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Summary

This thesis deals with optimal experimental design theory, applied to dose finding
studies.

After a brief introduction to the field of clinical studies and dose finding studies
in particular, an introduction to the well-known general optimal design theory,
especially for nonlinear models, is given.

Subsequently, commonly used models for dose finding studies (the ordinary logis-
tic model, the proportional odds model and the Emax model) are presented. For
the logistic and the proportional odds model, conditions for the existence of the
maximum likelihood estimator are derived and optimal designs are developed for
these models.

After this, a new model for two response variables, one of them categorical and
the other one binary, is introduced. It is applied to model toxicity and efficacy
simultaneously, accounting for possible dependencies of both response variables.
First the information matrix is derived for this model, which is then used to
exemplarily determine locally D-optimal designs for specific parameter settings.

Furthermore, we suggest the ’sequential locally optimal design’ (’SLOD’) as a
sequential approach combining a simple standard method for dose escalation
studies (3+3 design) with the results of optimal design theory. For the variables
that are of interest in this approach, variances and corresponding confidence
intervals are derived.

This approach is compared to the standard method and a Bayesian approach
with respect to its behavior in realistic study settings within a simulation study.
The simulations show the advantages of the new suggested approach over the
existing methods.

We conclude with a discussion of the results and an outlook to possible future
work.
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Zusammenfassung

Diese Arbeit behandelt die Theorie der optimalen Versuchsplanung, welche auf
Dosisfindungsstudien angewendet wird.

Nach einer kurzen Einführung in das Gebiet der klinischen Studien, insbesondere
der Dosisfindungsstudien, wird eine Einführung in die allgemein bekannte Theorie
der optimalen Versuchsplanung gegeben. Dabei wird speziell auf den Fall von
nichtlinearen Modellen eingegangen.

Nachfolgend werden häufig für Dosisfindungsstudien verwendete Modelle (das lo-
gistiche Modell, das Proportional-Odds-Modell und das Emax-Modell) vorgestellt.
Für das logistische und das Proportional-Odds-Modell werden Bedingungen für
die Existenz des Maximum-Likelihood-Schätzers hergeleitet, und die Theorie der
optimalen Versuchsplanung wird auf diese Modelle angewandt.

Danach wird ein neues Modell für zwei Zielvariablen, von denen eine kategoriell
und die andere binär ist, eingeführt. Dieses wird zur simultanen Modellierung der
Toxizität und der Wirksamkeit unter Berücksichtigung möglicher Abhängigkeiten
zwischen diesen Zielvariablen verwendet. Zunächst wird die Informationsmatrix
für dieses Modell hergeleitet, die dann zur Bestimmung beispielhafter lokal D-
optimaler Versuchspläne für bestimmte Parameter verwendet wird.

Des Weiteren wird mit dem
”
Sequential Locally Optimal Design“, kurz

”
SLOD“,

ein sequentieller Ansatz zur Kombination der einfachen Standardmethode für
Dosis-Eskalations-Studien (dem 3+3-Design) und der optimalen Versuchsplanung
eingeführt. Varianzen und zugehörige Konfidenzintervalle für die interessierenden
Größen bei diesem Ansatz werden hergeleitet.

Dieser Ansatz wird mit Hilfe einer Simulationsstudie mit der Standardmeth-
ode und einem Bayesianischen Ansatz bezüglich des Verhaltens in realistischen
Studiensituationen verglichen. Die Simulationsstudie zeigt die Vorteile des neu
vorgeschlagenen Ansatzes gegenüber den bekannten Methoden.

Die Arbeit schließt mit einer Diskussion der Ergebnisse und einem Ausblick auf
mögliche zukünftige Arbeiten.
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1 Introduction

The theory of optimal experimental design is well-developed for ordinary linear
models. The most important results on convex design theory date back about
fifty years, comprising important equivalence theorems (e.g. Kiefer (1959) and
Kiefer and Wolfowitz (1960)).

These results have been extended and generalized to nonlinear models (cf. White
(1973)). However, the results on optimal design for nonlinear models, which
we will use throughout this work, are less comprehensive. The same holds for
sequential approaches, which will also be of importance within this work. Both
topics are touched e.g. in Silvey (1980).

In this thesis, the theory of optimal design is applied to the field of clinical
studies. Design of experiments plays an important role in this field because we
are dealing with controlled experiments. Additionally, special issues arise due
to the fact that we are dealing with experiments conducted in humans. We
have to take into consideration ethical aspects like not exposing patients to toxic
substances or treating patients with inefficacious drugs.

We will confine ourselves to the early phase clinical trials where the drug has
not yet been tested in many people or where it is even the first time the drug
is applied in humans. The goal of these studies is finding an appropriate dose
of the drug that is both safe and efficacious. In these early phases, studies are
often conducted sequentially, such that the outcomes of the previous patients
determine which dose of the drug is administered to the successive patients. The
standard methods in this field comprise simple up-and-down designs like the 3+3
design (cf. Ivanova (2006a) and Lin and Shih (2001)). These designs are easy to
apply in practice, but are not optimal in the sense of design theory. They have
been discussed and extended, e.g. by Ivanova (2006b).

Other more sophisticated approaches like the continual reassessment method
(cf. O’Quigley et al. (1990)), purely Bayesian approaches (e.g. Whitehead and
Williamson (1998)), designs based on bivariate models considering both toxicity
and efficacy (cf. Dragalin et al. (2006) and Dragalin and Fedorov (2006)), on
efficacy-toxicity trade-offs (cf. Thall and Cook (2004)) or on contingent response
models (cf. Rabie and Flournoy (2004)) were suggested over the past years. They
are mostly based on specific models and binary response variables, which is a ma-
jor restriction.
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The purpose of this work is to improve the designs for dose finding studies, in
particular where toxicity and efficacy are considered simultaneously. We will in-
troduce appropriate models suitable for categorical response variables and derive
locally optimal designs for these models. Subsequently we will transfer these re-
sults to a more applicable sequential setting. Additionally we want to investigate
the practical feasibility of these designs and compare them to standard methods.

In Chapter 2 we will give a brief introduction to the drug development process
and dose finding studies. We will continue with an introduction to optimal design
theory in Chapter 3. There we summarize some of the existing results that we
will use in the subsequent chapters. We will present some commonly used models
for dose finding studies in Chapter 4, namely the logistic, the proportional odds
and the Emax model. Subsequently in Chapter 5 we will introduce a bivariate
model applicable to dose finding studies with two endpoints, i.e., toxicity and
efficacy, and we will derive locally optimal designs for this model. In Chapter 6
we introduce the ’sequential locally optimal design’ (’SLOD’), a specific sequential
approach for the conduct of dose escalation studies. We will carry out simulations
to explore the properties of this new approach and to compare it to other methods
in Chapter 7. We will conclude with a discussion of the results in Chapter 8.
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2 Introduction to Dose Finding
Studies

This chapter serves to describe the background of dose finding studies as part
of the drug development process. The most important terms and definitions are
presented and the general concepts are explained. The biological, medical and
pharmaceutical details are of minor importance, the focus is on the statistical
methods used in designing and analyzing dose finding studies. Additionally we
will discuss the specific challenges in this field of application. First, a rough draft
of the general drug development process is given. After that, the different types
of dose finding studies are described, followed by a presentation of some methods
specific to this field. The descriptions in this chapter are based on Ting (2006b),
Modi (2006), Ivanova (2006a), Tighiouart and Rogatko (2006) and MacDougall
(2006).

2.1 Drug Development Process

Before a new drug is made available to the public, its effects on the human
organism have to be studied intensively. Not only the desired effects of the drug
in curing the disease under consideration, but also the unwanted effects – so
called adverse events – are of interest, since the goal is to develop a drug that
is efficacious in curing the disease and at the same time safe in the sense that it
does not have severe adverse effects.

The complete drug development process from a new chemical compound to a
drug available on the market consists of two main parts, the nonclinical and the
clinical development. The nonclinical development includes all drug development
activities and experiments that are not performed in humans, e.g. in-vitro studies
and studies in animals. The term clinical development or clinical studies refers to
drug testing conducted within the human body. For the following we will focus
on the clinical development, although some of the proposed methods might as
well be applied to animal studies.

The clinical development consists of four different phases called Phase I, II, III
and IV. The first three phases are performed before a drug is marketed, Phase
IV studies are conducted when the drug is already available on the market.
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Phase I studies aim at collecting information about the effects of the drug on the
human body and vice versa. It is of major interest, how the drug is absorbed
by the human body and how the body reacts to the drug. The focus is also on
determining which doses are tolerated by the human body. Phase I studies are
usually performed in healthy volunteers and are small-scale (i.e. comprising only
few subjects) and short-term.

In Phase II trials, which are usually carried out in patients suffering from the
target disease, the efficacy of the drug is to be assessed. These studies are still
quite small-scale and serve to explore the dose response relationship in more
detail, with respect to both the efficacy as well as the tolerability of the drug in
a well defined patient population.

Phase III trials are usually meant to confirm the observations and results from
the earlier studies. They compare the new drug to a reference drug or to placebo.
They are of much larger scale and longer term than the earlier phase studies and
the patient population is less restricted.

We are mainly interested in Phase I/II studies, with special focus on investigating
the dose response relationship for both the safety and the efficacy of the drug.

2.2 Dose Finding Studies

There are different types of dose finding studies performed within Phase I and
Phase II. The first studies related to dose finding are dose escalation studies. They
aim at finding the maximally tolerated dose. Later on the goal is to determine
the therapeutic window, that is, to find doses that are both efficacious and safe.
Efficacy often is established in comparison to placebo.

2.2.1 Dose Escalation Studies

The so called dose escalation studies are Phase I studies and are among the first
studies of the new compound carried out in humans. Throughout the course of
such a study, the doses considered are escalated from a low starting dose to a
higher target dose. They usually are performed with healthy volunteers, but may
also be conducted on patients suffering from the target disease. The latter is
especially done in oncology, when the disease is life-threatening and the drug is
expected to cause major adverse events, which are partly tolerated due to the
severeness of the disease. The goal of dose escalation studies is to collect infor-
mation about the dose-toxicity-relationship, especially to determine a dose that
is considered to be the maximum tolerated dose (MTD). The exact definition of
the MTD depends on the disease and the treatment under consideration.
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Dose escalation studies comprise only few subjects. The focus is on the safety of
the new compound, the efficacy is not yet of major interest.

In oncology studies in patients suffering from a life threatening disease, the MTD
is typically defined as the dose expected to cause unacceptable toxic events in a
certain proportion of the patient population. The unacceptable toxic events are
called dose limiting toxicities (DLT s) and are usually based on a toxicity grading
using the Common Terminology Criteria for Adverse Events of the National Can-
cer Institute (cf National Cancer Institute (2006)). Define Γ as the maximally
tolerated level of toxicity. The MTD then is the highest dose with probability of
DLT less than or equal to Γ. Γ is often specified as a value around 0.33.

Before the conduct of the first dose escalation studies, there is very few or no
prior knowledge available how humans will react to the new drug, because the
information gathered in nonclinical studies is hard to transfer to humans. The
challenge therefore is to get reliable results about the dose-toxicity-relationship
and the MTD without treating patients at highly toxic doses and by using as
few subjects as possible.

2.2.2 Dose Response Studies

With the term dose response studies we summarize all other dose finding stud-
ies except for the dose escalation studies described above. They are mainly
performed in Phase II and aim at collecting information about the relationship
between the dose and the efficacy response as well as the adverse effects. Their
main purpose usually is estimating the dose response relationship, the optimal
dose or the therapeutic window. The upper bound of the therapeutic window
is given by the MTD established in Phase I. For the lower bound, a minimum
effective dose (minED) can be defined. Often the minimum effective dose is
defined as the minimum dose that induces a clinically relevant effect in a certain
proportion of the patient population. The optimal dose can be defined as the
dose that maximizes the joint probability of efficacy and no toxicity.

For illustration an example of a dose response relationship for efficacy and toxicity
is shown in Figure 2.1. The therapeutic window is also displayed there. For this
example, it is given by the doses for which the probability of efficacy is greater
than 0.8 and the probability of toxicity is less than 0.33.

2.3 The 3+3 Design

The 3+3 design, also known as the traditional escalation rule, is a design widely
used in Phase I dose escalation studies, especially in oncology. Before the start of
the trial, a sequence of doses is specified. The starting dose is deduced from the

5
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results of animal studies. The subsequent doses are determined by increasing the
previous dose by 100%, then 65%, then 50, 40 and thereafter always 33%. The
outcome considered is the occurrence of DLT s and therefore is binary. Subjects
are treated in cohorts of three, receiving the same dose. The first three subjects
are treated with the lowest dose. The treatment of the next cohort depends on
the outcome of the previous cohorts. If three patients have been treated at a dose
so far, the next cohort of patients is treated at the next higher dose level, if no
toxicities are observed in this cohort. If one out of the three patients experiences
a DLT , the next cohort is assigned to the same dose, and if two or more patients
experience a DLT , the next cohort is treated at the next lower dose level, if
possible. If already six patients have been observed at a dose level, the next
cohort is treated at the higher dose level if less than two toxicities have been
observed in the six patients. Otherwise, the next cohort is treated at the next
lower dose level. The maximum number of patients treated at each dose level is
six, and the trial is stopped, when we would either re-escalate to a dose where two
or more out of three or six patients have experienced a DLT , or when we would
de-escalate to a dose where we already have observed six patients. The MTD
is then defined as the highest dose level where less than two out of six patients
have experienced a DLT . That means the estimated MTD is the highest dose
with observed toxicity rate less than 1

3
. Depending on the exact outcomes, this

is the last dose administered or one dose below.

A graphical display of how to conduct a 3+3 design can be seen in Figure 2.2.

Different versions of the 3+3 design can be found in the literature, especially ver-
sions without de-escalation (e.g. in Ivanova (2006a)). Whenever the 3+3 design
is mentioned, we refer to the version presented here.

The 3+3 design has some properties that make it popular for the use in practice.
It is easy to understand and it can be followed very simply without complicated
interim calculations. Therefore its application in a clinical study is quite conve-
nient. The mathematical properties of this design are discussed in Section 6.1.
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3 Introduction to Optimal Design
Theory

In this chapter, we want to give an introduction to optimal design theory. The
theory presented here is based on Silvey (1980), Fedorov (1972), Fedorov and
Hackl (1997) and Atkinson and Donev (1996). An overview of the topic can also
be found in the first chapters of Schwabe (1996).

The general goal of optimal experimental design is to determine experimental
settings that maximize the amount of relevant information gained by the exper-
iment.

We are interested in the functional dependence of a response variable Y on a
set of r control variables x1, . . . , xr, also denoted by the vector x ∈ R. Y is
a random variable with a distribution given by a probability density function
p(y; x,θ). The vector of control variables x is not random and can be controlled
by the experimenter. The variables x1, . . . , xr can be set to any values within the
design space (also called design region), which is a given set X ⊆ Rr.

The relation between Y and x can be described as

E(Y (x)) = η(x; θ)

with E(Y (x)) being the expected value of Y for given x. The function η(x; θ)
depends on a set of p unknown parameters θ1, . . . , θp, denoted by the vector θ ∈ Θ
with Θ ⊂ Rp.

We will confine us to the case that the function η(x; θ) describing the relation of
Y and x is known, and that only θ or functions thereof are of interest.

Optimal design therefore has the goal of finding the experimental setting x that
maximizes the precision of the estimated parameter vector θ̂ or functions thereof,
or analogously minimizes the variance Cov(θ̂) of the estimated parameters .

Throughout this chapter, we will first define what we mean by a design, then
introduce information matrices and optimality criteria. We will also state some
fundamental results of optimal design theory from the literature, that are very
useful in the numerical search for optimal designs. Finally, we will introduce
efficiencies as a measure for comparing different designs.
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3.1 Definition of Continuous and Exact Designs

A continuous design ξ is a probability measure ξ on X . It is only necessary to
consider design measures with finite support, since only these are of practical
relevance (cf. Kiefer (1959), page 281). Denote a design ξ by

ξ =

{
x1 · · · xn
w1 · · · wn

}
where x1, . . . ,xn are n distinct design points, that is different settings of the
vector of control variables x, and wi are weights giving the proportion of the
total observations taken at design point xi, where 0 ≤ wi ≤ 1 for all i and∑n

i=1wi = 1. Let Ξ denote the set of all possible designs on X .

Continuous designs are not always useful in practice, since the weights might
give non-integer number of repetitions for some of the design points. A design
measure that is realizable in integers for a given N is called an exact design or
exact N-observation design and is denoted by

ξN =

{
x1 · · · xn

m1/N · · · mn/N

}
with mi ∈ N, i = 1, ..., n, and

∑n
i=1mi = N .

Numerical algorithms as will be presented in Section 3.5 aim at finding the opti-
mal continuous design. If N is sufficiently large, good exact designs can usually
be found by rounding of wiN to the nearest integer.

3.2 Information Matrices

To quantify the precision of the parameter estimates, the dispersion matrix, de-
noted by Cov(θ̂) is used.

In nonlinear models, the dispersion matrix is usually not available, but can be
asymptotically approximated by the inverse of the Fisher information matrix.

The Fisher information matrix for a single observation on Y at x is given by the
p× p-dimensional matrix M(x,θ) with elements

M ij(x,θ) = E

(
∂l

∂θi

∂l

∂θj

)
, i, j = 1, . . . , p

where l denotes the log-likelihood function and is given by l(θ ; Y,x) =
log p(Y ; x,θ) (cf. Cox and Hinkley (2000)).
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Assuming independent observations, Fisher information matrices are additive,
and the overall information matrix for a design ξ is given by

M(ξ,θ) =
n∑
i=1

wiM(xi,θ).

Let θ̂ be an unbiased estimator of θ. Then the diagonal elements of the inverse
information matrix are lower bounds for the variances of the respective elements
of θ̂, i.e.

Var(θ̂i) ≥ M−1
ii (ξ,θ)

(Cramér-Rao inequality, see Cox and Hinkley (2000), page 256). It even holds
that

Cov(θ̂) ≥ M−1(ξ,θ)

with respect to the Loewner order (cf. Witting (1985), page 317).

Under certain rather mild regularity conditions, like finite dimension of the pa-
rameter space and differentiability of the log likelihood (for details see Cox and
Hinkley (2000), page 281), the inverse of the information matrix is the covariance
matrix of the limiting distribution in case of asymptotic normality, i.e.

M−1(ξ,θ)
asymp.
≈ Cov(θ̂).

Therefore we will use the inverse of the Fisher information matrix as an approx-
imation to the covariance matrix.

Let us here mention two properties of information matrices.

Theorem 3.1 (cf. Fedorov and Hackl (1997), Theorem 2.3.1 )
Denote the set of all possible information matrices for a given θ by Mθ =
{M(ξ,θ); ξ ∈ Ξ}.

1. Mθ is a convex set

2. all M(ξ,θ) ∈Mθ are symmetric and non-negative definite.

This theorem is stated for linear models in Fedorov and Hackl (1997), but also
holds for nonlinear models if θ is fixed (cf. Silvey (1980)).

By Carathèodory’s Theorem (see Appendix 2 in Silvey (1980)), any element of

Mθ can be expressed as a weighted sum of at most p(p+1)
2

+1 information matrices
M(ξi,θ) with ξi being the design putting unit weight at the design point xi. Thus

there exists an optimal design containing p(p+1)
2

design points or less (cf. Atkinson
and Donev (1996), page 96).

For nonlinear models, the information matrix M(ξ,θ) depends on the unknown
parameters θ. Thus it is not possible to generally optimize M(ξ,θ) independent
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of θ. There are different approaches of dealing with the dependence on the
unknown parameters. Here we will focus on locally optimal designs, which are
designs optimizing - in some sense - the information matrix for a given value of
θ.

3.3 Optimality Criteria

We will use the information matrix as a measure for the amount of information
gained by the experiment. The aim is to maximize this information. We will now
specify in which way we can maximize the information by using the information
matrix.

A very strong conditions for a design ξ∗ to maximize the information gained and
thus to be optimal would be that M(ξ∗,θ)−M(ξ,θ) is non-negative definite for
all ξ ∈ Ξ. Such a ’uniformly optimal design’ usually does not exist.

