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Abstract

Today, machine learning methods are successfully deployed in a wide range of ap-
plications. A multitude of different learning algorithms has been developed in order
to solve classification and regression problems. These common machine learning
approaches are regarded with suspicion by domain experts in safety-related appli-
cation fields because it is often infeasible to sufficiently interpret and validate the
learned solutions. Especially for safety-related applications, it is imperative to guar-
antee that the learned solution is correct and fulfills all given requirements. The ba-
sic idea of the approaches proposed within this thesis is to solve high-dimensional
application problems by an ensemble of simple submodels, each of which is allowed
to only use two or three dimensions of the complete input space. The restriction of
the dimensionality of the submodels allows the visualization of the learned models.
Thus a visual interpretation and validation according to the existing domain know-
ledge becomes feasible. Due to the visualization, an unintended and possibly unde-
sired extra- and interpolation behavior can be discovered and avoided by changing
the model parameters or selecting other submodels. Since the learned submodels
are interpretable the correctness of the learned solution can therefore be guaranteed.
The ensemble of the submodels compensates for the limited dimensionality of the
individual submodels. The proposed ensemble methods are successfully applied on
common benchmark problems as well as on real-world application problems with
very high requirements on the functional safety of the learned solution.

Zusammenfassung

Methoden des Maschinellen Lernens werden heutzutage erfolgreich in vielen An-
wendungsgebieten eingesetzt. Eine Vielzahl verschiedener Lernverfahren zur Lö-
sung von Klassifikations- und Regressionsaufgaben existieren bereits. Diese gäng-
igen Methoden des maschinellen Lernens werden von den Domänenexperten im
Bereich sicherheitskritischer Systeme mit Skepsis betrachtet, da es oftmals sehr auf-
wendig ist, die so erzeugten Modelle hinreichend zu interpretieren und zu vali-
dieren. Speziell für sicherheitskritische Anwendungen ist es absolut notwendig,
dass die Korrektheit und funktionelle Vollständigkeit der gefundenen Lösung ga-
rantiert werden kann. Die in dieser Arbeit vorgestellten Lernverfahren erlauben
die Interpretation und damit die Validierung der gelernten Modelle durch die Ex-
perten. Die Grundidee dieser Methoden besteht darin, hochdimensionale Anwen-
dungsprobleme durch ein Ensemble von einfachen Teilmodellen zu lösen, wobei
jedes Teilmodell auf einen nur zwei- oder dreidimensionalen Teilraum des Eingabe-
raumes beschränkt ist. Diese Beschränkung der Dimensionalität der Teilmodelle
ermöglicht die Darstellung der gelernten Modelle. Dadurch wird es möglich, eine
visuelle Interpretation und Validierung basierend auf dem existierenden Experten-
wissen durchzuführen. Die Visualisierung erlaubt es, ein unerwartetes und mög-
licherweise unerwünschtes Interpolations- bzw. Extrapolationsverhalten der Teil-



modelle zu entdecken, um dann durch eine entsprechende Änderung der Lern-
parameter oder eine geänderte Modellauswahl ein solches Verhalten zu vermeiden.
Durch diese Vorgehensweise kann die Korrektheit der gelernten Lösung garantiert
werden. Das Ensemble der Teilmodelle ermöglicht eine verbesserte Vorhersage-
leistung im Vergleich zu der eingeschränkten Vorhersageleistung der einzelnen Teil-
modelle. Die vorgestellten Lernverfahren liefern sowohl für bekannte Benchmark-
datensätze als auch bei realen Anwendungsproblemen mit sehr hohen Sicherheits-
anforderungen gute Ergebnisse.
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1 Introduction

Learning can be seen as the process of extracting knowledge out of given data. The
data usually consists of observations of a certain system. The inferred knowledge
about this system can be represented by a model. For example, someone wants to
travel from Munich to Berlin. The railroad timetable lists the following connections
leaving Munich at 6:20, at 7:20, at 8:20, at 9:21, at 10:20, at 11:20, at 12:20, at 13:20, at
14:20, at 15:20, at 16:16, at 17:20, and at 18:20. A human typically does not memorize
the complete schedule – he generates a shorter description of the system: ”Every
hour, a train leaves Munich with the destination Berlin – starting at 6:20 and the last
connecting train leaves Munich at 18:20.“ That is, a human is capable to generate
a model of the system given a set of observations. In the field of machine learning
theory, the term ”learning“ denotes an automated process of extracting useful in-
formation from given observations – e.g. generating rule-like models, discovering
patterns, or deriving hypotheses from some given data.

There are numerous machine learning algorithms that are successfully applied to a
wide range of applications, for instance, object and speech recognition, search en-
gines, stock and energy market analysis, fraud detection, analysis of medical data,
weather forecasting, or even game playing. However, in spite of all these success-
fully solved application problems, machine learning methods are regarded with
suspicion by the domain experts in the field of safety-related applications. Rea-
sons for this skepticism are that the learned models are often hard to verify and
that the exact inter- and extrapolation behavior is often unclear. An example of such
counterintuitive extrapolation behavior is given in Fig. 1.1, where the prediction of a
support vector machine classifier changes within a region not covered by the given
data set. Discovering such an unintended and potentially undesired behavior is
usually a difficult problem – especially within a high-dimensional input space.

In order to successfully solve a safety-related application problem with a machine
learning method it is important to guarantee that the learned solution solves the cor-
rect problem and satisfies all functional specifications. These strict requirements are
necessary because a safety-related system is a system whose malfunction or failure
can lead to serious consequences – for example environmental harm, loss or severe
damage of equipment, harm or serious injury of people, or even death. Often, it
is impossible to rectify a wrong decision within this domain. Examples of those
safety-related application domains are aerospace engineering, automotive industry,
medical systems, or process automation.
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Fig. 1.1: Counterintuitive extrapolation behavior in a region not covered by the given
data set. This two-class problem is solved by a support vector machine (SVM) with
an acceptable classification performance on the given data. However, in a region
not covered by any data the decision of the SVM changes unexpectedly.

1.1 General Motivation

The increasing complexity of safety-related systems and the growth of the num-
ber of requirements and customer requests raise the interest of applying machine
learning methods within this domain. For instance, the domain knowledge is of-
ten imperfect and, for this reason, purely analytical solutions cannot be provided
by the domain experts. In addition, the usage of machine learning methods offers a
reduction of development time and costs. Furthermore, the predictive performance
can be improved by using more sophisticated models. Unfortunately, in the field of
safety-related application domains it is often not possible to rectify a wrong deci-
sion. Therefore, for effectively applying machine learning methods within this do-
main, it is crucial to provide strong evidence that the learned solution is valid within
the complete input space and correctly satisfies all given functional specifications.
That is, it must be ensured that the interpolation and extrapolation behavior of the
learned model is correct. Hence, it becomes important to provide an interpretable
solution that can be validated according to the given domain knowledge. Since it
is infeasible to interpret high-dimensional models sufficiently, these high-dimen-
sional models are usually not applied to safety-related applications. However, sim-
ple models which are easier to interpret show a lack of predictive performance.

1.2 Safe Learning for Airbag Control

This thesis is motivated by a challenging real-world problem within the field of
automotive safety electronics. It concerns the deployment of restraint systems (e.g.
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Fig. 1.2: Possible sensor placements in a modern car.

belt pretensioners and airbags) and serves as an example for control applications
with high safety requirements. The malfunction of such a system might be fatal
and it is impossible to rectify a wrong deployment decision since an airbag system
can only be triggered once. Depending on the severity of a crash different restraint
systems must be triggered: for instance, the belt pretensioners, the front airbag stage
1 (airbag is inflated to 70%) or stage 2 (airbag is inflated to 100%), the knee airbags,
the side airbags (front or rear), or the curtain airbags. Furthermore, the airbag must
be triggered within a certain time interval in order to ensure the best passenger
protection – a front crash, for example, must be triggered within 15 ms to 30 ms. A
late deployment of an airbag can lead to severe injuries of the car passenger.

For each new car platform the control logic of the restraint systems has to be devel-
oped from scratch since modifications of mechanical components, different sensor
placements, and new functional requirements of a car platform (for example pedes-
trian protection which may require a softer structure of the bumper) can drama-
tically influence the signal characteristics and, thus, a solution of the previous plat-
form will not be applicable anymore.

Fig. 1.2 illustrates a possible sensor placement in a modern car. L, C, and R indi-
cate acceleration sensors that are usually placed behind the bumper. X/Y denotes
acceleration sensors that are located within the central control unit. The X sensor
measures the frontal acceleration and the Y sensor measures the lateral acceleration
of the car. gSat refers to satellite sensors that measure the acceleration and pSat de-
notes satellite sensors measuring the pressure. Another kind of sensor measures the
crash impact sound (CISS). Fig. 1.3 shows two sensor signals measured by the X sen-
sor within the central control unit. The sensor signals are very similar for a FIRE crash
(the restraint system must be triggered) and a NOFIRE accident (the restraint system
must not be triggered) in the time interval before the requested time to deploy the
airbag. In this case, distinguishing both crash types based on a single sensor sig-
nal is not possible. Usually, the front sensors behind the bumper are used to detect
an accident as soon as possible and the sensors within the central control unit are
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Fig. 1.3: Frontal acceleration measured by the X sensor within the central control
unit for two different crash situations. One crash must be triggered, while to second
one must not be triggered. The required time of triggering the restraint system is 30
ms. It can be very difficult to distinguish FIRE and NOFIRE events based on a single
sensor signal.

used to ensure the robustness of the decision. Further sensors are used in order to
enhance the capability of detecting certain crash situations, e.g. side impacts.

Until now, most of the calibration work is done manually by the domain experts.
For each crash type different sensor combinations are evaluated and a control logic
based on these combinations is developed. This manual calibration is time- and,
therefore, cost-intensive. Due to cost pressure in the market the increasing complex-
ity of today’s restraint systems must be handled with limited resources. Thus there
is a growing interest in automatically learning such a control logic from crash test
data in order to reduce development time and costs. A solution of this classification
problem is discussed as an application example in Sect. 3.4.1.

1.3 Objective of this Thesis

The objective of this thesis is to provide a machine learning framework that can be
used in application domains with very high safety requirements. Therefore, it is nec-
essary to prove that the learned solution is correct, satisfies all given requirements,
and complies with the domain knowledge. Sophisticated methods like artificial neu-
ral networks (Bishop, 1995; Nabney, 2002) or support vector machines (Schölkopf &
Smola, 2002) are known to provide good predictive results, but the interpretation
of the fitted model is usually difficult, because each input dimension influences the
model in a complex way. On the other hand, simpler methods that usually pro-
vide models which show a good interpretability – for instance, linear models, rule-
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Fig. 1.4: Trade-off between interpretability and predictive performance.

like systems (Lavrac & Dzeroski, 1994; Nauck & Kruse, 1999) and tree-like models
(Breiman et al., 1984; Quinlan, 1993) – have a limited predictive performance.

The main focus of interest within this work can be summarized by the following
objectives:

1. The data-driven generation of interpretable and verifiable solutions that
2. achieve a good predictive accuracy and
3. allow the inclusion of domain knowledge.

Here, the crucial aspect is to realize a suitable trade-off between (1) and (2). It is obvi-
ous that a complex model can achieve a higher predictive performance on the avail-
able data. However, a higher model complexity will lead to an increased effort for
model verification. This trade-off and the corresponding characterization of com-
mon machine learning methods is illustrated in Fig. 1.4. Methods that are known
to achieve a high predictive performance – e.g. support vector machines (SVMs)
or artificial neural networks (ANNs) – are usually hard to interpret. On the other
hand, methods that are known to be well-interpretable – for example (fuzzy) rule
systems, decision trees, or linear models – are usually limited with respect to their
predictive performance. The use of ensemble methods (Dietterich, 2000; Kuncheva,
2004) can provide an appealing solution of this conflict, because the ensemble mod-
eling approach allows to model smaller subproblems of the original problem and
to combine the solutions of the subproblems in order to obtain the final solution.
Hereby, it is assumed that the solutions of the subproblems are easier to interpret
and their combination remains interpretable.
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1.4 Outline

The remaining chapters are organized as follows:

Chap. 2 recalls the basic concepts of machine learning theory. Commonly used ma-
chine learning algorithms that are used for comparison within the following
chapters are briefly discussed. Furthermore, a brief introduction into the field
of safety-related systems is given – including safety-standards, the problem of
evaluating the learned solutions of safety-related problems, and existing ma-
chine learning approaches that can be used within safety-related domains.

Chap. 3 discusses our classification framework based on ensembles of low-dimen-
sional submodels that is suitable for solving application problems with very
high safety requirements. First, we introduce our ensemble framework, which
is designed to solve binary classification problems. Two algorithms are devel-
oped. The first approach is based on a tree structure where it is necessary to
take the decisions of preceding nodes into account. The second approach ex-
ploits a typical property of safety-related systems that a certain state of such
system should never be misclassified. By exploiting this property, one yields
an ensemble model where each submodel can be interpreted independently.
Later within this chapter, we discuss different methods to extend our binary
classification framework in order to deal with multi-class problems. Finally,
we illustrate the advantages of our classification method by two real-world
application problems.

Chap. 4 presents a regression algorithm that provides a good trade-off between in-
terpretability and predictive performance of the learned solution. This method
uses linear submodels in order to build a piecewise linear regression model.
The submodels are determined by an EM-like approach that incorporates in-
formation about the target variable in order to obtain a meaningful partition-
ing of the input space. The proposed algorithm allows the reduction of the
dimensionality of the submodels as well as a cluster pruning strategy which is
useful for problems where the number of clusters is unknown.

Chap. 5 is concerned with the problem of feature extraction, which is an important
issue for successfully applying the algorithms given in Chap. 3 and Chap. 4.
The first section addresses the problem of feature selection. Three feature se-
lection methods are discussed and evaluated on several benchmark data sets.
The second section relates to feature construction which can become neces-
sary for problems which require a higher dimensionality of the submodels.
In addition, data filtering methods are discussed allowing to remove possible
conflicts within the training data.

Chap. 6 concludes and summarizes the main contributions of this thesis. Moreover,
perspectives of further research are pointed out.

Appendix A summarizes further experiments performed on common benchmark data
sets applying our classification and regression algorithms.

Appendix B gives a brief introduction into the analysis of ROC curves.
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Appendix C serves as short summary of the notation used within this thesis.

1.5 Publications

Parts of this thesis have been published in Nusser et al. (2007, 2008a,b,c, 2009a,b,c,d);
Otte et al. (2006).



8 1. Introduction



2 Machine Learning and Safety-Related
Domains

This chapter gives a brief introduction into the field of machine learning theory and
safety-related domains. The first matter is discussed in the first section and the
second section gives a short introduction into the field of safety-related applications
and summarizes recent approaches to use machine learning methods within this
domain.

2.1 Learning From Data

Within this section, we discuss different machine learning methods for regression
and classification problems that are commonly used. These methods serve as com-
parison to our own methods which are described in Chap. 3 and Chap. 4. For a
more detailed discussion about machine learning theory and machine learning al-
gorithms see, for instance, Bishop (2006); Duda et al. (2001); Hastie et al. (2001);
Mitchell (1997). A good introduction into probability theory and statistics can be
found, for example, in Milton & Arnold (2002).

2.1.1 Fundamentals of Machine Learning

As already mentioned in Chap. 1, learning is the process of extracting knowledge
about a system from observed data. The system is defined by a set of random
variables1. Such random variables are denoted as uppercase letters X, Y,X1,X2, . . . ,
Xn, . . . ,XN. TheN-dimensional input space of a system is denoted as VN = X1×X2×
. . .× XN = ×Nn=1Xn, where Xn denotes the n-th input variable. The target variable
Y denotes the attribute of a system that should be predicted. The observed values of
the random variables are denoted as lowercase letters x, y. An observed data point
within the input space VN is denoted as ~v ∈ VN. The observed data is collected in
the data set D = {(~v1,y1) , . . . , (~vm,ym) , . . . , (~vM,yM)}, where~vm denotes them-th ob-
servation within the input space VN and ym denotes the corresponding value of the

1 Random variables are also denoted as attributes or features.
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Fig. 2.1: A simple regression problem and three possible regression models.

target variable Y. The underlying process that generates the observations is called
the true target function

f : VN → Y , (2.1)

which maps the input space VN to the target variable Y. Usually, this process is un-
known. The learning task is to determine a function estimate that maps the observed
data points to the corresponding target values, that is

f̂ (~vm) = ym . (2.2)

2.1.2 Regression

A regression task concerns the problem of determining an estimate of functional
relationship between the input space VN = ×Nn=1Xn, where Xn ⊆ IR, and the real-
valued target variable Y ⊆ IR, that is the task is to find an estimate of the unknown
function

f : VN → IR (2.3)

given the observed data.

Fig. 2.1 illustrates a simple regression problem and three possible solution of this
problem. The first function estimate assumes a linear relationship between X and
Y and the other two function estimates assume polynomial functions. Within this
thesis (cf. Chap. 3 and Chap. 4), we prefer a simple solution of the given problem
in order to allow a good interpretability of the models. This is related to the so-
called Occam’s razor (Thorburn, 1918) that advises to use the simplest model fitting
the observed data. The situation in which a model perfectly fits the observed data
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but has a higher model complexity than necessary is called overfitting. The second
and third function estimate of Fig. 2.1 are examples of overfitting.

The simplest regression setting assumes a linear relationship among the variables.
In this setting, the expected value of the target variable Y given the input variables
takes

f̂
(
VN
)

= IE [Y|X1, . . . ,Xn, . . . ,XN]

= α0 +X1α1 + . . . +Xnαn + . . . +XNαN ,
(2.4)

where α0 is the bias and αn are the unknown parameters of the linear regression model.
The regression task is to determine an appropriate estimate of the parameter vector
~α = (α0,α1, . . . ,αN)T. This problem can be solved by

~α =
(

XTX
)−1

XT~y , (2.5)

where ~y = (y1,y2, . . . ,ym, . . . ,yM)T is a vector that stores all observed values of the
target variable Y and the observations of all input variables are stored in the M-by-
(N+ 1) matrix X,

X =



1 x
(1)
1 x

(2)
1 . . . x

(n)
1 . . . x

(N)
1

1 x
(1)
2 x

(2)
2 . . . x

(n)
2 . . . x

(N)
2

...
...

...
...

...
1 x

(1)
m x

(2)
m . . . x

(n)
m . . . x

(N)
m

...
...

...
...

...
1 x

(1)
M x

(2)
M . . . x

(n)
M . . . x

(N)
M


,

where x(n)
m is them-th observation of random variable Xn. For a detailed discussion

of the derivation of Eq. 2.5 see, for instance, (Milton & Arnold, 2002, Chapter 12.2).

For the example data set given in Fig. 2.1, the matrix X is

X =



1 0
1 1
1 2
1 3
1 4
1 5


and the observed target values are ~y = (3.0, 2.5, 2.0, 1.5, 1.0, 0.5)T. Using Eq. 2.5, the
estimated parameter vector of the linear regression model is ~α = (3, −0.5)T and,
thus, the estimated function is

f̂ (x) = 3 − 0.5x .
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The linear regression model can be extended to a polynomial regression model by gen-
erating new variables that are basis expansions of the original variables, for exam-
ple, X2 = X2

1 and X3 = X3
1.

Another possible extension of the linear regression model is to replace the linear
coefficients αn by arbitrary functions fn(·). That is, one obtains a generalized additive
model (Hastie & Tibshirani, 1990; Stone, 1985):

f̂
(
VN
)

= IE [Y|X1, . . . ,Xn, . . . ,XN]

= f1 (X1) + . . . + fn (Xn) + . . . + fN (XN) ,
(2.6)

which was one of the motivations of developing the methods described in Chap. 3.
For details on fitting such a generalized additive model, see (Hastie et al., 2001,
Chapter 9.1).

2.1.3 Classification

In a classification setting, one is interested in determining an estimate of the un-
known functional relationship between the input space VN and the target variable Y
that can take discrete values out of IK = {c1, c2, . . . , ck, . . . , cK}. Hence, a classification
model is a function

f : VN → IK . (2.7)

The simplest kind of classification problems is a binary classification problem, that
is, the task is to discriminate two classes, typically labeled as IK = {−1, 1}. Such
classification problem can be solved by regarding the problem as regression problem
and to use the sign of the prediction as target value. The resulting decision border
is called separating hyperplane:

0 = α0 +X1α1 +X2α2 + . . . +XNαN (2.8)

and the decision function is:

f̂
(
VN
)

= sign (α0 +X1α1 +X2α2 + . . . +XNαN) . (2.9)

That is a new data point ~v is assigned to class −1 or class 1 according to:

f̂ (~v) = sign
(
~vT ~w+α0

)
, (2.10)

where ~w = (α1,α2, . . . ,αN)T.

Fig. 2.2 illustrates a possible separating hyperplane for a two-dimensional binary
classification problem. The parameter vector ~α is determined according to Eq. 2.5
and the resulting parameter vector ~α is put into Eq. 2.8. The solid line represents
the resulting decision border of the estimated classification model. Unfortunately,
infinitely many separating hyperplanes are possible.
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−1 0 1

−1

0

1

Fig. 2.2: Linear regression used for binary classification. Samples that belong to
class −1 are depicted as © and samples that belong to class 1 are depicted as +.
The separating hyperplane is drawn as solid line.

2.1.4 Support Vector Machines

A support vector machine (SVM) (Boser et al., 1992; Cortes & Vapnik, 1995) deter-
mines the optimal separating hyperplane between two classes in order to maximize the
distance to the closest point from either class. The advantages of this approach are
that a unique solution can be provided and a better classification performance on
previously unseen data can be achieved.

The SVM constructs two parallel separating hyperplanes ~vT ~w+ α0 > 1 and ~vT ~w+

α0 6 −1, where ~w = (α1,α2, . . . ,αN)T. In order to obtain the optimal separating
hyperplane the distance (also called the margin) between both hyperplanes has to
be maximized, 2/‖~w‖. This corresponds to the following optimization problem:

min
~w,α0

1
2

~wT ~w

subject to ~vT
m~w+α0 > 1 if ym = 1

~vT
m~w+α0 6 −1 if ym = −1

where m = 1, . . . ,M .

(2.11)

The constraints can be simplified to ym
(
~vT
m~w+α0

)
> 1. This formulation assumes

that the classes are separable within the feature space. By introducing the slack vari-
able ~ξ = (ξ1, ξ2, . . . , ξM)T with ξm > 0 and by modifying the constraint in Eq. 2.11 to
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ym
(
~vT
m~w+α0

)
> 1 − ξm it becomes feasible to deal with overlapping classes within

the feature space:

min
~w,α0,~ξ

1
2

~wT ~w+C

M∑
m=1

ξm

subject to ym

(
~vT
m~w+α0

)
> 1 − ξm,

ξm > 0,m = 1, . . . ,M ,

(2.12)

where C > 0 is a constant that allows to control the influence of the outliers (the
overlapping data points).

In order to allow also nonlinear functions, one can used the so-called kernel trick
(Aizerman et al., 1964). That is, the training vectors ~vm are mapped into a higher-
dimensional space H by the function φ : VN → H. Then the SVM determines the
linear separating hyperplane with the maximal margin within this higher dimensio-
nal space H. This yields the final optimization problem:

min
~wH,α0,~ξ

1
2

~wT
H~wH +C

M∑
m=1

ξm

subject to ym

(
φ (~vm)T ~wH +α0

)
> 1 − ξm,

ξm > 0,m = 1, . . . ,M ,

(2.13)

where ~wH ∈ H and the original dot product ~vT
ı ~v is replaced by the kernel function

κ(~vı,~v) = φ(~vı)
Tφ(~v). Examples for such kernel functions are

the linear kernel κ (~vı,~v) = ~vT
ı ~v (an SVM with a linear kernel is shown in Fig. 2.3(a))

and
the Gaussian kernel κ (~vı,~v) = exp

(
−γ ‖~vı −~v‖2

)
, where γ > 0 is the kernel para-

meter which controls the spread of the Gaussian (an example of an SVM with
a Gaussian kernel is shown in Fig. 2.3(b)).

