documentations or docs among oth-
ers. The techniques that do consider non-code artifacts use folder hierarchies
for this purpose which are also used to arrange features [Batory 2004]. One
general way to approach the treatment of non-code artifacts would be to give
a programmatic access to them and include the statements of such interface in
the definition of features. Essentially, the access to non-code artifacts would
be codified and used. We discuss how this could be done for Ant build files
and documentation APIs in the following:

Ant build files The access to Ant build files can be provided through the
Apache Ant API [Moodie 2006][Chapter 12]. Such a programmatic build
would assign specific task in a programmatic project to specific features.
In this case programmatic means that a project and a task are represented

7.4. Limitations 163

at the language level through their counterparts in the related API. For
example, a project is represented by org.apache.tools.ant.Project class
and deploying and un-deploying a task is carried out using DeployTask
and UndeployTask classes in the org.apache.catalina.ant package. Being
part of definition of features, specific tasks in a project would be selected
to be deployed in relation to a variant. In Ruby, Rant is a Ruby API
that can be used to control builds since build-specifications are pure Ruby
code.

Documentation Like build files, document generation from doc comments/-
tags in the code can be controlled programmatically through a doc API.
In Java, examples of these kind of API include JavaDoc and XDoclet
[Hightower et al. 2004] while in Ruby, RDoc provides API for document
generation. The statements related to documentation to be generated for
specific code entities can be included in specific features. Thus a variant
would consist of documentation for code fragments that were selected in
it.

Note that there are APIs in Java and Ruby for major non-code artifacts. One
problem we perceive in using programmatic access to include non-code artifacts
is when feature-refactoring legacy applications which may already posses legacy
non-code artifacts. We believe that the effort to arrange non-code artifacts in
a legacy application in a folder hierarchy (such as when using AHEAD which
specifically considers the treatment of non-code artifacts [Batory 2004]) and
effort to give a programmatic access and include it in variant generation are at
par. In future, we would like to investigate in these directions.

Formalization of First-class Features

While we have presented multiple implementations of first-class features in
disparate programming languages along with case studies, we have not yet
formalized first-class features. We showed how name/type analysis and error
checking of the host language compiler itself can be extended to accommodate
feature domain entities in FeatureJ in which related attributes in JastAdd’s
Java 1.4 and 1.5 compilers are extended. In rbFeatures, while product/variant
models could be checked for validation with respect to the feature model of the
SPL on which it is based while rest of the aspect are checked via testing. In
both the cases, the stress is on checking only the variants that are defined in
the program rather than checking all variants.

Other techniques that support error checking an SPL check all the variants at
one go using the entire code base of an SPL rather than individually checking
each valid variant. The propositional calculus based checking is justified based
on a formal model of the way features are represented in a given technique,
e.g., features as refinements [Thaker et al. 2007] and the related type system
[Delaware et al. 2009] and virtual annotations and the related type system

164 7. Discussion

[Kästner 2010; Kästner and Apel 2008]. In general, these formalizations are
based on subset of Java such as Lightweight Java (LJ) [Strnǐsa et al. 2007] and
Featherweight Java (FJ) [Igarashi et al. 2001] which are reduced languages that
drop most features of a full language to enable rigorous proofs for type safety
with only core features of Java.

We believe that when considering the formalization of first-class features, fol-
lowing challenges will have to be addressed:

Representing all feature domain entities We will need to represent all
feature domain entities in a reduced language such as LJ or FJ. A re-
lated approach is that of FFJPL which extends Feature Featherweight
Java (FFJ) which is a reduced language targeting a type system for
refinement-based features [Apel et al. 2008a] and extended to include
checking of SPLs [Apel et al. 2009a; 2010]. The design decision in FFJPL
is to use feature models only to check that features and specific program
elements are present in various circumstance and this is carried out by
using functions and predicates [Apel et al. 2009a]. We however, would
like to investigate actual representation of all feature domain entities.

Reconciling static and dynamic language properties While the require-
ments of first-class features are language independent such that they can
be implemented in any language as shown by Java-based FeatureJ and
Ruby-based rbFeatures, this presents a difficult scenario of whether it is
possible to formalize both static and dynamic implementations.

In future, we would like investigate in these directions to present a formalization
of first-class features.

7.5 Summary

This chapter presented a comparison of FeatureJ and rbFeatures in order to
obtain basic ways in which first-class features can be implemented. We showed
that the ability to manipulate a program either as an AST or a string is nec-
essary along with mechanism to separate namespaces and scopes. We also
discussed domain-specific checking and composition and adaptation in both
FeatureJ and rbFeatures as well as the representation of domain-specific ab-
stractions in them.

We then compared first-class features to other FOSD techniques and discussed
the similarities and differences between them. First-class features offer many
merits as an FOSD technique which we discussed next along with their abil-
ity to achieve advantages of separation of concerns in creating feature-oriented
software. Finally we discussed what we think to be limitations of first-class fea-
tures and indicated important considerations in supporting related capabilities
in future.

Chapter 8

Concluding Remarks

Most creativity is a transition from one context into another
where things are more surprising. Theres an element of surprise,
and especially in science, there is often laughter that goes along
with the “Aha”. Art also has this element. Our job is to remind
us that there are more contexts than the one that we’re in the
one that we think is reality.

Alan Kay
in A Conversation with Alan Kay - ACM Queue

In this chapter, we summarize the dissertation and its contributions. We lists
suggestions for further work related to first-class features and their implemen-
tations. Finally, we provide perspectives for FOSD in general based on our
experience with first-class features and their implementations.

8.1 Summary of the Dissertation

We discussed in Chapter 3 the dual nature of features as conceptual and con-
crete entities in problem and solution spaces respectively. We reviewed the
current state of the art in capabilities of features from modeling and implemen-
tation perspectives. We showed that traceability properties are not considered
in feature modeling and implementation techniques and proposed another view
on the mapping between problem and solution spaces called traceability view
apart from the dominant configuration and transformational views. We de-
rived a problem statement with regards to challenges in FOSD toward unifying
feature modeling and feature implementation. The research questions that
we coined, target the representation and composition mechanisms related to
specific feature domain entities. As a step toward the solution, we classified

165

166 8. Concluding Remarks

various feature modeling and implementation techniques into three categories
each based on the representation of feature domain entities. With the help of
modeling, implementation, and traceability properties, we analyzed each cat-
egory of technique in terms of which feature domain entities are represented
and consequences for the composition mechanism. We used this analysis to
propose a new representation of features called first-class features in terms of
a set of requirements and showed how these requirements can be implemented
in a given host language.

In Chapter 4, we elaborated how the requirements of first-class features are
implemented in FeatureJ. We first discussed JastAdd, the extensible compiler
system for Java, in detail. JastAdd enables composition of new Java language
extensions in terms of parser, scanner, and AST specifications. We described
oft-used patterns of extensibility in JastAdd which we used in the implemen-
tation of FeatureJ. We described the productline, variant, and feature types in
FeatureJ in terms of extended Java syntax and semantics. The name/type
analysis and error checking in JastAdd Java compilers is extended to support
compile-time error checking of individual variant types and variant programs
to be generated based on them. Finally, we explained the architecture that
enables us to put all parts of FeatureJ together and showed that FeatureJ im-
plementation for Java 1.4 can be extended in a systematic manner to encompass
Java 1.5 language entities.

In Chapter 5, we elaborated how the requirements of first-class features are
implemented in rbFeatures. We first discussed the object model of Ruby and
language entities such as modules, callable objects, and open classes that are
important from point of view of supporting implementation of feature domain
entities. We then explained Ruby’s metaprogramming and string manipulation
capabilities which are used extensively for variant generation and modification
in rbFeatures. We then explained ProductLine and ProductVariant classes and
Feature module that represent feature domain entities in rbFeatures. Finally,
we discussed the architecture of rbFeatures that enables run-time composition
of ProductVariant instances and adaptation of ProductVariant-specific applica-
tion class objects.