Therefore we will focus on maximizing real-valued functions of the information
matrix. Depending on the goal of the experiment, different functions are useful.
These functions ψ are referred to as optimality criteria. A design ξ∗ is called
locally ψ-optimal at θ, if

ξ∗ = arg max
ξ
ψ(M(ξ,θ)).

In this section, we want to present some of the most important and commonly
used optimality criteria.

3.3.1 The D-Criterion

A D-optimal design ξD is a design that maximizes the determinant of the infor-
mation matrix, i.e.

ξD = arg max
ξ

detM(ξ,θ).

The D-optimal design is not necessarily unique.

For computational convenience, often − log detM(ξ,θ) is minimized, which is an
equivalent optimization problem.

The D-criterion determines the design that asymptotically minimizes the volume
of a confidence ellipsoid of the parameter vector. Although often the volume of
the confidence ellipsoid has no practical meaning, the D-criterion is commonly
used due to its favorable mathematical properties.

The D-criterion is for example invariant to linear transformations of the model
(cf. Atkinson and Donev (1996), page 117). The D-optimal design is independent
of the actual parametrization used in the model (cf. Pázman (1986), page 79).

12



3.3.2 The c-Criterion

The c-criterion is used to minimize the variance of a linear function cTθ of the
parameters.

The c-optimal design ξc is given by

ξc = arg max
ξ

(
cTM−1(ξ,θ)c

)−1
= arg min

ξ
cTM−1(ξ,θ)c

where c is the vector giving the linear combination of θ of interest. Problems can
arise when the information matrix of the optimal design is singular. Therefore
we will only admit designs that allow parameter estimation. For those designs,
the information matrix is non-singular, but we have to note that the c-optimal
design might not exist on this restricted set of designs as it is not a closed and
compact set.

Special cases of the c-criterion can be used, when the goal is to minimize the
variance of a single parameter θi. Then c is a vector with entries only 0, and 1
for the i-th entry. Analogously c can be chosen to maximize the precision of the
estimate of a certain quantile of the distribution of Y .

3.3.3 The L-Criterion

When several linear combinations of the elements of the parameter vector θ are
of interest, the following linear criterion is applicable. The design ξL is L-optimal
if

ξL = arg min
ξ

tr
(
LTM(ξ,θ)−1L

)
where L is a matrix whose columns correspond to the different linear combi-
nations of the elements of θ that are of interest. Thus ξL is the design that
minimizes the sum of the variances of the estimates of those linear combinations.
The same problems related to singular information matrices as mentioned for the
c-criterion can occur. Again, we will only consider designs with non-singular in-
formation matrices, being aware that the optimal design for this restricted design
region might not exist.

3.4 The General Equivalence Theorem

In this section we will quote some theoretical results that are fundamental for
optimal designs theory and vital for the numerical search for optimal designs.

First let us introduce the directional derivative.
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Definition 3.2 The Fréchet derivative of ψ at M 1 in the direction of M 2 is
defined as

Fψ(M 1,M 2) = lim
ε→0+

1

ε
(ψ((1− ε)M 1 + εM 2)− ψ(M 1)) .

Now we can state the following.

Theorem 3.3 (cf. Silvey (1980), Theorem 3.6)
If ψ is convex on Mθ, ξ

∗ is ψ-optimal if and only if

Fψ(M(ξ∗,θ),M(ξ,θ)) ≥ 0 for all ξ ∈ Ξ.

That means a design is optimal, if it cannot be improved by moving slightly in
the direction of any other design. In the case of differentiability of ψ, it suffices
to check whether the design is improved by changing it in the direction of any
one-point design measure.

Theorem 3.4 (cf. Silvey (1980), Theorem 3.7)
If ψ is convex on Mθ and differentiable at M(ξ∗), ξ∗ is ψ-optimal if and only if

Fψ(M(ξ∗,θ),M(x,θ)) ≥ 0 for all x ∈ X .

This theorem is of greater practical use than the one above.

We will now define the sensitivity function, which is used in the general equiva-
lence theorem by Kiefer and Wolfowitz.

Definition 3.5 The sensitivity function d of ξ at x ∈ X is given by

d(x, ξ,θ) = tr
(
M(x,θ)M−1(ξ,θ)

)
.

Theorem 3.6 (cf. Kiefer and Wolfowitz (1960))
The following statements are equivalent: the design ξD is D-optimal if

1. ξD = argminξ(− log detM(ξ,θ)),

2. ξD = argminξ maxx d(x, ξ,θ),

3. maxx d(x, ξD,θ) = p, where p is the dimension of θ.

This is one of the most important results in optimal design theory and of great
practical relevance. The equivalence theorem can be generalized to other opti-
mality criteria.

A representation of the sensitivity function and the equivalence theorem directly
applicable to the cases we will consider is given in Dragalin et al. (2006) (formula
16): A design ξD is locally D-optimal if and only if

d(x, ξD,θ) = tr
(
M(x,θ)M−1(ξD,θ)

)
≤ p, (3.1)

for all x ∈ X and d(x, ξD,θ) = p at all support points of ξD. p is the total
number of parameters.
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3.5 Numerical Methods and Algorithms for the
Construction of Optimal Designs

The optimization problems for finding optimal designs usually cannot be solved
analytically. Numerical algorithms based on the statements of the general equiv-
alence theorem have been developed to help find the solution to the optimization
problems. The algorithm used for the construction of D-optimal designs in Chap-
ters 4 and 5 is Fedorov’s First Order Algorithm for D-optimality as described in
Chapter 3.1 in Fedorov and Hackl (1997).

This algorithm is based on the fact that the sensitivity function d(x, ξD,θ)
achieves its maxima at the support points of the D-optimal design.

We will start with an arbitrary design ξ1 with non-singular information ma-
trix M(ξ1,θ). At each iteration step s, we aim at improving the design ξs
by putting more weight on the point where d(x, ξs,θ) is maximal. So we find
xs = arg maxx d(x, ξs,θ) and add the point xs to the design. That means we
construct

ξs+1 = (1− αs)ξs + αsξ(xs)

with ξ(xs) being the unit measure at xs. The value for αs ∈ (0, 1) is chosen to
fulfill

αs = arg max
α

det (M((1− α)ξs + αξ(xs),θ)) ,

so we choose the proportion α of the new design point to maximize the gain in
the optimality criterion.

3.6 Efficiency of Designs

When comparing different design, the efficiency is a useful measure. We consider
two types of efficiencies.

Definition 3.7 The D-efficiency of a design ξ is defined as

Deff (ξ) =

(
detM(ξ,θ)

detM(ξD,θ)

) 1
p

,

where ξD is the D-optimal design and p the total number of parameters.

Definition 3.8 The G-efficiency of a design ξ is defined as

Geff (ξ) =
p

maxx∈X d(x, ξ,θ)
,

where p is the total number of parameters.
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The D-efficiency represents the amount of information the design under investi-
gation ξ yields, as compared to the D-optimal design. E.g., having a design with
D-efficiency of 0.5, it would have to be repeated twice to yield the same precision
of the estimates as the D-optimal design. The interpretation of the G-efficiency
is analogous with respect to the G-optimal design minimizing maxx∈X d(x, ξ,θ).
The D-efficiency can only be determined if the D-optimal design and thus the
value of the D-criterion for the optimal design is known. However the G-efficiency
can be calculated even if the G-optimal design is not known, and therefore can
be applied more easily in practice. The G-efficiency of the D-optimal design is 1.
This follows directly from the general equivalence theorem.

For any design ξ ∈ Ξ, it holds that

Geff ≤ Deff

(cf. Corollary 3 in Dette (1996)). Thus the easy to determine G-efficiency can be
used as a lower bound for the D-efficiency.
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4 Models used for Dose Finding
Studies

Analyzing dose finding studies as presented in Chapter 2 might require some
specific methods. When modelling the dose response relationship, the ordinary
linear model often is not sufficient.

Depending on the type of response – binary, categorical or continuous – different
models have to be used. Additionally, the dose response relationship is commonly
assumed to be non-linear and often monotonically increasing. These assumptions
have to be taken into account as well when choosing the model for the dose
response relationship.

In this chapter, we want to present some models appropriate for analyzing dose
response relationships. Additionally we give an overview over optimal designs for
the respective models where relevant information is available.

4.1 The Logistic Model

The ordinary 2-parameter logistic model as presented in Hosmer and Lemeshov
(1989) or Agresti (1990) is often used for modelling binary response variables. The
expected response is not modelled directly, instead the probability for a certain
outcome is modelled. The logistic model belongs to the class of generalized linear
models.

4.1.1 Definition of the Model

Let Y be the binary response with outcomes denoted by 0 and 1, 0 meaning
failure and 1 meaning success. Success in this case means observing the event of
interest. x ∈ Rp is the vector of control variables, possibly including an intercept.
The ordinary logistic model is then defined as follows.

P (Y (x) = 1) =
exp(xTβ)

1 + exp(xTβ)
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with β ∈ Rp being the parameter vector. P (Y (x) = 1) is the probability of
observing a response of 1 given the value x of the control variables.

For the case of an intercept and a single control variable, this model reduces to

P (Y (x) = 1) =
exp(α+ β · x)

1 + exp(α+ β · x)
.

With this model we get a relationship between the outcome and the control
variable that is monotonic in x. Additionally, 0 ≤ P (Y (x) = 1) ≤ 1, thus this is
a reasonable way of modelling probabilities.

In literature dealing with medical applications (e.g. Ting (2006a)), a different
definition of the model is quite common. Let Y again be the response variable
and x the single control variable, as above. The logistic regression function is
then defined as

P (Y (x) = 1) =
exp

(
x−µ
σ

)
1 + exp

(
x−µ
σ

)
where µ ∈ R and σ > 0. The parameter µ corresponds to the value of x for which
the probability of the response being 1 is 0.5, i.e. P (Y (µ) = 1) = 0.5. In medical
applications the control variable often is the dose and µ is often referred to as the
ED50, ’ED’ meaning ’effective dose’. Thus µ is the dose showing an effect of the
drug in half the population, or in terms of probability, having a probability of 0.5
that the drug shows an effect. The second parameter σ is related to the steepness
of the slope. It does not have a practical meaning as µ does, but smaller values
of σ lead to a steeper curve. Restricting σ to positive values gives a function that
is strictly monotonically increasing in x.

This representation of the model is favored in medical applications due to the di-
rect interpretability of the parameter µ. Thus we will refer to this representation
as the ’medical parametrization’ of the logistic model, as opposed to the ’classical
parametrization’ as given above. If the parameter β in the classical parametriza-
tion of the model is restricted to positive values, both representations of the
model are equivalent, and µ = −α

β
and σ = 1

β
.

Whenever we refer to the logistic model within this work, it will be the one with a
single control variable and the medical parametrization, unless stated otherwise.

4.1.2 Parameter Estimation

Estimation of the parameters in the logistic model is done using the maximum
likelihood approach. The existence of the maximum likelihood estimator (MLE)
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though cannot be guaranteed, unless the observations fulfill some specific condi-
tions. We need observations in both of the response categories, and the observa-
tions (xi, yi) must not be separable. That means there has to be an overlap of
the values of x for which Y = 0 and Y = 1. The conditions can be found in a
more formal representation in Silvapulle (1981).

For the classical parametrization, the conditions of part (III) of the theorem in
Silvapulle (1981) are satisfied and the theorem provides a necessary and sufficient
condition for the existence of the maximum likelihood estimator. This condition
can be rephrased as follows.

Theorem 4.1 (cf. Silvapulle (1981))
Let X0 = {xi|yi = 0} and X1 = {xi|yi = 1}. The maximum likelihood estimate
in the ordinary logistic model in the classical parametrization with one control
variable exists and is unique if and only if

(min(X0) < max(X1)) ∧ (min(X1) < max(X0)).

The following examples will illustrate these conditions.

Example 4.2 Consider three design points x1 < x2 < x3. We have one obser-
vation at each design point. The following observations are possible:

x1 x2 x3

y1 0 0 0
y2 0 0 1
y3 0 1 0
y4 0 1 1
y5 1 0 0
y6 1 0 1
y7 1 1 0
y8 1 1 1

Only for two of these eight possible outcomes (marked in boldface), the conditions
of Theorem 4.1 are met and the MLE exists.

Example 4.3 We have again three design points x1 < x2 < x3, but now we have
two observation at each design point. Consider two possible outcomes:

x1 x2 x3

y1 0, 0 0, 1 0, 1
y2 0, 0 0, 1 1, 1

In the first case, the conditions in Theorem 4.1 are met and thus the MLE exists,
since

min(X0) = x1 < x3 = max(X1) and

min(X1) = x2 < x3 = max(X0).
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In the second case, the conditions are not met, since

min(X1) = x2 = max(X0).

Thus in this case, the MLE does not exist.

To state conditions for the existence of the MLE in the medical parametrization,
we take a closer look at the parameter β in the classically parameterized model. If
the MLE exists in this model, and β̂ > 0, the MLE in the medical parametrization
is given by µ̂ = − α̂

β̂
and σ̂ = 1

β̂
.

Let us first state the following lemma.

Lemma 4.4 Let g(x) be a real-valued strictly monotonical or constant function
and xi ∈ R, i = 1, . . . , n, with xi ≤ xi+1 ∀ i. Let there exist at least one i such
that xi < xi+1. Define g = 1

n

∑n
i=1 g(xi). Then

1.
∑n

i=1 xig(xi) =
∑n

i=1 xig ⇔ g is constant,

2.
∑n

i=1 xig(xi) >
∑n

i=1 xig ⇔ g is strictly monotonically increasing,

3.
∑n

i=1 xig(xi) <
∑n

i=1 xig ⇔ g is strictly monotonically decreasing.

Proof: 1. Let us first show that
∑n

i=1 xig(xi) =
∑n

i=1 xig ⇒ g is constant.

Assume g is strictly monotonically increasing. Then

∃l with xl < xl+1 : ∀i ≤ l : g(xi) < g ∧ ∀i > l : g(xi) ≥ g.

Note that
l∑

i=1

(g − g(xi)) =
n∑

i=l+1

(g(xi)− g) > 0.

By the initial condition we have

n∑
i=1

xig(xi) =
n∑

i=1

xig

⇔
n∑

i=1

xi(g(xi)− g) = 0

⇔
n∑

i=l+1

xi(g(xi)− g) =
l∑

i=1

xi(g − g(xi))

By replacing xi on the left hand side of the inequation with its minimum possible value
xl+1, we decrease the term on this side. Analogously we increase the term on the right
hand side by replacing xi with its maximum possible value xl. Thus it follows that
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n∑
i=l+1

xl+1(g(xi)− g) ≤
l∑

i=1

xl(g − g(xi))

⇔ xl+1

n∑
i=l+1

(g(xi)− g) ≤ xl

l∑
i=1

(g − g(xi))

⇔ xl+1 ≤ xl.

This is a contradiction to the assumption. Analogously a contradiction can be shown for
the assumption that g is strictly monotonically decreasing. Thus we can conclude that
g has to be constant.

We can conclude equivalence since the other direction, i.e.

g is constant ⇒
n∑

i=1

xig(xi) =
n∑

i=1

xig

is obvious.

2. Let us first show that

g is strictly monotonically increasing ⇒
n∑

i=1

xig(xi) >
n∑

i=1

xig.

As a condition, we have xi ≤ xi+1, i = 1, ..., n. Thus for g being strictly monotonically
increasing, it follows that

g(xi) ≤ g(xi+1).

By Chebyshev’s sum inequality (cf. Hardy et al. (1988), page 43-44), we can conclude
directly that

n∑
i=1

xig(xi) ≥ 1
n

n∑
i=1

xi

n∑
i=1

g(xi)

⇔
n∑

i=1

xig(xi) ≥
n∑

i=1

xig.

Additionally, we can rule out equality because of part 1 of this lemma.

3. Analogously we can show that

g is strictly monotonically decreasing ⇒
n∑

i=1

xig(xi) <
n∑

i=1

xig.

It still remains to be shown that
n∑

i=1

xig(xi) >
n∑

i=1

xig ⇒ g is strictly monotonically increasing,

n∑
i=1

xig(xi) <
n∑

i=1

xig ⇒ g is strictly monotonically decreasing.

This follows logically since the three cases considered are disjoint and include all possible
cases. �
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Now we can state the following theorem.

Theorem 4.5
The MLE for the logistic model in the medical parametrization exists if and only
if

1. (min(X0) < max(X1)) ∧ (min(X1) < max(X0))

2. 1
r

∑
xi∈X1

xi >
1

n−r
∑

xi∈X0
xi with r =

∑n
i=1 yi.

Proof: The first condition follows directly from Theorem 4.1 and the relationship between the
parameters in the different representations of the model. The second condition ensures
that the maximum likelihood estimate for β in the classical parametrization is positive.
Define g(x) = exp(α+β·x)

1+exp(α+β·x) . Then g(x) is strictly monotonically increasing for β > 0,
strictly monotonically decreasing for β < 0 and constant for β = 0.

The negative log-likelihood for the classically parameterized model is given by

l(α, β) = −rα− β
∑

xi∈X1

xi +
n∑

i=1

ln(1 + exp(α + βxi)).

It is convex in the parameters (see Pratt (1981)), thus any extremum has to be a global
minimum. The negative log-likelihood l(α, β) achieves its minimum if

∂l

∂α
= −r +

n∑
i=1

exp(α + βxi)
1 + exp(α + βxi)

= 0 (4.1)

∧ ∂l

∂β
= −

∑
xi∈X1

xi +
n∑

i=1

xi
exp(α + βxi)

1 + exp(α + βxi)
= 0.

Thus it has to be
n∑

i=1

xig(xi) =
∑
i∈X1

xi

⇔ 1
r

n∑
i=1

xig(xi) =
1
r

∑
xi∈X1

xi.

With the second condition stated in this theorem, it follows that

1
r

∑
xi∈X1

xi >
1

n− r

∑
xi∈X0

xi ⇒ 1
r

∑
xi∈X1

xi >
1
n

n∑
i=1

xi

and thus

1
r

n∑
i=1

xig(xi) >
1
n

n∑
i=1

xi

⇔
n∑

i=1

xig(xi) >
n∑

i=1

xi
r

n
.
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By equation 4.1, we can replace r with
∑n

i=1 g(xi) and we get

n∑
i=1

xig(xi) >
n∑

i=1

xi

∑n
i=1 g(xi)

n
.

Define 1
n

∑n
i=1 g(xi) =: g and we get

n∑
i=1

xig(xi) >
n∑

i=1

xig.

With Lemma 4.4, it follows that g(x) is monotonically increasing and thus β̂ > 0.

Analogously, it can be shown that if 1
r

∑
xi∈X1

xi < 1
n−r

∑
xi∈X0

xi ⇒ β̂ < 0 and if
1
r

∑
xi∈X1

xi = 1
n−r

∑
xi∈X0

xi ⇒ β̂ = 0. Since these three cases are disjoint and include
all possible cases, we can conclude equivalence. �

This theorem offers a convenient way to check if parameter estimation is possible
with the given observations. It also allows for estimating the probability of being
able to determine the MLE, given a design and assumed parameters.

4.1.3 Optimal Design for the Logistic Model

Optimal design theory for the logistic model is well developed (see for example
Silvey (1980), page 60). The information matrix is given by

M(ξ,θ) =
n∑
i=1

wiM(xi,θ) =
n∑
i=1

wi
1

σ2
F (xi,θ)(1− F (xi,θ))

(
1 xi−µ

σ
xi−µ
σ

(
xi−µ
σ

)2 ) ,
where

θ =

(
µ
σ

)
and F (xi,θ) =

exp
(
xi−µ
σ

)
1 + exp

(
xi−µ
σ

) .
It can be shown that the design

ξ =

(
µ− 1.5434σ µ+ 1.5434σ

0.5 0.5

)
is D-optimal for the logistic model with parameters µ and σ. This can easily be
verified numerically using Equation 3.1.

The design points of this D-optimal design correspond to the 0.176 and 0.824
quantiles of the logistic distribution function. The equal weights indicate that
exact designs with equal number of replications at both design points are D-
optimal. The design points of the D-optimal design are illustrated in Figure 4.1.

The D-optimal design allows for maximum likelihood estimation of the parame-
ters, if both possible responses are observed at both design points, and if the
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Figure 4.1: Example of a logistic model and corresponding D-optimal design
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number of responses equal to 1 is greater at the larger design point than at the
smaller one. This follows directly from Theorem 4.5. So from a practical point
of view, to fulfill these conditions for estimability, at least three replications are
needed at each of the two design points.

