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Deutschsprachige Zusammenfassung

Das Interesse des Geometers an Ricci-flacher komplexer Geometrie speist sich aus
mehreren Quellen. Gegeben eine komplexe MannigfaltigkeitX, kann man geometrische
Information zu extrahieren, indem man nach “besten” Metriken sucht. Das Beste, was
man erwarten kann, ist, dass X lokal dem euklidischen Raum so ähnlich wie möglich
sieht. Diese Ähnlichkeit wird durch die Holonomie des Levi-Civita-Zusammenhangs
gegeben, d.h. die Automorphismengruppe eines fixierten Tangentialraumes, die durch
Paralleltransport eines Tangentialvektors entlang einer geschlossenen Kurve entsteht.
Eine komplexe Mannigfaltigkeit hat automatisch eine Untergruppe der SO(2n) als
Holonomiegruppe, die Kählerbedingung reduziert bereits auf eine Untergruppe der
U(n). Der nächste Schritt wäre SU(n). Im Fall einer kompakten Kählermannig-
faltigkeit ist dies äquivalent zur Ricciflachheit der Kählermetrik. Die Existenz einer
Ricci-flachen Metrik wiederum ist äquivalent zum Verschwinden der ersten Chernklasse,
c1(X) = 0.

Ricci-Flachheit bezeichnet das Verschwinden des komplexen Ricci-Tensors

Ricω := i∂∂ log detω

der metrischen Form ω. An dieser Stelle ist Vorsicht geboten: Der komplexe und der
reelle (Levi-Civita) Ricci Tensor sind nur identisch, wenn ω eine Kählerform ist, d.h.
dω = 0 gilt.

Die Aussage der von Yau bewiesenen Calabi-Vermutung ist insbesondere, dass eine
kompakte komplexe Kählermannigfaltigkeit mit c1(X) = 0 eine Ricci-flache Kähler-
metrik erlaubt. Jede solche Mannigfaltigkeit hat eine endliche, unverzweigte Über-
lagerung X̃ mit trivialem kanonischen Bündel KX = Ωn

X ; diese wiederum haben eine
endliche, unverzweigte Überlagerung, die ein Produkt aus einem Torus und einer ein-
fach zusammenhängenden Mannigfaltigkeit mit trivialem kanonischen Bündel ist. Die
letzteren heißen Calabi-Yau-Mannigfaltigkeiten. Während das mathematische Inter-
esse aus der Klassifikation komplexer Mannigfaltigkeiten stammt, haben auch Physiker
mit dem Aufkommen der Stringtheorie ein Interesse an Calabi-Yau-Mannigfaltigkeiten
entwickelt. Die große Familie der Stringtheorien heute beinhaltet auch Modelle mit offe-
nen Strings, die dann nicht-kompakte Calabi-Yau-Mannigfaltigkeiten induzieren; damit
sind nicht-kompakte Mannigfaltigkeiten, die eine vollständige Ricci-flache Kählermetrik
zulassen gemeint.

In dieser Allgemeinheit kann man nicht hoffen, das Calabi-Problem für nicht-
kompakte Mannigfaltigkeiten angehen zu können. Deshalb konzentriert man sich auf
den Fall sogenannter offener Mannigfaltigkeiten: Komplemente von Divisoren in kom-
pakten komplexen Mannigfaltigkeiten. Das Analogon zu c1(X) = 0 sollte KX +D = 0
lauten, wenn X \D die untersuchte Mannigfaltigkeit ist. Unter dieser Annahme und,
dass D glatt und ample ist, haben Tian und Yau gezeigt, den ersten Schritt der ’offe-
nen Calabi-Vermutung’ gezeigt: Es existiert eine vollständige, Ricci-flache Metrik auf
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X \ D. Es ist bis heute aber unbekannt, ob man eine solche Metrik auch in jeder
vorgegebenen Kählerklasse finden kann; hierbei ist es angemessener, die Kählerklasse
in Bott-Chern-Kohomologie zu verstehen. Ebenso offen ist auch die Existenz noch im
Fall singulärer oder nicht-reduzierter Divisoren. Nur der Spezialfall D = mD′ wurde
in Arbeiten von Tian/Yau und Bando/Kobayashi mit positivem Ergebnis behandelt.

In Kapitel 2 betrachten wir Divisoren und Metriken, die unter großen Symme-
triegruppen invariant sind. Gro”s bedeutet hier, dass die Gruppe fast transitiv wirkt.
Auf diesem Wege erhält man eine Beispielklasse von singulären Divisoren und voll-
ständigen, Ricci-flachen Metriken auf deren Komplement. Die Kählerbedingung der
Metrik wird sich als Kommutativität der Symmetriegruppe erweisen. In diesem sin-
gulären Fall ist der Kählerkegel hochdimensional, auch wenn X selbst wenig Topologie
hat, wie zum Beispiel X = Pn; es stellt sich also die Frage nach einer vollständigen,
Ricci-flachen Kählermetrik in jeder positiven Kohomologieklasse und sie wird positiv
beantwortet. Eindeutigkeit in der Kählerklasse ist jedoch nicht notwendig gegeben.

Im Gegensatz dazu zeigt ein Resultat mit Bert Koehler, dass der Kählerkegel triv-
ial ist, wenn D glatt ist und X topologisch einfach genug. In diesem Fall ist jede
Kählermetrik von der Form ω + i∂∂u für jede beliebige Startmetrik ω. Diese an-
scheinend komplizierte Formulierung des Sachverhalts trifft genau den Ansatz, den
man verfolgen muss, um eine Ricci-flache, vollständige Metrik zu erhalten: Man sucht
eine Lösung der komplexen Monge-Ampére-Gleichung

(ω + i∂∂u)n

ωn
= ef

mit ω + i∂∂u > 0, wobei

f = log
Ω ∧ Ω

ωn

und Ω eine meromorphe n-Form mit Singularitäten nur entlang D und ohne Nullstellen
ist. Tian und Yau haben eine asymptotisch flache Startmetrik konstruiert und dafür
eine beschränkte Lösung u gefunden.

Damit kann man ausrechnen, dass das Volumenwachstum geodätischer Bälle mit
festem Mittelpunkt mit dem rationalen Exponenten 2n

n+1
geschieht, während in dem

oben angesprochenen symmetrischen Fall für ample D dieser Exponent ganzzahlig ist.
Die Asymptotiken bekannter Ricci-flacher Metriken für Komplemente glatte Divisoren
unterscheiden sich also qualitativ von denen für Komplemente singulärer Divisoren.

Die hier behandelte Hauptfrage ist, wie nah im amplen, glatten Fall die Startmetrik
an der vollständigen, Ricci-flachen Lösungsmetrik liegt. Diese Resultate wurden in
Kooperation mit Bert Koehler gefunden. Es wird bewiesen: Sei ω eine bestimmte (im
Wesentlichen von Tian und Yau konstruierte) Anfangsmetrik, ω̃ die konstruierte Ricci-
flache, vollständige Metrik, D der Nullstellenort des Schnittes S von O(D) und ‖ · ‖
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eine geeignet zu wählende Metrik auf O(D). Dann gilt: Zu jedem N > 0 existiert eine
Konstante CN > 0, so dass

(1− CN(− log ‖S‖2)−N)ω ≤ ω̃ ≤ (1 + CN(− log ‖S‖2)−N)ω.

Damit ist eine von Tian und Yau gestellte Frage beantwortet. Zur gleichen Zeit und
mit anderen Methoden hat Santoro eine ähnliche Aussage bewiesen. Die hier verwende-
ten Techniken beruhen auf Krümmungsabschätzungen durch Tian und Yau, mit deren
Hilfe zunächst eine schwache Abfallrate für die Differenz der Metriken bewiesen werden
kann. Die Konstruktion vereinfachter Quasikoordinaten sowie geeigneter “Zylinderko-
ordinaten” einer Tubenumgebung des Divisors erlauben den hinreichend genauen Ver-
gleich von ω mit einer expliziter berechenbaren Riemannschen Metrik. Spektraltheorie
des dazugehörigen linearisierten Problems erlaubt einen Vergleich der Abfallraten für
∆ u und ‖∂∂u‖; diese liegen nahe genug beieinander, um durch iteratives Einsetzen in
die Monge-Ampére-Gleichung beliebig hohe Abfallraten zu erzeugen.

Schließlich erhalten wir auch einen Fortsetzungssatz: Automorphismen auf X \D,
unter deren Rückzug ω̃ = ω+ i∂∂u zu sich äquivalent bleibt, sind als Automorphismen
auf X fortsetzbar. Im Rahmen der Untersuchungen zur Eindeutigkeit Ricci-flacher,
vollständiger Kählermetriken ist dies interessant.

Kapitel 5 widmet sich krümmungserhaltenden Deformationen holomorpher Vek-
torbündel. Dies könnte unabhängig von intrinsischem Interesse an Vektorbündeln im
Zusammenhang mit der Deformation Ricci-flacher offener Mannigfaltigkeiten interes-
sant werden. Es wird bewiesen, dass die Obstruktion H1(X,OX)/i∗H

1(X,R) ist und
diese im Kählerfall verschwindet. In Beispielen von nicht-kählerschen Mannigfaltigkeit
werden Bedingungen dafür gegeben, dass alle krümmungserhaltenden Deformationen
eines gegebenen Vektorbündels trivial sind.

In Kapitel 6 schließlich wird Ricci-Flachheit kompakter komplexer 3-faltigkeiten
genutzt, um Oktiken in P3 mit vielen Knoten zu konstruieren. Das maximale Beispiel
hat 128 Knoten.
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Chapter 1

Introduction

The geometer’s interest in Ricci-flat complex geometry arises from different points of
view. First of all, given a complex manifold X, a way of retrieving valuable information
is to look for “best” metrics on X. The best one can hope for is that X behaves locally
in a manner as close to euclidean space as possible. This is encoded in terms of the
holonomy of the Levi-Civita connection, i.e. the group of automorphisms of a fixed
tangent space obtained by transporting tangent vectors parallel along a closed curve.
Whereas a complex manifold has automatically a subgroup of SO(2n) as holonomy
group, the Kähler condition already reduces the holonomy to a subgroup of U(n). The
next reduction step would be SU(n). In the compact case, these are exactly the Ricci-
flat Kähler manifolds. The equivalent condition for the existence of a Ricci-flat Kähler
metric on a compact manifold is c1(X) = 0; here c1 denotes the first Chern class of the
tangent bundle.

Ricci-flatness means the vanishing of the complex Ricci tensor

Ricω = i∂∂ log detω

of the metric form ω. One has to be careful at this stage: The complex and the real
(Levi-Civita-) Ricci tensor only coincide, if ω is a Kähler form.

The content of the Calabi conjecture, proved by Yau, is that a compact complex
manifold with c1(X) = 0 allows for a Ricci-flat Kähler metric. Moreover, any complex
manifolds with c1(X) = 0 allows for an unramified cover X̃ such that the canonical
bundle KX = Ωn

X is trivial. Finally, any compact complex Kähler manifold with
trivial canonical bundle has an unramified cover splitting into a product of a torus
and a simply connected manifold with trivial canonical bundle. The latter are the
so called Calabi-Yau-manifolds. First arisen as a kind of classification gap, physicists
have evolved some interest in them with the rise of string theory. In turn, physicists’
predictions have triggered the wide field of mirror symmetry in complex geometry. The
big variety of string theories nowadays also incorporates open string models, leading to

3



CHAPTER 1. INTRODUCTION 4

a physical interest in non-compact Calabi-Yau manifolds, i.e. non-compact manifolds
allowing for a complete, Ricci-flat Kähler metric.

It is illusionary to believe, the analogue of the Calabi conjecture could be settled
for arbitrary non-compact manifolds. So it is natural to focus attention first to the
case of the so called open manifolds, complements of divisors in compact manifolds.
The appropriate analogue for c1(X) = 0 in the usual Calabi conjecture should be
KX + D = 0, if X \ D is the manifold under consideration. Assuming this setting,
together with the condition that D is smooth and ample, Tian and Yau [TY90] proved
a first step of the ’open Calabi conjecture’: They showed that there exists a complete,
Ricci-flat Kähler metric on X \ D. It remains open up to this day, however, if it is
also possible to find one of these in any given Kähler class; here, as outlined later in
the book, the Kähler class should be understood in terms of Bott-Chern-cohomology.
It also remains open, if it is possible to find such a metric, if singular or non-reduced
divisors are admitted.

In chapter 2 we have a look at divisors and metrics invariant under some big sym-
metry group. This will give us a class of examples of complements of singular divisors
with complete, Ricci-flat metrics. The Kähler condition will prove to be an extra con-
dition on the symmetry group, as explained later in chapter 3. In this singular case,
the Kähler cone proves to be rather big, so the question of complete, Ricci-flat Kähler
metrics in every Kähler class is vivid and we obtain a confirming answer for the highly
symmetric case in chapter 3. Contrary to this, a result of the author and Bert Koehler
shows triviality of the Kähler cone can be achieved, if D is smooth and X fulfils some
conditions of topological simplicity. In this case any complete, Ricci-flat Kähler metric
is of the form ω + i∂∂ϕ for any initial metric ω. So we look for a solution to the
Monge-Ampére equation

(ω + i∂∂ϕ)n

ωn
= ef

and ω + i∂∂ϕ > 0, if f = log Ω∧Ω̄
ωn

and Ω is a meromorphic n-form with singularities
along D and no zeroes. A bounded solution to this problem has been found by Tian
and Yau [TY90] for an appropriate initial metric ω. In terms of volume growth of
geodesic balls there is a difference between the symmetric and the smooth case. In
the symmetric case the polynomial growth rate can jump according to the jump of
multiplicities of the divisor, but is always integer whereas in the smooth case it is
rational non-integer. So the asymptotics of known complete, Ricci-flat Kähler metrics
differ depending on whether D is smooth or not. In chapter 4 we inquire further into
the asymptotics of the metric proved to exist by Tian and Yau [TY90]. The results
are the joint work of the author with Bert Koehler. We prove that the initial metric
and the Ricci-flat solution metric differ only by any given negative power of the radial
coordinate when approaching D. This result is expected to have analytic applications
also for tackling the singular case. A similar result has been obtained at the same time
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by Santoro [S08], independently and with a different technique. Further we prove in
chapter 4 that the existence result of Tian and Yau implies a posteriori the existence
of a sequence of solutions for the disturbed equation

(ω + i∂∂ϕ)n

ωn
= ef+εϕ, ω + i∂∂ϕ > 0

with ε −→ 0 converging to a bounded solution of the original Monge-Ampére equation.
Finally, we obtain an extendability result for automorphisms using the existence result
of Tian and Yau, much in the spirit of Schumacher’s extension result in the Ricci-
negative case.

Chapter 5 is dedicated to the study of curvature preserving deformations of holo-
morphic vector bundles. Independently of the intrinsic interest in vector bundles, this
could prove to be useful for the study of deformations of Ricci-flat open manifolds.
The obstruction for this problem is proved to be H1(X,OX)/i∗H

1(X,R), trivial in
the Kähler case. Examples of non-Kähler manifolds are studied and criteria given for
the property of a given vector bundle to admit only trivial deformations as curvature
preserving deformations-

In the last chapter we apply compact Ricci-flatness in order to construct octic
hypersurfaces in P3 with many nodes. The maximal number of nodes constructed here
is 128.
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Chapter 2

Invariant Ricci-flat metrics

2.1 Introduction

In this chapter and the next we follow the idea that Ricci-flatness should be implied
by big continuous symmetry groups of the metric. So we inquire into the structure of
such metrics. It turns out that any G-invariant Kähler metric on the complement of a
G-invariant, anticanonical divisor, is actually given by a choice of a holomorphic basis
of a complex, abelian subalgebra of g and the requirement that this basis is pointwise
an orthonormal basis of the tangent bundle outside the vanishing set of det g, provided
G is big enough. A metric constructed in this way is automatically Ricci-flat.

This is motivation enough to inquire into the general structure of metrics given
by defining a set of vector fields as pointwise orthonormal. Again the metric is au-
tomatically Ricci-flat with respect to the complex connection. This is the same as
Ricci-flatness with respect to the Levi-Civita connection, only if the metric is Kähler.
We find that completeness of the metric is deeply connected to the complex vector
space spanned by the vector fields being a Lie subalgebra. In this case the divisor
is invariant under the corresponding complex Lie group action G. The metric itself,
however, only shows invariance under G, if G was already an abelian Lie group, and
then the metric is Kähler.

Completeness of the metric will imply that the invariant divisor is not smooth as
long as c2(X) 6= 0. So we are interested in the asymptotics of the constructed Ricci-
flat metric and find that they are quite different from what Tian and Yau [TY90]
constructed for the complement of smooth, ample divisors.

2.2 Vocabulary

We consider compact complex manifolds X. Of great importance will be the automor-
phism group Aut(X) and its action on X. If G ⊂ Aut(X) is a Lie group, we write

6
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G0 for the connected component of G containing the identity. By g we denote the Lie
algebra of G. For D ⊂ X we consider

Aut(X,D) := {φ ∈ Aut(X)| φ|D ∈ Aut(D)}.

Furthermore, if g is an hermitian metric on X \D, we define

Aut(X,D, g) := {φ ∈ Aut(X,D)|φ∗g = g}.

If Y is some complex manifold and g a metric on Y , we also denote

Aut(Y, g) := {φ ∈ Aut(Y )|φ∗g = g}.

Note that, in general, Aut(X,D, g) 6= Aut(X \ D, g). For instance, if X = P1 × P1,
D = [0 : 1]×P1 ∪P1× [0 : 1] is a (1, 1)-divisor consisting of two intersecting fibres and
g is the euclidean metric on C2 = P1 × P1 \D, then all automorphisms in Aut0(P1 ×
P1, D, g) fixing the point ([0 : 1], [0 : 1]) are U(1) × U(1), whereas all automorphisms
of Aut0(C2, g) fixing 0 are U(2), so the two groups must differ. In section 4.12 we will
prove, however, that both groups coincide, if D is ample, anticanonical and smooth.

In most cases we will further assume that X is almost homogeneous. We will often
make use of the following equivalences.

Definition+Lemma 2.2.1 A compact complex manifold X is called almost homoge-
neous, if there is a Lie group G ⊂ Aut(X) such that one (and then all) of the following
properties are satisfied:

(i) The action of G has an open orbit,

(ii) the action of G0 has an open orbit,

(iii) g := T1G generates TX at the general point,

(iv) there is a vector space V ⊂ g with dimV = dimX, which generates TX at the
general point.

If G ⊂ Aut0(X) is a Lie group which has an open orbit, then we say G acts almost
transitively on X.

Since part of the chapter is written in the language of differential geometry, we use
co- and contravariant indexing conventions as well as Einstein’s sum convention. In
order to be able to do this, we distinguish indices arising from non-differential context
by setting them in brackets, if appropriate. The decision, whether such an index is sub-
or superscript, is made by considering the beauty of involved formulas. For example,
a set of vector fields is denoted by s(i). The same vector fields in local coordinates will
be written sik ∂

∂zk
. Here we omit the brackets, because we want to put the components

into a matrix. The only unlucky point of this convention is where powers of coordinates
appear. But we believe that also in these cases the meaning will become clear.
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2.3 Metrics generated by vector fields

2.3.1 Construction of the metrics

In this section we discuss a method to construct complete, Ricci-flat hermitian metrics.
These are neither necessarily invariant nor necessarily Kähler.

The construction of the divisor is widely used in many works about almost homo-
geneous manifolds. However, in this place we concentrate on the metric which comes
with the construction. For this reason we give here a detailed description.

We use the notion of an abelian subspace of H0(TX ⊗MX). We call V ⊂ H0(TX ⊗
MX) abelian, if for all ζ, ξ ∈ V holds [ζ, ξ] = 0. In general, however, we do not require
V to be an algebra.

Construction 2.3.1 Let X be a projective manifold of dimension n, E an effective
divisor and B = {s(1), ..., s(n)} ⊂ H0(TX ⊗O(E)) meromorphic vector fields generating
TX in the general point and denote V =< B > the vector space spanned by B. This
yields a divisor DV ∈ |−KX+nE| and a Ricci-flat hermitian metric gB on X\(DV ∪E).

Implementation. Since s(1), ..., s(n) ∈ H0(TX ⊗ O(E)) generate TX in a general
point,

∧n
i=1 s

(i) vanishes exactly on a divisor DV . Obviously DV ∈ |−KX +nE|. Since

on X \ (DV ∪ E) the s(i)(x) form a basis of TX,x, we may construct s(i) ∈ T
∗
X,x by

prescribing s(i)(s(j)) = δij on X \ (DV ∪E). Further we can extend this correspondence
to a linear map

† : TX −→ T
∗
X

and define
gB(s⊗ t) := s†(t),

if s ∈ TX,x, t ∈ TX,x. In a local chart we denote s(i) = sik ∂
∂zk
. We denote by (sij) = σ

the inverse matrix of (sij). Then

gB,ij = gB

(
∂

∂zi
⊗ ∂

∂zj

)
= siksjk,

what yields

Ric(gB) =
i

2π
∂∂ log det gB =

i

2π
∂∂ log detσ +

i

2π
∂∂ log detσ = 0,

since detσ is holomorphic. �

Theorem A and B for projective manifolds imply that the conditions of the con-
struction can be satisfied for any projective X, if we choose E ample enough. Hence
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there is a Ricci-flat hermitian metric on the complement of an appropriate divisor for
any projective X.

Note that by construction TX\(DV ∪E) is trivial. In [Wi04] the problem is addressed
when TX(− logD) is trivial and answered in terms of the existence and action of a
semi-torus. In the next section we will be able to describe this property in terms of gB
and DV .

In the remainder we will set E = 0. This has two reasons. The exponential
map, applied to meromorphic vector fields does not yield automorphisms of the whole
manifold, hence there is no Lie group we can work with. The other reason is, that we
cannot expect completeness of the metric in direction to E. After setting E = 0, we
can drop the condition of projectiveness of X. On the other hand, the construction
then exhibits X as an almost homogeneous manifold.

2.3.2 Completeness of the metrics

Since we are dealing with open manifolds we should address the problem of complete-
ness of the constructed metric. For this purpose we introduce some new notation. First,
we define S := (sik) = σ−1. Recall that we chose E = 0. We interpret St : O⊕nX −→ TX
as a sheaf homomorphism and define

L := kerSt.

The sheaf L is supported on DV and we prove

Lemma 2.3.2 If DV is smooth, then L is a line bundle on DV .

Proof. L is line bundle if and only if rkS|DV = n−1 everywhere. So assume, that
in x ∈ DV we have rkS(x) < n − 1. Then all (n − 1) × (n − 1)-minors of S vanish in
x, in particular d detS(x) = 0, hence x ∈ Sing(DV ). �

Now assume that DV is smooth and consider

ω(i) :=
∧
j 6=i

s(j)|DV ∈ H0(
n−1∧

TX |DV ) = H0(Ω1
X |DV ⊗NDV |X).

These are related via L by the equation

(−1)jλ(j)ω(i) + (−1)iλ(i)ω(j) = 0

for all i, j and x ∈ DV , λ ∈ Lx. Again, smoothness of DV implies that in a point
x ∈ DV not all ω(i) can vanish. Hence the vector spaces Fx :=< (ω(i))i > are one-
dimensional and form a line bundle F ⊂ Ω1

X |DV ⊗ NDV |X . By looking at the natural
local trivialisations of L and F it is easy to see that

F ∼= L∨.
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Note that the inclusion i : DV −→ X yields via Poincaré Duality a homomorphism
i∗ : H∗(DV ,R) −→ H∗(X,R) of degree 2. With this notation in mind, the very
definition of F implies that

i∗c1(F) = c2(X).

The tensored dual tangent sequence

0 −→ ODV −→ Ω1
X |DV ⊗NDV |X

π−→ Ω1
DV
⊗NDV |X −→ 0,

allows us to formulate the property F = ODV = ker π.

Lemma 2.3.3 If DV is smooth, then gB is complete if and only if F = ker π.

Proof. Let us choose x ∈ DV and local coordinates in a small open subset U ⊂ X
such that DV = {z1 = 0}. Furthermore, denote U ′ := U ∩DV and pr : U −→ U ′ the
projection induced by the local coordinates. choose 0 6= λ ∈ L(U ′) and an order of B
such that λ(1) ≡ 1. If we now define B by

Bij(z) :=


1 if i = j

λ(j)(pr(z)) if i = 1, j 6= 1
0 else

,

then S̃ := BS is just S replaced by a first row vanishing on U ′. Now we have a look
at σ̃ := (S̃)−1. Since the first row is identically 0 on U ′, we conclude that s̃1i ∈ O(U)
for i > 1. Since

g11 =
∑
i>1

|s̃1i|2 + 2Re(s̃11

∑
i>1

λ(i)s̃1i) + |s̃11|2
∑

|λ(j)|2,

we see now, that g is complete if and only if s̃11 ∼ 1
z1

for all such choices of coordinates.
The choice of a path to the boundary is reflected by the choice of coordinates. The
length of any path to the boundary becomes infinite, if and only if the direct path is
infinitely long in any such coordinates.

Indeed, s̃11 = s11. Hence, if we denote Aij the (i, j)-entry of the cofactor matrix of
S, then the condition is equivalent to A11(x) 6= 0. If we now choose other coordinates

z′1, ..., z′n such that DV = {z′1 = 0} and denote J := (∂z
′j

∂zi
)ij, h := z′1

z1
6= 0, then

A′11 = det J(h−1A11 +
∑
k>1

J−1
1k A1k) 6= 0

Since the coordinate transform was arbitrary, we conclude that

A1k(x) = 0 for all k > 1.
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This is equivalent to 0 6= ω(1) ∈ H0(kerπ). So F = ker π is equivalent to the complete-
ness of gB. �

Note that completeness of gB depends only on V .
If DV is not smooth, but still reduced, then we consider D0

V , the regular part of
DV and the corresponding objects F0,L0, π0, which are obtained by restriction to D0

V .
We now show the preceding Lemma for the singular case.

Lemma 2.3.4 Assume that DV is reduced. Then gB is complete, if and only if F0 =
kerπ0.

Proof. ’⇒’: If gB is complete, the same arguments as in Lemma 2.3.3 imply that
F0 = ker π0.

’⇐’: Let locally DV = {f = 0} in a small open neighbourhood U ⊂ X. Then
we can choose functions z2, ...zn which give local coordinates together with f on the
set Ũ := U \ {df ∧ dz2 ∧ ... ∧ dzn = 0}. Like in the proof above we argue that gB is
complete if A11(x) 6= 0 for choices like above and x ∈ DV . Since by assumption this is
true for x ∈ DV \ Sing(DV ), extension of the holomorphic function A11 to U ′ yields a
non-zero function A11 ∈ O∗(U ′), if DV was normal. If DV is not normal, we choose an
embedded normalisation

D̃V
ν //

j

��

DV

i

��
X̃ µ

// X

,

where i, j denote inclusions and ν the normalisation of DV . Now we apply the same
arguments to the pseudometric µ∗g and obtain by looking at paths γ such that µ|γ is
a diffeomorphism that g is complete. �

Now we can see a connection to the invariance group.