We presented in Chapter 6 four SPL case studies each in FeatureJ and rbFea-
tures ranging from small to large code sizes. We modeled the EPL in FeatureJ
as specified originally in [Lopez-Herrejon et al. 2005b]. We compared repre-
sentation and composition of feature domain entities in other feature imple-
mentation techniques as exemplified in [Lopez-Herrejon et al. 2005b] with the
implementation in FeatureJ and showed that FeatureJ version of EPL is se-
mantically less invasive, easy to express and comprehend, capable of handling
various feature granularity levels, and supports extensive manipulation of var-
ious feature domain entities. We also discussed other case studies in FeatureJ
such as NPL, GPL, and BDBPL to demonstrate application of FeatureJ to GUI
applications, easy integration of testing along with error checking, and concise
representation of SPLs and variants of large applications. We then discussed

8.2. Contributions 167

an alternate feature model for the EPL when implementing it with rbFeatures
as well as application of rbFeatures to GUI applications in Ruby with the CPL.
We showed in the GPL implementation of rbFeatures that it is possible to alter
and adapt the configuration of variants at run-time and apply modified features
to existing application class objects within the context of a variant. The TAP
demonstrated that rbFeatures can be used in a seamless manner along with
other Ruby DSLs to create SPLs of web applications. Finally, we explicitly
discussed the conformance of requirements of first-class features in FeatureJ
and rbFeatures.

In Chapter 7, we compared FeatureJ and rbFeatures and found that support-
ing variety of granularity levels in non-standard grouping of code fragments
as well as variant generation/modification mechanism requires stepping out-
side the regular compilation and interpretation models. This is achieved in
FeatureJ by AST manipulation with namespaces and rbFeatures by treating
and manipulating program elements as a string and using metaprogramming
mechanism to create specialized scopes. Furthermore, we found that com-
pilation and interpretation models of Java and Ruby affect both the way in
which feature domain entities are represented as well as the way in which they
are composed. We then compared first-class features with the categories of
feature modeling and implementation techniques put forth earlier in Chapter
3. We showed that while first-class features as implemented in FeatureJ and
rbFeatures share some similarities with these techniques, they differ from most
techniques in terms of uniform and first-class representation of feature domain
entities and their composition as an extension of compilation/interpretation in
the host language. First-class features prove advantageous in terms of cleanly
separated semantics of feature concern with clear traceability links and enable
making other extensions and other DSLs feature-aware in a straightforward
way. Finally, we discussed the limitations of first-class features in terms of lack
of formalization and explicit support for non-code artifacts.

8.2 Contributions

This dissertation contributes to the research on features and FOSD in general
on two levels, namely conceptual and concrete1. First, we reviewed the con-
cept of features, traced and explained its dual nature, examined its modeling,
implementation, and traceability properties, and proposed a new representa-
tion called first-class features. We elaborated how this representation can be
implemented in terms of a set of requirements. These requirements assure that
first-class features refrain from viewing features from one side only and offer
the best of both modeling and implementation worlds. This is achieved all the
while enabling traceability and leaving room for extensibility.

1This pun is deliberate.

168 8. Concluding Remarks

While the first contribution is conceptual in nature, the second is concrete. Fea-
tureJ which is an implementation of first-class features in Java demonstrates
that first-class features can be implemented across an entire static language
(Java 1.4) including its extension (Java 1.5) as described at length in Chapter
4. We also elaborated rbFeatures in Chapter 5 and contrasted it with Fea-
tureJ in Chapter 7, and demonstrated that first-class features can be easily
implemented in dynamic languages as well. Our work reveals interesting coun-
terpoints and guideposts for implementation of first-class features in static and
dynamic programming languages.

Our case studies confirm the utility of first-class features in terms of unified
representation and coherent composition that facilitates maintenance. SPLs
developed using first-class features can be customized in a straightforward way
without being concerned with the semantics of the host language. First-class
features as they are implemented are easy to comprehend and reuse because
of the explicit connection between the conceptual and concrete feature domain
entities with clear traceability links.

8.3 Future Work

We have already indicated a few directions along which future work related to
first-class features could be carried out, namely explicit support for non-code
artifacts and formalization of the concept. At the same time, we are involved
in other works some of which are in progress while plans for the other are on
the table. In the following, we take review of such future work:

Run-time Adaption in FeatureJ We discussed earlier that while FeatureJ
supports run-time composition of variants, it does not support run-time
adaptation (cf. Section 4.3.2 on page 90). We have proposed to integrate
an existing run-time adaptation approach in Java with FeatureJ [Sunkle
and Pukall 2010]. The run-time approach for Java is based on an Eclipse
plugin that uses JVM tool interface to obtain information about alive
objects and their classes in a running application [Pukall et al. 2008;
2009]. It is based on first implementing class schema changes by creating
new classes with changed schema and renaming them. Schema changes
means that for example, one or more methods of original and updated
class differ. Then, it changes all calls to the instances of classes that have
been updated, creates an instance of each updated class, and finally,
maps the states of old callee instance to the newly generated instances.
Note that it is precisely the last step that is missing in FeatureJ. The
complex details of state mapping are taken care of by the Eclipse plugin
for which the input is original and modified versions of classes which
can be easily provided via PLVariant instances in FeatureJ. In future, we
wish to integrate this approach to enable adaptation of application class
objects when configuration of a variant is changed at run-time by adding

8.3. Future Work 169

or removing features and then test adaptation capability with the existing
case-studies.

Feature Modeling Extensions in FeatureJ and rbFeatures While in
both FeatureJ and rbFeatures we represent feature models as suggested
in [Kang et al. 1990], there is a possibility to include further modeling
extensions in the syntax and semantics of both FeatureJ and rbFeatures.
Following the basic structure of a feature model suggested in [Kang et al.
1990], a variety of feature modeling extensions have been proposed such
as feature groups where non-leaf features are treated as grouping features
[Riebisch et al. 2002], feature cardinalities using which one or more in-
stances of a feature can be indicates such that optional and mandatory
features become special cases [0..1] and [1..1] and group cardinalities such
that features to be selected from a group can be indicated in terms of
any given cardinality such that the original inclusive, inclusive-or, and
exclusive-or relations (indicated in FeatureJ and rbFeatures by various
operators) become special cases of group cardinalities [Czarnecki and
Kim 2005; Czarnecki et al. 2002; 2005; Kim and Czarnecki 2005], fea-
ture attributes that represent choice of value from infinite domain such
as integers [Czarnecki et al. 2002], and feature diagram references which
enable referring to other feature diagrams/models [Czarnecki et al. 2004]
including recursive references.

*

Feature
name

SolitaryFeature
featureCardinality

GroupedFeature

ContainableByFContainableByFG

FeatureGroup
groupCardinality

TypedValue

StringValue
value

IntValue
value

type
Attribute

RootFeatureFDReference
1*

**

0..1
0..1

FeatureModel

Fig. 2. UML metamodel for cardinality-based feature models

allows us to specify permissions with respect to file IO, file dialogs, and envi-
ronment variables. (Other examples would be permissions to access a database,
invoke reflection, access a Web address, etc.) According to our model, file IO
can be restricted to a list of file paths, or it is unrestricted. For each file path,
we can specify its name and associated read/write permissions.

Notice that we use a feature diagram reference for the permission model
because we want to reuse it for environment variables. In this paper, we use
a dashed line to represent a feature diagram reference, but it should be noted
that, in practice, a different representation may be necessary to avoid a convo-
luted diagram. This is especially important if the purpose of the feature diagram
reference is to modularize a large feature model over different diagrams.

Finally, the permission to open a file dialog and to close it can be selected
independently. The empty circle above the features open and closed indicates
that those features are optional (i.e., they have the feature cardinality [0..1]).

3.2 A Metamodel

Now that we have seen an example of a cardinality-based feature model, we
explain the available concepts more accurately by means of an abstract syntax
model, where we will refer to the example in Fig. 1 for clarification.

Consider the Unified Modeling Language (UML) metamodel for cardinality-
based feature models in Fig. 2. A feature model consists of any number of root fea-
tures, which form the root of the different feature diagrams in the model. In the
security profile example, both the features securityProfile and permission
are root features.

A root feature is only one of three different kind of features. The other two
are the grouped feature and the solitary feature. The former is a feature which
can only occur in a feature group. For example, the feature never is a grouped
feature in a feature group, which is contained by the feature expiration. A
solitary feature is a feature which is, by definition, not grouped in a feature
group. Many features in a typical feature model are solitary; for example, the
feature passwordPolicy and permissionSet.

Figure 8.1: UML Metamodel for Feature Modeling Extensions [Czarnecki et al.
2004]

To explain these extensions, a UML metamodel is suggested in [Czar-
necki et al. 2004] shown in Figure 8.1. The most important fact in this
metamodel is that Feature is an abstract class to which all other entities
are related by inheritance and association. We refer to the type hierarchy
of feature domain entities in FeatureJ (cf. Figure on page 74) and the re-
lationship between feature domain entities in rbFeatures (cf. Figure 5.7

170 8. Concluding Remarks

on page 117). We designed the structure of feature domain entities in
our implementations without being aware of a metamodel such as the
one shown in Figure 8.1, yet there is a striking similarity between this
metamodel and the way we structured various feature domain entities.
Our design of FeatureJ and rbFeatures was driven by the requirements
of first-class features and extensibility mechanisms available in JastAdd
and Ruby respectively.