The final SVM decision function is

f̂ (~v) = sign
(
φ(~v)T ~wH +α0

)
. (2.14)

In contrast to Eq. 2.9, this decision function is not necessarily linear within the input
space. The kernel trick can increase the predictive performance of non-linear clas-
sification (cf. Fig. 2.3) and provides a powerful framework for solving a multitude
of classification problems. However, the non-linear transformation decreases the in-
terpretability of the learned solution – at least for non-experts in machine learning.
A very good and more detailed discussion of support vector machines and further
kernel-based approaches can be found in Schölkopf & Smola (2002).
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(a) Support vector machine with a linear ker-
nel function.
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(b) Support vector machine with a Gaussian
kernel function.

Fig. 2.3: Two support vector machines learned on the binary classification problem
from Fig. 2.2. The solid line represents the decision border of each classifier and the
dotted lines indicate the margins, that is f(x) = ±1. The support vectors (that is the
data points that are within the margin) are surrounded by black squares.

2.1.5 Multi-Class Extensions of Binary Classifiers

The support vector machine (cf. Sect. 2.1.4) provides an elegant solution for binary
classification problems. Unfortunately, there are numerous classification problems
that concern more than two classes. Thus it is necessary to find an adequate exten-
sion of the binary classifier. Two commonly used approaches of extending binary
classifiers in order to solve multi-class problems are: (1) the one-against-one exten-
sion and (2) the one-against-rest extension. A detailed comparison of these methods
and an experimental evaluation for support vector machines is given in Hsu & Lin
(2002). Fig. 2.4 illustrates both approaches.

One-against-rest multi-class extension. This method constructs K classifiers, where
K = |IK| is the number of classes. The model fck for class ck ∈ IK is trained on
all samples of class ck against all samples from the remaining classes which are
combined to a new class c∗k = IK \ ck, for the sake of simplicity the class label of c∗k is
set to −1. A new data point ~v is assigned to: f (~v) = arg max

ck∈IK
fck (~v) .

One-against-one multi-class extension. This method builds K (K− 1) /2 binary classi-
fication models, each for the pair-wise combination of the classes ck, cl ∈ IK, k 6= l.
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(a) One-against-rest extension.
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(b) One-against-one extension.

Fig. 2.4: Illustration of multi-class extensions based on binary classifiers. There are
three classes: A, B, C. The discriminant functions are given as solid lines. Regions
with possible inconsistent decisions are labeled with question marks.

The final classification is performed by majority voting – that is the most frequent
predicted class label is returned as prediction of the multi-class model.

Risk of inconsistent decisions. The issue of inconsistent decisions of combining bi-
nary classifiers to multi-class classifiers is addressed, e.g., in Tax & Duin (2002). As
illustrated in Fig. 2.4, there can be regions of the input space where the decision of
the multi-class models might be inconsistent. Those regions are marked with ques-
tion marks in each figure. For the one-against-rest method, there are two possibilities
of an inconsistent decision: (1) there are several binary classifiers predicting differ-
ent class labels for one given data point. Such regions are (A,B ?), (A,C ?), (B,C ?). (2)
there are regions, where all classifiers are predicting the “rest” class, (A,B,C ?). For
the one-against-one method, there is only one kind of inconsistent decisions possible:
several binary classifiers are predicting different class label for one given data point.
The problem of several classifiers predicting different class labels can be solved by
assigning the class label at random (Hsu & Lin, 2002) or to assign the data point to
the class with the highest posterior probability (Tax & Duin, 2002). The second kind
of inconsistent decisions of the one-against-rest method can be acceptable for some
problems, where “no decision” might be better than a “wrong decision”. Otherwise,
one can use the same strategy as for the other kind of inconsistent decisions.
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(b) Corresponding classification tree model.

Fig. 2.5: Classification tree learned on a simple binary classification problem.

2.1.6 Classification and Regression Trees

In contrast to the methods described above a tree-based method does not try to
solve the given learning problem by one single model. Tree-based methods follow
a divide-and-conquer strategy, where a complex problem is tackled by dividing it
recursively into simpler subproblems. This strategy yields a recursive partition-
ing of the input space into a set of hyper-rectangles. For each of those rectangles
within the input space a different model is fitted. In this section, we will focus
on the CART method (Breiman et al., 1984) – other tree learning algorithms like
C4.5 (Quinlan, 1993) or AID (Morgan & Sonquist, 1963) are based on similar princi-
ples and, thus, they are omitted within this introduction. Extensions of the original
tree-based models that are not restricted to axes-parallel hyperplanes are given, for
instance, in Brodley & Utgoff (1995); Gama (2000); Murthy et al. (1994).

Fig. 2.5(a) illustrates a recursive partitioning of the input space which is determined
on the data set from Fig. 2.2. The first binary split is X2 < −0.15, which divides the
input space into two subregions R1 ∪ R2 and R3 ∪ R4. Both subregions can be subdi-
vided independently. That is, subregion R1 ∪ R2 is divided by X1 < 0.63 into R1 and
R2 and subregion R3 ∪ R4 is divided by X1 < −0.07 into R3 and R4, respectively. This
recursive partitioning of the input space can be represented by a graphical model as
depicted in Fig. 2.5(b). The inner nodes of the tree are called decision nodes and the
end nodes are called leaf nodes. The node at the top of the tree is called the root node.

For any new data point ~v, it is determined in which region it falls into by starting
at the root of the tree and following the path down to a leaf node according to the
decisions made by the inner nodes. Each leaf node of the tree encodes a certain
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model prediction. Within a classification setting the prediction of the leaf node is
a certain class label (as shown in Fig. 2.5(b)) and within a regression setting this
prediction is a constant value (as illustrated in Fig. 2.6(a)).

The final function estimate can be written as:

f̂(~v) =

T∑
τ=1

tτI(~v ∈ Rτ) , (2.15)

where R1,R2, . . . ,Rτ, . . . ,RT are the regions of the input space VN which are defined
by the binary splits of the tree, tτ is the prediction of the leaf node that corresponds

to region Rτ, and I(·) is the indicator function, I(A) =

{
1 if A is true
0 if A is false

.

Classification Trees. The prediction for region Rτ of a classification tree is the major-
ity class within this region. That is, the prediction for region Rτ is

tτ = arg max
ck

pτ,k , (2.16)

where
pτ,k =

1
Mτ

∑
~vm∈Rτ

I(ym = ck) (2.17)

is the proportion of observations of class ck within region Rτ and Mτ is the number
of all data points within Rτ.

The best split for a node τ in a classification tree (a region Rτ) is determined by an
impurity function (Breiman, 1996) i(τ,~p), where ~p = (p1,p2, . . . ,pk, . . . ,pK)

T are the
proportions within node τ, that is, the proportion of every class ck in the current
node τ. One commonly used impurity measure is the Gini function:

iGini(τ,~p) =

K∑
k=1

pk(1 − pk) . (2.18)

Another often used impurity measure is the entropy

iEntropy(τ,~p) = −

K∑
k=1

pk log2 pk . (2.19)

Choosing one of both impurity measures, the goodness-of-split criterion2 is

∆i(τ) = i(τ,~p) − PLi(τL,~pL) − PRi(τR,~pR) , (2.20)

where τL and τR are the left and right descendent nodes of node τ, i(τL,~pL) and
i(τR,~pR) are their impurity measures, and PL and PR = 1 − PL are the fractions of
data points assigned to node τL and τR, respectively. The best split of the node τ
maximizes Eq. 2.20.

2 A detailed discussion of different selection measures is given, for instance, in Borgelt & Kruse
(1998).
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Fig. 2.6: Regression tree learned on an artificial regression problem.
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Regression Trees. The prediction for region Rτ defined by leaf node τ of a regression
tree is

tτ =
1
Mτ

∑
~vm∈Rτ

ym , (2.21)

whereMτ is the number of all data points within region Rτ.

The best split within the regression setting is determined by

min
(n,θ)

min
tL

∑
x

(n)
m <θ

(ym − tL)
2 + min

tR

∑
x

(n)
m >θ

(ym − tR)
2

 , (2.22)

where θ is the threshold of the binary split.

Tree-based methods are simple but powerful. Although, the graphical represen-
tation is easy to understand, a tree-based model can become quite complex – as
illustrated in Fig. 2.6, where a regression tree is learned for a simple toy example.
Nevertheless, tree-based models can be regarded as well-interpretable compared to
other methods.

2.1.7 Model Selection

As already mentioned in Sect. 2.1.2, we are interested in a simple solution that should
provide a good performance on the given problem. Since the true target function is
usually unknown, it can become difficult to decide which function estimate is the
best solution. The predictive error of a model can be used as evaluation measure for
choosing the best model. In a regression setting the predictive error can be estimated
by

êrr =
1
M

M∑
m=1

∣∣ym − f̂(~vm)
∣∣ (2.23)

and for a classification problem the predictive error can be estimated by

êrr =
1
M

M∑
m=1

I
(
ym 6= f̂ (~vm)

)
. (2.24)

Evaluating a learned model solely on the data used for training is not advisable,
since it is not possible to make statements about the ability of the learned solution
to correctly predict the target values of previously unseen data points. This abil-
ity is called generalization performance. A learning algorithm can perfectly predict
the target value for all data points within the set of observations but on novel data
points where the target value is unknown it might achieve a poor predictive perfor-
mance. This problem is illustrated in Fig. 2.1, where f2 and f3 overfit the observed
data points.
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Fig. 2.7: Illustration of a five-fold crossvalidation procedure. The data set is divided
into five roughly equal-sized folds. Each fold is used once as testing data set, while
the remaining folds are used for training. The error estimate based on the testing
data sets is averaged over all runs.

In order to evaluate the solution generated by a certain learning method, one can
divide the data set into a training data set and a testing data set. The training
data is used for building the model and the testing data is only used to estimate
the predictive performance of the model. This yields an unbiased estimated of the
generalization performance. In order to exploit all available data and to obtain a
more robust estimate of the generalization performance of a learning method one
can perform a so-called K-fold crossvalidation procedure (Kohavi, 1995a). This proce-
dure divides the data set into K subsets which are called the folds. Each fold is used
once as testing data set while the remaining folds are used for model training. Thus
this method generates K models. The generalization performance of the learning
method used for model building is estimated by averaging the predictive perfor-
mance of each learned model on the testing data sets. K-fold crossvalidation is used
in Appendix A in order to compare our learning algorithms of Chap. 3 and Chap. 4
with the commonly used learning algorithms which are given in this chapter.

2.2 Safety-Related Systems

Safety is “a measure of the continuous delivery of a service free from occurrences
of catastrophic failures” (Bowen & Hinchey, 1999). That is, safety is the property
of a system that it will not endanger human life or the environment. Therefore,
a safety-critical system is a system where a failure may result in injury or loss of
life3. Systems that involve safety aspects but are not necessarily safety-critical are
so-called safety-related systems. Safety-critical systems can be seen as a subset of
safety-related systems. Within this thesis, we will not distinguish between safety-
critical and safety-related systems.

3 An often quoted example of the malfunctioning of such a safety-critical system is the Therac-25
radiotherapy machine which killed several people (Leveson & Turner, 1993).
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Machine learning methods in the domain of safety-related applications can be grouped
into three classes where the safety requirements of each class are increasing:

Decision Support Systems. This application class includes forecasts, planning sup-
ports, recommendations of control variables and decision support systems in
medical engineering or system control. These systems take on a purely advi-
sory role for the domain experts or the plant operators.

Monitoring and Diagnosis. Monitoring systems for engines, equipment, production or
process facilities, and systems for fault diagnosis and early fault detection can
be assigned to this application class. Typically, an alarm is activated in such
systems leading to a subsequent user intervention. A wrong decision of such
a monitoring system (for instance a false alarm) can be rectified by the domain
expert or system operator.

Automation and Control. This class of applications is most challenging since the sys-
tems perform autonomously – without any user interaction – and directly af-
fect the control or automation task. This application class has particularly high
requirements on the functional safety and it is especially important to satisfy
the domain experts’ demand for the correctness of the learned solution.

The machine learning approaches discussed in Sect. 3.2 and Sect. 3.3 are developed
for autonomous control tasks – but they are also applicable for the application classes
with lower safety-requirements.

2.2.1 Safety Standards

Safety-related systems can be found in many application domains, for instance in
industry (manufacturing control and robots), transportation (systems on-board air-
craft, air-traffic management, train control systems, automotive safety electronics),
communication (dispatch systems and emergency-call systems), and medicine (med-
ical monitoring, medical robots, and radiation therapy systems) – see Isaksen et al.
(1997). Thus there are numerous standards that concern the analysis of safety-
related systems and safety-related software, for instance DEFSTAN 00-56 (2007);
IEC-61508 (2005); MISRA (1994). The IEC-61508 standard is primarily originated by
process and automation industries. It can be used as a standalone standard or as
a basis for other sector- or product-specific standards, for instance EN-5012x (rail-
ways), IEC-60601 (medical), IEC-62021 (machinery), or IEC-61513 (nuclear). There
are also several approaches to establish a standard – or at least a guideline – for cer-
tifying machine learning methods (for instance artificial neural networks) for usage
in safety-related application domains, see Bedford et al. (1996); Pullum et al. (2007);
Taylor (2005).

Safety deals with the protection against hazards and risks that can arise from the op-
eration of a safety-related system. Several standards concern the problem of defin-
ing safety integrity levels (SILs), for instance IEC-61508 (2005) and MISRA (1994),
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Tab. 2.1: Safety Integrity Level (SIL) and corresponding hazard rates from IEC-61508
(2005).

SIL
Mode of Operation

Low-Demand High-Demand

4 > 10−5 to 10−4 > 10−9 to 10−8

3 > 10−4 to 10−3 > 10−8 to 10−7

2 > 10−3 to 10−2 > 10−7 to 10−6

1 > 10−2 to 10−1 > 10−6 to 10−5

where safety integrity states the safety-related system’s probability of correctly per-
forming the required safety functions under the given requirements within a certain
time period. To define such a hierarchy it is necessary to classify the hazards ac-
cording to their severity, after which the system can be assigned a certain safety
integrity level (SIL). IEC-61508 (2005) differentiates between two so-called modes
of operation: The demand mode of operation concerns a safety function that is only
performed when required in order to transfer the system into another state. The
continuous safety function is used to retain a system within its normal safe state. The
low-demand mode of operation is related to the average probability of failure to per-
form the design function of a safety-related system on demand. This corresponds to
the product of the demand rate and the average probability of failure per demand.
The high-demand and continuous mode of operation concerns the probability of a
dangerous failure per hour for the system. Tab. 2.1 relates the safety integrity levels
to the required hazard rates for each mode of operation.

2.2.2 Assessing Solutions for Safety-Related Problems

The correctness and reliability of a system is usually assessed by formal verifica-
tion and validation methods. Thereby, verification concerns the question whether
the system is being built right. It is evaluated whether or not the system complies
with the imposed specifications and conditions. On the other hand, validation con-
cerns the question whether the right system for the user’s needs is being built. This
problem is related to statements on system reliability and failure rates, which are
required by the safety standards that are introduced in Sect. 2.2.1. For successfully
applying a safety-related system it is important to prove the trustworthiness and
acceptability of the solution for the safety-related application problem. Therefore, it
must be ensured that the system is stable and meets all given requirements.

In practical application tasks the available training data is often scarce and the num-
ber of input dimensions is too large in order to sufficiently apply purely statistical
risk estimation methods – for instance K-fold crossvalidation as given in Sect. 2.1.7.
Assessing the quality of a learned solution based on the error rate estimated on
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a testing set becomes intractable especially for high-dimensional problems because
the required error rates cannot be achieved (cf. Tab. 2.1). In many applications, high-
dimensional models are required to solve the given problem. Unfortunately, high-
dimensional models are hard to verify (curse of dimensionality) – a good illustration
of this problem is given in (Hastie et al., 2001, Chap. 2.5)), may tend to overfitting,
and the interpolation and extrapolation behavior is often intransparent. An illustra-
tive example of a counterintuitive behavior of a classifier is shown in Fig. 1.1. While
this classifier achieves a good performance on the training and testing data – there
is a sudden change of the prediction of the model within a region not covered by the
given data set. Such undesired behavior becomes even more likely and much more
difficult to discover in the high-dimensional case. Thus a model building method is
required, which guarantees a well-defined interpolation and extrapolation behav-
ior, that is, the decision bounds of the learned models can exactly be determined
and evaluated for every point of the input space.

For assessing a data-driven generated solution that is used in safety-related domains
it is important to take the following issues into account (Taylor, 2005, Chap. 3):

– The limited size of the testing data set may not allow a proper system evalua-
tion.

– The limited size of the training data set may lead to an inappropriate approxi-
mation of the desired function.

– How will the solution deal with previously unseen data?
– The training and testing data might be insufficient – especially for rigorous

testing and reliability estimation.
– The training and testing data must represent the entire input domain (com-

pleteness and correctness).

Reliability assessment and robustness analysis require a huge number of test cases
which may not be available. Insufficient testing data make it impossible to prove
the correctness of the learned solution. Furthermore, it must be ensured that proper
model assumptions and parameters are chosen.

For successfully applying machine learning within the field of safety-related appli-
cations and providing solutions that are accepted by the domain experts the follow-
ing requirements arise:

Reliability. The learned solution must show a low probability of failure. It must be
ensured that the learned solution is always within the specified conditions.

Correct Interpolation and Extrapolation. An unintended and possibly undesired beha-
vior of the learned model must be avoided and a correct generalization be-
havior must be guaranteed. On the other hand, the solution must be sensitive
enough to capture the specific problem.

Data Efficiency. The learning algorithm must be capable of dealing with small train-
ing sets, that is, a small number of independent training samples.
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Expert Knowledge. It must be possible to include expert knowledge within the model
building process.

Interpretability and Verification. Interpretability is essential to facilitate the domain ex-
perts to evaluate the decisions of the learned solution. Furthermore, the model
should be understandable for people being no experts in the field of machine
learning theory.

It is a challenging task to prove that the learned solution is a correct solution of
the application problem. The incorporation of a-priori knowledge into the model
selection and model learning process can be helpful – for instance one can exploit
monotonicity constraints, allow user interactions, or use active learning in order
to achieve an improved generalization behavior (Cohn et al., 1994). Nevertheless,
the quality of a data-driven generated solution depends on the quality and on the
amount of data that is available for training. Unfortunately, within real-world ap-
plication problems, the number of data available for training is often scarce. For
example, a typical data set of the airbag deployment application which is intro-
duced in Sect. 1.2 consists of only 30 to 50 independent crash tests. Therefore, the
only way to ensure that the learned solution is a correct solution of the problem is
to allow domain experts to evaluate the learned solution according to their domain
knowledge.

2.2.3 Machine Learning Approaches for Safety-Related Applications

Lisboa (2001) investigates the current usage of machine learning methods - espe-
cially artificial neural networks - in the field of safety-related applications. Recent
approaches to adopt machine learning methods for use in safety-related applica-
tions can be found, for instance, in Kurd & Kelly (2007); Kurd et al. (2006); Za-
krzewski (2001). Furthermore, there are different approaches of providing a verifica-
tion and validation framework for machine learning methods, for example, Pullum
et al. (2007) concern the verification and validation of artificial neural networks.

The important issue of the successful application of machine learning methods in a
safety-related domain is to guarantee that the learned solution does not show any
unintended inter- or extrapolation behavior – as already mentioned in Sect. 2.2.2
and illustrated in Fig. 1.1. Using visualization techniques developed to map high-
dimensional data to a low-dimensional space – for instance multidimensional scal-
ing (Hastie et al., 2001; Rehm et al., 2006), principal curves (Hastie & Stuetzle, 1989),
or self-organizing maps (Kohonen, 1990) – might give a good insight into the prob-
lem, but there is a loss of information and there is no guarantee that the mapping
does not induce or hide inconsistencies of the originally learned solution.

One possibility of providing an interpretable solution is to use rule systems or tree-
like models or to extract such representations from non-symbolic models. There
are numerous machine learning approaches that can be utilized for doing this –
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see, for instance, Andrews et al. (1995); Boz (2002); Breiman et al. (1984); Chen &
Wang (2003); Cohen (1995); Kolman & Margaliot (2005); Tzeng & Ma (2005). Taylor
(2005) recommends to use rule extraction for generating rule bases from artificial
neural networks in order to perform a formal safety analysis of the learned solution.
The safety life cycle proposed by Kurd et al. (2006) combines rule extraction and
knowledge insertion to an iterative process. It deals with three levels: a symbolic
level, a translation level and a neural learning level. The symbolic level is associated
with symbolic (i.e., domain) knowledge. The translation level performs the rule
insertion and rule extraction to the neural learning level. The neural learning level is
used to modify and refine the symbolic knowledge based on the given data. Fuzzy-
rule systems (Nauck, 2003; Nauck et al., 1997) are also a good option. They are often
applied to controlling tasks. Unfortunately, data-driven methods of building such
rule systems often result in huge rule bases which are hard to interpret.

Schlang et al. (1999) combine a radial basis function (RBF) network (Hartman et al.,
1990) with an analytical model of the controlled process. The RBF network mul-
tiplicatively corrects the output of the analytical model. For unknown inputs it is
designed to produce a correction factor close to one so that the output in that case
is determined by the analytical model. The advantage of their approach is that the
analytical model guarantees a baseline performance which the RBF network can
optimize in its trusted input regions. The disadvantage of this approach is that it is
only applicable on problems where an analytical model can be provided.

Another possibility to determine a data-driven model is proposed by Zakrzewski
(2001). In this approach, an already validated reference implementation (for in-
stance a look-up table) is used as deterministic data generator for an exhaustive
evaluation of the machine learning solution. This approach compensates for the
limited number of data by generating data according to the reference implementa-
tion. Thus it becomes possible to prove that the machine learning solution conforms
to the reference implementation. This might be useful to reduce the memory usage
by replacing large look-up tables by smaller artificial neural networks but it is ques-
tionable why a second model should be built if there exists an already validated
reference solution of an application problem.

Confidence measures – for instance error bars provided by Gaussian Processes (GPs)
(MacKay, 1998; Rasmussen & Williams, 2006) or multi-layer perceptrons (MLPs)
with evidence propagation (MacKay, 1992) – can be used to estimate the uncer-
tainty of the model’s output. But for high-dimensional problems where the data
might be sparse such confidence measures suffer from the limited number of data
that is available. For instance, in the field of aviation and controlling nuclear power
plants an error rate of at most 10−9 failures per hour is required. Achieving such
an error rate by purely assessing the solution based on the error rate estimated on a
testing data set and computing some confidence measures becomes intractable for
high-dimensional problems.
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Another approach of providing an interpretable solution is to use ensemble meth-
ods, where the original high-dimensional problem is partitioned into smaller sub-
problems. Then it becomes possible to visualize and, thus, to interpret the solu-
tions of the smaller subproblems. The methods described in Chap. 3 and Chap. 4
are based on this ensemble modeling idea.

2.3 Summary

This chapter has introduced the basic concepts of machine learning theory and has
provided a brief overview of safety-related systems. First, the fundamentals of ma-
chine learning theory are given and several common used machine learning meth-
ods are briefly introduced, namely basic linear regression, binary classification, sup-
port vector classifiers, common extensions of binary classifiers for multi-class prob-
lems, and classification and regression trees. These methods will serve as testbed
for our methods which are introduced within the following chapters. In the second
part of this chapter, a brief overview about safety-related systems is given. Recent
safety-standards are briefly reviewed and the problem of assessing solutions for use
in safety-related domains is addressed. Different current state-of-the-art methods
in machine learning within the domain of safety-related applications are discussed
and their advantages and disadvantages are pointed out.
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3 Ensembles of Submodels for
Safety-Related Classification Problems

In this chapter, we present our classification framework that is designed for use
in application domains with very high safety requirements. First, we introduce
the basic concepts of our classification framework based on an ensemble of low-
dimensional submodels. This approach assumes a binary classification problem.
Later within this chapter, we discuss different strategies of extending our ensemble
method to deal also with multi-class problems. The ensembles of binary classifiers
were developed with the objective of providing interpretable submodels for use in
safety-related application domains. The ensembles assume highly imbalanced mis-
classification costs between the two classes. The extension to multi-class problems
is not straightforward because common multi-class extensions might induce incon-
sistent decisions. We propose an approach that avoids such inconsistencies by intro-
ducing a hierarchy of misclassification costs. We will show that by following such
a hierarchy it becomes feasible to extend the binary ensemble and to maintain the
same desirable properties of the binary ensemble approach.