4.2 The Proportional Odds Model

The proportional odds model as described in McCullagh (1980) and in Agresti
(1990) is a generalization of the 2-parameter logistic model to an ordinal response
variable with more than two categories.

4.2.1 Definition of the Model

Let Y be the response variable and x a control variable. Assume Y is observed in
K + 1 ordered categories j = 0, . . . , K, then the cumulative probability of Y ≥ j
can be modelled as

P (Y (x) ≥ j) =
exp(

x−αj

β
)

1 + exp(
x−αj

β
)
, j = 1, . . . , K

where β > 0 and α1 < . . . < αK .

The parameters αj give the values of x for which P (Y (αj) ≥ j) = 0.5. Thus these
parameters can be interpreted analogously as the ED50 in the ordinary logistic
model.

The common slope parameter β is needed to assure valid cumulative probabilities.
If we would allow a possibly different βj for each category, we might get P (Y (x) ≥
j) ≥ P (Y (x) ≥ j + 1), and thus a negative probability for P (Y (x) = j). This is
not admissible, and can be avoided by setting βj = β for all j.

The probability of the outcome being j is given by

pj := P (Y (x) = j) =


1− P (Y (x) ≥ 1), j = 0
P (Y (x) ≥ j)− P (Y (x) ≥ j + 1), j = 1, . . . , K − 1
P (Y (x) ≥ K), j = K

=



1

1+exp(
x−α1

β
)
, j = 0

exp(
x−αj

β
)

1+exp(
x−αj

β
)
− exp(

x−αj+1
β

)

1+exp(
x−α,j+1

β
)
, j = 1, . . . , K − 1

exp(
x−αK

β
)

1+exp(
x−αK

β
)
, j = K
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Figure 4.2: Example for a proportional odds model with 4 categories.

An example for a proportional odds model with four categories is given in Fig-
ure 4.2.

4.2.2 Properties of the Model

The use of this model can be motivated by the following. Consider an underlying
continuous response variable Z, that can only be observed in K + 1 categories.
Let Z have a cumulative distribution function FZ(z) = 1−G(x−z

β
). Let Y = j if
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Figure 4.3: Underlying continuous regression model and ordinal measurement,
cf. Agresti (1990), Figure 9.2.

αj < Z ≤ αj+1 where −∞ = α0 < . . . < αK+1 = ∞. Then

P (Y (x) ≥ j) = P (Z(x) > αj) = 1− P (Z(x) ≤ αj) = G

(
x− αj
β

)
.

Choosing G as the inverse logit function, we get the model defined above
(cf. Agresti (1990)). A graphical interpretation is given in Figure 4.3

We will now state another property of this model. Consider the cumulative odds
ratio of Y (x1) ≤ j and Y (x2) ≤ j, that is

P (Y (x1) ≤ j) / P (Y (x1) > j)

P (Y (x2) ≤ j) / P (Y (x2) > j)
= exp

(
x1 − x2

β

)
.

Thus the log of the cumulative odds ratio is proportional to the difference in the
control variable, independent of the category considered. The name ’proportional
odds model’ is ascribed to this property.

If K = 1, the response is binary and the proportional odds model reduces to
the ordinary logistic model. Therefore for the remainder of this text, the logistic
model will be included in the proportional odds model as a special case.

4.2.3 Parameter Estimation

Concerning the existence of the maximum likelihood estimator, similar problems
occur as in the ordinary logistic models. Observations in all of theK+1 categories
are necessary for the maximum likelihood estimator to exist. Additionally, again
a certain degree of overlap between the observation points with observations in the
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different categories is necessary. The exact conditions are specified in Habermann
(1980), and they are rephrased in Liu et al. (2009), where the proof can be found
in Liu (2006). These conditions only apply to a linear parametrization of the
model, but still give a necessary condition for the model as defined above.

4.2.4 Optimal Design for the Proportional Odds Model

Locally optimal designs for the proportional odds model are derived in
Perevozskaya et al. (2003). The information matrix for a single design point
for this model is given by

M(x,θ) =
1

β2

[
IK
vT

]
DPD [IK v] ,

with IK being the identity matrix of dimension K and

D = diagj=1,...,K (P (Y (x) ≥ j)(1− P (Y (x) ≥ j))) ,

v =


x−α1

β
...

x−αK

β

 and

P =



1
p0

+ 1
p1

− 1
p1

0 · · · 0

− 1
p1

1
p1

+ 1
p2

− 1
p2

· · · 0

0
. . . . . . . . .

...

0
. . . . . . . . . 0

... − 1
pK−1

0 · · · 0 − 1
pK−1

1
pK−1

+ 1
pK


.

The information matrix for a single design point thus is of dimension K + 1, but
of rank K. Therefore at least two different design points are necessary for having
a nonsingular overall information matrix.

Locally optimal designs for this model can be determined using an iterative al-
gorithm, e.g. the one presented in Section 3.5.

It suffices to consider standardized parameters (cf. Lemma 2 in Perevozskaya
et al. (2003)). They are chosen to be β = 1 and either ᾱ = 1

K

∑K
j=1 αj = 0 or

αj = 0 for one j, j ∈ {1, . . . , K}.
For the case of four categories, i.e. K = 3, and standardized parameters β =
1, α2 = 0, the optimal design is shown in Figure 4.4. We only consider the
special case of equidistant categories such that α1 − α2 = α2 − α3 and with the
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standardized α2 = 0 we get α1 = −α3. In the upper frame, the optimal design
points are shown. The number of support points for the optimal design varies
between two and six. The according weights are shown in the lower frame. The
optimal design only depends on the difference between αj and αj+1, j = 1, 2.
For large differences between α1, α2 and α3, the optimal design converges to a
six-point design with equal weights and the design points being approximately
αj ± 1.043.

4.3 The Emax Model

The Emax model as presented in MacDougall (2006) is a common model used in
analyzing dose response relationships. It can be used for both continuous and
binary outcomes and is quite flexible.

4.3.1 Definition of the Model

Let Y be the response variable and x a control variable. Then the Emax model is
defined as follows:

E(Y (x)) = E0 +
xλ · Emax

xλ + EDλ
50

.

E0 is the expected response for x = 0, Emax the maximum effect of x on Y ,
ED50 the value of x that yields half the maximum effect and λ a slope factor
related to the steepness of the curve. If the response is a continuous outcome,
the parameters E0 and Emax do not have to be restricted.

If the response variable is binary, the Emax model can also be used by modelling
P (Y (x)) as

P (Y (x) = 1) = E0 +
xλ · Emax

xλ + EDλ
50

with 0 ≤ E0 ≤ 1 and 0 ≤ E0 + Emax ≤ 1 to ensure a valid response on the
probability scale.

The function given by the Emax model is monotonic. It is decreasing, if Emax is
negative, and increasing, if Emax is positive.

Some examples for the Emax model with different parameters can be found in
Figure 4.5.
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4.3.2 Properties of the Model

The Emax model for binary outcomes is closely related to the logistic model. It
can be interpreted as a logistic model on the log scale of the control variable. It
can be easily seen that the above model can be rewritten as

E(y) = E0 +
Emax

1 + exp (−λ(log(x)− log(ED50)))
.

With E0 = 0 and Emax = 1 and the setting for a binary response variable, we
have

P (Y (x) = 1) =
exp

(
log(x)−log(ED50)

λ−1

)
1 + exp

(
log(x)−log(ED50)

λ−1

) .
This corresponds to the ordinary logistic model with log(x) as the control variable
instead of x, log(ED50) corresponding to µ and λ−1 being the equivalent of σ.

When E0 is not restricted to the value 0 and Emax to the value 1, the Emax model
is more flexible than the logistic model. This is due to the two additional para-
meters, that relate to the range of the outcome Y or P (Y (x) = 1), respectively.
However, due to the larger number of parameters, observations at more distinct
designs points are needed for estimating these. The 4-parameter Emax model thus
is not desirable if only very few design points are available.

Optimal design for the Emax model is not of interest for this work and therefore
shall not be discussed. The model though is needed for comparisons in Chapter 7.
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5 A Bivariate Model for Safety and
Efficacy

The models and associated designs described in Chapter 4 consider only one
response variable (in medical applications commonly called endpoint), i.e. either
efficacy or toxicity of the target drug, although often studies are conducted to
gather information on both endpoints.

When two endpoints should be considered simultaneously, a bivariate model is
needed. Dragalin and Fedorov (2006) and Dragalin et al. (2006) suggest some
models to consider if both endpoints are measured on a binary scale and they
construct locally optimal designs for these models. Here, a model is introduced
that allows one endpoint to be measured on a categorical scale, while the other
is measured on a binary scale. Subsequently, the properties of the model are
described and locally optimal designs are derived.

5.1 Definition of the Model

Consider a bivariate response variable Y = (T , E)T , with T being the toxicity
endpoint and E the efficacy endpoint. Without loss of generality let the efficacy
endpoint be measured on a binary scale with possible outcomes 0 (no efficacy)
and 1 (efficacy), while the toxicity endpoint is observed in K+1 categories j =
0, 1, ..., K, where the higher category indicates stronger toxicity. These categories
can e.g. be defined by the Common Terminology Criteria for Adverse Events
(cf. National Cancer Institute (2006)).

Consider a single control variable x, namely the dose. The notation for the prob-
abilities for each of the possible bivariate outcomes and the marginal probabilities
are shown in Table 5.1.

Here, P (T (x) = yT ) and P (E(x) = yE) denote the probability of the outcome
being yT ∈ {0, . . . , K} and yE ∈ {0, 1} given the treatment dose x.

As described in Chapter 4, the logistic model and the proportional odds model
are reasonable models for binary and ordered categorical outcomes, respectively.
Therefore it is desirable that the bivariate modelling is analogous. To achieve this,
the marginal distributions of the considered endpoints should follow a logistic and
a proportional odds model.
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E
T 0 1 Σ
0 p00 p01 p0. = 1− P (T (x) ≥ 1)
1 p10 p11 p1. = P (T (x) ≥ 1)− P (T (x) ≥ 2)
...

...
...

...
j pj0 pj1 pj. = P (T (x) ≥ j)− P (T (x) ≥ j + 1)
...

...
...

...
K pK0 pK1 pK. = P (T (x) ≥ K)
Σ p.0 = p.1 = 1

1− P (E(x) = 1) P (E(x) = 1)

Table 5.1: Probabilities for the outcomes in the bivariate model.

Define F (x) := exp(x)
1+exp(x)

and let the marginal distribution of the efficacy endpoint
be given by

P (E(x) = 1) =
exp

(
x−µ
σ

)
1 + exp

(
x−µ
σ

) = F

(
x− µ

σ

)
.

For notational convenience let xµ := x−µ
σ

and thus P (E(x) = 1) = F (xµ).

The marginal distribution of the toxicity endpoint is given by

P (T (x) ≥ j) =
exp

(
x−αj

β

)
1 + exp

(
x−αj

β

) = F

(
x− αj
β

)
.

Here let xαj
:=

x−αj

β
, α = 1, ..., K and thus P (T (x) ≥ j) = F (xαj

). This gives
consistency with adequate univariate modelling.

A joint distribution that yields the above marginal distributions and that we will
use for the bivariate modelling is given by the following functions.

Define G(x, y) := F (x)F (y) {1 + τ [1− F (x)] [1− F (y)]}. Then

P (T (x) ≥ j ∧ E(x) = 1) = F (xαj
)F (xµ){1 + τ

[
1− F (xαj

)
]
[1− F (xµ)]}

= G(xαj
, xµ).

This is a bivariate distribution function from the class of Farlie-Gumbel-
Morgenstern distributions (cf. Kotz et al. (2000), Chapter 44.13), which arises
quite naturally from the given univariate marginal distributions.

Thus we have a model with K+4 parameters denoted by the vector
θ = (µ, α1, ..., αK , σ, β, τ)

T where µ ∈ R, −∞ < α1 < ... < αK < ∞, σ, β > 0
and −1 ≤ τ ≤ 1. Note that for τ = 0, T (x) and E(x) are independent.

Define G(∞, ·) := limx→∞G(x, ·) and G(·,∞) analogously as the corresponding
limit, and α0 = −∞ and αK+1 = ∞.
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It can be easily seen that the marginal probabilities are

p.0 = 1−G(∞, xµ) = 1− F (xµ)

p.1 = G(∞, xµ) = F (xµ)

p0. = 1−G(xα1 ,∞) = 1− F (xα1)

pj. = G(xαj
,∞)−G(xαj+1

,∞) = F (xαj
)− F (xαj+1

), j = 1, ..., K − 1

pK. = G(xαK
,∞) = F (xαK

).

The joint probabilities are given by

p01 = G(∞, xµ)−G(xα1 , xµ) = F (xµ)−G(xα1 , xµ)

pj1 = G(xαj
, xµ)−G(xαj+1

, xµ), j = 1, ..., K − 1

pK1 = G(xαK
, xµ)

pj0 = pj. − pj1, j = 0, ..., K, so

p00 = 1− F (xα1)− F (xµ) +G(xα1 , xµ)

pj0 = F (xαj
)− F (xαj+1

)−G(xαj
, xµ) +G(xαj+1

, xµ), j = 1, ..., K − 1

pK0 = F (xαK
)−G(xαK

, xµ).

Since F (xα0) = 1, F (xαK+1
) = 0, G(xα0 , xµ) = F (xµ) and G(xαK+1

, xµ) = 0, the
joint probabilities can be written as

pj0 = F (xαj
)− F (xαj+1

)−G(xαj
, xµ) +G(xαj+1

, xµ), j = 0, ..., K and

pj1 = G(xαj
, xµ)−G(xαj+1

, xµ), j = 0, ..., K.

5.2 Properties of the Model

This model describes the relationship between dose and efficacy, and dose and
each of the toxicity categories, respectively. The relationship is such that the
probability for efficacy and toxicity of a certain grade, respectively, is monotoni-
cally increasing with the dose.

The probability for any grade of toxicity and efficacy reaches 1 for infinitely large
doses, and it is larger than 0 for a dose of 0. More precisely,

lim
x→∞

P (T (x) ≥ j and E(x) = 1) = 1 and

P (T (0) ≥ j and E(0) = 1) > 0

for all 1 ≤ j ≤ K.

Since the toxicity categories are ordered, the modelling of cumulative probabilities
as done here is appropriate.
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The dependence between the two endpoints is modelled by the parameter τ . For
τ = 0, both endpoints are independent, for τ > 0 we have a positive correlation,
and for τ < 0 the correlation is negative.

An example for the bivariate model with K = 3, µ = 5, σ = 20, α1 = 16, α2 =
22, α3 = 30 and β = 8 is shown in Figures 5.1 and 5.2. Figure 5.1 displays the
joint probabilities. The upper frame shows the case of independence (i.e. τ = 0),
whereas in the lower frame τ = 0.8 and thus the case of positive correlation
between both endpoints is shown. The marginal probabilities for efficacy and the
toxicity categories, which do not depend on τ , are displayed in Figure 5.2.

5.3 Optimal Designs for this Model

Following common design theory (cf. Chapter 3), optimal designs are constructed
by maximizing real-valued functions of the information matrix in order to maxi-
mize the information obtained by the experiment.

As we are dealing with a non-linear model, the information matrix depends on
the unknown parameters, and we will focus on locally optimal designs.

5.3.1 Information Matrices

The information matrix of a single observation at design point x given the pa-
rameter vector θ = (µ, α1, ..., αK , σ, β, τ)

T is denoted by M(x,θ), and can be
derived from

M(x,θ) = E

(
∂l

∂θ

∂l

∂θT

)
where l denotes the log-likelihood function of a single observation y = (j, i). It
is given by

l(θ;x,y) = logP (T (x) = j ∧ E(x) = i)I{T=j,E=i} = log(pji)I{T=j,E=i}.

Thus

M(x,θ) = E

(
∂ log(pji)I{T=j,E=i}

∂θ

∂ log(pji)I{T=j,E=i}

∂θT

)
= E

(
1

p2
ji

∂ pji
∂θ

∂ pji

∂θT
I{T=j,E=i}

)
=

∑
i,j

1

p2
ji

∂pji
∂θ

∂pji

∂θT
pji

=
∑
i,j

1

pji

∂pji
∂θ

∂pji

∂θT
.
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Figure 5.1: Joint probabilities in the bivariate model, top: τ = 0, bottom: τ =
0.8.
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The information matrix of a design ξ with design points xi and corresponding
weights wi is given by M(ξ,θ) =

∑
iwiM(xi,θ).

Denote the full information matrix for a single observation by

M(x,θ) =

Mµµ Mµα1 · · · MµαK
Mµσ Mµβ Mµτ

Mµα1 Mα1α1 · · · Mα1αK
Mα1σ Mα1β Mα1τ

Mµα2 Mα1α2 · · · Mα2αK
Mα2σ Mα2β Mα2τ

...
...

. . .
...

...
...

...
MµαK

Mα1αK
· · · MαKαK

MαKσ MαKβ MαKτ

Mµσ Mα1σ · · · MαKσ Mσσ Mσβ Mστ

Mµβ Mα1β · · · MαKβ Mσβ Mββ Mβτ

Mµτ Mα1τ · · · MαKτ Mστ Mβτ M ττ


.

The indices indicate which derivatives are taken to obtain the specific element
of M and this notation allows for conveniently referring to single elements or
submatrices of M .

For notational convenience, let us define

H(x, y) := F (x)(1 + τ(1− F (x))(1− 2F (y))).

Note that H(xα0 , xµ) = 1 and H(xαK+1
, xµ) = 0.

In the subsequent section we will only display the resulting information matrices,
the derivation of these matrices can be found in Appendix A.

Partial Information Matrix

Let us first assume that the correlation parameter τ and the slope parameters σ
and β are known and fixed. Then the information matrix reduces to the submatrix

M

(
x,

(
µ
α

))
:=


Mµµ Mµα1 . . . MµαK

Mµα1 Mα1α1 . . . Mα1αK

...
...

MµαK
. . . MαKαK

 .

It is given by M

(
x,

(
µ
α

))
= DHPHTD ∼ (K + 1)× (K + 1) where
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D = diag

(
1

σ
F (xµ)(1− F (xµ)),

1

β
F (xα1)(1− F (xα1)), . . . ,

1

β
F (xαK

)(1− F (xαK
))

)
∼ (K + 1)× (K + 1),

P =

 diag
(

1
pj0

)K
j=0

0

0 diag
(

1
pj1

)K
j=0

 ∼ (2K + 2)× (2K + 2),

H = (H1 H2) ∼ (K + 1)× (2K + 2).

The matrix H is composed of two similar looking matrices H1 and H2, both of
dimension (K + 1)× (K + 1). H2 is given by

H2 =



hT

−H(xµ, xα1) H(xµ, xα1) 0 · · · 0

0 −H(xµ, xα2) H(xµ, xα2) 0 · · · 0
...

. . .
...
0

0 · · · 0 −H(xµ, xαK
) H(xµ, xαK

)


where

h =


H(xα0 , xµ)−H(xα1 , xµ)
H(xα1 , xµ)−H(xα2 , xµ)

...
H(xαK

, xµ)−H(xαK+1
, xµ)

 .

H1 has the same structure and is given by

H1 =



0
−1 1 0 · · · 0
0 −1 1 0 · · · 0
...

. . .
...
0

0 · · · 0 −1 1


−H2.

Lemma 5.1 The rank of M

(
x,

(
µ
α

))
is K+1, i.e. M

(
x,

(
µ
α

))
is of full

rank.

Proof: The matrices D ∼ (K + 1) × (K + 1) and P ∼ (K + 1) × (K + 1) are diagonal
matrices with all diagonal elements being non-zero, and therefore are of full rank. Since
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multiplication with full rank matrices does not affect the rank, Mµα is of full rank if H is
of full row rank and thus HT is of full column rank. To show that H ∼ (K+1)×(2K+2)
is of full rank, we need to show that rankH = K + 1. Consider only one part of H,
namely H1. H1 is of dimension (K + 1)× (K + 1).

Note that 0 < H(x, y) < 1 for all x, y ∈ R (excluding ±∞), and that with hi being the
i-th element of h, we have

∑K+1
i=1 hi = 1.