The feature, SPL and variant entities in our implementations correspond
to the Feature, FeatureModel (as well as a FDReference), and instances
of FeatureModel based on cardinality where Feature is the central entity
in Figure 8.1 on the preceding page. This correspondence paves way for
us to easily represent groups, cardinalities, and attributes as extended
AST nodes in FeatureJ and as classes and modules in rbFeatures by
extending our implementation in a straightforward manner. While the
usability of individual feature modeling extension has been corroborated
when modeling[Czarnecki et al. 2004], we will be able to gauge their
impact at syntactic and semantic levels in FeatureJ and rbFeatures as a
part of future work.

8.4 Perspectives

The author of the dissertation considers himself very fortunate to have had the
opportunity to carry out research in a relatively new and extremely vibrant
field of study that is features and FOSD. During our tryst with a multitude of
ideas, we often came across deeper issues which indicate how essential it is to
go back to the basics. We wish to discuss the same at the conclusion of this
dissertation.

8.4.1 Verification in FOSD

My original postulate, which I have been pursuing as a
scientist all my life, is that one uses the criteria of correctness
as a means of converging on a decent programming language
design - one which doesn’t set traps for its users, and ones in

which the different components of the program correspond
clearly to different components of its specification, so you can

reason compositionally about it.

Charles A. R. Hoare
in Oral history interview with Charles Antony Richard Hoare

The idea of verification which is defined as the confirmation, through the
provision of objective evidence, that specified requirements have been fulfilled

8.4. Perspectives 171

[ISO/IEC 2005] or a formal proof of program correctness [ISO/IEC 2009], has
been around for decades [Hoare 1972]. Verification has been recently seeing
light of the day in software engineering in general [Hoare and Misra 2005] and
FOSD in particular [Batory and Börger 2008]. In our requirements for first-
class features and our implementations we observed that integrating certain
characteristics into the design of a technique for FOSD enabled us to avoid
perils of making workarounds afterwards. We believe in the idea that composi-
tion and verification should proceed hand in hand [Xie and Browne 2003] and
representation (of concerns) could be made to aid verification [Leavens et al.
2006]. There are already some results related to verification in FOSD [Börger
and Batory 2008] and we think that this will be a major direction of research
in FOSD in coming years.

8.4.2 Language Vs. Design in FOSD

The issue of whether it is the programming languages or it is the design that
addresses problems in software engineering has been longstanding. The fol-
lowing two quotes by Niklaus Wirth, who has been instrumental to the field
of software engineering in his role as chief designer of programming languages
such as Euler, Algol W, Pascal, Modula, Modula-2, Oberon, Oberon-2 [Wirth
1985], and David Parnas, who gave the principle of separation of concerns its
due and fathered the concept of program families [Parnas 1972b; 1976] indicate
the two sides of this issue.

We know that it is better if each basic concept is
represented by a single, designated language construct.

Niklaus Wirth
in A few words with Niklaus Wirth

Wirth is best known for his work as a designer of
languages, so it is not surprising that he views the

problems of software design as a question of language.

David Parnas
in Why software jewels are rare

We restrict the scope of this dilemma to FOSD. We have seen that while the
concepts of FOSD can be traced back to program families and separation of
concerns, ultimately the concerns must be represented in a programming lan-
guage so that a software could be decomposed along the dimensions of concern
representation and later composed again [Tarr et al. 1999]. The fact that no
matter whatever the design principle, it must be expressed in a concrete lan-
guage form indicates that it is the programming languages where the effort
must be made to enforce any design principle.

While it is possible that the author’s background in the composition of lan-
guage features might have been an influence [Sunkle 2007; Sunkle et al. 2008a]

172 8. Concluding Remarks

with regards to the way features are treated, the connection between separa-
tion of concerns and the degree to which a programming language supports
specific concerns has been acknowledged by nearly every researcher interested
in separating concerns and they do so at the programming language level [Aksit
1996; Aldrich 2000; Ernst 2003; Hürsch and Lopes 1995; Kiczales and Mezini
2005; Lai et al. 2000; Nierstrasz and Achermann 2000].

In retrospect, this dissertation began with the principle of separation of con-
cerns which is a design principle and our end products are FeatureJ and rbFea-
tures, which are domain-specific languages designed and implemented based on
our requirements of first-class features. On the other hand, it seems that treat-
ing features from both a design perspective and from a programming language
perspective (including IDE/Tools related techniques) is required and advanta-
geous [Batory 2009]. The final verdict on this issue is far from out which makes
this field of study all the more interesting.

Bibliography

J. Ȧkesson, T. Ekman, and G. Hedin. Implementation of a Modelica compiler
using JastAdd attribute grammars. Science of Computer Programming, 75
(1-2):21 – 38, 2010. ISSN 0167-6423. Special Issue on ETAPS 2006 and 2007
Workshops on Language Descriptions, Tools, and Applications (LDTA ’06
and ’07).

M. Aksit. Separation and Composition of Concerns in the Object-Oriented
Model. ACM Computing Surveys, 28(4es):148, Dec. 1996.

J. Aldrich. Challenge Problems for Separation of Concerns. In OOPSLA 2000
Workshop on Advanced Separation of Concerns, Minneapolis, Minnesota,
Oct. 2000. ACM Press.

V. Alves, D. Schneider, M. Becker, N. Bencomo, and P. Grace. Comparitive
Study of Variability Management in Software Product Lines and Runtime
Adaptable Systems. In D. Benavides, A. Metzger, and U. W. Eisenecker,
editors, VaMoS, volume 29 of ICB Research Report, pages 9–17. Universität
Duisburg-Essen, 2009.

S. Apel. The Role of Features and Aspects in Software Development. PhD
thesis, School of Computer Science, University of Magdeburg, Mar. 2007.

S. Apel and D. Batory. When to Use Features and Aspects? A Case Study.
In Proceedings of the International Conference on Generative Programming
and Component Engineering, pages 59–68. ACM Press, 2006.

S. Apel and C. Kästner. An Overview of Feature-Oriented Software Develop-
ment. Journal of Object Technology (JOT), 8(5):49–84, July/August 2009.
Guest Column.

S. Apel, T. Leich, M. Rosenmüller, and G. Saake. FeatureC++: On the Sym-
biosis of Feature-Oriented and Aspect-Oriented Programming. In Proceed-
ings of the International Conference on Generative Programming and Com-
ponent Engineering, pages 125–140. Springer, 2005.

173

174 Bibliography

S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers: Aspects and Features
in Concert. In L. J. Osterweil, H. D. Rombach, and M. L. Soffa, editors,
ICSE, pages 122–131. ACM, 2006. ISBN 1-59593-375-1.

S. Apel, C. Kästner, and C. Lengauer. Feature Featherweight Java: A Calculus
for Feature-Oriented Programming and Stepwise Refinement. In Y. Smarag-
dakis and J. G. Siek, editors, GPCE, pages 101–112. ACM, 2008a. ISBN
978-1-60558-267-2.

S. Apel, C. Lengauer, B. Möller, and C. Kästner. An Algebra for Features and
Feature Composition. In J. Meseguer and G. Rosu, editors, AMAST, volume
5140 of Lecture Notes in Computer Science, pages 36–50. Springer, 2008b.
ISBN 978-3-540-79979-5.

S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Type-Safe Feature-
Oriented Product Lines. Technical Report MIP-0909, Department of Infor-
matics and Mathematics, University of Passau, 2009a.

S. Apel, C. Kästner, and C. Lengauer. FEATUREHOUSE: Language-
independent, Automated Software Composition. In ICSE, pages 221–231.
IEEE, 2009b. ISBN 978-1-4244-3452-7.

S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Type-Safe Feature-
Oriented Product Lines. Automated Software Engineering – An International
Journal, abs/1001.3604:1–50, February 2010.

M. Appeltauer, R. Hirschfeld, M. Haupt, and H. Masuhara. ContextJ -
Context-oriented Programming for Java. Computer Software of The Japan
Society for Software Science and Technology, June 2010.