Lemma 2.3.5 Assume that DV is reduced. The metric gB is complete, if and only if
exp(V ) ⊂ Aut0(X,DV ).

Proof. If we denote by V the sheaf on D generated by Vx :=< {s(i)(x)} > for
x ∈ D, then F(V) ≡ 0, if we regard F ⊂ Hom(TX |DV , NDV |X). Since F0 = kerπ0,
figuring out the dualised maps

0 −→ TD0
V
−→ TX |D0

V

p0−→ F0∨ ⊗ND0
V |X −→ 0

yields V0 = ker p0 = TD0
V
. This is equivalent to V |D0

V
⊂ H0(TD0

V
), i.e. every φ ∈ exp(V )

holds DV invariant, so exp(V ) ⊂ Aut0(X,DV ) is an equivalent condition. �

Taking into account the results of Section 2.4, which are obtained independently of
the considerations about completeness, we even find
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Theorem 2.3.6 If V is a Lie subalgebra, then gB is complete. If gB is complete and
DV is reduced, then V is a Lie subalgebra.

Proof. (i) If V is a Lie subalgebra, Lemma 2.4.1 implies the desired property
exp(V ) ⊂ Aut0(X,DV ). Here we are finished, if DV is reduced. In any case, if we have
DV,red ∩ U = {z1 = 0}, this implies that

si1 = z1ti1

for some ti1 ∈ O(U) and all i. Now

detS =
∑
i

si1A1i = z1
∑
i

ti1A1i.

So, if m := max{k| (z1)−kA1i ∈ O(U) for all i}, we conclude (z1)−m−1 detS ∈ O(U).
Hence

g11 =
∑

|s1i|2 = (detS)−2
∑

|A1i|2 ∼ |z1|−k

with k ≥ 2. This procedure generalises easily to the case of DV,red being normal
crossings. But this we can achieve by Hironaka’s embedded desingularisation. Since
Sing(DV,red) is also exp(V )-invariant and so is Sing(Sing(DV,red)red) and so on, we
can pull back the vector fields to the normal crossings case and apply the arguments
above.

(ii) Since gB is complete and DV reduced, by Lemma 2.3.5 we obtain exp(V ) ⊂
Aut0(X,DV ). Hence Aut0(X,DV ) acts almost transitively. So Lemma 2.4.2 yields
dim exp(V ) = dimX = dim Aut0(X,DV ). This means

T1Aut0(X,DV ) = T1 exp(V ) = V,

hence V is a Lie subalgebra. �

Now it is clear from the previous arguments that TX(− logDV ) is trivial, if gB is
complete and DV is a simple normal crossings divisor. In Chapter 3 we will show
furthermore that G := exp(V ) is a semi-torus, if gB is complete and Kähler and DV is
reduced.

The existence of a complete gB for a smooth DV restricts the geometry of X signif-
icantly:

Corollary 2.3.7 If DV is smooth and gB is complete, then c2(X) = 0.

Proof. F = ker π ∼= ODV , hence c2(X) = i∗c1(ODV ) = 0. �

Now we have seen that c2(X) 6= 0 implies that the divisor DV is singular, if V is
a Lie subalgebra. We will see later that the Kähler condition allows a more explicit
description of the singularities, at least on projective homogeneous manifolds.
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Remark 2.3.8 Locally around smooth points of a reduced DV , in coordinates such
that D ∩ U = {z1 = 0}, calculations very similar to those in the proof of Lemma 2.3.3
show that the metric gB has the form

gB = a11̄(z)
dz1 ⊗ dz1

|z1|2
+

n∑
j=2

(a1j̄(z)
dz1

z1

⊗ dz2 + c.c.) +
n∑

i,j=2

aij̄(z)dzi ⊗ dzj

for functions aij̄ ∈ C∞(U). So, if U = B1(0)× U ′, under the map

ψ : (0,∞)× (0, 2π)× U ′ −→ U, (R,ϕ, z2, . . . , zn) 7→ (e−R+iϕ, z2, . . . , zn)

the metric gB pulls back to a metric ψ∗gB equivalent to the euclidean metric. Later we
will see that the metric of Tian and Yau constructed on X \ D for smooth D shows
quite different asymptotics.

2.4 Symmetries of the divisor and the metric

In this section we want to relate the construction above (with E = 0) to the appearance
of symmetries on D and the metric. As it may be not hard to guess, this connection
is made by Lie theory.

If G is a complex Lie group we identify g = T1G, and if G ⊂ Aut0(X), then
we furthermore identify g with the complex subvector space of H0(TX) given by the
vector fields s(x) := ∂

∂t
g(t)x|t=0, where g(t) denotes a holomorphic path in G with

g(0) = 1 and ∂
∂t
g(t)|t=0 = ξ ∈ T1G. Furthermore we have an action of G on T1G by

hξ := ∂
∂t
hg(t)h−1|t=0, if h ∈ G.

Lemma 2.4.1 Let X be a compact complex manifold of dimension n, G ⊂ Aut0(X) a
connected complex Lie group acting almost transitively on X and g be the corresponding
complex Lie algebra. Then

(i) D ∈ | − KX | is reduced and G ⊂ Aut0(X,D) ⇒ D = DV for all V ⊂ g with
dimV = n and generating TX in the general point,

(ii) if dimG = n, then G ⊂ Aut0(X,Dg),

(iii) if dimG = n, B ⊂ g is a basis, then: G ⊂ Aut0(X,Dg, gB) ⇐⇒ G is abelian.

Proof. ’(i)’: Let V ⊂ g be an n-dimensional vector space generating TX in the
general point and B ⊂ V a basis. Since D is G-invariant, for any s ∈ g ⊂ H0(TX)
the restriction s|D◦ gives an element of H0(T ◦D). Since dimD = n − 1, this implies∧
s∈B s|D = 0, hence D ⊂ DV . But D and DV are both elements of | − KX |, hence

D = DV .



CHAPTER 2. INVARIANT RICCI-FLAT METRICS 14

’(ii)’: If s ∈ g ⊂ H0(TX) is given by ξ ∈ T1G, then for h ∈ G the pullback h∗s
is given by h−1ξ ∈ T1G, hence h∗s ∈ g. Furthermore h∗ maps a basis of g to a basis
again, because h is an automorphism. This proves that

∧
s(i) = 0 ⇐⇒

∧
h∗s(i) = 0,

if s(1), ..., s(n) is a basis of g. Hence h(D) = D. This proves that D is G-invariant.
’(iii)’: Let ω be the fundamental (1, 1)-form of gB. The metric gB is G-invariant

if and only if Lsω = 0, if s ∈ g and L denotes the Lie derivative. If Cs denotes
the contraction by s, then Ls = dCs + Csd (see e.g. [La, V,5]). Let us choose local
coordinates like in the construction. Then

0 = Ls(l)ω =
∑
i,j,k,m

slm(sik,m − smk,i)sjkdz
i ∧ dzj.

Since S is invertible on X \D, we obtain

sik,m − smk,i = 0

for all i, k,m. Converting this condition to the vector field components yields

sijskl,j = skjsil,j

This is the condition
[s(i), s(j)] = 0

for all i, j. Hence g is abelian. It is well known that this is equivalent to G to be
abelian. �

As a first application, we obtain kind of uniqueness of the vector space V in the
construction.

Lemma 2.4.2 Let X be a compact complex manifold and D ∈ | − KX | reduced. If
Aut(X,D) acts almost transitively, then dim Aut(X,D) = dimX.

Proof. We abbreviate G := Aut(X,D) and n := dimX. First of all, dimG ≥ n,
since otherwise T1G could not generate TX in any point. Now choose

B := {s(1), ..., s(n+1)} ⊂ g

such that B\{s(n+1)} generates TX in the general point. Further denote η(i) :=
∧
j 6=i s

(j).

and by V(i) the vector space generated by B \ {s(i)}.
Since dimX = n, we can find meromorphic functions f(i) ∈ MX(X) such that

s(n+1) =
∑n

i=1 f(i)s
(i). In order to prove this, we first remark that in the general point

the f(i) are uniquely determined and there we compute f(i) = sn+1,kski, if s(n+1) =
sn+1,k ∂

∂zk
. By construction, the ski are meromorphic, so f(i) are also meromorphic.

By assumption we know η(n+1) 6≡ 0.



CHAPTER 2. INVARIANT RICCI-FLAT METRICS 15

If η(i) ≡ 0, then we see by η(i) = f(i)η(n+1), that f(i) ≡ 0.
If η(i) 6≡ 0, then V(i) generates TX in the general point and we may use Lemma 2.4.1

to obtain
η(n+1) = 0 ⇐⇒ η(i) = 0 ⇐⇒ f(i)η(n+1) = 0.

Hence f(i) has no zeroes. By exchanging s(i) and s(n+1) we also see that f(i) has no
poles. Hence f(i) is constant.

Now we proved that every fi is constant, hence s(1), ..., s(n+1) are linearly dependent
and dimG = n. �

Note that the connection between the invariance group and the anticanonical system
is essential. For example, the invariance group of a point in P1 is two-dimensional and
acts almost transitively.

Since every dimX-dimensional Lie group which acts almost transitively yields an
invariant D ∈ | −KX |, Lemma 2.4.2 suggests the following definition.

Definition 2.4.3 If X is compact complex manifold and G ⊂ Aut(X) a connected
complex Lie group with dimG = dimX acting almost transitively on X, we say G is a
divisorial group. If on the other hand D ∈ |−KX | is reduced, we say D has a divisorial
invariance group, if Aut(X,D) acts almost transitively. Any object invariant under a
divisorial group we call divisorially invariant.

Lemma 2.4.2 now allows a stronger and more compact formulation of Lemma 2.4.1.

Theorem 2.4.4 Let X be a compact complex manifold, G a divisorial group and g the
corresponding Lie algebra. Then for a reduced divisor D ∈ | −KX | holds

G = Aut0(X,D) ⇐⇒ D = Dg.

If B ⊂ g is a basis, then

G = Aut0(X,Dg, gB) ⇐⇒ G is abelian.

Proof. If D = Dg, by Lemma 2.4.1 G ⊂ Aut0(X,D). Hence Aut0(X,D) acts
almost transitively and by Lemma 2.4.2 we obtain dimG = dimX = dim Aut0(X,D),
hence G = Aut0(X,D). �

In this context it is appropriate to introduce the notion of a homogeneous pair.

Definition 2.4.5 A homogeneous pair (X,D) consists of a compact complex manifold
X and an effective reduced divisor D such that Aut0(X,D) acts transitively on X \D.
We call a homogeneous pair (X,D) anticanonical, if D ∈ | −KX |.

Theorem 2.4.4 provides a close relation between homogeneous pairs and divisorial
groups.
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Remark 2.4.6 (i) Note that the proof of Lemma 2.4.1 also shows that every ana-
lytical G-invariant set S is contained in the G-invariant D ∈ | −KX |.

(ii) Note that the vector field method is much more general than the invariance
approach: There is no need for the vector space V ⊂ H0(TX) to be an algebra,
whereas invariant divisors correspond to Lie subalgebras of H0(TX).

(iii) However, if g arises by the general vector field method and is Kähler, we have
V proved to be abelian, in particular V is a Lie subalgebra. The exponential
map exp : H0(TX) −→ Aut0(X) restricted to V maps to an n-dimensional Lie
subgroup G leaving D and g invariant.

Now we also see that divisorial invariance is exactly the property we had in mind
when we expected that Ricci-flatness should be implied by a high order of symmetry.

Corollary 2.4.7 Let X be an n-dimensional compact complex manifold, G ⊂ Aut0(X)
a divisorial (abelian) Lie group. Then there is a complete Ricci-flat (Kählerian G-
invariant) metric on X \Dg.

In [Wi04] Winkelmann proved that TX(− logD) is even holomorphically trivial, if
G is a complex semi-torus and acts with only semi-tori as isotropy groups. We will see
in later that G being a semi-torus is implied by Dg being reduced.



Chapter 3

The Kähler cone of open manifolds

3.1 Introduction

On the quest for complete Ricci-flat Kähler metrics the method incorporates finding the
flat metric differing from a given (asymptotically flat) one by a Kähler potential ∂∂ϕ.
In the compact case this ansatz was justified by the ∂∂-Lemma, since finding such a
potential in the case c1(X) = 0 is equivalent to determining a Ricci-flat representative
of each Kähler cohomology class. If X is not compact, however, such a ∂∂-Lemma is
not valid, in general. Below we give a proof for the ∂∂-Lemma for Stein manifolds.
But even if we have this tool, the question when we can find a Ricci-flat representative
in each Kähler class is widely open. In order to formulate the problem independent of
the existence of a ∂∂-Lemma it is appropriate to consider the cone of Kähler classes in
the framework of Bott-Chern cohomology.

Focussing the attention on open manifolds, i.e. the complement of a divisor of a
compact complex manifold, we first prove that topological conditions on X may lead
to a triviality of the Kähler cone, if D is smooth. This applies for X = Pn, n ≥ 3 and
D ∈ | −KX | smooth, a case handled in the framework of chapter 4; so any Ricci-flat,
complete Kähler metric arises in this case as a solution of the complex Monge-Ampére
equation of chapter 4, not necessarily bounded, of course.

On the other hand, for certain reducible D coming from a highly symmetric situ-
ation, we prove that the Kähler cone has a rather big dimension, even if X is topo-
logically simple. So smooth and singular divisors D are not only distinguished by the
asymptotics of the Ricci-flat metrics constructed as yet, but also by the universality of
the ansatz using the complex Monge-Ampére equation.

For the first part of this chapter we need to construct an angular differential on a
tubular neighbourhood of D. This construction will also be widely used in chapter 4.

17
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3.2 The angular differential on

tubular neighbourhoods

Let η be an arbitrary metric on the compact manifold X and D ⊂ X a smooth
hypersurface. η induces a C∞-splitting

TX |D ∼= TD ⊕ND|X

of holomorphic vector bundles and, moreover, a S2n−1-subbundle N1
D|X of unit length

normal vectors. The restricted exponential map (with respect to the Riemannian metric
induced by η)

exp : N1
D|X × [0, ε) −→ X, (v, x, t) 7→ expx(tv)

may be assumed to be an immersion outside t = 0 and then has an open set U(D) as
image. Thus

U(D) \D ∼= N1
D|X × (0, ε)

as real manifolds. We abbreviate Y := N1
D|X and see that Y is a principal S1-bundle

over D via v 7→ exp(iα)v. Let
π : Y −→ D

denote the bundle structure and let D =
⋃l
i=1 Ui be a covering of trivialising charts

π−1(Ui) ∼= S1 × Ui. The transition maps

ψjk : Ujk × S1 −→ Ujk × S1, (x1
j , . . . , x

2n−2
j , exp(iϕj)) 7→ (x1

k, . . . , x
2n−2
k , exp(iϕk))

have to respect the S1-action, hence

ψjk(xj, exp(iϕj + iα)) = (xk, exp(iϕk + iα)).

This implies immediately

exp(iϕk) = βjk(xj) · exp(iϕj)

with
βjk : Ujk −→ S1.

So, −id log βjk are well defined real one-forms on Ujk yielding a 1-cocycle of A1
D. Since

for the real sheaves Ap
D the higher cohomology vanishes, in particular, H1(A1

D) = 0,
we can find one-forms γi ∈ A1(Ui) such that

γj − γk = −id log βjk.

On the other hand, also
idϕk − idϕj = π∗d log βjk
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and thus
δ := dϕj + π∗γj

is independent of j. So it is a global real one-form on Y , called the angular differential
(although it is not unique but depends on a choice of an element in A1(D)).

After a choice of δ we have a decomposition

A1(Y ) = A0(Y ) · δ ⊕ Γ(π∗A1
D),

where Γ(π∗A1
D) denotes the C∞(Y ) sections of the pulled back sheaf. We denote

pr1, pr2 the projections onto the corresponding factors.
We refer to [GHV] for the existence of a fibre-wise integration∫

: Ap(Y ) −→ Ap−1(D)

commuting with the differentials. We easily see∫
η ∧ δ = pr2η.

Finally, note that dδ = π∗α for some α ∈ A2(D).

3.3 A ∂∂-Lemma for Stein manifolds

In our context we are interested in variations of Kähler metrics via Kähler potentials.
So we introduce a modification of the definition of the Kähler cone to suit our needs.
If Z is any complex manifold and G ⊂ Aut(Z) is a Lie group, we denote by MG(Z)
the set of all Kähler metrics on Z invariant under G.

Definition 3.3.1 For closed (1, 1)-forms ω, ω′ on a complex manifold Z

ω ∼ ω′ : ⇐⇒ ∃φ ∈ C∞(Z,R) : ω − ω′ = i∂∂φ

is an equivalence relation. The quotient H1,1
BC(Z) is an object of Bott-Chern cohomology.

If G ⊂ Aut(Z), we define

KBC
G (Z) := MG(Z)/ ∼⊂ H1,1

BC(Z)

and call it the G-Bott-Chern-Kähler cone of X \ D. We also abbreviate KBC(Z) :=
KBC

1 (Z) and call this cone the Bott-Chern-Kähler cone of Z.
We recall that the G-Kähler cone KG(Z) is the image of MG(Z) in H1,1(X) and

K(Z) := K1(Z).
If X is a compact complex manifold, D ⊂ X a divisor, Z = X \ D and G ⊂

Aut(X,D), we also write KBC
G (X,D) := KBC

G (Z) and KG(X,D) := KG(Z).
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By definition there is a natural surjective map

KBC
G (Z) −→ KG(Z).

In general the Bott-Chern-Kähler cone will not be the usual Kähler cone as a subcone
of H1,1(Z), but we know already that, due to the ∂∂-Lemma, for compact manifolds
they coincide. We are now going to prove the ∂∂-Lemma for Stein manifolds.

Proposition 3.3.2 A (1, 1)-form η on a Stein manifold Z is cohomologous to zero
if and only if there is a function F ∈ C∞(Z,C) such that η = i∂∂F . In particular,
KBC
G (Z) = KG(Z) for any G ⊂ Aut(Z).

Proof. The injective resolution of C

0 −→ C −→ OZ
∂−→ Ω1

Z
∂−→ Ω2

Z
∂−→ ...

yields short exact sequences

0 −→ C −→ OZ
∂−→ H1

Z −→ 0

and
0 −→ H1

Z −→ Ω1
Z −→ H2

Z −→ 0.

In cohomology we obtain

H1(OZ) −→ H1(H1
Z) −→ H2(Z,C) −→ H2(OZ).

Since Z is Stein we obtain H1(OZ) = H2(OZ) = 0, hence

H1(H1
Z) = H2(Z,C).

The second short exact sequence yields

H0(Ω1
Z) −→ H0(H2

Z) −→ H1(H1
Z) = H2(Z,C),

where the composition
H0(H2

Z) −→ H2(Z,C)

is simply the projection of the 2-form onto its de Rham class. So for every holomorphic
2-form η on Z with ∂η = 0 and [η] = 0 ∈ H2(X,C) there is a holomorphic 1-form ϕ
such that η = ∂ϕ.

Now let ω = dα be a (1, 1) form. Since Ω1
Z is coherent, again Theorem B implies

H1(Ω1
Z) = 0. Using the Dolbeault interpretation we obtain η ∈ E1,0(Z) such that

ω = ∂η.
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Now look at ψ := ∂η. Since 0 = ∂ω = −∂ψ, we conclude that ψ ∈ H0(Ω2
Z). The

form satisfies ∂ψ = 0 and ψ = d(η − α). So there is ϕ ∈ H0(Ω1
Z) such that ψ = ∂ϕ.

This implies ∂(η − ϕ) = 0, hence η − ϕ induces a class in H0,1(Z) = H1(OZ) = 0.
Hence we obtain a function F : Z −→ C such that ∂F = η − ϕ, i.e.

∂F = η − ϕ.

For the (1, 1) form this means

ω = ∂η = ∂(∂F + ϕ) = ∂∂(−F ).

If ω = ω we find
ω = i∂∂Im(F )

proving the last part. �

3.4 Triviality of the Kähler cone for topologically

simple manifolds

In this section we want to demonstrate that the triviality of the Kähler cone of a
complement of a smooth, ample divisor is implied by a topological simplicity of the
compact manifold. This situation changes dramatically once singular divisors are taken
into consideration. If X is compact and D ⊂ X an ample hypersurface, then X \D is
Stein. So by Proposition 3.3.2 it remains to find conditions for b2(X \D) = 0.

In a first step we prove that the first Betti number of the complement of a smooth
ample divisor vanishes if it did so for the compact manifold. This is the best we can
hope for since there are many examples for simply connected compact manifolds with
X \D not being simply connected but having infinite fundamental groups.

For the remainder of this section we use Y, U(D) and δ as constructed in Section
3.2.

Lemma 3.4.1 If X is a projective complex manifold with b1(X) = 0 and D ⊂ X is a
connected, smooth and ample divisor, then

π∗ : H1(D,C) −→ H1(Y,C)

is an isomorphism. In particular, b1(X \D) = 0.

Proof. Since U(D)\D has Y as a deformation retract, a part of the Mayer-Vietoris
sequence reads

H1(X,C) −→ H1(X \D,C)⊕H1(D,C) −→ H1(Y,C).
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So b1(X\D) = 0, if π∗ : H1(D,C) −→ H1(Y,C) is surjective (and then an isomorphism,
indeed).

Let ζ ∈ A1(Y ) be a closed one-form. The closedness of ζ implies that integration
along the fibre Ex over x ∈ D

c :=

∫
Ex

η

is a constant independent of x.
We prove by contradiction that c = 0. Let c 6= 0. The local one-forms

βi := η − c

2π
dφi

satisfy dβi = 0 and
∫
βi = 0. So there are functions gi ∈ C∞(π−1(Ui)) such that

βi = dgi. Averaging the function

fi :=

∫
giδ ∈ C∞(Ui)

we obtain

dfi =

∫
d(giδ) =

∫
dgi ∧ δ + gidδ = pr2(βi) = βi − pr1(βi).

By construction γ := pr1(βi) is independent of i and so

dfi +
c

2π
dφi = η − γ

is independent of i. Now we interpret fi : D −→ R/cZ ∼= S1 as a circle valued function.
The universal coefficient lemma tells us that H1(D,S1) = H1(D,Z) (not canoni-

cally), since by the Lefschetz theorem there is no free part of H1(D,Z). This is a finite
group, so there exists some m such that mg = 0 for all g ∈ H1(D,S1).

So there are cj ∈ S1 such that

m(
c

2π
φj + fj(z)) + cj

represents a global function Φ : Y −→ S1. The level sets of Φ induce nowhere vanish-
ing C∞ sections of N⊗mD|X , so N⊗mD|X

∼= OD differentiably. This clearly contradicts the
assumption that D is ample. So c = 0.

Since
∫
Ex

: H1(Ex,R) −→ R is an isomorphism the property c = 0 implies that
for every x there is a function hx ∈ C∞(Ex) such that i∗Exη = dhx. The dependence
on x being able to be chosen C∞ locally we obtain functions hi ∈ C∞(π−1(Ui)) and
one-forms ξi ∈ Γ(π∗A1(π−1(Ui))) on a cover Ui of D such that

η|π−1(Ui) = dhi + ξi.
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The decomposition implies pr1(dhi) = pr1(dhj) on π−1(Uij), hence the derivatives of
hi and hj with respect to φi coincide. So there are cij ∈ C∞(Uij) with

hi − hj = π∗cij.

Now we apply H1(D,A0) = 0 and obtain ci ∈ C∞(Ui) such that h := hi − π∗ci =
hj − π∗cj gives a well defined function h ∈ C∞(Y ). This again implies

η = dh+ ξ

for appropriately chosen ξ ∈ Γ(π∗A1
D). Using dη = 0 we see dξ = 0. Thus ξ is φi-

independent, so ξ = π∗ψ for some ψ ∈ A1(D) with dψ = 0. In particular, the de Rham
classes of η and π∗ψ coincide, proving that π∗ : H1(D,C) −→ H1(Y,C) is surjective.
In fact, it is an isomorphism.

�

Lemma 3.4.2 If X is a projective manifold with dimX ≥ 3, b1(X) = b3(X) =
0, b2(X) = 1 and D ⊂ X a smooth, ample hypersurface, then b2(X \D) = 0.

Proof. By the Lefschetz theorem we know that D is connected and b1(D) = 0. So
we can apply Lemma 3.4.1 and obtain b1(Y ) = 0. Now another part of the Mayer-
Vietoris sequence reads

0 −→ H2(X,C) −→ H2(X̃,C)⊕H2(D,C) −→ H2(E,C) −→ H3(X,C).

In order to compute the cohomology of E we use the Leray spectral sequence. For
a circle bundle, according to [S, 9.5, Thm2] this simplifies in our case to

0 −→ H0(D,C) −→ H2(D,C) −→ H2(E,C) −→ 0.

Hence b2(E) = b2(D) − 1. The assumptions b1(X) = b3(X) = 0, b2(X) = 1 imply
b2(X \D) = 0 using the Mayer-Vietoris sequence. �

Summing up our arguments we have proved

Corollary 3.4.3 Let X be a projective manifold satisfying

dimX ≥ 3, b1(X) = b3(X) = 0, b2(X) = 1

and D ⊂ X a smooth ample divisor, then every Kähler metric on X \D allows for a
Kähler potential.

X = Pn, n ≥ 3 serve as examples for the Corollary. By the Lefschetz theorem, also
any smooth complete intersection X of dimension n in a projective space Pm is subject
to the Corollary provided n ≥ 4.
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3.5 Non-compact manifolds with non-trivial Kähler

cone

We want to elaborate on complex abelian Lie groups G. Later some of them are shown
to be realizable as open manifolds. First note that the exponential map

exp : g −→ G

is a group homomorphism in the abelian case and thus exhibits G as a a quotient Cn/Λ
for a discrete subgroup Λ. For any subring R ⊂ C with 1 we denote the R-span of Λ
in Cn by ΛR. The discreteness of Λ implies that the kernel of the natural map

Λ⊗Z R −→ ΛR

onto the R-span of Λ is trivial:
If
∑k

i=1 riλi = 0, then µn :=
∑k

i=1{nri}λi ∈ Λ for every n ∈ Z, if {r} denotes the
non-integer part of a real number r. If one of the ri is irrational, then the µn form a
non-discrete subset of Λ in Cn. Since the abelian subgroup of Λ generated by λ1, . . . , λk
is a free Z-module and R is torsion-free, rationality of all ri implies that

∑
i ri⊗λi = 0.