3.1 Introduction

In Nusser et al. (2007) we proposed a binary ensemble framework for use in safety-
related domains. The main design criterion of this approach is to provide an ensem-
ble of binary classification models that use small subspaces of the complete input
space enabling the visual interpretation of the models. Since machine learning ap-
proaches are regarded with suspicion in the field of safety-related domains the pos-
sibility to visualize each submodel greatly facilitates the domain experts’ acceptance
of the data-driven generated models. An interpretable solution is often required for
applications where the available training data is too sparse and the number of in-
put dimensions is too large to sufficiently apply statistical risk estimation methods
in practical application tasks. In most cases high-dimensional models are required
to solve a given problem. Unfortunately, such high-dimensional models are hard
to verify and their interpolation and extrapolation behavior is often unclear. Recall
Fig. 1.1 where the prediction of the model changes in a region not covered by the
given data set. Such behavior becomes even more likely and much more difficult to
discover in the high-dimensional case. Our ensemble approach provides an insight
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into each submodel, which can be evaluated according to the given domain know-
ledge and, thus, the correct interpolation and extrapolation behavior of the model
can be guaranteed. The extension of our binary classification ensemble to multi-class
problems is not straightforward since commonly used methods like one-against-one
or one-against-rest voting (Friedman, 1996; Hsu & Lin, 2002) may introduce incon-
sistencies – as illustrated in Sect. 2.1.5. We will show that such inconsistencies can
be avoided by introducing a hierarchy of misclassification costs. The crucial aspect
is to find a suitable trade-off between the generation of an interpretable and veri-
fiable model and the realization of a high predictive accuracy. In most situations,
more complex models will be able to achieve a better predictive performance on the
available data compared to simpler models. However, a higher complexity of the
model will usually lead to an increased effort for model verification.

This chapter is organized as follows. In Sect. 3.2 we recall our binary ensemble
approaches for use in safety-related domains. Sect. 3.3 extends the binary classifi-
cation framework to also solve multi-class problems. Experiments performed on
real-world application problems are described in Sect. 3.4. The results of further ex-
periments on well-known benchmark problems are given in Appendix A. Sect. 3.5
summarizes this chapter.

3.2 The Binary Ensemble Framework

This section introduces the basic concepts of our ensemble approach. The algo-
rithms are designed to solve binary classification problems. That is, the learning task
is to find an estimate of the unknown function f : VN → Y, where VN = ×Nn=1Xn
with Xn ⊆ IR is the input space and Y is the target value, given an observed data set
D = {(~v1,y1) , ..., (~vM,yM)} ⊂ VN × Y.

Basic Idea. Our ensemble framework is originally motivated by Generalized Ad-
ditive Models (Hastie & Tibshirani, 1990; Stone, 1985) and Separate-&-Conquer ap-
proaches (Fürnkranz, 1999). The framework can be interpreted as a variant of the
projection pursuit (Friedman & Tukey, 1974; Huber, 1985). Within our framework,
we have developed two different ensemble models, the DecisionTree-like Ensemble
Model in Sect. 3.2.1 and the Non-hierarchical Ensemble Model in Sect. 3.2.2. Both
approaches are designed to find an estimate of the unknown function f : VN → IK,
where IK ⊂ IN is the set of class labels. Our approaches are based on the projec-
tions of the high-dimensional data to low-dimensional subspaces. Submodels gj are
trained on these subspaces. By regarding only low-dimensional subspaces a visual
interpretation becomes feasible. Thus the avoidance of unintended extrapolation
behavior is possible. The ensemble of submodels boosts the overall predictive ac-
curacy and overcomes the limited predictive performance of each single submodel,
while the global model remains interpretable.
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Projections of High-Dimensional Data Sets. The projection πmaps theN-dimensional
input space VN to an arbitrary subspace of VN. This mapping is determined by a
given index set β ⊂ {1, ...,N}. The index set defines the dimensions of VN that will
be included in the subspace Vβ. Thus the projection π on the input space VN given
the index set β is defined as:

πβ

(
VN
)

= Vβ =×n∈βXn . (3.1)

Submodels. The j-th submodel is defined as:

gj : πβj

(
VN
)
→ IK, (3.2)

where βj denotes the index set of the subspace where the classification error of the
submodel gj is minimal. The best projections are determined by a wrapper method
for feature selection (Kohavi & John, 1997). This method is discussed in more detail
in Sect. 5.1.3. The final function estimate f̂ of the global model is determined by the
aggregation of the results of all submodels gj(πβj(~v)).

3.2.1 DecisionTree-like Ensemble Model

This approach replaces the binary one-dimensional splits within the nodes of a com-
mon classification tree, cf. Sect. 2.1.6, by strong classifiers. In our implementation,
we are using support vector machines (SVMs, cf. Sect. 2.1.4), but other classifi-
cation methods are also viable. The classifiers used as nodes within the tree are
restricted to two input dimensions. This facilitates the visualization of the rele-
vant decision region and avoids overfitting. Comparable to the classification tree
learner, the best submodel gj is used to divide the training set into new subsets
Dnew
θ := {(~v,y)|gj(πβj(~v)) = θ}, where θ ∈ IK. The submodels for these subsets

are built recursively until an appropriate termination criterion is fulfilled. The algo-
rithm to build a DecisionTree-like Ensemble Model is given in Algorithm 3.1

There are two possibilities of applying a DecisionTree-like Ensemble Model. The
first variant follows the standard classification tree approach and uses the leaf nodes
of the tree-like model to predict the final class label. The second variant, which is
used in Algorithm 3.2 aggregates all of the votes of each node that are included in
the path of the tree when evaluating a novel data point ~v. The class label of a novel
data point ~v can be determined by aggregating the votes of the nodes for the given
sample:

f̂(~v) = Φ({gj(πβj(~v))|(gj,βj) ∈ models}) , (3.3)

where Φ is an appropriate aggregation function and models is the set of nodes of
tree T being involved by applying Algorithm 3.2 on ~v. In our experiments with
SVMs as classifiers the following aggregation function provides adequate results:

Φ(~v) =
1

|models|

∑
i∈models

1

1 + e2mi(πβi(~v))
, (3.4)
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Algorithm 3.1 Building a DecisionTree-like Ensemble Model.

input: data set D, dimlimit – limit of dimensions (fixed)

output: model tree T

function T := buildTree(D)

1: solve ∀(~v,y) ∈ D : min
{
|y− g(πβ(~v))|

}
, where β ⊂ {1, ...,N} and |β| = dimlimit

2: create new node T
3: Dnew

0 := {(~v,y)|g(πβ(~v)) = 0}

4: Dnew
1 := {(~v,y)|g(πβ(~v)) = 1}

5: if (Dnew
0 6= ∅) ∧ (Dnew

1 6= ∅) then
6: T .model := g

7: T .beta := β

8: T .child[0] := buildTree(Dnew
0 )

9: T .child[1] := buildTree(Dnew
1 )

10: end if

Algorithm 3.2 Classifying new samples with a DecisionTree-like Ensemble Model.

input: ~v ∈ VN – new sample data point; T – tree returned by Algorithm 3.1

output: class – class prediction of ~v

function class := evaluateTree(~v, T )

1: votes := evaluateTreeRek(~v, T )
2: class := Φ(votes)

function votes := evaluateTreeRek(~v, T )

1: g := T .model
2: β := T .beta
3: votes := g(πβ(~v))

4: if (g(πβ(~v)) = 0) ∧ (T .child[0] 6= ∅) then
5: votes := [votes evaluateTreeRek(~v, T .child[0])]
6: else if (g(πβ(~v)) = 1) ∧ (T .child[1] 6= ∅) then
7: votes := [votes evaluateTreeRek(~v, T .child[1])]
8: end if

wheremi(πβi(~v)) is the margin of the i-th SVM model on subspace Vβi , represented
by expi ∈ models – that is we compute a weighted average of the votes of the
experts. Using Eq. 3.4 as aggregation function yields the classification function:
f̂(~v) = 1⇔ Φ(~v) > 0.5 , otherwise f̂(~v) = 0.

3.2.2 Non-hierarchical Ensemble Model

This ensemble method incorporates prior knowledge about the subgroups of the
given problem and avoids hierarchical dependencies of the submodels, which must
be taken into account for validating a DecisionTree-like Ensemble Model. It is re-
quired that the so-called default class cpref, that is, the default state of the safety-
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Algorithm 3.3 Building a Non-hierarchical Ensemble Model.

input: data set D, cpref - label of default class, dimlimit – limit of dimensions (fixed)

output: models – set of submodels

functionmodels := buildModel(D, cpref)

1: solve ∀(~v,y) ∈ D : min
{
|y− g(πβ(~v))|

}
, β ⊂ {1, ...,N} s.t. |β| = dimlimit and ∀y = cpref :

|y− g(πβ(~v))| = 0
2: Dnew := {(~v,y)|g(πβ(~v)) = cpref}

3: if (D \ Dnew 6= ∅) then
4: models := {g(πβ(·))}∪ buildModel(Dnew, cpref)
5: else
6: models := ∅
7: end if

Algorithm 3.4 Classifying new samples with a Non-hierarchical Ensemble Model.

input: ~v ∈ VN – new sample data point;models – set of models returned by Algorithm 3.3

output: class – class prediction of ~v

function class := evaluate model(~v,models)

1: class :=
∨
gj∈models gj(πβj(~v))

related system, must not be misclassified by any of the learned submodels: ∀y =

cpref :
∣∣y− g

(
πβ (~v)

)∣∣ = 0. This requirement typically leads to imbalanced misclas-
sification costs. The submodels are trained on low-dimensional projections of the
high-dimensional input space with the objective to avoid the misclassification of the
default class. The submodels greedily separate the samples of the other class from
the default class samples. Missed samples of the other class are used to build further
sub-experts. The algorithms for building such a Non-hierarchical Ensemble Model
and for evaluating a new sample ~v are shown in Algorithm 3.3 and Algorithm 3.4,
respectively.

The final function estimate is the disjunctive combination of all learned submodels:

f̂(~v) =
∨

gj∈models
gj

(
πβj (~v)

)
, (3.5)

where models is the set of all submodels which are returned by Algorithm 3.3. For
the sake of simplicity it is defined that the default class cpref is always encoded as 0
and the other class is always encoded as 1 by the submodels gj.

3.2.3 An Illustrative Example

The CUBES data set is generated from four Gaussian components in a three-dimen-
sional space. This data set is illustrated in Fig. 3.1. For each CLASS 1 cluster 50 sam-
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Fig. 3.1: Three-dimensional CUBES data set: CLASS 1 samples are marked with circles
and CLASS 0 samples are marked with crosses.

ples are drawn from N(en, 0.2 · I), where en is a unit vector and I is the identity
matrix. 100 samples of the CLASS 0 cluster are scattered around the origin, drawn
from N((0, 0, 0)T, 0.2 · I). All submodels are trained as SVMs with Gaussian kernels
and the parameter set γ = 0.2 and C = 5.

DecisionTree-like Ensemble Model. This method does not require a predefined de-
fault class. However, if a default class is given by the application, it can be consid-
ered by different misclassification costs when learning the submodels of the tree-like
model. In this toy example we ignore the information about the default class. At the
initial state, all two-dimensional projections of the CUBES data set are very similar.
The best two-dimensional submodel g1 is depicted in Fig. 3.2(a). It uses the pro-
jection πβ1(~v) with β1 = {2, 3}. This submodel assigns 103 data points to CLASS 1 (2
errors) and 147 data points to CLASS 0 (49 errors). It is not possible to build further
submodels for the data points that are assigned to CLASS 1, but for CLASS 0 a second
submodel can be built. This model, g2 with β2 = {1, 2}, is depicted in Fig. 3.2(b). It
assigns 50 data points to CLASS 1 (1 error) and 97 data points to CLASS 0 (0 errors). Fur-
ther improvements are not possible. The final model, which is depicted in Fig. 3.2(c),
misclassifies three CLASS 0 samples. All other data points are correctly assigned to
their corresponding class labels. The confusion matrix of the final DecisionTree-like
Ensemble Model is shown in Tab. 3.1(a).
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(a) 1st submodel g1 with index set β1 = {2, 3}.
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(b) 2nd submodel g2 with index set β2 = {1, 2}.
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(c) Tree structure of the DecisionTree-like Ensemble
Model.

Fig. 3.2: DecisionTree-like Ensemble Model and the CUBES data set: CLASS 1 samples
are marked with circles and CLASS 0 samples are marked with crosses. The decision
boundaries are drawn as solid lines.

Non-hierarchical Ensemble Model. In this setting, CLASS 0 is chosen as the default
class, i.e., cpref = 0. So, CLASS 0 must not be misclassified by any learned submodel1.
This can be achieved, for instance, by using imbalanced misclassification costs for
CLASS 1 and CLASS 0. The best submodel g1, see Fig. 3.3(a), uses the projection πβ1(~v)

withβ1 = {1, 2}. 53 data points from CLASS 1 are misclassified by this submodel. Thus
in the next iteration new submodels are trained only on samples, which are pre-
dicted as CLASS 0 by the first submodel: Dnew = {(~v,y)|g1(πβ1(~v)) = 0}. In Fig. 3.3(b)
the projection πβ2(~v) with β2 = {2, 3} of the data set Dnew and the corresponding
submodel g2 are shown. This submodel misclassifies four CLASS 1 samples. Given
the chosen parameter set, no further improvements are possible. The final predic-

1 Note: If one choses CLASS 1 as the default class, cpref = 1, it is not possible to solve this learning
problem without violating the requirement that the default class must not be misclassified by
any submodel. To overcome this limitation we developed a feature construction method based
on a multi-layer perceptron. This feature construction method is discussed in Sect. 5.2.
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(a) 1st submodel g1 with index set β1 = {1, 2}.
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(b) 2nd submodel g2 with index set β2 = {2, 3}.

Fig. 3.3: Non-hierarchical Ensemble Model and the CUBES data set: CLASS 1 samples
are marked with circles and CLASS 0 samples are marked with crosses. The decision
boundaries are drawn as solid lines.

Tab. 3.1: Confusion matrices of the CUBES data set.

(a) DecisionTree-like Ensemble
Model.

predicted class
true class CLASS 0 CLASS 1

CLASS 0 97 3
CLASS 1 0 150

(b) Non-hierarchical Ensemble
Model.

predicted class
true class CLASS 0 CLASS 1

CLASS 0 100 0
CLASS 1 4 146

tive model is f̂(~v) = g1(πβ1(~v)) ∨ g2(πβ2(~v)). The overall performance of the Non-
hierarchical Ensemble Model is shown in Tab. 3.1(b): avoiding the misclassification
of the default class cpref = 0 leads to four misclassified CLASS 1 samples.

3.3 The Multi-Class Ensemble Framework

Our ensemble framework leads to the following two levels where the binary classi-
fication approaches can be extended to solve multi-class problems:

1. The multi-class decision is made on the level of the submodels (Ensemble of
Multi-Class Submodels, cf. Sect. 3.3.1).
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2. Submodels are binary classifiers, the multi-class classification task is performed
by the ensemble. Two variants are possible:
(a) the Hierarchical Separate-and-Conquer Ensemble (cf. Sect. 3.3.2) and
(b) the One-versus-Rest Ensemble (cf. Sect. 3.3.3).

Another ensemble learning algorithm for multi-class problems is given in Szepan-
nek & Weihs (2006). This algorithm uses a one-against-one approach in order to ex-
tend binary classifiers to solve multi-class problems. In this paper the one-against-
one method is called pairwise coupling. The important similarity of this approach
compared to our framework is that it is also based on a reduction of the dimen-
sionality on the level of the submodels. In contrast to our approach, the number
of dimensions of the submodels is not limited – all input dimensions that provide
statistically sufficient information are included in the training set to build a single
submodel to separate the pair of classes. Our ensemble methods may use several
submodels with limited dimensionality to solve the same subproblem while each
submodel remains visually interpretable.

For safety-related problems it is important to take into account that the commonly
used strategies of extending binary classifiers to multi-class classifiers, which are
discussed in Sect. 2.1.5 and illustrated in Fig. 2.4, may lead to regions with inconsis-
tent decisions. In order to avoid an unintended labeling the inconsistent decisions
are solved according to a hierarchy of misclassification costs: for a given new data
point ~v that class label of all predicted class labels is chosen which has the largest
misclassification penalty.

3.3.1 Ensemble of Multi-Class Submodels

Using local multi-class models in a Non-hierarchical Ensemble Model requires a hier-
archy of misclassification costs. That is, we assume that there exists an ordering of
the class labels, which allows statements like: “class c1 samples should never be mis-
classified, class c2 samples might be misclassified only as class c1 samples, class c3 might be
classified as class c1 or c2 samples, ...”

penalty(c1) > penalty(c2) > penalty(c3) > ... (3.6)

Such a hierarchy of misclassification costs leads to a confusion matrix as depicted in
Tab. 3.2. This issue is closely related to ordinal classification problems (Frank & Hall,
2001). An SVM-based approach for ordinal classification can be found in Cardoso
et al. (2005).

Combining several local multi-class models becomes difficult because one can only
rely on the prediction of the class ck, which has the minimal misclassification cost
– all other class label predictions might be false positives. Thus it is necessary to
include all samples that are not predicted as class ck in the training for the next sub-
model. This fact leads directly to the Hierarchical Separate-and-Conquer Ensemble
approach, which is described in Sect. 3.3.2.
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Tab. 3.2: Confusion Matrix for multi-class submodels in a Non-hierarchical En-
semble Model. The following hierarchy of misclassification costs is assumed:
penalty(c1) > penalty(c2) > penalty(c3) > penalty(c4) > penalty(...)

predicted class
true class c1 c2 c3 c4 ...

c1 h1,1 0 0 0 ...
c2 h2,1 h2,2 0 0 ...
c3 h3,1 h3,2 h3,3 0 ...
c4 h4,1 h4,2 h4,3 h4,4 ...
... ... ... ... ... ...

The extension of the DecisionTree-like Ensemble Model in order to solve a multi-class
problem is straightforward – a novel subtree is generated for each class predicted
by the submodel of the current node. The final classification decision is determined
by the leaf node of the learned tree – similar to standard decision tree approaches.
In order to avoid inconsistent decisions it is encouraged to also use a hierarchy of
misclassification costs in this approach for building the submodels.

3.3.2 Hierarchical Separate-and-Conquer Ensemble

This approach requires a hierarchy of the misclassification costs as already intro-
duced for the Ensemble of Multi-Class Submodels approach. It is related to the
commonly used one-against-rest approach. Instead of building all one-against-rest
combinations of models, the class with the minimal classification costs is separated
from all samples of the other classes via binary submodels. This approach is illus-
trated in Fig. 3.4. The learning procedure is the same as for the Non-hierarchical
Ensemble Model, which is described in Sect. 3.2.2. If the problem is solved for the
class with the minimal classification costs or there are no further improvements for
this class possible, all remaining samples of this class are removed from the train-
ing data set and the procedure is repeated for the class which has now the smallest
misclassification costs. This procedure will be repeated until the data set of the next
iteration has only a single class label. The resulting binary classifiers are evaluated
according to the misclassification hierarchy, that is, in the first step all submodels of
the class with minimal misclassification costs are evaluated. If the novel data point
cannot be assigned to the class with minimal misclassification costs, the procedure
is repeated for the next class within the hierarchy of misclassification costs. If no
submodel assigns the novel sample to its class the sample is assigned to the class
with maximal misclassification costs.
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C vs AB

 

 
Class A
Class B
Class C

(a) Discriminant functions.

predicted class
true class A B C

A 36 0 0
B 0 38 0
C 0 6 41

(b) Confusion matrix.

Fig. 3.4: Hierarchical Separate-and-Conquer Ensemble trained on the data set
from Fig. 2.4. The following hierarchy of misclassification costs is assumed:
penalty(A) > penalty(B) > penalty(C).

3.3.3 One-versus-Rest Ensemble

This approach follows the one-against-rest multi-class classification approach. It is
illustrated in Fig. 3.5. For every class ck ∈ IK versus c∗k = IK \ ck a complete binary
Non-hierarchical Ensemble Model f̂ck(~v) is trained. The class c∗k is chosen as the
default class cpref in order to avoid the misclassification of any sample belonging to
IK \ ck. For the sake of simplicity c∗k is encoded as −1. The resulting binary models
can be combined by determining the maximum of the predictions of each binary
Non-hierarchical Ensemble Model: f̂(~v) = arg max

ck∈IK
f̂ck(~v) .

The One-versus-Rest Ensemble is the easiest way to extend our binary ensemble
method in order to obtain a multi-class model but it shows a lack of performance
for overlapping data sets: it is possible that certain data points will be assigned to
the class c∗k by every submodel and some classes cannot be separated from the other
classes due to overlapping of the classes in all projections. This approach still yields
ambiguous decisions within the input space, as shown in Fig. 3.5. Such ambiguities
can be resolved by the hierarchy of misclassification costs.

3.3.4 An Illustrative Example (Cont’d)

We extend the example which is introduced in Sect. 3.2.3 to a four-class problem:
the CLASS 2 samples are drawn from N((0.0, 0.0, 0.0)T, 0.2 · I), the CLASS 3 samples are
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Class A
Class B
Class C

(a) Discriminant functions. Ambiguous re-
gions are labeled with ’?’.

predicted class
true class A B C ?

A 22 0 0 14
B 0 31 0 7
C 0 0 41 6

(b) Confusion matrix. The last
column denotes missed sam-
ples.

Fig. 3.5: One-versus-Rest Ensemble trained on the data set from Fig. 2.4. Each model
for class ck is trained with the objective to avoid the misclassification of all samples
belonging to c∗k = IK \ ck.

drawn from N((0.5, 0.5, 0.5)T, 0.2 · I), the CLASS 4 samples are drawn from N((1.0, 1.0,
1.0)T, 0.2 · I), and the samples of CLASS 1 are drawn from N(en + i · 0.5, 0.2 · I), i =

{0, 1, 2}. For this multi-class problem, we assume the following hierarchy of mis-
classification costs: penalty(CLASS 4) > penalty(CLASS 3) > penalty(CLASS 2) >
penalty(CLASS 1).

Ensemble of Multi-Class Submodels. The submodel of the root node of the Ensem-
ble of Multi-Class Submodels approach is shown in Fig. 3.6(a). All predicted CLASS 1
samples are CLASS 1 samples, thus there is no further subtree-building needed for
predicting CLASS 1. The second submodel, Fig. 3.6(b), is trained on all samples that
are predicted as CLASS 2 by the submodel of the root node. The same holds for the
third and fourth submodel, Fig. 3.6(c)&(d), that are trained on the samples predicted
as CLASS 3 and CLASS 4, respectively. Further submodels cannot improve the overall
performance of the global model. The final classification tree is depicted in Fig. 3.6.
It consists of four decision nodes and the maximal tree depth is two, that is, in aver-
age two submodels are necessary to classify a novel sample data point.

Hierarchical Separate-and-Conquer Ensemble. This approach solves the problem with
four submodels, all shown in Fig. 3.8. The first submodel separates most of the
CLASS 1 samples from the samples of the other classes. The remaining CLASS 1 sam-
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(a) 1st submodel g1 with index set β1 = {2, 3}.
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(b) 2nd submodel g2 with index set β2 = {1, 2}.
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(c) 3rd submodel g3 with index set β3 = {1, 2}.
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(d) 4th submodel g4 with index set β4 = {1, 2}.

Fig. 3.6: Ensemble of Multi-Class Submodels approach and the Multi-Class CUBES

data set: CLASS 1 samples are shown as circles, CLASS 2 samples are shown as crosses,
CLASS 3 samples are shown as downward-pointing triangles, and CLASS 4 samples
are shown as upward-pointing triangles. The decision borders of the submodels are
drawn as solid lines.



42 3. Ensembles of Submodels for Safety-Related Classification Problems

�� �
�	 
�β1 = {2, 3}

g1(πβ1(~v))=1

wwnnnnnnnnnnnnnnnnnnnnnnnnnn

g1(πβ1(~v))=2
}}}}}}}}}}

~~}}}}

g1(πβ1(~v))=3

��

g1(πβ1(~v))=4

''OOOOOOOOOOOOOOOOOOOOOOOOOO

f̂(~v) = 1
�� �
�	 
�β2 = {1, 2}

g2(πβ2(~v))=1

������������������

g2(πβ2(~v))=2

��

�� �
�	 
�β3 = {1, 2}

g3(πβ3(~v))=1

��

g3(πβ3(~v))=3

��????????????????