M. A. Ardis and D. M. Weiss. Defining Families: The Commonality Analysis
(Tutorial). In ICSE, pages 649–650, 1997.

T. Asikainen, T. Soininen, and T. Männistö. A Koala-Based Approach for Mod-
elling and Deploying Configurable Software Product Families. In F. van der
Linden, editor, PFE, volume 3014 of Lecture Notes in Computer Science,
pages 225–249. Springer, 2003. ISBN 3-540-21941-2.

P. Avgustinov, T. Ekman, and J. Tibble. Modularity First: A Case for Mixing
AOP and Attribute Grammars. In T. D’Hondt, editor, AOSD, pages 25–35.
ACM, 2008. ISBN 978-1-60558-044-9.

J. Bachrach and K. Playford. The Java Syntactic Extender. In OOPSLA,
pages 31–42, 2001.

K. C. Baird. Ruby by Example. No Starch Press, San Francisco, CA, USA,
2007. ISBN 9781593271480.

Bibliography 175

D. Batory. Feature-Oriented Programming and the AHEAD Tool Suite. In
ICSE ’04: Proceedings of the 26th International Conference on Software
Engineering, pages 702–703, Washington, DC, USA, 2004. IEEE Computer
Society. ISBN 0-7695-2163-0.

D. Batory. On the importance and challenges of FOSD. In FOSD ’09: Pro-
ceedings of the First International Workshop on Feature-Oriented Software
Development, pages 1–1, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-567-3.

D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for Implementing
Domain-Specific Languages. In ICSR ’98: Proceedings of the 5th Inter-
national Conference on Software Reuse, page 143, Washington, DC, USA,
1998. IEEE Computer Society. ISBN 0-8186-8377-5.

D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE Transactions on Software Engineering, 30:355–371, 2004. ISSN 0098-
5589.

D. S. Batory and E. Börger. Modularizing Theorems for Software Product
Lines: The Jbook Case Study. J. UCS, 14(12):2059–2082, 2008.

M. Becker. Towards a General Model of Variability in Product Families. In
Software Variability Management Workshop, pages 19–27, Feb. 2003.

K. Berg, J. Bishop, and D. Muthig. Tracing Software Product Line Variability:
from Problem to Solution Space. In SAICSIT ’05: Proceedings of the 2005
annual research conference of the South African institute of computer scien-
tists and information technologists on IT research in developing countries,
pages 182–191, , Republic of South Africa, 2005. South African Institute for
Computer Scientists and Information Technologists. ISBN 1-59593-258-5.

D. Beuche, H. Papajewski, and W. Schröder-Preikschat. Variability Manage-
ment with Feature Models. Sci. Comput. Program, 53(3):333–352, 2004.

D. Bjørner. Software Engineering, vol. 3: Domains, Requirements and Software
Design. Texts in Theoretical Computer Science. Springer, 2006.

E. Börger and D. S. Batory. Coupling Design and Verification in Software
Product Lines. In S. Hartmann and G. Kern-Isberner, editors, Foundations of
Information and Knowledge Systems, 5th International Symposium, FoIKS
2008, Pisa, Italy, February 11-15, 2008, Proceedings, volume 4932 of Lecture
Notes in Computer Science, pages 1–4. Springer, 2008. ISBN 978-3-540-
77683-3.

J. Bosch. Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. Addison-Wesley, 2000. ISBN 0-201-67494-7.

176 Bibliography

Q. Boucher, A. Classen, P. Faber, and P. Heymans. Introducing TVL, a
Text-based Feature Modelling Language. In Proceedings of the Fourth Inter-
national Workshop on Variability Modelling of Software-intensive Systems
(VaMoS’10), Linz, Austria, January 27-29, pages 159–162. University of
Duisburg-Essen, January 2010. Acceptance rate: 54

N. E. Boustani and J. Hage. Improving Type Error Messages for Generic Java.
In G. Puebla and G. Vidal, editors, Proceedings of the 2009 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-based Program Manipula-
tion, PEPM 2009, Savannah, GA, USA, January 19-20, 2009, pages 131–
140. ACM, 2009. ISBN 978-1-60558-327-3.

M. Bravenboer and E. Visser. Concrete Syntax for Objects. Domain-Specific
Language Embedding and Assimilation without Restrictions. In D. C.
Schmidt, editor, Proceedings of the 19th ACM SIGPLAN Conference on
Object-Oriented Programing, Systems, Languages, and Applications (OOP-
SLA 2004), pages 365–383, Vancouver, Canada, Oct. 2004. ACM Press.

F. P. Brooks Jr. No Silver Bullet: Essence and Accidents of Software Engi-
neering. IEEE Computer, 20(4):10–19, Apr. 1987.

D. Chelimsky, D. Astels, Z. Dennis, A. Hellesøy, B. Helmkamp, and D. North.
The RSpec Book: Behaviour Driven Development with RSpec, Cucumber,
and Friends. Pragmatic Bookshelf, Oct. 2010. ISBN 978-1-93435-637-1.

K. Chen, W. Zhang, H. Zhao, and H. Mei. An Approach to Constructing
Feature Models Based on Requirements Clustering. In Requirements Engi-
neering, 2005. Proceedings. 13th IEEE International Conference on, pages
31 – 40, 29 2005.

R. Chitchyan, I. Sommerville, and A. Rashid. A Model for Dynamic Hyper-
spaces. In Workshop on Software engineering Properties of Languages for
Aspect Technologies: SPLAT (held with AOSD, 2003.

S. Clarke and R. J. Walker. Mapping Composition Patterns to AspectJ and Hy-
per/J. In P. Tarr and H. Ossher, editors, Workshop on Advanced Separation
of Concerns in Software Engineering (ICSE 2001), May 2001.

A. Classen, P. Heymans, and P.-Y. Schobbens. What’s in a Feature: A Require-
ments Engineering Perspective. In J. L. Fiadeiro and P. Inverardi, editors,
Fundamental Approaches to Software Engineering, 11th International Con-
ference, FASE 2008, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, volume 4961 of Lecture Notes in Computer
Science, pages 16–30. Springer, 2008. ISBN 978-3-540-78742-6.

P. Clements and L. Northrop. A Framework for Software Product Line Practice.
http://www.sei.cmu.edu/productlines/tools/framework/, 2000.

http://www.sei.cmu.edu/productlines/tools/framework/

Bibliography 177

P. C. Clements and L. Northrop. Software Product Lines: Practices and Pat-
terns. SEI Series in Software Engineering. Addison-Wesley, Aug. 2001.

P. Cointe. Metaclasses are First Class: The ObjVlisp Model. SIGPLAN Not.,
22(12):156–162, 1987. ISSN 0362-1340.

W. R. Cook. Object-Oriented Programming Versus Abstract Data Types. In
J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of
Object-Oriented Languages, REX School/Workshop, Noordwijkerhout, The
Netherlands, May/June 1990, volume 489 of Lecture Notes in Computer
Science, pages 151–178, New York, NY, 1991. Springer-Verlag.

J. Coplien, D. Hoffman, and D. M. Weiss. Commonality and variability in
software engineering. IEEE Software, 15(6):37–45, 1998.

K. Czarnecki. Overview of Generative Software Development. In J.-P. Banâtre,
P. Fradet, J.-L. Giavitto, and O. Michel, editors, UPP, volume 3566 of Lec-
ture Notes in Computer Science, pages 326–341. Springer, 2004. ISBN 3-
540-27884-2.

K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

K. Czarnecki and U. W. Eisenecker. Components and Generative Program-
ming. In O. Nierstrasz and M. Lemoine, editors, ESEC / SIGSOFT FSE,
volume 1687 of Lecture Notes in Computer Science, pages 2–19. Springer,
1999. ISBN 3-540-66538-2.

K. Czarnecki and C. H. P. Kim. Cardinality-Based Feature Modeling and Con-
straints: A Progress Report. In Proceedings of the International Workshop
on Software Factories (OOPSLA’05, 2005.

K. Czarnecki, T. Bednasch, P. Unger, and U. W. Eisenecker. Generative
Programming for Embedded Software: An Industrial Experience Report.
In D. S. Batory, C. Consel, and W. Taha, editors, Generative Program-
ming and Component Engineering, ACM SIGPLAN/SIGSOFT Conference,
GPCE 2002, Pittsburgh, PA, USA, October 6-8, 2002, Proceedings, volume
2487 of Lecture Notes in Computer Science, pages 156–172. Springer, 2002.
ISBN 3-540-44284-7.

K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged Configuration Using
Feature Models. In R. L. Nord, editor, SPLC, volume 3154 of Lecture Notes
in Computer Science, pages 266–283. Springer, 2004. ISBN 3-540-22918-3.