So we identify Λ ⊗ R and ΛR in the following. Let π := exp : Cn −→ G be the
projection.

Every λ(1), λ(2) ∈ Λ generate an oriented parallelogram, whose image in G is a
compact real surface Tλ(1),λ(2)

. The theory of CW complexes implies that the surfaces
Tλ(1),λ(2)

generate H2(G,Z). So by duality and Stokes’ Theorem we see that ω is exact
if and only if

0 =

∫
Tλ(1),λ(2)

ω

for all λ(1), λ(2) ∈ Λ.

Proposition 3.5.1 K(G) = KG(G).

Proof. It is easy to see that ω̃ is G-invariant if and only if π∗ω̃ = i
∑

i,j ω̃ij̄dz
i∧dzj

with constant hermitian coefficients ω̃ij̄, i.e.

π∗ω̃ ∈ (Λ2Cn)∨.

So, in order to see K(G) = KG(G) we have to find positive hermitian η ∈ (Λ2Cn)∨

such that ∫
Tλ(1),λ(2)

ω = η(λ(1) ∧ λ(2)).
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This is done in the following way: The map

(λ(1), λ(2)) 7→
∫
Tλ(1),λ(2)

ω

is an element µΛ ∈ HomZ(Λ2Λ,R) inducing naturally an element µ ∈ HomR(Λ2(Λ ⊗
R),R) = Λ2(Λ⊗ R)∨. Since Λ⊗ R and ΛR coincide, µ can be extended to an element
in (Λ2Cn)∨. Taking positivity and the hermitian property of ω into account, we obtain
the existence of η like described. �

So now we are left with the problem of computing KG(G). To this end we compute
for ω ∈ (Λ2Cn)∨∫

Tλ(1),λ(2)

ω = ωij(λ
i
(1)λ

j
(2) − λi(2)λ

j
(1)) = 2Im(λt(1)ωλ(2)),

if ω = (ωij)i,j. Note that the ωij are constant. This property only depends on ΛR =
Λ ⊗ R. It is easy to see that in appropriate complex coordinates every real subspace
of Cn is of the form

ΛR = {z1 = . . . = zl
′
= Imzl

′+1 = . . . = Imzk
′
= 0}.

In other words, ΛR is generated by the real standard basis of Ck = R2k and the standard
basis of Rl = Re(Cl) (for k = n − k′, l = k′ − l′). By this choice the above equations
mean that in the standard basis of the decomposition

Cn = Ck ⊕ Cl ⊕ Cn−k−l (3.1)

the 2-form ω has a matrix representation of the form

ω =

 0 0 ∗
0 real ∗
∗ ∗ ∗

 , (3.2)

where every entry stands for the block corresponding to the factors of Cn = Ck ⊕Cl⊕
Cn−k−l and ∗ means, that there is no claim about this entry. So we arrive at

Proposition 3.5.2 Let G = Cn/Λ. We write ΛR = Ck ⊕ Re(Cl) (with k + l ≤ n).
Denote ι : M(l,C) −→ M(k + l,C) the embedding which fills up an l × l-matrix with
zeroes. Then

K(G) ⊂M(k + l,C)/ι(M(l,R))

is the cone generated by positive definite hermitian matrices. In particular,

dimRK(G) = (k + l)2 − 1

2
l(l + 1).
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As we already know from Proposition 3.3.2, the Bott-Chern-Kähler cone coincides
with the Kähler cone, if G is Stein or compact. These, however, are not the only cases.

Definition 3.5.3 A complex Lie group G is called semi-torus, if there is a discrete
subgroup Λ ⊂ Cn such that the C-span of Λ, denoted ΛC, is Cn and G ∼= Cn/Λ.

It is well-known (since a lecture of Remmert in 1959) that any abelian complex Lie
group can be uniquely decomposed into a product

G ∼= T × (C∗)k̃ × Cl̃

with T being a group with only constant holomorphic functions. So T is the obstruction
for G being Stein.

Lemma 3.5.4 G = T × (C∗)k̃ × Cl̃ is a semi-torus if and only if l̃ = 0.

Proof. If G is not a semi-torus, then clearly l̃ 6= 0. So let G be a semi-torus.
Since also T = Cm̃/Λ̃ for a discrete subgroup Λ̃ ⊂ Cm̃, the decomposition gives us a

discrete subgroup Λ′ ⊂ Cm̃+k̃ such that G = Cn/Λ′. Standard covering theory yields
that the isomorphism Cn/Λ′ −→ Cn/Λ is induced by an isomorphism of vector spaces

φ : Cn −→ Cn satisfying φ(Λ′) = Λ. In particular, φ(Cm̃+k̃) = φ(Λ′C) = ΛC = Cn, so
l = 0. �

For the sake of simplicity, let us denote k := {1, ..., k}, l := {k + 1, ..., k + l},
m := {k+ l+1, ..., n}, where k, l come from the decomposition (3.1). Note that Im(zi)
is a Λ-invariant function, if i ∈ l and zj is Λ-invariant, if j ∈ m. So, if ω is of the form
(3.2), we can define φ ∈ C∞(G) by

φ(z) := 2
∑
i∈l

ωiiIm(zi)2 + 4
∑
i<j∈l

ωijIm(zi)Im(zj) +

+4
∑

i∈l,j∈m

(ωijIm(zi)zj − ωjiIm(zi)zj) +

+4
∑
i∈m

ωii|zi|2 + 2
∑
i<j∈m

ωijz
izj.

This function satisfies

ω − i∂∂φ =

 0 0 ∗
0 0 0
∗ 0 0

 .

If we now assume that G is Stein or a semi-torus, then the first or the third factor
does not occur and hence

ω = i∂∂φ.

Summing up our considerations we obtain with the same notation as in Proposition
3.5.2
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Proposition 3.5.5 (i) If G is Stein, then dimRK
BC(G) = 1

2
l(l − 1).

(ii) If G is a semi-torus, then dimRK
BC
G (G) = n2 − 1

2
l(l + 1).

A synopsis of Propositions 3.5.2 and 3.5.5 proves

Corollary 3.5.6 For an abelian complex connected Lie group G the conditions

(i) K(G) = 0,

(ii) KBC(G) = 0 and

(iii) G = Cn or G = C∗ × Cn−1

are equivalent.

3.6 Realisations of certain complex abelian

Lie groups as open manifolds

Our aim is to construct open manifolds with a group action leaving a Kähler metric
g invariant. Given this situation we will show that g is Ricci-flat. So we start with a
compact manifold X with an action of a complex connected Lie group G. Our first
aim is to construct a natural G-invariant divisor D. There is only hope to be able to
do so if G acts almost transitively. The correct property of G is determined by the
following definition

Definition 3.6.1 If X is compact complex manifold and G ⊂ Aut0(X) a connected
complex Lie group with dimG = dimX acting almost transitively on X, we say G is
a divisorial group. Any object invariant under a divisorial group we call divisorially
invariant.

Given a divisorial group G on X, the Lie algebra g is an n-dimensional subspace
of H0(TX) generating TX in the general point. Taking the determinant we obtain an
embedding

det g ↪→ H0(−KX)

as a 1-dimensional subspace. We define Dg as the vanishing locus (with multiplicities)
of det g. This gives an element Dg ⊂ | −KX |.

Lemma 3.6.2 X \Dg is the unique (Zariski-)open orbit of G.
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Proof. Let S be an arbitrary non-open orbit of G and S◦ its smooth part. Any
s ∈ g yields by restriction an element s|S◦ ∈ H0(TS◦). Since dimS < n we obtain
det g(S) = 0, so S ⊂ Dg. On the other hand, any h ∈ G is an automorphism such that
h∗ : g −→ g is an isomorphism. In particular, h(Dg) = Dg, so Dg is G invariant. �

To us even more importantly, any basis B = {s(1), . . . , s(n)} of g yields an hermitian
metric gB on X \Dg uniquely determined by the condition

gB(s
(i) ⊗ s(j)) = δij

as explained in greater detail in chapter 2. There we also discussed when this metric is
G-invariant. Here it is of great importance to determine gB is Kähler. The next lemma
gives us a necessary condition.

Lemma 3.6.3 Let Y be a complex manifold and g a Kähler metric on Y . Then any
connected complex Lie group G ⊂ Aut0(Y, g) is abelian.

Proof. Let ω denote the Kähler form of g and g ⊂ H0(TY ) the Lie algebra of G.
Since g is G-invariant, for all s ∈ g we obtain

Lsω = 0,

where L denotes the Lie derivative. If furthermore C denotes the contraction by the
subscript vector field, Ls = dCs + Csd and hence we conclude dCsω = 0 for all s ∈ g.
Again using an elementary formula (see e.g. [La, V,5]) and dω = 0 we obtain for
s, t ∈ g

C[s,t]ω = (LsCt − CtLs)ω = LsCtω = dCsCtω + CsdCtω.

Since ω is a (1, 1)-form and s, t are holomorphic, CsCtω = 0. We already saw that
dCtω = 0, hence both summands of the right hand side vanish, yielding C[s,t]ω = 0. In
local coordinates this means

gαβ̄[s, t]
α = 0.

Since the matrix gαβ̄ is invertible this implies [s, t] = 0. Hence g is abelian and therefore
also G is abelian. �

So only abelian G are admissible. We will now see that this is exactly the right
condition.

Lemma 3.6.4 Let G be a divisorial group on X and B ⊂ g an arbitrary basis. The
conditions

(i) G is abelian,

(ii) gB is Kähler, and
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(iii) G ⊂ Aut(X,Dg, gB)

are equivalent.

Proof. Let B = {s(1), . . . , s(n)}. In a local chart we write s(i) = sik ∂
∂zk
. We denote

by (sij) = σ the inverse matrix of (sij). Now

gB,ij = gB

(
∂

∂zi
⊗ ∂

∂zj

)
= siksjk,

(i) ⇐⇒ (ii): A short calculation shows that gB is Kähler if and only if

sij,l = slj,i

for all i, j, l. This we identified in the proof of Lemma 2.4.1 as the condition

[s(i), s(k)] = 0

for all i, k. So g is abelian and thus G is abelian.
(i) ⇐⇒ (iii): This has already been proved in Lemma 2.4.1.

�

Let x0 ∈ X \ Dg and α : G −→ X \ Dg be the action map g 7→ gx0. Again it
is known (cf. [On1]) that α has constant rank. Since α is surjective, it has to be a
covering map. If G is abelian, yz := α(α−1(y)α−1(z)) is well-defined and turns X \Dg

itself into an abelian Lie group of dimension n and α into a group homomorphism.
Since elements of kerα induce the identity on X \ Dg, the property G ⊂ Aut0(X)
implies, that α is an isomorphism. Hence we will identify G and X \Dg from now on.
Our arguments sum up to

Proposition 3.6.5 Let X be a compact complex manifold and G a divisorial group on
X. If G is abelian, then X is an equivariant compactification of G by a divisor. In
particular, G is an open manifold.

In order to classify complex abelian Lie groups being open manifolds, we look at
the Albanese map α : X −→ Alb(X) and the decomposition

G = T × (C∗)k × Cl.

By the universal property, α is G-equivariant. So, after a suitable choice of the group
structure, the restricted map

β := α|G : G −→ Alb(X)
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is a group homomorphism. Using Stein factorisation and the universality of the Al-
banese map, we conclude that α (and hence also β) has connected fibres. Since G
acts almost transitive on X, the induced action on Alb(X) is transitive, hence β is
surjective. We obtain for the complex Lie algebra k of ker β the description

k = {s ∈ g| η(s) = 0 ∀ η ∈ H0(ΩX)}
= {s ∈ g| s has a zero }

by [S74, Lemma I]. This implies that ker β has no torus factor, but not only that:
any factor C∗ in G corresponds to a vector field of the form z ∂

∂z
having a zero for

z −→ 0 and any factor C corresponds to a vector field ∂
∂z

having a zero of order two
at z −→ ∞. We see this by looking at the local coordinate y := 1

z
around ∞. So

{0} × (C∗)k × Cl ⊂ ker β, implying that β|T : T × {0} −→ Alb(X) is surjective.

Proposition 3.6.6 Let X be an almost homogeneous Kähler manifold such that | −
mKX | is base point free for a certain m > 0. Assume further that there is an abelian
complex Lie subgroup G ⊂ Aut0(X) acting almost transitive. There is an equivariant
decomposition X = T × Y into the product of a torus T and a projective manifold Y
with b1(Y ) = 0 being an equivariant compactification of (C∗)k × Cl.

Proof. We may assume that G has dimension n and use the decomposition G =
T × (C∗)k × Cl = T ×H. First, we want to prove that T is a torus. The assumption
that | −mKX | is base point free enables us to choose for every x ∈ Dg a meromorphic

function f̃ with poles exactly along Dg and x is not in the locus of indeterminacy of

f̃ . If T is not compact, we fix z ∈ Ck × (C∗)l and x ∈ T × {z}. Since f̃ |X\Dg is

holomorphic, in particular f := f̃ |T×{z} is holomorphic. Hence f is constant and we

obtain T × {z} ⊂ X \Dg. This implies that T is compact. Since T = Ck/Λ, the lattice
Λ is complete and hence T is a torus.

Now we have to prove that the projection onto T is extendable. Since ker β does not
contain a torus factor, β|T : T −→ Alb(X) has to be injective, hence an isomorphism.
So the projection G −→ T can be extended to a holomorphic map X −→ T and this
is the Albanese map.

Now choose h := (t′, 1) ∈ G = T × H and denote Ft := α−1(t). Of course,
h : X −→ X satisfies h(Ft) = Ft+t′ and the map ψ : F0 × T −→ X, (y, t) 7→ (t, 1)y is
an isomorphism. Since Y := F0 is a fibre of α, it is projective and satisfies b1(Y ) = 0.
�

The second part of the description concerns the divisor.

Lemma 3.6.7 If Dg is reduced, then G is a semi-torus.
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Proof. We assume that G is not a semi-torus, hence by Lemma 3.5.4 we obtain a
decomposition G = C×G′. We choose s ∈ H0(−KX) such that Dg = {s = 0}. Since
G′ is abelian, G′ = Cn−1/Λ and we may choose local coordinates z̃1, ..., z̃n−1 induced
by canonical coordinates of Cn−1. In those coordinates of X \Dg we write

s = f(x, z̃1, ..., z̃n−1)
∂

∂x
∧ ∂

∂z̃1
∧ ... ∧ ∂

∂z̃n−1
,

where x denotes the coordinate of the factor C. If x −→ ∞, we will approximate
a point in Dg. In order to approximate other points (and indeed by this procedure
all other points of a certain component of Dg), we choose an appropriate holomorphic
λ : C −→ G′ and look at the curve (x, z̃′+λ(x)) for a fixed point z̃′ := (z̃1, ..., z̃n−1) ∈ G′.
Let p = limx−→∞(x, z̃′+ λ(x)) ∈ Dg. By x 7→ 1

x
=: y, z̃i 7→ z̃i− λi(x) =: zi we get local

coordinates in a neighbourhood U(p) \Dg. Moreover, we obtain a holomorphic map

Ψ : V := {|y| < δ} × V ′ −→ U(p)

for a neighbourhood V ′ ⊂ Cn−1. The form η := ∂
∂y
∧ ∂

∂z1
∧ · · · ∧ ∂

∂zn−1 is well-defined
on V . If Ψ is finite, after shrinking V , if necessary, we obtain a well-defined form
Ψ∗η(p) in p. If Ψ contracts a complex curve to p, we find a tangent direction τ in
every q ∈ Ψ−1(p) such that Ψ∗τ(p) = 0, in particular Ψ∗η(p) is again well defined and
Ψ∗η(p) = 0. Since the form η does not depend on the choice of λ, we may regard η
now as a well-defined form on U(p).

In these coordinates,

s = −f
(

1

y
, z′ + λ

(
1

y

))
y2 ∂

∂y
∧ ∂

∂z1
∧ ... ∧ ∂

∂zn−1
.

Let us denote h(y) := −f( 1
y
, z′ + λ( 1

y
))y2. The group action of C now is

µ · y =
y

1 + µy
.

The invariance of Dg under G implies for µ ∈ C that µ∗s = c(µ)s, hence

h(µ · y)(1 + µy)2 = c(µ)h(y).

Since c(µ + κ)s = (µ + κ)∗s = µ∗κ∗s = c(µ)c(κ)s, the function c(µ) = exp(ρµ). This
implies

h(µ · y) =
exp(ρµ)

(1 + µy)2
h(y).

Now fixing y = 1 yields

h(
1

1 + µ
) = c

exp(ρ(1 + µ))

(1 + µ)2
,
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hence
h(y) = cy2 exp(

ρ

y
).

Since we have the additional requirement that s|Dg = 0 and ∂
∂y
∧ ∂

∂z1
∧ ... ∧ ∂

∂zn−1 (p)
has a finite vanishing order, we conclude ρ = 0. Now we see that h vanishes of order 2
in 0. As discussed above, it may happen that ∂

∂y
∧ ∂

∂z1
∧ ... ∧ ∂

∂zn−1 (p) = 0. Hence we
only conclude that the vanishing order of s on the limit point p is at least 2. Since we
could do this construction for every point of a component containing p, we conclude
that this component is multiple. �

This result allows a more detailed description of D in some cases. If, for instance,
b1(X) = 0, X is projective, and Dg is reduced, then G ∼= (C∗)n and the action of G on
X is algebraic. So X is a toric variety and D is the sum of the invariant toric divisors.

Finally, we want to see that any G-invariant Kähler metric arises as some gB. For
this purpose, note that for a Lie group G being abelian implies that G = Cn/Λ, where
Λ is a discrete subgroup. This is proved by looking at the exponential map

exp : g −→ G,

which is easily seen to be a group homomorphism of (g,+) into G. Since exp maps some
neighbourhood of 0 diffeomorphically to a neighbourhood of 1, say U , and

⋃∞
k=1 U

k =
G, the map exp is surjective. Hence G = (g,+)/ ker(exp) = Cn/Λ, where Λ := ker(exp)
must be discrete, since n = dimG = dim g.

In particular, we see that X \Dg = Cn/Λ, if G is abelian. We will use this in the
next proof.

Lemma 3.6.8 Let X be a compact complex manifold and G ⊂ Aut0(X) a divisorial
Lie group. If g is a Kähler metric on X \Dg such that Aut0(X,Dg, g) = G then g is
complete and there is a basis B ⊂ g such that g = gB.

Proof. We already know by Lemma 3.6.3 that G is abelian and hence gB is Kähler
and G-invariant, if B ⊂ g is a basis. Since G = X \Dg = Cn/Λ we choose the images
of the canonical coordinates z1, ..., zn of Cn as local coordinates of X \Dg. For the sake
of simplicity we call them also z1, ..., zn. Of course, g = gαβ̄dz

α ⊗ dz̄β is G-invariant, if
and only if gαβ̄ is constant for all α, β. Hence g is complete and corresponds one to one
to g(0) what we identify with the matrix g = (gαβ̄(0)). The corresponding matrix gB
is gB = σσ∗. Note that σ is constant since G is abelian (cf. proof of Theorem 2.4.4).

Recall S = σ−1 and define H := SgS∗. Since H is hermitian, we can find A ∈ Gl(n)
such that H = A∗A. Now g = σHσ∗ = σAA∗σ∗. Set B := A−1. Then g is given by

the vector fields t(i) =
∑

j bijs
(j), which form another basis of g. (Indeed, this shows

by Theorem 2.3.6 once more that g is complete.) �
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Corollary 3.6.9 Let X be a compact complex manifold and S ⊂ X analytic with
codimS > 1. If X allows for a divisorially invariant Kähler metric on X \ S, then X
is a torus and S is empty (if chosen minimal).

Proof. Assume g is such a metric and G the divisorial abelian Lie group. By
Lemma 3.6.8 g|X \Dg is constructed by a basis of g. If Dg is given by σ ∈ H0(−KX),
then det g = |σ|−2, hence is singular on Dg. This implies Dg = 0. In particular,
X = G = Cn/Λ. Since X is compact, Λ is a complete lattice and X is a torus. �

Note that this proof works also, if codimS = 1, but S 6= Dg,red.

3.7 Example: X = P2

If X = P2, then the tangent bundle may be described by the vector fields homogeneous
of degree 1 divided by the vector fields parallel to the orbits of the group action z 7→ cz,
i.e. OX · (z0 ∂

∂z0
+ z1 ∂

∂z1
+ z2 ∂

∂z2
). Hence the global vector fields are

H0(TX) ∼= (l0
∂

∂z0
+ l1

∂

∂z1
+ l2

∂

∂z2
)/C · (z0 ∂

∂z0
+ z1 ∂

∂z1
+ z2 ∂

∂z2
),

where li are homogeneous linear forms. Now let V := Cv(1) ⊕ Cv(2) ⊂ H0(TX) with
vj = [

∑
i l
ji ∂
∂zi

]. In order to compute

D := {z|v(1) ∧ v(2) = 0},

we first localise to U0 and then homogenise the result again. This procedure yields

D =

det

 z0 z1 z2

l10 l11 l12

l20 l21 l22

 = 0

 .

Now let us assume that [v(1), v(2)] = 0 and v(1) ∧ v(2) 6≡ 0. Denote G := exp(V ) =
Aut0(X,D). By assumption G is divisorial and abelian, hence the metric gB is Kähler
and G = Aut(X,D, gB). If D is reduced, Theorem 3.6.6 and Lemma 3.6.7 tell us that
D is an equivariant compactification of G ∼= (C∗)2. The action of G being algebraic
by construction, D is the union of the invariant toric divisors, i.e. D is the union of
three lines in general position. If D is not reduced, degD = 3 shows that we obtain
two lines one of which is double, or a triple line.

So the only position of three lines not occurring in this list is that they are intersect-
ing in one common point. We will now see how this corresponds to a G which acts not
almost transitively. After a change of coordinates we may assume that the three lines
intersect in [1 : 0 : 0]. Let v(1) := z1 ∂

∂z0
, v(2) := z2 ∂

∂z0
. Of course, [v(1), v(2)] = 0 and
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v(1) ∧ v(2) ≡ 0, hence G is abelian (indeed, G ∼= C2) and acts not almost transitively.
G is given by the matrices  1 a b

0 1 0
0 0 1

 , a, b ∈ C.

It is not hard to see that G leaves {f = 0} invariant for a homogeneous f ∈ C[z0, z1, z2]
if and only if f = f(z1, z2). This factors into linear terms. Hence G leaves all lines
through [1 : 0 : 0] invariant. So the not almost transitively case corresponds to the
existence of a family of invariant divisors, which are not necessarily anticanonical. If D
consists of three lines intersecting in [1 : 0 : 0], the full automorphism group Aut(X,D)
consists of matrices  c a b

0 1 0
0 0 1

 , a, b, c ∈ C,

hence is not abelian and acts not almost transitively in accordance with Lemma 2.4.2;
also dim Aut(X,D) > dimX.

We come back to the case of almost transitive G and reduced D. Let us choose
coordinates such that D = {z0z1z2 = 0}. Of course, D is invariant under the group G
given by [z0 : z1 : z2] 7→ [a0z

0 : a1z
1 : a2z

2], with a = [a0 : a1 : a2] ∈ P2 \ {a0a1a2 =
0} ∼= C∗ × C∗. The group G is abelian and divisorial. Theorem 2.4.4 and Lemma
2.4.1 tell us that G = Aut0(X,D). Lemma 3.6.8 states that every G-invariant Kähler
metric on X \ D is given by a basis of g. Carrying out the calculations in the chart
U0 = {z0 6= 0} yields that all G-invariant Kähler metrics on X \ D ∼= C∗ × C∗ are of
the form

g = gC =
∑
i,j=1,2

cij
dxi

xi
⊗ dxj

xj
,

with cij = cji and C = (cij) > 0. This description implies that the volume of geodesic
balls Bρ(x) around a fixed point x grows like ρ2.

According to Theorem 3.5.2 and Proposition 3.5.1

K(X,D) ⊂M(2,C)/M(2,R)

is given by the classes of positive, hermitian matrices. Hence KG(X,D) has dimension
one. Moreover

C(r) :=

(
cosh(r) i sinh(r)
−i sinh(r) cosh(r)

)
for r ∈ R represent every class in KG(X,D) uniquely.

Similarly, in the case of a double line and a single line, X = C×C∗ and the volume
of Bρ(x) grows like ρ3. If D is a triple line, X = C2 and the volume growth of Bρ(x) is
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like ρ4. So volume growth happens with integer polynomial order in all these examples.
We will see in Chapter 4 that for smooth D volume growth may be of fractional order
of ρ.

If X = P3, then for the corresponding construction dimK(P3, D) = 3.



Chapter 4

Asymptotics

4.1 Introduction

For compact complex manifolds the problem of finding Ricci-flat Kähler metrics is
reduced to determining c1(X) ∈ H2(X,Z). If c1(X) = 0, then due to the proof of
the Calabi conjecture, there is a Ricci-flat Kähler metric in every cohomological class
represented by some metric. Of course, if c1(X) 6= 0, there can be no such metric. By
the ∂∂-Lemma this means that given an initial metric g̃ and provided c1(X) = 0 we
can find u ∈ C∞(X,R) such that

g := g̃ + i∂∂u

is a Ricci-flat metric.
The situation complicates as soon as we inquire into non-compact manifolds. In

this case, we are of course not interested in Ricci-flat metrics of some compactification,
but in Ricci-flat, complete Kähler metrics. First of all, we restrict ourselves to open
manifolds in the following sense: Let X be a compact complex manifold and D ⊂ X a
reduced divisor. We call X̃ := X \D an open manifold.

Tian and Yau proved in 1991 the existence of Ricci-flat, complete Kähler metrics
on open with D ∈ | −KX | being smooth and ample. To be more precise, they proved
that starting with a specifically constructed complete Kähler form ωTY on X̃ there is
u ∈ C∞(X̃,R) such that

ω̃ := ωTY + i∂∂u

is complete and Ricci-flat. The condition D ∈ |−KX | seems to be of great importance,
since only then adjunction yields an isomorphism Ωn

X̃
∼= OX̃ . The existence being

settled it remained unclear, however, what the asymptotics of such a Ricci-flat metric
looks like and how many metrics of this kind can be found.

36
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In this place it will be proved that the asymptotics of ωTY resemble the asymptotics
of ω up to the order of any polynomial decay satisfied by log detωTY ; actually, this
function decays faster than any negative power of the distance function.

The chapter is organised in the following way: First we explain how an explicit
initial metric can be constructed, much in the spirit of Tian and Yau but with a better
decay of the volume form; then we construct quasi-coordinates for this metric and use
them to estimate higher derivatives of the solution. Another key technique is to find
a way to identify a neighbourhood of D with an open part of the holomorphic normal
bundle such that Re(ωTY ) is strongly asymptotic to an explicitly given metric on the
bundle. After this we explain how to tackle the problems using these techniques.