If we multiply H1 by a full rank matrix, the rank of the resulting matrix equals the

rank of H1. Thus rankH1 = rank

(
H1 ·

(
1K IK

1 0T
K

))

= rank



−1 −(H(xα0 , xµ)−H(xα1 , xµ)) . . . −(H(xαK
, xµ)−H(xαK+1 , xµ))

0 −(1−H(xα1 , xµ)) 0
... −(1−H(xα2 , xµ))

...
. . . 0

0 . . . 0 −(1−H(xαK
, xµ))


.

This is an upper triangular matrix and therefore of full rank. Since H1 has full rank so
has H. Hereby it is shown that rankMµα = k + 1. �

Having a full-rank information matrix for a single observation guarantees the
existence of a non-zero determinant of the information matrix for any design.

Now let us assume that only the correlation parameter τ is known and fixed.
Then the information matrix for a single observation is given by

M(x,θ∗) = V DHPHTDV T

where θ∗ =



µ
α1
...
αK
σ
β


, D, H and P are as above and

V =



1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 1
xµ 0 · · · 0
0 xα1 · · · xαK


∼ (K + 3)× (K + 1).

The rank of V is obviously K + 1 (full column rank), so following the same
argumentation as above, M is of rank K + 1. But since M now is of dimension
K + 3, it is not of full rank.
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Full Information Matrix

The full information matrix is given by

M(x,θ) =

(
V DH

tT

)
P
(

HTDV T t
)

where D, H , P and V are as above and

t =

(
−t1

t1

)
where

t1 =


F (xµ)(1− F (xµ))(F (xα0)(1− F (xα0))− F (xα1)(1− F (xα1)))
F (xµ)(1− F (xµ))(F (xα1)(1− F (xα1))− F (xα2)(1− F (xα2)))

...
F (xµ)(1− F (xµ))(F (xαK

)(1− F (xαK
))− F (xαK+1

)(1− F (xαK+1
)))

 .

Again M is of rank K + 1 and therefore not of full rank. This implies that a
D-optimal design has to comprise at least two distinct designs points, since a
one-point-design would lead to a singular information matrix.

Locally D-optimal designs can be constructed using an iterative algorithm. They
will be identified and discussed for some specific settings in Section 5.4 The
analytical determination of optimal designs is not feasible, even in the simpler
case that some of the parameters are considered known.

5.4 Optimal Designs for some Special Cases

5.4.1 The Univariate Case

If only one endpoint - either efficacy or toxicity - is considered, the underlying
model for the dose response relationship is the proportional odds model. In the
case of a binary outcome it is equivalent to the common logistic model. D-optimal
designs for these models are presented and discussed in Chapter 4.

5.4.2 The Bivariate Case

In this section, we will only consider D-optimality.

Let us first consider the model with two binary endpoints, i.e. K = 1. Consider
the following setting with standardized parameters. Without loss of generality,
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let σ = 1 and µ = 0 (cf. Ford et al. (1992)). Then the D-optimal design depends
on the ratio of σ and β and the difference of µ and α, as well as on τ . The
D-optimal design points with the respective optimal weights for 0 ≤ α ≤ 15 are
shown in Figures 5.3, 5.4 and B.1 to B.4 for β = 1, β = 2 and β = 0.5. The cases
of independence (τ = 0) and strong positive correlation (τ = 0.8) are considered.

For the case of independence, τ = 0 is considered fixed and known, and thus the
designs are optimal with respect to the parameter vector θ∗, whereas for τ = 0.8
the whole parameter vector θ is considered. The designs presented are numerical
approximations to the optimal designs, where the G-efficiency and, hence, D-
efficiency is larger than 0.999. Thus they are very close to the true D-optimal
designs.

There are some facts about these designs worth mentioning. The number of
design points varies from 2 to 4 for τ = 0 and from 3 to 4 for τ = 0.8. It increases
with increasing α and thus increasing distance between α and µ. In all considered
cases, for large α the design converges to a four point design, where the difference
between the design points and µ and α, respectively, converges to constants. For
τ = 0, the weights converge to 0.25, whereas for τ = 0.8, the weights for the
different design points vary.

It stands out that the D-optimal designs for β = 0.5 can be derived from the
D-optimal designs for β = 2. Taking the design points of the D-optimal design
for β = 2 at 2α, mirroring them at the axis (α, 1

2
α) and dividing them by 2 yields

the design points for the D-optimal design for β = 1
2

at α. The optimal weights
then are given by the optimal weights for β = 2 at 2α.

Now we will present the locally D-optimal designs for certain parameter constel-
lations in the case of one binary endpoint and one categorical endpoint with 4
categories and thus K = 3. As above we will consider a standardized model
where µ = 0 and σ = 1. Analogously to the cases presented above, graphics are
displayed for β = 1 and β = 2 and for τ = 0 and τ = 0.8. The value for α1 is
fixed to 0, 1 or −1, respectively, α2 is varied from α1 to 10 and α3 is given by
2α2−α1 to get equidistant categories. The D-optimal designs for these parameter
constellations are given in Figures 5.5, 5.6 and B.5 to B.14.

For these cases, we observe a similar structure in the designs as in the case of
2 × 2 categories. The number of design points varies from 2 to 4 for τ = 0 and
from 2 to 5 for τ = 0.8. It increases as the parameters αj increase. It stands out
that two of the four or five design points coincide with α2 and α3 for large values
of these parameters, while the other design points spread out around µ and α1.
The weights corresponding to the design points equal to α2 and α3 converge to
equal values, while the other weights can differ.

The results presented above show that for this model with a reasonable number
of categories, we can derive locally optimal designs with few design points, that
are thus applicable in practise.
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Figure 5.3: D-optimal design for the bivariate model with β = 1, σ = 1 and τ = 0;
top: optimal design points, bottom: optimal weights.
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Figure 5.4: D-optimal design for the bivariate model with β = 1, σ = 1 and
τ = 0.8; top: optimal design points, bottom: optimal weights.
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Figure 5.5: D-optimal design for the bivariate model with α1 = 0, β = 1, σ = 1
and τ = 0; top: optimal design points, bottom: optimal weights.
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Figure 5.6: D-optimal design for the bivariate model with α1 = 0, β = 2, σ = 1
and τ = 0.8; top: optimal design points, bottom: optimal weights.
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6 Sequential Locally Optimal
Design (SLOD)

6.1 Properties of the 3+3 Design and Problems

The 3+3 design does not depend on any model assumptions except for a monoton-
ically increasing dose toxicity relationship. Therefore it is applicable for most
realistic dose response scenarios. During the conduct of a study according to the
3+3 design, only few patients experience dose limiting toxicities and are treated
with toxic doses. So the design is quite safe for the patients. On the other hand,
the procedure is quite conservative, tending to underestimate the true maximally
tolerated dose. Additionally, if the starting dose is very small compared to the
true MTD, the number of subjects needed in the trial gets quite large. In general,
the sample size depends on the course of the trial and cannot be fixed beforehand.
This might have practical disadvantages since it complicates the planning of the
study. These properties have been shown in various simulation studies, among
others in Gerke and Siedentop (2007), and they are derived theoretically in Lin
and Shih (2001).

It is not possible to make inference on the precision of the estimated MTD
determined by a study conducted according to the 3+3 design without making
additional model assumptions.

To avoid the disadvantages of the 3+3 design, more sophisticated methods based
on optimal design theory might be appropriate.

Dragalin et al. (2006) and Lin and Shih (2001) introduce sequential approaches
based on a bivariate probit model and a proportional odds model. In the following
sections, we suggest a similar approach that is more flexible with respect to the
model assumptions and that incorporates the 3+3 design as a start up design.

6.2 Basic Principles of SLOD

The 3+3 design is usually applied when no or very little prior information is
available. In such cases, the application of locally optimal designs may not be
feasible since no reliable guesses of the parameters are possible. We suggest using
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the 3+3 design as a start up design to gather some information, which is then
used in the construction of locally optimal designs. Thus we suggest the following
approach.

Given a model appropriate for the dose response relationship (e.g. logistic, pro-
portional odds or Emax model), the 3+3 design is conducted in cohorts of three
patients until parameter estimation is possible in the chosen model. Then a design
is determined that is locally optimal with respect to the estimated parameters, a
specified optimality criterion and conditioned on the previous observations. The
next cohort of patients is observed according to this design. The parameter es-
timation is repeated after each cohort and a new optimal design is determined.
This procedure is repeated until a stopping rule is met. The stopping rule can be
related to the sample size or to the precision of the estimate of the MTD. The
process is displayed graphically in Figure 6.1

This procedure is quite flexible since it can be applied to different underlying
models, using various optimality criteria, flexible cohort sizes and several stopping
rules. The following list gives an overview of the parameters that have to be
specified before the approach can be applied:

• the sequence of doses to start with

• the model

• the estimation procedure for the model parameters and the MTD

• the design region

• the optimality criterion

• the cohort size n

• the stopping rule

Given all these, the optimal design at any stage of the trial can be determined. It
is given by the design that maximizes the overall information of the experiment
by allocating n additional subjects to doses within the design region. The design
points used so far are fixed and are denoted by the vector xobs. Denote the
estimated parameters for the model by θ̂ and the information matrix for design
points x and parameters θ by M(x,θ). Then the conditional information matrix
for the observed design points xobs, estimated parameters θ̂ and fixed cohort size
n is given by

M(xobs, θ̂) +
n∑
i=1

M(xi, θ̂), xi ∈ X .
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Applying a design criterion to this information matrix yields the conditional
optimal design. The conditional optimal design directly depends on the previous
design points through their influence on the information matrix. It also depends
on the outcomes at these design points through their impact on the parameter
estimation.

We will now present possible parameter settings and discuss their influence on
the approach. The sequence of doses to start with can be chosen in the same way
as the sequence for the traditional 3+3 design is specified. The underlying model
that is chosen should be the one that is considered most appropriate for the dose
response relationship. We will use the common maximum likelihood method for
the estimation of the model parameters.

The natural lower bound of the design region is zero. A higher value for the
lower bound, e.g. the starting dose, should be chosen when the use of a placebo
dose is not desired. The choice of the upper bound of the design region is not
that straightforward. Choosing a value too high puts the patients at risk, while
choosing a value too low unnecessarily constrains the design region. The upper
bound of the design region is adaptively changed throughout the course of the
trial. It should neither excessively exceed the currently estimated MTD nor the
dose range used so far in the trial.

Theoretically, all doses in the interval could be used, but the design region might
be restricted to a set of prespecified doses within the interval for practical reasons,
e.g. when different doses cannot be supplied at short notice. The estimatedMTD
might as well be restricted to the set of prespecified doses. This could also be
done for practical purposes as described above, or for the reason that a dose never
tested should not be stated to be the MTD.

The choice of the optimality criterion depends on the primary purpose of the
trial. If the interest is in only determining the MTD, a corresponding c-criterion
is appropriate. If the parameter estimates for the dose response relationship are
of major interest, the D-criterion is favored. The choice of the cohort size should
follow practical considerations.

A very convenient stopping criterion is found by fixing the maximum sample
size beforehand. This simplifies the planning of the study both in duration and
cost. Nevertheless, a stopping criterion related to the precision of the estimated
parameters or the MTD could be used as well.

6.3 Variance and Confidence Intervals

A major disadvantage of the 3+3 design is the lack of information on the dose
response curve and on the precision of the estimate of the MTD, which is not
available without any additional model assumptions. Since the method described
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above is based on a parametric model, we can obtain the relevant information to
determine the variance of the estimator of the MTD and thus we can calculate
confidence intervals.

Assume that the dose-toxicity-relationship is described by a logistic model in the
way that

P (DLT (x)) =
exp(x−µ

σ
)

1 + exp(x−µ
σ

)

with x being the dose and let θ =

(
µ
σ

)
. Then the MTD is the dose for which

P (DLT (MTD)) = 1
3
, i.e. MTD = µ− σ log(2). The asymptotic variance of the

estimated MTD is given by

Var(M̂TD) =

(
1

− log 2

)T
M−1(ξ,θ)

(
1

− log 2

)
.

We get an estimate for the variance by replacing θ by a consistent estimator θ̂.

Simulations show that this approximation to the variance of the estimated MTD
is close to the empiric variance already for moderate sample sizes.

It can be shown by simple simulations that log(M̂TD) is approximately normally
distributed already for moderate sample sizes, whereas the normality assumption

for M̂TD is only justified for rather large sample sizes. Therefore we will con-
struct confidence intervals for the MTD based on the log-transformation.

Let the standard error (SE) be given by

SE(M̂TD) =

√(
1

− log 2

)T
M−1(ξ, θ̂)

(
1

− log 2

)
.

Then an approximate (1 − α) confidence interval for the MTD is M̂TD

exp
(
q1−α

2

1

M̂TD
SE(M̂TD)

) , M̂TD · exp

(
q1−α

2

1

M̂TD
SE(M̂TD)

)
with q1−α

2
being the 1− α

2
quantile of the standard normal distribution.

The results derived above can be transferred easily to other models with known
information matrices.

For the proportional odds model with four categories, i.e.,

P (T (x) ≥ j) =
exp(

x−αj

β
)

1 + exp(
x−αj

β
)
, j = 1, ..., K
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and
MTD = α3 − β log(2)

we have

Var(M̂TD) =


1
0
0

− log 2


T

M−1(ξ,θ)


1
0
0

− log 2

 .

With the same normality assumptions as above and

SE(M̂TD) =

√√√√√√√


1
0
0

− log 2


T

M−1(ξ, θ̂)


1
0
0

− log 2

,
an approximate (1 − α) confidence interval for the MTD is given by M̂TD

exp
(
q1−α

2

1

M̂TD
SE(M̂TD)

) , M̂TD · exp

(
q1−α

2

1

M̂TD
SE(M̂TD)

) .
6.4 Extension to a Bivariate Setting

The method described in Section 6.2 can easily be extended to be suitable for
a bivariate setting like the one presented in Chapter 5. Special attention has to
be paid at the steps concerning the existence of the MLE, the estimation of the
parameters and the determination of the conditional optimal design according to
an appropriate design criterion.

If the main interest is in estimating all the model parameters with high precision,
the D-criterion is directly applicable to the bivariate model. Another criterion is
needed if the main goal of the study is to estimate the MTD and the minimum
effective dose (minED) as precisely as possible. The MTD in the bivariate
setting is defined analogously to the univariate case as the 0.33 quantile of the
marginal distribution of the toxicity endpoint. The minED is a certain quantile
of the marginal distribution of the efficacy endpoint. Which quantile should be
chosen as the minED is not a statistical but medical question.

An appropriate optimality criterion for this setting is an L-criterion, i.e.

min tr
(
CTM(ξ,θ)−C

)
where C = (C1 C2) is a two-column matrix such that CT

1 · θ̂ = M̂TD and CT
2 ·

θ̂ = m̂inED, and M(ξ,θ)− is a generalized inverse of M(ξ,θ). The information
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matrix M(ξ,θ) is not necessarily invertible, but if we confine ourselves to designs
allowing for the estimation of θ, the information matrix is non-singular (see e.g.
Section 5.3.1), and we can replace the generalized inverse M(ξ,θ)− in the above
formula by M(ξ,θ)−1.

The exact form of C depends on the model used and the quantile specified as
minED. Assuming the model as described in Chapter 5 with four toxicity cat-
egories and thus θ = (µ, α1, α2, α3, σ, β, τ)

T , and assuming that minED is the
0.33 quantile of the marginal distribution of the efficacy endpoint, we have

C =



1 0
0 0
0 0
0 1

−log(2) 0
0 −log(2)
0 0


.

It might be necessary to observe a quite large number of subjects until parameter
estimation is possible in the bivariate model. To make use of the parametric
model as soon as possible, we do not want to wait until all the parameters can be
estimated. A univariate model equivalent to the marginal model for toxicity can
be fit to the toxicity endpoint, and as soon as the parameters in this simpler model
can be estimated, we will use the SLOD as described in the previous section. As
soon as all parameters in the complete bivariate model can be estimated, we
switch to the bivariate optimality criterion and optimize the design according to
both endpoints of interest.
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7 Simulation Study

In this simulation study, the performance of the traditional 3+3 design, SLOD
as presented in Chapter 6 and a Bayesian approach was compared. The goal
was to find the MTD in a dose-escalation-study, when no prior information is
available. Six different dose response scenarios were considered. Four of them
are based on a two parameter logistic dose response relationship, while the last
two scenarios assume an Emax model for the true dose response relationship. The
scenarios are described in more detail in section 7.2, while the specific designs
used are presented in Section 7.1. In Section 7.3, the results are displayed and
conclusions are drawn.

7.1 Designs

The 3+3 design was used as described in Section 2.3. The sequence of doses used
here is given by d = (0.6, 1.2, 2.0, 3.0, 4.0, 5.3, 7.0, 9.3, 12.4, 16.5, 22.0, 29.4) where
all doses are given in mg. SLOD was investigated using different settings, all with
the dose sequence given above. We investigated SLOD based on a logistic model,
a four category proportional odds model and a bivariate model (cf. Chapter 5)
with 2× 2 categories and independent endpoints (τ = 0). The D-criterion and a
c-criterion where cTθ = MTD were used. The cohort size n was one or two. The
parameters are estimated using the maximum likelihood method, and the MTD
was chosen to be the largest dose out of d with estimated probability for DLT
less than 1

3
. The lower bound of the design region was always 0, whereas the

upper bound was either one dose step above the current estimated MTD (design
region 1), or one dose step above the maximum dose used so far in the trial
(design region 2). The upper bound of the design region though never exceeded
the range of the prespecified doses d. As the stopping rule, the maximum sample
size in the trial was fixed to the median sample size from the simulated 3+3
design in the corresponding scenario, to achieve comparable sample sizes.

The Bayesian approach used for the simulation study is implemented in the soft-
ware tool Bayesian ADEPT (Assisted Decision Making in Early Phase Trials).
This approach assumes a logistic model as the true dose reponse relationship.
More details on this approach can be found in Whitehead and Williamson (1998)
and Zhou and Whitehead (2002).
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MTD
Scenario µ σ dose in mg dose step

I 30.00 7.67 22.0 11
II 23.80 8.30 16.5 10
III 50.00 14.43 29.4 12
IV 11.00 4.33 7.0 7

ED50 λ
V 50.00 0.70 16.5 10
VI 28.00 1.60 16.5 10

Table 7.1: Parameters and MTDs for the different dose response scenarios.

For ease of comparison, the same dose sequence and cohort sizes were used as
for SLOD. The default stopping rule was used, that is the trial was stopped
as soon as the ratio of the upper limit of the 95% credibility interval and the
corresponding lower limit was less than 5, or the maximum sample size of 60
was reached. We needed to specify the 0.25 and 0.5 quantile of the logistic dose-
response curve as the prior information. The lowest and highest dose out of the
specified sequence were chosen for these quantiles, respectively. The minimum
possible weight was given to this prior information, that is prior information
worth one observation. Two different gain functions, the variance and patient
gain function were investigated.

7.2 Dose Response Scenarios

The four scenarios based on the logistic model were chosen to cover a wide range
of possible dose response relationships, where the true model coincides with the
model chosen for analysis. To investigate the performance of the proposed designs
when the true model is different from the model chosen for analysis, the two
scenarios based on the Emax model were considered. The scenarios were based
on the logistic and the Emax model, since those were the models considered most
appropriate for dose response relationships.

The scenarios are numbered from I to VI. Scenarios I and II are based on two
different models fit to real data, whereas Scenarios III and IV represent a ’safe’
and a ’toxic’ scenario, respectively. Scenarios V and VI were chosen to add two
dose response relationships where an approximation by a logistic model is not
reasonable.

The parameters for the underlying logistic functions and the Emax models as well
as the resulting MTDs are given in Table 7.1. Table 7.2 shows the doses used
and the corresponding true probabilities of dose limiting toxicities for each of the
scenarios.
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Dose Scenario
(in mg) I II III IV V VI

0.6 0.0212 0.0576 0.0316 0.0830 0.0433 0.0021
1.2 0.0229 0.0616 0.0329 0.0942 0.0684 0.0064
2.0 0.0253 0.0675 0.0347 0.1112 0.0951 0.0145
3.0 0.0287 0.0754 0.0371 0.1362 0.1225 0.0273
4.0 0.0326 0.0843 0.0396 0.1657 0.1458 0.0426
5.3 0.0384 0.0972 0.0432 0.2114 0.1721 0.0652
7.0 0.0475 0.1167 0.0483 0.2842 0.2016 0.0981
9.3 0.0630 0.1484 0.0562 0.4031 0.2355 0.1464

12.4 0.0916 0.2021 0.0688 0.5801 0.2737 0.2136
16.5 0.1473 0.2940 0.0895 0.7820 0.3154 0.3009
22.0 0.2606 0.4460 0.1256 0.9269 0.3602 0.4047
29.4 0.4805 0.6626 0.1935 0.9859 0.4081 0.5195

Table 7.2: Probabilities of dose limiting toxicity for each dose in the different
scenarios.