K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formalizing Cardinality-based
Feature Models and Their Specialization. Software Process: Improvement
and Practice, 10(1):7–29, 2005.

O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, editors. Structured Program-
ming. Academic Press Ltd., London, UK, UK, 1972. ISBN 0-12-200550-3.

178 Bibliography

A. M. Davis. Fifteen Principles of Software Engineering. IEEE Software, 11
(6):94–96, 101, 1994.

B. Delaware, W. Cook, and D. Batory. A Machine-checked Model of Safe
Composition. In Proceedings of the 2009 workshop on Foundations of aspect-
oriented languages, pages 31–35. ACM New York, NY, USA, 2009.

A. v. Deursen and P. Klint. Domain-Specific Language Design Requires Feature
Descriptions. Journal of Computing and Information Technology, 10(1):1–17,
2002.

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1976.

E. W. Dijkstra. On the Role of Scientific Thought. In Selected Writings on
Computing: A Personal Perspective, pages 60–66. Springer, 1982. Reprinted
in Dijkstra’s Selected Writings on Computing: A Personal Perspective, 1982,
pp. 60–66.

S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits: A
Mechanism for Fine-Grained Reuse. ACM Transactions on Programming
Languages and Systems, 28(2):331–388, 2006.

T. Ekman. A case study of Separation of Concerns in Compiler Construction
using JastAdd II. In Proceedings of the Third AOSD workshop on Aspects,
Components, and Patterns for Infrastructure Software (ACP4IS), 2004.

T. Ekman and G. Hedin. Rewritable Reference Attributed Grammars. In
M. Odersky, editor, ECOOP 2004 - Object-Oriented Programming, 18th Eu-
ropean Conference, Oslo, Norway, June 14-18, 2004, Proceedings, volume
3086 of Lecture Notes in Computer Science, pages 144–169. Springer, 2004a.
ISBN 3-540-22159-X.

T. Ekman and G. Hedin. Reusable language specification modules in JastAdd
II. Proceedings of the Workshop on Evolution and Reuse of Language Speci-
fications for DSLs, 2004b.

T. Ekman and G. Hedin. Pluggable Checking and Inferencing of Non-null Types
for Java. Proceedings of TOOLS Europe 2007, Journal of Object Technology,
6(7), 2007a.

T. Ekman and G. Hedin. The JastAdd system - Modular Extensible Compiler
Construction. Science of Computer Programming, 69(1-3):14–26, 2007b.

T. Ekman and G. Hedin. The JastAdd Extensible Java Compiler. In Object-
Oriented Programming, Systems and Languages (OOPSLA), pages 1–18,
2007c.

E. Ernst. Separation of Concerns. In L. Bergmans, J. Brichau, P. Tarr, and
E. Ernst, editors, SPLAT: Software engineering Properties of Languages for
Aspect Technologies, Mar. 2003.

Bibliography 179

E. Ernst. First-Class Object Sets. In S. Berardi, F. Damiani, and U. de’Liguoro,
editors, TYPES, volume 5497 of Lecture Notes in Computer Science, pages
83–99. Springer, 2008. ISBN 978-3-642-02443-6.

D. Flanagan and Y. Matsumoto. The Ruby Programming Language. O’Reilly,
2008. ISBN 9780596516178.

H. Fulton. The Ruby way: Solutions and Techniques in Ruby Programming.
Addison-Wesley Professional, second edition, 2006. ISBN 0768667208.

K. Gilroy, E. Comer, K. Grau, and P. Merlet. Impact of Domain Analy-
sis on Reuse Methods. Technical Report C04-087LD-0001-00, U.S. Army
Communications-Electronics Command, Ft. Monmouth, NJ, Nov. 1989.

R. L. Glass. Practical programmer: The Standish report: does it really describe
a software crisis? Communications of the ACM (CACM), 49(8):15–16, Aug.
2006. ISSN 0001-0782.

J. Gosling and H. McGilton. The Java Language Environment. A White Paper.
SUN Developer Network at Oracle, May 1996.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java (TM) Language Speci-
fication, Addison-Wesley. Addison-Wesley Professional, 2005.

O. Gotel and C. Finkelstein. An Analysis of the Requirements Traceability
Problem. In Requirements Engineering, 1994., Proceedings of the First In-
ternational Conference on, pages 94 –101, 18-22 1994.

J. D. Gould and C. Lewis. Designing for Usability: Key Principles and What
Designers Think. Communications of the ACM (CACM), 28(3):300–311,
Mar. 1985. ISSN 0001-0782.

T. S. Group. Chaos Report. Technical report, Standish Group International,
2003.

S. Günther and S. Sunkle. Feature-oriented programming with Ruby. In FOSD
’09: Proceedings of the First International Workshop on Feature-Oriented
Software Development, pages 11–18, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-567-3.

S. Günther and S. Sunkle. Dynamically Adaptable Software Product Lines
Using Ruby Metaprogramming. In Proceedings of International Workshop
on Feature-oriented Software Development (FOSD), October 2010.

S. Günther and S. Sunkle. rbfeatures: Feature-oriented programming with
ruby. Science of Computer Programming, In Press, Corrected Proof:–, 2011.
ISSN 0167-6423. doi: DOI:10.1016/j.scico.2010.12.007.

180 Bibliography

G. Haddad and G. T. Leavens. Extensible Dynamic Analysis for JML: A Case
Study with Loop Annotations. Technical Report CS-TR-08-05, School of
Electrical Engineering and Computer Science, University of Central Florida,
Orlando, Florida, Apr. 2008.

S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dynamic Software Prod-
uct Lines. IEEE Transactions on Software Engineering, 41(4):93–95, 2008.

G. Hedin and E. Magnusson. JastAdd: An Aspect-oriented Compiler Construc-
tion System. Sci. Comput. Program., 47(1):37–58, 2003. ISSN 0167-6423.

G. Hedin, J. Akesson, and T. Ekman. Extending Languages by Leveraging
Compilers - from Modelica to Optimica. IEEE Software, 99(PrePrints), 2010.
ISSN 0740-7459.

S. Herrmann. A Precise Model for Contextual Roles: The Programming Lan-
guage ObjectTeams/Java. Applied Ontology, 2(2):181–207, 2007.

R. Hightower, W. Onstine, P. Visan, and D. Payne. Professional Java tools
for extreme programming: Ant, Xdoclet, JUnit, Cactus, and Maven. Wrox,
2004. ISBN 978-0764556173.

C. A. R. Hoare. Proof of Correctness of Data Representations. Acta Inf., 1:
271–281, 1972.

C. A. R. Hoare and J. Misra. Verified Software: Theories, Tools, Experiments
Vision of a Grand Challenge Project. In B. Meyer and J. Woodcock, editors,
VSTTE, volume 4171 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2005. ISBN 978-3-540-69147-1.

C. Hundt, K. Mehner, C. Pfeiffer, and D. Sokenou. Improving Alignment of
Crosscutting Features with Code in Product Line Engineering. Journal of
Object Technology (JOT)–Special Issue: TOOLS EUROPE, 6(9):417–436,
2007.

W. Hürsch and C. V. Lopes. Separation of Concerns. Technical Report NU-
CCS-95-03, College of Computer Science, Northeastern University, Boston,
Massachusetts, Feb.24 1995.

IEEE-1362-1998. IEEE Guide for Information Technology - System Definition
- Concept of Operations (ConOps) Document. IEEE Std 1362-1998, 1998.

IEEE-1471-2000. IEEE Recommended Practice for Architectural Description
of Software-Intensive Systems. IEEE Std 1471-2000, 2000.

A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a Minimal Core
Calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450,
2001. ISSN 0164-0925.

ISO/IEC. Guide to Software Product Quality Requirements and Evaluation
(SQuaRE), 25000-2005. July 2005.

Bibliography 181

ISO/IEC. Systems and Software Engineering - Vocabulary. IEEE Unapproved
Draft Std P24765-2009, Sept 2009.

ISO/IEC-26514:2008. IEEE Draft Standard Adoption of ISO/IEC 26514:2008
- Systems and Software Engineering - Requirements for Designers and De-
velopers of User Documentation. IEEE Unapproved Draft Std P26514/D1,
December 2009.

M. Jaring and J. Bosch. Representing Variability in Software Product Lines:
A Case Study. In Proceedings of the Second International Conference on
Software Product Lines, pages 15–36. Springer-Verlag, 2002. ISBN 3-540-
43985-4.