If Ω denotes a holomorphic n-form with simple poles exactly along D and ω a
Kähler metric, then the volume form Ω ∧ Ω̄ is Ricci-flat, of course. So we want to
determine the function u such that

(ω + i∂∂u)n = Ω ∧ Ω̄,

hence for f := log Ω∧Ω̄
ωn

we obtain

(ω + i∂∂u)n

ωn
= ef ,

a complex Monge-Ampère equation. This has been solved by Tian and Yau [TY90].
In [TY90] Tian and Yau proved the existence of a complete Ricci-flat Kähler metric

on the complement of a smooth anticanonical divisor D of a Fano manifold. For
this purpose they constructed an initial metric ω with volume form deviating only
O((− log ‖S‖2)−N) from the volume form of the solution metric; here S denotes the
section of −KX defining D ∈ | −KX |, ‖.‖ an appropriate metric on O(D) and N an
arbitrarily big integer. They posed the question how far the initial metric itself is away
from the Ricci-flat metric given by the solution of the Monge-Ampère equation.

In this chapter we first construct an initial metric with an exponentially asymp-
totically flat volume form and give the answer that it is indeed very close, namely
O((− log ‖S‖2)−N) for every N . As a first step we prove that there is a slow approach
(Section 4.5):

‖∂∂u‖ω ∈ O((− log ‖S‖2)−
1
6n ),

where u is the bounded solution given by [TY90] of the Monge-Ampère equation

(ω + i∂∂u)n

ωn
= ef (4.1)

for f ∈ O((− log ‖S‖2)−N).
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In order to prove this we use an appropriately disturbed equation that allows for a
maximum principle (Section 4.4). This is given by

(ω + i∂∂uε)
n

ωn
= eεuε+f

We prove strong decay for the unique bounded solution constructed in [CY80] and give
a description of the behaviour of the involved constants in dependence of ε. Here we
make use of a weak maximum principle. By curvature estimates provided by [TY90]
and again by a weak maximum principle we are able to prove the theorem.

For this result we use the information from the Monge-Ampère equation (4.1)

|∆ωu| ∈ O((− log ‖S‖2)−p) ⇒ ‖∂∂u‖ω ∈ O((− log ‖S‖2)−
p
2 )

if 0 < p < N (cf. Lemma 4.5.2). One easily observes that the maximal approach rate
would apply if the second derivatives would decay with the same order as ∆ωu (see
Section 4.10).

Switching the attention from the form of the equation to the form of the initial
metric we can prove in Section 4.9 this much better decay property for the linear
problem as the main result of this section provided ∆ωu behaves ’almost radially’. In
order to explain this we have to introduce

ỸR := {x ∈ X \D| − log ‖S(x)‖2 = 2R}
equipped with the induced Riemannian metric ωR := i∗

ỸR
ω.

Theorem 4.1.1 Let ω be the Tian-Yau initial metric, p > 0 and u ∈ C∞(X \ D) ∩
C3n+6,α
ω . If ∆ωu = f with f ∈ O((− log ‖S‖2)−p),∆q

ωR
f |ỸR ∈ O((− log ‖S‖2)−p−

q
n ) for

all 1 ≤ q ≤ 3
2
n+ 3, then ‖∂∂u‖ω ∈ O((− log ‖S‖2)−p).

The extra conditions on ∆q
ωf are satisfied for f = R−p. So they are for the function

f of (4.1) constructed below. Note that here u is not necessarily a solution of the
Monge-Ampère equation (4.1). Our strategy here will be to construct a Riemannian
metric strongly asymptotic to ω (meaning O(‖S‖q)-near) on a tubular neighbourhood
of D equipped with a principal fibre bundle structure (Section 4.7). This metric can
be computed explicitly in terms of polar coordinates of the fibre disks. We will use
Fourier analysis on the fibre bundle to convert the Laplace equation to a system of
uncoupled ODEs with explicitly computable solutions (Section 4.8). These will give
rise to the claim of Theorem 4.1.1.

Once Theorem 4.1.1 is proved it is only a technicality to arrive at

Corollary 4.1.2 Let ω be the Tian-Yau initial metric and u the bounded solution of
the Monge-Ampère equation (4.1). For every N > 0 there is a constant CN > 0 such
that

(1− CN(− log ‖S‖2)−N)ω ≤ ω + i∂∂u ≤ (1 + CN(− log ‖S‖2)−N)ω.

The proof is given in Section 4.10.
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4.2 Construction of the initial metric

In this section we use a slightly different approach for the construction of the initial
metric used in [TY90]. Let X be smooth projective, dimC(X) = n, D ∈ | − KX | a
smooth ample divisor. Let ‖ · ‖ be a smooth metric on the line bundle O(D) such that
ρ := −i∂∂ log ‖ · ‖ > 0 is positive definite on all X. Let S be a section of −KX defining
D. Since KX + D = 0, there is up to a constant multiple a unique meromorphic n-
form Ω on X with poles of first order along D. Adjunction formula provides us with a
nowhere vanishing holomorphic (n− 1)-form Ω̂ on D via

Ω̂ := Res Ω.

After multiplying by a constant a > 0 we can assume:∫
D

(ρ|D)n−1 =

∫
D

Ω̂ ∧ Ω̂.

So Ω is now uniquely determined. ρ|D produces a Kähler class on D, so by the Theorem
of Yau [Y78] there is a C∞-function ϕ0 : D −→ R with

ρ|D + i∂∂ϕ0 > 0(
ρ|D + i∂∂ϕ0

)n−1
= Ω̂ ∧ Ω̂

}
(4.2)

Now according to a result of Schumacher [Sch98, Thm 4] the metric ‖ · ‖De−ϕ0 for the
restricted bundle O(D)|D has an extension ‖ · ‖e−ϕ, whose curvature is positive on all
of X because O(D) is ample. So we replace the metric ‖ · ‖ by the new bundle metric

‖ · ‖ϕ := ‖ · ‖e−ϕ

and set ρ > 0 as the curvature form of the new bundle metric. Then we have

ρ|n−1
D = Ω̂ ∧ Ω̂.

Following [TY90], if ‖S‖ < 1, we define a complete Kähler metric on X \D by

ω := i
n

n+ 1
∂∂(− log ‖S‖2)

n+1
n .

First we observe

ω = i
n

n+ 1
∂∂
(
− log ‖S‖2

)1+ 1
n

=
(
− log ‖S‖2

) 1
n ρ+

i

n

(
− log ‖S‖2

) 1
n
−1
∂ log ‖S‖2 ∧ ∂ log ‖S‖2

> 0.
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So ω defines a complete Kähler form on X \D, if ‖S‖ < 1. But even if this condition
is not satisfied everywhere, the form ωn is still well-defined:

ωn =
(
− log ‖S‖2

)
ρn + iρn−1 ∧ ∂ log ‖S‖2 ∧ ∂ log ‖S‖2.

We are interested in the function

F :=
Ω ∧ Ω

ωn
.

In a small coordinate chart U such that S(z) = z1 and there is a projection pr :
U −→ U ∩D, (z1, . . . , zn) 7→ (0, z2, . . . , zn) we define a holomorphic (n− 1)-form on U
by

Ω̃ := pr∗Ω̂.

Expanding in this coordinate chart we recognise

ωn =
1

|z1|2
(
Ω̃ ∧ Ω̃ ∧ dz1 ∧ dz1 + (z1Ω̃ ∧ Ω̃ ∧ ∂ log ‖ · ‖2 ∧ dz1 + c.c.)

)
+

(− log ‖z1‖2)ρn + Ω̃ ∧ Ω̃ ∧ ∂ log ‖ · ‖2 ∧ ∂ log ‖ · ‖2

and

Ω ∧ Ω =
1

|z1|2
(
Ω̃ ∧ Ω̃ ∧ dz1 ∧ dz1 + z1η ∧ Ω̃ ∧ dz1 + c.c.

)
+ η ∧ η

with a holomorphic n-form η on U satisfying Ω = Ω̃ ∧ dz1
z1

+ η. All terms on the left

hand side of ωn and Ω ∧ Ω are absolutely integrable, except for the coinciding leading

terms 1
|z1|2 Ω̃ ∧ Ω̃ ∧ dz1 ∧ dz1. Thus,∫

X

∣∣ωn − Ω ∧ Ω
∣∣ <∞.

If we replace ϕ and ϕ0 by ϕ̃ := ϕ + C, ϕ̃0 := ϕ0 + C for a constant C, then ϕ̃0 is
still a solution to (4.2) and ϕ̃ an admissible extension of ϕ̃0. For the norms we obtain

− log ‖ · ‖2
ϕ̃ = − log ‖ · ‖2

ϕ + 2C,

so the corresponding curvature form ρ̃ coincides with ρ and for the Kähler form ω̃
corresponding to ‖ · ‖ϕ̃ we obtain

ω̃n = ωn + 2Cρn.

Thus, fixing C := −(2
∫
ρn)−1

∫
(ωn − Ω ∧ Ω) we achieve∫

ω̃n − Ω ∧ Ω = 0. (4.3)
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This condition is crucial for the existence result of [TY90]. In order to avoid unneces-
sarily rich notation we replace now ω by ω̃ and ϕ by ϕ̃ in the following so as to get rid
of the tilde.

But now we have still to ensure that ‖S(z)‖ ≤ 1
e

on all of X in order to obtain
complete Kähler metric ω with volume-form ωn. This we do by manipulating ϕ again.
This time we replace ϕ by ϕ̃ := ϕ+C‖S‖4

ϕ with a positive constant C and thus obtain

a new metric ‖ · ‖ϕ̃ := ‖ · ‖ϕe−C‖S‖
4
ϕ .

Using the formula for any α = β + γ,(
n

n+ 1

)n (
(∂∂α

n+1
n )n − (∂∂β

n+1
n )n

)
= d

(
n∑
k=1

(
n

k

)
β∂γ ∧ (∂∂γ)k−1 ∧ (∂∂β)n−k

+

(
n

k − 1

)
γ∂β ∧ (∂∂γ)k−1 ∧ (∂∂β)n−k

+

(
n− 1

k

)
∂β ∧ ∂β ∧ ∂γ ∧ (∂∂γ)k−1 ∧ (∂∂β)n−k−1

+

(
n− 1

k − 2

)
∂γ ∧ ∂γ ∧ ∂β ∧ (∂∂γ)k−2 ∧ (∂∂β)n−k

)
,

we obtain for α := − log ‖S‖2
ϕ + C‖S‖4

ϕ,

(∂∂α
n+1
n )n = (∂∂(− log ‖S‖2

ϕ)
n+1
n )n + d(‖S‖2

ϕη)

for an (n − 1, n)-form η with at most logarithmic singularities along D. By Stokes’
Theorem, the integral condition (4.3) still holds. Finally, a similar calculation shows
that ω̃n and Ω ∧ Ω are still asymptotically equivalent.

Since
i∂∂ψk = kψki∂∂ logψ + k2ψk−2i∂ψ ∧ ∂ψ

for any function ψ ∈ C∞(X,R), we obtain for the curvature ρ̃ of ‖ · ‖ϕ̃ by this formula
with ψ := ‖S‖2

ϕ and k = 2

ρ̃ = ρ+ Ci∂∂‖S‖4
ϕ = (1− 4C‖S‖4

ϕ)ρ+ 4Ci∂‖S‖2
ϕ ∧ ∂‖S‖2

ϕ.

This form is surely positive, if for A := maxX ‖S‖ϕ and C holds

1− 4CA4 > 0.

So we want to determine C ∈ [0, (4A4)−1] such that maxX ‖S‖ϕ̃ is minimal. Surely,

max
X
‖S‖ϕ̃ = max

X
‖S‖ϕe−C‖S‖

4
ϕ = max

z∈[0,A]
ze−Cz

4

.
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For z ∈ [0, A], the condition on C ensures that the function ze−Cz
4
is strictly increasing,

so the maximum is attained at z = A, hence

max
X
‖S‖ϕ̃ = Ae−CA

4

.

Again this is minimised by the maximal possible C, i.e. C = (4A4)−1 and the corre-

sponding new maximum is Ã = Ae−
1
4 . Since this value of C may be forbidden by the

positivity condition on ρ̃, we have to choose a slightly smaller C and in this way we
can still obtain

Ã = Ae−
1
5 .

This means that after a finite number of iterations of this step we can obtain an
arbitrarily small maximum of ‖S‖ while conserving the integral condition (4.3) and
the positivity of the curvature of ‖ · ‖. The resulting metrics will be denoted ‖ · ‖ and
ω in the following.

For later use we introduce the Riemannian manifolds

ỸR := {x ∈ X \D| − log ‖S(x)‖2 = 2R}

equipped with the Riemannian metric gR := i∗
ỸR

Re(g), if g denotes the Hermitian

metric on X \D compatible with ω and the complex structure.

4.3 Quasi-Coordinates for ω

We denote for r ∈ Rk
+

Pr := {(z1, . . . , zn) ∈ Ck| |zi| < ri}.

the polycylinder with polradius r.
Let ψ = (z1, . . . , zn) : U −→ Cn be a coordinate chart intersecting D such that

z1 = S(z) (after the choice of a trivialisation of O(D) on U) and ψ(U) ⊃ P(δ,1,...,1). For
x ∈ Pε \ {0} ⊂ C for some ε dependent on δ we have quasi-coordinates given by

ψx : P(1,...,1) −→ X \D, (w1, . . . , wn) 7→ ψ−1(exp(−1

2
(w1 +

√
−2 log x)2), w2, . . . , wn)

with ψx(0, w2, . . . , wn) = (x,w2, . . . , wn). Here, of course,
√
−2 log x means a choice

of a complex number y such that x = exp(−y2

2
) and Im(y2) ∈ [0, 4π). We define

Ux := ψx(P(1,...,1)) ⊂ U .

Definition 4.3.1 Riemannian metrics g0, g1 on a real manifold Z are called Ck-
equivalent, if there are constants c, C > 0, such that on Z for all h ∈ Ck+1(Z) holds

c
∑

1≤l≤k+1

‖∇l
g0
h‖g0 ≤

∑
1≤l≤k+1

‖∇l
g1
h‖g1 ≤ C

∑
1≤l≤k+1

‖∇l
g0
h‖g0 .
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If Z is a complex manifold and g0, g1 are hermitian and Kähler, then g0 and g1 are
called Ck-equivalent, if Re(g0) and Re(g1) are.

Note that the usual equivalence of metrics is the same as their C0-equivalence.

Lemma 4.3.2 Let g0, g1 be Riemannian metrics on a manifold Z. If g0 and g1 are
C0-equivalent and there is a constant C > 0 such that

‖∇l
g0
g1‖g0 ≤ C

for all 1 ≤ l ≤ k, then g0 and g1 are Ck-equivalent.

Proof. Let gt := (1 − t)g + th and ∇t, ‖.‖t denote the covariant derivative resp.
the metric on any tensor space associated to gt. First we note that for any smooth
family of metrics gt and (0, s)-tensor V on Z the map

V 7→ d

dt
(∇tV )

induces a family of (s, s+ 1)-tensors γ = γ(t) with components

γi1...isj1...js+1
= −Γ̇i1j1js+1

δi2j2 · · · δisjs − . . .− Γ̇isjsjs+1
δi1j1 · · · δis−1js−1 ,

with Γijk = Γijk(t) being the Christoffel symbols of gt. We write

γ · V :=
d

dt
(∇tV )

for the application of the map to V . A computation in normal coordinates with respect
to gt confirms the relation

2g · γ = ∇tġ + σ∗∇tġ − τ ∗∇tġ

with g = gt being the (0, 2s)-tensor induced by the metric gt and σ, τ being the per-
mutation of tensor components σ = (12) resp. τ = (13). Hence, we can estimate

‖∇l
tγ‖0 ≤ C‖∇l+1

t ġ‖0.

We claim that our assumptions imply that there is a constant C such that

‖∇l
tġ‖0 ≤ C (4.4)
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for all 0 ≤ l ≤ k, t ∈ [0, 1] and z ∈ Z. Since ġ = g1−g0 and g0 and g1 are C0-equivalent
the claim is obviously valid for k = 0. For the inductive step we compute

d

dt
‖∇k+1

t ġ‖ ≤ ‖ d
dt
∇k+1
t ġ‖

= ‖
k∑
l=0

∇l
t(γ · ∇k−l

t ġ)‖0

= ‖
k∑
l=0

l∑
m=0

∇m
t γ · ∇k−m

t ġ‖0

≤ C(
k+1∑
l=1

‖∇l
tġ‖0)(

k∑
l=0

‖∇l
tġ‖0)

≤ C1‖∇k+1
t ġ‖0 + C2

with constants C1, C2 independent of z ∈ Z. Integration of this differential inequality,
together with the assumption that ‖∇k+1

0 ġ‖0 = ‖∇k+1
0 g1‖0 is uniformly bounded yields

the claim.
Note that, in particular,

‖∇l
1g0‖1 ≤ C‖∇l

1g0‖0 = C‖∇l
1ġ‖0 ≤ C̃,

so the assumptions are symmetric with respect to exchanging g0 and g1. This means
that we have to prove only∑

1≤l≤k+1

‖∇l
1h‖1 ≤ C

∑
1≤l≤k+1

‖∇l
0h‖0

in order to prove Ck-equivalence.
So we claim that there exists C > 0 such that∑

1≤l≤k+1

‖∇l
th‖t ≤ C

∑
1≤l≤k+1

‖∇l
0h‖0

for all t ∈ [0, 1]. For k = 0, this is surely true, since the covariant derivative of a function
does not depend on the underlying metric and all the metrics gt are C0-equivalent. In
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order to do the inductive step we proceed like before and compute for s ∈ [0, 1]

‖∇k+2
s h‖s ≤ C‖∇k+2

0 h‖0 +

∫ s

0

‖ d
dt
∇k+2
t h‖0dt

= C‖∇k+2
0 h‖0 +

∫ s

0

‖
k+1∑
l=0

l∑
m=0

∇m
t γ · ∇k+1−m

t h‖0dt

≤ C1‖∇k+2
0 h‖0 + C2

∫ s

0

k+1∑
l=1

‖∇l
th‖0dt

≤ C
k+2∑
l=1

‖∇l
0h‖0

with a constant C independent of s and z ∈ Z. Here we used the induction hypothesis
and inequality 4.4. Clearly, this inequality implies the claim and thus the proof is
complete. �

Proposition 4.3.3 For the pullback metric we obtain

ψ∗xω = (− log ‖S(ψx(w))‖2)
1
nηx

for a metric ηx on
∏n

i=1{|wi| < 1} uniformly Ck-equivalent (with respect to x) to the
euclidean metric for any k.

Proof. Let us denote h := log ‖ · ‖2 and ∂ = ∂1 + ∂′. Note that

∂h ◦ ψx
∂w1

= −z1(w1 +
√
−2 log x)

∂h

∂z1

and

− c log ‖z1‖2 ≤ |w1 +
√
−2 log x|2 ≤ C1|Re(w1 +

√
−2 log x)2| ≤ −C2 log ‖z1‖2 (4.5)

with constants c, C1, C2 independent of x.
Now we compute

−iψ∗xω = dw1 ∧ dw1

(
1

n
|z1∂1h− 1|2|w1 +

√
−2 log x|2(− log ‖z1‖2)

1
n
−1+

∂1∂1h · |z1|2(− log ‖z1‖2)
1
n |w1 +

√
−2 log x|2

)
−

n∑
k=2

dw1 ∧ dwk
(
∂kh · z1(w1 +

√
−2 log x)

(
(− log ‖z1‖2)

1
n∂1∂1h

+ (− log ‖z1‖2)
1
n
−1∂1h

))
+ c.c.

+(− log ‖z1‖2)
1
n
−1∂′h ∧ ∂′h+ (− log ‖z1‖2)

1
n∂′∂

′
h.
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The C0-equivalence follows now directly from the estimates 4.5: For x −→ 0 the
metric ηx converges to the block metric −i(dw1∧dw1+∂′∂

′
h), hence for δ small enough

we obtain uniform equivalence of ηx to the euclidean metric.
In order to obtain Ck-equivalence, we note that it is enough to prove uniform

boundedness (with respect to x) of the derivatives of ψ∗xωij̄ up to order k. In order to
prove this we define y := w1 +

√
−2 log x and the ring

R := C∞(U,C)[{(− log ‖z1‖2)α|α ∈ R}, y, y−1, y, y−1, z1, z
−1
1 , z1, z1

−1].

If P := b · (− log ‖z1‖2)−d1yd2yd3zd41 z
d5
1 ∈ R is a monomial we denote

d(P ) := d1 −
1

2
(d2 + d3) +∞ · (d4 + d5)

and
Rα := span{P ∈ R| P monomial, d(P ) ≥ α}.

The elements of Rα decay at least like (− log ‖z1‖2)−α for x −→ 0. We prove

Lemma 4.3.4 ∂
∂w1

Rα ⊂ Rα+ 1
2
, ∂
∂wk

Rα ⊂ Rα for all k = 2, . . . , n.

Proof.

∂

∂w1

(b · (− log ‖z1‖2)−d1yd2yd3zd41 z
d5
1 ) = −∂1b · (− log ‖z1‖2)−d1yd2+1yd3zd4+1

1 zd51

−d1(z1∂1h+ 1)b · (− log ‖z1‖2)−(d1+1)

·yd2+1yd3zd41 z
d5
1

+d2b · (− log ‖z1‖2)−d1yd2−1yd3zd41 z
d5
1

−d4b · (− log ‖z1‖2)−d1yd2+1yd3zd41 z
d5
1

∈ R∞ +Rα+ 1
2

+Rα+ 1
2

+R∞ = Rα+ 1
2

and

∂

∂wk
(b · (− log ‖z1‖2)−d1yd2yd3zd41 z

d5
1 ) = −∂kb · (− log ‖z1‖2)−d1yd2yd3zd41 z

d5
1

+d1b∂kh · (− log ‖z1‖2)−(d1+1)yd2yd3zd41 z
d5
1

∈ Rα +Rα+1 = Rα.

�

According to our calculations we have ηx,11 ∈ R0, ηx,kl ∈ R0 for k, l = 2, . . . , n and
ηx,1k ∈ R∞ for k > 1. So Lemma 4.3.4 implies that all derivatives of ηx are in R0,
hence uniformly bounded. �

Proposition 4.3.3 and Lemma 4.3.4 have immediate consequences on the Riemann
curvature tensor and its derivatives.
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Corollary 4.3.5 There is a constant C > 0 such that

max{‖R‖ω(x), ‖∇R‖ω(x)}} ≤ C(− log ‖S(x)‖2)−
1
n

for all x ∈ X \D.

Finally, the description of Ω ∧ Ω and ωn of section 4.2 in connection with Lemma
4.3.4 allows to claim strong decay of f and its derivatives in quasi-coordinates.

Corollary 4.3.6 For every k ≥ 0 and N > 0 there is a constant C > 0 such that
|∇k(f ◦ ψx)| ≤ C(− log ‖S(x)‖2)−N .

4.4 Strong Asymptotics for the perturbed equation

Let f := logF . Using the bounds of the bisectional and the Ricci curvature proved in
[TY90] by Cheng and Yau [CY80] the Monge-Ampère equation (4.1)

(ω + i∂∂uε)
n

ωn
= eεuε+f

has a unique bounded C∞-solution uε : X\D −→ R.
First we want to note that the results of [TY90], although not proving it directly,

imply a posteriori that the solutions uε are uniformly bounded:

Lemma 4.4.1 There exists a constant C > 0 such that for all ε > 0 the estimate

‖uε‖C3
ω
≤ C

holds. In particular, there is a subsequence of uε converging in C2
ω-sense.

Proof. Let uε be the unique bounded solution of

det(ω + i∂∂uε)

detω
= ef+εuε , ω + i∂∂uε > 0

and u a bounded solution of

det(ω + i∂∂u)

detω
= ef , ω + i∂∂u > 0

like constructed in [TY90]. Let ω̃ := ω + i∂∂u for the time being. We infer that
vε := uε − u satisfies the equation

det(ω̃ + i∂∂vε)

det ω̃
= eεu+εvε , ω̃ + i∂∂vε > 0.
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By the maximum principle of [CY80] there are sequences xm, ym ∈ X \D such that

vε(xm) −→ max vε, ∂vε(xm) −→ 0, ∂vε(xm) −→ 0, limi∂∂vε(xm) ≤ 0

vε(ym) −→ min vε, ∂vε(ym) −→ 0, ∂vε(ym) −→ 0, limi∂∂vε(ym) ≥ 0.

The limit is taken with respect to ω̃. We apply

Lemma 4.4.2 For hermitian n× n-matrices A,B with A > 0 we have:

B ≥ 0 ⇒ det(A+B) ≥ detA,

B ≤ 0, A+B > 0 ⇒ det(A+B) ≤ detA.

Proof. We have

det(A+B) = detA det(Id + A−
1
2BA−

1
2 ).

Now A−
1
2BA−

1
2 is still hermitian and so there is a diagonal matrix D and a unitary

coordinate change U such that

A−
1
2BA−

1
2 = U∗DU.

We can continue our calculation

det(Id + A−
1
2BA−

1
2 ) = det(UU∗ +D) = det(E +D).

We have D ≥ 0 and E+D > 0 in the first case, so det(E+D) ≥ 1; in the second case,
D ≤ 0 and E +D > 0, so det(E +D) ≤ 1. �

According to the first claim of Lemma 4.4.2, in the points xm we obtain

eε(u+vε) =
det(ω̃ + i∂∂vε)

det ω̃
≤ 1 + εm,

for s sequence εm −→ 0. hence vε(xm) ≤ −u(xm) + εm, so in the limit

max vε ≤ ‖u‖C0 .

In the points ym we obtain accordingly

eε(u+vε) =
det(ω̃ + i∂∂vε)

det ω̃
≥ 1− εm,

hence −vε(ym) ≤ u(ym) + εm, so in the limit

−min vε ≤ ‖u‖C0 .
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The two inequalities combine to

‖vε‖C0 ≤ ‖u‖C0 ,

and hence
‖uε‖C0 ≤ 2‖u‖C0 .

Now the estimates of the constant c satisfying

c−1ω ≤ ω + i∂∂uε ≤ cω

given in [CY80, Prop. 4.2, (4.9), (4.10)] only involve estimates of ‖uε‖C0 , ‖f‖C0 and
‖∆ωf‖C0 . Using interpolation finally proves that ‖duε‖ω and ‖∂∂uε‖ω are bounded
uniformly in 0 < ε < 1. The bounds for third derivatives are proved using the curvature
estimates as it is done in [CY80].

�

Apart from this we can also prove a strong uniform decay property.

Theorem 4.4.3 Let uε be the bounded solution of

det(ω + i∂∂u)

detω
= ef+εu.