Scenario µ1 µ2

I 14.00 22.00

II 8.84 10.97

III 26.00 38.00

IV 3.00 7.00

ED1
50 ED2

50

V 15.00 30.00

VI 12.00 18.00

Table 7.3: Additional parameters for the proportional odds model.

To apply SLOD based on the four category proportional odds model or the bi-
variate model, some more specifications are necessary.

In the part of the simulation based on the proportional odds model, the dose
limiting toxicities were defined as toxicities of grade 3 or higher. Additionally all
toxicities of these grades were summarized in one category, namely grade 3.

To simulate the observations in Scenario I to IV, we used proportional odds
models for four categories. The slope parameter σ and the parameter µ3, corre-
sponding to the dose where the probability for a grade 3 toxicities is 0.5, are the
same as σ and µ for the logistic model in the corresponding scenario. The addi-
tional parameters µ1 and µ2, corresponding to the doses where the probability of
the respective lower grade toxicity is 0.5, are given in Table 7.3.

59



Scenario α β
I 20 5.0
II 18 7.0
III 20 5.0
IV 8 2.5

ED50 λ
V 40 0.5
VI 24 1.0

Table 7.4: Additional parameters for the dose efficacy relationship in the bivariate
model.

For Scenarios V and VI, the concept of the proportional odds model was trans-
ferred to the Emax model. For each of the cumulative toxicity categories, an Emax

model was used as the true dose toxicity relationship. The parameter λ is the
same for all toxicity categories and coincides with the one used above. The pa-
rameter EDj

50 is specified for each toxicity category j = 1, 2, 3 with ED3
50 being

identical to ED50 used above. The additional values for ED1
50 and ED2

50 can be
seen in Table 7.3.

In the part of the simulation using the bivariate model, we used the same dose
toxicity relationship as above, given by a logistic or Emax model respectively,
and the parameters in Table 7.1. Additionally, we specified a dose efficacy rela-
tionship, following a logistic model for Scenarios I to IV and an Emax model for
Scenarios V and VI. The parameters for these dose efficacy relationships can be
found in Table 7.4. Besides the MTD, we also estimated the minimum effective
dose (minED) as the dose x for which P (E(x) = 1) = 1

3
. If x is less than zero,

it is set to zero, and if x exceeds the range of the prespecified doses, i.e. x > 29,
no estimate for the minimum effective dose is available.

7.3 Results

We will now discuss the results of the simulation study. For each scenario and each
setting, different characteristics are of interest. We will consider the following
characteristics to quantify the precision of the estimates:

• the percentage of correctly estimated MTDs

• the distribution of the estimated MTDs

• the estimated mean squared error of the estimated MTD

• the median width of a confidence interval for the MTD.
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Other quantities of interest are

• the average sample size

• the average number of observed DLT s

• the average number of patients treated with toxic doses (doses above the
true MTD)

• the number of cases in which the chosen method fails to give an estimate
of the MTD.

The results for each setting and each scenario are displayed in two different tables,
the first one giving the percentage of each dose being estimated as the MTD, and
the second table displaying the other characteristics mentioned above. The width
of the confidence interval is given by the ratio of the upper and the lower limit of
the approximate 95% confidence interval as derived in Chapter 6, and the median
is displayed in the tables. It is only displayed for SLOD, since this confidence
interval calculation is not necessarily reasonable for the other methods.

We will use the 3+3 design as the reference to which we compare the other
methods.

First we will discuss the results for Scenario I. Using the 3+3 design the MTD
was estimated correctly in less than 30% of the simulation runs (cf. Table 7.5).
In most cases the MTD was underestimated, whereas it was overestimated in
less than 8%. This systemic underestimation and the skew distribution of the
estimated MTDs can also be seen in Figure 7.1. These observations are in line
with the behavior of the 3+3 design described in the literature (cf. Gerke and
Siedentop (2007)). In some cases (0.5%), the 3+3 design failed to give an estimate
of the MTD. This occurred when several DLT s were observed on the lowest dose
step. The average sample size was around 38 with an average of less than 3.5
DLT s per trial. Only few patients, on average 1.6, were treated with toxic doses.
The mean squared error of the estimated MTD is 73 (cf. Table 7.9).

These observations on the distribution of the estimate of the MTD, the observed
number of DLT s and the number of patients treated with toxic doses is in line
with the properties of the 3+3 design described in the literature, e.g. in Gerke
and Siedentop (2007).

Using the Bayesian method (cf. Tables 7.5 and 7.9), we observe a different be-
havior. The Bayesian approach always gave an estimate of the MTD, and this
estimate was the correct MTD in 45% to 64% of the simulation runs, depending
on the gain function and cohort size. The estimate was less biased than with
the 3+3 design (cf. Figure 7.1), especially when the patient gain function was
used, and had a considerably lower MSE with values between 16 and 25. This
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Figure 7.1: Percentage of each dose being estimated as the MTD for the different
methods in Scenario I.

increase in precision comes at a certain cost: for average sample sizes a bit lower
(between 28 and 34), the average number of observed toxicities (8 to 10) and the
average number of patients treated at toxic doses (around 14) was considerably
increased. Treating almost half of the patients with toxic doses and observing
toxicities in up to one third of the patients is not tolerable in practice.

When we look at the results for SLOD (cf. Tables 7.6 and 7.10), it stands out
that they differ considerably depending on the model the approach is based on.
The optimality criterion though only has a minor influence on the results. The
number of cases in which no MTD could be determined is around 0.5 % for most
settings and even a bit lower for the method based on the proportional odds model
when the cohort size is one. Using SLOD based on the logistic model, it becomes
obvious that the percentage of correctly estimated MTDs is slightly higher than
with the 3+3 design if design region 1 is used, and they are considerably lower
for design region 2. These facts transfer directly to the magnitude of the MSE.
It stands out that the width of the confidence interval is almost constant across
the different settings (around 1.95), so we observe a noticeable difference in the
bias of the estimates. The mean number of observed DLT s and the number
of patients treated with toxic doses vary only slightly with the settings and all
values are smaller than 4. Thus we only observe a minor increase in the number
of DLT s compared to the 3+3 design and a moderate increase in the number
of patients treated with toxic doses. Although we have a slightly increase in the
risk for the patients, we do not have a noteworthy increase in the precision of the
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Bayesian ADEPT
Dose 3+3 variance gain function patient gain function

Design n=1 n=2 n=1 n=2
0.6 0.60 0.00 0.00 0.00 0.00
1.2 0.69 0.00 0.00 0.00 0.00
2.0 0.96 0.50 0.36 0.02 0.21
3.0 1.14 0.00 0.00 0.00 0.00
4.0 1.55 0.00 0.00 0.00 0.00
5.3 2.33 0.01 0.01 0.00 0.00
7.0 3.74 0.11 0.11 0.03 0.06
9.3 7.33 0.85 1.08 0.26 0.45

12.4 15.66 6.96 7.06 2.23 2.47
16.5 29.03 40.31 38.74 19.94 22.60
22.0 28.92 45.64 45.95 64.18 57.66
29.4 7.56 5.62 6.69 13.34 16.5
none 0.50 0.00 0.00 0.00 0.00

Table 7.5: Percentage of each dose being estimated as the MTD in Scenario
I for the 3+3 design and different settings in Bayesian ADEPT;
100 000 simulation runs.

estimates.

Applying SLOD based on the proportional odds model, the results differ (cf. Ta-
bles 7.7 and 7.11). The influence of the different design regions almost vanishes.
The percentage of correctly estimated MTDs increases to up to 50%, which di-
rectly leads to a strong reduction of the MSE by around 40% compared to the
3+3 design. The widths of the confidence intervals are comparable to the ones
above, so the reduction in the MSE is owed to a reduced bias. This gain in
precision is associated with a moderately increased risk for the patients of expe-
riencing a DLT (average of 5 to 6 patients per trial) and being treated with a
toxic dose (average of 5 to 7 patients per trial). Nevertheless, these numbers are
still considerably smaller than those observed with the Bayesian approach.

Finally we take a look at SLOD based on a bivariate model, where not only in-
formation on toxicity but also on efficacy is observed (cf. Tables 7.8 and 7.12).
As with the approach based on the logistic model, the design region has a notice-
able influence on the results, where design region 1 performs better. For design
region 1, the percentage of correctly estimated MTDs is considerably increased
compared to the 3+3 design, but it is still lower than with the approach based
on the proportional odds model. The number of observed DLT s and patients
treated with toxic doses are in between those of the 3+3 design and the approach
based on the proportional odds model. The widths of the confidence intervals
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D-criterion c-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 0.52 0.67 0.53 0.52 0.55 0.68 0.52 0.52
1.2 0.62 0.62 0.63 0.65 0.62 0.61 0.63 0.64
2.0 0.78 0.81 0.76 0.84 0.77 0.81 0.77 0.86
3.0 1.50 1.51 1.46 1.67 1.50 1.55 1.46 1.62
4.0 1.93 1.78 1.90 2.02 1.98 1.73 1.87 2.03
5.3 2.51 3.24 2.85 4.73 2.51 3.24 2.84 4.91
7.0 3.67 3.53 6.52 9.04 3.70 3.52 6.50 9.04
9.3 5.87 5.59 15.56 15.38 6.05 5.80 15.62 15.22

12.4 10.79 11.07 21.34 19.76 11.04 11.53 21.34 19.73
16.5 25.85 26.08 24.67 23.93 26.21 26.33 24.66 23.96
22.0 33.48 30.38 18.09 15.64 32.54 29.28 18.11 15.70
29.4 11.98 14.24 5.18 5.33 12.02 14.45 5.18 5.29
none 0.50 0.49 0.49 0.49 0.52 0.46 0.49 0.49

Table 7.6: Percentage of each dose being estimated as the MTD in Scenario I
for SLOD based on the logistic model with different optimality
criteria, design regions, and cohort sizes n; 100 000 simulation runs.

D-criterion c-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 0.59 0.73 0.59 0.46 0.59 0.56 0.59 0.65
1.2 0.61 0.66 0.62 0.78 0.61 0.75 0.62 0.66
2.0 0.68 0.81 0.67 0.71 0.67 0.69 0.67 0.65
3.0 0.85 0.84 0.85 0.76 0.85 0.82 0.85 0.86
4.0 0.67 0.77 0.69 0.72 0.68 0.73 0.69 0.83
5.3 0.85 0.83 0.84 0.72 0.85 0.83 0.84 0.79
7.0 1.05 0.90 1.02 0.95 1.04 1.04 1.01 0.93
9.3 1.17 1.25 1.36 1.44 1.16 1.50 1.35 1.60

12.4 3.81 4.36 5.06 4.34 3.49 3.52 5.01 4.37
16.5 24.91 24.62 26.10 25.27 23.74 23.18 25.64 24.55

22.0 49.18 45.74 47.72 48.44 50.53 48.24 48.26 48.94
29.4 15.25 17.95 14.10 14.96 15.41 17.68 14.09 14.72
none 0.38 0.54 0.38 0.45 0.38 0.46 0.38 0.45

Table 7.7: Percentage of each dose being estimated as the MTD in Scenario I
for SLOD based on the 4 category proportional odds model
with different optimality criteria, design regions, and cohort sizes n;
10 000 simulation runs.
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D-criterion L-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 0.54 0.56 0.53 0.48 0.54 0.60 0.53 0.44
1.2 0.59 0.62 0.58 0.60 0.58 0.70 0.58 0.61
2.0 0.69 0.81 0.72 0.87 0.69 0.58 0.72 0.69
3.0 0.98 0.86 0.98 1.01 0.98 0.86 0.98 0.94
4.0 0.83 0.86 0.88 0.83 0.83 1.07 0.86 1.03
5.3 1.27 1.67 1.52 2.32 1.27 1.68 1.57 2.49
7.0 1.82 1.85 3.11 5.29 1.82 1.82 3.84 6.57
9.3 2.99 2.61 10.84 12.25 3.00 2.81 12.22 13.26

12.4 5.36 6.09 20.42 18.86 5.59 6.26 20.11 18.71
16.5 25.77 25.01 27.30 26.91 28.04 26.44 26.69 26.53

22.0 44.25 42.70 24.83 23.16 42.06 40.43 24.20 21.53
29.4 14.40 15.83 7.78 6.87 14.09 16.24 7.19 6.50
none 0.51 0.53 0.51 0.55 0.51 0.51 0.51 0.70

Table 7.8: Percentage of each dose being estimated as the MTD in Scenario I
for SLOD based on the bivariate model with different optimality
criteria, design regions, and cohort sizes n; 10 000 simulation runs.

are slightly higher than with the aforementioned approaches. On the other hand,
the approach based on the bivariate model allows for additionally estimating the
minimum effective dose with similar precision as the MTD.

The results for the other scenarios are displayed analogously in the tables in
Appendix C.

For Scenario II, we observe the same properties when comparing the different
approaches, only the exact numbers differ.

In Scenario III it stands out that the average sample size for the Bayesian ap-
proach is strongly increased, which implies that the stopping rule related to the
credibility interval was rarely met and the variance of the estimates thus is consid-
erably larger than in Scenarios I and II. This is in line with the wider confidence
intervals for SLOD. The other properties of the different settings are according
to those observed in the previous scenarios.

For Scenario IV, the observations related to the percentage of correctly estimated
MTDs, average number of DLT s and of patients treated with toxic doses and
the width of the confidence intervals are in line with the behavior in the previous
scenarios. Considering the MSE, though, we observe that the settings with
the highest percentage of correctly estimated MTDs no longer have the lowest
MSE. Doubling the percentage of correctly estimated MTDs, as observed in
one setting of SLOD based on the proportional odds model, does not decrease
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Bayesian ADEPT

Dose 3+3 variance gain function patient gain function

Design n=1 n=2 n=1 n=2

N 38.43 28.29 29.84 34.09 33.71

NDLT 3.44 8.06 8.48 10.20 9.80

N>MTD 1.61 14.16 14.71 13.87 14.01

MSE 73.05 25.22 25.20 15.89 19.84

Table 7.9: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), and mean squared
error (MSE) in Scenario I for the 3+3 design and different settings
in Bayesian ADEPT.

D-criterion c-criterion

des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 35.35 36.06 35.09 35.57 35.25 36.01 35.09 35.57

NDLT 3.81 3.38 3.75 3.87 3.69 3.31 3.76 3.88

N>MTD 3.86 2.52 3.36 3.70 3.51 2.30 3.37 3.70

MSE 69.16 72.31 97.71 108.28 70.12 73.30 97.64 108.35

CI 1.95 1.97 1.94 1.94 1.94 1.94 1.94 1.94

Table 7.10: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), mean squared
error (MSE), and median width of the 95% confidence interval for
the MTD (CI) in Scenario I for different settings of SLOD based
on the logistic model.

66



D-criterion c-criterion

des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 37.94 38.32 37.94 38.42 37.94 38.37 37.94 38.38

NDLT 5.61 5.21 5.53 5.64 5.81 5.34 5.63 5.74

N>MTD 6.18 4.92 5.40 5.63 6.90 5.42 5.75 5.99

MSE 39.39 42.77 40.55 39.80 38.78 41.02 40.32 40.72

CI 1.96 2.01 1.95 1.94 1.96 1.96 1.95 1.95

Table 7.11: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), mean squared
error (MSE), and median width of the 95% confidence interval for
the MTD (CI) in Scenario I for different settings of SLOD based
on the 4 category proportional odds model.

D-criterion L-criterion

des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 37.97 38.43 37.97 38.39 37.97 38.41 37.97 38.35

NDLT 4.81 4.24 4.55 4.58 4.68 4.11 4.59 4.65

N>MTD 5.42 3.81 4.12 4.31 4.87 3.46 4.23 4.55

MSE MTD 47.25 49.43 74.55 82.39 47.95 50.81 77.72 86.61

CI MTD 2.03 2.13 1.91 1.92 1.98 1.98 1.90 1.90

MSE minED 8.83 8.69 8.95 9.08 8.79 8.65 8.93 9.09

CI minED 1.87 1.85 1.85 1.86 1.86 1.86 1.86 1.86

Table 7.12: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), mean squared
error for the MTD (MSE MTD) and minimum effective dose (MSE
minED), and median width of the 95% confidence intervals for the
MTD (CI MTD) and the minimum effective dose (CI minED) in
Scenario I for different settings of SLOD based on the bivariate
model.
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the MSE, compared to the 3+3 design. The cause for this is related to the skew
distribution of the estimates combined with non-equidistant doses.

In Scenario V, it stands out that the percentage of correctly estimated MTDs
with the 3+3 design is dramatically low. The behavior of the other methods in
comparison with the 3+3 design does not differ substantially from those in the
other scenarios. The results observed for Scenario VI are quite similar to those
of Scenario II.

This simulation study shows that methods other than the 3+3 design have the
potential to perform better. The Bayesian approach is best in estimating the
correct MTD with lowest MSE across all scenarios, but it is not considered
feasible in practice due to the strongly increased number of patients experienc-
ing DLT s or being treated at toxic doses. This approach might become more
useful in practice if the number of patients treated with excessive doses would
be reduced by some sort of safety constraint. SLOD only moderately increases
these numbers so that they still might be tolerable and - depending on the exact
setting - performs at least slightly, but often considerably better than the 3+3
design regarding the percentage of correctly estimated MTDs and the precision
and bias of the estimates. The more complex proportional odds model generally
performs better than the simple logistic model, which was expected due to the
more informative observations. When SLOD is used with the bivariate model,
it tends to perform at least as well for the original endpoint as with the simple
univariate model. The performance is improved when the MTD and the minED
are close to each other, resulting in similar parameters for both endpoints and
thus in a better, more informative design. The bivariate model has the addi-
tional advantage of being able to estimate the parameters related to the second
endpoint with considerable precision.
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8 Discussion and Outlook

In this thesis, we have applied optimal design theory to the area of clinical studies,
in particular to dose finding studies. We have introduced commonly used models
from this field of application (logistic, the proportional odds and Emax model).
For the logistic and the proportional odds model, we have derived conditions for
the existence of the maximum likelihood estimator and have presented locally
optimal designs for these models.

We have developed a new bivariate model that allows for simultaneous mod-
elling of a binary efficacy endpoint and a categorical toxicity endpoint. We have
applied common optimal design theory to derive the approximate Fisher infor-
mation matrix and locally optimal designs for this model. For certain parameter
constellations we have presented locally D-optimal designs and we have shown
how the D-optimal designs depend on the parameters. It stands out that the
D-optimal designs comprise only few design points, varying between two and five
depending on the parameter constellation. This gives the opportunity to find ex-
act designs that come close to the optimal continuous designs and are realizable
in practice.

In practical application we often deal with situations where reliable prior infor-
mation on the parameters is not available and thus a sequential procedure is
favorable. Thus, to make the results described above applicable, we have in-
troduced a sequential approach combining the standard 3+3 design with locally
optimal designs, which we call the ’Sequential locally optimal design’ (’SLOD’).
There we use the 3+3 design as a start-up design until it is possible to fit the
desired parametric model. This model then is used to determine a locally optimal
design, which is applied to the next cohort of patients. After each cohort, the
parameter estimates are updated and the locally optimal design is adjusted.

To investigate the properties of the suggested method, we have conducted a
simulation study comparing SLOD to the standard 3+3 design and a Bayesian
approach. In this simulation study, we investigated SLOD based on three different
models, namely the common logistic model, the proportional odds model with
four categories and the bivariate model introduced in Chapter 5.