G. F. Johnson and D. Duggan. Stores and Partial Continuations as First-class
Objects in a Language and its Environment. In POPL ’88: Proceedings of
the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 158–168, New York, NY, USA, 1988. ACM. ISBN 0-89791-
252-7.

M. Jørgensen and K. Moløkken-Østvold. How Large Are Software Cost Over-
runs? A Review of the 1994 CHAOS Report. Information & Software Tech-
nology, 48(4):297–301, 2006.

K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-
90-TR-21, Software Engineering Institute, Carnegie Mellon University, 1990.

K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM: A Feature-
Oriented Reuse Method with Domain-Specific Reference Architectures. Ann.
Software Eng, 5:143–168, 1998.

C. Kästner. Virtual Separation of Concerns : Preprocessors 2.0. PhD thesis,
School of Computer Science, University of Magdeburg, May 2010.

C. Kästner and S. Apel. Type-checking Software Product Lines - A Formal
Approach. In Proceedings of the 23rd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 258–267. IEEE Computer
Society, Sept. 2008. ISBN 978-1-4244-2187-9.

C. Kästner and S. Apel. Virtual Separation of Concerns – A Second Chance for
Preprocessors. Journal of Object Technology (JOT), 8(6):59–78, Sept. 2009.

C. Kästner, S. Apel, and D. Batory. A Case Study Implementing Features
Using AspectJ. In Proceedings of the International Software Product Line
Conference, pages 223–232. IEEE Computer Society, 2007.

C. Kästner, S. Apel, S. S. ur Rahman, M. Rosenmüller, D. Batory, and
G. Saake. On the Impact of The Optional Feature Problem: Analysis and
Case Studies. In SPLC ’09: Proceedings of the 13th International Soft-
ware Product Line Conference, pages 181–190, Pittsburgh, PA, USA, 2009.
Carnegie Mellon University.

182 Bibliography

G. Kiczales and M. Mezini. Separation of Concerns with Procedures, Annota-
tions, Advice and Pointcuts. In A. P. Black, editor, ECOOP 2005 - Object-
Oriented Programming, 19th European Conference, Glasgow, UK, July 25-
29, 2005, Proceedings, volume 3586 of Lecture Notes in Computer Science,
pages 195–213. Springer, 2005. ISBN 3-540-27992-X.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An Overview of AspectJ. In ECOOP, pages 327–353, 2001.

C. H. P. Kim and K. Czarnecki. Synchronizing Cardinality-Based Feature
Models and Their Specializations. In European Conference on Model Driven
Architecture Foundations and Applications, pages 331–348. Springer, 2005.

D. E. Knuth. The genesis of attribute grammars. In P. Deransart and M. Jour-
dan, editors, Attribute Grammars and their Applications (WAGA), volume
461 of Lecture Notes in Computer Science, pages 1–12. Springer-Verlag, New
York–Heidelberg–Berlin, Sept. 1990. Paris.

P. Lago, H. Muccini, and H. van Vliet. A Scoped Approach to Traceability
Management. Journal of Systems and Software, 82(1):168 – 182, 2009. ISSN
0164-1212. Special Issue: Software Performance - Modeling and Analysis.

A. Lai, G. C. Murphy, and R. J. Walker. Separating Concerns with HyperJ:
An Experience Report. In P. Tarr, A. Finkelstein, W. Harrison, B. Nuseibeh,
H. Ossher, and D. Perry, editors, Workshop on Multi-Dimensional Separation
of Concerns in Software Engineering (ICSE 2000), June 2000.

G. T. Leavens, J.-R. Abrial, D. Batory, M. Butler, A. Coglio, K. Fisler,
E. Hehner, C. Jones, D. Miller, S. Peyton-Jones, M. Sitaraman, D. R. Smith,
and A. Stump. Roadmap for Enhanced Languages and Methods to Aid Ver-
ification. In GPCE ’06: Proceedings of the 5th international conference on
Generative programming and component engineering, pages 221–236, New
York, NY, USA, 2006. ACM. ISBN 1-59593-237-2.

S. Liang and G. Bracha. Dynamic Class Loading in the Java Virtual Machine.
In OOPSLA ’98: Proceedings of the 13th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, volume
33(10) of ACM SIGPLAN Notices, pages 36–44, New York, NY, Oct. 1998.
ACM, ACM.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, second edition, 1999. ISBN 0-201-43294-3.

J. Liu, D. Batory, and C. Lengauer. Feature-Oriented Refactoring of Legacy
Applications. In ICSE, pages 112–121, New York, NY, USA, 2006. ACM.
ISBN 1-59593-375-1.

R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support for Features
in Advanced Modularization Technologies. In A. P. Black, editor, ECOOP

Bibliography 183

2005 - Object-Oriented Programming, 19th European Conference, Glasgow,
UK, July 25-29, 2005, Proceedings, volume 3586 of Lecture Notes in Com-
puter Science, pages 169–194. Springer, 2005a. ISBN 3-540-27992-X.

R. E. Lopez-Herrejon. The Expression Problem as Product-Line and its Imple-
mentation in AHEAD. Technical report, Department of Computer Sciences,
University of Texas at Austin, October 2004.

R. E. Lopez-Herrejon and D. S. Batory. A Standard Problem for Evaluating
Product-Line Methodologies. In GCSE ’01: Proceedings of the Third In-
ternational Conference on Generative and Component-Based Software En-
gineering, pages 10–24, London, UK, 2001. Springer-Verlag. ISBN 3-540-
42546-2.

R. E. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support for Fea-
tures in Advanced Modularization Technologies. Extended Report. Techni-
cal Report CS-TR-05-16, The University of Texas at Austin, Department of
Computer Sciences, 1 2005b. Fri, 28 Sep 107 13:03:38 GMT.

N. Loughran, P. Sánchez, A. Garcia, and L. Fuentes. Language Support for
Managing Variability in Architectural Models. In Software Composition,
pages 36–51, 2008.

E. Magnusson and G. Hedin. Circular Reference Attributed Grammars —
Their Evaluation and Applications. Sci. Comput. Program., 68(1):21–37,
2007. ISSN 0167-6423.

D. Malayeri. CZ: Multiple Inheritance without Diamonds. In G. E. Har-
ris, editor, Companion to the 23rd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2008, October 19-13, 2007, Nashville, TN, USA, pages 923–924. ACM,
2008. ISBN 978-1-60558-220-7.

M. Matinlassi. Comparison of Software Product Line Architecture Design
Methods: COPA, FAST, FORM, KobrA and QADA. In ICSE ’04: Proceed-
ings of the 26th International Conference on Software Engineering, pages
127–136, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-
7695-2163-0.

M. Matinlassi, E. Niemelä, and L. Dobrica. Quality-Driven Architecture De-
sign and Quality Analysis Method: A Revolutionary Initiation Approach
to a Product Line Architecture. Technical Report VTT-PUBS-456, VTT
Electronics, Jan. 2002.

Y. Matsumoto. Ruby in a Nutshell. O’Reilly, 2001. ISBN 0596002149.

S. McConnell. From The Editor - Software Engineering Principles. IEEE
Software, 16(2), 1999.

184 Bibliography

S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: New-Age Components for Old-
Fashioned Java. In Proceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 211–
222. ACM Press, 2001.

J. D. McGregor. Testing a software product line. Technical Report CMU/SEI-
2001-TR-022, Software Engineering Institute, Carnegie Mellon University,
Dec. 2001.

M. Mezini and K. Ostermann. Variability Management with Feature-Oriented
Programming and Aspects. In Proceedings of the International Symposium
on Foundations of Software Engineering, pages 127–136. ACM Press, 2004.

M. Moodie. Pro Apache Ant. Springer, Dordrecht, 2006. ISBN 978-1-
590595596.

P. Mulet, J. Malenfant, and P. Cointe. Towards a Methodology for Explicit
Composition of MetaObjects. ACM SIGPLAN Notices, 30(10):316–330, Oct.
1995. ISSN 0362-1340.

P. Naur and B. Randell, editors. Software Engineering: Report on a confer-
ence sponsored by the NATO Science Committee, Jan. 1969. NATO Scientific
Affairs Division.

O. Nierstrasz and F. Achermann. Separation of Concerns through Unification
of Concepts. In C. Lopes, L. Bergmans, M. D’Hondt, and P. Tarr, editors,
Workshop on Aspects and Dimensions of Concerns (ECOOP 2000), June
2000.

E. Nilsson-Nyman, T. Ekman, G. Hedin, and E. Magnusson. Declarative In-
traprocedural Flow Analysis of Java Source Code. In Proceedings of 8th
Workshop on Language Descriptions, Tools and Applications (LDTA 2008),
2008.