�� �
�	 
�β4 = {1, 2}

g4(πβ4(~v))=1

��

g4(πβ4(~v))=4

��????????????????

f̂(~v) = 1 f̂(~v) = 2 f̂(~v) = 1 f̂(~v) = 3 f̂(~v) = 1 f̂(~v) = 4

Fig. 3.7: Tree structure of the Ensemble of Multi-Class Submodels trained on the
Multi-Class CUBES data set.

ples are removed by the second submodel – further improvements in predicting
CLASS 1 are not possible. Thus according to the hierarchy of misclassification costs,
the third submodel separates the samples drawn from CLASS 2 from the samples of
CLASS 3 and CLASS 4. The last submodel separates the CLASS 3 samples from the CLASS 4
samples.

One-versus-Rest Ensemble. This example shows the limitations of the One-versus-
Rest Ensemble approach: it is not possible to build one-versus-rest models for CLASS 2,
CLASS 3, and CLASS 4 without misclassifying samples from CLASS 1. The only models
returned by this approach are the same as shown in Fig. 3.8(a) and Fig. 3.8(b), that
is, only CLASS 1 samples can be predicted correctly, all other samples are predicted
as ‘don’t know’.

3.4 Real-World Application Problems

This section discusses the application of our ensemble modeling framework on
two real-world application problems with different safety-requirements. The first
application serves as an example for application problems with very high safety-
requirements. The second application illustrates that the desirable properties of the
binary classification ensemble are maintained by the multi-class extensions. Further
experiments performed on common benchmark data sets are given in Appendix A.

3.4.1 The Deployment of an Airbag

This application problem serves as an example for control systems with very high
safety requirements. For each new car platform the control logic of the restraint
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(d) 4th submodel g4 with index set β4 = {1, 3}.

Fig. 3.8: Hierarchical Separate-and-Conquer Ensemble and the Multi-Class CUBES

data set: CLASS 1 samples are shown as circles, CLASS 2 samples are shown as crosses,
CLASS 3 samples are shown as downward-pointing triangles, and CLASS 4 samples are
shown as upward-pointing triangles.
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system has to be developed from scratch since modifications of mechanical com-
ponents, a different sensor placement, or new functional requirements (for instance
pedestrian protection) can dramatically influence the signal characteristics and, thus,
a solution of the previous platform will not be applicable anymore. Until now most
of this calibration is done manually by the safety engineers. An automated process
of building such control systems will significantly reduce the development time and
costs for a new car platform.

In this problem, based on a high-dimensional data set, a decision has to be derived
whether to trigger the restraint system of a car (FIRE) or not (NOFIRE). An example for
such a restraint application is the deployment of an airbag system. This classifica-
tion task is challenging because (1) the restraint system can be triggered only once –
a wrong decision cannot be rectified – and (2) a malfunction of the system might be
fatal. Thus it must be ensured that the obtained model is sensitive enough to trigger
the restraint system and robust enough in order to avoid an unindented extrapola-
tion or interpolation behavior – as illustrated in Fig. 1.1. In order to avoid such an
undesired behavior the domain experts in the field of automotive safety electronics
tend to use conservative models (for instance rule-based systems or lookup tables).
Unfortunately, by generating such models by purely data-driven methods, the re-
sulting models/rule bases become complex and hard to verify.

The data set in this application example, which was first used in Nusser et al. (2007),
is sparse and consists of approximately 40 000 data points, where each data point is
30-dimensional. These data points belong to 40 distinct time series. Each time series
represents a certain standardized crash situation. Due to the limited number of
crash tests the guaranteed extrapolation (and interpolation) behavior of the models
becomes essential. As the data set consists of a number of time series it is sufficient
to trigger the restraint system once in a defined time interval. The incorporation
of domain knowledge facilitates the reduction of the model complexity by dividing
the FIRE class into two subgroups (FIRE.1 and FIRE.2). These subgroups represent
different types of crash situations which implicate input signals with different signal
characteristics. Thus in order to reduce the complexity of the learning problem,
we can separate the original problem into two distinct subproblems (FIRE.1 versus
NOFIRE and FIRE.2 versus NOFIRE) and solve these problems independently. NOFIRE is
chosen as the default class. That is, all NOFIRE samples have to be correctly classified
by all submodels. NOFIRE is encoded as 0 and FIRE is encoded as 1.

This binary classification problem can be solved by an ensemble of four two-dimen-
sional submodels – two submodels for the FIRE.1 subgroup and two submodels for
the FIRE.2 subgroup. The prediction of the global model is simply determined by the
disjunction of the predictions of all submodels:

f̂(~v) =
(
gF.1

1 (πβF.1
1

(~v)) ∨ gF.1
2 (πβF.1

2
(~v))

)
∨(

gF.2
1 (πβF.2

1
(~v)) ∨ gF.2

2 (πβF.2
2

(~v))
)

.
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(a) Submodel for FIRE.1-crashes gF.1
1 with index

set βF.1
1 = {2, 24}.

(b) Submodel for FIRE.1-crashes gF.1
2 with index

set βF.1
2 = {2, 27}.

(c) Submodel for FIRE.2-crashes gF.2
1 with index

set βF.2
1 = {7, 27}.

(d) Submodel for FIRE.2-crashes gF.2
2 with index

set βF.2
2 = {3, 25}.

Fig. 3.9: Non-hierarchical Ensemble Model and the autonomous control example.
NOFIRE samples are marked with circles and FIRE samples are marked with crosses.
The trajectories of the FIRE samples are shown as broken lines. The decision bound-
aries of the submodels are drawn as solid lines.
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The learned submodels per subgroup are illustrated in Fig. 3.9. All submodels have
smooth decision boundaries that are adequate according to domain knowledge. No
NOFIRE sample is triggered. Due to the capability to divide the data set into two
different subgroups and to combine the learned submodels disjunctively, all FIRE

samples can be triggered by at least one expert.

The Non-hierarchical Ensemble Model solves this challenging classification prob-
lem and conforms to all given requirements. The visualization of each submodel
facilitates the domain experts to perform a direct evaluation of the learned solu-
tion. The simple aggregation of the submodels by a disjunctive combination greatly
facilitates the interpretation of the global model as well.

3.4.2 A Medical Diagnosis Example

The NEWTHYROID data set can be obtained from the UCI Machine Learning Repos-
itory (Asuncion & Newman, 2007). This application concerns a typical medical data
screening problem. The classification task is to predict whether a patient’s thy-
roid belongs to the class euthyroidism (NORMAL = CLASS 1), hyperthyroidism (HYPER

= CLASS 2) or hypothyroidism (HYPO = CLASS 3). The data set consists of 215 instances
and each instance is described by five attributes. These attributes are:

T3-resin: T3-resin uptake test (a percentage). The T3 resin uptake test measures the
level of thyroid hormone-binding proteins in the blood.

Thyroxin: Total serum thyroxin (T4) measured by the isotopic displacement method.
Triiodothyronine: Total serum triiodothyronine (T3) measured by radioimmuno assay.
Basal TSH: Basal thyroid-stimulating hormone (TSH) measured by radioimmuno

assay.
Diff TSH: Maximal absolute difference of TSH value after injection of 200 mg of thyro-

tropin-releasing hormone compared to the basal value.

The data set is illustrated in Fig. 3.10. The following hierarchy of misclassification
costs is assumed: penalty(HYPO) > penalty(HYPER) > penalty(NORMAL). That is,
CLASS 3 samples must not be misclassified by any submodel, CLASS 2 samples might
be misclassified as CLASS 3 samples only, and CLASS 1 samples might be misclassi-
fied as CLASS 3 or CLASS 2 samples. The idea behind this hierarchy is to avoid any
misclassification of sick patients. Changing the hierarchy of misclassification costs
between CLASS 3 and CLASS 2 does not influence the results because both classes are
well-separated.

Ensemble of Multi-Class Submodels. The Ensemble of Multi-Class Submodels is a
straightforward extension of the DecisionTree-like Ensemble Model that uses multi-
class submodels within the inner nodes of the tree structure. Like the DecisionTree-
like Ensemble Model, this approach does not require a hierarchy of misclassifica-
tion costs. Therefore, the given hierarchy is ignored while building the Ensemble
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Fig. 3.10: Scatter plot matrix of the five-dimensional NEWTHYROID data set.
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Fig. 3.11: Tree structure of the Ensemble of Multi-Class Submodels trained on the
NEWTHYROID data.

of Multi-Class Submodels. The learned solution consists of three submodels. The
first submodel is illustrated in Fig. 3.12(a). This model misclassifies only five data
points. On the samples that are predicted as CLASS 1 samples a second submodel is
learned. This model is depicted in Fig. 3.12(b). On the samples that are assigned
to CLASS 2 a third submodel is learned, which is shown in Fig. 3.12(c). All samples
that are assigned to CLASS 3 by the first submodel are correctly classified. Thus for
the prediction g1(πβ1(~v)) = 3 no further submodels are required. The final model,
which is illustrated in Fig. 3.11, misclassifies only two samples – as one can see in
Fig. 3.12(d). Both samples violate the hierarchy of misclassification costs (which was
ignored during training). That is, this method still provides a good solution in situ-
ations where no further information about the misclassifcation costs are available.

Hierarchical Separate-and-Conquer Ensemble. This approach results in three binary
classification submodels which are illustrated in Fig. 3.13. Following the given hier-
archy of misclassification costs the first submodel separates most of the CLASS 1 sam-
ples from the other ones using the input dimensions “Thyroxin” and “Diff TSH”.
Further CLASS 1 samples are captured by the second submodel, which uses the in-
put dimensions “T3-resin” and “Thyroxin”. The remaining CLASS 1 samples cannot
be separated by further two-dimensional submodels. Thus according to the hierar-
chy of misclassification costs the CLASS 2 samples are separated in the next iteration
from the remaining classes (that is, the CLASS 3 samples). The CLASS 2 samples are
well-separable from the CLASS 3 samples by setting a simple threshold for the in-
put dimension “Thyroxin” as in the third submodel. As one can see in Fig. 3.13(d),
the Hierarchical Separate-and-Conquer Ensemble misclassifies only four instances,
which belong all to CLASS 1. No sick patient is predicted as healthy.
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(a) 1st submodel g1 with index set β1 = {2, 5}.

90 100 110 120 130
4

6

8

10

12

14

16

T3−resin

th
yr

ox
in

 

 

normal
hyper
hypo

(b) 2nd submodel g2 with index set β2 = {1, 2}.
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(c) 3rd submodel g3 with index set β3 = {1, 4}.

predicted class
true class CLASS 3 CLASS 2 CLASS 1

CLASS 3 29 0 1
CLASS 2 0 34 1
CLASS 1 0 0 150

(d) Confusion matrix: Ensemble of Multi-Class
Submodels and the NEWTHYROID data.

Fig. 3.12: Ensemble of Multi-Class Submodels and the NEWTHYROID data.
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(a) 1st submodel g1 with index set β1 = {2, 5}.
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(b) 2nd submodel g2 with index set β2 = {1, 2}.
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(c) 3rd submodel g3 with index set β3 = {2, 3}.

predicted class
true class CLASS 3 CLASS 2 CLASS 1

CLASS 3 30 0 0
CLASS 2 0 35 0
CLASS 1 2 2 146

(d) Confusion matrix: Hierarchical Separate-
and-Conquer Ensemble and the NEW-
THYROID data.

Fig. 3.13: Hierarchical Separate-and-Conquer Ensemble and the NEWTHYROID data.
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One-versus-Rest Ensemble. This classification approach ends up with four submod-
els. These submodels are shown in Fig. 3.14. The One-versus-Rest Ensemble follows
the one-against-rest strategy, that is, submodels are built for each class in order to
separate this class from the samples of all other classes – with the important restric-
tion of never misclassifying the samples that belong to the “other” class. Both the
first and the second submodel of this approach are identical with the first and sec-
ond model of the Hierarchical Separate-and-Conquer Ensemble. The third model
of the One-versus-Rest Ensemble separates the CLASS 2 samples from all other sam-
ples and the fourth submodel separates the CLASS 3 samples from all samples that do
not belong to CLASS 3. As one can see in Fig. 3.14(e), the One-versus-Rest Ensemble
misses 10 instances. All other samples are correctly assigned to their corresponding
classes. This property of the One-versus-Rest Ensemble is advantageous especially
for medical application problems, where further examinations can be carried out in
order to judge the patient’s status.

Discussion of the Results. Tab. 3.3 summarizes 10-fold-crossvalidation runs that are
performed to estimate the error rate of the ensemble methods on previously unseen
data. Both ensemble methods are compared with a high-dimensional SVM solution
(we used the libSVM implementation of Chang & Lin (2001) with Gaussian kernel)
and a classification tree (treefit in Matlab). Both standard classification models are
trained with imbalanced misclassification costs in order to reproduce the hierarchy
of misclassification costs. We computed two performance measures to evaluate the
learned models, (1) the predictive error êrr as defined in Eq. 2.24 on p. 20 and (2)
the critical error êrrcrit, which counts all samples that violate the given hierarchy of
misclassification costs.

The Hierarchical Separate-and-Conquer Ensemble (HSCE) achieves the best pre-
dictive performance on the NEWTHYROID data set. The best critical error rate is
achieved by the One-versus-Rest Ensemble (OvRE). The high error rate of the One-
versus-Rest Ensemble is due to the fact that missed samples (in average, 4.7% of the
data points are missed by the One-versus-Rest Ensemble) are considered as misclas-
sified within the crossvalidation experiments. Nevertheless, for screening medical
data the information that an automated classification system cannot assign a sam-
ple to a certain class is a benefit as long as the method has a small critical error
rate, because in such a situation further examinations can be carried out to ensure
the patient’s condition. The Ensemble of Multi-Class Submodels (EMCS) shows
the worst critical error rate since this approach ignores the given hierarchy of mis-
classification costs. Compared to the five-dimensional support vector machine the
ensemble models are superior with respect to the interpretability of the models be-
cause each two-dimensional model can be easily interpreted. The model complexity
of the treefit model with six decision nodes is comparable to the ensemble models.
The disadvantage of the treefit model is that the decision nodes depend on their an-
tecessors – while each submodel of the One-versus-Rest Ensemble and Hierarchical
Separate-and-Conquer Ensemble can be interpreted independently.
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(a) 1st submodel g1 with index set β1 = {2, 5}.
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(b) 2nd submodel g2 with index set β2 = {1, 2}.

70 80 90 100 110 120 130 140
0

5

10

15

20

25

T3−resin

th
yr

ox
in

 

 

0

0

0

0

0

0

other
hyper

(c) 3rd submodel g3 with index set β3 = {1, 2}.

0 5 10 15 20 25
0

10

20

30

40

50

thyroxin

di
ff 

T
S

H

 

 

0

0

0 0

other
hypo

(d) 4th submodel g4 with index set β4 = {2, 5}.

predicted class
true class CLASS 3 CLASS 2 CLASS 1 missed

CLASS 3 26 0 0 4
CLASS 2 0 33 0 2
CLASS 1 0 0 146 4

(e) Confusion matrix: One-versus-Rest Ensemble and the
NEWTHYROID data. The last column shows the samples
that are missed by all submodels.

Fig. 3.14: One-versus-Rest Ensemble and the NEWTHYROID data.



3.5. Summary 53

Tab. 3.3: NEWTHYROID data set: 10-fold crossvalidation evaluation. #M denotes the
number of submodels or decision nodes within the decision tree and #D denotes
the dimensionality of each model or decision node, respectively. The êrr column
denotes the overall classification error (including the missed samples of the One-
versus-Rest Ensemble). The êrrcrit column denotes the rate of samples that violate
the hierarchy of misclassification costs.

Method #M #D
êrr êrrcrit

mean (std) mean (std)

HSCE 3 2 4.19% (5.03) 1.10% (2.86)

EMCS 3 2 4.00% (4.53) 2.57% (3.79)

OvRE 4 2 6.38% (5.63) 0.90% (2.41)

libSVM 1 5 4.62% (4.56) 1.90% (3.71)

treefit 6 1 4.29% (4.36) 1.29% (2.12)

3.5 Summary

In order to successfully apply machine learning approaches in the field of safety-
related problems it is imperative to provide interpretable and verifiable models.
The classification framework proposed within this chapter is based on an ensemble
of low-dimensional submodels. Due to limited dimensionality, each submodel can
be visualized and hence both be interpreted and validated according to the given
domain knowledge. Furthermore, it is possible to avoid unintended and possibly
undesired interpolation or extrapolation behavior. The ensemble of the submodels
compensates for the limited predictive performance of each single submodel. The
proposed ensemble learning methods provide a good trade-off between (1) the in-
terpretation and verification of the learned (sub-) models, avoiding an unintended
extrapolation behavior, and (2) the achievement of a high predictive accuracy. In
contrast to dimensionality reduction methods, which combine several dimensions
of the input space, the submodels are trained on the original dimensions, allowing
domain experts to evaluate the trained models directly. By introducing a hierarchy
of misclassification costs, which is defined according to the given domain know-
ledge, it becomes possible to extend our binary classification approach in order to
deal also with multi-class problems, while the desirable properties of the binary
classification framework can be maintained.

The utilization of our proposed ensemble methods to real-world application prob-
lems provide good results. Experiments performed on common benchmark data
sets are summarized in Appendix A show that our ensemble models provide a good
trade-off between interpretability (measured by the number of submodels and their
dimensionality) and the predictive performance of the models.
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The described solution of the airbag deployment problem shows the advantages of
using our algorithms in an industrial application. The solution is not only avail-
able much sooner (compared to the manual calibration performed by the domain
experts) but also convinces by its improved performance with respect to crash de-
tection behavior and safety functionality. Despite the sophisticated demands in the
sensitive area of passenger safety a verifiably correct solution can be provided by
our algorithm.



4 Interpretable Regression Models Based on
EM-based Piecewise Linear Regression

This chapter addresses the problem of providing a machine learning method for
safety-related regression problems. The problem that arises within the regression
setting is that one cannot simply distinguish between a wrong and a correct deci-
sion and, thus, it is not possible to force the learning algorithm to always correctly
predict a certain state of the system as discussed in Chap. 31. Therefore, the main
focus of interest within this chapter is to provide an interpretable solution consisting
of simple submodels that can be validated by domain experts and that can achieve
an appropriate performance on the application problems. For that reason, it is nec-
essary that the model is simple but at the same time powerful. Piecewise linear
regression models can be used to approximate nonlinear functions and these linear
submodels show a good interpretability. Unfortunately, the quality of a piecewise
linear regression model depends on its partitioning of the input space. However,
determining the best partitioning of the input space is a non-trivial problem. This
chapter describes an EM-like piecewise linear regression algorithm that uses infor-
mation about the target variable to determine a meaningful partitioning of the input
space. The main goal of this approach is to incorporate information about the tar-
get variable in the prototype selection process of a piecewise regression approach.
Furthermore, the proposed approach is designed to provide an interpretable solu-
tion by restricting the dimensionality of the local regression models. We will show
that our approach achieves a similar predictive performance on benchmark prob-
lems compared to standard regression methods – while the model complexity of
our approach is reduced.

4.1 Introduction

The quality of a piecewise regression algorithm depends on the quality of its parti-
tioning of the input space. Common piecewise regression approaches, for instance

1 If there is enough information available about the given problem in order to build an analytical
model that achieves an appropriate baseline performance one can use commonly used machine
learning approaches to enhance the baseline performance within regions where enough data is
available. For instance, Schlang et al. (1999) are using RBF networks that can multiplicatively
adjust the prediction of the analytical model.
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the Local Linear Map (LLM) of Ritter (1991), use only information about the input
space for partitioning the data. The target variable is usually ignored while clus-
tering the input space. This strategy becomes inefficient in situations where the
data points cannot be distinguished within the input space but where a meaning-
ful partitioning can still be obtained by additionally considering the target variable.
Furthermore, regions of high data density in real-world application problems usu-
ally correspond to operating points of the system. Such regions are not necessarily
appropriate to determine a satisfactory partitioning of the input space because the
underlying function of the system might not change within the operating points but
in regions with low data density.

The objective of our work within this chapter is to incorporate information about
the target variable into the process of choosing the best prototypes of a piecewise
linear regression model. In addition, we are interested in providing a suitable trade-
off between an interpretable solution and a solution that provides a high predictive
accuracy. Symbolic models like regression trees or rule systems allow a good im-
pression about the “big picture” of a given problem. However, they sacrifice some
details and usually will not show such a high accuracy as sub-symbolic solutions
(for instance neural networks). There are many application domains where finding
a good trade-off between interpretability and predictive performance of the learned
solution is crucial. For instance, in the field of safety-related applications it is es-
sential to provide transparent solutions that can be validated by domain experts.
“Black box” approaches, like artificial neural networks, are regarded with suspi-
cion – even if they show a very high accuracy on the available data – because it is
not feasible to prove that they will show a good performance on all possible input
combinations. Another example is the field of bioinformatics, where it is necessary
to provide transparent solutions to get an impression how the biological mecha-
nisms are working. The problem that arises in both domains is that the amount of
independent samples is often not large enough to sufficiently apply statistical risk
estimation methods and extensive evaluations. This chapter proposes an EM-like
algorithm to determine an interpretable solution based on low-dimensional sub-
models that achieves a similar performance compared to high-dimensional regres-
sion methods. Different approaches were already proposed to tackle the problem of
partitioning the data by incorporating the target function: for instance, in (Ferrari-
Trecate & Muselli, 2002; Hathaway & Bezdek, 1993) the data is clustered based on
the model parameters of local regression models and in Höppner & Klawonn (2003)
a combined distance function is proposed for clustering, where the distance within
the input space and the error of the submodels is incorporated.

In Sect. 4.2, a brief introduction into the expectation maximization (EM) algorithm,
which is a commonly used method of dealing with partially unobservable learning
problems, is given. Sect. 4.3 presents our piecewise linear regression approach that
is based on the EM algorithm. Furthermore, this section discusses two extensions of
this approach: the restriction of the dimensionality of the submodels and the possi-
bility to prune the number of clusters. Experiments performed on two artificial and
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on one benchmark data sets are discussed in Sect. 4.4. The results of further experi-
ments performed on other common benchmark problems are given in Appendix A.
Sect. 4.6 summarizes this chapter.

4.2 Expectation Maximization

The Expectation Maximization (EM) algorithm is a two-step procedure proposed
by Dempster et al. (1977). This approach is capable to deal with learning problems
where relevant variables may be unobservable – in our case the correct partitioning
of the input space is unknown. The EM algorithm starts with an arbitrary initial
hypothesis – for instance a random partitioning of the input space defined by J pro-
totypes. In the first step (the Expectation step), the expected values of the hidden
(unobservable) variables are estimated under the assumption that the current hy-
pothesis is correct. In the second step (the Maximization step), the hypothesis is de-
termined that maximizes the likelihood under the assumption that the hidden vari-
ables take the expected values calculated by the first step. Both steps are repeated
until the algorithm converges to a local maximum likelihood hypothesis. The exam-
ple of partitioning the input space based on the EM-algorithm corresponds to the
k-means clustering algorithm (MacQueen, 1967).

4.3 The LinEM-Algorithm

The algorithm described in the following can be seen as an adaptation of the EM
algorithm. The basic idea of our approach is to incorporate information about the
target variable while dividing the input space into different regions, each described
by a prototype and a corresponding local regression model. The regression models
are trained for regions of the input space. Such regions are represented by cluster
prototypes. For each cluster region a linear regression model is learned. Compa-
rable to the EM algorithm, our approach consists of two main steps: first, the local
regression models are trained according to the cluster prototypes and, second, the
cluster prototypes are updated according to the predictive performance of the linear
regression models. The data points are assigned to the linear regression model with
the best predictive performance. Then the cluster prototypes are updated to the
mean of all samples that are assigned to the corresponding linear regression model.