Then for all 0 < p there exists C > 0 independent of ε such that

3∑
i=0

‖∇iuε‖ω ≤ Cε−(1+np− p
n+1

)(− log ‖S‖2)−p.

Proof. Let us choose N > p+ 1 + 1
n

and C > 0 such that |f | ≤ C(− log ‖S‖2)−N .
Consider for a β > 0 the function vβε defined by

uε = vβε
(
β + (− log ‖S‖2)−p

)
.

Proposition 4.4.4 The map

z 7−→
(
β + (− log ‖S‖2)−p

)−1

is of bounded geometry.

Proof. Quasicoordinates are given for C � 1 and |w1| ≤ π by

w1 7−→ e−((w1+C)
2n
n+1 ) = z1.
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So if we denote by h(w1) the pull back of the above function we obtain

h(w1) ∼=
(
β +

(
2Re

(
(w1 + C)

2n
n+1

))−p)−1

.

For C large enough we see that

1

2β
≤ |h(w1)| ≤

3

2β

is bounded independent of C. Furthermore a calculation shows that we have bounds
for all derivatives depending on β but not on C � 1 and w1. �

We conclude that vβε is as a product of two functions of bounded geometry is
also within this class and the weak maximum principle is applicable. We know that
|f | ≤ C(− log ‖S‖2)−N with N arbitrary. As a subsequent discussion shows we can
assume that the C0-bounded function vβε attains its supremum as a maximum in the
interior of X\D in a point zβε and furthermore that vβε(zβε) ≥ 0. Then we have
(∂vβε)(zβε) = (∂vβε)(zβε) = 0 and (∂∂vβε)(zβε) ≤ 0 negative semidefinite.

We evaluate the Monge-Ampère equation (4.1)

(ω + i∂∂uε)
n

ωn
= eεuε+f

in the point zβε and Lemma 4.4.2 yields

(ω + ivβε∂∂(− log ‖S‖2)−p)n

ωn
≥ (ω + i∂∂uε)

n

ωn

= eε(β+(− log ‖S‖2)−p)vβε+f

≥ 1 + ε(β + (− log ‖S‖2)−p)vβε − f̃ ,

where |f̃ | ≤ C(− log ‖S‖2)−N . As before we calculate

i∂∂(− log ‖S‖2)−p = −pρ(− log ‖S‖2)−p−1 +

+ip(p+ 1)∂ log ‖S‖2 ∧ ∂ log ‖S‖2(− log ‖S‖2)−p−2.

We realize

∆ω

(
(− log ‖S‖2)−p

)
= (− log ‖S‖2)−p−1− 1

np(np+ 1) +O((− log ‖S‖2)−p−2− 1
n

and ∣∣∣∣∣ωn−k ∧
(
∂∂(− log ‖S‖2)−p

)k
ωn

∣∣∣∣∣ ≤ C(− log ‖S‖2)−k(p+1)− k
n .
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We have the trivial bound |uε| ≤ ε−1 max |f | =: Cε−1. Then |vβε|(− log ‖S‖2)−p ≤ C
ε

is also bounded independent of β > 0. We end up with

(ω + ivβε∂∂(− log ‖S‖2)−p)n

ωn
= 1 + vβεp(np+ 1)(− log ‖S‖2)−p−1− 1

n (1 + Vβε(z))

where |Vβε(z)| ≤ Cn−1

εn−1 (− log ‖S‖2)−1 and this equality holds for all z ∈ X\D. We
combine the inequality coming from the Monge-Ampère equation (4.1) and the above
equation to get (in the point zβε):

f̃(zβε) ≥ vβε(zβε)(ε
(
β + (− log ‖S‖2)−p

)
−

−p(np+ 1)(− log ‖S‖2)−p−1− 1
n (1 + Vβε(zβε))).

There are two cases possible:
In the first case we have (in the point zβε):

ε
(
β + (− log ‖S‖2)−p

)
≥ 2p(np+ 1)(− log ‖S‖2)−p−1− 1

n (1 +
Cn−1

εn−1
(− log ‖S‖2)−1).

Then we conclude

vβε(zβε) ≤ f̃(zβε)
1

p(np+ 1)
(− log ‖S‖2(zβε))

p+1+ 1
n (1 +

Cn−1

εn−1
(− log ‖S‖2)−1)−1

≤ C̃(1 + εn−1)

because |f̃(zβε)| ≤ (− log ‖S‖2(zβε))
−N for 0 < p ≤ N − 1− 1

n
. So in this case we have

an upper bound for vβε independent of β > 0 satisfying even a better ε-behaviour than
claimed.

In the complementary second case we get a lower bound for (− log ‖S‖2(zβε))
−1:

1

Cn−1
εn−

1
n+1 ≤ (− log ‖S‖2(zβε))

−1.

Now we have uε(zβε) ≤ C
ε

and vβε(z) ≤ vβε(zβε). This implies

uε(z)
(
β + (− log ‖S‖2(z))−p

)−1 ≤ C

ε

(
β + (− log ‖S‖2(zβε))

−p)−1

respectively

uε(z) ≤
C

ε

β + (− log ‖S‖2(z))−p

β + (− log ‖S‖2(zβε))−p
<
C

ε

β + (− log ‖S‖2(z))−p

β +
(

1
Cn−1 ε

n− 1
n+1

)p .
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Now we let β → 0 tend to 0 and obtain

uε(z) ≤ C1+p(n−1)ε−(1+np− p
n+1

)(− log ‖S‖2(z))−p.

The same line of thought applies to the minimum of vβε(z) so we get also lower bounds.
The estimates of the derivatives are provided in the same way as explained in the proof
of Lemma 4.4.1.

Now we want to discuss the case that vβε(z) has no maximum in X\D but takes
its supremum on D. So we assume 0 < sup{vβε(z)} = L < ∞ and vβε(z) < L for
all z ∈ X\D. According to Cheng and Yau [CY80] we have a sequence of points
zm ∈ X\D, m ∈ N with the following properties: For m −→∞

(i) vβε(zm) → L,

(ii) ∂vβε(zm) → 0 and ∂vβε(zm) → 0,

(iii) lim∂∂vβε(zm) ≤ 0 is negative semidefinite.

We put ω̌ = ω+∂∂uε and ω̂ = ω̌−vβε∂∂(− log ‖S‖2(z))−p. By Cheng and Yau [CY80]

we have C2-estimates 1

Ĉε
ω ≤ ω̌ ≤ Ĉεω. Furthermore from |vβε|(− log ‖S‖2(z))−p ≤ Cε

and from the asymptotics of ∂∂(− log ‖S‖2(z))−p we conclude an estimate 1
C̃ε
ω ≤ ω̂ ≤

C̃εω. We develop as before

ω̌n =
(
ω̂ + ivβε∂∂(− log ‖S‖2(z))−p

)n
= ω̂n +

n∑
j=1

(
n
j

)
ω̂n−j ∧ vjβε

(
i∂∂(− log ‖S‖2(z))−p

)j
.

Looking at the asymptotics we see∣∣∣∣∣ 1

ωn

n∑
j=1

(
n
j

)
ω̂n−j ∧ vjβε

(
∂∂(− log ‖S‖2(z))−p

)j∣∣∣∣∣ ≤ C̃ε(− log ‖S‖2(z))−p−1− 1
n .

For m ≥ m0 large we have zm ∈ Uε(D) and vβε(zm) > 0. Then the Monge-Ampère
equation (4.1) implies

ω̂n

ωn
(zm) ≥ 1− |f(zm)|+ vβε(zm) ·(

ε(β + (− log ‖S‖2(zm))−p)− C̃ε(− log ‖S‖2(zm))−p−1− 1
n

)
or, respectively,(
ε(β + (− log ‖S‖2(zm))−p)− C̃ε(− log ‖S‖2(zm))−p−1− 1

n

)−1
(
ω̂n

ωn
(zm)− 1

)
+

|f(zm)|
(
ε(β + (− log ‖S‖2(zm))−p)− C̃ε(− log ‖S‖2(zm))−p−1− 1

n

)−1

≥ vβε(zm).
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Now we hold ε,β > 0 fix and take the limit m→∞:

vβε(zm) → L > 0

ε(β + (− log ‖S‖2(zm))−p)− C̃ε(− log ‖S‖2(zm))−p−1− 1
n → εβ

|f(zm)| → 0

lim

(
ω̂n

ωn
(zm)− 1

)
≤ 0.

So we conclude:

0 ≥ lim

(
ω̂n

ωn
(zm)− 1

)
≥ εβL > 0,

which is a contradiction, so there must be a maximum inside of X\D. �

4.5 Slow decay of the solution

Now we study the original Monge-Ampère equation (4.1) for our problem

(ω + i∂∂u)n

ωn
= ef .

By [TY90] there exists a unique bounded C2-solution of the problem such that ω̃ :=
ω + i∂∂u > 0. We want to study the decay of i∂∂u towards D.

Unfortunately, the estimate of Proposition 4.4.3 is not uniform in ε, so we have to
add arguments in order to achieve our result. Our decay rate here is much smaller than
the one of uε provided by Theorem 4.4.3. We begin with the preparation of elementary
tools.

Lemma 4.5.1 There are constants Cn > 0 such that for all positive real numbers
a1, . . . , an and 0 < ε < 1 satisfying

n∑
i=1

ai ≤ n(1 + ε),
n∏
i=1

ai = 1,

holds: (1 + Cn
√
ε)−1 ≤ ai ≤ 1 + Cn

√
ε for every i.

Proof. This is easily seen by the inequality
n∑
i=1

(
√
ai − 1)2 + 2(

n∑
i=1

√
ai − n(

n∏
j=1

aj)
1
2n ) ≤ nε.

�

As an immediate consequence we obtain that decay of ∆ωu is enough in order to
have decay of ‖∂∂u‖ω:
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Lemma 4.5.2 Let C > 0. If ∆ωu ≤ C(− log ‖S‖2)−β, then

(1− C(− log ‖S‖2)−
β
2 )ω ≤ ω + i∂∂u ≤ (1 + C(− log ‖S‖2)−

β
2 )ω.

Proof. Let us choose a point x ∈ X and coordinates such that in ω(x) =
δij, ∂∂u(x) = uijδij. Let us denote ai := 1 + u,īi. By ω + i∂∂u > 0 we know ai > 0.
Furthermore,∏

ai = ef = 1 +O((− log ‖S‖2)−N),
∑

ai = n+ ∆ωu ≤ n+ C(− log ‖S‖2)−β.

So we can change ai in such a way that bi := ai(1 + O((− log ‖S‖2)−N)) satisfies∏
bi = 1. Of course, still

∑
bi ≤ n + C(− log ‖S‖2)−β. Now we apply Lemma 4.5.1

and obtain
u,īi = O((− log ‖S‖2)−

β
2 ).

This implies the claim. �

Lemma 4.5.3 If A ∈M(n,C) is a hermitian matrix and ‖A‖ := supx∈Cn
|(x,Ax)|
‖x‖2 , then

the estimate holds |aij| ≤ n‖A‖ for any i, j.

Theorem 4.5.4 ‖u‖C2,α
ω (Ux)

≤ C(− log ‖S(x)‖2)−
1
6n ) for some α > 0, in particular

(1− C(− log ‖S‖2)−
1
6n )ω ≤ ω + i∂∂u ≤ (1 + C(− log ‖S‖2)−

1
6n )ω.

Proof. Recall that u is the bounded solution of

det(ω + i∂∂u)

detω
= ef

and the curvature tensor is given by

Rij̄kl̄ = ∂i∂jωkl − ωpq∂iωkq∂jωpl.

By a computation of [TY90],

‖Rkl̄
ij̄‖ω = ‖Rij̄kl̄‖ω ≤ C(− log ‖S‖2)−

1
n .

Here ‖Rij̄kl̄‖ω is the norm of the bisectional curvature sup
|Rij̄kl̄ζiζ

j
ξkξ

l|
g(ζ,ζ)g(ξ,ξ)

. Now we choose

coordinates centered around x such that ωij(x) = δij, ωij,k(x) = 0. For ξ = ek the
estimate of the bisectional curvature yields

‖(Rij̄kk̄)ij‖ ≤ C(− log ‖S‖2)−
1
n
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in the sense of Lemma 4.5.3. The matrix (
√
−1Rij̄kk̄)ij is hermitian, indeed, hence

|Rij̄kk̄| ≤ C(− log ‖S‖2)−
1
n (4.6)

for any i, j, k.
Further, we obtain in x

∆ω̃∆ωu = ω̃ij∂i∂j(ω
kl∂k∂lu)

= ω̃ij∂i∂j(ω
kl(ω̃kl − ωkl))

= ω̃ij(ω̃kl − ωkl)∂i∂jω
kl + ω̃ijωkl∂i∂j∂k∂lu

= ω̃ijRkl̄
ij̄ ω̃kl − ω̃ijRij + ω̃ijωkl∂i∂j∂k∂lu

by the choice of the coordinates. Now we have to replace the fourth derivatives of u.
Since ω̃ is Ricci-flat, we may use the equations

0 = R̃kl̄ = ∂k∂l log det(ω + i∂∂u) = ∂kω̃
ij̄∂l∂i∂ju+ ω̃ij̄(∂k∂lωij̄ + ∂i∂j∂k∂lu).

Now we substitute ∂kω̃
ij̄ = −ω̃im̄ω̃nj̄∂k∂m∂nu and obtain for any k, l

ω̃ij̄∂i∂j∂k∂lu = ω̃im̄ω̃nj̄∂l∂i∂ju · ∂k∂m∂nu− ω̃ij̄Rkl̄ij̄.

So,

∆ω̃∆ωu = ω̃ijRkl̄
ij̄ ω̃kl − ωkl̄ω̃ij̄Rkl̄ij̄ − ω̃ijRij + ωkl̄ω̃im̄ω̃nj̄∂l∂i∂ju · ∂k∂m∂nu.

From now on we specialise our coordinates further in such a way that ∂i∂ju = λiδij
in x; this is possible by a locally constant unitary coordinate transformation. The C2-
estimate of [TY90] yield, that 0 < c ≤ 1 + λi ≤ C with constants c, C independent of
x. The first two terms are now easily dealt with by (4.6). Observe that f is explicitly
computable in our case. In particular

|Rij| = |∂i∂jf | ≤ C(− log ‖S‖2)−N .

So the only mysterious term is

a := ωkl̄ω̃im̄ω̃nj̄∂l∂i∂ju · ∂k∂m∂nu
=

∑
i,j,k

(1 + λi)
−1(1 + λj)

−1|∂k∂i∂ju|2

Fortunately, a ≥ 0 and we will use this to our advantage in the computation

∆ω̃((− log ‖S‖2)p∆ωu) = (− log ‖S‖2)p∆ω̃∆ωu+ ∆ω̃(− log ‖S‖2)p∆ωu+

+2(∇ω̃(− log ‖S‖2)p,∇ω̃∆ωu)ω̃.
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Like above, we have the estimates

|∆ω̃(− log ‖S‖2)γ| ≤ (− log ‖S‖2)γ−1− 1
n , ‖∇ω̃(− log ‖S‖2)γ‖2 ≤ (− log ‖S‖2)2γ−1− 1

n .

In order to make use of Cauchy-Schwarz we compute

‖∇ω̃∆ωu‖2
ω̃ = ‖d∆ωu‖2

ω̃

= ω̃ij̄∂i∆ωu∂j∆ωu

= ω̃ij̄ωkl̄ωmn̄∂i∂k∂lu · ∂j∂m∂nu
=

∑
i,k,m

(1 + λi)
−1∂i∂k∂ku · ∂i∂m∂mu

≤ 1

2

∑
i,k,m

(1 + λi)
−1(|∂i∂k∂ku|2 + |∂i∂m∂mu|2)

=
∑
i,k

(1 + λi)
−1|∂i∂k∂ku|2

The coefficient of |∂i∂k∂ku|2 in a is (1+λk)
−1((1+λi)

−1 +(1+λk)
−1). Hence, for some

constant D depending on c and C we obtain

‖∇ω̃∆ωu‖ω̃ ≤ D
√
a.

Now this yields together with Cauchy-Schwarz

∆ω̃((− log ‖S‖2)p∆ωu) ≥ (− log ‖S‖2)pa− (− log ‖S‖2)p−
1
n − (− log ‖S‖2)−N −

−(− log ‖S‖2)p−1− 1
n − (− log ‖S‖2)p−

1
2
− 1

2n
√
a.

The sum of a-terms has a minimum as a function of a. This is attained at a =
O((− log ‖S‖2)−1− 1

n ) and hence

∆ω̃((− log ‖S‖2)p∆ωu) ≥ −(− log ‖S‖2)p−
1
n .

Since ∆ω̃u =
∑

λi
1+λi

= n−
∑

1
1+λi

,

∆ω̃((− log ‖S‖2)p∆ωu− u) ≥ −(− log ‖S‖2)p−
1
n − n+

∑ 1

1 + λi
.

Now we would like to choose x as a maximum of (− log ‖S‖2)p∆ωu− u but, of course,
this would assume what we would like to prove. So we do the same considerations for
uε instead of u. We denote ωε = ω+ i∂∂uε. All computations are the same except that
R

(ε)

ij̄
6= 0 now, but

Ric(ωε) = Ricω + i∂∂(f + εuε) = iε∂∂uε.
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So, by Lemma 4.4.1 we get ‖Ric(ωε)‖ω ≤ Cε. On the other hand, by Proposition
4.4.3 we know ‖Ricωε‖ω ≤ Cε−(nα− α

n+1
)(− log ‖S‖2)−α. We combine both inequalities

to obtain

‖Ric(ωε)‖ω ≤ C(− log ‖S‖2)
− α

1+α(n− 1
n+1 ) ≤ C(− log ‖S‖2)−

1
n

for α ≥ n+ 1 and with a constant C independent of ε. Hence we obtain, in particular,

∆ω̃((− log ‖S‖2)p∆ωuε − uε) ≥ −C(− log ‖S‖2)p−
1
n − n+

∑ 1

1 + λ
(ε)
i

with C independent of ε! By the decay property of uε and ∆ωuε we can find a point
xε ∈ X where (− log ‖S‖2)p∆ωuε − uε attains its maximum. In xε we obtain

C(− log ‖S‖2)p−
1
n + n ≥

∑ 1

1 + λ
(ε)
i

.

We know ∏ 1

1 + λ
(ε)
i

= e−(f+εuε)

and again we combine the estimate |εuε| ≤ Cε from Lemma 4.4.1 and

|εuε| ≤ Cε−(nα− α
n+1

)(− log ‖S‖2)−α

by an adequate multiplication to obtain

|εuε| ≤ C(− log ‖S‖2)
− α

1+α(n− 1
n+1 ) ≤ C(− log ‖S‖2)−

1
n

with C independent of ε. Now by Lemma 4.5.1 we obtain for

q := Ce
1
n

(f+εuε)(− log ‖S‖2)p−
1
n + e

1
n

(f+εuε) − 1

the inequalities

(1 + C ′
√
q)
−1 ≤ 1

1 + λ
(ε)
i

≤ 1 + C ′
√
q.

So
λ

(ε)
i ≤ C ′

√
q ≤ C̃(− log ‖S‖2)

1
2
(p− 1

n
),

still only in the point xε. In particular, if we assume p = −1
2
(p− 1

n
), i.e. p = 1

3n
then

for any x ∈ X
(− log ‖S‖2)p∆ωuε − uε ≤ C,

since uε is uniformly bounded. We obtain also in the limit ε −→ 0

∆ωu ≤ C(− log ‖S‖2)−p.

Now we apply Lemma 4.5.2 and C3-estimates like given in [CY80] in order to obtain
the desired result with decay rate 1

2
p = 1

6n
. Here the curvature estimate of Corollary

4.3.5 comes in. �
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4.6 Estimates of higher derivatives of the solution

in Quasi-Coordinates

We make use of the quasi-coordinates ψx constructed in section 4.3 and denote P :=
P(1,...,1). First we want to find a comparison between Hölder estimates of derivatives
in the euclidean and the ω-metric in quasi-coordinates. Let Ux := ψx(P ). The Ck,α

ω

metric on Ux is defined

‖v‖k,α;ω :=
∑

1≤j≤k

sup
z∈Ux

‖∇j
ωv(z)‖ω + sup

y,z∈Ux

‖∇k
ωv(y)− τy,z∇k

ωv(z)‖ω
distω(y, z)α

,

where τy,z denotes the parallel transport from z to y along a shortest geodesic minimis-
ing the expression. Like in the euclidean case, this definition is compatible with the
Ck norms, i.e. for all k, l ∈ N0, α, β ∈ [0, 1] with k + α ≤ l + β there is a constant C
such that

‖v‖k,α;ω ≤ C‖v‖l,β;ω.

for all v ∈ C l,β
ω .

Lemma 4.6.1 There is a constant C = C(k, α) independent of x such that

‖v‖Ck,α(P ) ≤ C(− log ‖S(x)‖)
k+α
2n ‖v‖Ck,α

ψ∗xω
(P )

for all v ∈ Ck,α(P ).

Proof. First we see by Lemma 4.3.4 and C1-equivalence of η to the euclidean
metric that the Christoffel symbols of Re(ψ∗ω)

Γijk =
1

2
gim(gmj,k + gmk,j − gjk,m)

are uniformly bounded.
Let γ denote a geodesic from z to y with γ(0) = z, γ(τ) = y and ‖γ̇‖ω = 1 (so

τ = dist(y, z)) and X the (k, 0)-tensor field along γ obtained by parallel transport of
∇kv(z), i.e. X satisfies the differential equation

d

dt
Xi1...ik(t) = Γji1lXji2...ik γ̇

l + · · ·+ ΓjiklXi1...ik−1j γ̇
l.

The condition ‖γ̇‖ = 1 translates to |γ̇| ∼ (− log ‖S(x)‖)− 1
2n for the euclidean length.

If we denote by A(t) the (k, k)-tensor on P such that

d

dt
X(t) = A(t)X(t),
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then we see that
|A(t)| ∼ (− log ‖S(x)‖)−

1
2n .

Standard integration and application of Gronwall’s Lemma implies

|X(t)−X(0)| ≤ |X(0)|t sup
0≤s≤t

|A(s)|et sup0≤s≤t |A(s)|.

For the distance we also know distω(y, z) ∼ (− log ‖S(x)‖) 1
2n |z − y|, so we obtain at

t = τ

|τy,z∇k
ψ∗ωv(z)−∇k

ψ∗ωv(z)| ≤ C|∇k
ψ∗ωv(z)|distψ∗ω(y, z) · (− log ‖S(x)‖)−

1
2n .

Furthermore we can write

∇k
ψ∗ωv(z) = ∇kv(z) +

k−1∑
i=1

Si∇iv(z)

for (euclidean) bounded (k + 1, i)-tensors Si. This implies immediately

‖∇k
ψ∗ωv(z)‖ψ∗ω(z) ≥ (− log ‖S(x)‖)−

k
2n (C1|∇kv(z)| − C2‖v‖k−1),

hence
‖v‖k ≤ C((− log ‖S(x)‖)

k
2n‖v‖k;ψ∗ω + ‖v‖k−1).

The claim of the Lemma being true for k = α = 0, we obtain the case α = 0 by
induction in this way.

Now we can estimate

‖∇k
ψ∗ωv(y)− τy,z∇k

ψ∗ωv(z)‖ψ∗ω(y) ≥ ‖∇k
ψ∗ωv(y)−∇k

ψ∗ωv(z)‖ψ∗ω(y)

−‖∇k
ψ∗ωv(z)− τy,z∇k

ψ∗ωv(z)‖ψ∗ω(y)

≥ ‖∇kv(y)−∇kv(z)‖ψ∗ω(y)

−
k−1∑
i=1

‖Si(y)∇iv(y)− Si(z)∇iv(z)‖ψ∗ω(y)

−‖∇k
ψ∗ωv(z)− τy,z∇k

ψ∗ωv(z)‖ψ∗ω(y)

≥ C1(− log ‖S(x)‖)−
k
2n |∇kv(y)−∇kv(z)| −

C2(− log ‖S(x)‖)−
k
2n |y − z|‖v‖k

−C3(− log ‖S(x)‖)−
k
2n |y − z| · |∇kv(z)|.

Thus we have

‖∇k
ψ∗ωv(y)− τy,z∇k

ψ∗ωv(z)‖ψ∗ω(y)

distψ∗ω(y, z)α
≥ C4(− log ‖S(x)‖)−

k+α
2n ·

·
(
|∇kv(y)−∇kv(z)|

|y − z|α
− C5‖v‖k

)
.
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Employing the estimate with α = 0 we obtain

‖v‖k,α ≤ C(− log ‖S(x)‖)
k+α
2n ‖v‖k,α;ψ∗ω.

�

We apply a similar line of thoughts with the triangle inequality applied in the other
direction in order to obtain

‖∇k
ψ∗ωv(z)‖ψ∗ω(z) ≤ (− log ‖S(x)‖)−

k
2n (C1|∇kv(z)|+ C2‖v‖k−1).

So we also have

Lemma 4.6.2 There is a constant C > 0 such that for all v ∈ Ck(P )

‖∇k
ψ∗ωv‖ψ∗ω ≤ C(− log ‖S(x)‖)−

k
2n‖v‖k.

Let u be the bounded solution of the Monge-Ampére equation (4.1). We examine
the linear elliptic operator

Lx(v) := (− log ‖S ◦ ψx‖)
1
n

(
(ψ∗xω + i∂∂v) ∧ (ψ∗xω + i∂∂(u ◦ ψx))n−1

ψ∗xω
n

− 1

)
= (− log ‖S ◦ ψx‖)

1
n

1

ψ∗xω
n

(
i∂∂v ∧

n−1∑
j=0

(
n

j

)
ψ∗xω

n−1−j ∧ (i∂∂(u ◦ ψx))j
)

=

=
1

ηn

(
i∂∂v ∧

n−1∑
j=0

(
n

j

)
ηn−1−j ∧ (i(− log ‖S ◦ ψx‖)−

1
n∂∂(u ◦ ψx))j

)
.

We combine Lemma 4.3.4, Lemma 4.6.1 and our slow decay result Theorem 4.5.4
in order to estimate

‖(− log ‖S ◦ ψx‖)−
1
n∂∂(u ◦ ψx))‖0,α ≤ C(− log ‖S(x)‖)−

1
n‖u ◦ ψx‖2,α

≤ C(− log ‖S(x)‖)
α
2n‖u‖C2,α

ω (Ux)

≤ C(− log ‖S(x)‖)
3α−1
6n

≤ C,

if we choose α < 1
3
.