N. Nystrom, M. Clarkson, and A. Myers. Polyglot: An Extensible Compiler
Framework for Java. In Compiler Construction: 12’th International Con-
ference, CC 2003, volume 2622, pages 138–152, New York, NY, Apr. 2003.
Springer-Verlag.

H. Obbink, R. van Ommering, J. G. Wijnstra, and P. America. Component-
Oriented Platform Architectures For Software Intensive Product Families. In
M. Aksit, editor, Software Architectures and Component Technology, pages
99–141. Kluwer Academic Publishers, 2002.

H. Ossher and P. Tarr. Multi-Dimensional Separation of Concerns and the
Hyperspace Approach. In Proceedings of the Symposium on Software Ar-
chitectures and Component Technology: The State of the Art InSoftware
Development. Kluwer, 2000a.

Bibliography 185

H. Ossher and P. L. Tarr. Hyper/J: multi-dimensional separation of concerns
for Java. In ICSE, pages 734–737, 2000b.

D. L. Parnas. A Technique for Software Module Specification with Examples.
Communications of the ACM, 15(5):330–336, 1972a.

D. L. Parnas. On the Criteria to be Used in Decomposing Systems into Mod-
ules. Communications of the ACM (CACM), 15(12):1053–8, Dec. 1972b.

D. L. Parnas. On the Design and Development of Program Families. IEEE
Transactions on Software Engineering, 2(1):1–9, 1976.

D. L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE
Transactions on Software Engineering, 5(2):128–138, Mar. 1979.

D. L. Parnas, P. C. Clements, and D. M. Weiss. The Modular Structure of
Complex Systems. In ICSE ’84: Proceedings of the 7th international confer-
ence on Software engineering, pages 408–417, Piscataway, NJ, USA, 1984.
IEEE Press. ISBN 0-8186-0528-6.

P. Perrotta. Metaprogramming Ruby. Pragmatic Bookshelf, Feb 2010. ISBN
978-1-93435-647-0.

K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Berlin Heidelberg New
York, 2005. ISBN 3-540-24372-0.

C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In
ECOOP, pages 419–443, 1997.

R. Prieto-Diaz. Domain Analysis For Reusability. In Proceedings of the
Eleventh Annual International Computer Software and Application Confer-
ence, pages 63–69, 1987. The focus is on the DA process, NOT on reuse.

M. Pukall, C. Kästner, and G. Saake. Towards Unanticipated Runtime Adap-
tation of Java Applications. In APSEC, pages 85–92. IEEE, 2008. ISBN
978-0-7695-3446-6.

M. Pukall, C. Kästner, S. Götz, W. Cazzola, and G. Saake. Flexible Runtime
Program Adaptations in Java - A Comparision. Technical Report FIN-014-
2009, Department of Computer Science, Otto-von-Guericke University of
Magdeburg, Germany, Nov. 2009.

M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow. Extending Feature
Diagrams with UML Multiplicities. In Proceedings of the Sixth Conference
on Integrated Design and Process Technology (IDPT 2002), Pasadena, CA,
June 2002.

186 Bibliography

M. Rosenmüller and N. Siegmund. Automating the Configuration of Multi
Software Product Lines. In Proceedings of the International Workshop on
Variability Modelling of Software-intensive Systems (VaMoS), pages 123–
130, Jan. 2010.

M. Rosenmüller, N. Siegmund, C. Kästner, and S. S. ur Rahman. Modeling
Dependent Software Product Lines. In GPCE Workshop on Modulariza-
tion, Composition and Generative Techniques for Product Line Engineering
(McGPLE), pages 13–18. Department of Informatics and Mathematics, Uni-
versity of Passau, Oct. 2008a.

M. Rosenmüller, N. Siegmund, G. Saake, and S. Apel. Code Generation to
Support Static and Dynamic Composition of Software Product Lines. In
Proceedings of the 7th International Conference on Generative Programming
and Component Engineering. ACM Press, Oct. 2008b.

M. Rosenmüller, N. Siegmund, G. Saake, and S. Apel. Combining Static and
Dynamic Feature Binding in Software Product Lines. Technical Report 13,
Fakultät für Informatik, Universität Magdeburg, Sept. 2009.

RSpec. Behaviour Driven Development for Ruby. http://rspec.info/, 2010.

Ruby Shoes Development Community at GitHub. Shoes, a Tiny Toolkit. http:
//github.com/shoes/shoes/wiki, 2009.

RubyHome. Ruby Language Homepage. http://www.ruby-lang.org/en/,
September 2010.

M. Schäfer, T. Ekman, and O. de Moor. Sound and Extensible Renaming for
Java. In OOPSLA ’08: Proceedings of the 23rd ACM SIGPLAN conference
on Object-oriented programming systems languages and applications, pages
277–294, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-215-3.

M. Schäfer, M. Verbaere, T. Ekman, and O. Moor. Stepping Stones over the
Refactoring Rubicon. In Genoa: Proceedings of the 23rd European Con-
ference on ECOOP 2009 — Object-Oriented Programming, pages 369–393,
Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-03012-3.

N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable Units
of Behaviour. Lecture notes in computer science, pages 248–274, 2003.

M. Shaw. Procedure Calls Are the Assembly Language of Software Intercon-
nection: Connectors Deserve First-Class Status. In D. A. Lamb, editor, ICSE
Workshop on Studies of Software Design, volume 1078 of Lecture Notes in
Computer Science, pages 17–32. Springer, 1993. ISBN 3-540-61285-8.

M. Sinnema and S. Deelstra. Classifying Variability Modeling Techniques.
Information & Software Technology, 49(7):717–739, 2007.

http://rspec.info/
http://github.com/shoes/shoes/wiki
http://github.com/shoes/shoes/wiki
http://www.ruby-lang.org/en/

Bibliography 187

M. Sinnema, O. de Graaf, and J. Bosch. Tool Support for COVAMOF.
In Workshop on Software Variability Management for Product Derivation,
Boston, MA, Aug. 2004a.

M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COVAMOF: A Framework
for Modeling Variability in Software Product Families. In R. L. Nord, ed-
itor, Software Product Lines, Third International Conference, SPLC 2004,
Boston, MA, USA, August 30-September 2, 2004, Proceedings, volume 3154
of Lecture Notes in Computer Science, pages 197–213. Springer, 2004b. ISBN
3-540-22918-3.

P. Sochos, M. Riebisch, and I. Philippow. The Feature-Architecture Map-
ping (FArM) Method for Feature-Oriented Development of Software Prod-
uct Lines. In ECBS, pages 308–318. IEEE Computer Society, 2006. ISBN
0-7695-2546-6.

I. Sommerville. Software Engineering (7th Edition). Pearson Addison Wesley,
2004. ISBN 0321210263.

H. Spencer and G. Collyer. #ifdef Considered Harmful, or Portability Expe-
rience With C News. In Proceedings of the Usenix Summer 1992 Technical
Conference, pages 185–198, Berkeley, CA, USA, June 1992. Usenix Associa-
tion.

StandishGroupReport. The CHAOS Report. http://www.standishgroup.
com/sample_research/chaos_1994_1.php, 1994.

W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured Design. IBM
Systems Journal, 13(2):115–139, 1974.

B. Stewart. An Interview with the Creator of Ruby. http://linuxdevcenter.
com/pub/a/linux/2001/11/29/ruby.html, November 2001.

C. Strachey. Fundamental Concepts in Programming Languages. Higher-Order
and Symbolic Computation, 13(1-2):11–49, 2000. ISSN 1388-3690.

R. Strnǐsa, P. Sewell, and M. Parkinson. The Java Module System: Core
Design and Semantic Definition. In OOPSLA ’07: Proceedings of the 22nd
annual ACM SIGPLAN conference on Object-oriented programming systems
and applications, pages 499–514, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-786-5.

S. Sunkle. Feature-oriented Decomposition of SQL:2003. Master’s thesis, De-
partment of Computer Science, University of Magdeburg, Germany, October
2007.

S. Sunkle and M. Pukall. Using Reified Contextual Information for Safe Run-
time Adaptation of Software Product Lines. 7th ECOOP’2010 Workshop on
Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’10), June
2010.

http://www.standishgroup.com/sample_research/chaos_1994_1.php
http://www.standishgroup.com/sample_research/chaos_1994_1.php
http://linuxdevcenter.com/pub/a/linux/2001/11/29/ruby.html
http://linuxdevcenter.com/pub/a/linux/2001/11/29/ruby.html

188 Bibliography

S. Sunkle, M. Kuhlemann, N. Siegmund, M. Rosenmüller, and G. Saake. Gen-
erating highly customizable sql parsers. In SETMDM ’08: Proceedings of the
2008 EDBT workshop on Software engineering for tailor-made data manage-
ment, pages 29–33, New York, NY, USA, 2008a. ACM. ISBN 978-1-59593-
964-7.