Learning the Submodels. Given anN-dimensional input space: VN = X1×X2× ...×
XN = ×Nn=1Xn , where Xı ⊆ IR. The target variable Y ⊆ IR is determined by the
(unknown) function: f : X1 ×X2 × ...×XN → Y . The learning task is to determine a
function estimate f̂ : VN → Y of the (unknown) function f given an observed data
set D = {(~v1,y1), ..., (~vM,yM)} ⊂ VN × Y .
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The LinEM algorithm is given in Algorithm 4.1. It consists of two main steps: in
the first step local regression models are determined according to a given cluster
assignment, and in the second step the given data points are assigned to the clus-
ters where the predictive error of the corresponding regression model is minimal.
Our algorithm requires a predefined number of clusters J < M that are assumed to
represent the data. Each sample data point is assigned to one single cluster. This
assignment is defined by the mapping:

C(m) = j , with 1 6 m 6 M, 1 6 j 6 J, (4.1)

which assigns the m-th observation to the j-th cluster. Each submodel consists of a
tuple of a cluster prototype ~pj and a local regression model:

gj : VN → IR . (4.2)

The local regression model of the j-th cluster is trained on all data points that are
assigned by the mapping C to the j-th cluster:

gj(~vm) = ym , where C(m) = j . (4.3)

The j-th cluster prototype is determined by:

~pj =
1
Mj

∑
C(m)=j

~vm , (4.4)

where Mj =
∑M
m=1 I(C(m) = j) is the number of samples that belong to the j-th

cluster and I(A) =

{
1 if A is true
0 if A is false

.

The LinEM algorithm performs two alternating updates of the mappingC. Firstly, in
line 4 the mapping is updated according to the minimal predictive error of the cur-
rent local regression models gj. Then the new prototypes are determined according
to Eq. 4.4. Based on the new prototypes and in order to achieve a crisp partitioning
of the input space the second update of the mapping C is performed in line 6 of
Algorithm 4.1. The data points are assigned to the cluster with the closest cluster
prototype:

C(m) = arg min
j=1,...,J

(dist(~vm,~pj)) , (4.5)

where dist is the squared Euclidian distance, dist(~v, ~u) = ‖~v− ~u‖2 .

The corresponding objective function of the LinEM algorithm is:

J =

M∑
m=1

J∑
j=1

I(C(m) = j)
∣∣ym − gj(~vm)

∣∣ . (4.6)
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Algorithm 4.1 The LinEM-Algorithm

input: data set D, number of clusters J

output: cluster prototypes ~pj, submodels gj
1: Choose random cluster assignment C(m) = j

2: repeat
3: Learn J submodels according cluster indicies

gj(~vm) = ym ,

where j = 1, ..., J and C(m) = j.
4: Update cluster indicies according to model error:

C(m) = arg min
j=1,...,J

∣∣ym − gj(~vm)
∣∣

5: Compute cluster prototypes

~pj =
1
Mj

∑
C ′(m)=j

~vm ,

whereMj =
∑M
m=1 I(C

′(m) = j)

6: Update cluster indicies according to prototypes

C(m) = arg min
j=1,...,J

(dist(~vm,~pj))

7: until termination criterion fulfilled (e.g. maximum of iterations)

Applying the Submodels. In the case of a crisp cluster assignment, the prediction is
straightforward:

f̂(~v) = gj∗(~v) , (4.7)

where j∗ = arg min
j=1,...,J

{
dist(~v,~pj)

}
. If there are reasonable smoothness assumptions

about the target function, one can also apply a smoothing function on the predic-
tions of the submodels to determine the global model prediction. As an example,
one can use the softmax function:

wm,j =
exp(−dist(~vm,~pj))∑J
j=1 exp(−dist(~vm,~pj))

(4.8)

to compute weights of the submodels. Thus the final model prediction is computed
as the weighted sum:

f̂(~vm) =

J∑
j=1

wm,j · gj(~vm) . (4.9)

Restricting the Dimensionality of the Submodels. Adopting the idea used in Chap. 3,
instead of using all input dimensions in each submodel, projections of the high-
dimensional input space can be used to increase the interpretability of the learned
submodels. The projection πmaps theN-dimensional input space VN to an arbitrary
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subspace of VN. This mapping is determined by a given index set β ⊂ {1, . . . ,N}.
The index set defines the dimensions of VN that will be included in the subspace Vβ.
The projection π on the input space VN given the index set β is defined as in Eq. 3.1.
Thus the j-th submodel can be re-defined as:

gj : πβj

(
VN
)
→ IR , (4.10)

where βj denotes the index set of the subspace where the predictive error of the
submodel gj is minimal. The best projection can be determined, for instance, by a
wrapper model selection method (Kohavi & John, 1997). This ensures that the best
possible subspace is used.

Cluster Pruning. The LinEM algorithm facilitates a cluster pruning strategy where
clusters can be removed which are ill-posed, that is, the number of data points be-
longing to the current cluster is too small to solve the regression problem. Fur-
thermore, clusters with similar regression models can be merged. These heuristics
enables the LinEM algorithm to deal with problems where the optimal number of
clusters is unknown.

4.4 Two Illustrative Examples

The LinEM algorithm is compared with the Local Linear Map (LLM) from Ritter
(1991), a standard linear regression method (robustfit in Matlab), and a regression
tree (treefit in Matlab) on artificial and on common benchmark data sets. We dis-
tinguish the crisp and a softmax (c.f. Eq. 4.8) variant of the LinEM algorithm. The
predictive error is estimated by: êrr = 1/M

∑M
m=1 |ym − f̂(~vm)| . The submodels of

the LinEM algorithm are estimated by the robustfit method and are restricted to
two dimensions in all experiments. The best two-dimensional input combination is
determined by a wrapper method for feature selection (Kohavi & John, 1997) that
performs an exhaustive search through all pairwise combinations. In the following,
we discuss two artificial problems in more detail. Further experiments performed
on common benchmark data sets are given in Appendix A.

Artificial1 Data Set. We used the following function from Ferrari-Trecate & Muselli
(2002) as target function:

f1(x1, x2) =


3 + 4x1 + 2x2 if A1∧A3

−5 − 6x1 + 6x2 if ¬A1∧¬A2
−2 + 4x1 − 2x2 if A2∧¬A3

,

where A1 : 0.5x1 + 0.29x2 > 0, A2 : 0.5x1 − 0.29x2 > 0, and A3 : x2 > 0. This
target function is depicted in Fig. 4.1(a). 300 samples are drawn uniformly from
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Fig. 4.1: ARTIFICIAL1 data set. The original data points are labeled according to
their cluster assignment. The cluster prototypes are depicted as stars. The function
estimates of both regression methods are drawn as wireframe surfaces.

VN = [−1, 1]× [−1, 1] and y is determined as y = f1(x1, x2) + ε, where ε ∼ N(0, 0.1).
Note, that in this setting it is impossible to determine appropriate cluster prototypes
without regarding the target value.

The LinEM algorithm yields the following function estimate:

f̂1(x1, x2) =


3.020 + 3.965x1 + 1.956x2 if ~p1

−5.014 − 6.015x1 + 6.028x2 if ~p2
−1.999 + 3.998x1 − 2.028x2 if ~p3

,

where ~p1 = (0.466, 0.476)T, ~p2 = (−0.583, 0.122)T, and ~p3 = (0.426, −0.564)T. This
function is almost equivalent to the original target function. The function estimate
and the corresponding cluster assignments are illustrated in Fig. 4.1(b). Fig. 4.1(c)
illustrates the function obtained by applying the LLM algorithm on the same data
set. The LLM was unable to determine appropriate cluster prototypes because the
prototypes are determined only on the input space. The LLM assumes a wrong
partitioning of the input space and, thus, determines inappropriate local regression
models.

Fig. 4.3(a) illustrates the influence of the number of predefined clusters: with one
single cluster the LinEM is equivalent to the robustfit solution. The only approach
that outperforms the regression tree model (treefit) is the crisp LinEM approach.
Due to the cluster pruning of the LinEM approach the error estimate remains almost
constant for initializations of the number of clusters k > 3 – due to the fact that most
of the LinEM models are pruned to three different clusters.

Artificial2 Data Set. This data set is used in Höppner & Klawonn (2003). The target
function is f2(x1, x2) = arctan(x1) cos(x2

2). This function is illustrated in Fig. 4.2(a).
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Fig. 4.2: ARTIFICIAL2 data set. The initial number of clusters is set to six for both
regression methods.
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(b) ARTIFICIAL2 data set.

Fig. 4.3: LinEM: Influence of the initial number of clusters on the predictive error.
Both data sets are randomly divided into a training data set (80% of the data) and a
testing data set (20% of the data). 20 different pairs of training and testing data are
generated for each data set. The error is averaged over all testing sets.

300 data points are drawn uniformly from VN = [−2, 2]× [−2, 2] and the value of
the target y is determined by y = f2(x1, x2) + ε, where ε ∼ N(0, 0.1). In Fig. 4.2(b)
and Fig. 4.2(c) the model predictions and the corresponding cluster assignments of
the data points of the LinEM and LLM solution are shown. Fig. 2.6 depicts a pruned
regression tree and its corresponding prediction for this problem. Fig. 4.3(b) illus-
trates the influence of the initial number of cluster on the predictive error. The per-
formance of the LinEM approach is superior to the performance of the LLM model
due to a more intuitive placement of the prototypes. For cluster initialization larger
than six the number of clusters is pruned to six clusters.
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(a) Unrestricted dimensionality
of the LinEM submodels.
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(b) The LinEM submodels can
use four input dimensions.
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(c) The LinEM submodels can
use two input dimensions.

Fig. 4.4: Error estimates on CONCRETE COMPRESSIVE STRENGTH data set.

4.5 A Real-World Application Example

The CONCRETE COMPRESSIVE STRENGTH data set was first used in Yeh (1998) and
can be obtained from Asuncion & Newman (2007). The task of this data set is to pre-
dict the compressive strength of concrete, which is an important and safety-relevant
property for civil engineering. It is known that the concrete compressive strength is
a highly nonlinear function of the concrete’s age and its ingredients. This data set
consists of 1030 instances. Each instance is represented by eight attributes, namely
cement (kg in a m3 mixture), blast furnace slag (kg in a m3 mixture), fly ash (kg in
a m3 mixture), water (kg in a m3 mixture), superplasticizer (kg in a m3 mixture),
coarse aggregate (kg in a m3 mixture), fine aggregate (kg in a m3 mixture), and age
(in days). All input dimensions are scaled to the interval [−1, 1] in order to rule
out scaling effects. The learning task is to predict the concrete compressive strength
measured in mega pascals (MPa).

Within our experiments, the CONCRETE COMPRESSIVE STRENGTH data set is ran-
domly divided into a training data set (80% of the data) and a testing data set (20%
of the data). 20 different pairs of training and testing data are generated and for
each pair the predictive error is estimated on the testing set. The LinEM algorithm
is compared with an LLM, a regression tree (treefit in Matlab), and a simple lin-
ear regression (robustfit in Matlab). For the LinEM, we are using the crisp and the
softmax variant. The LinEM is trained with no restriction of the dimensionality
of the submodels (that is, with eight-dimensional submodels), with the restriction
to four-dimensional submodels, and with the restriction to two-dimensional sub-
models. The outcome of these experiments is given in Tab. 4.1. The best predictive
performance is achieved by the treefit method, which yields a complex model with
163 decision nodes. The robustfit method yields the worst predictive performance.
Both piecewise regression methods (LLM and LinEM) yield intermediate results –
these results are not very astonishing, since in is known that the CONCRETE COM-
PRESSIVE STRENGTH data set consists of a non-linear problem.
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Method #M #D
êrr (std)

training testing

LinEM (softmax) 4 8 6.21 (0.26) 6.38 (0.35)

LinEM (softmax) 4 4 6.47 (0.28) 6.55 (0.38)

LinEM (softmax) 5 2 7.53 (0.34) 7.61 (0.50)

LinEM (crisp) 4 8 5.69 (0.16) 6.03 (0.42)

LinEM (crisp) 4 4 6.12 (0.13) 6.30 (0.35)

LinEM (crisp) 5 2 7.40 (0.32) 7.69 (0.71)

LLM 6 8 6.64 (0.23) 6.79 (0.44)

robustfit 1 8 8.41 (0.27) 8.60 (0.67)

treefit 163 1 2.30 (0.07) 4.67 (0.37)

Tab. 4.1: CONCRETE COMPRESSIVE STRENGTH data set and different regression
methods. #M denotes the number of submodels or decision nodes within the de-
cision tree and #D denotes the dimensionality of each model or decision node, re-
spectively. The Error column denotes the predictive error estimated on the testing
set. The standard deviation of the predictive error is given in parentheses.

The LLM outperforms the LinEM only when the submodels within the LinEM are
restricted to two input dimensions. In Fig. 4.4 the influence of the initial number of
clusters is illustrated. The cluster pruning yields four clusters for cluster initializa-
tions with more than four cluster for the LinEM algorithm – except for the setting
where the submodels are restricted to two-dimensional subspaces which leads to
five clusters.

The LinEM with a crisp partitioning and with four four-dimensional submodels
achieves a good trade-off between predictive performance and the interpretability
of the learned solution. This solution outperforms the LLM which uses six eight-
dimensional submodels. That is, our algorithm obtains a more appropriate parti-
tioning of the input space, since it is capable to include information about the target
variable in the model building process. Furthermore, the restriction of the dimen-
sionality of the submodels and the cluster pruning strategy yield a good interpreta-
bility.

4.6 Summary

Providing a regression method for safety-related problems is difficult since one can-
not distinguish between a correct and a wrong decision as in Chap. 3. Therefore, it
becomes more important to provide an interpretable solution that can be validated
by the domain experts. Piecewise linear regression models are known to provide
well-interpretable solutions. But the predictive performance of those methods de-
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pends on the partitioning of the input space. Common piecewise linear regression
methods determine the partitioning of the input space while ignoring the target
variable. This method might not be appropriate for a multitude of real-world appli-
cation problems because regions of a high data density correspond to the working
points of a system. Often, such regions are not useful to determine a meaningful
partitioning of the input space.

Incorporating information about the target variable into the prototype selection pro-
cess of a piecewise regression can greatly improve the performance on problems
where the input space does not provide sufficient information for partitioning the
data. The proposed LinEM algorithm provides a good trade-off between the in-
terpretability and the predictive performance of a learned solution. It achieves a
similar performance compared to established regression methods while the model
complexity can be reduced. It is capable of reconstructing piecewise linear functions
from a given data set. Furthermore, the approach facilitates a cluster pruning strat-
egy which has been proven useful in situations where no apriori information about
the number of clusters is available.
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5 Feature Extraction and Data Filtering

This chapter discusses different methods that can be used to enhance the predictive
performance of the approaches given in Chap. 3 and Chap. 4. The first important
aspect concerns feature extraction, that is, the problem of determining appropri-
ate subsets and useful transformations of the input variables, in order to obtain a
good solution of the learning problem. Feature extraction can be subdivided into
two different task: feature selection and feature construction. A good overview
about feature extraction in general is given in Guyon et al. (2006). Feature selection
(cf. Sect. 5.1) is an important issue in order to determine the best low-dimensional
submodels within our ensemble framework – cf. Chap. 3. Feature construction (cf.
Sect. 5.2) is useful in order to overcome possible limitations of the predictive perfor-
mance that can arise on some application problems due to the limited dimension-
ality of the submodels. In Sect. 5.3, another approach of simplifying a classification
problem is described which is based on filtering the training data set in order to
remove conflicts, which can dramatically decrease the predictive performance es-
pecially for low-dimensional submodels. Finally, based on a real-world application
problem we discuss the suitability of the different methods.

5.1 Feature Selection

In feature selection, which is also known as variable selection or subset selection,
one is interested in reducing the size of the input space by removing irrelevant or
misleading random variables. That is, only such a subset of the random variables
within the input space VN should be retained that is useful to solve the learning
task. According to Chap. 3, feature selection can be seen as the process of deter-
mining the best low-dimensional projection of the original input space. Choosing
the best low-dimensional projection πβ

(
VN
)
, cf. Eq. 3.1, in order to determine the

submodel gj is a challenging task. One possibility of choosing the best projection is
to rank the input dimensions according their individual relevance and to use only
those dimensions which have a high ranking. Such methods are quite fast and are
preferable in situations where the number of input variables becomes very large.
This approach can provide good results as depicted in Fig. 5.1(a). Nevertheless, it
is not sufficient in all situations. Examples of a poor separation on highly ranked
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(a) Two variables are informa-
tive, good separation.

(b) Two variables are informa-
tive, fair separation.

(c) Two variables are informa-
tive, poor separation.

(d) Only one variable is infor-
mative, fair separation.

(e) Only one variable is infor-
mative, poor separation.

(f) Only one variable is informa-
tive, good separation.

Fig. 5.1: Classification problems and feature selection: CLASS 1 samples are marked
with circles and CLASS 2 samples are marked with crosses. Projections of each class
are drawn beyond the axes. The decision boundary of an SVM classifier with higher
misclassification costs for CLASS 1 is drawn as solid line. The projections on the axes
are identical for (a),(b),(c) and (d),(e),(f), respectively.

input dimensions are shown in Fig. 5.1(b) and 5.1(c). On the other hand, removing
low ranked input dimensions, for instance the second dimension of Fig. 5.1(f), can
sacrifice good solutions. It is possible that the best feature combination consists of
only very low-ranked input variables. The only way to ensure that the best combi-
nation of input variables is determined is to perform a exhaustive search through
the space of all possible combinations. That is, feature selection is a challenging
problem, which is important in order to obtain a sufficient solution of the learning
problem by applying the algorithms of Chap. 3 and Chap. 4.
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(a) Kolmogorov-Smirnoff test performed on
the 1st input variable.
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(b) Kolmogorov-Smirnoff test preformed on
the 2nd input variable.

Fig. 5.2: Univariate Kolmogorov-Smirnoff test performed on the data from
Fig. 5.1(d),(e),(f) where the projections on the axes are identical. The conditional
cumulative probability distributions given the class labels, that is CDF(X|c1) and
CDF(X|c2), are drawn as solid lines. The values of the test statistics are drawn as
broken lines.

5.1.1 Feature Selection Based on Univariate Statistical Tests

A simple but quite fast method for feature selection is to perform univariate statis-
tical tests in order to determine variables that are useful to solve the given classifi-
cation problem. Those methods ignore possible dependencies among the variables,
but – especially for a large number of input variables and the assumption that most
of these variables are just noise – those methods allow to dramatically reduce the
dimensionality of the given problem.

In our experiments we used the two-sample Kolmogorov-Smirnoff test (Feller, 1948;
Szepannek & Weihs, 2006) as one example of univariate statistical tests. This test is
used in order to compare the marginal distributions given the class labels1. The
following test statistic is used:

DKS = max |CDF(X|c1) − CDF(X|c2)| , (5.1)

where CDF(X|c1) and CDF(X|c2) denote the conditional empirical cumulative prob-
ability distribution of random variable X given class c1 and c2, respectively. Exam-
ples of those empirical cumulative probability distributions are drawn in Fig. 5.2.

The algorithm for feature selection using the Kolmogorov-Smirnoff test is given in
Algorithm 5.1. This algorithm evaluates for each input variable whether there is a
significant difference between the conditional cumulative probability distributions.
In order to compare both distributions, a hypothesis test is performed with the null

1 It is also possible to use impurity measures as introduced in Sect. 2.1.6 – for instance Eq. 2.18 or
Eq. 2.19. Using those measures is closely related to the feature selection method of Sect. 5.1.2,
which can also be used to deal with regression problems.
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Algorithm 5.1 Feature selection based on the Kolmogorov-Smirnoff test. (Assumes
binary target variable!)

input: data set D, significance level α for hypothesis testing

output: index set β

function β := KStestFS(D,α)

1: β := ∅
2: for all n ∈ {1, . . . ,N} do
3: Compute test statistic for variable Xn:

DKS := max |CDF(Xn|c1) − CDF(Xn|c2)|

4: Compute p-value of the observed value of the test statistic (Feller, 1948, Eq. 1.4):

p := 1 − 2
∞∑
i=1

(−1)i−1 exp

(
−2i2

(√
Mc1Mc2
Mc1+Mc2

DKS

)2)
,

whereMck is the number of data points in D that belong to class ck
5: if p < α then
6: β := β∪ {n} // Null hypothesis H0 is rejected.
7: end if
8: end for
9: if β = ∅ then

10: β := {1, . . . ,N} // Use all variables if test fails.
11: end if

hypothesisH0 that both conditional distributions are equal. The alternative hypoth-
esis HA is that both conditional distributions are different. The null hypothesis H0
can only be rejected if the probability of the observed value of the test statistic DKS
becomes unlikely given the distribution of DKS under the assumption of the null
hypothesis H0. The p-value is determined in line 4 according to the distribution of
the test statistic DKS. This distribution can be found in the statistical literature –
for instance in Feller (1948). The null hypothesis is rejected if the p-value is smaller
than the predefined significance level, for instance α = 0.05. The input dimension
is kept if the null hypothesis can be rejected, otherwise the input dimension is re-
moved from the training set. In the case that all dimensions would be removed from
the training set, the algorithm returns all variables in order to allow the subsequent
model learning procedure to exploit all possible dimensions.

This procedure is fast but ignoring possible dependencies among the variables may
sacrifice a good performance of the subsequent model building procedure. Looking
back at Fig. 5.1(d),(e),(f) – the results of the Kolmogorov-Smirnoff test performed on
these three problems are identical and are shown in Fig. 5.2. It is possible that vari-
ables are removed which might be useful for separating both classes if they are used
in conjunction with other features, cf. Fig. 5.1(f). Another problem that might arise
when using such univariate tests is that the procedure keeps a large number of vari-
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ables, but the possibility of achieving a better performance by allowing more than
two or three features sacrifices the visual interpretation of each model, which is the
advantage of the ensemble methods described in Chap. 3 and Chap. 4. Nevertheless,
this feature selection method can be useful for high-dimensional problems as pre-
ceding feature selection. The final feature and model selection should be performed
by the method described in Sect. 5.1.3 in order the determine the best possible fea-
ture combination.

5.1.2 Feature Selection Based on Classification and Regression
Trees

As already pointed out in the previous section, univariate feature selection meth-
ods might keep a quite large number of variables that might be redundant or un-
necessary in order to solve the given learning problem. The approach discussed
within this section is comparable to the previous approach, but it is intended to
include only features that are really necessary to explain the structure within the
data. Therefore, a classification or regression tree is built (cf. Sect. 2.1.6). The tree
learning algorithm greedily determines the best splits of the input space based on a
impurity measure. That is, for each node within the tree a greedy feature selection
is performed in order to solve a classification or regression problem. The internal
feature selection performed by a tree-based model can be exploited in order to se-
lect those input dimensions that are necessary to explain the non-random structure
of the given data.

This idea of exploiting the internal feature selection of a tree learner in order to
perform a feature selection is used, for instance, in Grabczewski & Jankowski (2005).
The set of input dimensions that should be retained can be obtained by traversing
through all inner nodes of the learned classification and regression tree model. Only
the dimensions used within the inner nodes of the tree are kept. The resulting set of
variables is usually smaller than the set of variables returned by Algorithm 5.1, but
there is still no guarantee that a visualization of the reduced input space becomes
possible.

5.1.3 Wrapper for Feature Selection

In order to find the best possible low-dimensional projection of a restricted dimen-
sionality a wrapper-based feature selection method (Kohavi, 1995b; Kohavi & John,
1997) can be used. This method treats the learning algorithm as “black box” – that
is, no assumptions about the learning algorithm are required. The wrapper-based
feature selection method performs an exhaustive search through all possible fea-
ture combinations and uses the learning algorithm itself as part of the evaluation
function in order to determine the best subset. That is, for each feature combina-
tion within the search space a model is built. The predictive performance of each



72 5. Feature Extraction and Data Filtering

Algorithm 5.2 Wrapper based feature selection.

input: data set D, dimlimit – number of dimensions

output: index set β, submodel g

function (β,g) := WrapperFS(D,dimlimit)

1: β := ∅
2: Construct list L of all possible combinations of input variables with length dimlimit
3: for all βtmp ∈ L do
4: Learn model gtmp : πβtmp

(
VN
)
→ Y in order to solve learning problem

5: Evaluate performance of current model gtmp

6: if performance of gtmp is better than for all previously tested models then
7: β := βtmp

8: g := gtmp

9: end if
10: end for

model is determined and the best model and its corresponding feature combina-
tion is chosen. Within our experiments it is assumed that the number of features
that are included within the feature combinations is fixed – as in Algorithm 3.1 and
Algorithm 3.3.

This method has high computational costs but the wrapper-based feature selection
is the only variant to guarantee that the best submodel is determined allowing a
visual interpretation of the learned solution which is mandatory for successfully
applying the algorithms of Chap. 3. To speed up this procedure it is possible to
perform a preceding feature selection using the methods described in Sect. 5.1.1 or
Sect. 5.1.2 or to use domain knowledge in order to reduce the total number of input
dimensions of the learning problem.