So the linear elliptic operator Lx has uniformly C0,α coefficients and satisfies

Lx(u ◦ ψx) = (− log ‖S ◦ ψx‖2)
1
n (ef◦ψx − 1).
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The right hand side and its derivatives with respect to the quasi-coordinates are uni-
formly bounded, since it is an element of R∞. We know already that u is bounded, so
we obtain by interior Schauder estimates for Q := P1−ε,...,1−ε

‖u ◦ ψx‖C2,α(Q) ≤ C

for a constant C independent of x.
In order to obtain estimates for higher derivatives we differentiate

det(ψ∗xω + i∂∂(u ◦ ψx))− detψ∗xω = (ef◦ψx − 1) detψ∗xω.

This yields

i∂∂
∂

∂wi
(u ◦ ψx) ∧

n−1∑
k=0

((ψ∗ω + i∂∂(u ◦ ψx))k ∧ ψ∗ωn−k−1)+

+i∂∂(u ◦ ψx) ∧
n−1∑
k=0

(ck(i∂∂(u ◦ ψx))k ∧
∂

∂wi
ψ∗ω ∧ ψ∗ωn−k−2) =

∂(f ◦ ψx)
∂wi

ef◦ψxωn +

+(ef◦ψx − 1)
∂

∂wi
ωn.

As before we define a uniformly elliptic operator

L(2)
x (v) := (− log ‖S ◦ ψx‖)

1
n

1

ψ∗xω
n

(
i∂∂v ∧

n−1∑
k=0

((ψ∗ω + i∂∂(u ◦ ψx))k ∧ ψ∗ωn−k−1)

)

=
1

ηn

(
i∂∂v ∧

n−1∑
k=0

((η + i(− log ‖S ◦ ψx‖)−
1
n∂∂(u ◦ ψx))k ∧ ηn−k−1)

)
with uniform C0,α coefficients.

For the corresponding second term of the right hand side

H := (− log ‖S◦ψx‖)
1
n

1

ωn

(
i∂∂(u ◦ ψx) ∧

n−1∑
k=0

(ck(i∂∂(u ◦ ψx))k ∧
∂

∂wi
ψ∗ω ∧ ψ∗ωn−k−2)

)
we employ again Lemma 4.3.4, the Ck-equivalence stated in Proposition 4.3.3 and the
C2,α- bound of u ◦ ψ in order to show

‖H‖0,α ≤ C.

Such a bound is also available for the right hand side of

L(2)
x (

∂(u ◦ ψx)
∂wi

) +H = (− log ‖S ◦ ψx‖)
1
n

(
∂f ◦ ψx
∂wi

ef◦ψx + (ef◦ψx − 1)
∂
∂wi

ωn

ωn

)
,



CHAPTER 4. ASYMPTOTICS 62

because f ∈ R∞.
Since we already proved a C0 bound for ∂(u◦ψx)

∂wi
, in particular, interior Schauder

estimates give us a C3,α bound

‖u ◦ ψ‖C3,α(Q2) ≤ C

on a shrunk Q2 = P1−ε2,...,1−ε2 , ε2 ≥ ε.
This procedure can be applied inductively and hence we have uniform bounds for

the derivatives of arbitrarily high degree of u with respect to quasi-coordinates. The
shrinking of Qk can be controlled in such a way that Qk ⊃ P 1

2
,..., 1

2
.

Proposition 4.6.3 For every k there is a constant Ck such that ‖u ◦ ψx‖Ck(Q) ≤ Ck
uniformly in x for Q = P 1

2
,..., 1

2
.

Application of this proposition for k = 2 and Lemma 4.6.2 improves the asymptotic
rate to 1

n
instead of 1

6n
:

Corollary 4.6.4 There is a constant C > 0 such that

(1− C(− log ‖S‖2)−
1
n )ω ≤ ω + i∂∂u ≤ (1 + C(− log ‖S‖2)−

1
n )ω.

4.7 Construction of the strongly asymptotic metric

Definition 4.7.1 For Riemannian metrics g, g̃ on X \ D we say g is strongly Ck-
asymptotic to g̃, if there is a constant C, q > 0 such that for h := g̃ − g the estimates

−C‖S‖qg ≤ h ≤ C‖S‖qg

and
‖∇l

gh‖g ≤ C‖S‖q

for all 0 ≤ l ≤ k hold.

We start the examination of the Tian-Yau initial metric on a tubular neighbourhood
U(D) of D. Recall the construction of the principal S1-bundle Y and the angular
differential δ from section 3.2.

Let us have a closer look at the angular differential. It depended on choices of
a trivialisation of N1

D|X and an element in A1(D). With help of ‖.‖ we may get rid

of this ambiguity. For this purpose we choose local coordinates (zij) on a cover of

U(D) =
⋃k
j=1 Uj such that S = z1 on each Uj. The local coordinates induce a local

trivialisation of N1
D|X such that

βjk(z2, . . . , zn) =

∂z1k
∂z1j

|∂z1k
∂z1j

|
|z1=0.
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Let eh represent ‖.‖2 in the local coordinates. The formula for βjk implies that

δ := dϕ− i

2
π∗(∂h|D − ∂h|D)

is a global real one-form on Y independent of the chosen coordinate systems. It satisfies

dδ = π∗(ρ|D),

but is not determined by this fact. The product structure U(D)\D = (0, ε)×Y allows
us to interpret δ also as real one-form on U(D) \D.

For the following construction we need that the structure group of C∞ complex line
bundles can be reduced to the unitary group.

Lemma 4.7.2 Let L be a C∞ complex line bundle on a manifold Z. There is a unitary
complex line bundle U isomorphic to L.

Proof. Let L be given by the cocycle fij ∈ C∞(Ui∩Uj) for some cover Z =
⋃
i Ui.

We want to prove that L is isomorphic to U given by the cocycle

gij :=
fij
|fij|

.

First we see that |fij| is a cocycle for a real line bundle |L| on Z. These are classified
by the group H1(X,Z2). In particular, |L|2 is trivial, so there are f 2

i ∈ C∞(Ui), f
2
j ∈

C∞(Uj) such that

|fij|2 =
f 2
i

f 2
j

on Ui ∩ Uj. We take the square root and obtain that |L| itself is trivial. Also the
complex line bundle |L| ⊗ C given by |fij| is trivial, so U = L⊗ (|L| ⊗ C)−1 ∼= L. �

Having well-defined the angular differential we look at the radial coordinate. Recall
that we have chosen an arbitrary hermitian metric η on X; its conformal class induces
a C∞ splitting

TX |D = TD ⊕ND|X .

To be more precise we denote

0 −→ TD −→ TX
iη←−−→ ND|X −→ 0.

The map iη is a C∞-homomorphism of complex vector bundles. Let us further assume
that η is Kähler. We will explain the use of this assumption at the appropriate place.
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In order to define the radius appropriately we would like to be able to choose the
tubular neighbourhood in such a way that r = ‖S‖. This we can do only approximately.
If x ∈ D, z = expx(iη(v)) for v ∈ ND|X,x we define

r(z) := ‖dS(v)‖.

Note that dS|D ∈ H0(N∨D|X ⊗O(D)|D).
Now we have to exhibit the tubular neighbourhood foliated by level sets of r. To

this end we choose a C∞-isomorphism

ξ : U −→ ND|X

from a C∞-unitary C-bundle U to the normal bundle, i.e. ξ ∈ Γ(ND|X ⊗ U∨) is a
nowhere vanishing C∞-section. Further, dS|D being a nowhere vanishing holomorphic
section of N∨D|X ⊗O(D)|D,

dS(ξ) ∈ Γ(O(D)|D ⊗ U∨)

is naturally defined and nowhere zero. Since U is unitary,

‖dS(ξ)‖ ∈ C∞(D)

is well defined and nowhere vanishing, so we may alter ξ in such a way that

‖dS(ξ)‖ ≡ 1

on D. Note that η(iη(ξ), iη(ξ)) ∈ C∞(D) is also well defined, since U is unitary. By a
conformal change of η we could achieve η(iη(ξ), iη(ξ)) ≡ 1, but later we will need η to
be Kähler, so we cannot achieve this.

On the other hand, if z = exp(iη(v)) ∈ X for some v ∈ ND|X,x, x ∈ D, there exists
some λ ∈ Ux such that v = λξ(x). We see

r(z) = |λ|.

Indeed, the neighbourhood defined by r

U(D) := {z ∈ X|r(z) < ε}
= {exp(iη(v)) ∈ X| v ∈ ND|X , η(iη(v), iη(v)) < ε2η(iη(ξ), iη(ξ))}

is tubular in the sense that it is a geodesic disc fibration over D with variable radii.
So, assuming e−1 < ε, we modify the definition of Y by setting

Y := {exp(iη(v)) ∈ X| v ∈ ND|X , η(iη(v), iη(v)) = e−1η(iη(ξ), iη(ξ))}.
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In order to compute the differentials we look at the commutative diagram

V := (exp ◦iη)−1(U(D))

exp

��
((QQQQQQQQQQQQQQQ

U(D) Φ // R

where we consider Φ = r2, ‖S‖2.
For v ∈ ND|X,x ∩ V we obtain

d(r2 ◦ exp ◦iη)(x, v) = d(‖dS(.)‖2)(x, v)

= d‖.‖2(dS(v)) ◦ d(dS|D)(x, v)

and

d(‖S‖2 ◦ exp ◦iη)(x, v) = d‖.‖2(S(expx(v))) ◦ dS(expx(v)) ◦ d exp(x, iη(v)) ◦ diη(x, v).

In order to verify (and make sense of)

d(dS|D)(x, 0) +

(
0 0
iη 0

)
= dS(x) ◦ d exp(x, 0) ◦ diη(x, 0) (4.7)

we use the natural splitting on the zero section

TE|0E = 0∗(E ⊕ TD),

where 0 denotes the zero section as map and 0E its image for any holomorphic vector
bundle E . For the left hand side of equation 4.7 we use E ∈ {ND|X ,O(D)|D} and
consider dS|D : ND|X −→ O(D)|D as homomorphism of vector bundles. Its differential
can be viewed as map

d(dS|D)|0ND|X : ND|X ⊕ TD −→ O(D)|D ⊕ TD.

Since dS|D is linear along the fibres and maps 0ND|X to 0O(D)|D,

d(dS|D)|0ND|X =

(
dS|D 0

0 id

)
.

To compute the right hand side we note that the composition

d(exp |D) ◦ diη|0ND|X : ND|X ⊕ TD −→ T (TX |D)|0TX |D −→ TX |D

is exactly the splitting given by iη ⊕ id (cf. [La, VIII, Prop. 5.1]). Moreover, the full
differential of S maps

dS : TX |D −→ 0∗(TO(D)|0O(D))|D = O(D)|D ⊕ TX |D.
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This map is simply given by (dS|D, id). Here dS|D denotes the section of N∨D|X ⊗
O(D)|D. So we obtain again by TD = ker dS and the fact that iη is a section of the
projection for any v ∈ ND|X,x, w ∈ TD,x

dS(x) ◦ d exp(x, 0) ◦ diη(x, 0)(v, w) = (dS(iη(v) + w), iη(v) + w)

= (dS(v), iη(v) + w)

= d(dS|D)(x, 0)(v, w) + (0, iη(v)).

Since for fixed v and t > 0 the limits

lim
t−→0

d‖.‖(dS(tv)) and lim
t−→0

d‖.‖(S(exp(tv))

exist and
lim
t−→0

d‖.‖(x, tw)(0, .) = 0

for any w ∈ O(D)x we finally see that for all x ∈ D

lim
z−→x

(d‖S‖ − dr)(z) = 0.

Moreover, d‖S‖2 − dr2 is a C∞ one-form vanishing on D of order at least two. In
particular,

‖S‖2 = r2eb

for some b ∈ C∞(X) vanishing at D.
As angles we have

e2iψ :=
S(z)

S(z)
and e2iϕ :=

dS(v)

dS(v)

for z = expx(iη(v)), v 6= 0 as sections of the respective unitary bundles over U(D) \D.
The angle ϕ is the same as constructed earlier in this section.

We define

R := − log r = −1

2
log ‖S‖2(1 +O(‖S‖)).

Let X = (1,∞)× Y and define for R ∈ (1,∞) a metric gR on Y by:

gR = (2R)
1
nπ∗gD + (2R)

1
n
−1δ ⊗ δ.

The corresponding volume form is given by√
det gR = (2R)

1
2
− 1

2n

√
det gDdϕi ∧ dxi1 ∧ · · · ∧ dxi,2n−2.

We can easily calculate the inverse tensor. For this purpose denote by γi the vector
with components γiq(xi), q = 1, · · · , 2n− 2. Then we have on π−1(Ui):
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gR =

(
(2R)

1
n
−1dϕi ⊗ dϕi (2R)

1
n
−1γtidϕi

(2R)
1
n
−1γidϕi (2R)

1
nπ∗gD + (2R)

1
n
−1γi ⊗ γti

)
and

g−1
R =

(
((2R)1− 1

n + (2R)−
1
nγtig

−1
D γi)

∂
∂ϕi

⊗ ∂
∂ϕi

−(2R)−
1
nγtig

−1
D

∂
∂ϕi

−(2R)−
1
n g−1

D γi
∂
∂ϕi

(2R)−
1
n g−1

D

)
.

Theorem 4.7.3 If gD := Re(i∗Dρ), then the metric Re(ω) is strongly Ck-asymptotically
equivalent to

g = (2R)
1
n
−1dR⊗ dR + gR.

Proof. As a first step we show that the metrics ω and

i∂∂R
n+1
n

are Ck-equivalent for any k. By the preceding arguments we have

R = −1

2
log ‖S‖2 + b

for a function b ∈ C∞(X) such that b|D ≡ 0. So b = z1β + z1β for a function
β ∈ C∞(U,C) and local coordinates like in section 4.3. We adopt this section’s notation
here. Since b ∈ R∞ Lemma 4.3.4 shows that all derivatives of b with respect to quasi-
coordinates are in R∞. This sums up to the desired claim that

i∂∂R
n+1
n = i∂∂(−1

2
log ‖S‖2 + b)

n+1
n

is strongly asymptotic to ω in every Ck-sense.
Next we consider the change of the complex structure when changing from U(D)

to ND|X . We denote
Φ := exp ◦iη : ND|X −→ X

and want to compare

i∂∂R
n+1
n and i(Φ−1)∗∂∂(R ◦ Φ)

n+1
n .

A choice of local coordinates z1, . . . , zn in a neighbourhood U intersecting D like above
induces local coordinates v1 := dz1, z2, . . . , zn of ND|X in a neighbourhood Ũ intersect-
ing 0ND|X . These will also be denoted by x1 := v1, xi := zi for i > 1. Finally, let us
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abbreviate ã := R
n+1
n , a := ã ◦ Φ and Ψ := Φ−1 : U(D) −→ ND|X . We obtain

∂∂R
n+1
n −Ψ∗∂∂(R ◦ Φ)

n+1
n = dzi ⊗ dzj

(
∂2a

∂xl∂xk
∂Ψl

∂zi
∂Ψk

∂zj
+

∂2a

∂xl∂xk
∂Ψ

l

∂zi
∂Ψ

k

∂zj
+(4.8)

∂a

∂xk
∂2Ψk

∂zi∂zj
+

∂a

∂xk
∂2Ψ

k

∂zi∂zj

)
−

− ∂2a

∂xk∂xl

(
∂Ψk

∂zi
∂Ψ

l

∂zj
dzi ⊗ dzj +

∂Ψk

∂zi
∂Ψ

l

∂zj
dzi ⊗ dzj

)

In order to prove strong asymptotic C0-equivalence of the metrics given by the real
parts it is enough to show

(∂∂R
n+1
n −Ψ∗∂∂(R ◦ Φ)

n+1
n )( ∂

∂zi
, ∂
∂zj

)

Ψ∗∂∂(R ◦ Φ)
n+1
n ( ∂

∂zi
, ∂
∂zj

)
|D = 0 (4.9)

and
(∂∂R

n+1
n −Ψ∗∂∂(R ◦ Φ)

n+1
n )( ∂

∂zi
, ∂
∂zj

)

Ψ∗∂∂(R ◦ Φ)
n+1
n ( ∂

∂zi
, ∂
∂zj

)
|D = 0. (4.10)

To this end we introduce the notion of an “exponential degree” for functions p ∈
C∞(Ũ \ 0ND|X ), q ∈ C∞(U \D):

expdeg(p) := sup{r ∈ R| |x1|−rp is bounded around 0ND|X},
expdeg(q) := expdeg(q ◦ Φ).

Now we have to compute the exponential degrees of the derivatives of a and Ψ.
The function a can simply be expressed as

a(x1, . . . , xn) = (−1

2
(h(0, x2, . . . , xn) + log |x1|2))

n+1
n ,

so

expdeg(
∂a

∂xk
) = expdeg(

∂a

∂xk
) = −δk1

and

expdeg(
∂2a

∂xk∂xl
) = expdeg(

∂2a

∂xk∂xl
) = expdeg(

∂2a

∂xk∂xl
) = −δk1 − δl1.

In order to compute the corresponding values for Ψ we carry out the calculations
for Φ first. We denote

iη(x
1, . . . xn) = (x1α, x2, . . . , xn)
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with α ∈ TX |D(U ∩D) satisfying α1 = 1. We obtain

∂Φk

∂xl
(0, x2, . . . , xn) = 0,

∂Φk

∂xl
(0, x2, . . . , xn) =

{
αk , if l = 1
δkl , if l > 1

The computations for k, l > 1 are straightforward, as well as for k = 1, l > 1 and
k > 1, l = 1 as soon as you note that ∂αj

∂x1 = 0.
The inverse of the Jacobian of Φ is

∂Ψk

∂zl
(0, z2, . . . , zn) = 0,

∂Ψk

∂zl
(0, z2, . . . , zn) =

{
−αk , if l = 1, k > 1
δkl else

The results for the first of Ψ imply

expdeg(
∂Ψk

∂zl
) =

{
0 , if l = 1 or l = k
1 else

,

expdeg(
∂Ψk

∂zl
) =

{
2 , if k = 1 and l > 1
1 else

,

expdeg(
∂2Ψj

∂zk∂zl
) =


2 , if j = 1 and k, l > 1
0 , if k = 1 and j, l > 1
1 , if k > 1

This is now plugged into (4.8) in order to verify (4.9) and (4.10). So ∂∂R
n+1
n and

Re(Ψ∗∂∂(R ◦Φ)
n+1
n ) are strongly asymptotically C0-equivalent. The coefficients of the

difference terms being in R∞ we can proceed like before to prove Ck-equivalence of the
two metrics using quasi-coordinates.

In the last step we compute the metric in the new coordinates R,ϕ, z2, . . . zn, z2, zn

and with respect to the new complex structure. So we have

R = −1

2
(h|D + log |z1|2), z1 = e−R−

1
2
h|D+iϕ

and the metric becomes

i
n

n+ 1
Ψ∗∂∂(R ◦ Φ)

n+1
n = (2R)

1
nπ∗(ρ|D) +

1

n
R

1
n
−1(d log z1 + ∂h)⊗ (d log z1 + ∂h)

= (2R)
1
nπ∗(ρ|D) +

1

n
R

1
n
−1(dR + iδ)⊗ (dR− iδ).

Hence the real parts satisfy

Re(i
n

n+ 1
Ψ∗∂∂(R ◦ Φ)

n+1
n ) = (2R)

1
nRe(π∗(ρ|D)) +

1

n
R

1
n
−1(dR⊗ dR + δ ⊗ δ).
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�

Note that in this sense also the family gR is strongly Ck-asymptotic to the family
ωR under the isomorphism between ỸR and Y .

As an immediate application, the coefficients of the Laplacians ∆ω and ∆g differ
only by terms vanishing exponentially (in R) in D. So, if u ∈ C2,α

ω (X \D) and

∆ωu = f ∈ O(R−p),

we can put all difference terms to the right hand side and obtain

∆gu = f̃ ∈ O(R−p).

The same holds true for any number of k times iterated Laplacians, if we assume
u ∈ C2k,α

ω (X \D).

4.8 Spectral analysis of the Laplace equation on the

fibre bundle

Let f : Y −→ R be a C∞-function. On π−1(Ui) we have a Fourier decomposition

f =
∞∑

k=−∞

aik(xi)e
ikϕi , ai,−k = aik

with local C∞-functions aik : Ui −→ C. We employ eikϕj = βkij(xi)e
ikϕi and conclude

from the uniqueness of the Fourier decomposition

ajk(xj) = β−kij (xi)aik(xi).

So we arrive at a projection

fk(xi, ϕi) = aik(xi)e
ikϕi = ajk(xj)e

ikϕj ,

which is a global smooth function on Y .
For every k ∈ Z we define a complex line bundle Lk given by the cocycle β−kij (xi). The
volume form of g is√

det g =
√

det gDdR ∧ dϕi ∧ dxi1 ∧ · · · ∧ dxi,2n−2.

Let u, f : U(D)\D −→ R be two smooth functions with f decreasing for R →∞ and
∆gu = f . We see immediately that we must have ∆guk = fk as well. We calculate

∆g(uk) =
1√

det g

∂

∂R

(
(2R)1− 1

n

√
det g

∂uk
∂R

)
+ ∆gR(uk).
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Furthermore

∆gR(uk) = (2R)1− 1
n
∂2

∂ϕ2
i

(uk)− (2R)−
1
n
∂2

∂ϕ2
i

(uk) + (2R)−
1
n∆g

R=1
2

(uk)

= −k2(2R)1− 1
nuk + k2(2R)−

1
nuk + (2R)−

1
n∆g

R=1
2

(uk).

The map uk 7−→ ∆g
R=1

2

(uk) is a selfadjoint elliptic operator, and we use this to define

a selfadjoint elliptic operator Pk : C∞(Lk) −→ C∞(Lk) by

Pk(uki(xi))e
ikϕi = ∆g

R=1
2

(uki(xi)e
ikϕi).

According to [GT] Pk has an L2-orthonormal eigenbasis (ξmki(xi))m∈N0 , Pk(ξmki(xi)) =
λmkξmki(xi), limm→∞ λmk = −∞ and λmk ≤ Ck. Note that any λmk is, by construction,
also an eigenvalue of ∆g

R=1
2

. Now we can write

u(R,ϕi, xi) =
∞∑

k=−∞

∞∑
m=0

umk(R)eikϕiξmki(xi)

and correspondingly for f . Note that the boundedness of u implies that also

umk =

∫
Y

ue−ikϕξmkdvolgR=1
2

is bounded.
The condition ∆g(uk) = fk translates to a system of decoupled ODEs

d

dR

(
(2R)1− 1

n
dumk
dR

)
− k2(2R)1− 1

numk + (k2 + λmk)(2R)−
1
numk = fmk.

Proposition 4.8.1 We actually have λmk ≤ −k2.

Proof. Let ε > 0 be small and consider〈
ξmki(xi)e

ikϕi ,∆g
R=1

2

(ξmki(xi)e
ikϕi)

〉
Y,g

R=1
2

−
〈
ξmki(xi)e

ikϕi ,∆g
R=1

2 ε
(ξmki(xi)e

ikϕi)
〉
Y,g

R=1
2

ε
1
n
− 1

2
+ 1

2n =

−k2
〈
ξmki(xi)e

ikϕi , ξmki(xi)e
ikϕi
〉
Y,g

R=1
2

+k2ε
〈
ξmki(xi)e

ikϕi , ξmki(xi)e
ikϕi
〉
Y,g

R=1
2

= −k2 + k2ε.
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This implies 〈
ξmki(xi)e

ikϕi ,∆g
R=1

2

(ξmki(xi)e
ikϕi)

〉
Y,g

R=1
2

≤ −k2 + k2ε.

Letting ε→ 0 tend to 0 shows the claim. �

Corollary 4.8.2 There is C > 0 such that λmk ≤ −C(k2n−1 +m)
2

2n−1 .

Proof. Since any λmk is also some eigenvalue µm′ of ∆g
R=1

2

with m′ ≥ m, the claim

follows from the well-known fact

µm′ ∼ Cm′
2

2n−1 .

�

We renormalise λmk + k2 → λmk ≤ 0 and obtain the system of ODEs

d

dR

(
(2R)1− 1

n
dumk
dR

)
− k2(2R)1− 1

numk + (2R)−
1
nλmkumk = fmk. (4.11)

From now on we assume
f ∈ O(R−p).

Case k 6= 0: First we treat the case where k 6= 0, so for symmetry we may assume
k > 0. We look at the homogeneous equation where fmk = 0. We substitute

x = −2kR, Q(x) = umk(R)e−kR

and end up with a confluent hypergeometric equation:

x
d2Q

dx2
+ (γ − x)

dQ

dx
− αQ = 0.

Here we have set

γ = 1− 1

n
and α =

1

2

(
1− 1

n

)
+
λmk
4k

.

We have to examine a fundamental system of solutions and their behaviour for R→∞
so x→ −∞. A first solution is given by

Q1(x) =

∫ ∞
1

exttα−1(t− 1)γ−α−1dt.
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Here we notice that γ−α−1 =≥ −1
2
− 1

2n
> −1 and so Q1(x) is well defined for x < 0.

A second solution is given by

Q2(x) =

∫ 1

0

exttα−1(1− t)γ−α−1dt.

This makes sense only for α > 0, but if α ≤ 0, then we regard the integral as a formal
expression and perform partial integration, so that both exponents α − 1 > −1 and
γ − α− 1 > −1.

Next we determine the asymptotic of Q1(x) and Q2(x) for x→ −∞. We have

Q1(x) = (−x)α−γex
∫ ∞

0

e−s
(

1 +
s

−x

)α−1

sγ−α−1ds

∼ (−x)α−γex
(

Γ(γ − α)− 1− α

−x
Γ(γ − α+ 1) + · · ·

)
.

For Q2(x) we have similarly

Q2(x) = (−x)−α
∫ −x

0

e−s
(

1 +
s

−x

)γ−α−1

sα−1ds

and

lim
x→−∞

∫ −x
0

e−s
(

1 +
s

−x

)γ−α−1

sα−1ds =

∫ ∞
0

e−ssα−1ds = Γ(α).

So for k > 0 we obtain a basis of the homogeneous equation whose asymptotic expan-
sion looks like

w1(R) ∼ (2kR)α−γe−kR

w2(R) ∼ (2kR)−αekR.

A solution of the inhomogeneous equation is found by variation of constants. So put
w = c1w1 + c2w2 and set

dc1
dR

w1 +
dc2
dR

w2 = 0

dc1
dR

dw1

dR
+
dc2
dR

dw2

dR
= fmk(R)(2R)

1
n
−1.

We solve for dc1
dR

and dc2
dR

:

dc1
dR

= −fmk(R)(2R)
1
n
−1w2

(
w1
dw2

dR
− dw1

dR
w2

)−1

dc2
dR

= fmk(R)(2R)
1
n
−1w1

(
w1
dw2

dR
− dw1

dR
w2

)−1

.
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The Wronskian is asymptotically given by

w1
dw2

dR
− dw1

dR
w2 ∼ 2k(2kR)−γ,

so we get the estimates ∣∣∣∣dc1dR

∣∣∣∣ ≤ C

2k
(2R)−p+

1
n
−1(2kR)γ−αekR∣∣∣∣dc2dR

∣∣∣∣ ≤ C

2k
(2R)−p+

1
n
−1(2kR)αe−kR.

We end up with

|c1(R)| ≤ |c1(1)|+ C(2k)γ−α−1

∣∣∣∣∫ R

1

t−p+
1
n
−1+γ−αektdt

∣∣∣∣
≤ |c1(1)|+ C(2k)γ−α−1R−p+

1
n
−1+γ−αekR

|c2(∞)− c2(R)| ≤ C(2k)α−1

∣∣∣∣∫ ∞
R

t−p+
1
n
−1+αe−ktdt

∣∣∣∣
≤ C(2k)α−1R−p+

1
n
−1+αe−kR.

So we see that the general solution looks like

w(R) = c1w1 + c2w2 + w̃

|w̃| ≤ C

2k
R−p+

1
n
−1

and constants c1, c2 ∈ R. The same asymptotics hold for |dw̃
dR
|.

Case k = 0 and λm < 0: This leads to the ODE

d2w

dR2
+
γ

R

dw

dR
+
λm
2R

w = fm0(R)(2R)
1
n
−1.

As before we first treat the homogeneous equation. Two independent solutions are
given by

w1(R) := R−
γ−1

2 Iγ−1(
√
−2λR), w2(R) = R−

γ−1
2 Kγ−1(

√
−2λR),

where Iν and Kν denote the respective modified Bessel functions of order ν. The
asymptotics of these functions are known to be [AS]

Iν(x) =
ex√
2πx

(1 +O(x−1)), Kν(x) =

√
π

2x
e−x(1 +O(x−1)).
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Differentiating the Wronskian and using the defining ODE we see that

w2(R)
dw1

dR
− w1(R)

dw2

dR
=

1

2
R−γ.

So the coefficients c1, c2 satisfy

dc1
dR

= −2fm0(R)x
γ−1

2
+ 1
nKγ−1(

√
2λR),

dc2
dR

= 2fm0(R)x
γ−1

2
+ 1
n Iγ−1(

√
2λR).

Now using the asymptotics of the Bessel functions we obtain the general solution

w(R) = c1w1(R) + c2w2(R) + w̃(R)

with
|w̃(R)| ≤ CR

1
n
−p.

By differentiation of w one easily observes∣∣∣∣dwdR
∣∣∣∣ ≤ CR−

1
2 |w|

for the general solution.
Case k = 0 and λm = 0: This is easy. The homogeneous equation reads

d2w

dR2
+
γ

R

dw

dR
= 0.

The general solution is given by

w = c0R
−γ+1 + c1.

Variation of constants yields dc1
dR

= f(R)Rγ−1+ 1
n and dc1

dR
= −f(R)R

1
n . We end up with

w = c0R
−γ+1 + c1 + w̃,

|w̃| ≤ CR−p+1+ 1
n

and ∣∣∣∣dwdR
∣∣∣∣ ≤ CR−1|w|

for the general solution.

For convergence properties we also need information about ξmk and their derivatives.
The derivatives of ξmk in directions parallel to D can be dealt with by a local maximum
principle [GT, Thm 9.20] leading in connection with interior Schauder estimates to the
estimates
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Lemma 4.8.3 ‖eikϕξmk‖C2
g
R=1

2

≤ C(1 + (k2 − λmk)
n+3

2 ).

We will use this to obtain a crucial decay result.

Theorem 4.8.4 If u ∈ C3n+6,α
ω (X\D) and f := ∆ωu ∈ O(R−p) satisfies the conditions

of Theorem 4.1.1, then u− 1
volg

R=1
2

(Y )

∫
Y
u dvolg

R=1
2

and u,R are in O(R−p+
1
n ).

Proof. First we inquire into the behaviour of the estimating constants Cmk such
that

|fmk| ≤ CmkR
−p.

Due to Lemma 4.8.3 we will need that
∑

m,k Cmk(k
2 − λmk)

n+3
2 converges, so in order

to ensure that we compute

fmk =

∫
Y

fe−ikϕξmkdvolg
R=1

2

= (λmk − k2)−1

∫
Y

∆g
R=1

2

f · e−ikϕξmkdvolg
R=1

2

= (λmk − k2)−1

∫
Y

((2R)
1
n∆gRf + (1− 2R)

∂2

∂ϕ2
f)e−ikϕξmkdvolg

R=1
2

= (λmk − k2)−1

(
(2R)

1
n

∫
Y

∆gRf · e−ikϕξmkdvolgR=1
2

− k2(1− 2R)fmk

)
and hence

|(k2(2R− 1)− 1)fmk| = (2R)
1
n (k2 − λmk)

−1|
∫
Y

∆gRfe
−ikϕξmkdvolg

R=1
2

|

≤ (2R)
1
n (k2 − λmk)

−1‖(∆gRf)‖L2(Y )

≤ (2R)
1
n (k2 − λmk)

−1volg
R=1

2

(Y )
1
2‖∆gRf‖C0(Y )

≤ C1(k
2 − λmk)

−1R−p.

In the worst case, k = 0, the right hand side is just an estimate for |fmk|.
Iteration and application of the assumption on the iterated Laplacian yields

|fmk| ≤ Cj(k
2 − λmk)

−jR−p. (4.12)

By Corollary 4.8.2 we have k2−λmk ≥ C(k2n−1 +m)
2

2n−1 , so choosing j = 3
2
n+ 5

2
yields

the desired property.
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We denote by wmk the bounded homogeneous solutions of section 4.8, by w̃mk the
particular inhomogeneous solutions constructed in section 4.8. Then there are constants
cmk such that umk = cmkwmk + w̃mk, hence

u =
∑
m,k

(cmkwmk + w̃mk)e
ikϕξmk.

This series converges absolutely. Note that u00 = 1
volg

R=1
2

(Y )

∫
Y
u dvolg

R=1
2

.

Checking the cases (k,m) 6= (0, 0) as discussed in section 4.8 we see that

|w̃|mk ≤ CmkR
−p+ 1

n ,

for (m, k) 6= (0, 0), so by Lemma 4.8.3 the series

ũ :=
∑

(m,k) 6=(0,0)

wmke
ikϕξmk

converges absolutely and
|ũ| ≤ CR−p+

1
n .

Hence, also

v := u− u00 − ũ =
∑

(m,k) 6=(0,0)

cmkwmke
ikϕξmk

converges absolutely.
From this and the exponential decay of the wmk we want to deduce an exponential

decay of v. We first look at the terms with k 6= 0 and estimate

|wmk(R)| = ekR
∫ ∞

1

e−2kRttα−1(1− t)γ−α−1dt

≤ ekR
∫ ∞

1

e−2kte−2k(R−1)ttα−1(1− t)γ−α−1dt

≤ e−kR+2|wmk(1)|.

This gives us ∑
k 6=0,m

|cmkwmk(R)ξmk| ≤
∑
k 6=0,m

e−kR+2|cmkwmk(1)ξmk|

≤ C
∑
k 6=0

e−kR

≤ C
e−R

1− e−R

≤ C̃e−R.
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In case k = 0,m 6= 0, we obtain an integral representation of wm0

wm0(R) = (2R)
1
n

∫ ∞
1

(tγ−2 + t−γ)e−
√
− 1

2
λm0R(t+t−1)dt,

allowing again for an estimate

wm0(R) ≤ R
1
n e−2

√
− 1

2
λm0R+2

√
− 1

2
λm0wm0(1).

Finally, this yields∑
m6=0

|cm0wm0(R)ξm0| ≤ R
1
n

∑
m6=0

e−2
√
− 1

2
λm0R+2

√
− 1

2
λm0|cm0wm0(1)ξm0|

≤ C̃R
1
n

∑
m6=0

e−2
√
− 1

2
λm0R+2

√
− 1

2
λm0

≤ C̃R
1
n

∑
m6=0

e−C(
√
R−1)m

1
2n−1

≤ C̃R
1
n

∫ ∞
1

e−C(
√
R−1)m

1
2n−1

dm

= C̃R
1
n

∫ ∞
1

s2n−2e−C(
√
R−1)sds

≤ C̃e−C
√
R.

Putting all results together we obtain

|v| ≤ C̃e−C
√
R,

and hence u− u00 ∈ O(R−p+
1
n ).

Differentiating the integral representations of the homogeneous solution and ap-
plying the results for ∂umk

∂R
from section 4.8 we obtain with the same techniques the

corresponding result for u,R. �

4.9 Proof of Theorem 4.1.1

We assume ∆ωu ∈ O((− log ‖S‖2)−p) and u ∈ C∞(X \D) ∩ C3n+6,α
ω (X \D). Due to

Lemma 4.7.3 this implies
∆gu = f

with
|f | ≤ C(− log ‖S‖2)−p
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and hence
(∆gu)mk = fmk

with
|fmk| ≤ Cmk(− log ‖S‖2)−p)

for all m, k.
In order to apply the results of Section 4.8 we have to compute

‖∂∂u‖2
ω = ωil̄ωkj̄u,ij̄u,kl̄.

With z1 = S, using the linear theory together with the estimates (4.12), the equalities
hold

u,11̄ =
‖.‖2

4
e2R(u,RR + u,ϕϕ +O(e−R))

u,1k̄ = −
‖.‖,k̄

2
eR−iϕ(u,R + iu,ϕ)−

‖.‖
2
eR−iϕ(u,Rk̄ + iu,ϕk̄) +O(1)

Abbreviating

A(u) :=
‖.‖2

4
(2R)1− 1

n (u,RR + u,ϕϕ)

and

B(u) := (2R)−
1
n

∑
k

(
‖.‖,k̄

2
(u,R + iu,ϕ)−

‖.‖
2

(u,Rk̄ + iu,ϕk̄))

we see

‖∂∂u‖2
ω ≤ C1|A(u)|2 + C2|A(u)||B(u)|+ C3|B(u)|2 + (4.13)

+Ckl̄(2R)−
1
n
−1(|A(u)|+ |B(u)|)|u,kl̄|+ Cij̄kl̄(2R)−2− 2

n |u,ij̄u,kl̄|.

Here the indices i, j, k, l are running between 2 and n. We note that u00 ∈ O(R−p+1+ 1
n ),

so the same arguments as in the proof of Theorem 4.8.4 yield with the estimate of
Lemma 4.8.3 that u,ij̄ ∈ O(R−p+1+ 1

n ), so the last term of equation 4.13 decays with
the correct rate −2p.

So, in order to prove Theorem 4.1.1 it is enough to show that

|A(u)| ∈ O(R−p) and |B(u)| ∈ O(R−p).

For this purpose we translate this condition into the Fourier expansion of Section 4.8.
Defining Amk := e−ikϕA(umke

ikϕ) and Bmk := e−ikϕB(umke
ikϕξmk) we can plug in the

ODEs (4.11) in order to see

Amk = fmk − (2R)−
1
numk,R + (k2 + λmk)(2R)−

1
numk.
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Again, checking the cases distinguished in section 4.8 we obtain

Amk ∈ O(R−p), Bmk ∈ O(R−p)

for all (m, k) 6= 0. The function u00 occurs in A00 with coefficient zero, however.
So application of the same techniques as in the proof of Theorem 4.8.4 yield A(u) ∈
O(R−p).

For the term B(u) we note that Bmk = B
(1)
mk +B

(2)
mk with

B
(1)
mk = (2R)−

1
n

∑
l

‖.‖,l̄
2

(umk,R − kumk)ξmk

B
(2)
mk = −(2R)−

1
n

∑
l

‖.‖
2

(umk,R − kumk)ξmk,l̄.

For both terms we apply the techniques of the proof of Theorem 4.8.4 in connection
with Lemma 4.8.3.

4.10 Proof of Corollary 4.1.2

Let u be the bounded solution of the Monge-Ampère equation (4.1). First we note that
f like constructed satisfies the assumptions of Theorem 4.1.1. For ∆ωu we will prove
a similar property using the estimates in quasi-coordinates of section 4.6 yielding the
same result. Again the spectral decomposition of Section 4.8 can be used to see

|umk(R)| = |
∫
Y

ue−ikϕξmkdvolgR=1
2

|

≤ (k2 − λmk)
−1|
∫

∆g
R=1

2

ue−ikϕξmkdvolgR=1
2

|

= (k2 − λmk)
−1|(∆g

R=1
2

u)mk|

≤ C(k2 − λmk)
−1

For the last inequality we use Proposition 4.6.3 after expressing the angular coordinate
in quasi coordinates. Iterating this estimate and using Corollary 4.8.2 yields that for
every k,m and j there is a constant Cj such that

|umk(R)| ≤ Cj(k
2n−1 +m)−j.

The proof of Theorem 4.8.4 told us that independently of the behaviour of higher Lapla-
cians, the exponential decaying part cmkwmkξmk of umk has an exponential decaying
bound independent of (m, k),

|cmkwmkξmk| ≤ C̃e−C
√
R,
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hence
∆ωu ∈ O(R−p) ⇒ |umk| ≤ CR−p+

1
n

for a constant C independent of (m, k) 6= (0, 0). Again |u00| ≤ CR−p+1+ 1
n .

So interpolating both inequalities for every 0 < α < 1 and l there is a constant Cα,l
such that

|R−
1
numk| ≤ Cα,lR

−αp(k2n−1 +m)−l(1−α)

for (m, k) 6= 0 and similarly for (m, k) = (0, 0). Now we choose l big enough and use
Lemma 4.8.3 to conclude

|R−1− 1
nu,ij̄| ≤

∑
m,k

|umkξmk,ij̄| ≤ CαR
−αp

for all i, j ≥ 2. These two estimates show like in the proof of the Main Theorem
(Section 4.9):

Lemma 4.10.1 Let u be the bounded solution of the Monge-Ampère equation (4.1).
For every p > 0 and 0 < α < 1

|∆ωu| ≤ CR−p ⇒ ‖∂∂u‖ω ≤ C̃R−αp.

Now we consider the sets

E1 := {p ∈ R+| ∃C > 0 : |∆ωu| ≤ C(− log ‖S‖2)−p}

and
E2 := {p ∈ R+| ∃C > 0 : ‖∂∂u‖ω ≤ C(− log ‖S‖2)−p}.

By Theorem 4.5.4 E2 is not empty and E1 = E2 by Lemma 4.10.1. We may assume
that E1 has a supremum q. So, for any ε > 0 we have a sequence xi ∈ X converging
to D such that

|∆ωu(xi)| ≥ (− log ‖S(xi)‖2)−q−ε.

So,

ef − 1 ≥ |∆ωu| −

∣∣∣∣∣
n∑
i=2

(
n

i

)
(∂∂u)i ∧ ωn−i

ωn

∣∣∣∣∣
≥ (− log ‖S‖2)−q−ε − C(− log ‖S‖2)−2α(q+ε)

≥ 1

2
(− log ‖S‖2)−q−ε

on a subsequence of xi provided α > 1
2

and ε < 2α−1
2α+1

. This is impossible.
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4.11 Distance function and volume growth

Let ω̃ be the Ricci-flat Kähler metric constructed above and R the global radial coor-
dinate in a tubular neighbourhood U of D as constructed above.

Proposition 4.11.1 There are positive constants C1, C2, C3 such that for all x, y ∈ U
with R(x) ≥ R(y) holds

distω̃(x, y) ≥ C1(R(x)
n+1
2n −R(y)

n+1
2n )− C2R(y)

1
2n − C3R(y)

1−n
2n

distω̃(x, y) ≤ C1(R(x)
n+1
2n −R(y)

n+1
2n ) + C2R(y)

1
2n + C3R(y)

1−n
2n

Proof. Note that for Riemannian metrics h, h̃ on a manifold Z with h ≤ h̃ a look
at h̃-geodesics confirms that disth(x, y) ≤ disth̃(x, y) for all x, y ∈ Z. Thus, it suffices
to prove the claimed inequalities for g instead of ω̃. Recall the structure of g

g = (2R)
1
n
−1dR⊗ dR + (2R)

1
nπ∗gD + (2R)

1
n
−1δ ⊗ δ.

We use the isomorphism U ∼= (1,∞) × Y , write x = (R(x), z(x)), y = (R(y), z(y))
and choose a path γ = γ1 ∨ γ2 ∨ γ3 from y to x decomposed into paths γi : [0, 1] −→ U
as follows:

(i) γ3(0) = y, π(z(γ3(1))) = π(z(x)), π ◦ z ◦ γ3 is a gD-geodesic on D, δ(γ′3) ≡ 0 and
R ◦ γ3 is constant; the block like structure of g implies that γ3 is a g-geodesic.

(ii) γ2(0) = γ3(1), z(γ2(1)) = z(x), as well R ◦ γ2 as π ◦ z ◦ γ2 are constant and γ2 is a
geodesic on the fibre π−1(π(z(x))) with respect to the pullback of g to the fibre;
again the block like structure implies that γ2 is a g-geodesic.

(iii) γ1(t) := (tR(x) + (1− t)R(y), z(x)); this is again a g-geodesic.

The lengths of the paths γi are estimated to be

l(γ1) = C1(R(x)
n+1
2n −R(y)

n+1
2n )

l(γ2) ≤ C2R(y)
1
2n

l(γ3) ≤ C3R(y)
1−n
2n

This proves the upper bound directly. Using the fact that all γi are g-geodesics
these estimates also imply the lower bound. �

This will imply less than quadratic volume growth.

Proposition 4.11.2 Let x ∈ X be fixed. There are positive constants c, C, r such that
for ω̃-geodesic balls Bρ(x) of radius ρ > r around x

cρ
2n
n+1 ≤ volω̃(Bρ(x)) ≤ Cρ

2n
n+1 .
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Proof. The claim being invariant under the choice of x we may assume x ∈ U for
an appropriate tubular neighbourhood U of D. Since ω̃ is complete, the compact set
K := X \ U is bounded, so

r1 := max
y∈X\U

distω̃(y, x), A := volω̃(K)

are well defined.
We compute √

det g = dR ∧ δ ∧
√

det π∗gD.

Let us denote

r̃ := max(r1, C1R(x)
n+1
2n + C2R(x)

1
2n + C3R(x)

1−n
2n )

with C1, C2, C3 being the constants from Proposition 4.11.1. The same proposition
implies

(R(y) ≤ R(x) ⇒ distω̃(y, x) ≤ r̃).

Furthermore there are constants a, b depending on C1, C2, C3 and R(x) such that

(R(y) ≥ R(x) ⇒
(

distω̃(y, x)− b

C1

) 2n
n+1

≤ R(y) ≤
(

distω̃(y, x) + a

C1

) 2n
n+1

).

So

K ∪

{
y ∈ U | R(y) ≤

(
ρ− b

C1

) 2n
n+1

}
⊂ Bρ(x) ⊂ K ∪

{
y ∈ U | R(y) ≤

(
ρ+ a

C1

) 2n
n+1

}
,

whenever ρ > r̃ and hence integrating the volume form of g yields

A+2πvolgD(D)

((
ρ− b

C1

) 2n
n+1

− 1

)
≤ volg(Bρ(x)) ≤ A+2πvolgD(D)

((
ρ+ a

C1

) 2n
n+1

− 1

)
,

i.e.
C4 + C5ρ

2n
n+1 ≤ volω̃(Bρ(x)) ≤ C6 + C7ρ

2n
n+1

for positive constants C5, C7, whenever ρ > r̃. So r ≥ r̃, depending on C4, C5, C6, C7,
can be chosen so as to fulfil the claim. �
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4.12 Extensions of holomorphic maps

The following Lemma is well-known (cf. [Sch98]) but rarely stated explicitly or proved.
It will be applied in this chapter, so here a proof is given.

Lemma 4.12.1 Let X, Y be complex projective manifolds, C ⊂ X and D ⊂ Y smooth,
ample divisors. If f : X \ C −→ Y \ D is a rational biholomorphic map, then there
exists a biholomorphic extension f̃ : X −→ Y .

Proof. Since X is projective, we may identify OX(C) with the germs of rational
functions on X having a at most a pole of order one along C. We identify f with
the birational map X −→ Y given by f . The pullback f ∗ : K(Y ) −→ K(X) is an
isomorphism by assumption. Since f is biholomorphic on X \C, the poles of functions
in f ∗OY (D) must lie in C. The maximal pole order is realized by a general element,
so we infer by a symmetry argument f ∗OY (D) ⊂ OX(C) and again by symmetry
f ∗OY (D) = OX(C). Now consider the projective embeddings φ|mC| : X −→ PN and
φ|mD| : Y −→ PN (note that N is the same for both embeddings) given by bases of
B ⊂ H0(OY (D)) and f ∗B ⊂ H0(OX(C)). The triangle

X
f //

φ|mC| !!B
BB

BB
BB

B Y

φ|mD|~~||
||

||
||

PN

commutes, i.e. f is the restriction of the identity on PN to X \ C. In particular, f is
extendable to a biholomorphic map f : X −→ Y . �

Theorem 4.12.2 Let X be a Fano manifold, D ∈ |−KX | smooth and φ ∈ Aut(X \D)
such that φ∗ω̃ is C0-equivalent to ω̃. Then φ has an extension φ̃ ∈ Aut(X,D). In
particular, Aut(X \D, ω̃) = Aut(X,D, ω̃).

Proof. We fix constants such that

aω̃ ≤ φ∗ω̃ ≤ Aω̃

and
cω̃ ≤ ω ≤ Cω̃

in a tubular neighbourhood of D (cf. [TY90, Thm 1.1]). Choose a sequence (xn) −→
x ∈ D in the manifold topology of X with xn /∈ D. We apply Proposition 4.11.1 in



CHAPTER 4. ASYMPTOTICS 85

order to compute

distω(φ(xn), φ(x0)) ≤ C
1
2 distω̃(φ(xn), φ(x0))

= C
1
2 distφ∗ω̃(xn, x0)

≤ (AC)
1
2 distω̃(xn, x0)

≤ (AC)
1
2 c−

1
2 distω(xn, x0)

∼ C1(− log ‖S(xn)‖2)
n+1
2n .

So there exists a subsequence, called again xn, such that φ(xn) −→ y ∈ D in the
manifold topology of X. This implies

distω(φ(xn), φ(x0)) ∼ (− log ‖S(φ(xn))‖2)
n+1
2n .

Hence
‖S(φ(x))‖ ≥ C2‖S(x)‖C3 ,

first in a neighbourhood of D, but then also on all of X.
By a standard argument, such an inequality implies rationality of the map φ. We

give an outline of the argument. A basis of H0(OX(mD)) is embedding X
i
↪→ PN with

homogeneous coordinates [Z0 : · · · : ZN ]; it can be chosen such that mD = {Z0 = 0}.
Let U be a neighbourhood around a point z ∈ D and zi coordinates, such that S(z) =
z1. The map

φ̃ = i ◦ φ : X \D −→ PN

has image in {Z0 6= 0}, so we can respresent φ̃ by [1 : φ̃1 : · · · : φ̃N ] with holomorphic
functions φ̃i : X \ D −→ C. The norm ‖.‖m on OX(mD) and the pullback of the
standard metric ‖.‖FS on OPN (1) under i differ only by a unit u ∈ C∞(X):

‖.‖2m = u · i∗‖.‖2
FS.

Since for the sections Zi ∈ H0(OPN (1) the norm is ‖Zi‖2
FS = |Zi|2

|Z|2 and i∗Z0 = Sm we
compute

‖S(φ(z))‖2m = u(φ(z))
1

1 +
∑N

i=1 |φ̃i(z)|2
.

On the other hand, ‖S(z)‖2 = h|z1|2 for a unit h ∈ C∞(U), so the inequality transforms
to

1 +
N∑
i=1

|φ̃i(z)|2 ≤ C|z1|−2C3m,

for any relatively compact V ⊂ U . As usual, the Cauchy integral formula implies that
all φ̃i have poles along D∩V of order at most C3m, so φ̃ is meromorphic, in particular.
By GAGA for projective manifolds we obtain that φ is rational. We apply Lemma
4.12.1 to conclude the proof. �



Chapter 5

Ricci-flat Deformations of Vector
Bundles and their application

5.1 Introduction

Let X be a compact complex manifold, U a complex manifold without holomorphic
vector bundles (e.g. a contractible Stein manifold), and E −→ X × U a holomorphic
vector bundle. (So the deformations we deal here with are neither global nor small
but something in between.) Further let g be a hermitian metric on E . The data of
the central fibre will be denoted by E0 and g0. This setup is called a deformation
of the hermitian vector bundle (E0, g

0). As usual we denote Θ0 := ∂∂ log det g0 and
Θt := ∂X∂X log det g|Et the curvatures.

Definition 5.1.1 The deformation (E , g) is called Ricci-flat, if Θt = Θ0 for all t ∈ U .

We tackle the question of existence of Ricci-flat deformations. In Theorem 4.1.1 we
show that the obstruction space for this problem is

H1(X,OX)/i∗H
1(X,R),

if i : R −→ OX is the natural inclusion. This group is trivial for Kähler manifolds, so on
Kähler manifolds we can extend every metric on the central fibre curvature preservingly
to the deformation. In the non-Kähler case we can still show that the property of a
given vector bundle to admit only Ricci-flat deformations is independent of the vector
bundle and hence a property of the manifold, namely the vanishing of the obstruction
space.

The answer to the question, whether for a vector bundle any Ricci-flat deformation
is trivial, depends on the bundle, however, and will be denoted by Ricci-rigidity. This
generalises the notion of rigidity to manifolds with non-vanishing first cohomology. We
will see that this property is connected to a minimising property of H1(End(E)).

86
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On Hopf manifolds we deepen this connection and so construct Ricci-rigid vector
bundles. We relate Ricci-rigidity to the non-triviality of the pullback to the universal
cover Cn \ {0}.

It should be noted that the algebraic and analytic category differ widely in this case.
Whereas on C2 and C2\{0} there are only trivial algebraic vector bundles [S58, H64], on
C2\{0} some non-trivial holomorphic vector bundles have been constructed before. The
paper by Bănică and LePotier [BP87] classified filtrable holomorphic vector bundles
on non-algebraic surfaces. In particular, for all integers r ≥ 2, c2 ≥ 0 there exists a
holomorphic rank r bundle E with c2(E) = c2 on a Hopf surface. Calculations below
and in [M92] show that the pullback to C2 \{0} of such a bundle is not trivial provided
c2 > 0. The constructed bundles are filtrable. Later Ballico [B02] constructed a non-
filtrable rank 2 bundle on C2 \ {0}. In [S66] a non-trivial line bundle on C2 \ {0} is
constructed.

5.2 The local data

By the compactness of X we can employ the trivialisations of E in order to obtain a
finite cover of open sets Ui ⊂ X and isomorphisms

ψi : E|Ui×U −→ pr∗1E0|Ui×U ,

where pr1 : X × U −→ X is the projection. This yields the data

θij := ψi ◦ ψ−1
j , gi := (ψ−1

i )∗g,

satisfying gj = θ∗ijgi, obviously. Note that θij|Uij×{0} = Id. Similarly, we have the
extended metric of the central fibre

<,>:= pr∗1g
0

as a comparison metric. We obtain by Lax-Milgram Gi ∈ EndC∞(pr∗1E0|Ui × U) with
the property

gi(e1, e2) =< e1, Gie2 >

for any C∞ sections e1, e2 of pr∗1E0 over Ui. Note that again Gi|Ui×{0} = Id. On Uij×U
we have the formula

Gi = θ∗jiGjθji. (5.1)

Here θ∗ji denotes the adjoint of θji with respect to <,>. It is easy to see that the
deformation is Ricci-flat if and only if

∂X∂X log detGi = 0 for all i. (5.2)
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The inclusions Z ⊂ R ⊂ OX give a commuting triangle

H1(X,Z) //

''OOOOOOOOOOO
H1(X,R)

i∗
��

H1(X,OX)

of injective maps. We view all unnamed maps as natural inclusions.
For any deformation the map

η : U −→ H1(X,OX)/H1(X,Z) = Pic0(X)

given by

t 7→ [
1

2πi
log det θij(., t)] = det Et ⊗ det E∨0

is a well-defined holomorphic map with η(0) = 0. If we assume the deformation to be
small, we may assume that η maps to H1(X,OX).

5.3 The infinitesimal data

We give the infinitesimal data for the one-dimensional case U = (C, 0). The generali-
sation to U = (Cn, 0) is straightforward.

We take the Taylor series to the first order

θij = Id+ thij + h.o.t., Gi = Id+ tγi + tγ∗i + h.o.t.

with hij ∈ End(E0|Uij), γi ∈ EndC∞(E0|Ui). The hij satisfy the cocycle condition and
hence yield an element h ∈ H1(End(E0)). Indeed, if the deformation is trivial, hij is a
coboundary. By comparison of

gi(e1, e2) =< e1, e2 > +t < e1, γ
∗
i e2 > +t < e1, γie2 > +h.o.t.

and

θ∗jigj(e1, e2) = < e1, e2 > +t(< hjie1, e2 > + < e1, γ
∗
j e2 >) +

+t < e1, (γj + hji)e2 > +h.o.t.

we obtain
hij = γj − γi (5.3)

on Uij. This tells us that the γi trivialise the deformation in the C∞ sense to the first
order.
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Now let us consider curvature

Θi := ∂X∂X log det gi

= Θ0 + ∂∂ log detGi

= Θ0 + ∂∂ log(1 + ttrγi + h.o.t)

= Θ0 + t∂∂trγi + h.o.t.

So, any Ricci-flat deformation satisfies

∂∂trγi = 0. (5.4)

5.4 Existence

We start with an arbitrary metric g̃ on a deformation E . This yields the data ψ̃i,
g̃0 and G̃i. By the Cartan decomposition we can find a unique positive hermitian
A ∈ EndC∞(E0) with respect to g̃0 such that

g0(e1, e2) = g̃0(Ae1, Ae2)

for any local sections e1, e2 of E0. Setting ψi := A−1 ◦ ψ̃i, Gi := A−1G̃iA (now with
respect to <,>:= pr∗1g

0) we obtain a deformation of g0.
The question of existence of a Ricci-flat deformation is more subtle.

Theorem 5.4.1 A deformation E −→ X×U of a hermitian holomorphic vector bundle
(E0 −→ X, g0) allows for a curvature preserving metric g extending g0 if and only if

η(t) ∈ i∗H1(X,R)/H1(X,Z)

for all t ∈ U and the inclusion i : R ↪→ OX ; moreover, this condition being satisfied, in
every conformal class of metrics g deforming g0 there is a Ricci-flat representative.

Proof. Necessity: We shrink Ui appropriately such that they are simply connected.
By (5.2) we find for every t ∈ U holomorphic hi(t) ∈ OX(Ui) such that

log detGi(t) = Re(hi(t)).

So we have by (5.1) on Uij

2Re(log det θij(t)) = Re(hi(t)− hj(t)),

hence there are cij(t) ∈ R such that

1

2πi
(2 log det θij(t)− hi(t) + hj(t)) = cij(t),
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but this means exactly
η(t) ∈ i∗H1(X,R)/H1(X,Z).

Sufficiency: Since θij|Uij × {0} = Id, by shrinking U we may assume that θij =
exp(2πikij) for some kij ∈ End(pr∗1E0|Uij × U). Note that (kij) is no cocycle, unless
they commute. Nevertheless, det θij = exp(2πitrkij), so (trkij) ∈ O(Uij ×U) is a cocy-
cle, defined uniquely by θij up to an integer. In particular, (trkij|Uij×{t}) ∈ O(Uij) is
a cocycle for all t ∈ U . Since we assumed that η(t) = [trkij(t)] ∈ i∗H1(X,R)/H1(X,Z),
we can choose Ki(t) ∈ O(Ui) and φij(t) ∈ R such that

trkij = Kj −Ki + φij

and Ki(0) = 0, φij(0) = 0. The dependence on t of Ki and φij is not holomorphic
anymore, but it can be chosen to be C∞. For Hi := exp(2πiKi) we obtain

det θij exp(−2πiφij) =
Hj

Hi

and hence the deformed metric has to satisfy

detGj =
|Hj|2

|Hi|2
detGi. (5.5)

Now we can take any metric g̃ deforming g0 (with data G̃i) and take a conformal
change:

Gi :=

(
|Hi|2

det G̃i

) 1
n

G̃i.

We obtain detGi = |Hi|2 and hence ∂∂ log detGi = 0, so we have a Ricci-flat deforma-
tion.

Now covering the original U by neighbourhoods like above and using the uniqueness
of trkij up to an integer, we extend the criterion to all of U . �

In the infinitesimal information we loose sufficiency of the condition:

Proposition 5.4.2 A Ricci-flat deformation germ of hermitian vector bundles satisfies

1

2πi
trh ∈ V,

where V is the maximal complex subspace of i∗H
1(X,R).

Proof. We shrink Ui appropriately such that they are simply connected. By (5.4)
we find holomorphic fi, gi ∈ O(Ui) such that trγi = fi + gi. So (5.3) tells us that

trhij + fi − fj = gj − gi.
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Since the right hand side is antiholomorphic and the left hand side is holomorphic, we
find constants cij ∈ C such that

cij = trhij + fi − fj = gj − gi.

So we obtain in i∗H
1(X,C)

1

2πi
trh =

1

2πi
trc =

1

2πi
(c+ 2iImc) =

Imc

π
∈ i∗H1(X,R).

If we look at a base transformation τ : (T, 0) −→ (T, 0) and denote the objects
corresponding to the deformation τ ∗E of E0 by a superscript τ , it is straightforward
that

hτij = τ ′(0)hij.

This proves the statement. �

5.5 Stable Curvature and Ricci-Rigidity

We see that Ricci-flatness of a deformation does not depend on the initial metric on the
central bundle. There are two natural properties connected to Ricci-flat deformations:

Definition 5.5.1 The vector bundle E is said to have stable curvature, if all defor-
mations of E over a base U without holomorphic vector bundles are Ricci-flat. E is
Ricci-rigid, if every small Ricci-flat deformation of E is trivial.

Our first goal is to realise that stable curvature is not a property of a vector bundle,
but of the underlying manifold:

Proposition 5.5.2 Let X be a compact complex manifold. Then the properties

(i) There exists a vector bundle E with stable curvature,

(ii) All vector bundles have stable curvature,

(iii) i∗ : H1(X,R) −→ H1(X,OX) is an R-isomorphism

are equivalent.

Proof. Since (ii) ⇒ (i) is obvious and (iii) ⇒ (ii) is Theorem 5.4.1, it remains to
show (i) ⇒ (iii). So we assume that i∗ is not surjective. In particular, dimPic0(X) > 0,
hence OX can be deformed non-trivially. So, for any deformation Lt of L0 = OX with
Lt 6∈ i∗H1(X,R)/H1(X,Z) for all real t and arbitrary vector bundle E , the deformation
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E ⊗ Lt satisfies η(t) = Lnt 6∈ i∗H1(X,R)/H1(X,Z) for all real t. Hence we have shown
that no vector bundle has stable curvature. �

Examples of such “stable curvature” manifolds are all compact Kähler manifolds.
Counterexamples are all compact manifolds with odd b1(X), e.g. Hopf surfaces.

Also Ricci-rigidity has geometric implications.

Proposition 5.5.3 If X allows for a Ricci-rigid vector bundle, then all germs of holo-
morphic maps f : (C, 0) −→ Pic0(X) with image in

i∗H
1(X,R)/H1(X,Z)

are constant.

Proof. Let f be such a map with f(0) = 0 and E0 a Ricci-rigid vector bundle.
Then, of course E0 ⊗ f(t) is a Ricci-flat deformation, hence E0 ⊗ f(t) ∼= E0. Taking
determinants shows f(t)n = OX , but this means that f(t) is constant, so f ≡ 0. �

The classical correspondence that a vector bundle E over X with H2(End(E)) =
H2(OX) is rigid if and only if H1(X, End(E)) = 0 has a nice analogue here. Note that
the maps

OX
·Id−→ End(E)

tr−→ OX

compose to multiplication by rkE . So they do on every level of cohomology, hence
h1(End(E)) ≥ h1(OX). Our notion of Ricci-rigidity measures in the infinitesimal setup
that at E the minimal value is attained.

Proposition 5.5.4 If a vector bundle E satisfying H2(End(E)) = H2(OX) is Ricci-
rigid, then H1(End(E)) ∼= H1(OX).

Proof. Let E0 be Ricci-rigid and Et be any small deformation of E = E0 and define
L̃t := det E∨t ⊗det E0. Note that L̃t ∈ Pic0(X). If we shrink the base of the deformation
appropriately we may assume the existence of a holomorphic family Lt of line bundles
with Lnt = L̃t. Now we have

det(Et ⊗ Lt) = det(E0),

in particular, Et ⊗ Lt is a Ricci-flat deformation. Hence we obtain

Et ∼= E0 ⊗ L∨t .

By imposing H2(End(E)) = H2(OX) we ensure that every ζ ∈ H1(End(E)) can be
integrated to a small deformation (see [B95, Cor. 5.7]). So

ζ =
d

dt
|t=0Lt∨ ∈ H1(OX)

for some deformation Lt ∈ Pic0(X) of L0 = OX . �
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5.6 Examples

5.6.1 Kähler manifolds

Corollary 5.6.1 Every compact Kähler manifold is a “stable curvature” manifold.

Proof. Let X be a compact Kähler manifold, i : R −→ OX be the inclusion and
jp : Ap

X −→ A0,p
X be the map mapping a real-valued p-form ω to its complex-valued

(0, p)-part ω(0,p) for p ≥ 1 and the natural inclusion for p = 0. Since the maps

0 // R //

i

��

A0
X

d //

j0
��

A1
X

d //

j1
��

A2
X

d //

j2
��

. . .

0 // OX
// A0,0

X

∂ // A0,1
X

∂ // A0,2
X

∂ // . . .

give a cochain map between these two acyclic resolutions, general theory (e.g. [HS,
1,IV,4.4]) yields, that j∗ = i∗ : Hp(X,R) −→ Hp(X,OX) on all levels p.

Any harmonic (0, 1)-form η yields by conjugation a harmonic (1, 0)-form η such
that ω := η+η is a real one-form with i∗[ω] = [η], so in the Kähler case i∗ is surjective.
�

5.6.2 Non-Kähler examples

Proposition 5.6.2 Let X be a compact manifold with b1(X) = h0,1(X) = 1 and E a
holomorphic vector bundle on X. If

H1(End(E)) ∼= H1(OX),

then E is Ricci-rigid.

Proof. If H1(End(E0)) = H1(OX), and Et is a Ricci-flat deformation, then by
Grauert’s semi-continuity theorem we obtain also H1(End(Et)) = H1(OX) for small t.
Shifting the centre of the deformation to t, we obtain a family h(t) ∈ H1(End(Et)). We
know now that tr : H1(End(Et)) −→ H1(OX) is an isomorphism. By the Ricci-flatness
of the deformation we have due to Proposition 5.4.2 that trh(t) = 0. Hence h(t) = 0
for all t and so the deformation is trivial. �

Example 5.6.3 Let X be the Hopf manifold defined by the automorphism φ(z) = 2z
on Cn \ {0}. Then there is a natural smooth elliptic fibration π : X −→ Pn−1. For any
bundle we have R1π∗π

∗E = E∨. Let E be a a simple bundle on Pn−1 with H1(End(E)) =
H2(End(E)) = 0. Then the Leray spectral sequence implies that H1(End(π∗E)) = C
and hence π∗E is Ricci-rigid. For instance, TPn−1 satisfies these conditions for n ≥ 2.
(For n = 2 exactly the line bundles satisfy the requirements.)
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Moreover, it is known that p∗TPn is not trivial for n ≥ 2, if p : Cn+1 \ {0} −→
Pn denotes the natural projection. The following results will recover this and give a
connection between Ricci-rigid bundles on some Hopf manifolds and non-trivial vector
bundles on Cn \ {0}.

Proposition 5.6.4 Let X be the Hopf manifold given by the quotient of Cn \ {0} by
the automorphism group generated by ϕ(z1, . . . , , zn) = (α1z1, . . . , αnzn), |αi| > 1 and
u : Cn\{0} −→ X the projection. If E is a Ricci-rigid vector bundle on X with rkE > 1,
then u∗E is not trivial.

Proof. There is a multiplicative degree degϕ : C[z1, . . . , zn] −→ C via

degϕ(zi) := αi.

If u∗E is trivial, usual techniques allow us to identify E of rank r with an equivalence
class of holomorphic maps L : Cn \ {0} −→ Gl(r,C) where

L ∼= L̃ : ⇐⇒ ∃T ∈ O(Cn \ {0}, Gl(r,C)) such that L̃ = T ◦ ϕ · L · T−1.

Choosing T carefully we can achieve a normal form of L consisting of blocks Lν in
upper triangle form (cf. [M92] for a very similar normal form) with the property

(Lν)kk =
n∏
j=1

α
ijk
j ν

for ijk ≥ 0, ij1 = 0 and
(Lν)kl ∈ C[z1, . . . , zn]

homogeneous with

degϕ(Lν)kl =
n∏
j=1

α
ijl−ijk
j .

Now L(t)kl := Lkl for (k, l) /∈ {(1, 1), (2, 2)} and

L(t)11 := exp(t)L11, L(t)22 := exp(−t)L22

defines a non-trivial Ricci-flat small deformation of E . �

Combining (5.6.4) and (5.6.3) we obtain immediately

Corollary 5.6.5 If n > 1, p : Cn+1 \ {0} −→ Pn is the natural projection and E a
simple vector bundle on Pn satisfying rkE > 1 and H1(End(E)) = H2(End(E)) = 0,
then p∗E is not trivial.



Chapter 6

A Method for the Construction of
Octics with Many Nodes

Introduction

Given a nodal octic S in P3, one can construct a Calabi-Yau-threefold, which is a
desingularisation of a double cover of P3 ramified over S (cf. [Cl83]). So the usual
way is first to prove existence of octics with a certain number of nodes and then to
construct from this Calabi-Yau-threefolds with certain Euler numbers. This can also
be done for octic arrangements with isolated singularities (cf. [Cy99, CS99]).

It has been proven that for every given number not larger than 108 there are
octic hypersurfaces with this number of nodes ([We87, Bo90]). Furthermore there are
examples for many numbers between 108 and 168. For the probably most complete
list of constructed numbers we refer to [Labs]. In the references the interested reader
may find the most important sources for constructions of octics with many nodes. The
author likes to thank Oliver Labs for pointing out several references. Miyaoka proved
in [Mi84] an upper bound of 174 possible nodes.

In this chapter the way is reversed: Calabi-Yau-threefolds that are desingularisa-
tions of double covers of P3, are used to construct octics with a certain number of nodes.
To construct the Calabi-Yau-threefolds we look at hypersurfaces of projectivised rank-
2-bundles over P3. For this class it turns out that, indeed, the octics can only have
nodes as singularities. Finally, we construct an example with 128 nodes as our maximal
case up to now.

95



CHAPTER 6. CONSTRUCTION OF OCTICS WITH MANY NODES 96

6.1 Construction of the octic hypersurface

Let E p−→ P3 be a rank-2-bundle and s ∈ H0(−KP(E)) a section such that X = {s = 0}
is smooth. We denote γ(E) := deg(c21(E)− 4c2(E)). This is invariant under tensoring E
with line bundles, and moreover

c3(X) = −8γ − 168,

which can be computed by standard methods. For details of this and other computa-
tions we refer to [K01]. Hence γ is a topological invariant of X.

The restriction to X of the projection p we call π : X −→ P3. The map π is a
generic double cover. If we take the Stein factorization

X
c−→ X ′

φ−→ P3, π = φ ◦ c,

i.e. the unique factorization such that c∗OX = OX′ and φ is finite (see e.g. [BHPV, p.
32]), the map φ is a double cover, whose ramification locus we denote by B ⊂ P3. We
call B also the ramification divisor of π and denote B̃ := π−1(B). Another description
of B is obtained by looking at the discriminant map.

Construction 6.1.1 Let X = {s = 0}, with s ∈ H0(−KP(E)) and

B := {p ∈ P3|π is locally in p not an étale covering}.

We define the discriminant

∆E : S2E ⊗ F −→ (det(E)⊗F)⊗2

by

∆E(
∑

1≤i<j≤2

cijsisj ⊗ f) := (c212 − 4c11c22)(s1 ∧ s2 ⊗ f)⊗2,

where s1, s2 is a O(U)-basis of E(U), F −→ P3 a line bundle and f ∈ F(U) a generator
of F(U) for a small open set U ⊂ P3. It is an easy computation that this definition is
independent of the chosen bases.

Now we specify
F = det E∨ ⊗O(4).

Then the discriminant is a map

∆E : p∗(−KP(E)) −→ O(8),

with
{∆E(p∗s) = 0} = B
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set theoretically: in local coordinates

s =
∑

sijxixj,

where [x0 : x1] denotes the coordinates of the fiber and B is the locus where the zeroes
of ∑

sij(z)xixj = 0

are not two distinct points. By definition this is the discriminant locus of the qudratic
equation in x0, x1, given by

s2
01 − 4s00s11 = 0.

This coincides with the discriminant locus of p∗s.
Since on a trivialising neighbourhood U ⊂ P3 the map ∆E is given by

∆E(t)|U = t212 − 4t11t22,

if t ∈ H0(p∗(−KP(E))) and t|U = (t11, t12, t22), we see, that, in particular, H0(∆E) is a
holomorphic map.

Moreover,
H0(∆E)(rt) = r2H0(∆E)(t)

for r ∈ C, t ∈ H0(−KP(E)). Hence we can projectivize. However, we cannot exclude
that H0(∆E)(s

′) = 0 for some s′ 6= 0. Therefore we get a rational map

δE : P(H0(−KP(E))) · · ·→ P(H0(O(8))) ∼= P164.

Let for the moment B′ := {z ∈ P3|H0(∆E)(s)(z) = 0} in the sense of ideals. If we
denote

P := {z ∈ P3| dim π−1(z) = 1},
then we see, that

P = {z ∈ P3|
∑

sijxixj = 0 for all [xo : x1]}

and hence
P = {z ∈ P3|s00(z) = s01(z) = s11(z) = 0} ⊂ Sing(B′).

Moreover, this shows
P = {z ∈ P3|π−1(z) ∼= P1}.

Now let z ∈ Sing(B′). If s00(z) = s01(z) = s11(z) = 0, then z ∈ P . So let us
assume s00(z) 6= 0 or s01(z) 6= 0. Let us define

x := [s01(z) : −2s00(z)] ∈ p−1(z).
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Since z ∈ B, we get that ∆E(s)(z) = s01(z)
2 − 4s00(z)s11(z) = 0. Therefore

s(x) = s00(z)s01(z)
2 − 2s00(z)s01(z)

2 + 4s11(z)s00(z)
2 = −s00(z)∆E(s)(z) = 0,

hence x ∈ X.
We want to show that x ∈ X is singular. For this we have to compute in the point

x

∂s

∂x0

= 2s00x0 + s01x1 = 0 (6.1)

∂s

∂x1

= s01x0 + 2s11x1 = 0 (6.2)

∂s

∂zi
= ∂s00

∂zi
x2

0 + ∂s01
∂zi

x0x1 + ∂s11
∂zi

x2
1 = 0 (6.3)

and we know moreover, since z ∈ Sing(B′), that at the point z

s2
01 − 4s00s11 = 0 (6.4)

2s01
∂s01

∂zi
− 4s11

∂s00

∂zi
− 4s00

∂s11

∂zi
= 0. (6.5)

Using the expression for x in (6.1), (6.2) and (6.3) we compute

∂s

∂x0

= 2s00s01 − 2s00s01 = 0

∂s

∂x1

= s2
01 − 4s00s11 = 0

∂s

∂zi
= ∂s00

∂zi
s2
01 − 2∂s01

∂zi
s00s01 + 4∂s11

∂zi
s2
00 =

= 4∂s00
∂zi

s00s11 − 2∂s01
∂zi

s00s01 + 4∂s11
∂zi

s2
00 =

= −s00(2s01
∂s01
∂zi

− 4s11
∂s00
∂zi

− 4s00
∂s11
∂zi

) = 0,

with the last equation using (6.4) as well as (6.5).
Thus we have proved that x ∈ X is singular. But we assumed X to be smooth.

Hence it is proven that P = Sing(B′). In particular, B′ is reduced and therefore B′ = B
in the sense of ideals. 4

Now we know, if X = {s = 0} for some s ∈ H0(−KP(E)) then

Lemma 6.1.2 B = δE(X) ∈ |O(8)| and P = {p∗s = 0} = Sing(B).

Note that p∗s gives the three local equations of P . For example, if E splits, then
we can conclude that P is the complete intersection of three hypersurfaces of degrees
4−√γ, 4 and 4 +

√
γ. (Indeed, if E splits, then γ is a square.)

Let us now specify the type of the singularities.
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Lemma 6.1.3 B has only double points of type A1 as singularities.

Proof. First, singularities of B̃ can only occur over singularities of B, hence by
Lemma 6.1.2

s00(z) = s01(z) = s11(z) = 0,

if y ∈ B̃ is singular and z = π(y). From this we conclude again by the local descriptions
that y is singular in X. Hence B̃ is non-singular. In particular, B has only isolated
singularities. Now we look at the rational curves F = Fp := π−1(p) for p ∈ P . The
adjunction formula yields

O(−2) = KF = KB̃|F ⊗NF |B̃.

Since again by adjunction formula degKB̃|F = B̃.F = p−1(B).F = 0 we conclude

NF |B̃ = O(−2)

and hence p is a double point of type A1. �

Lemma 6.1.4 |P | = 64− 4γ.

Proof. Since by Lemma 6.1.2 and Lemma 6.1.3 we know that dimP ≤ 0 and
P ∩ U = {z ∈ P3|s00(z) = s01(z) = s11(z) = 0} in a trivialising neighbourhood U , we
conclude

[P ] = c3(p∗(−KP(E))).

Again by standard methods (cf. [Ha, p. 423]) we compute c3(p∗(−KP(E))) = 64 − 4γ.
�

This method has only limitated applications, since by Lemma 6.1.4 we see, that the
number of nodes must be divisible by 4. But there is an additional restriction:

Lemma 6.1.5 γ(E) mod 8 ∈ {0, 1, 4}.

Proof. By definition γ(E) mod 4 is a square. The case γ(E) mod 8 = 5 can be
excluded by the Schwarzenberger condition c1(E).c2(E) ≡ 0(2). �

Since Miyaoka proved an upper bound of 174 nodes, by Lemma 6.1.5 the theoretical
maximum of our method lies at γ = −24, i.e. at most 160 nodes.
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6.2 Construction of some bundles

By looking at the splitting bundles allowing for smooth X we obtain immediately
examples of octics with 28, 48, 60 and 64 nodes. Moreover, it is not hard to see the
existence of elliptic curves in P3 of degrees d ≤ 7 which are cut out by quartics (cf.
[vB95, Hu]). The Serre construction then yields examples of octics with 80, 96 and 112
nodes. It is a little bit more work to see the existence of elliptic curves of degree 8 cut
out by quartics.

We use the Serre construction of rank-2-bundles to get the desired example (cf.
[OSS]). Let Y ⊂ P3 be an elliptic curve of degree 8. Then there is a rank-2-bundle
with an exact sequence

0 −→ O −→ E −→ IY (4) −→ 0,

since by adjunction formula detNY |P3 = O(4)|Y . If we choose concretely Y as the
image of C := {y2z − x3 + xz2 = 0} ⊂ P2 via

i : P2 · · ·→ P3

[x : y : z] 7→ [x2y + xyz + z3 : xy2 + yz2 + zx2 : x2y + xyz + xz2 : xy2 + y2z + z3],

we can compute with MACAULAY [GS], that

IY :=
⊕
n∈N

H0(IY (n))

is generated by three quartics q1, q2, q3 and four quintics. But also with MACAULAY
we can verify that the projective schemes Y and {z ∈ P3|q1(z) = q2(z) = q3(z) = 0}
are identical. Hence IY (4) is generated by global sections and we conclude that E is
generated by global sections. Therefore −KP(E) = OP(E)(2) is globally generated and
we can choose s ∈ H0(−KP(E)) such that X is smooth.

By construction c1(E) = 4h and c2(E) = 8h2, hence γ(E) = −16 and |P | = 128.

Remark 6.2.1 (i) Note that this case is extremal in some sense: Any elliptic curve
in P3 of degree d ≥ 9 cannot be cut out by quartics. This can be seen like follows:
If the contrary would be the case, the Serre construction would yield a globally
generated vector bundle E and a sequence

0 −→ O −→ E −→ IY (4) −→ 0.

Since −KP(E) = OP(E)(2) would then be globally generated as well, we conclude
(−KP(E))

4 ≥ 0. On the other hand, γ(E) = 16−4d ≤ −20 and hence (−KP(E))
4 =

32γ + 512 ≤ −128.
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(ii) This example is extremal in some other sense, too: A general member of |−KP(E)|
is an elliptic fibre space over a quadric, which is the restriction of an elliptic fibre
space P(E) −→ P3 (see [K01]).

The cases where γ is odd are more complicated to deal with. In these cases we cannot
use elliptic curves. Instead of genus 1 we have to choose negative genera, hence Y is
not irreducible and the extendability condition of the normal bundle is harder to check.
So the Serre construction does not appear to be useful.
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