S. Sunkle, M. Rosenmüller, N. Siegmund, S. S. ur Rahman, and G. Saake. Fea-
tures as First-class Entities – Toward a Better Representation of Features.
In Workshop on Modularization, Composition and Generative Techniques
for Product Line Engineering (McGPLE), pages 27–34. Department of In-
formatics and Mathematics, University of Passau, Oct. 2008b.

S. Sunkle, S. Günther, and G. Saake. Representing and Composing First-class
Features with FeatureJ. Technical Report FIN-017-2009, Department of
Computer Science, Otto-von-Guericke University of Magdeburg, Germany,
Nov. 2009.

P. Systems. pure::variants Connector for IBM Rational DOORS. http://www.
pure-systems.com/DOORS.102+M54a708de802.0.html, 2010.

C. A. Szyperski. Component Software — Beyond Object-Oriented Program-
ming. Addison Wesley, second edition edition, 2002. ISBN 0-201-74572-0.

P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S. Jr. N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In ICSE, pages 107–119, 1999.

M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano. OpenJava: A class-
based macro system for java. In Reflection and Software Engineering, Papers
from OORaSE 1999, 1st OOPSLA Workshop on Reflection and Software
Engineering, volume 1826 of Lecture Notes in Computer Science, pages 117–
133. Springer Verlag, Denver, Colorado, USA, 2000. ISBN 3-540-67761-5.

S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of Prod-
uct Lines. In Proceedings of the 6th international conference on Generative
programming and component engineering, pages 95–104. ACM, 2007. ISBN
978-1-59593-855-8.

D. Thomas and A. Hunt. Programming Ruby: the Pragmatic Programmer’s
Guide. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000. ISBN 0-201-71089-7.

F. Van der Linden, K. Schmid, and E. Rommes. Software Product Lines in
Action : The Best Industrial Practice in Product Line Engineering. Springer,
2007.

J. van Gurp, J. Bosch, and M. Svahnberg. On the Notion of Variability in Soft-
ware Product Lines. In Proceedings of the Working Conference on Software
Architecture (WICSA), pages 45–55. IEEE Computer Society, 2001.

http://www.pure-systems.com/DOORS.102+M54a708de802.0.html
http://www.pure-systems.com/DOORS.102+M54a708de802.0.html

Bibliography 189

B. Venners. The Philosophy of Ruby - A Conversation with Yukihiro Mat-
sumoto, Part I. http://www.artima.com/intv/ruby.html, September
2003a.

B. Venners. Blocks and Closures in Ruby - A Conversation with Yukihiro
Matsumoto, Part III. http://www.artima.com/intv/closures.html, De-
cember 2003b.

B. Venners. Dynamic Productivity with Ruby - A Conversation with Yuk-
ihiro Matsumoto, Part II. http://www.artima.com/intv/tuesday.html,
November 2003c.

P. Wadler. The Expression Problem in the Email to the Java Genericity mail-
ing list, Dec. 1998. URL http://www.daimi.au.dk/~madst/tool/papers/
expression.txt. Email to the Java Genericity mailing list.

D. M. Weiss and C. T. R. Lai. Software Product-Line Engineering: A Family-
Based Software Development Process. Addison-Wesley, 1999. ISBN 0-201-
69438-7.

N. Wirth. Program Development by Stepwise Refinement. Communications of
the ACM, 14(4):221–227, Apr. 1971. ISSN 0001-0782.

N. Wirth. From Programming Language Design to Computer Construction.
Commun. ACM, 28(2):160–164, 1985. ISSN 0001-0782.

F. Xie and J. C. Browne. Verified Systems by Composition from Verified
Components. In ESEC / SIGSOFT FSE, pages 277–286. ACM, 2003.

B. Xin, S. McDirmid, E. Eide, and W. C. Hsieh. A Comparison of Jiazzi and
AspectJ for Feature-Wise Decomposition. Technical Report UUCS-04-001,
School of Computing, The University of Utah, 2004.

E. Yourdon and L. L. Constantine. Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1979. ISBN 0138544719.

P. Zave. An Experiment in Feature Engineering. pages 353–377, 2003.

M. Zenger and M. Odersky. Implementing Extensible Compilers. In ECOOP
Workshop on Multiparadigm Programming with Object-Oriented Languages,
June 2001.

S. Zschaler, P. Sánchez, J. Santos, M. Alférez, A. Rashid, L. Fuentes, A. Mor-
eira, J. Araújo, and U. Kulesza. VML* - A Family of Languages for Variabil-
ity Management in Software Product Lines. In M. van den Brand, D. Ga-
sevic, and J. Gray, editors, SLE, volume 5969 of Lecture Notes in Computer
Science, pages 82–102. Springer, 2009. ISBN 978-3-642-12106-7.

http://www.artima.com/intv/ruby.html
http://www.artima.com/intv/closures.html
http://www.artima.com/intv/tuesday.html
http://www.daimi.au.dk/~madst/tool/papers/expression.txt
http://www.daimi.au.dk/~madst/tool/papers/expression.txt

	Contents
	List of Figures
	List of Code Listings
	List of Abbreviations
	Introduction
	Overview
	Contributions
	Structure

	Background
	Separation of Concerns
	Separating the Concerns
	Concerns
	Representation and Composition of Concerns

	Family of Programs
	Stepwise Refinement and Module Specification
	Using Separation of Concerns as the Design Principle

	Software Product Line Engineering
	Domain Engineering and Application Engineering
	Other Software Development Paradigms and SPLs

	Developing SPLs Using Features
	Problem Space and Solution Space
	Features
	Feature Modeling
	Feature Implementations
	Phases in FOSD
	Challenges in FOSD

	Summary and Outlook

	First-class Features
	Nature of Features
	Conceptual and Concrete Features
	Views on Mapping Between Problem and Solution Spaces

	Capabilities of Features - Current State of the Art
	Toward Modeling Conceptual Features
	Toward Implementing Concrete Features
	Traceability between Conceptual and Concrete Features
	Problem Statement
	Proposing a Solution

	Analysis of Feature Representation and Composition
	Feature Modeling Techniques
	Feature Implementation Techniques

	Concept of First-class Features
	Nature of First-class Language Entities
	Requirements of First-class Representation
	Integrating the Views Using First-class Features
	Choice of Host Language

	Summary

	FeatureJ
	JastAdd- An Extensible Java Compiler
	Object-oriented AST and Aspects
	Rewritable Reference Attribute Grammars
	Name and Type Analysis in JastAdd
	JastAdd Implementation of Java Compilers
	Extending JastAdd's Implementation of Java
	JastAdd as the Compiler Construction System of Choice

	FeatureJ Language Internals
	Feature Domain Entities as JastAdd Types
	Syntactic Extension
	Name/Type Analysis and Error Checking in FeatureJ

	Architecture for First-class Features in FeatureJ
	JVM and Class-loading
	Variant Composition and Generation Architecture in FeatureJ
	FeatureJ Compiler for Java 1.4
	Extending FeatureJ to Support Java 1.5
	Implementation Statistics

	Summary

	rbFeatures
	Ruby - Dynamic Extensible Host Language
	Core Language Entities in Ruby
	Ruby Mechanisms for First-class Features

	rbFeatures Language Internals
	Syntactic Extension
	Feature Domain Entities in rbFeatures
	Testing in rbFeatures

	Architecture and Implementation Statistics
	Architecture for rbFeatures
	Implementation Statistics

	Summary

	Evaluation
	FeatureJ
	Case Studies
	Conformance to Requirements of First-class Features

	rbFeatures
	Case Studies
	Conformance to Requirements of First-class Features

	Summary

	Discussion
	Comparing FeatureJ and rbFeatures
	Comparing First-class Features with Other Techniques
	Feature Modeling Techniques
	Feature Implementation Techniques
	Traceability in Feature Modeling and Implementation Techniques

	Merits
	Merits as an FOSD Technique
	Merits of Separation of Concerns with First-class Features

	Limitations
	Summary

	Concluding Remarks
	Summary of the Dissertation
	Contributions
	Future Work
	Perspectives
	Verification in FOSD
	Language Vs. Design in FOSD

	Bibliography