5.1.4 Further Feature Selection Methods

Multivariate analyses might be carried out by determining, for instance, the Pear-
son or Spearman correlation between two variables and in order to remove highly
correlated variables from the training set. This is related to the wrapper method
described above, because all pairs of variables must be tested. This method also
does not guarantee the best solution – for instance in Fig. 5.1(f) both dimensions are
highly correlated, nevertheless, using both dimensions for classification one can ob-
tain a perfect separating hyperplane. In Guyon & Elisseeff (2006) you can find a
good introduction to feature extraction in general.
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Fig. 5.3: Comparison of different feature selection methods on several benchmark
data sets. KS – Kolmogorov-Smirnoff test, DT – decision tree features, all – use
always all features, and 2D – use best two-dimensional projection. The models are
trained on 75% of the data set and the error is estimated on the remaining 25% of
the data set. This procedure is repeated 100 times for each data set and each feature
selction method.

5.1.5 Comparison of Different Feature Selection Methods

The influence of the dimensionality of each submodel on the predictive error of
the learned ensemble models is investigated by an experimental evaluation carried
out on several benchmark data sets. A description of each data set can be found
in Appendix A. In this setting, the Hierarchical Separate-and-Conquer Ensemble is
extended in order to use further feature selection methods: that is, instead of the
wrapper feature selection with the restriction to two-dimensional projections, the
algorithm can use the Kolmogorov-Smirnoff test to determine all variables that have
different conditional cumulative probability distributions given the class labels (cf.
Szepannek & Weihs (2006)) or it can select only those variables that are used within
the decision nodes of a CART model (Breiman et al., 1984). That is, the Gini’s di-
versity index serves as split criterion – see Sect. 2.1.6. In this study we divided the
data sets into four roughly equally sized folds and repeated the experiments for 100
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different fold initializations. As evaluation measure we used the one-point-estimate
of the area under the ROC curve (AUC as defined in Eq. B.5), which can be com-
puted for every kind of classifier. The AUC can be interpreted as the probability
that a classifier will rank a randomly chosen positive instance higher than a ran-
domly chosen negative instance – for details on the analysis of ROC curves, please
confer Appendix B. The results of this study are illustrated in Fig. 5.3. All results are
obtained by applying the Non-hierarchical Ensemble Model algorithm on the same
data sets as in the previous study. For each data set the Non-hierarchical Ensemble
Model is trained with four different settings: (1) use Kolmogorov-Smirnoff test to
determine all dimensions that have different conditional cumulative distributions
per class label, (2) use all dimensions that are used by a decision tree learner, (3) use
all dimensions for learning the submodel, and (4) use only two-dimensional projec-
tions. Since (1-3) can exploit a higher dimensionality, these variants are restricted
to one submodel per class label. There is no general trend which feature selection
method performs best in all situations. The best predictive performance depends
more on the structure of the data set than on the feature selection method itself.
There is also a significant difference between the Kolmogorov-Smirnoff test based
feature selection and the decision tree based feature selection method on the LYMPH

and RESPIRATORY data sets. If one compares the average dimensionality of the sub-
models (which can be seen as indicator of the interpretability of the models) for each
different feature selection method, the restriction to only two-dimensional submod-
els is competitive compared to the other approaches and provides an appropriate
trade-off between interpretability and predictive performance.

5.2 Feature Construction

In the following we will address two problems that may arise while applying the
classification ensembles: (1) due to a large overlap of the classes2 within all low-
dimensional subspaces the submodels might not be capable of finding a good sepa-
ration of the different classes and (2) the classification problem might not be solved
with the restriction to two- or three-dimensional submodels because the underly-
ing function requires a higher dimensionality. The first problem can be tackled by
a preceding data filtering. Two examples of such filtering approaches are given in
Sect. 5.3. The second problem can be solved by a stacking-like approach (Gama &
Brazdil, 2000; Wolpert, 1992), which is discussed in Sect. 5.2: additional input di-
mensions are generated by a multi-layer perceptron(MLP). These additional input
dimensions can be interpreted as preceding soft classifiers.

2 Such overlap might be induced by noise within the input data or due to an inconsistent labeling
of the given data points.
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5.2.1 Principal Component Analysis

A widely used method for feature construction is the principal component analy-
sis. This approach generates a set of features that are all linear combinations of all
original variables. The basic idea behind this approach is to determine a set of fea-
tures providing the best possible reconstruction of the original dimensions (Duda
et al., 2001, Sect. 3.8). The linear combinations are simple to compute and analyti-
cally tractable. Nevertheless, methods that generate linear combinations of all in-
put dimensions are not applicable for safety-related applications because the newly
generated features depend on all input dimension which violates the requirement
of providing an interpretable solution. Therefore, we developed a feature construc-
tion method in Nusser et al. (2008b) that is capable of generating low-dimensional
linear combinations of the original input dimensions. This method is discussed in
the following.

5.2.2 MLP-Based Feature Construction

The Non-hierarchical Ensemble Model and its multi-class extensions show a good
performance on real-world applications but there are classification problems which
cannot be solved with the restriction to two- or three-dimensional submodels. To
overcome this limitation a feature construction method based on a multi-layer per-
ceptron (MLP) architecture3 has been developed. The additionally generated input
dimensions can be interpreted as preceding soft classifiers – a similar approach is
proposed by Liu & Setiono (1998), where the hidden units of a fully connected MLP
architecture were used to build multivariate decision trees. This method is used as
heuristic that performs a fusion of input dimension to overcome the limitations of
low-dimensional submodels.

The original input dimensions VN = X1 × X2 × ...× XN are used in the input layer
and the target variable Y is used in the output layer of the MLP. The hidden layer of
this network consists of N(N− 1)/2 nodes, that is hidden(i,j), where i, j ∈ {1, ...,N}

and i < j. Each hidden node is only connected to two of the original input dimen-
sions4. The connections from the hidden to the output layer are set to 1 and are
fixed during the network training procedure. An example of this MLP architecture
is depicted in Fig. 5.4.

This idea is similar to the way of extending a linear regression model (cf. Sect. 2.1.2
on p. 12) to a polynomial regression model. Due to the chosen network design the
MLP is forced in the hidden layer to find local classifiers on the given input dimen-

3 Further details about artificial neural networks can be found, for instance, in Nabney (2002).
This book provides also a good insight of implementing neural networks in Matlab.

4 This architecture can be easily extended to linear combinations of more than two dimensions.
Nevertheless, we recommend to start with low-dimensional linear combinations and to increase
the dimensionality only if it is necessary.
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Fig. 5.4: Example of an MLP for feature construction used on a four-dimensional
input space.

sion. These classifiers are simple linear models where each uses only two input di-
mensions. The resulting weights of the hidden neurons are used to build additional
input dimensions. An additional input dimension is generated by:

Xnew
(i,j) = tanh

(
Xi ·whidden

(i,j) +Xj ·whidden
(j,i) + bhidden

(i,j)

)
, (5.2)

where Xi,Xj are the original input dimensions, whidden
(i,j) is the connecting weight of

the input dimension Xi to the hidden neuron hidden(i,j), and bhidden
(i,j) is the bias of

the hidden neuron hidden(i,j). The additional input dimension Xnew
(i,j) can be seen as

a preceding soft classifier. Finally, the additional input dimensions are appended to
the original data set.

Using all N(N− 1)/2 additional input dimensions drastically increases the effort to
determine the best projections of the data set. Thus it is necessary to reduce the
number of additional input dimensions by adding only the “best” hidden neurons
as additional input dimensions to the original data set. For instance, such selection
can be performed by choosing the hidden neurons which are most correlated with
the target variable.

The advantage of the MLP-based feature construction method is that the restricted
dimensionality of the linear combinations facilitates the understanding of the addi-
tionally generated dimensions. In contrast to the original stacking method (Wolpert,
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1992), the additionally generated input dimensions (meta-attributes) are only deter-
mined as linear combinations of the original input dimensions. It is not allowed to
use the output of a meta-attribute to build an additional meta-attribute. We do not
allow a higher complexity of the additionally generated dimensions because an in-
creasing complexity prevents the acceptance of the solution by the domain experts
in the field of safety-related problems.

This feature construction method can be modified by building a so-called bottle-
neck encoder, that is, instead of using the target variable as output of the network
the original input dimensions of the data set are used also within the output layer
of the MLP. Thus the network is forced to determine low-dimensional linear com-
binations within the hidden layer that allow the reconstruction of the original input
dimensions.

5.3 Data Filtering

Insular regions as depicted in Fig. 5.5(a) might be counterintuitive according to do-
main knowledge. Therefore, it becomes necessary to provide methods for avoiding
such undesired results during the model building process. Such unintended results
can be prevented by removing conflicting data points from the data set. In the fol-
lowing, we will show two heuristics, namely: (1) the convex hull filtering and (2) the
upper envelope filtering. The basic idea behind both approaches is to remove data
points which may conflict with monotony requirements in the resulting classifica-
tion models. Furthermore, removing conflicting data points leads to a runtime re-
duction of the submodel learning process. Another method for data filtering might
be the application of min-values as basic filter on single dimensions.

5.3.1 Convex Hull Filtering

This approach determines the convex hull of all samples belonging to the default
class (cpref). The convex hull of a set of data points is the minimal convex set contain-
ing all data points. Within our experiments we are using the Quickhull algorithm
proposed by Barber et al. (1996) in order to determine the convex hull of the default
class. All samples which do not belong to the default class and which are within the
convex hull are removed from training data set. The classifier is then trained on the
reduced data set.

The advantages of this approach are that the axes orientation does not influence the
result of the algorithm and that it can be extended to an arbitrary dimensionality.
As one can see in Fig. 5.5(c), the convex hull of a set of data points belonging to class
© can include regions of the other class which might be separable from the class©.
Thus a more sensitive filtering method is needed.
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(a) Unintended insular region of a submodel. (b) Submodel after applying the upper enve-
lope filter.

(c) Convex hull filter. (d) Upper envelope filter.

Fig. 5.5: Convex hull filtering and upper envelope filtering. The filter is applied for
class©. The decision borders of the resulting filter functions are plotted as dashed
lines.
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5.3.2 Upper Envelope Filtering

In this approach, the upper envelope5 of all default class samples within a two-
dimensional projection is determined and all samples which do not belong to the
default class and which are below the upper envelope are removed from the training
data set. Then, the classifier is trained on the reduced data set.

For this approach the axes orientation influences the result of the filter. This can
be compensated by filtering both variants of a (two-dimensional) feature combina-
tion and presenting them both to the function that determines the best submodel.
Another solution is to define a set of dimensions where a monotonic behavior is
expected. For such dimensions one can choose the axes orientation directly.

This variant of filtering is much more sensitive than the convex hull filter, as one can
see in Fig. 5.5(d), but it works only on two-dimensional data where one dimension
has a (local) monotony constraint.

5.4 A Naval Risk Detection Example

This data set serves as an example of the advantages of using data filtering or fea-
ture construction methods in order to facilitate the low-dimensional submodels to
solve a classification problem. The SONAR data set consists of 208 instances. Each
instance is described by 60 attributes. The task is to discriminate between sonar
signals bounced off a metal cylinder, that is possibly a mine, (CLASS 1) and those re-
flected by a roughly cylindrical rock (CLASS 0). This data set can be obtained from
UCI Machine Learning Repository (Asuncion & Newman, 2007).

The submodels are trained as support vector machines with a Gaussian kernel. The
default class is set to CLASS 1, cpref = 1, that is, a metal cylinder must not be classified
as a rock by any model. In order to reduce the risk of misclassifying any novel
CLASS 1 sample the misclassification costs for CLASS 1 are 20 times higher than for
CLASS 0.

This problem cannot be sufficiently solved by a Non-hierarchical Ensemble Model
with respect to the restriction to two-dimensional projections since there is a large
overlap of both classes within all possible two-dimensional projections. Using more
sensitive model parameters might lead to a better performance but the submod-
els will capture only one or two samples at once. Thus numerous submodels will
be built which increase the risk of overfitting and decrease the interpretability of
the solution. The predictive performance of the Non-hierarchical Ensemble Model
trained on the complete data set is given as confusion matrix in Fig. 5.6(b). This
Non-hierarchical Ensemble Model consists of three submodels. Further submodels

5 The upper envelope of a set of two-dimensional data points determines for each value on the
X1-axis the largest observed value on the X2-axis.
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(a) 1st submodel g1 with β1 = {17, 20}. This
submodel captures 11 CLASS 0 samples.

predicted class
true class CLASS 1 CLASS 0

CLASS 1 111 0
CLASS 0 63 34

(b) Confusion matrix of the com-
plete Non-hierarchical Ensem-
ble Model.

Fig. 5.6: Non-hierarchical Ensemble Model and the SONAR data set trained without
additional features. CLASS 1 samples are marked with circles and CLASS 0 samples are
marked with crosses. The decision boundary is drawn as solid line.

cannot be determined. The best submodel is depicted in Fig. 5.6(a). A better pre-
dictive performance can be achieved by increasing the number of dimensions per
submodel: allowing three-dimensional projections it becomes possible to solve this
problem but the decision borders of the submodels will become more complex.

Another possibility to tackle this problem is to apply one of the data filtering meth-
ods which are discussed in Sect. 5.3. Applying such a data filtering method (for in-
stance, the convex hull filtering) the submodels must only handle those data points
that can actually be separated within the low-dimensional subspaces. Thus the dis-
advantageous effect of the conflicting data points can be reduced and the classifica-
tion problem becomes simpler. The outcome of the application of the convex hull
filtering method is illustrated in Fig. 5.7(a) and Fig. 5.7(b).

Another method that can be used to solve this classification problem is to apply the
feature construction method of Sect. 5.2. Hereby and for this application example, 20
additional input dimensions are added to the original data set. The number of ad-
ditional input dimensions can be chosen by the user. In this example, those hidden
neurons of the MLP are selected that are most correlated with the target variable.
This facilitates the Non-hierarchical Ensemble Model to completely solve this classi-
fication problem with 18 submodels. The corresponding confusion matrix is given in
Fig. 5.8(b). Even if one regards only the first three submodels, which already capture
61 of 97 CLASS 0 samples, one achieves a higher predictive accuracy compared to the
Non-hierarchical Ensemble Model without additional input dimensions and with-
out a preceding data filtering. The best submodel of the Non-hierarchical Ensemble
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(a) 1st submodel g1 with β1 = {19, 49}. This
submodel captures 25 CLASS 0 samples.

predicted class
true class CLASS 1 CLASS 0

CLASS 1 111 0
CLASS 0 5 92

(b) Confusion matrix of the com-
plete Non-hierarchical Ensem-
ble Model.

Fig. 5.7: Non-hierarchical Ensemble Model and the SONAR data set trained with
preceding convex hull data filtering.

Model with additional input dimensions is depicted in Fig. 5.8(a). This submodel
uses one original input dimension and one additionally generated feature. By ap-
plying the feature construction method, which is described in Sect. 5.2, the following
additional input dimension X74 = Xnew

(11,48)
has been generated:

X74 = tanh
(
X11 ·whidden

(11,48) +X48 ·whidden
(48,11) + bhidden

(11,48)

)
,

where whidden
(11,48)

= −36.829, whidden
(48,11)

= −9.004 and bhidden
(11,48)

= −28.936. This addi-
tional feature can be seen as preceding linear soft classifier that facilitates the (two-
dimensional) submodels of the Non-hierarchical Ensemble Model to solve the classi-
fication problem, while the model remains interpretable. In Fig. 5.9 the surface plot
of the additional input dimension X74 and the resulting partitioning of the input
space is depicted.

Tab. 5.1 illustrates the gain of predictive performance by applying our feature con-
struction method. We compare the original SONAR data set with the SONAR (MLP)
data set where 20 additionally generated input dimensions are appended to the orig-
inal input dimensions. Therefore, it becomes possible to reduce the predictive error
of the Non-hierarchical Ensemble Model model by approx. 50% by using addition-
ally generated input dimensions as preceding soft classifiers.
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Fig. 5.8: Non-hierarchical Ensemble Model and the SONAR data set trained with
additional features.
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Tab. 5.1: SONAR data set: classification accuracy estimated by 10-fold crossvalida-
tion with 10 random set initializations.

Method #M #D
êrr êrrcrit

mean (std) mean (std)

SONAR data set
NHEM 6 2 36.35% (10.61) 1.20% (2.57)

libSVM 1 60 11.10% (7.64) 3.75% (4.46)

treefit 17 1 34.20% (11.09) 11.60% (7.78)

SONAR (MLP) data set
NHEM 16 2 17.05% (8.82) 4.80% (4.82)

libSVM 1 80 14.90% (8.41) 4.70% (5.26)

treefit 15 1 36.65% (11.35) 11.25% (6.83)

5.5 Summary

The methods discussed within this chapter are important to achieve a good predic-
tive performance of the learning algorithms which are given in Chap. 3 and Chap. 4.
Feature selection is the most important issue since determining the best low-dimen-
sional projection of the high-dimensional input space is the key idea of our en-
semble methods. The best possible performance with the restriction to two- or
three-dimensional submodels (that is on application problems where interpretabi-
lity is imperative) can be achieved only by using the wrapper-based feature selection
method that performs an exhaustive search through the search space of all possible
combinations. Since this search space becomes very large for higher-dimensional
problems another feature selection method may be used to reduce the set of relevant
dimensions before using the wrapper to obtain the best projections. For application
problems where interpretability is not essential one can also use the other feature se-
lection methods that can determine all input dimensions that seem to be necessary
to solve the learning problem. The use of those methods may increase the predictive
performance since the learning algorithm can exploit more information within the
submodels.

Another way to enhance the predictive performance of the submodels is to provide
further input features that are (linear) combinations of the original input dimen-
sions for the learning algorithm. Those methods become important for tasks, where
the underlying problem cannot be divided into two- but only higher-dimensional
subproblems. Unfortunately, increasing the predictive performance by feature con-
struction methods decreases the interpretability of the learned model. Therefore,
the key issue is to determine a good trade-off between both requirements.
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The data filtering methods introduced in this chapter are useful for problems where
it is known that there exist some ambiguously labeled data points or that the differ-
ent classes have a strong overlap within the low-dimensional projections. Further-
more, the runtime of the learning algorithms used to build the submodels within
Chap. 3 can be reduced due to the fact that the submodels are not forced to deal
with ambiguous data.



6 Conclusions and Perspectives

The objective of this thesis is to provide a machine learning framework that is ap-
plicable in safety-related systems. Such systems are employed, for instance, in
aerospace engineering, automotive industry, medical systems, or process automa-
tion. Within these domains it must be ensured that the system will not endanger the
environment, technical equipment, or human life. It must be guaranteed that the
system complies with all given requirements and that the solution is valid within
the complete input space. In practical application tasks, the observed data used for
learning the models is often scarce and the number of input dimensions is too large
for sufficiently applying statistical risk estimation methods. The required error rates
of a safety-related system are not grantable – especially for high-dimensional prob-
lems – by only assessing the error rates estimated on the basis of some testing data.
Unfortunately, the given domain knowledge is often imperfect or the application
problem is too complex in order to design an analytical solution of the problem.
Therefore, it is necessary to combine both sources of information: the observed data
and the existing domain knowledge. For successfully applying machine learning
within the domain of safety-related applications it is imperative to provide an in-
terpretable solution. It must be ensured that the extrapolation and interpolation be-
havior of the learned model is correct within the complete input space and meets all
given functional requirements. Our approach discussed within this work is based
on a data-driven model generation process allowing the domain experts to assess
each single decision of the learned models.

6.1 Contributions of this Thesis

In the following we briefly summarize the main contributions of this thesis:

– A machine learning method for solving safety-related classification problems
is provided in Chap. 3. This method is based on ensembles of low-dimensional
submodels. The restricted dimensionality of the submodels ensures that the
learned solution can be validated by the domain experts. Each submodel can
be visualized facilitating the detection and avoidance of an unintended extra-
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or interpolation behavior. Furthermore, the submodels can be interpreted in-
dependently (except for the DecisionTree-like Ensemble Model and its multi-
class extension, where its is necessary to take the preceding nodes of the tree
into account). The ensemble of the submodels compensates for the limited pre-
dictive performance of each single submodel. Our framework provides a good
trade-off between (1) the interpretation and verification of the learned (sub-)
models and (2) its predictive performance, while it is possible to guarantee
that the solutions meet all given requirements.

– The binary classification ensemble is successfully adopted to solve the airbag
deployment problem (cf. Sect. 3.4.1) having very high demands on the func-
tional safety. The automated solution based on our algorithms replaces the
current process where a manual calibration is necessary. Our solution signif-
icantly reduces the time of developing the control logic of the restraint sys-
tems. In addition, an improved performance with respect to crash detection
and safety functions is achieved. Despite the sophisticated demands in the
sensitive area of passenger safety, a verifiably correct solution can be provided
by our algorithm.

– Our binary classification framework has been extended to also solve multi-
class problems (cf. Sect. 3.3), while we are able to maintain the same desirable
properties of the binary classification framework by introducing a hierarchy of
misclassification costs which must be specified by the domain experts in order
to rank the different classes according to the severity of their misclassification.

– A piecewise linear regression method (cf. Sect. 4.3) providing well-interpretable
regression models has been proposed. The predictive performance of this ap-
proach is enhanced compared to other piecewise linear regression methods by
the algorithm’s capability of including information about the target variable
into the process of partitioning the input space.

– An MLP-based feature construction (cf. Sect. 5.2) has been proposed in order to
overcome possible limitations of the predictive performance that might arise
due to the restricted dimensionality of the submodels within our ensemble
methods. This method generates additional features that are low-dimensional
linear combinations of the original input variables. These additional features
can be seen as preceding soft classifiers enhancing the capability of the sub-
models to solve a learning problem that requires a higher dimensionality as
allowed for the submodels.

6.2 Open Problems and Further Research

Feature selection is an important issue for applying our algorithms. Until now, we
are mainly using the wrapper-based feature selection method in order to guaran-
tee that the best low-dimensional submodels can be determined. Further research
should be carried out in order to derive faster heuristics that still allow to find ap-
propriate low-dimensional projections of the complete input space.
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The Non-hierarchical Ensemble Model learning algorithm can be extended by a
backtracking procedure in order to overcome possible local optima within the search
space. Currently, this backtracking is performed during the interactive model se-
lection procedure, where the domain experts can choose their favorite submodels.
But within the automated model building procedures used for comparison in Ap-
pendix A we follow the greedy model selection scheme. Thus it might be possible
to enhance the results that are listed in Appendix A.

The solution of regression problems within safety-related domains is challenging
since it is not possible to distinguish between a correct and an incorrect decision –
as within our classification framework, where the learning algorithms are forced to
always correctly predict a certain group of data. Further research should be carried
out with respect to combining submodels of different types and of different (data)
sources (for instance, analytical models given by domain experts, data-driven gen-
erated models, look-up tables, etc.) as proposed by Beyer et al. (2008). This would
allow the incorporation of prior knowledge in form of an analytical model provid-
ing a base-line performance and to learn models that can modify the prediction of
the baseline model.
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Appendix





A Experimental Evaluation on Common
Benchmark Problems

A.1 Data Set Descriptions

Most classification data sets (except for the CUBES, CUBESMULT, and RESPIRATORY

data sets) can be obtained from Asuncion & Newman (2007).

A.1.1 Binary Classification Problems

Cubes data set. The CUBES data set is generated from four Gaussian components
in a five-dimensional space. For each CLASS 1 cluster 50 samples are drawn from
N(en, 0.2 · I), where en is a unit vector and I is the identity matrix. 100 samples of
the CLASS 2 cluster are scattered around the origin, drawn from N((0, 0, 0)T, 0.2 · I).
CLASS 2 is chosen as default class cpref = 2.

Cubes2 data set. The CUBES2 data set is a variation of the CUBES data set. In dif-
ference to this data set is that for each CLASS 1 cluster the samples are drawn from
N(0.5 · en, 0.2 · I), where en is a unit vector and I is the identity matrix in order to
obtain overlapping clusters.

Hepatitis data set. The task of this data set is to predict whether a patient with
hepatitis will die (CLASS 1) or survive (CLASS 2). CLASS 2 is chosen as the default class,
cpref = 2. The original data set from Asuncion & Newman (2007) consists of 155
instances and 20 attributes. There are lots of missing values. We are ignoring all
dimensions with more than eight missing values. The instances of the resulting data
set that still have missing values are removed from the data set. Hence, the final data
set used within our experiments consists of 143 instances and 14 attributes.