The results of the simulation study affirm the properties of the 3+3 design de-
scribed in the literature (Gerke and Siedentop (2007), Lin and Shih (2001)).
Additionally, they show that the Bayesian approach as investigated is not ap-
plicable in practice due to the excessive risk for the patients. It can be seen
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that SLOD has the potential to perform better than the traditional 3+3 design
in finding the correct maximum tolerated dose (MTD) and giving a less biased
estimate of the MTD. With respect to these criteria, SLOD is superior to the
3+3 design especially when it is applied with the more complex proportional
odds model or in a bivariate setting. As opposed to the traditional 3+3 design,
SLOD allows for meaningful conclusions on the precision of the estimates and
the dose response relationship. Using the bivariate model, we get valuable ad-
ditional information on the dose efficacy relationship without noteworthy loss in
information with respect to the dose toxicity relationship. However, as compared
to the standard 3+3 design, SLOD is not only considerably more complex to
apply, it also slightly to moderately increases the risk for the patients of suffering
a dose limiting toxicity (DLT ) or being treated at toxic doses. Thus we have to
consider carefully the trade off between the gain in precision and the increased
patient risk.

Even though the simulation study considered several dose response scenarios and
a variety of settings, the performance of the suggested method was only investi-
gated for a limited number of cases. Since this method is very flexible, it could
still be investigated if e.g. the risk for the patients can be reduced while retaining
the precision of the estimates by choosing different design regions or by applying
a different optimality criterion. It might also be worth investigating different
models for the analysis of the dose toxicity relationship, e.g. the Emax-model.
Nevertheless, there will always be a trade off between the precision of the esti-
mates and the risk for the patients, but this can still be optimized. Simulations
as conducted within this work are essential for optimizing this method and inves-
tigating its performance in realistic scenarios. Thus they provide a valuable tool
to help both the statistician and clinician in choosing a possibly new method for
conducting a study.

We have seen that the parametric modification of the 3+3 design is a promising
alternative to the traditional 3+3 design and to Bayesian approaches. It might
be worth investigating this approach further in future work, optimizing it and
last but not least applying it not only in simulations but in actual dose escalation
studies.
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A Derivation of the Information
Matrix for the Bivariate Model

The information matrix presented in Chapter 5 is based on the following calcu-
lations, that yield the individual elements. Recall that the information matrix is
symmetric and thus M ij = M ji.

To calculate the information matrix, let us first consider the derivatives of the
used functions. For notational convenience, define

xµ :=
x− µ

σ
, xαj

:=
x− αj
β

and

H(x, y) := F (x)(1 + τ(1− F (x))(1− 2F (y))).

Note that

∂

∂y
G(x, y) = F (y)(1− F (y))H(x, y).

Then we get

∂

∂µ
F (xµ) = − 1

σ
F (xµ)(1− F (xµ))

∂

∂σ
F (xµ) = −x− µ

σ2
F (xµ)(1− F (xµ))

= xµ
∂

∂µ
F (xµ)

∂

∂αj
F (xαj

) = − 1

β
F (xαj

)(1− F (xαj
))

∂

∂β
F (xαj

) = − 1

β
xαj

F (xαj
)(1− F (xαj

))

= xαj

∂

∂αj
F (xαj

)

71



and

∂

∂µ
G(xαj

, xµ) = − 1

σ
F (xµ)(1− F (xµ))H(xαj

, xµ)

∂

∂σ
G(xαj

, xµ) = −x− µ

σ2
F (xµ)(1− F (xµ))H(xαj

, xµ)

= xµ
∂

∂µ
G(xαj

, xµ)

∂

∂αj
G(xαj

, xµ) = − 1

β
F (xαj

)(1− F (xαj
))H(xµ, xαj

)

∂

∂β
G(xαj

, xµ) = − 1

β
xαj

F (xαj
)(1− F (xαj

))H(xµ, xαj
)

= xαj

∂

∂αj
G(xαj

, xµ)

∂

∂τ
G(xαj

, xµ) = F (xαj
)(1− F (xαj

))F (xµ)(1− F (xµ)).

Note that H(xα0 , xµ) = 1 and H(xαK+1
, xµ) = 0.

All other derivatives of F (xµ), F (xαj
) and G(xαj

, xµ) with respect to the elements
of θ are 0.

We have

pj0 = F (xαj
)− F (xαj+1

)−G(xαj
, xµ) +G(xαj+1

, xµ)

pj1 = G(xαj
, xµ)−G(xαj+1

, xµ),

and thus we get

∂pj0
∂µ

= − ∂

∂µ
(G(xαj

, xµ)) +
∂

∂µ
G(xαj+1

, xµ)

=
1

σ
F (xµ)(1− F (xµ))H(xαj

, xµ)−
1

σ
F (xµ)(1− F (xµ))H(xαj+1

, xµ)

=
1

σ
F (xµ)(1− F (xµ))

[
H(xαj

, xµ)−H(xαj+1
, xµ)

]
∂pj1
∂µ

= − 1

σ
F (xµ)(1− F (xµ))

[
H(xαj

, xµ)−H(xαj+1
, xµ)

]
= −∂pj0

∂µ

∂pk0
∂αj

=


− 1
β
F (xαj

)(1− F (xαj
))
(
1−H(xµ, xαj

)
)

, k = j
1
β
F (xαj

)(1− F (xαj
))
(
1−H(xµ, xαj

)
)

, k + 1 = j

0 , otherwise

∂pk1
∂αj

=


− 1
β
F (xαj

)(1− F (xαj
))H(xµ, xαj

) , k = j
1
β
F (xαj

)(1− F (xαj
))H(xµ, xαj

) , k + 1 = j

0 , otherwise

.
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The elements of M related to the parameters µ and αj, j = 1, ..., K are given by

Mµµ =
∑
i,j

1

pji

∂pji
∂µ

∂pji
∂µ

=
K∑
j=0

[
1

pj0

(
∂pj0
∂µ

)2

+
1

pj1

(
∂pj1
∂µ

)2
]

=
K∑
j=0

(
1

pj0
+

1

pj1

)
1

σ2
F (xµ)

2(1− F (xµ))
2
[
H(xαj

, xµ)−H(xαj+1
, xµ)

]2
Mµαj

=
K∑
k=0

[
1

pk0

∂pk0
∂µ

∂pk0
∂αj

+
1

pk1

∂pk1
∂µ

∂pk1
∂αj

]
Mµαj

=
1

σ

1

β
F (xµ)(1− F (xµ)F (xαj

)(1− F (xαj
))

·
[(

1

p(j−1)0

(H(xαj−1
, xµ)−H(xαj

, xµ))−
1

pj0
(H(xαj

, xµ)−H(xαj+1
, xµ))

)
·
(
1−H(xµ, xαj

)
)

−
(

1

p(j−1)1

(H(xαj−1
, xµ)−H(xαj

, xµ))−
1

pj1
(H(xαj

, xµ)−H(xαj+1
, xµ))

)
·H(xµ, xαj

)
]

Mαjαj
=

K∑
k=0

[
1

pk0

(
∂pk0
∂αj

)2

+
1

pk1

(
∂pk1
∂αj

)2
]

=
1

β2
F (xαj

)2(1− F (xαj
))2 ·[(

1

p(j−1)0

+
1

pj0

)(
1−H(xµ, xαj

)
)2

+

(
1

p(j−1)1

+
1

pj1

)
H(xµ, xαj

)2

]

Mαjαi
=

K∑
k=0

[
1

pk0

∂pk0
∂αj

∂pk0
∂αi

+
1

pk1

∂pk1
∂αj

∂pk1
∂αi

]
=


Mαjαj

, i = j
Mαjαj−1

, i = j − 1
Mαjαj+1

, i = j + 1
0 , |j − i| ≥ 2

Note that Mαjαj−1
= Mαj′+1αj′

= Mαj′αj′+1
with j′ = j − 1. Thus it suffices to

consider either Mαjαj−1
or Mαjαj+1

.
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Mαjαj+1
=

K∑
k=0

[
1

pk0

∂pk0
∂αj

∂pk0
∂αj+1

+
1

pk1

∂pk1
∂αj

∂pk1
∂αj+1

]
=

1

β2
F (xαj

)(1− F (xαj
))F (xαj+1

)(1− F (xαj+1
)) ·[

− 1

pj0

(
1−H(xµ, xαj

)
) (

1−H(xµ, xαj+1
)
)
− 1

pj1
H(xµ, xαj

)H(xµ, xαj+1
)

]
.

Thus we get

M

(
x,

(
µ
α

))
= DHPHTD

with D, H and P as defined in Chapter 5. This can be seen directly by expanding
the above matrix terms.

Now we take a look at the elements related to the parameters σ and β. The
required derivatives are

∂pk0
∂σ

= − ∂

∂σ
G(xαk

, xµ) +
∂

∂σ
G(xαk+1

, xµ)

=
1

σ
xµF (xµ)(1− F (xµ))

[
H(xαk

, xµ)−H(xαk+1
, xµ)

]
∂pk1
∂σ

=
∂

∂σ
G(xαk

, xµ)−
∂

∂σ
G(xαk+1

, xµ)

= − 1

σ
xµF (xµ)(1− F (xµ))

[
H(xαk

, xµ)−H(xαk+1
, xµ)

]
and

∂pk0
∂β

=
∂

∂β

(
F (xαk

)− F (xαk+1
)−G(xαk

, xµ) +G(xαk+1
, xµ)

)
= − 1

β
xαk

F (xαk
)(1− F (xαk

)) [1−H(xµ, xαk
)]

+
1

β
xαk+1

F (xαk+1
)(1− F (xαk+1

))
[
1−H(xµ, xαk+1

)
]

∂pk1
∂β

= − 1

β
xαk

F (xαk
)(1− F (xαk

))H(xµ, xαk
)

+
1

β
xαk+1

F (xαk+1
)(1− F (xαk+1

))H(xµ, xαk+1
).

It can easily be seen that

∂pki
∂σ

= xµ
∂pki
∂µ

and

∂pki
∂β

= xαk

∂pki
∂α

+ xαk+1

∂pki
∂αk+1

.
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This gives

Mµσ =
K∑
k=0

[
1

pk0

∂pk0
∂µ

∂pk0
∂σ

+
1

pk1

∂pk1
∂µ

∂pk1
∂σ

]

=
1

σ2
xµF (xµ)

2(1− F (xµ))
2

K∑
k=0

(
1

pk0
+

1

pk1

)[
H(xαk

, xµ)−H(xαk+1
, xµ)

]
= xµMµµ

Mαjσ =
K∑
k=0

[
1

pk0

∂pk0
∂αj

∂pk0
∂σ

+
1

pk1

∂pk1
∂αj

∂pk1
∂σ

]
=

1

σ

1

β
xµF (xµ)(1− F (xµ)F (xαj

)(1− F (xαj
))

·
[(

1

p(j−1)0

(H(xαj−1
, xµ)−H(xαj

, xµ))−
1

pj0
(H(xαj

, xµ)−H(xαj+1
, xµ))

)
·
(
1−H(xµ, xαj

)
)

−
(

1

p(j−1)1

(H(xαj−1
, xµ)−H(xαj

, xµ))−
1

pj1
(H(xαj

, xµ)−H(xαj+1
, xµ))

)
·H(xµ, xαj

)
]

= xµMµαj

Mσσ =
K∑
k=0

[
1

pk0

(
∂pk0
∂σ

)2

+
1

pk1

(
∂pk1
∂σ

)2
]

= (xµ)
2 1

σ2
F (xµ)

2(1− F (xµ)
2

K∑
k=0

(
1

pj0
+

1

pj1

)[
H(xαk

, xµ)−H(xαk+1
, xµ)

]2
= (xµ)

2 Mµµ
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Mµβ =
K∑
k=0

[
1

pk0

∂pk0
∂µ

∂pk0
∂β

+
1

pk1

∂pk1
∂µ

∂pk1
∂β

]

=
1

σ

1

β
F (xµ)(1− F (xµ))

K∑
k=0

[
H(xαk

, xµ)−H(xαk+1
, xµ)

]
·
[

1

pk0
(−xαk

F (xαk
)(1− F (xαk

)) [1−H(xµ, xαk
)]

+xαk+1
F (xαk+1

)(1− F (xαk+1
))
[
1−H(xµ, xαk+1

)
])

+
1

pk1
(xαk

F (xαk
)(1− F (xαk

))H(xµ, xαk
)

−xαk+1
F (xαk+1

)(1− F (xαk+1
))H(xµ, xαk+1

)
)]
.

By renumeration of the sum and by using the fact that the summands are zero
for k ≤ 0 and k > K, we can conclude

Mµβ =
K∑
k=1

xαk
Mµαk

.

Following similar argumentation we get

Mαjβ =
K∑
k=0

[
1

pk0

∂pk0
∂αj

∂pk0
∂β

+
1

pk1

∂pk1
∂αj

∂pk1
∂β

]

=
1

β2

K∑
k=0

F (xαk
)(1− F (xαk

)){
(1−H(xµ, xαk

))

[
−xαk−1

1

p(k−1)0

F (xαk−1
)(1− F (xαk−1

))
(
1−H(xµ, xαk−1

)
)

+xαk

(
1

p(k−1)0

+
1

pk0

)
F (xαk

)(1− F (xαk
)) (1−H(xµ, xαk

))

−xαk+1

1

pk0
F (xαk+1

)(1− F (xαk+1
))
(
1−H(xµ, xαk+1

)
)]

+H(xµ, xαk
)

[
−xαk−1

1

p(k−1)1

F (xαk−1
)(1− F (xαk−1

))H(xµ, xαk−1
)

+xαk

(
1

p(k−1)1

+
1

pk1

)
F (xαk

)(1− F (xαk
))H(xµ, xαk

)

−xαk+1

1

pk1
F (xαk+1

)(1− F (xαk+1
))1−H(xµ, xαk+1

)

]}
=

K∑
k=1

xαk
Mµαk
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Mσβ =
K∑
k=0

[
1

pk0

∂pk0
∂σ

∂pk0
∂β

+
1

pk1

∂pk1
∂σ

∂pk1
∂β

]

=
1

β

1

σ
xµF (xµ)(1− F (xµ))

K∑
k=0

[
H(xαk

, xµ)−H(xαk+1
, xµ)

]
{
F (xαk

)(1− F (xαk
))
x− αk
β

(
− 1

pk0
[1−H(xµ, xαk

)] +
1

pk1
H(xµ, xαk

)

)
+(xαk+1

)(1− F (xαk+1
))
x− αk+1

β

(
− 1

pk0

[
1−H(xµ, xαk+1

)
]
+

1

pk1
H(xµ, xαk+1

)

)}
= xµMµβ

= xµ

K∑
k=0

xαk
Mµαk

Mββ =
K∑
k=0

[
1

pk0

(
∂pk0
∂β

)2

+
1

pk1

(
∂pk1
∂β

)2
]

=
K∑
k=0

{
1

pk0

[
−x− αk

β2
F (xαk

)(1− F (xαk
)) [1−H(xµ, xαk

)]

+
x− αk+1

β2
F (xαk+1

)(1− F (xαk+1
))
[
1−H(xµ, xαk+1

)
]]2

+
1

pk1

[
−x− αk

β2
F (xαk

)(1− F (xαk
))H(xµ, xαk

)

+
x− αk+1

β2
F (xαk+1

)(1− F (xαk+1
))H(xµ, xαk+1

)

]2
}

=
K∑
j=0

xαj

[
xαj−1

Mαj−1αj
+ xαj

Mαjαj
+ xαj+1

Mαj+1αj

]
=

K∑
j=0

xαj

K∑
k=0

xαk
Mαjαk

.

From these results we get directly

M

x,


µ
α
β
σ


 = V DHPHTDV T
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with

V =



1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 1
xµ 0 · · · 0
0 xα1 · · · xαK


∼ (K + 3)× (K + 1).

For the full information matrix, we still need to consider the elements of M
related to τ .

∂pk0
∂τ

=
∂

∂τ

(
F (xαk

)− F (xαk+1
)−G(xαk

, xµ) +G(xαk+1
, xµ)

)
= F (xµ)(1− F (xµ))

[
−F (xαk

)(1− F (xαk
)) + F (xαk+1

)(1− F (xαk+1
))
]

∂pk1
∂τ

= F (xµ)(1− F (xµ))
[
F (xαk

)(1− F (xαk
))− F (xαk+1

)(1− F (xαk+1
))
]

Mµτ =
K∑
k=0

[
1

pk0

∂pk0
∂µ

∂pk0
∂τ

+
1

pk1

∂pk1
∂µ

∂pk1
∂τ

]

=
1

σ
F (xµ)

2(1− F (xµ))
2

K∑
k=0

(
− 1

pk0
− 1

pk1

)
[
H(xαk

, xµ)−H(xαk+1
, xµ)

] [
F (xαk

)(1− F (xαk
))− F (xαk+1

)(1− F (xαk+1
))
]

Mαjτ =
K∑
k=0

[
1

pk0

∂pk0
∂αj

∂pk0
∂τ

+
1

pk1

∂pk1
∂αj

∂pk1
∂τ

]
=

1

β
F (xµ)(1− F (xµ))F (xαj

)(1− F (xαj
))[

(1−H(xµ, xαj
))

(
− 1

p(j−1)0

[
F (xαj−1

)(1− F (xαj−1
))− F (xαj

)(1− F (xαj
))
]

+
1

pj0

[
F (xαj

)(1− F (xαj
))− F (xαj+1

)(1− F (xαj+1
))
])

+H(xµ, xαj
)

(
1

p(j−1)1

[
F (xαj−1

)(1− F (xαj−1
))− F (xαj

)(1− F (xαj
))
]

− 1

pj1

[
F (xαj

)(1− F (xαj
))− F (xαj+1

)(1− F (xαj+1
))
])]
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Mστ =
K∑
k=0

[
1

pk0

∂pk0
∂σ

∂pk0
∂τ

+
1

pk1

∂pk1
∂σ

∂pk1
∂τ

]

=
1

σ
xµF (xµ)

2(1− F (xµ))
2

K∑
k=0

(
− 1

pk0
− 1

pk1

)
[
H(xαk

, xµ)−H(xαk+1
, xµ)

] [
F (xαk

)(1− F (xαk
))− F (xαk+1

)(1− F (xαk+1
))
]

= xµMµτ

Mβτ =
K∑
k=0

[
1

pk0

∂pk0
∂β

∂pk0
∂τ

+
1

pk1

∂pk1
∂β

∂pk1
∂τ

]

= F (xµ)(1− F (xµ))
K∑
k=0

[
F (xαk

)(1− F (xαk
))− F (xαk+1

)(1− F (xαk+1
))
]

(
− 1

pk0

[
− 1

β
xαk

F (xαk
)(1− F (xαk

))(1−H(xµ, xαk
))

+
1

β
xαk+1

F (xαk+1
)(1− F (xαk+1

))(1−H(xµ, xαk+1
))

]
+

1

pk1

[
− 1

β
xαk

F (xαk
)(1− F (xαk

))H(xµ, xαk
)

+
1

β
xαk+1

F (xαk+1
)(1− F (xαk+1

))H(xµ, xαk+1
)

])
=

K∑
k=0

xαk
Mαkτ

M ττ =
K∑
k=0

[
1

pk0

(
∂pk0
∂τ

)2

+
1

pk1

(
∂pk1
∂τ

)2
]

= F (xµ)
2(1− F (xµ))

2

K∑
k=0

(
1

pk0
+

1

pk1

)
[
F (xαk

)(1− F (xαk
))− F (xαk+1

)(1− F (xαk+1
))
]2

Now it can be seen quite easily that the information matrix is the one given in
Chapter 5.
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Figure B.1: D-optimal design for the bivariate model with β = 2, σ = 1 and
τ = 0; top: optimal design points, bottom: optimal weights.
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Figure B.2: D-optimal design for the bivariate model with β = 0.5, σ = 1 and
τ = 0; top: optimal design points, bottom: optimal weights.
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Figure B.3: D-optimal design for the bivariate model with β = 2, σ = 1 and
τ = 0.8; top: optimal design points, bottom: optimal weights.
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Figure B.4: D-optimal design for the bivariate model with β = 0.5, σ = 1 and
τ = 0.8; top: optimal design points, bottom: optimal weights.
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Figure B.5: D-optimal design for the bivariate model with α1 = 1, β = 1, σ = 1
and τ = 0; top: optimal design points, bottom: optimal weights.
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Figure B.6: D-optimal design for the bivariate model with α1 = −1, β = 1, σ = 1
and τ = 0; top: optimal design points, bottom: optimal weights.
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Figure B.7: D-optimal design for the bivariate model with α1 = 0, β = 2, σ = 1
and τ = 0; top: optimal design points, bottom: optimal weights.
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Figure B.8: D-optimal design for the bivariate model with α1 = 1, β = 2, σ = 1
and τ = 0 ; top: optimal design points, bottom: optimal weights.
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Figure B.9: D-optimal design for the bivariate model with α1 = −1, β = 2, σ = 1
and τ = 0; top: optimal design points, bottom: optimal weights.
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Figure B.10: D-optimal design for the bivariate model with α1 = 1, β = 1, σ = 1
and τ = 0.8; top: optimal design points, bottom: optimal weights.
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Figure B.11: D-optimal design for the bivariate model with α1 = −1, β = 1, σ = 1
and τ = 0.8; top: optimal design points, bottom: optimal weights.
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Figure B.12: D-optimal design for the bivariate model with α1 = 0, β = 2, σ = 1
and τ = 0.8; top: optimal design points, bottom: optimal weights.
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Figure B.13: D-optimal design for the bivariate model with α1 = 1, β = 2, σ = 1
and τ = 0.8; top: optimal design points, bottom: optimal weights.
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Figure B.14: D-optimal design for the bivariate model with α1 = −1, β = 2, σ = 1
and τ = 0.8; top: optimal design points, bottom: optimal weights.
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C Tables

C.1 Scenario II

Bayesian ADEPT
Dose 3+3 variance gain function patient gain function

Design n=1 n=2 n=1 n=2
0.6 3.78 0.00 0.00 0.00 0.00
1.2 4.29 0.00 0.00 0.00 0.00
2.0 5.04 0.09 0.28 0.09 0.24
3.0 5.82 0.03 0.04 0.02 0.02
4.0 6.99 0.14 0.15 0.06 0.07
5.3 8.76 0.61 0.71 0.28 0.29
7.0 11.73 2.99 3.42 1.28 1.46
9.3 15.73 13.77 15.29 6.39 6.92

12.4 18.17 34.40 33.87 25.12 22.83
16.5 12.77 40.55 39.05 47.84 49.51
22.0 3.25 7.40 7.11 18.40 17.72
29.4 0.20 0.02 0.08 0.53 0.94
none 3.47 0.00 0.00 0.00 0.00

Table C.1: Percentage of each dose being estimated as the MTD in Scenario II
for the 3+3 design and different settings in Bayesian ADEPT;
100 000 simulation runs.
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D-criterion c-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 2.82 3.41 2.68 3.41 2.75 3.43 2.67 2.67
1.2 3.15 3.17 3.21 3.17 3.10 3.04 3.32 3.42
2.0 3.19 3.35 3.45 3.35 3.32 3.52 3.54 3.63
3.0 5.28 5.30 5.36 5.30 5.23 5.27 5.28 5.99
4.0 5.64 5.46 6.63 5.46 5.69 5.50 6.48 6.81
5.3 6.01 6.04 9.29 6.04 6.00 6.15 9.32 11.68
7.0 6.19 6.51 17.28 6.51 6.44 6.91 17.55 19.06
9.3 9.36 10.71 20.74 10.71 9.89 11.38 20.95 21.57

12.4 20.33 19.90 16.13 19.90 20.12 19.64 16.24 13.48
16.5 22.91 19.56 8.66 19.56 22.91 18.97 8.73 6.94
22.0 7.94 8.58 2.14 8.58 7.38 8.12 2.14 1.01
29.4 3.65 4.57 0.32 4.57 3.66 4.57 0.32 0.23
none 3.53 3.45 3.42 3.45 3.52 3.50 3.46 3.53

Table C.2: Percentage of each dose being estimated as the MTD in Scenario II
for SLOD based on the logistic model with different optimality
criteria, design regions, and cohort sizes n; 100 000 simulation runs.

D-criterion c-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 3.73 3.45 3.66 3.15 3.67 3.61 3.65 3.59
1.2 3.25 3.32 3.23 3.57 3.25 3.57 3.23 3.46
2.0 3.25 3.14 3.22 3.38 3.30 3.06 3.26 3.07
3.0 3.35 3.25 3.41 3.60 3.32 3.65 3.36 3.58
4.0 3.78 3.65 3.92 3.62 3.81 3.79 3.88 3.69
5.3 3.48 3.57 3.83 3.57 3.46 3.38 3.84 3.59
7.0 4.52 4.44 5.23 5.12 4.44 4.39 5.19 5.06
9.3 8.85 9.23 10.23 10.01 8.65 9.02 10.14 9.61

12.4 20.20 19.29 21.28 20.39 19.94 18.64 21.14 20.67
16.5 26.70 23.02 24.93 25.99 27.01 23.77 25.18 25.66
22.0 10.15 11.29 9.62 10.01 10.43 10.93 9.66 9.93
29.4 5.40 8.75 4.11 4.14 5.39 8.67 4.14 4.51
none 3.34 3.60 3.33 3.45 3.33 3.52 3.33 3.58

Table C.3: Percentage of each dose being estimated as the MTD in Scenario II
for SLOD based on the 4 category proportional odds model
with different optimality criteria, design regions, and cohort sizes n;
10 000 simulation runs.
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D-criterion L-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 2.84 3.18 2.76 2.97 2.83 3.25 2.73 2.76
1.2 2.84 2.88 2.79 2.82 2.73 2.78 2.91 2.95
2.0 2.73 2.94 2.76 3.20 2.76 3.12 2.82 2.86
3.0 2.54 2.68 2.75 2.85 2.46 2.20 2.63 3.17
4.0 2.03 2.13 3.19 3.31 2.08 2.43 3.19 3.67
5.3 2.39 3.06 6.50 8.58 2.32 2.96 6.42 8.19
7.0 2.65 2.69 15.56 17.69 3.04 3.73 16.10 18.57
9.3 7.50 7.79 22.90 25.09 7.53 8.83 23.39 25.53

12.4 25.17 27.44 21.52 19.09 25.62 26.77 21.07 17.99
16.5 30.35 24.99 11.39 9.32 30.29 24.37 11.06 9.10
22.0 11.71 11.84 3.96 1.42 11.16 11.30 3.83 1.36
29.4 3.86 4.78 0.55 0.29 3.81 4.95 0.48 0.26
none 3.39 3.60 3.37 3.37 3.37 3.31 3.37 3.59

Table C.4: Percentage of each dose being estimated as the MTD in Scenario II
for SLOD based on the bivariate model with different optimality
criteria, design regions, and cohort sizes n; 10 000 simulation runs.

Bayesian ADEPT

Dose 3+3 variance gain function patient gain function

Design n=1 n=2 n=1 n=2

N 31.30 24.91 26.94 29.09 30.43

NDLT 3.77 7.37 7.91 8.46 8.70

N>MTD 1.01 7.78 9.12 8.56 8.50

MSE 89.37 19.27 20.93 15.84 16.72

Table C.5: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), and mean squared
error (MSE) in Scenario II for the 3+3 design and different settings
in Bayesian ADEPT.
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D-criterion c-criterion

des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 28.30 28.78 28.30 28.78 28.25 28.71 28.30 28.69

NDLT 4.35 3.48 4.08 3.48 4.10 3.39 4.09 4.12

N>MTD 3.10 1.22 2.52 1.22 2.66 1.00 2.53 2.44

MSE 72.37 76.76 86.97 76.76 72.60 77.61 87.49 93.71

CI 2.42 2.72 2.16 2.72 2.35 2.35 2.16 2.16

Table C.6: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), mean squared
error (MSE), and median width of the 95% confidence interval for the
MTD (CI) in Scenario II for different settings of SLOD based on
the logistic model.

D-criterion c-criterion

des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 30.16 30.54 30.16 30.53 30.16 30.42 30.16 30.43

NDLT 5.82 5.19 5.56 5.66 5.83 5.17 5.64 5.71

N>MTD 3.67 2.46 2.77 2.91 3.58 2.41 2.82 2.98

MSE 66.81 71.98 66.53 65.78 66.56 72.99 66.40 66.57

CI 2.57 2.88 2.56 2.57 2.55 2.55 2.56 2.56

Table C.7: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), mean squared
error (MSE), and median width of the 95% confidence interval for the
MTD (CI) in Scenario II for different settings of SLOD based on
the 4 category proportional odds model.
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D-criterion L-criterion

des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 30.67 31.05 30.67 31.04 30.67 31.12 30.67 31.04

NDLT 5.41 4.28 4.68 4.67 5.14 4.15 4.70 4.67

N>MTD 4.67 2.25 2.97 2.85 4.20 1.97 3.00 2.85

MSE MTD 52.80 57.89 71.92 78.13 52.61 59.05 72.47 78.81

CI MTD 2.62 2.97 2.40 2.39 2.55 2.55 2.39 2.39

MSE minED 16.65 17.33 17.52 17.74 16.72 17.56 17.55 17.69

CI minED 2.71 2.84 2.84 2.84 2.67 2.67 2.85 2.85

Table C.8: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), mean squared
error for the MTD (MSE MTD) and minimum effective dose (MSE
minED), and median width of the 95% confidence intervals for the
MTD (CI MTD) and the minimum effective dose (CI minED) in
Scenario II for different settings of SLOD based on the bivari-
ate model.
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C.2 Scenario III

Bayesian ADEPT
Dose 3+3 variance gain function patient gain function

Design n=1 n=2 n=1 n=2
0.6 1.18 0.00 0.00 0.00 0.00
1.2 1.29 0.00 0.00 0.00 0.00
2.0 1.41 4.09 2.86 11.22 6.60
3.0 1.66 0.00 0.00 0.00 0.00
4.0 1.87 0.00 0.00 0.00 0.00
5.3 2.26 0.00 0.00 0.00 0.00
7.0 2.93 0.01 0.02 0.01 0.02
9.3 4.27 0.08 0.09 0.05 0.05

12.4 6.37 0.35 0.29 0.18 0.18
16.5 10.45 1.88 1.51 0.65 1.19
22.0 18.00 2.29 2.09 1.89 1.88
29.4 47.19 91.30 93.15 86.00 90.07
none 1.12 0.00 0.00 0.00 0.00

Table C.9: Percentage of each dose being estimated as the MTD in Scenario III
for the 3+3 design and different settings in Bayesian ADEPT;
100 000 simulation runs.
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D-criterion c-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 1.09 1.33 1.00 0.98 1.09 1.33 1.00 1.01
1.2 1.05 1.09 1.14 1.10 1.02 1.02 1.17 1.15
2.0 1.07 1.29 1.09 1.28 1.10 1.32 1.10 1.27
3.0 1.94 2.00 1.93 2.24 1.90 1.95 1.93 2.23
4.0 2.30 2.10 2.15 2.25 2.30 2.08 2.13 2.21
5.3 2.40 3.71 2.87 3.60 2.44 3.75 2.85 3.61
7.0 2.79 2.85 3.40 8.06 2.81 2.91 3.40 8.06
9.3 3.50 3.01 5.81 9.95 3.50 3.10 5.82 9.92

12.4 4.32 5.38 17.15 13.39 4.37 5.51 17.15 13.47
16.5 6.87 6.97 18.99 15.35 7.10 7.37 18.98 15.30
22.0 14.49 16.02 16.18 13.24 14.44 15.51 16.19 13.16
29.4 57.04 53.07 27.22 27.36 56.80 52.98 27.20 27.45
none 1.11 1.18 1.09 1.19 1.13 1.18 1.09 1.16

Table C.10: Percentage of each dose being estimated as the MTD in Sce-
nario III for SLOD based on the logistic model with differ-
ent optimality criteria, design regions, and cohort sizes n; 100 000
simulation runs.
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D-criterion c-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 1.32 1.20 1.29 1.11 1.32 1.19 1.29 1.22
1.2 1.11 1.54 1.13 1.51 1.10 1.57 1.13 1.54
2.0 1.13 1.21 1.15 1.23 1.13 1.16 1.14 1.11
3.0 1.28 1.32 1.25 1.19 1.28 1.28 1.25 1.32
4.0 0.96 1.08 0.95 1.18 0.97 1.14 0.96 1.06
5.3 1.20 1.07 1.19 1.03 1.20 1.11 1.20 1.09
7.0 1.10 1.06 1.09 1.01 1.10 1.08 1.09 1.10
9.3 1.07 1.48 1.09 1.47 1.03 1.48 1.09 1.38

12.4 1.56 1.73 1.78 1.72 1.56 1.84 1.77 1.92
16.5 2.90 3.17 3.71 3.37 2.76 3.15 3.68 3.14
22.0 11.16 11.98 10.67 11.10 11.08 11.77 10.63 10.81
29.4 74.25 72.20 73.74 73.06 74.51 72.26 73.81 73.43
none 0.96 0.96 0.96 1.02 0.96 0.97 0.96 0.88

Table C.11: Percentage of each dose being estimated as the MTD in Sce-
nario III for SLOD based on the 4 category proportional
odds model with different optimality criteria, design regions, and
cohort sizes n; 10 000 simulation runs.
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D-criterion L-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 1.00 1.34 0.89 0.86 1.00 1.30 0.89 0.95
1.2 1.02 1.09 1.07 0.93 0.97 0.83 1.08 1.20
2.0 1.00 1.20 1.00 1.03 1.00 1.22 1.01 1.28
3.0 0.98 0.91 0.97 1.22 0.96 0.96 0.98 1.18
4.0 1.13 0.92 1.15 1.05 1.11 1.11 1.18 1.05
5.3 1.17 2.29 1.71 2.27 1.18 2.42 1.82 2.45
7.0 1.40 1.64 1.73 4.71 1.36 1.41 1.96 6.52
9.3 1.53 1.58 3.43 7.24 1.59 1.63 4.23 8.22

12.4 1.90 3.48 12.49 12.38 1.93 3.33 15.82 12.22
16.5 4.01 4.23 19.88 18.04 4.53 4.85 18.82 16.82
22.0 15.89 17.80 19.63 17.72 15.34 17.55 17.95 16.00
29.4 67.98 62.50 35.06 31.58 68.04 62.38 33.27 31.06
none 0.99 1.02 0.99 0.97 0.99 1.01 0.99 1.05

Table C.12: Percentage of each dose being estimated as the MTD in Sce-
nario III for SLOD based on the bivariate model with dif-
ferent optimality criteria, design regions, and cohort sizes n; 10 000
simulation runs.

Bayesian ADEPT

Dose 3+3 variance gain function patient gain function

Design n=1 n=2 n=1 n=2

N 38.11 58.20 58.47 58.96 58.56

NDLT 2.46 7.37 7.48 10.62 10.26

MSE 146.54 36.48 26.41 87.13 53.41

Table C.13: Average number of subjects (N), of observed DLT s (NDLT ), and
mean squared error (MSE) in Scenario III for the 3+3 design and
different settings in Bayesian ADEPT.
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D-criterion c-criterion

Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 35.59 36.05 35.69 36.02 35.57 36.04 35.69 36.01

NDLT 2.53 2.33 2.69 2.68 2.52 2.31 2.69 2.68

MSE 129.22 142.39 202.03 232.41 129.68 143.22 202.17 232.55

CI 3.88 4.54 4.13 4.01 3.88 3.88 4.13 4.13

Table C.14: Average number of subjects (N), of observed DLT s (NDLT ), mean
squared error (MSE), and median width of the 95% confidence in-
terval for the MTD (CI) in Scenario III for different settings of
SLOD based on the logistic model.

D-criterion c-criterion

Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 37.21 37.60 37.21 37.60 37.21 37.59 37.21 37.57

NDLT 3.51 3.34 3.64 3.69 3.51 3.34 3.65 3.66

MSE 76.34 82.57 77.82 80.80 75.89 82.97 77.77 81.55

CI 4.09 4.44 3.91 3.94 4.10 4.10 3.92 3.92

Table C.15: Average number of subjects (N), of observed DLT s (NDLT ), mean
squared error (MSE), and median width of the 95% confidence in-
terval for the MTD (CI) in Scenario III for different settings of
SLOD based on the 4 category proportional odds model.
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D-criterion L-criterion

Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 37.62 38.01 37.62 38.04 37.62 37.98 37.62 37.92

NDLT 2.84 2.60 2.94 2.93 2.86 2.57 2.99 2.93

MSE MTD 79.66 96.78 151.32 180.72 79.74 96.35 163.84 196.18

CI MTD 5.56 5.90 5.05 4.86 5.03 5.03 5.01 5.01

MSE minED 8.60 8.45 8.94 9.17 8.59 8.47 8.94 9.21

CI minED 1.89 1.85 1.91 1.90 1.92 1.92 1.95 1.95

Table C.16: Average number of subjects (N), of observed DLT s (NDLT ), mean
squared error for the MTD (MSE MTD) and minimum effective
dose (MSE minED), and median width of the 95% confidence inter-
vals for the MTD (CI MTD) and the minimum effective dose (CI
minED) in Scenario III for different settings of SLOD based on
the bivariate model.
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C.3 Scenario IV

Bayesian ADEPT
Dose 3+3 variance gain function patient gain function

Design n=1 n=2 n=1 n=2
0.6 7.85 0.01 0.01 0.00 0.00
1.2 9.71 0.08 0.10 0.03 0.04
2.0 12.15 0.58 0.66 0.28 0.55
3.0 14.37 3.08 3.23 1.26 1.32
4.0 16.43 10.66 11.44 5.18 5.07
5.3 16.30 26.45 27.11 18.68 17.69
7.0 12.16 33.37 33.80 38.64 37.17
9.3 3.85 20.46 20.24 30.35 29.95

12.4 0.29 4.78 2.96 5.41 6.97
16.5 0.00 0.53 0.44 0.17 1.23
22.0 0.00 0.00 0.00 0.01 0.01
29.4 0.00 0.00 0.00 0.00 0.01
none 6.90 0.00 0.00 0.00 0.00

Table C.17: Percentage of each dose being estimated as the MTD in Sce-
nario IV for the 3+3 design and different settings in Bayesian
ADEPT; 100 000 simulation runs.
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D-criterion c-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 5.37 6.20 5.41 5.28 5.42 6.15 5.07 5.12
1.2 6.33 6.18 6.85 7.05 6.26 6.13 7.13 7.18
2.0 6.88 6.89 8.37 8.96 7.17 7.47 8.24 8.90
3.0 10.55 10.75 13.97 15.05 11.05 11.30 13.84 15.11
4.0 12.97 12.81 19.38 20.47 13.14 13.36 19.66 20.59
5.3 18.27 18.05 20.71 20.87 17.25 17.80 20.62 21.05
7.0 18.66 18.75 13.34 13.34 19.27 18.09 13.56 13.42
9.3 7.97 8.57 4.57 1.91 7.46 8.23 4.67 1.82

12.4 3.59 2.41 0.58 0.21 3.47 2.08 0.53 0.16
16.5 1.41 0.72 0.02 0.01 1.50 0.69 0.02 0.00
22.0 0.33 0.00 0.01 0.00 0.33 0.32 0.01 0.00
29.4 0.93 0.00 0.01 0.00 1.03 1.74 0.01 0.00
none 6.75 6.85 6.80 6.85 6.65 6.64 6.65 6.64

Table C.18: Percentage of each dose being estimated as the MTD in Sce-
nario IV for SLOD based on the logistic model with differ-
ent optimality criteria, design regions, and cohort sizes n; 100 000
simulation runs.
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D-criterion c-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 7.32 6.92 7.15 6.99 6.91 6.85 6.82 6.76
1.2 6.58 6.60 6.24 6.62 6.44 6.97 6.42 7.03
2.0 5.95 6.16 6.64 6.90 5.87 6.22 6.24 6.70
3.0 5.58 6.09 6.92 7.36 5.67 6.12 6.77 6.80
4.0 9.43 8.74 10.14 9.04 8.80 8.47 10.51 9.04
5.3 15.64 15.47 16.10 15.66 15.36 14.79 16.27 15.98
7.0 20.73 19.48 20.00 19.97 20.88 19.49 20.41 20.18
9.3 13.94 11.80 13.17 12.90 14.24 11.75 12.91 13.51

12.4 4.11 5.25 4.19 4.49 4.41 5.34 3.98 4.50
16.5 1.70 2.36 1.19 1.19 1.74 2.39 1.24 1.20
22.0 0.74 1.40 0.51 0.74 1.00 1.48 0.64 0.64
29.4 2.15 3.23 1.17 1.36 2.11 3.54 1.24 1.35
none 6.13 6.50 6.58 6.78 6.57 6.59 6.55 6.31

Table C.19: Percentage of each dose being estimated as the MTD in Sce-
nario IV for SLOD based on the 4 category proportional
odds model with different optimality criteria, design regions, and
cohort sizes n; 10 000 simulation runs.
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D-criterion L-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 5.44 6.38 5.41 4.92 5.43 5.89 5.30 5.36
1.2 5.21 5.37 5.78 6.01 5.03 5.18 5.64 5.88
2.0 4.35 5.26 6.11 7.38 4.59 5.85 6.15 6.71
3.0 5.23 4.92 9.77 10.58 5.43 5.89 9.91 10.76
4.0 9.18 9.49 18.82 19.40 10.02 10.51 19.60 19.92
5.3 21.01 21.92 22.90 25.02 21.16 22.19 22.99 25.33
7.0 24.63 22.62 17.46 16.73 23.18 21.19 17.31 16.43
9.3 12.86 12.22 6.14 2.71 13.20 11.81 5.68 2.53

12.4 3.15 2.67 0.91 0.21 3.10 2.52 0.74 0.21
16.5 1.40 0.66 0.06 0.01 1.35 0.65 0.05 0.01
22.0 0.15 0.21 0.01 7.03 0.21 0.32 0.01 6.86
29.4 0.68 1.31 0.01 4.92 0.67 1.41 0.01 5.36
none 6.71 6.97 6.62 6.01 6.63 6.59 6.61 5.88

Table C.20: Percentage of each dose being estimated as the MTD in Sce-
nario IV for SLOD based on the bivariate model with dif-
ferent optimality criteria, design regions, and cohort sizes n; 10 000
simulation runs.

Bayesian ADEPT

Dose 3+3 variance gain function patient gain function

Design n=1 n=2 n=1 n=2

N 22.70 23.05 24.05 26.55 28.17

NDLT 3.52 7.26 7.57 8.03 8.44

N>MTD 1.13 7.20 6.84 8.04 7.63

MSE 15.10 5.35 4.88 4.64 6.12

Table C.21: Average number of subjects (N), of observed DLT s (NDLT ), of
subjects treated with doses above the MTD (N>MTD), and mean
squared error (MSE) in Scenario IV for the 3+3 design and dif-
ferent settings in Bayesian ADEPT.
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D-criterion c-criterion

des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 20.62 21.03 20.58 20.89 20.61 21.00 20.62 20.91

NDLT 3.54 3.18 3.33 3.37 3.35 3.10 3.33 3.37

N>MTD 1.88 0.98 1.47 1.39 1.55 0.78 1.46 1.38

MSE 18.87 22.00 12.54 12.67 19.52 22.59 12.42 12.60

CI 2.98 3.07 2.71 2.72 2.80 2.80 2.71 2.71

Table C.22: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), mean squared
error (MSE), and median width of the 95% confidence interval for the
MTD (CI) in Scenario IV for different settings of SLOD based
on the logistic model.

D-criterion c-criterion

des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 21.38 21.70 21.34 21.59 21.37 21.62 21.37 21.66

NDLT 4.82 4.36 4.57 4.65 4.77 4.31 4.64 4.70

N>MTD 2.79 1.89 2.42 2.39 2.75 1.83 2.52 2.48

MSE 26.45 34.71 20.54 22.33 26.83 36.74 21.02 21.88

CI 3.17 3.53 3.07 3.10 3.10 3.10 3.11 3.11

Table C.23: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), mean squared
error (MSE), and median width of the 95% confidence interval for the
MTD (CI) in Scenario IV for different settings of SLOD based
on the 4 category proportional odds model.
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D-criterion L-criterion

des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 22.08 22.30 22.08 22.28 22.08 22.40 22.08 22.30

NDLT 4.22 3.62 3.70 3.72 4.02 3.54 3.72 3.73

N>MTD 2.93 1.60 1.76 1.58 2.54 1.38 1.81 1.63

MSE MTD 14.96 18.36 11.06 11.03 15.11 19.15 10.98 11.06

CI MTD 3.29 3.66 2.78 2.81 3.11 3.11 2.78 2.78

MSE minED 4.77 4.89 5.12 5.21 4.82 4.93 5.08 5.23

CI minED 2.54 2.51 2.79 2.71 2.52 2.52 2.84 2.84

Table C.24: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), mean squared
error for the MTD (MSE MTD) and minimum effective dose (MSE
minED), and median width of the 95% confidence intervals for the
MTD (CI MTD) and the minimum effective dose (CI minED) in
Scenario IV for different settings of SLOD based on the bivari-
ate model.
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C.4 Scenario V

Bayesian ADEPT
Dose 3+3 variance gain function patient gain function

Design n=1 n=2 n=1 n=2
0.6 4.71 0.01 0.00 0.01 0.00
1.2 8.00 0.01 0.01 0.01 0.01
2.0 11.64 0.86 0.13 0.15 0.20
3.0 13.41 0.34 0.23 0.37 0.35
4.0 14.37 0.90 0.75 0.98 1.02
5.3 13.63 2.53 2.08 2.78 2.35
7.0 12.33 5.57 5.22 6.37 5.60
9.3 9.27 11.22 11.59 12.39 11.01

12.4 5.80 18.09 18.33 18.99 17.94
16.5 2.90 23.68 24.14 23.09 24.05
22.0 1.27 20.98 20.85 21.27 21.62
29.4 0.59 15.82 16.67 13.59 15.86
none 2.07 0.00 0.00 0.00 0.00

Table C.25: Percentage of each dose being estimated as the MTD in Scenario V
for the 3+3 design and different settings in Bayesian ADEPT;
100 000 simulation runs.
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D-criterion c-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 3.44 3.74 3.23 3.27 3.40 3.82 3.21 3.28
1.2 4.42 4.46 4.54 4.83 4.34 4.41 4.50 4.83
2.0 4.72 5.00 6.19 6.79 5.01 5.64 6.19 6.77
3.0 4.38 4.65 8.92 9.78 5.35 6.17 8.84 9.74
4.0 6.01 7.67 14.07 17.75 7.95 9.43 14.08 17.71
5.3 9.80 15.23 18.99 23.34 10.99 15.04 19.08 23.40
7.0 16.07 22.87 19.69 20.30 15.57 22.97 19.71 20.43
9.3 13.23 18.79 12.36 5.80 12.36 16.24 12.37 5.72

12.4 13.01 8.04 4.92 2.17 12.70 6.95 4.93 2.16
16.5 7.76 2.17 1.77 2.27 7.15 2.03 1.77 2.30
22.0 5.10 1.35 0.39 0.46 4.00 1.35 0.39 0.47
29.4 10.07 4.01 2.86 1.21 9.12 3.94 2.87 1.15
none 2.00 2.03 2.06 2.03 2.06 2.01 2.06 2.07

Table C.26: Percentage of each dose being estimated as the MTD in Scenario V
for SLOD based on the logistic model with different optimality
criteria, design regions, and cohort sizes n; 100 000 simulation runs.

D-criterion c-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 4.74 4.92 4.74 4.77 4.74 4.82 4.74 4.95
1.2 7.95 7.60 7.92 7.81 7.95 7.85 7.94 7.90
2.0 9.81 9.94 9.91 9.92 9.87 9.91 9.90 9.76
3.0 10.42 10.79 10.75 10.67 10.45 10.79 10.70 11.03
4.0 9.93 10.07 10.89 10.74 10.06 10.08 10.90 10.67
5.3 9.79 10.31 10.58 10.53 9.82 10.27 10.53 10.39
7.0 9.61 10.37 10.49 10.12 9.41 10.34 10.46 9.95
9.3 8.81 10.51 8.70 9.36 8.73 10.06 8.77 9.28

12.4 7.32 8.25 7.08 7.50 7.45 8.28 7.09 7.61
16.5 6.15 5.54 5.47 5.29 6.10 5.58 5.50 5.48
22.0 4.71 3.41 4.11 4.46 4.69 3.48 4.16 4.36
29.4 8.71 6.27 7.31 6.78 8.68 6.52 7.26 6.56
none 2.05 2.02 2.05 2.05 2.05 2.02 2.05 2.06

Table C.27: Percentage of each dose being estimated as the MTD in Scenario V
for SLOD based on the 4 category proportional odds model
with different optimality criteria, design regions, and cohort sizes n;
10 000 simulation runs.
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D-criterion L-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 3.69 4.15 3.62 3.74 3.68 4.06 3.58 3.89
1.2 5.24 4.97 5.29 5.48 5.19 4.57 5.29 5.40
2.0 4.98 5.78 5.78 6.44 5.05 6.14 5.50 6.48
3.0 4.53 4.76 7.10 6.90 4.93 4.36 7.27 7.56
4.0 3.73 3.58 9.73 10.92 4.45 5.20 10.30 10.58
5.3 3.73 5.92 14.61 16.60 5.11 7.72 14.45 17.61
7.0 6.81 13.66 17.16 20.95 7.93 14.26 17.40 20.61
9.3 11.31 19.84 15.72 17.97 11.35 19.52 15.44 17.80

12.4 15.75 19.96 12.34 5.20 15.34 18.94 12.19 4.88
16.5 12.92 8.97 3.37 1.61 11.58 7.26 3.25 1.21
22.0 10.44 1.93 1.45 0.48 9.73 1.72 1.46 0.35
29.4 14.58 4.45 1.61 1.61 13.43 4.06 1.65 1.60
none 2.29 2.03 2.22 2.10 2.23 2.19 2.22 2.03

Table C.28: Percentage of each dose being estimated as the MTD in Scenario V
for SLOD based on the bivariate model with different optimality
criteria, design regions, and cohort sizes n; 10 000 simulation runs.

Bayesian ADEPT

Dose 3+3 variance gain function patient gain function

Design n=1 n=2 n=1 n=2

N 26.37 40.63 42.45 39.30 41.74

NDLT 3.58 11.80 12.36 11.84 12.47

N>MTD 0.08 20.75 22.36 17.65 18.61

MSE 140.95 53.58 52.29 50.47 52.28

Table C.29: Average number of subjects (N), of observed DLT s (NDLT ), of
subjects treated with doses above the MTD (N>MTD), and mean
squared error (MSE) in Scenario V for the 3+3 design and differ-
ent settings in Bayesian ADEPT.
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D-criterion c-criterion

des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 25.88 26.17 25.87 26.18 25.87 26.16 25.87 26.16

NDLT 3.16 3.00 3.24 3.26 3.09 2.96 3.25 3.26

N>MTD 0.44 0.03 0.95 1.03 0.28 0.03 0.95 1.02

MSE 102.87 111.55 126.99 135.92 106.80 116.84 126.83 135.85

CI 5.69 6.82 3.28 3.72 4.74 4.74 3.29 3.29

Table C.30: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), mean squared
error (MSE), and median width of 95% confidence interval for the
MTD (CI) in Scenario V for different settings of SLOD based
on the logistic model.

D-criterion c-criterion

des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 24.66 24.90 24.66 24.87 24.66 24.85 24.66 24.80

NDLT 4.53 4.46 4.54 4.56 4.53 4.47 4.54 4.56

N>MTD 0.60 0.14 0.77 0.70 0.60 0.14 0.77 0.70

MSE 131.55 130.25 133.03 131.70 131.72 130.67 132.86 131.85

CI 5.47 5.85 4.39 4.50 5.29 5.29 4.38 4.38

Table C.31: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), mean squared
error (MSE), and median width of 95% confidence interval for the
MTD (CI) in Scenario V for different settings of SLOD based
on the 4 category proportional odds model.
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D-criterion L-criterion

des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 25.30 25.72 25.30 25.70 25.30 25.77 25.30 25.63

NDLT 3.79 3.51 3.59 3.61 3.71 3.45 3.58 3.61

N>MTD 1.73 0.10 1.20 1.07 1.40 0.07 1.21 1.07

MSE MTD 95.28 92.22 112.01 121.34 97.74 95.61 112.45 123.01

CI MTD 5.95 6.15 3.19 3.32 5.21 5.21 3.18 3.18

MSE minED 42.09 28.39 37.63 36.84 39.20 28.0 37.68 36.44

CI minED 9.07 8.32 7.95 7.54 8.49 8.49 8.28 8.28

Table C.32: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), mean squared
error for the MTD (MSE MTD) and minimum effective dose (MSE
minED), and median width of 95% confidence intervals for the MTD
(CI MTD) and the minimum effective dose (CI minED) in Sce-
nario V for different settings of SLOD based on the bivariate
model.
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C.5 Scenario VI

Bayesian ADEPT
Dose 3+3 variance gain function patient gain function

Design n=1 n=2 n=1 n=2
0.6 0.04 0.00 0.00 0.00 0.00
1.2 0.26 0.00 0.00 0.00 0.00
2.0 0.82 0.02 0.01 0.00 0.00
3.0 1.99 0.00 0.00 0.00 0.00
4.0 4.30 0.03 0.03 0.00 0.02
5.3 8.69 0.27 0.24 0.09 0.11
7.0 15.75 1.63 1.71 0.97 0.89
9.3 23.40 8.20 8.81 6.40 5.76

12.4 24.01 23.87 22.57 23.18 20.42
16.5 14.56 41.92 42.56 41.94 44.45
22.0 5.13 22.46 22.29 25.26 25.59
29.4 1.03 1.61 1.79 2.16 2.76
none 0.01 0.00 0.00 0.00 0.00

Table C.33: Percentage of each dose being estimated as the MTD in Sce-
nario VI for the 3+3 design and different settings in Bayesian
ADEPT; 100 000 simulation runs.
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D-criterion c-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 0.04 0.06 0.04 0.04 0.04 0.05 0.04 0.05
1.2 0.24 0.27 0.24 0.28 0.24 0.23 0.24 0.27
2.0 0.78 0.74 0.78 0.74 0.78 0.74 0.78 0.74
3.0 1.54 1.55 1.58 1.61 1.54 1.56 1.63 1.68
4.0 2.89 2.89 3.57 4.99 2.90 2.86 3.66 5.18
5.3 4.61 4.58 7.06 9.17 4.74 4.86 7.06 8.95
7.0 6.60 6.92 14.10 15.49 7.96 8.24 14.03 15.58
9.3 12.97 14.45 25.86 25.91 15.48 17.97 25.86 25.75

12.4 22.31 27.55 24.86 23.95 22.44 26.13 24.78 24.02
16.5 25.94 24.31 15.89 14.82 24.20 23.17 15.89 14.81
22.0 13.66 12.82 4.02 2.60 12.09 10.73 4.02 2.59
29.4 8.42 3.87 2.01 0.40 7.61 3.46 2.01 0.36
none 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table C.34: Percentage of each dose being estimated as the MTD in Sce-
nario VI for SLOD based on the logistic model with differ-
ent optimality criteria, design regions, and cohort sizes n; 100 000
simulation runs.

D-criterion c-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 0.04 0.07 0.07 0.06 0.06 0.05 0.06 0.04
1.2 0.22 0.27 0.18 0.21 0.23 0.27 0.16 0.16
2.0 0.82 0.80 0.88 0.82 0.79 0.85 0.86 0.91
3.0 1.72 1.88 1.62 1.75 1.70 1.90 1.72 1.87
4.0 3.62 3.78 3.62 3.25 3.56 3.47 3.49 3.36
5.3 6.29 6.59 6.26 7.02 6.32 6.53 6.28 6.93
7.0 8.91 9.49 10.40 10.78 8.79 9.60 10.39 10.67
9.3 14.07 14.37 16.87 17.50 13.03 12.61 16.71 16.76

12.4 21.37 22.06 23.81 25.07 19.30 20.79 23.33 23.68
16.5 22.34 23.04 20.55 20.09 22.77 23.90 20.88 20.90
22.0 14.67 12.91 11.08 9.72 17.19 15.07 11.42 10.91
29.4 5.93 4.74 4.66 3.73 6.26 4.96 4.70 3.81

Table C.35: Percentage of each dose being estimated as the MTD in Sce-
nario VI for SLOD based on the 4 category proportional
odds model with different optimality criteria, design regions, and
cohort sizes n; 10 000 simulation runs.
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D-criterion L-criterion
Dose des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
0.6 0.01 0.06 0.01 0.04 0.01 0.03 0.01 0.04
1.2 0.22 0.23 0.22 0.25 0.22 0.26 0.22 0.21
2.0 0.68 0.86 0.68 0.75 0.68 0.74 0.68 0.74
3.0 1.60 1.80 1.60 1.63 1.60 1.46 1.60 1.54
4.0 3.01 2.72 3.04 2.85 3.01 2.73 3.05 2.71
5.3 4.64 4.45 5.45 6.88 4.63 4.65 5.57 6.84
7.0 6.59 6.00 12.41 14.68 6.72 6.60 12.85 15.08
9.3 6.92 6.88 22.13 23.14 8.02 8.68 22.20 24.32

12.4 14.16 16.82 28.08 27.11 16.07 19.57 27.94 26.85
16.5 32.41 33.19 18.97 16.70 31.33 31.03 18.60 15.74
22.0 22.97 19.50 5.36 5.09 20.91 17.35 5.24 5.14
29.4 6.79 7.48 2.05 0.86 6.80 6.89 2.04 0.78
none 0.00 0.01 0.00 0.02 0.00 0.01 0.00 0.01

Table C.36: Percentage of each dose being estimated as the MTD in Sce-
nario VI for SLOD based on the bivariate model with dif-
ferent optimality criteria, design regions, and cohort sizes n; 10 000
simulation runs.

Bayesian ADEPT

Dose 3+3 variance gain function patient gain function

Design n=1 n=2 n=1 n=2

N 34.51 25.60 27.19 30.01 31.37

NDLT 3.53 7.50 7.96 9.07 9.40

N>MTD 0.29 10.94 12.39 12.11 12.40

MSE 57.69 19.66 19.99 19.44 19.70

Table C.37: Average number of subjects (N), of observed DLT s (NDLT ), of
subjects treated with doses above the MTD (N>MTD), and mean
squared error (MSE) in Scenario VI for the 3+3 design and dif-
ferent settings in Bayesian ADEPT.
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D-criterion c-criterion

des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 35.12 35.44 35.12 35.45 35.12 35.45 35.12 35.44

NDLT 3.64 3.26 3.53 3.60 3.51 3.16 3.53 3.60

N>MTD 2.84 1.56 2.42 2.63 2.47 1.27 2.42 2.62

MSE 50.08 44.26 54.79 57.80 51.01 45.98 54.96 57.92

CI 2.35 2.45 2.01 2.00 2.18 2.18 2.01 2.01

Table C.38: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), mean squared
error (MSE), and median width of 95% confidence interval for the
MTD (CI) in Scenario VI for different settings of SLOD based
on the logistic model.

D-criterion c-criterion

des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 33.83 34.07 33.91 34.27 33.84 34.16 33.91 34.29

NDLT 4.78 4.71 4.62 4.71 4.90 4.82 4.66 4.75

N>MTD 2.88 2.44 2.32 2.23 3.33 2.87 2.44 2.46

MSE 52.42 51.80 52.36 51.84 52.63 51.30 52.24 51.90

CI 2.03 2.04 2.01 2.01 2.06 2.06 2.01 2.01

Table C.39: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), mean squared
error (MSE), and median width of 95% confidence interval for the
MTD (CI) in Scenario VI for different settings of SLOD based
on the 4 category proportional odds model.
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D-criterion L-criterion

des. region 1 des. region 2 des. region 1 des. region 2

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

N 34.74 35.17 34.74 35.16 34.74 35.20 34.74 35.23

NDLT 4.96 4.54 4.38 4.50 4.85 4.40 4.37 4.52

N>MTD 5.41 4.11 3.47 3.63 5.07 3.63 3.48 3.63

MSE MTD 45.62 45.83 49.18 51.42 46.03 45.55 49.71 51.68

CI MTD 2.22 2.33 1.88 1.90 2.17 2.17 1.88 1.88

MSE minED 39.58 32.68 29.38 28.63 37.69 29.74 29.24 29.34

CI minED 3.05 3.19 2.97 2.96 2.98 2.98 2.97 2.97

Table C.40: Average number of subjects (N), of observed DLT s (NDLT ), of sub-
jects treated with doses above the MTD (N>MTD), mean squared
error for the MTD (MSE MTD) and minimum effective dose (MSE
minED), and median width of 95% confidence intervals for the MTD
(CI MTD) and the minimum effective dose (CI minED) in Sce-
nario VI for different settings of SLOD based on the bivariate
model.
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