Monks-3 data set. The three MONKS problems were the basis of a general com-
parison of learning algorithms in Thrun et al. (1991). Here, the third problem is
used, which can be described as: f : a1 × a2 × a3 × a4 × a5 × a6 → {0, 1}, where
a1 = {1, 2, 3}, a2 = {1, 2, 3}, a3 = {1, 2}, a4 = {1, 2, 3}, a5 = {1, 2, 3, 4}, a6 = {1, 2}. The
target function is defined as: f := 1 ↔ (a5 = 3 ∧ a4 = 1) ∨ (a5 6= 4 ∧ a2 6= 3). 5%
class noise is added to the training set. The default class is set to cpref = 0.
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Respiratory data set. This data set can be obtained from http://www.bangor.ac.uk/

~mas00a/activities/real_data.htm. The data set consists of 85 clinical records (each
17 attributes) for premature newborn children with two types of respiratory dis-
tress syndrome: Hyaline Membrane Disease (CLASS 2) and non-HMD (CLASS 1). The
two classes require immediate and completely different treatments, therefore an ac-
curate classification is crucial within the first few hours after delivery. The default
class is set to cpref = 2.

Sonar and Sonar (MLP) data set. This data set includes 208 samples and 60 at-
tributes. The task is to discriminate between sonar signals bounced off a roughly
cylindrical rock (CLASS 0) and those bounced off a metal cylinder (a mine – CLASS 1).
The default class is set to cpref = 1 in order to avoid potential mines. The SONAR

(MLP) data set is extended by 20 additionally generated attributes, which are re-
turned by the MLP feature construction method, cf. Sect. 5.2.

Wisconsin breast cancer data set. This database consists of 699 instances and nine
attributes. There are 16 missing attribute values – samples with missing values are
ignored within our experiments. The task is to determine whether a sample is benign
(CLASS 0) or malignant (CLASS 1). CLASS 1 is chosen as default class cpref = 1.

A.1.2 Multi-Class Classification Problems

CubesMult data set. This data set is an extension of the CUBES data set to a four-
class problem: the CLASS 2 samples are drawn from N((0.0, 0.0, 0.0)T, 0.2 · I), the sam-
ples of CLASS 3 are drawn from N((0.5, 0.5, 0.5)T, 0.2 · I), the CLASS 4 samples are drawn
from N((1.0, 1.0, 1.0)T, 0.2 · I), and the samples of CLASS 1 are drawn from N(en + i ·
0.5, 0.2 · I), i = {0, 1, 2}. The following hierarchy of misclassification costs is assumed:
penalty(CLASS 4) > penalty(CLASS 3) > penalty(CLASS 2) > penalty(CLASS 1).

Dermatology data set. This example data set is a challenging problem in dermato-
logy Güvenir et al. (1998). The task is to discriminate six differential diagnostics
of erythemato-squamous diseases, namely: PSORIASIS (CLASS 1), SEBOREIC DERMATI-
TIS (CLASS 2), LICHEN PLANUS (CLASS 3), PITYRIASIS ROSEA (CLASS 4), CRONIC DERMATITIS

(CLASS 5), and PITYRIASIS RUBRA PILARIS (CLASS 6). All these diseases share the clinical
features of erythema and scaling – with minor differences. The data set consists
of 366 records and each record has 33 attributes. The age attribute of the orig-
inal data set from the UCI Machine Learning Repository (Asuncion & Newman,
2007) is omitted here, because is has some missing values. The following hierar-
chy of misclassification costs is assumed: penalty(CLASS 6) > penalty(CLASS 5) >
penalty(CLASS 4) > penalty(CLASS 3) > penalty(CLASS 2) > penalty(CLASS 1).

http://www.bangor.ac.uk/~mas00a/activities/real_data.htm
http://www.bangor.ac.uk/~mas00a/activities/real_data.htm
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Fisher’s Iris data set. This well-known data set from Fisher (1936) contains three
classes (IRIS SETOSA – CLASS 1, IRIS VERSICOLOR – CLASS 2, and IRIS VIRGINICA – CLASS 3)
of 50 instances each. The input space consists of four numeric attributes. CLASS 1
is linearly separable from the other two classes; CLASS 2 and CLASS 3 are not linearly
separable from each other. The following hierarchy of misclassification costs is as-
sumed: penalty(CLASS 3) > penalty(CLASS 1) > penalty(CLASS 2).

Glass data set. The GLASS data set includes 214 instances and nine attributes. The
task is to discriminate six different types of glass: CLASS 1 (BUILDING WINDOWS FLOAT

PROCESSED), CLASS 2 (BUILDING WINDOWS NON FLOAT PROCESSED), CLASS 3 (VEHICLE WINDOWS

FLOAT PROCESSED), CLASS 4 (CONTAINERS), CLASS 5 (TABLEWARE), and CLASS 6 (HEADLAMPS).
The following hierarchy of misclassification costs is assumed: penalty(CLASS 1) >
penalty(CLASS 2) > penalty(CLASS 3) > penalty(CLASS 4) > penalty(CLASS 5) >
penalty(CLASS 6).

Lymph data set. This data set consists of 148 instances and 19 attributes. It concerns a
four-class problem. The classes are: LYMPH1 (normal find), LYMPH2 (metastases), LYMPH3
(malign lymph), and LYMPH4 (fibrosis). Within our experiments, the following hier-
archy of misclassification costs is assumed: penalty(LYMPH2) > penalty(LYMPH3)
> penalty(LYMPH4 > penalty(LYMPH1).

NewThyroid data set. This problem concerns another typical medical data screen-
ing application. The classification task is to predict whether a patient’s thyroid be-
longs to the class euthyroidism (NORMAL = CLASS 1), hyperthyroidism (HYPER = CLASS 2) or
hypothyroidism (HYPO = CLASS 3). The data set consists of 215 records and each record
is described by five attributes. The following hierarchy of misclassification costs is
assumed: penalty(CLASS 3) > penalty(CLASS 2) > penalty(CLASS 1).

Post-OP data set. The classification task of this database is to determine where pa-
tients in a postoperative recovery area should be sent to next: PATIENT SENT TO INTEN-
SIVE CARE UNIT – CLASS 1, PATIENT SENT TO GENERAL HOSPITAL FLOOR – CLASS 2, and PATIENT

PREPARED TO GO HOME – CLASS 3. There are 90 instances and 8 attributes. The following
hierarchy of misclassification costs is assumed: penalty(CLASS 1) > penalty(CLASS 2)
> penalty(CLASS 3).

Segmentation data set. The 2310 instances of this data set are drawn randomly
from a database of seven outdoor images. Each instance is described by 19 contin-
uous attributes. The task is to distinguish the following classes: CLASS 1 (BRICKFACE),
CLASS 2 (SKY), CLASS 3 (FOLIAGE), CLASS 4 (CEMENT), CLASS 5 (WINDOW), and CLASS 6 (PATH).
The following hierarchy of misclassification costs is assumed: penalty(CLASS 6) >
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penalty(CLASS 5) > penalty(CLASS 4) > penalty(CLASS 3) > penalty(CLASS 2) >
penalty(CLASS 1).

Wine data set. This data set consists of the results of a chemical analysis of wines
grown in the same region in Italy but derived from three different cultivars. The
analysis determined the quantities of 13 constituents found in each of the three types
of wines. penalty(CLASS 3) > penalty(CLASS 2) > penalty(CLASS 1) is assumed as
hierarchy of misclassification costs.

A.1.3 Regression Problems

Within the experiments performed on the regression data sets, all input dimensions
are normalized to the interval [−1, 1] in order to rule out scaling effects.

Artificial1 Data Set. We used the following function from Ferrari-Trecate & Muselli
(2002) as target function:

f1(x1, x2) =


3 + 4x1 + 2x2 if A1∧A3

−5 − 6x1 + 6x2 if ¬A1∧¬A2
−2 + 4x1 − 2x2 if A2∧¬A3

,

where A1 : 0.5x1 + 0.29x2 > 0, A2 : 0.5x1 − 0.29x2 > 0, and A3 : x2 > 0. This
target function is depicted in Fig. 4.1(a). 300 samples are drawn uniformly from
VN = [−1, 1]× [−1, 1] and y is determined as y = f1(x1, x2) + ε, where ε ∼ N(0, 0.1).

Artificial2 Data Set. This data set is used in Höppner & Klawonn (2003). The target
function is f2(x1, x2) = arctan(x1) cos(x2

2). This function is illustrated in Fig. 4.2(a).
300 data points are drawn uniformly from VN = [−2, 2]× [−2, 2] and the value of
the target y is determined by y = f2(x1, x2) + ε, where ε ∼ N(0, 0.1).

Auto MPG Data Set. This data set can be obtained from http://www.liaad.up.pt/

~ltorgo/Regression/DataSets.html. The task of this data set is to predict the fuel con-
sumption in miles per gallon (MPG) of different cars. The following five attributes
of the original data set are used as input dimensions: ’acceleration’, ’displacement’,
’horsepower’, ’model-year’, ’weight’. The data set consists of 398 instances. Six
instances with missing values are ignored within the experiments.

Body Fat Data Set. This benchmark data set can be obtained from http://lib.stat.

cmu.edu/datasets/. It includes 13 attributes and 252 instances. The task is to estimate
the percentage of body fat based on different body circumference measurements.

http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html
http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html
http://lib.stat.cmu.edu/datasets/
http://lib.stat.cmu.edu/datasets/
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Tab. A.1: Confusion matrix of a multi-class classifier (counts of data samples).
The rows and columns are sorted according to the hierarchy of misclassification
costs (cf. Sect. 3.3.1). The following ordering of the confusion matrix is assumed:
penalty(c1) > penalty(c2) > . . . > penalty(ck).

predicted class
true class c1 c2 . . . cK

c1 h1,1 h1,2 . . . h1,K
c2 h2,1 h2,2 . . . h2,K
...

...
... . . . ...

cK hK,1 hK,2 . . . hK,K

Ozone Data Set. The OZONE data set and the PROSTATE data set can be obtained
from http://www-stat.stanford.edu/~tibs/ElemStatLearn/. The OZONE data set is used
to estimate the daily ozone concentration based on three attributes: wind speed,
daily maximum temperature, and solar radiation. This data set includes 111 in-
stances.

Prostate Data Set. The task is to estimate the level of a prostate specific antigen
based on a eight clinical measurements. The data set consists of 97 data points.

A.2 Experimental Setup

Classification. For every classifier one can obtain a confusion matrix as depicted in
Tab. A.1. Based on those confusion matrices, we are computing three evaluation
measures in order to compare the performance of the learned solutions. First, the
overall predictive error of the model is estimated by:

êrr =
1
M

(
M−

K∑
k=1

hk,k

)
,

whereM denotes the number of all data points.

The second evaluation measure, the critical error, concerns only the samples that
violate the predefined hierarchy of misclassification costs:

êrrcrit =
1
M

K∑
i=1

K∑
j=i+1

hi,j .

The critical error is the more important error measurement because it corresponds
to a violation of the given domain knowledge.

http://www-stat.stanford.edu/~tibs/ElemStatLearn/
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As third evaluation measure the one-point-estimate of the area under the ROC curve
(AUC), cf. Ferri et al. (2003), is used:

AUC = max

 1
K

, 1 −
1
K

K∑
i=1

K∑
j=1,i 6=j

ni,j

 ,

where ni,j = hi,j/
∑K
l=1 hi,l . In Appendix B you can find a brief introduction into the

analyses of ROC curves.

Our classification ensemble methods are compared with a standard SVM implemen-
tation (libSVM) from Chang & Lin (2001) and a CART classification tree (treefit in
Matlab). In Tab. A.2, the Non-hierarchical Ensemble Model is abbreviated as NHEM
and the DecisionTree-like Ensemble Model is abbreviated as DTEM. Szepannek de-
notes a variation of the Non-hierarchical Ensemble Model, where for each submodel
all input dimensions are retained that are returned by the Kolmogorov-Smirnoff
test feature selection method. In Tab. A.3 the Hierarchical Separate-and-Conquer
Ensemble is abbreviated as NHEM, the Ensemble of Multi-Class Submodels is ab-
breviated as DTEM, and the One-versus-Rest Ensemble is abbreviated as OvRE. The
submodels of our ensemble models are SVMs with Gaussian kernels. The parameter
sets of the SVMs are chosen manually in order to obtain smooth decision surfaces
in the submodels. The same parameter sets are used for the high-dimensional SVM.
For feature selection, our ensemble performs an exhaustive search through all pos-
sible pairs of features in order to determine the best low-dimensional projections.

The evaluation measures in Table A.2 and Table A.3 are estimated by a 10-fold-cross-
validation procedure where the evaluation measures are estimated only on the test-
ing data. For every data set we used 10 different fold initializations.

Regression. In the regression setting, that is in Tab. A.4, the performance of each
learned model is estimated by the mean absolute error:

êrr =
1
M

M∑
m=1

∣∣ym − f̂(~vm)
∣∣ .

All data sets described in the following are randomly divided into a training data
set (80% of the data) and a testing data set (20% of the data). 20 different pairs of
training and testing data are generated for each data set.
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Tab. A.2: 10-fold crossvalidation on binary classification problems, cf. Sect. A.1.1.
The error is estimated on each testing fold and is averaged over 10 random fold
initializations. For the experiments with the MLP feature construction method, the
additionally generated features incorporate only pairs of the original input dimen-
sions. #M denotes the number of submodels or decision nodes within the decision
tree and #D denotes the dimensionality of each model or decision node, respectively.

Method #M #D
êrr êrrcrit AUC

mean (std) mean (std) mean (std)

CUBES data set
NHEM 3 2 2.00% (3.67) 0.21% (1.22) 0.983 (0.035)

Szepannek 1 3 36.79% (14.51) 0.00% (0.00) 0.741 (0.101)

DTEM 3 2 2.00% (3.67) 0.21% (1.22) 0.983 (0.035)

libSVM 1 5 1.64% (3.50) 0.14% (1.01) 0.988 (0.028)

treefit 10 1 25.43% (12.36) 6.00% (7.09) 0.769 (0.129)

CUBES2 data set
NHEM 3 2 30.57% (13.28) 1.36% (2.99) 0.778 (0.085)

Szepannek 1 2 45.36% (13.02) 1.07% (3.11) 0.672 (0.091)

DTEM 3 2 30.00% (13.92) 1.14% (2.63) 0.783 (0.090)

libSVM 1 5 18.21% (10.52) 1.36% (2.99) 0.861 (0.078)

treefit 10 1 28.07% (10.80) 6.21% (6.23) 0.738 (0.115)

HEPATITIS data set
NHEM 2 2 16.71% (9.26) 2.43% (4.79) 0.660 (0.150)

Szepannek 1 7 18.71% (8.84) 3.43% (5.12) 0.631 (0.136)

DTEM 5 2 19.43% (9.69) 6.29% (6.52) 0.668 (0.149)

libSVM 1 14 21.00% (10.09) 7.43% (6.33) 0.646 (0.150)

treefit 12 1 21.21% (9.33) 7.86% (7.90) 0.646 (0.134)

MONKS-3 data set
NHEM 2 2 0.28% (1.59) 0.00% (0.00) 0.998 (0.014)

Szepannek 1 2 2.72% (2.50) 0.00% (0.00) 0.974 (0.023)

DTEM 2 2 0.28% (1.59) 0.00% (0.00) 0.998 (0.014)

libSVM 1 6 2.72% (2.50) 0.00% (0.00) 0.974 (0.023)

treefit 3 1 2.77% (2.35) 0.00% (0.00) 0.974 (0.022)

RESPIRATORY data set
NHEM 4 2 10.13% (10.31) 4.88% (8.68) 0.898 (0.112)

Szepannek 1 10 11.13% (10.79) 6.13% (8.24) 0.891 (0.115)

DTEM 2 2 13.00% (11.08) 7.25% (7.98) 0.873 (0.117)

libSVM 1 17 9.88% (10.10) 5.75% (8.41) 0.899 (0.110)

treefit 5 1 19.00% (14.49) 6.00% (9.65) 0.813 (0.142)
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Tab. A.2: 10-fold crossvalidation on binary classification problems (cont’d).

Method #M #D
êrr êrrcrit AUC

mean (std) mean (std) mean (std)

SONAR data set
NHEM 7 2 36.30% (9.52) 1.10% (2.71) 0.611 (0.058)

Szepannek 1 33 13.15% (7.77) 5.00% (5.03) 0.863 (0.082)

DTEM 11 2 23.30% (8.88) 6.90% (5.94) 0.756 (0.096)

libSVM 1 60 10.85% (6.59) 3.45% (4.19) 0.886 (0.071)

treefit 16 1 28.95% (10.06) 10.35% (6.68) 0.705 (0.096)

SONAR (MLP) data set
NHEM 16 2 17.80% (8.66) 4.55% (4.50) 0.817 (0.090)

Szepannek 1 54 14.65% (7.53) 5.15% (5.24) 0.851 (0.074)

DTEM 10 2 17.50% (8.24) 6.40% (5.82) 0.822 (0.086)

libSVM 1 80 14.10% (7.43) 4.30% (4.72) 0.857 (0.073)

treefit 13 1 23.40% (8.99) 6.80% (5.44) 0.762 (0.093)

WISCONSIN BREAST CANCER data set
NHEM 4 2 5.96% (6.89) 0.93% (1.27) 0.949 (0.051)

Szepannek 1 9 4.85% (2.34) 2.26% (1.77) 0.947 (0.028)

DTEM 5 2 3.99% (2.26) 1.25% (1.44) 0.961 (0.024)

libSVM 1 9 4.85% (2.34) 2.26% (1.77) 0.947 (0.028)

treefit 41 1 6.84% (3.43) 2.32% (1.80) 0.932 (0.034)

Tab. A.3: 10-fold crossvalidation on multi-class classification problems, cf.
Sect. A.1.2. The error is estimated on each testing fold and is averaged over 10
random fold initializations. The êrr column denotes the overall classification er-
ror (including the missed samples of the One-versus-Rest Ensemble). #M denotes
the number of submodels or decision nodes within the decision tree and #D denotes
the dimensionality of each model or decision node, respectively.

Method #M #D
êrr êrrcrit AUC missed

mean (std) mean (std) mean (std) samples

CUBESMULT data set
HSCE 5 2 7.74% (4.09) 0.50% (1.09) 0.932 (0.056)

Szepannek 3 5 32.19% (16.15) 0.33% (0.83) 0.881 (0.058)

EMCS 7 2 3.74% (2.88) 1.38% (1.80) 0.951 (0.049)

OvRE 6 2 34.31% (6.81) 0.26% (0.82) 0.975 (0.075) [34.0%]
libSVM 1 5 1.88% (2.09) 0.29% (0.78) 0.987 (0.024)

libSVM(ho) 6 5 1.83% (2.05) 0.24% (0.72) 0.988 (0.023)

treefit 28 1 19.62% (6.48) 5.02% (3.56) 0.817 (0.082)



A.2. Experimental Setup 99

Tab. A.3: 10-fold crossvalidation on multi-class classification problems (cont’d).

Method #M #D
êrr êrrcrit AUC missed

mean (std) mean (std) mean (std) samples

CUBES2MULT data set
HSCE 6 2 29.36% (6.97) 0.69% (1.32) 0.850 (0.062)

Szepannek 3 5 60.88% (17.80) 0.19% (0.65) 0.783 (0.060)

EMCS 8 2 14.52% (5.50) 1.52% (1.93) 0.911 (0.059)

OvRE 7 2 55.76% (7.47) 0.40% (0.90) 0.958 (0.094) [55.4%]
libSVM 1 5 14.43% (5.47) 0.88% (1.34) 0.932 (0.038)

libSVM(ho) 6 5 14.29% (5.49) 0.71% (1.24) 0.936 (0.036)

treefit 33 1 0.22.10% (5.68) 6.60% (4.06) 0.773 (0.096)

DERMATOLOGY data set
HSCE 7 2 10.31% (5.27) 2.33% (2.15) 0.889 (0.056)

Szepannek 5 15 5.42% (3.69) 1.06% (1.80) 0.940 (0.044)

EMCS 10 2 5.56% (3.68) 3.17% (2.90) 0.927 (0.058)

OvRE 12 2 24.83% (6.96) 0.36% (0.94) 0.970 (0.045) [22.6%]
libSVM 1 33 3.39% (2.84) 1.94% (2.25) 0.963 (0.035)

libSVM(ho) 15 33 3.47% (2.91) 1.94% (2.25) 0.962 (0.036)

treefit 11 1 5.64% (3.65) 1.47% (1.95) 0.944 (0.044)

FISHER’S IRIS data set
HSCE 2 2 9.13% (8.46) 0.80% (2.73) 0.911 (0.079)

Szepannek 2 4 3.60% (4.59) 0.27% (2.10) 0.963 (0.048)

EMCS 1 2 6.73% (6.18) 4.07% (4.53) 0.931 (0.070)

OvRE 3 2 15.67% (10.40) 0.80% (2.73) 0.981 (0.045) [14.2%]
libSVM 1 4 4.20% (5.07) 0.87% (2.79) 0.958 (0.054)

libSVM(ho) 3 4 4.20% (5.07) 0.87% (2.79) 0.958 (0.054)

treefit 12 1 8.93% (7.53) 4.13% (5.59) 0.914 (0.075)

GLASS data set
HSCE 11 2 43.71% (11.25) 8.52% (5.43) 0.620 (0.115)

Szepannek 4 5 37.19% (10.95) 7.57% (6.46) 0.686 (0.095)

EMCS 16 2 32.86% (11.25) 13.43% (8.24) 0.671 (0.148)

OvRE 15 2 77.62% (9.66) 6.81% (5.59) 0.775 (0.142) [67.3%]
libSVM 1 9 30.90% (10.07) 14.24% (7.40) 0.721 (0.123)

libSVM(ho) 15 9 33.29% (9.70) 11.24% (6.82) 0.699 (0.113)

treefit 28 1 48.67% (10.52) 7.19% (5.35) 0.465 (0.121)
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Tab. A.3: 10-fold crossvalidation on multi-class classification problems (cont’d).

Method #M #D
êrr êrrcrit AUC missed

mean (std) mean (std) mean (std) samples

LYMPH data set
HSCE 6 2 18.64% (9.52) 4.93% (5.89) 0.837 (0.131)

Szepannek 3 7 18.00% (10.53) 5.71% (6.18) 0.838 (0.143)

EMCS 9 2 17.43% (10.37) 6.79% (7.49) 0.814 (0.152)

OvRE 16 2 36.29% (11.87) 4.00% (5.59) 0.876 (0.133) [26.6%]
libSVM 1 18 22.07% (10.99) 4.50% (6.15) 0.768 (0.167)

libSVM(ho) 6 18 22.07% (10.99) 4.50% (6.15) 0.768 (0.167)

treefit 15 1 29.29% (11.86) 6.00% (6.94) 0.764 (0.139)

NEWTHYROID data set
HSCE 3 2 4.19% (5.03) 1.10% (2.86) 0.962 (0.063)

Szepannek 2 5 4.10% (4.64) 1.71% (3.80) 0.955 (0.076)

EMCS 3 2 4.00% (4.53) 2.57% (3.79) 0.939 (0.087)

OvRE 4 2 6.38% (5.63) 0.90% (2.41) 0.975 (0.062) [4.7%]
libSVM 1 5 4.62% (4.56) 1.90% (3.71) 0.949 (0.075)

libSVM(ho) 3 5 4.62% (4.56) 1.90% (3.71) 0.949 (0.075)

treefit 6 1 4.29% (4.36) 1.29% (2.12) 0.957 (0.052)

POST-OP data set
HSCE 4 2 32.89% (16.18) 2.00% (4.29) 0.620 (0.141)

Szepannek 2 7 27.89% (15.11) 2.22% (4.47) 0.647 (0.146)

EMCS 1 2 27.56% (14.60) 3.33% (6.22) 0.645 (0.149)

OvRE 5 2 87.44% (10.67) 0.22% (1.56) 0.915 (0.139) [83.2%]
libSVM 1 7 28.11% (14.25) 3.11% (6.33) 0.644 (0.145)

libSVM(ho) 3 7 28.11% (14.08) 3.11% (6.33) 0.644 (0.145)

treefit 9 1 41.00% (18.05) 4.56% (6.90) 0.575 (0.129)

SEGMENTATION data set
HSCE 12 2 12.76% (6.56) 5.24% (4.41) 0.876 (0.066)

Szepannek 6 14 9.52% (5.98) 4.76% (4.33) 0.906 (0.063)

EMCS 8 2 13.14% (7.42) 7.52% (5.59) 0.874 (0.074)

OvRE 14 2 29.38% (10.18) 3.24% (4.05) 0.903 (0.085) [22.6%]
libSVM 1 18 10.86% (6.13) 5.76% (4.45) 0.894 (0.060)

libSVM(ho) 21 18 10.81% (6.12) 5.14% (4.32) 0.893 (0.061)

treefit 16 1 15.33% (7.70) 7.14% (5.80) 0.842 (0.088)
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Tab. A.3: 10-fold crossvalidation on multi-class classification problems (cont’d).

Method #M #D
êrr êrrcrit AUC missed

mean (std) mean (std) mean (std) samples

WINE data set
HSCE 4 2 6.71% (5.55) 0.24% (1.16) 0.944 (0.051)

Szepannek 2 11 3.76% (4.39) 1.29% (2.72) 0.964 (0.045)

EMCS 4 2 5.65% (5.60) 2.00% (3.85) 0.949 (0.051)

OvRE 6 2 15.00% (8.90) 0.06% (0.59) 0.986 (0.029) [13.3%]
libSVM 1 13 2.12% (3.40) 0.94% (2.17) 0.978 (0.039)

libSVM(ho) 3 13 2.12% (3.40) 0.94% (2.17) 0.978 (0.039)

treefit 8 1 8.65% (6.45) 3.53% (4.95) 0.922 (0.068)

Tab. A.4: Comparison of the model complexity of different regression methods. For
details about the data sets see Sect. A.1.3. #M denotes the number of submodels
or the number of decision nodes in the (unpruned) regression tree. For the LinEM
the number of initial clusters (i.e. before cluster pruning) is given in parentheses.
#D denotes the dimensionality of each (sub-)model or decision nodes within the
regression tree.

Data set name Regression method #M #D
êrr (std)

training testing

ARTIFICIAL1

LinEM (softmax) 3 (of 3) 2 0.79 (0.02) 0.77 (0.10)

LinEM (crisp) 3 (of 3) 2 0.20 (0.03) 0.19 (0.09)

LLM 5 2 0.95 (0.06) 1.01 (0.11)

robustfit 1 2 1.48 (0.04) 1.47 (0.15)

treefit 41 1 0.34 (0.02) 0.70 (0.10)

ARTIFICIAL2

LinEM (softmax) 6 (of 10) 2 0.15 (0.01) 0.16 (0.02)

LinEM (crisp) 6 (of 9) 2 0.16 (0.03) 0.18 (0.02)

LLM 8 2 0.20 (0.01) 0.21 (0.03)

robustfit 1 2 0.50 (0.01) 0.50 (0.05)

treefit 46 1 0.08 (0.01) 0.15 (0.01)

AUTO MPG

LinEM (softmax) 7 (of 10) 2 1.98 (0.07) 2.18 (0.21)

LinEM (crisp) 2 (of 2) 2 2.07 (0.06) 2.16 (0.23)

LLM 8 5 1.91 (0.05) 2.08 (0.20)

robustfit 1 5 2.56 (0.06) 2.65 (0.25)

treefit 66 1 1.04 (0.08) 2.49 (0.28)
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Tab. A.4: Comparison of the model complexity of different regression methods
(cont’d).

Data set name Regression method #M #D
êrr (std)

training testing

BODY FAT

LinEM (softmax) 1 (of 1) 2 3.58 (0.10) 3.71 (0.39)

LinEM (crisp) 1 (of 1) 2 3.58 (0.10) 3.71 (0.39)

LLM 1 13 3.68 (0.09) 3.87 (0.40)

robustfit 1 13 3.39 (0.10) 3.70 (0.41)

treefit 39 1 1.76 (0.12) 5.02 (0.49)

OZONE

LinEM (softmax) 2 (of 2) 2 12.82 (1.20) 14.02 (2.97)

LinEM (crisp) 2 (of 2) 2 12.72 (0.81) 14.60 (3.31)

LLM 6 3 11.83 (0.82) 14.23 (1.87)

robustfit 1 3 15.15 (0.58) 15.93 (2.43)

treefit 20 1 6.97 (0.76) 14.59 (2.99)

PROSTATE

LinEM (softmax) 3 (of 5) 2 0.48 (0.03) 0.63 (0.10)

LinEM (crisp) 3 (of 6) 2 0.48 (0.03) 0.64 (0.10)

LLM 1 8 0.58 (0.03) 0.64 (0.12)

robustfit 1 8 0.50 (0.03) 0.61 (0.11)

treefit 15 1 0.35 (0.04) 0.81 (0.09)

A.3 Discussion

Classification. Within our experiments that are summarized in Tab. A.2 and Tab. A.3,
our ensemble modelling approach provides a good trade-off between predictive ac-
curacy and interpretability. On the binary classification problems, our ensemble
models with the restriction to two-dimensional submodels are at least competitive
on most tested data sets compared to a high-dimensional SVM solution – expect
for the SONAR data set because this data set requires a higher dimensionality of the
submodels. But this can be compensated by our MLP-based feature construction
method. For almost all multi-class data sets the One-versus-Rest Ensemble achieves
the best performance by regarding the critical error. On the other hand, the overall
error of this approach is worse compared to all other methods. This poor perfor-
mance is due to a large number of samples that are missed by the submodels and
are assigned to the ”other” class. Nevertheless, samples that are labeled as ”un-
recognized” might be acceptable for some application problems. The Hierarchical
Separate-and-Conquer Ensemble approach provides a good trade-off between the
predictive performance – on both, the overall error and the critical error – and the
interpretation of the models compared to the SVM solution that achieves the least
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overall error on all data sets but incorporates always the complete input space. The
critical error of the Ensemble of Multi-Class Submodels approach is quite large in
all experiments because the hierarchy of misclassification costs is ignored within
our experiments. On the other hand, this ensemble approach is the only variant that
does not require a hierarchy of misclassification costs to build a multi-class model.
While interpreting the decision boundaries of a high-dimensional SVM is quite in-
feasible, all ensemble approaches allow a visualization of the submodels and, thus,
facilitate the incorporation of domain knowledge via an interactive model selection
process.

Regression. Our experiments are summarized in Tab. A.4. Especially for a small
number of submodels (J 6 3) the LinEM approach (that is restricted to two-dimen-
sional submodels within the experiments) achieves a better or at least similar per-
formance compared to the LLM approach that always regards the complete input
space within its submodels. The LinEM approach places the prototypes to regions
which are relevant to build local regression models with a small predictive error
instead of placing the prototypes to regions with a high data density. The LLM ap-
proach can compensate this weakness for a higher number of prototypes – however,
the larger the number of prototypes the more difficult the interpretation of the so-
lution will be. For the benchmark data sets, the model complexity of the LinEM
approach is smaller as for all other regression approaches – the regression trees be-
come quite large, the linear regression model uses the complete input space, and the
LLM model uses always J prototypes withN-dimensional models, while the cluster
pruning strategy and the restriction to two-dimensional submodels of the LinEM
approach facilitates the interpretability. If one compares the best results of all re-
gression methods (cf. Tab. A.4), the LinEM method provides the best performance
on two data sets – on the remaining data sets the performance is only slightly worse
compared to the best approaches.
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B Estimation of the Area Under the ROC
Curve

The area under the ROC curve is used as performance measure in our experiments
on classification problems (cf. Chap. 3 and Appendix A). This section is intended to
give a brief survey of the field of ROC graph analysis. More detailed introductions
into the analysis of ROC graphs can be found, for instance, in Provost & Fawcett
(2001) and Fawcett (2006). The original ROC analysis is designed for binary clas-
sification problems, possible extensions for multi-class ROC analysis are given, for
instance, by Ferri et al. (2003); Hand & Till (2001); Lachiche & Flach (2003).

B.1 The ROC Space

Concern the confusion matrix of a binary classifier as depicted in Tab. B.1: Sam-
ples that belong to the positive class (+) might be predicted as positive (hTP) or as
negative (hFN) samples by the classifier. Correspondingly, samples that belong to
the negative class (−) might be classified as positive (hFP) or negative (hTN) sam-
ples. Based on this possible outcome, two metrics are computed in order to evaluate
the performance of the classification model. The first metric, the true positive rate,
concerns the classifier’s probability of correctly assigning positive samples to the
positive class. The second metric is the false positive rate. This is the classifier’s prob-
ability of erroneously predicting negative samples as positive samples. Based on the
confusion matrix given in Tab. B.1, the true positive rate (TPR) can be estimated by

TPR =
hTP

hTP + hFN
(B.1)

Tab. B.1: Confusion matrix of a binary classification model (count of data samples).

predicted class
true class + −

+ hTP hFN
− hFP hTN
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Fig. B.1: Four discrete classifiers within the ROC space.

and the false positive rate (FPR) can be estimated by

FPR =
hFP

hFP + hTN
. (B.2)

In Fig. B.1 the FPRs and the corresponding TPRs of four discrete classifiers (A, B,
C and D) are shown. The resulting plot is called receiver operating characteristics1

(ROC) graph and the space spanned by both metrics is called ROC space. In Fig. B.1,
the point (0, 1) represents a perfect classifier, the point (0, 0) represents a classifier
that always predicts the negative class, and the point (1, 1) represents a classifier
that always predicts the positive class. The dashed line (TPR = FPR) represents the
outcome of a binary classifier that randomly assigns the samples to the different
classes. A classifier that lyes below this diagonal (that is classifier D in Fig. B.1) is
worse than random guessing. Such a classifier can usually be negated in order to
obtain a classifier that lyes beyond the diagonal and, thus, achieves a higher classi-
fication performance.

B.2 The Area Under The ROC Curve

The interesting question that arises in this setting is which of these classifiers per-
forms best: the classifier B has the best TPR – the classifier A is only slightly worse
but has a much smaller FPR. In order to combine both metrics and to obtain a sin-
gle performance measure one can compute the area under the ROC curve (AUC). For

1 The receiver operating characteristics is a classical methodology from signal detection Egan
(1975).
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(a) One-point estimate of the area under the
ROC curve of a crisp classifier.
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estimated AUC = 0.86

(b) Estimated area under the ROC curve of a
soft classifier.

Fig. B.2: Receiver operating characteristic of two classification models. Both classi-
fiers are trained on the HEPATITIS data set from Asuncion & Newman (2007).

a crisp classifier2 the point (FPR, TPR) is connected with the points (0, 0) and (1, 1)

and the area under this curve is computed. This is illustrated in Fig. B.2(a). For a
soft classifier, the labels are sorted according to the score returned by the classifier.
The corresponding values of the FPR and TPR per score level can be plotted as in
Fig. B.2(b). In this setting, the AUC estimates the probability that, if we choose an
example of the positive class and an example of the negative class, the classifier will
give more score to the first one than to the second one.

In our experiments (cf. Chap. 3 and Appendix A), we are using for all classifiers the
one-point estimate of the area under the ROC curve that is described in Hong et al.
(2007). This is an pessimistic estimate of the soft AUC, but it can be computed for
every tested classification method. For a binary classifier the one-point estimate of
the area under a ROC curve can be computed as

AUC =
1 + TPR− FPR

2
. (B.3)

2 A crisp classifier is a classifier that returns only the class label. In contrast to this, a soft classifier
also returns a score or ranking to express its confidence about its prediction.
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B.3 One-point Estimate of the AUC for Multi-Class Problems

Extending the analysis of theAUC to multi-class problems is non-trivial. A compar-
ison of different multi-class AUC extensions is given in Ferri et al. (2003). For sake
of simplicity, we are using the 1-point TrivialAUC Extension described in Ferri et al.
(2003) for estimating the AUC. The values of the multi-class confusion matrix (cf.
Tab. B.2) have to be normalized according to

ni,j =
hi,j∑K
k=1 hi,k

. (B.4)

Then, the AUC can be estimated by the average of the off-diagonal elements of the
normalized confusion matrix, that is for a multi-class classifier the one-point esti-
mate of the area under a ROC curve can be computed as

AUC = max

 1
K

, 1 −
1
K

K∑
i=1

K∑
j=1
i 6=j

ni,j

 . (B.5)

Note: For a binary classifier (K = 2) and with the restriction that a classifier is ex-
pected to perform better or equal than random guessing (AUC > 1

2 ), this formula-
tion is equivalent to the one-point AUC estimate of Eq. B.3:

AUC =
1 + TPR− FPR

2

=
1 +

h1,1
h1,1+h1,2

−
h2,1

h2,1+h2,2

2

=
1 +

(
1 −

h1,2
h1,1+h1,2

)
−

h2,1
h2,1+h2,2

2

=
2 −n1,2 −n2,1

2

= 1 −
(n1,2 +n2,1)

2

= 1 −
1
K

K∑
i=1

K∑
j=1
i 6=j

ni,j .
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Tab. B.2: Confusion matrix of a multi-class classifier (counts of data samples). If
there is a certain hierarchy of misclassification costs (cf. Sect. 3.3.1) given for the
multi-class problem, the following ordering of the confusion matrix is assumed:
penalty(c1) > penalty(c2) > . . . > penalty(ck) > . . . > penalty(cK).

predicted class
true class c1 c2 . . . ck . . . cK

c1 h1,1 h1,2 . . . h1,k . . . h1,K
c2 h2,1 h2,2 . . . h2,k . . . h2,K
...

...
... . . . ...

...
ck hk,1 hk,2 . . . h2,k . . . hk,K
...

...
...

... . . . ...
cK hK,1 hK,2 . . . hK,k . . . hK,K
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C Notation

This appendix serves as quick reference of the symbols and notational conventions
used within this thesis.

Sets and Random Variables

IN denotes the set of natural numbers, IN = {1, 2, 3, . . .}.
IR denotes the set of real numbers.
IK denotes the set of class labels, IK = {c1, . . . , ck, . . . , cK}.

X, Y,X1,X2, ...,XN – random variables are denoted as uppercase letters.
VN = X1 ×X2 × ...×Xn × ...×XN =×Nn=1Xn denotes the N-dimensional input space.
Y denotes the target variable of a learning problem – in a regression task Y ⊆ IR and

for a classification problem Y ⊆ IK.

IE (X) denotes the the expected value of random variable X.
IE (Y|X) denotes the the expected value of random variable Y given random variable

X.

x, xm, x(n)
m The observed values of random variables are denoted as lowercase let-

ters. xm denotes the m-th observation of the random variable X and x(n)
m de-

notes them-th observation of the random variable Xn.
~vm denotes the m-th observation within the complete input space ~vm ∈ VN, ~vm =(

x
(1)
m , x(2)

m , . . . x(N)
m

)
.

ym denotes the target value of them-th observation.

D = {(~v1,y1), . . . , (~vm,ym), . . . , (~vM,yM)} denotes the set of the observed data, D ⊂
VN × Y.
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Functions

f : X1 ×X2 × ...×XN → Y denotes the true target function. This function is usually
unknown.

f̂ : VN → Y denotes the estimated target function given the observed data set D

I(A) denotes the indicator function,

I(A) =

{
1 if A is true
0 if A is false

.

πβ
(
VN
)

= Vβ =×n∈βXn denotes the projection of the original input space VN to
the subspace Vβ, where β ⊂ {1, . . . ,N}.

sign(x) denotes the sign function,

sign(x) =

{
1 if x > 0

−1 if x < 0
.

Vectors and Matrices

~a denotes the vector

~a =

 a1
a2
a3

 .

Within this thesis all vectors are assumed to be column vectors.
~aT denotes the transpose of the vector ~a:

(a1,a2,a3)
T =

 a1
a2
a3

 .

‖~a‖ denotes the Euclidean norm of the vector ~a ∈ IRN

‖~a‖ =
√

~aT~a

=

√
a2

1 + a2
2 + . . . + a2

N

en denotes the n-th unit vector within IRN.

e1 =


1
0
0
...

 , e2 =


0
1
0
...

 , e3 =


0
0
1
...

 , . . .

I denotes the identity matrix,

I =


1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1

 .
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X denotes a matrix X = (xi,j).
XT denotes the transpose of matrix X
X−1 denotes the inverse of matrix X

X−1X = XX−1 = I .

Probability Distributions and Measures

P (X = x) denotes the probability that random variable X takes value x. This is esti-
mated by:

P (X = x) =
number of times value x has occurred

number of times the experiment was run

P (X = x|Y = y) denotes the conditional probability that random variableX takes value
x given Y = y. This probability is determined by:

P (X = x|Y = y) =
P(X = x∩ Y = y)

P(Y = y)

CDF(X) denotes the cumulative probability distribution of random variableX,CDF(X) =

P (X 6 x).
CDF(X|ck) denotes the conditional cumulative probability distribution of random

variable X given class ck, that is CDF(X) = P (X 6 x| ck).
mean(X) denotes the mean value of the random variable X. It is estimated by

mean(X) =
1
M

M∑
m=1

xm ,

where xm is the m-th observation of random variable X. This value is a mea-
sure of the location of a random variable.

std(X) denotes the standard deviation of the random variable X. It is estimated by

std(X) =

√√√√ 1
M− 1

M∑
m=1

(xm − mean(X))2 .

This value is a measure of the spread around the location of a random variable.
N(µ,σ) denotes the normal distribution (also known as Gaussian distribution) with

parameter −∞ < µ <∞ and σ > 0.

Classification Models

f : VN → IK denotes a classification function that maps every data point ~v ∈ VN to a
certain class label ck ∈ IK, where IK = {c1, . . . , ck, . . . , cK}.
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gj : πβj
(
VN
)
→ IK denotes the j-th classification submodel with the projection πβj(·).

cpref denotes the default class of a binary classification problem. By definition, this
class must not be misclassified by any classification model.

penalty(ck) denotes the misclassification costs for class ck. The hierarchy of mis-
classification costs defines an ordering of all class labels, cf. Eq. 3.6 on page
37.

Regression Models

f : VN → IR denotes a regression function that assigns for every data point ~v ∈ VN to
a target value y ∈ IR.

C(m) = j denotes the cluster mapping that assigns the data point ~vm to the j-th clus-
ter, with 1 6 m 6 M, 1 6 j 6 J, and J < M.

~pj ∈ VN denotes the prototype vector of the j-th cluster.
gj : πβj

(
VN
)
→ IR denotes the regression submodel that belongs to the j-th cluster,

C(m) = j, and the projection πβj(·).

Performance Measures

Predictive error. The predictive error of a regression problem is estimated by:

êrr =
1
M

M∑
m=1

∣∣ym − f̂(~vm)
∣∣

and for a classification problem the predictive error is estimated by:

êrr =
1
M

(
M−

K∑
k=1

hk,k

)

given the confusion matrix in Tab. B.2 on page 109.
Critical error. The critical error denotes the relative number of samples, where the

learned classification model violates the predefined hierarchy of misclassifica-
tion costs. It is estimated by:

êrrcrit =
1
M

K∑
i=1

K∑
j=i+1

hi,j

given an ordered confusion matrix as in Tab. B.2 on page 109 with ∀i, j, i < j :

penalty(ci) > penalty(cj).
TPR denotes the true positive rate, cf. Eq. B.1 in Appendix B.
FPR denotes the false positive rate, cf. Eq. B.2 in Appendix B.
AUC denotes the area under the ROC curve, cf. Eq. B.5 in Appendix B.
ROC denotes the receiver operating characteristics, cf. Appendix B
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O. Simula, & J. Kangas (Eds.), Artificial Neural Networks (pp. 379–384). Amsterdam,
Netherlands: Elsevier.

Schlang, M., Feldkeller, B., Lang, B., Poppe, T., & Runkler, T. (1999). Neural compu-
tation in steel industry. In Proceedings of European Control Conference ’99 (pp. 1–6).
Karlsruhe, Germany: Verlag rubicon.

Schölkopf, B. & Smola, A. (2002). Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press.

Stone, C. J. (1985). Additive regression and other nonparametric models. The Annals
of Statistics, 13(2), 689–705.



132 Bibliography

Szepannek, G. & Weihs, C. (2006). Local modelling in classification on different
feature subspaces. In P. Perner (Ed.), Proceedings of 6th Industrial Conference on Data
Mining, Lecture Notes in Artificial Intelligence (pp. 226–238). Leipzig, Germany:
Springer.

Tax, D. M. J. & Duin, R. P. W. (2002). Using two-class classifiers for multiclass clas-
sification. In Proceedings of the 16th International Conference on Pattern Recognition,
volume 2 (pp. 124–127). Quebec, Canada.

Taylor, B. J., Ed. (2005). Methods and Procedures for the Verification and Validation of
Artificial Neural Networks. Springer.

Thorburn, W. M. (1918). The myth of occam’s razor. Mind, 27(3), 345–353.

Thrun, S., Bala, J., Bloedorn, E., Bratko, I., Cestnik, B., Cheng, J., Jong, K. D., Dze-
roski, S., Hamann, R., Kaufman, K., Keller, S., Kononenko, I., Kreuziger, J., Michal-
ski, R., Mitchell, T., Pachowicz, P., Roger, B., Vafaie, H., de Velde, W. V., Wenzel,
W., Wnek, J., & Zhang, J. (1991). The MONK’s Problems: A Performance Compari-
son of Different Learning Algorithms. Technical Report CMU-CS-91-197, Carnegie
Mellon University, Computer Science Department, Pittsburgh, PA, USA.

Tzeng, F.-Y. & Ma, K.-L. (2005). Opening the black box - data driven visualization of
neural networks. In Proceedings of 16th IEEE Visualization Conference (pp. 383–390).
Minneapolis, MN, USA: IEEE Computer Society.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.

Yeh, I.-C. (1998). Modeling of strength of high performance concrete using artificial
neural networks. Cement and Concrete Research, 28(12), 1797–1808.

Zakrzewski, R. R. (2001). Verification of a trained neural network accuracy. In Pro-
ceedings of International Joint Conference on Neural Networks (IJCNN’01), volume 3
(pp. 1657–1662).: IEEE Press.


	Introduction
	General Motivation
	Safe Learning for Airbag Control
	Objective of this Thesis
	Outline
	Publications

	Machine Learning and Safety-Related Domains
	Learning From Data
	Fundamentals of Machine Learning
	Regression
	Classification
	Support Vector Machines
	Multi-Class Extensions of Binary Classifiers
	Classification and Regression Trees
	Model Selection

	Safety-Related Systems
	Safety Standards
	Assessing Solutions for Safety-Related Problems
	Machine Learning Approaches for Safety-Related Applications

	Summary

	Ensembles of Submodels for Safety-Related Classification Problems
	Introduction
	The Binary Ensemble Framework
	DecisionTree-like Ensemble Model
	Non-hierarchical Ensemble Model
	An Illustrative Example

	The Multi-Class Ensemble Framework
	Ensemble of Multi-Class Submodels
	Hierarchical Separate-and-Conquer Ensemble
	One-versus-Rest Ensemble
	An Illustrative Example (Cont'd)

	Real-World Application Problems
	The Deployment of an Airbag
	A Medical Diagnosis Example

	Summary

	Interpretable Regression Models Based on EM-based Piecewise Linear Regression
	Introduction
	Expectation Maximization
	The LinEM-Algorithm
	Two Illustrative Examples
	A Real-World Application Example
	Summary

	Feature Extraction and Data Filtering
	Feature Selection
	Feature Selection Based on Univariate Statistical Tests
	Feature Selection Based on Classification and Regression Trees
	Wrapper for Feature Selection
	Further Feature Selection Methods
	Comparison of Different Feature Selection Methods

	Feature Construction
	Principal Component Analysis
	MLP-Based Feature Construction

	Data Filtering
	Convex Hull Filtering
	Upper Envelope Filtering

	A Naval Risk Detection Example
	Summary

	Conclusions and Perspectives
	Contributions of this Thesis
	Open Problems and Further Research
	Appendix
	Experimental Evaluation on Common Benchmark Problems
	Data Set Descriptions
	Binary Classification Problems
	Multi-Class Classification Problems
	Regression Problems

	Experimental Setup
	Discussion

	Estimation of the Area Under the ROC Curve
	The ROC Space
	The Area Under The ROC Curve
	One-point Estimate of the AUC for Multi-Class Problems

	Notation
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography




