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Zusammenfassung
Bedingt durch den wachsenden Bedarf an Sicherheitsanwendungen ist die Er-
kennung einer Person anhand der Stimme zu einem Interessenschwerpunkt im
Bereich der Authenti�kationsverfahren geworden. Traditionell basieren Ver-
fahren zur Sprechermodellierung in der Sprechererkennung schwerpunktmäÿig
auf generativen Klassi�kationsmethoden, wie beispielsweise den Gauss'schen
Mischverteilungs-Modellen (GMMs). In der jüngeren Forschung werden je-
doch auch alternative Klassi�kationsmethoden wie zum Beispiel die Support
Vector Machine (SVM) erfolgreich in verschiedenen Gebieten der Musterer-
kennung eingesetzt. Begründet in der statistischen Lerntheorie zeichnen sich
diese alternativen Klassi�zierer durch eine sehr gute Generalisierungsfähigkeit
aus. Aufgrund dessen werden diese so genannten diskriminativen Methoden
auch gezielt im Bereich der Sprechererkennung als vielversprechender Ansatz
zur Verbesserung der Erkennungsleistung diskutiert.

Im Rahmen dieser Forschung liegt der Schwerpunkt der vorliegenden Arbeit
in der Entwicklung und Integration verschiedener diskriminativer Klassi�zie-
rer in den Bereich der Sprechererkennung.

Als eine Alternative zur SVM wird in dieser Arbeit die Sparse Kernel Lo-
gistic Regression (SKLR), eine ausgedünnte, nichtlineare Erweiterung der be-
kannten logistischen Regression, vorgestellt. Im Gegensatz zur SVM model-
liert die SKLR direkt die a posteriori Wahrscheinlichkeit einer Klassenzuge-
hörigkeit und liefert daher auch auf natürliche Weise eine Wahrscheinlich-
keitsausgabe. Zu diesem Zweck wird eine neue Sprechererkennungsumgebung
konzipiert und implementiert, die zwei unterschiedliche Erkennungsansätze
enthält, einen für kleine sowie einen für groÿe Lernstichproben.

Im ersten Erkennungsansatz werden diskriminative Klassi�zierer direkt auf
den Merkmalsvektoren der parametrisierten Sprache angewendet und es wird
gezeigt, dass sowohl die SVM als auch die SKLR der traditionellen GMM-
Methode in der Erkennungsleistung überlegen sind.

Im zweiten Ansatz wird ein, dem neuesten Stand der Technik entsprechen-
des, Sprechererkennungssystem für groÿe Lernstichproben konzipiert, welches
Gauss'sche Mischverteilungen mit diskriminativen Klassi�zierern, insbesonde-
re der SKLR, kombiniert.
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Darüber hinaus werden in dieser Arbeit verschiedene Methoden der Merk-
malsextraktion aus Sprachsignalen für die Sprechererkennung auf groÿen Lern-
stichproben untersucht. Es wird gezeigt, dass der Einsatz von Fusionsansätzen
die mehrere Teilsysteme kombinieren zu einer signi�kanten Verbesserung der
Erkennungsleistung gegenüber dem Einsatz von einzelnen Teilsystemen füh-
ren.

Alle präsentierten Verfahren werden auf international anerkannten Sprach-
datenbanken getestet und wurden in einschlägigen internationalen Medien
publiziert. Im Vergleich mit anderen Arbeiten auf dem aktuellen Forschungs-
stand erreichen unsere vorgestellten Sprechererkennungssysteme gleichwertige
oder bessere Erkennungsleistungen.



Abstract
Due to the growing need for security applications speaker recognition as the
biometric task of authenticating a claimant by voice has currently become
a focus of interest. Traditionally approaches in the area of speaker recogni-
tion were mainly based on generative classi�ers like Gaussian Mixture Mod-
els (GMMs). However, more recently other classi�ers like Support Vector
Machines (SVMs) have been successfully applied to several �elds of pattern
recognition. These discriminative classi�ers which are theoretically derived
from statistical learning theory obtain a high generalization ability. Therefore
these so called discriminative methods have also been discussed as a promising
approach to speci�cally improve performance of speaker recognition systems.

Following this train of thought, this work focuses on the development and
integration of di�erent discriminative classi�ers into the �eld of speaker recog-
nition. As an alternative to the SVM we present the Sparse Kernel Logistic
Regression (SKLR), a sparse non-linear expansion of the well known Logis-
tic Regression. In contrast to Support Vector Machines the SKLR directly
models the posterior probability of class membership and therefore naturally
provides a probability output. For this reason a new speaker recognition envi-
ronment is designed and implemented which includes two di�erent recognition
approaches, one for limited and one for large (the so called extended) training
data.

In the �rst recognition approach the discriminative classi�ers are applied
directly on feature vectors from parameterized speech frames and it is shown
that both, SVM as well as SKLR outperform traditional GMM methods.

In the second approach a state-of-the-art speaker recognition system for
large amount of training data is designed that combines Gaussian Mixture
Models (GMM) with discriminative classi�ers and integrates the SKLR into
this system.

Furthermore, we investigate di�erent feature extraction methods for speaker
recognition on large amount of training data. It is shown that the application
of fusion schemes which combine these subsystems yield a signi�cant improve-
ment of the recognition performance in comparison to the application of single
subsystems.

All presented approaches are evaluated on internationally recognized cor-
pora and were published in appropriate international media. The comparison
of our speaker recognition systems with other state-of-the-art systems revealed
equal or signi�cantly better recognition performance.
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1 Introduction
In general the �eld of biometrics (ancient Greek: bios = �life� and metron
= �measure�) deals with measurements of creature's speci�c characteristics.
In particular biometrics addresses methods of identifying a creature by one or
more of these characteristics, thus recognizing a subject by physiological or
behavioral traits. An overview of di�erent traits, divided in behavioral and
physiological traits is given in �gure 1.1. Well known biometric traits include
�ngerprints, iris, face and deoxyribonucleic acid (DNA) as well as signature
and voice. For a more detailed introduction to biometrics see [Jain et al.,
2004].

biometrics

behavioral physiological

voice

signature

fingerprint

iris

face

DNA

Figure 1.1: Overview of the most important biometric characteristics, classi�ed into phys-
iological and behavioral traits.

One of the oldest measurements of biometrics is the �ngerprint which was
introduced as an identi�cation measure by Francis Galton in 1888, [Galton,
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1888a] and [Galton, 1888b]. The �ngerprint is still one of the most conven-
tional method of identifying criminals.

Nowadays it is possible to realize automatic identi�cation and veri�cation
methods with high accuracy, mainly due to the increase of computational
power during last century.

Therefore the use of biometrics is more convenient than other traditional
identi�cation techniques today. Either a person needs to show a passport or
a credit card or has to remember a password. In other cases one needs both,
e.g., the bank card and the personal identi�cation number (PIN) for the
cash machine. The drawbacks are obvious: passwords can be forgotten, cards
can be stolen and pin numbers can be observed by thieves when entered into
a cash machine.

Instead of these methods the key idea of biometrics is to use the subject
itself. Especially through the combination of di�erent biometrics an improve-
ment of security is expected [Kung et al., 2004].

Not only as a consequence of September 11, 2001, security issues became
crucial for society in this century.

Authentication applications are highly relevant for networking, communica-
tion and mobility ranges from border or access control, credit card payments
to telephone-based applications like telephone banking or telephone confer-
ences.

This thesis is focused on automatic authentication or recognition of a sub-
ject by speech. Traditionally, security routines in telephone applications like
customer services are based on simple queries like customer's name, date of
birth or address. But a further authentication by customer's speech yields a
higher security level for both, the company and the customer.

The main aim of this thesis is to examine and compare di�erent kinds of
classi�cation methods in the �eld of speaker recognition. Additionally, com-
peting feature extraction techniques in the acoustic space are investigated
regarding the choice of classi�ers. Furthermore strategies of combining infor-
mation from competing feature streams and di�erent classi�cation methods
are assessed.

Chapter 2 gives a brief overview of speaker recognition and describes various
realizations like speaker identi�cation and speaker veri�cation. Moreover, we
address current problems of state-of-the-art recognition systems.

The extraction of speaker speci�c or characterizing features from the speech
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signal is a crucial step of speaker recognition. We review the main points
of speech production in chapter 3 and introduce feature extraction methods
used in this thesis. In chapter 4 we will discuss the theoretical background
of Statistical Learning Theory and address the principles of Structural
Risk Minimization with the aim to lay the foundation for the discriminative
classi�ers we will present in this thesis.

While generative classi�ers have been studied in the �eld of speech and
speaker recognition over years, more currently discriminative methods be-
came a focus of interest. In chapter 5 we discuss di�erent discriminative clas-
si�cation approaches like Support Vector Machines (SVMs) and Kernel
Logistic Regression (KLR).

A novel speaker recognition system especially designed for limited training
data is presented in chapter 6. This chapter provides speaker identi�cation
and veri�cation experiments on the use of generative and discriminative clas-
si�ers.

Chapter 7 o�ers a detailed description of the speaker veri�cation system
designed for large speaker recognition evaluations and includes comparative
experiments of the presented classi�cation methods. In the following results
on di�erent fusing approaches for combining competitive feature extraction
and classi�cation methods are presented.

Finally, chapter 8 summarizes the results of this thesis and gives an outlook
for future research.
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2 Speaker Recognition
Speaker Recognition as part of the identi�cation of behavioral traits in bio-
metrics is a method of recognizing a speaker by voice. While other biometric
techniques like �ngerprint or retina patterns are based on physiological charac-
teristics, human speech is a behavioral pattern and only moderately in�uenced
by physiological characteristics of the speech production system.

Use and application of speaker recognition is already widespread, e.g., to
give access to a private area or as identi�cation feature in telephone based
applications. In telephone banking systems it is very important that a person
who prompts a credit card number veri�es herself as owner of the card. Con-
sequently, speaker authentication methods improve security aspects in such
applications.

The �eld of speaker recognition consists of two tasks, namely speaker
identi�cation and speaker veri�cation.

As in other biometric systems both speaker recognition methods can be
divided into two phases, the enrollment and the test phase. During en-
rollment or training, the system stores the characteristic information of the
speaker. On the one hand, this is done in order to use them as voice reference,
on the other hand to estimate a stochastic model based on these information.
However, during the test phase characteristics of a new speech example are
compared to stored or estimated ones. In the following sections we give an
overview of di�erent �elds of speaker recognition and review state-of-the-art
classi�cation and decision methods (see also [Campbell, 1997, Bimbot et al.,
2004]).

2.1 Speaker Identi�cation
A speaker identi�cation task consists of a set of known speakers or clients.
The problem of this task is to decide which person from the set is talking, see
�gure 2.1.
Closed sets only consider known speakers. Consequently, speech input

has to be classi�ed to one speaker of the set, even if the speech does not
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Figure 2.1: Illustration of a closed set speaker identi�cation system.

originate from any speaker of the set. Alternatively, the open set speaker
identi�cation contains an additional rejection outcome to consider such cases.
The open set speaker identi�cation is more complex because the system must
not only decide which speech input matches which speaker but also whether
the characteristics of the speech input are close enough to any speaker in the
set.

Related applications of speaker identi�cation are speaker tracking and
speaker change detection. While speaker tracking follows a client during
a conversation, change detection systems detect changes of speakers during
a conversation. These methods are essential in applications like automatic
transcription of conversational speech, used in meetings or conferences.

In the scope of biometrics, speaker identi�cation is also used in forensic
speaker identi�cation, e.g., to convict a suspect in a criminal investigation.

2.2 Speaker Veri�cation
In the area of speaker veri�cation the recognition system veri�es if a person
is the one he claims to be. Therefore, the main di�culty in this setup is
the challenge that the system has not only to deal with the client but also
with all kinds of impostors, who pretend to be a client. As illustrated in
�gure 2.2 the veri�cation system asks for a binary (yes/no) decision instead
of the multiple classi�cation in speaker identi�cation. In this case the speaker
has to claim his identity before the onset of the core classi�cation process.
Speaker veri�cation is also referred to as speaker detection.

Applications of speaker veri�cation are ideal for security issues, such as
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Figure 2.2: Illustration of a speaker veri�cation process with to inputs. The speech and
the identity claim of a speaker.

speaker authentication in commercial phone-based systems. In general it is
more convenient and natural to use human voice for authentication than to
remember a PIN or other kinds of passwords as necessary in traditional meth-
ods.

2.3 Text Dependence
A signi�cant di�erence between speaker recognition systems is the relation to
spoken text used during enrollment and test. The main text-styles of spoken
text are text-dependent, text-prompted and text-independent, for a
more detailed description see [Bimbot et al., 1994].

Text-dependent systems use the same pass-phrase during enrollment and
testing. It is possible to use the same pass-phrase for all users or to allow �xed
user pass-phrases, in which the user is free to choose his personal pass-phrase
during enrollment and test.

In text-prompted systems the client is prompted to speak speci�c words
or sentences during enrollment and testing. For example the speaker speaks
several digits or digit sequences during the enrollment and for every digit a
single speaker-speci�c model is created. During testing the user is prompted
to speak a sequence of a few selected random digits.

In contrast, in text-independent systems the client can speak anything dur-
ing enrollment and test, even in di�erent languages. The accuracy of such sys-
tems might be limited because it is di�cult to consider special speaker speci�c
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characteristics, e.g., pronunciation of phonemes. To overcome this drawback
it is possible to combine speech and speaker recognition systems [Stolcke et al.,
2007]. The input speech is then recognized by the speech recognizer and a
quasi text-dependent speaker recognizer could be enabled.

2.4 Speaker Variability and Robustness
The goal of speaker recognition is to discriminate a speci�c speaker from other
speakers. Not surprisingly, the human voice changes over long periods of time,
due to aging or due to speaker's health. And even in short periods of time the
voice may sound di�erent. These variations arise from the person herself, i.e.
changes occur if the person has a cold, if she is lucky or sad or if she is just
tired. The e�ects of speaker variabilities can be avoided by collecting speech
samples of a speaker over a longer period of time.

As we know from speech recognition, the recognition rate always depends on
the quality of speech samples. The recorded signal may contain background
noise, like tra�c or babble of other voices. Also di�erent microphone types
and transmission channels have a negative e�ect. Especially if these vari-
abilities change between enrollment and test the recognition of the speaker
becomes a challenge. In speech recognition these variabilities may be averaged
out by a large amount of speech that is recorded in countless separate ses-
sions. But in speaker recognition the amount of speech as well as the number
of sessions for each speaker is limited and other methods dealing with these
mismatches have to be applied. Some of these methods, like feature mapping
are part of the recognition system presented in chapter 7.

2.5 Likelihood Ratio Test
Let us denote a speaker model of a speaker i by λi, λi ∈ {λ1, ..., λN}, where
N is the number of speakers in the set. The probability that a set of feature
vectors X = {x1, ..., xT} is produced by the model λi of the speaker i, is com-
puted by the log-likelihood over the whole sequence averaged by the number
of feature vectors:

log P (X|λi) =
1

T

T∑
t=1

log P (xt|λi). (2.1)
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In the task of closed-set speaker identi�cation, the sequence is simply assigned
to the speaker with the highest production probability of the corresponding
speaker model:

i? = argmax
j

log P (X|λj). (2.2)

In the case of speaker veri�cation we have to decide if the sequence is generated
by the hypothesized speaker or not. The decision is realized by a likelihood
ratio test (LRT). The LRT is a statistical test of the goodness-of-�t between
two parametric models. In the case of speaker veri�cation the ratio of two
models λi and λi is given by

P (X|λi)

P (X|λi)
, (2.3)

where P (X|λi) represents the probability that the sequence X is from the
hypothesized speaker i and P (X|λi) that the sequence X is not from the
hypothesized speaker, see [Higgins et al., 1991].

For the probability P (X|λi) the concept of a universal background
model (UBM) is used, see [Higgins et al., 1991] and [Reynolds, 1995]. Given
a collection of speech samples from a large number of speakers a single model
λUBM is trained to represent the probability of the denominator in formula
(2.3). Normally, the same UBM is used as background probability for all
target speakers in the speaker veri�cation task. For a more detailed represen-
tation of di�erent speakers, gender dependent background models are often
used. But it is also possible, to model several speci�c characteristics of speech
and to use one UBM for each of these characteristics.

Feature
Extraction

Background
Model

Hypothesized
Speaker Model

+ Decision
Speech
Identity
Claim

−

Accept

Reject

Figure 2.3: Block diagram of a typical speaker veri�cation system based on the likelihood
ratio test.
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As can be seen in �gure 2.3 the resulting score of the recognition process is
computed by the logarithm of equation (2.3)

Sλi
(X) = log(P (X|λi))− log(P (X|λi)) (2.4)

Based on this score the system has to decide if the speaker is accepted as
the claimed one or not. This is done by verifying whether the score exceeds
a given threshold or not. The magnitude of this threshold is crucial for the
system performance, see below.

2.6 Generative Classi�ers
In this section we discuss how probabilities of class membership are generated
by generative classi�ers. This approach exclusively concentrates on supervised
learning problems, where a training set {(x1, y1), . . . , (xN , yN)} is given. The
samples xi ∈ X are independently and identically distributed (IID)
from an unknown but �xed probability distribution P (x). The labels yi spec-
ify the corresponding class membership of the sample and belong to the label
set Y = {1, . . . , Y }.

The role of the classi�er is to map from the samples xi to the corresponding
label yi ∈ Y . In the generative approach the joint distribution P (x, y) of
training examples is modeled by learning the class-conditional density P (x|y)
and the class prior probability P (y). The posterior probability P (y|x) is then
obtained using Bayes' rule

P (y|x) =
P (x|y)P (y)

P (x)
. (2.5)

The corresponding Bayes classi�er attempts to select the label by

f(x) = argmax
y

P̂ (x|y)P̂ (y) (2.6)

where the hats represent estimated values. The prior P̂ (y) can be estimated
by counting the observations y in the training set. The probability P̂ (x|y) is
often assumed as a parametric distribution where the distribution parameters
have to be determined. If the estimated model P̂ (x|y) is close enough to the
true unknown distribution P (x|y) then it could be used to generate samples
with similar statistics. Typically, the probabilities P̂ (x|y) are estimated by
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continuous density functions like Gaussian Mixture Models.

2.6.1 Gaussian Mixture Models
In speech and speaker recognition acoustic events are usually modeled by
Gaussian probability density functions (PDFs), described by the mean
vector µi and the covariance matrix Σi. But unimodal PDFs with only one
mean and covariance are unsuitable to model all variations of a single event
in speech signals. Therefore, a mixture of single densities is used to model
the complex structure of the density probability. Such Gaussian Mixture
Models (GMM) consist of C weighted Gaussian densities, each of the densi-
ties is represented by a mean µi, a covariance matrix Σi and a mixture weight
ci:

p(xt|λ) =
C∑

i=1

ciN (xt|µi,Σi), (2.7)

with
∑C

i=1 ci = 1. The vector λ = {c, µ, Σ} contains all model parameters of
the speci�c GMM. The i-th Gaussian density of the GMM in d-dimensional
space is de�ned as

N (xt|µi,Σi) =
1

(2π)d/2|Σi|1/2
exp

(
−1

2
(xt − µi)

>Σ−1
i (xt − µi)

)
(2.8)

While the parameter of a single Gaussian density distribution can be estimated
directly by a standard Maximum Likelihood (ML) function, the mixture
membership of the training samples is unknown and so the estimation of a
mixture of such density parameters is more complicated.

The parameters of a GMM are often estimated by the Expectation Maxi-
mization (EM) algorithm. The EM algorithm is an iterative algorithm where
each iteration consists of two steps, the estimation E and the maximization
M. In the E-step the posterior probabilities of the samples are computed using
the old parameters of the model:

P (i|x, λ) =
p(x|i, λ)P (i|λ)

p(x|λ)

=
ci N (x|λi)∑C

j=1 cj N (x|λj)
(2.9)
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Based on the resulting membership probabilities of the samples, new model
parameters are estimated in the M-step by maximizing the likelihood of the
given data. The new model parameters are computed by:

µnew
i =

∑N
n=1 P (i|xn, λi)xn∑N

n=1 P (i|xn, λi)
, (2.10)

Σnew
i =

∑N
n=1 P (i|xn, λi)(xn − µnew

i )(xn − µnew
i )>∑N

n=1 P (i|xn, λi)
, (2.11)

cnew
i =

1

N

N∑
n=1

P (i|xn, λi). (2.12)

The steps of expectation and maximization are repeated until the model pa-
rameters converge. Alternatively, one can stop after a prede�ned number of
iterations.

Speech
Data

Feature
Extraction

UBM
Training

UBM
Model

Figure 2.4: Training of the background model on a large amount of background speech,
covering di�erent characteristics of speakers as well as di�erent transmission channels.

As already discussed in section 2.5 state-of-the-art speaker recognition sys-
tems are based on universal background models (UBMs). Using GMMs for
modeling, the UBM is typically represented by a GMM trained on a large
amount of speech data to model the speaker independent distribution P (X|λi)
(see �gure 2.4).

2.6.2 Parameter Adaptation of Speaker Models
The parameters of the GMM-UBM are estimated via the EM algorithm on a
large amount of data. If one needs a model of a new dataset then one might
think to start the whole parameter estimation again from scratch, especially
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if the new data is independent from the already used set. However, if the new
dataset is of the same structure as the used set, then it is possible to derive the
new model by adapting the well estimated parameters of the existing model.
Also if the amount of data for a new model is limited, it is not possible to
model events that are not observed in the training data. This is usually
the case in speaker recognition and as a consequence, hypothesized speaker
models are derived successfully by adapting parameters of the UBM.

The adaptation method described in this section is known as maximum a
posteriori (MAP) adaptation [Gauvain and Lee, 1994]. Like the EM algo-
rithm, it is a two step estimation process where the �rst step is identical to
the E-step of section 2.6.1. In the second step the new statistical estimates of
the E-step are combined with the statistics from the previous model. Given
a well estimated model and a set of new training data X = {x1, . . . , xT}
we �rst determine the posteriori probability P (i|xt) that the new vector xt

belongs to mixture i of the GMM:

P (i|xt) =
cipi(xt)∑C

j=1 cjpj(xt)
. (2.13)

The probability P (i|xt) is then used to compute the statistics for the new
weights ci, the new means and the new variances:

Ei(x) =
1

ni

T∑
t=1

P (i|xt)xt (2.14)

Ei(x
2) =

1

ni

T∑
t=1

P (i|xt)x
2
t (2.15)

where ni is the de�ned as the summed posteriori probabilities

ni =
T∑

t=1

P (i|xt) (2.16)

and x2 = diag(xx>). These statistics can be used to update the parameters
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of the existing GMM to create a new model:

ĉi =
(
αi

ni

T
+ (1− αi)ci

)
γ (2.17)

µ̂i = αiEi(x) + (1− αi)µi (2.18)
σ̂i

2 = αiEi(x
2) + (1− αi)(σ

2
i + µ2

i )− µ2
i (2.19)

where γ is a scale factor computed over all adapted mixture weights ĉi to
ensure that

∑
i ĉi = 1. The adaptation coe�cient αi controls the balance

between the old and the new estimates:

αi =
ni

ni + r
(2.20)

with the so called relevance factor r. This relevance factor is prede�ned by
the user depending on the amount of training data.

If only a small amount of data is observed then the corresponding adapta-
tion coe�cient tends to zero and the in�uence of the new statistics is small.
Otherwise for large ni the adaptation coe�cient tends to one and the in�uence
of the original parameter is reduced.

Feature
Extraction

MAP
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Speaker N

...

Speaker 2

UBM Model

Model
Speaker N

...

Model
Speaker 2

Model
Speaker 1Speaker 1

Figure 2.5: Training (or enrollment) of speaker models based on MAP adaptation from
the Gaussian mixture background model.

The training or adaptation of speaker models is usually called enrollment
phase. Figure 2.5 illustrates this process in case of MAP adaptation of
speaker models.



2.7 Feature Mapping 15

2.7 Feature Mapping
The compensation of intersession variabilities is considered to be one of the
major problems in speaker recognition. These variabilities occur between
training and testing by using di�erent telephone handsets and/or di�erent
transmission channels. Feature Mapping [Reynolds, 2003] is a popular nor-
malization method to reduce the in�uence of di�erent transmission channels
and telephone handsets. It operates directly in the feature space by �rst
identifying the used channel (or handset) in the observation and secondly
transforming the feature vectors into a channel independent feature space.

The channel dependent models are adapted from the channel independent
root-UBM by a one pass MAP adaptation. This results in a shift of the mean
vectors of the adapted models that is hopefully characteristic for the spe-
ci�c channel. Typical channels are landline and cellular and in more details
carbon or electret, standard or cordless handset, gsm or cdma transmission
channels. Having adapted the channel dependent GMMs, all observations
are scored against the dependent models and each feature vector is mapped
to the channel independent space. This mapping is realized by the parame-
ters of the Gaussian mixture achieving the highest mixture probability of the
corresponding channel dependent model:

xid = (xdp − µdp)
σid

σdp

+ µid (2.21)

with the channel dependent (independent) feature vector xdp (xid), the chan-
nel dependent (independent) Gaussian mean µdp (µid) and the respective
variances σdp and σid.

2.8 Performance Evaluation
In speaker veri�cation (or detection) usually two error rates occur. The �rst
error rate is the false reject error rate (or miss rate), FR: The speaker is the
claimed client but is classi�ed as an impostor. The second error rate is de�ned
as false accept (or false alarm) error rate, FA: The speaker is not the claimed
one but is classi�ed as the client. Both of these error rates are dependent on
the decision threshold and e�ect each other. The lower the threshold is the
more impostor identity claims are accepted as true targets. This also leads to
a low false reject error rate but of course to a high false accept error rate. If
the threshold is set to a very high value all the identity claims are rejected.
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The result is a high false reject error rate and a low false accept error rate.
If the system is evaluated on a large range of decision thresholds we receive
a number of {FA, FR} pairs that describe di�erent operation points of
the system. So, the best operation point of the system is always a trade-o�
between the two types of veri�cation (or detection) errors. This trade-o� is
illustrated in a receiver operating characteristic (ROC) curve, where the
miss probability is plotted against the probability of false alarm. For a better
presentation of the results it is possible to rescale the axes to be normally
distributed so that Gaussian distributed scores result in a straight line. This
variant of the ROC curve is called detection error tradeo� (DET) [Martin
et al., 1997].

The two error rates can be combined for a single performance measure of
the veri�cation system, the detection cost function (DCF). The DCF is
de�ned as a cost function, where the costs CFA and CFR are assigned to the
FA and the FR rates:

Cdet = CFR · FR · PTarget + CFA · FA · PNonTarget (2.22)

with the a priori probabilities PTarget and PNonTarget = 1 − PTarget of target
and impostor speakers, respectively. Often the best operating point of the
system is included as circle on the DET curve. If we assume equal costs
CFA = CFR = 1 and equal a priori probabilities the DCF is reduced to the
half total error rate (HTER):

HTER =
1

2
(FR + FA) (2.23)

Often a more intuitive measure is used to report the performance of the
speaker recognition system: the equal error rate (EER). The EER occurs
if the decision threshold of the veri�cation system is set to a value so that
the number of false rejection equals the number of false acceptance. In prac-
tice the EER is an approximation representing the point where the distance
between FA and FR is minimal.

2.9 Decision Threshold Setting
On the basis of the classi�cation scores obtained from �gure 2.3 it is necessary
to determine a decision threshold of accepting or rejecting a speaker claim
during veri�cation. This threshold can be set for each speaker separately, or
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as a global threshold for all speakers using the same system.
Figure 2.6 shows an example of the target and impostor score distribu-

tions. The smaller the overlap between the two histograms the smaller the
probability of error.
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Figure 2.6: Score distributions for target speaker and impostor scores S(x).

The value of the decision threshold depends on the task of the recogni-
tion system. In authentication applications like telephone banking or access
control the false acceptance rate should be very small. The DCF can be
used to estimate a good operating point by setting the costs CFR and CFA

to adequate values. But the DCF is based on an a posteriori minimization
of the cost function during the veri�cation. Of course, this is always to the
advantage of the system and for real-world evaluations one should determine
a priori thresholds on a development set using (2.22).

Following the NIST evaluation protocols [Przybocki and Martin, 2006], the
target speaker probability is set to PTarget = 0.01 and the impostor speaker
probability toPNonTarget = 0.99. The relative costs of detection errors in this
function are the costs of miss (CMiss) and false alarm errors (CFalseAlarm),
these parameters are set to CFR = CMiss = 10 and CFA = CFalseAlarm = 1.
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2.10 Score Normalization
It is possible to use the output scores of the Likelihood Ratio Test directly
in the veri�cation process. But the scores values are e�ected by variabilities
between enrollment and test conditions, background noise, quality of speaker
models and duration of speech segments.

The output scores depend on the target speaker model as well as on the test
segment itself, so that the scores are biased to the speaker or the observation.
Finally, the decision threshold is �xed for all speakers and depends on the
distribution of the output scores, see section 2.5. This means that the scores
of di�erent target speakers should be centered around the same value and the
scores of impostor speakers also. Therefore, the purpose of normalization is
to perform a distribution scaling on the scores.

The score normalization techniques used in this thesis are based on normal-
izing the score by

Ŝλ(X) =
Sλ(X)− µλ

σλ

(2.24)

where mean µλ and standard deviation σλ are estimated on scores from known
impostor speakers, so called pseudo impostors. The commonly used score
normalization approaches are the Test-Normalization (TNorm) and the Zero-
Normalization (ZNorm).

2.10.1 TNorm
In the Test Normalization (TNorm) approach [Auckenthaler et al., 2000]
a set of TNorm models is trained on pseudo impostor speakers. The models
are derived in the same way from the background model as the target speaker
models. During the evaluation the test utterance is scored as usual by the
speaker model but also by the set of TNorm models. The speaker scores are
then normalized by the mean µλ and the standard deviation σλ of the TNorm
scores as given in equation (2.24). A disadvantage of the TNorm is that the
test utterance has to be scored by an additional amount of models. While the
TNorm set sometimes consists of several hundred of pseudo impostor models
it is possible to select a subset of pseudo impostor speakers depending on
di�erent approaches like speaker speci�c TNorm sets, e.g., selecting the most
similar TNorm models compared to the target speaker.
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2.10.2 ZNorm
The Zero Normalization (ZNorm) approach [Li and Porter, 1988] is also
based on the estimate of mean and variance parameters. The target speaker
model is tested against a set of pseudo impostor speech utterances. The
ZNorm parameters µλ and σλ are then estimated on these speaker speci�c
impostor scores. During the evaluation the test utterance is scored by the
speaker model and the normalized score is computed by shifting and scal-
ing the speaker score by the precomputed mean and standard deviation as
in (2.24). The advantage of the ZNorm is that the normalization parameters
are estimated o�ine as a part of the training process.

2.11 Summary
In Chapter 2 we reviewed basic methods used in state-of-the-art speaker recog-
nition systems. First we summarized several possibilities to apply these meth-
ods in di�erent recognition �elds and discussed di�culties concerning text
dependence and robustness. In the following we concentrated on the main
decision process which is based on a traditional universal background model
(UBM) concept and Gaussian mixture models (GMMs). Additionally, we
described standard methods for channel mismatch compensation and score
normalization.

In general, this chapter addressed the fundamentals of speaker recognition
to understand the integration of novel classi�cation methods and recognition
environments. In the next chapter we review the main methods of speech
processing that will be used in this work.
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3 Fundamentals of Speech
Processing

This chapter reviews the fundamental principles of speech production in hu-
man beings and shows how these mechanics leads to several di�erent ap-
proaches of speech parameterization to speech and speaker recognition. Then,
in section 3.2 we discuss three popular approaches of speech parameterization
that will be used in the speaker recognition systems presented in chapter 6 and
7. For a more detailed description of the fundamentals of Speech Processing
we refer to [Rabiner and Juang, 1993, Wendemuth, 2004a]

3.1 Human Speech Production
In this section we outline speech production in human beings and focus on
important points for the extraction of relevant features for speaker recognition.

Figure 3.1 shows a schematic diagram of the human voice production sys-
tem. First, air is expelled from the lungs through the trachea to the larynx
and passes the vocal chords within the larynx. Secondly the vocal chords
vibrate by the airstream depending on the kind of expressed sound. Thirdly
sounds are produced by this vibration of the vocal chords and the airstream
is chopped into quasi-periodic pulses with a frequency varying from 60Hz to
200Hz for males and from 120Hz to more than 350Hz for females. This fre-
quency is also called the fundamental frequency F0. For unvoiced sounds
the vocal chords are open and the airstream can pass directly through the
larynx.

Beyond the vocal chords the continuous or chopped air �ow reaches the
most important and complex part of the speech production system: the vocal
tract. The vocal tract is basically an acoustical tube and can be divided into
the oral tract (together with the pharyngeal) and the nasal tract. The
oral tract is terminated by the vocal chords at one and by the lips at the other
end. The average length depends on the sex of the speaker, about 17 cm for
male and about 15 cm for female speakers. Di�erent parts of the oral tract, the



22 3 Fundamentals of Speech Processing
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Figure 3.1: Schematic view of the human voice production system.

velum, the tongue and the lips serve as articulators. Di�erent proportions
of these articulators can cause various cross-sections of the oral tract which
are responsible for multiple possible resonance frequencies of the vocal tract.
Conversely, the cross-section of the nasal tract is �xed and the amount of air
�ow to the nasal tract is controlled by the velum.

3.1.1 Source-Filter Model
The speech production system can be simpli�ed to the source-�lter model
presented by [Fant, 1960]. As illustrated in �gure 3.2 the whole production
process is reduced to two di�erent excitations and an acoustic �lter. The two
excitations represent the vocal chords and the acoustic �lter models the vocal
tract. The �rst excitation models the tensed vocal chords and is realized by
a pulse train source characterizing voiced sounds like vowels and nasals. The
second one is a simple white noise source which is needed to produce unvoiced
sounds like fricatives, where the vocal chords are open and the airstream passes
through.

The vocal tract considered as the acoustic �lter is characterized by its reso-
nance frequencies, where the energy of the source signal reaches local maxima.
These local maxima of the spectrum are called formants and typically there
are up to four resonance frequencies or formants of signi�cance. Figure 3.3
gives a small example of a short speech frame. The formants can be observed
as local maxima of the smoothed signal.
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Figure 3.2: Speech production model with two excitations, white noise and pulse train.
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Figure 3.3: Example of a short voiced speech sample in the frequency domain. Represen-
tation of original log spectrum and corresponding formant frequencies by linear predictive
coding.

3.2 Speech Parameterization
For the purpose of speech and speaker recognition the speech signal itself
contains a lot of redundant and irrelevant information. Therefore we want
to extract the features that contain relevant information of the speech signal
in the speech parameterization process. The most important information for
speech processing tasks are given by the characteristics of the vocal tract.

As discussed in section 3.1 these characteristics are evidenced in the fre-
quency domain by the location of the formants. The formants, observable
as peaks in �gure 3.3, are primarily responsible for the recognition of spe-
ci�c phonemes in speech recognition and of course for the identi�cation of a
speci�c gender or a speci�c speaker.
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Additionally, we reduce the amount of data to get a compact and less re-
dundant representation of the speech data in the parameterization process.

In a �rst step the speech data has to be discretized by a sampler using an
adequate sampling frequency fa. To prevent spectral alias e�ect the signal
should be low-pass �ltered with a corner frequency lower than fa/2 before the
sampling.

As known from signal processing, traditional methods of spectral evaluation
are only reliable in the case of stationary signals. But unfortunately the voice
signal is only stationary within a very short time and exclusively for voiced
speech. Consequently we have to select short sections of speech where the
speech signal is assumed as stationary. This selection is realized by a small
window that is moved over the speech signal with a prede�ned window size
and window shift. Typically widow sizes are between 20ms and 30ms and
the window shift is chosen to be between 10ms and 20ms. The window shift
has to be smaller than the window size to guarantee that all information are
captured by the window. The simplest window is the rectangular window.
The rectangular window has excellent resolution characteristics for signals of
comparable strength but it is a poor choice for signals of disparate amplitudes
like speech. This is caused by the window's side e�ects in which the disparate
amplitudes causes high frequencies in the signal's spectrum. A good choice for
speech representation is the use of the so called Hamming window. This
window tapers samples on each window so that discontinuities at window
edges are attenuated:

wk =

{
0.54− 0.46 cos(2π · k

M−1
), 0 ≤ k ≤M − 1,

0 otherwise, (3.1)

where M is the window length. The resulting windowed speech section is also
called speech frame.

Typically, a pre-emphasis is applied to the speech signal before any further
processing. This pre-emphasis is used to compensate the negative spectral
slope of the speech signal and is realized by a �rst-order high-pass �lter H(z) =
1 − αz−1, where α controls the slope of the �lter. The �lter is implemented
as a �rst order di�erence of the speech frame s(n), where the �lter coe�cient
α falls typically between 0.9 and 1:

y(n) = s(n)− αs(n− 1). (3.2)
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For spectral analysis the windowed signal has to be transformed into the
frequency domain by the Fourier Transformation (FT). After the sampling
process the speech signal is a discrete signal and the FT is evaluated only for
a discrete number of values. If these values are equally spaced the Discrete
Fourier Transformation (DFT) of all frames of the speech signal can be
obtained:

Sm(k) =
N−1∑
n=0

s(m− n)w(n)e−j2πkn/N (3.3)

where s(m− n)w(n) represents the windowed speech signal. While the com-
plexity of the DFT computation is O(N2) the computation can be realized
via an e�cient implementation called Fast Fourier Transformation (FFT).
The computational complexity of the FFT is O(N log2 N). The radix-M FFT
is de�ned through N = M q with some M ∈ N, typically M = 2 or 4.

3.2.1 Cepstral Features
The cepstral analysis is a method to deconvolve a convolution of two signals.
As mentioned earlier, the speech signal is a convolution of the excitation and
the vocal tract �lter response, see �gure 3.2. After the transformation of the
speech signal into the frequency domain by the FFT the convolution becomes
a product of excitation and �lter response. The logarithm of the multiplication
becomes a summation of the two parts. Finally, the expression is transformed
into the cepstral domain by the Inverse Fast Fourier Transformation
(IFFT) where the excitation is represented as a small peak. Denoting the
excitation signal u(n) and the �lter response h(n) the cepstrum is computed
as:

IFFT{log FT{s(n)}} = IFFT{log FT{u(n)}}
+ IFFT{log FT{h(n)}} (3.4)

3.2.2 Filter Bank Processing
In speech and speaker recognition �lter banks are commonly used to simulate
the human perception of the frequency content of sounds. Because the human
ear perceives only larger ranges of frequencies it can not discriminate closely
adjacent frequencies. Di�erent �lter shapes, like rectangular or triangular,
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can be used to integrate the spectrum at di�erent frequencies. Additionally,
the resolving power of the ear decreases towards higher frequencies. As a
result frequencies can be warped according to some non-linear functions, like
mel or bark-scale.

3.2.3 Mel-Cepstral Features
Frequencies are resolved non-linearly across the frequency spectrum by the
human ear. Interestingly it has been shown empirically that designing the
feature extraction in a similar manner improves the recognition performance
in speech and speaker recognition.

The �lters of the mel-scale �lter bank are spaced non uniformly along the
frequency axis to obtain the desired non-linear frequency resolution as a con-
sequence of this observation. The �lter bank is constructed of a set of triangu-
lar �lters that are equally spaced along the mel-scale [Davis and Mermelstein,
1980] which is de�ned as:

mel(f) = 2995 log(1 +
f

700 Hz
) (3.5)

Supposing an N -point FFT spectrum S(j) and a M -point �lter bank with
the i-th �lter response Hi(j), the output Y (i) is given by

Y (i) =
N∑

j=1

S(j)Hi(j). (3.6)

Since the logarithm of the �lter bank output is real and symmetric, the
IFFT is reduced to the Discrete Cosine Transformation (DCT):

cj =

√
2

M

M∑
i=1

Y (i) cos

(
πj

M
(i− 0.5)

)
(3.7)

to achieve the mel frequency cepstral coe�cients (MFCC).

3.2.4 Linear Prediction Analysis
In contrast to the deconvolution method described in the last section the
characteristics of speech can also be modeled in the time domain by lin-
ear predictive coding (LPC). LPC is based on the underlying idea, that



3.2 Speech Parameterization 27

a given speech sample can be approximated as a linear combination of the
past p speech samples and an excitation term. This is also known as an au-
toregressive (AR) process, or autoregressive model. The AR model assumes
that speech is produced by exciting a linear �lter, which is the vocal tract in
speech production, by either a series of impulses, if the sound is voiced, or
white noise, if it is unvoiced (see �gure 3.2). Therefore the AR model provides
a good approximation of the vocal tract spectral envelope. For more details
we refer to [Rabiner and Juang, 1993, Wendemuth, 2004b].

In linear prediction (LP) analysis the vocal tract is modeled by an AR
model (or all-pole �lter) with transfer-function

H(z) =
1∑p

i=0 aiz−i
(3.8)

where p is the order of the model and is equivalent to the number of poles
and a0 = 1, [Fant, 1960]. The �lter coe�cients ai are estimated by minimizing
the mean square error of the �lter prediction over the windowed speech signal.
Technically, the minimization is done by the autocorrelation method, where
the prediction coe�cients are recursively estimated by the Levinson-Durbin
recursion, see [Levinson, 1947, Durbin, 1960].

To use the LPC coe�cients in speech or speaker recognition feature vectors
should be de-correlated like the cepstral coe�cients. The cepstral coe�cients
c are derived from the LPC coe�cients by

c0 = ln σ2, (3.9)

cm = am +
m−1∑

k=1

k

m
ckam−k, 1 ≤ m ≤ p (3.10)

cm =
m−1∑

k=m−p

k

m
ckam−k, m ≥ p (3.11)

where σ2 is the gain term in the LPC model [Rabiner and Juang, 1993].
The �nal feature vectors are called linear predictive cepstral coe�cients
(LPCC).



28 3 Fundamentals of Speech Processing

3.2.5 Perceptual Linear Prediction
Alternatively to the mel-frequency cepstral and linear predictive cepstral co-
e�cients the perceptual linear prediction (PLP) coe�cients [Hermansky,
1990] can be applied.

The PLP feature extraction is based on the standard mel-frequency �lter
bank where the mel �lter bank coe�cients are additionally weighted by an
equal-loudness curve and then compressed by taking the cubic root. LP coef-
�cients are estimated and converted to cepstral coe�cients from the resulting
auditory spectrum in the same way as in equations (3.9) to (3.11).

Figure 3.4 provides a comparison of the described feature extraction meth-
ods, i.e. the cepstral, the autoregressive and the perceptual method.

FFT | | 2 Filter bank
(mel)

log

| | 1/3

IFFT

IFFT

Levinson
Durbin

cepstral
coeff. PLP

LPCC

MFCC

eq. loudness
pre−emphasis

FFT | | 2

FFT | | 2 Filter bank
(mel)

IFFT

cepstral
coeff.

Levinson
Durbin

Figure 3.4: Comparison of di�erent feature extraction methods used in this thesis: MFCC,
LPCC and PLP

3.2.6 Dynamic Features and Energy Measure
Up to this point we only considered the static feature vectors computed for
each speech frame and ignored the dynamic evolution of the speech signal. A
further improvement in performance could be obtained by appending dynamic
features to the static vectors.

Dynamic features are the time di�erences of the static feature vectors and
usually �rst and second order di�erences are used, but also third order dif-
ferences may be used. Instead using the time di�erences directly, one usually
approximate the dynamic features by a �rst order polynomial regression of
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the static feature vectors given by ct, [Furui, 1986]:

∆t =

∑N
i=1 i(ct+i − ct−i)

2
∑N

i=1 i2
. (3.12)

These features are also called delta (∆) coe�cients. In a similar way for-
mula (3.12) can by applied to obtain the second order time di�erences or
acceleration coe�cients that are called delta-delta (∆∆) coe�cients.

Frame energy is often used in speech recognition since di�erences in energy
can be observed among di�erence speech sounds. The frame energy is added
as additional component of the feature vector and yields a performance im-
provement of the recognizer. For a better representation of the whole range
of energy values the logarithm is used. The logarithm of the energy can be
computed from the speech signal by:

E = log
d∑

i=0

s(i)2. (3.13)

The energy by itself normally does not contain speaker relevant information,
but it has been shown that the �rst and second time di�erences of the energy
are useful for the speaker recognition process. The time di�erences are com-
puted in the same way as for the other feature components in equation (3.12).

3.3 Speech Detection
An important step in text-independent speaker recognition is the speech de-
tection. For a better estimation of speaker models the silence or sections that
only contain background noise have to be removed from the speech signal. A
good indicator of speech is the energy, see equation (3.13) of the windowed
signal.

First, the energy of each speech frame of an utterance is computed by equa-
tion (3.13). Secondly, the frame energy is smoothed by a particular window
function in order not to discard single frames. Then, the smoothed energy
features are used to construct a probability model of speech, which gives a
probability that a frame contains speech or silence. Only frames that are la-
beled as speech are used for the further process and all other frames (labeled
as silence) are discarded.
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3.4 Summary
In this chapter we outlined the general human speech production and revis-
ited three popular speech parameterization techniques, i.e. MFCC, LPCC,
and PLP. We will investigate these techniques in our speaker recognition en-
vironments that are presented in chapter 6 and 7.

Finally, we described an energy based method for speech detection. Speech
detection is an essential step in speaker recognition to discard frames that do
not contain any speech and as a consequence no relevance information about
the speaker.



4 Statistical Learning Theory
In this chapter we introduce classi�cation methods based on statistical learn-
ing theory. We concentrate on supervised learning methods, where a training
set {(x1, y1), . . . , (xN , yN)} is given. The samples xi ∈ X are independently
and identically distributed (IID) from an unknown but �xed probability
distribution P (x). The role of the classi�er is to map from the samples xi to
the corresponding label yi ∈ Y .

In the following chapter we investigate di�erent types of discriminative clas-
si�ers. While the generative classi�er, like the GMM, models the distribution
that generates the sample xi, the discriminative one models the class mem-
bership of the sample directly.

4.1 Loss Functions
Given the input data point x ∈ X , the prediction f(x) ∈ Y and the true
result y ∈ Y , then the map

l : Y × Y → R (4.1)

is called the loss function l(f(x), y). The loss function is a measure of �t
between the model assumption of data and the actual data. Simply speaking,
the loss function l(f(x), y) measures how costly it is when the prediction of the
input x is f(x) and the true result is y. In binary classi�cation the simplest
choice of a loss function is the zero/one loss:

l(f(x), y) =

{
0 if f(x) = y
1 otherwise . (4.2)

If the data point x is classi�ed correctly, there is no penalty, otherwise the
function counts the misclassi�cation error. Usually the set of true results is
Y = {−1, +1} and classi�cation is realized by the signum function of f(x).
Other loss functions used in this thesis are the soft margin loss [Bennett and
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Mangasarian, 1992]

l(f(x), y) =

{
0 if yf(x) ≥ 1
1− yf(x) otherwise , (4.3)

and the logistic loss, de�ned by

l(f(x), y) = log(1 + exp(−yf(x))). (4.4)

In the case of the soft margin loss, the quality of the estimate depends on
the product yf(x). The product will be positive, if the signum function of
f(x) and y agree. As we will see later, the logistic loss leads to probabilistic
outputs of corresponding classi�ers. Another popular loss function for least
squares is the square loss function

l(f(x), y) = (y − f(x))2. (4.5)

A comparison of the di�erent loss functions is given in �gure 4.1. As we
will see later, it is important that loss functions satisfy certain properties.
They should be cheap to compute, and be convex in order to ensure a global
minimum in the optimization process.
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Figure 4.1: Comparison of di�erent loss functions for binary classi�cation with true out-
puts y = ±1 and predictions f(x).
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4.2 Learning from Examples

Suppose we are given a training set of input samples x and corresponding
targets y

(x, y) ∈ Rd × {±1} (4.6)

that were generated from the unknown distribution p(x, y). We now want to
learn a function f : Rd → {±1} out of a set of functions F which minimizes
the expected value of any loss function l(f(x), y). This expectation is called
the actual risk and is given by

R(f) =

∫
l(f(x), y)p(x, y)dxdy. (4.7)

Since the distribution p(x, y) is unknown we cannot minimize the risk R(f)
directly. Therefore, an approximation has to be provided that is close to the
optimal function f which minimizes the actual risk R(f) among all f ∈ F .
Such a method is called an induction principle. Instead of minimizing
the actual risk (4.7) we minimize the risk on a limited training set by the
empirical risk Remp:

Remp =
1

N

N∑
i=1

l(f(xi), yi). (4.8)

However, it is not guaranteed that the minimum of the empirical risk is the
solution that minimizes the actual risk. Figure 4.2 illustrates an example of
possible solutions for a classi�cation task. The training data may be perfectly
discriminated by the complex function (dotted) but does not generalize to
unseen examples. Conversely, if the function f chosen from the function class
F is too simple (dashed), the samples are under-�t. A good tradeo� between
the two function is the solid hypothesis. To avoid these problems we need to
restrict the complexity of the function class.

The questions of consistency, over- and under-�tting are closely related and
will lead us to the principle of Structural Risk Minimization. Let us
de�ne more closely what consistency means and how it can be characterized.
Let us denote by f the function f ∈ F that minimizes the empirical risk (4.8)
for a given training set X of size N . The notion of consistency implies that
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Figure 4.2: Illustration of the under and over-�tting dilemma. The simple linear function
(dashed) under-�ts the data while the complex solution (dotted) perfectly discriminates
the two classes. The solid hypothesis appears to be a good trade-o� and is more likely to
generalize unseen samples.

for N →∞, the empirical risk is consistent for all f ∈ F , if

|R(f)−Remp(f)| → 0. (4.9)

As we have already seen in �gure 4.2 such convergence may not be the case in
general, the reason being that f now depends on the training set X . One can
show [Vapnik, 1998] that a necessary and su�cient condition for consistency
is uniform convergence, over all functions in F , of the di�erence between the
expected and the empirical risk to zero. This insight is summarized in the
following theorem:

Theorem 4.1 (One-sided uniform convergence of risk) One-sided uni-
form convergence in probability, i.e.

lim
N→∞

P

[
sup
f∈F

(R(f)−Remp(f)) > ε

]
= 0 (4.10)

for all ε > 0, is a necessary and su�cient condition for nontrivial consistency
of empirical risk minimization.
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4.3 Vapnik Chervonenkis Dimension
A speci�c way of controlling the complexity of a function class F is given by
the Vapnik Chervonenkis (VC)-theory and the Structural Risk Mini-
mization (SRM) principle [Vapnik, 2000]. Here we use the VC dimension to
capture the concept of complexity.

The VC dimension is a measure of model capacity and was introduced by
Vladimir Vapnik and Alexey Chervonenkis [Vapnik, 2000]. The VC dimension
h gives the maximum number of data points in Rd that can be shattered by a
given model. A common example of the VC dimension is a two-class separa-
tion problem given a linear classi�cation function in Rd with d = 2. While it
is possible to separate any N = 3 data points by an one-dimensional hyper-
plane in dN = 23 di�erent ways, it is not possible to separate all arrangements
of N ≥ 4 data points in all possible ways in 2 dimensions. Extrapolating this
example to the d-dimensional space, the VC dimension h of a linear classi-
�cation function is given by h = d + 1. For comparison, the VC dimension
of a linear classi�cation function plus threshold operation (e.g. sign) is ap-
proximately h = 2d. For an analytical treatment, see [Cover and Thomas,
1991].

4.4 Structural Risk Minimization
The minimization of the empirical risk does not guarantee a small actual risk,
but it is possible to give an upper bound of the actual risk in (4.7). Choosing
some η such that 0 ≤ η ≤ 1 the bound

R ≤ Remp +

√
h(log(2N/h) + 1)− log(η/4)

N
(4.11)

holds with a probability 1−η. The right side of equation (4.11) consists of two
quantities. The �rst summand is the empirical risk given by equation (4.8)
and the second summand is the so called VC con�dence. Given a �xed
training set and a set of function of a high complexity, the learning algorithm
will be adapted to the training data and the empirical error will tend to zero.
Of course, the high complexity also requires a high VC dimension and so the
VC con�dence of equation (4.11) increases.

The principle of Structural Risk Minimization (SRM) is to control the
two quantities Remp and VC con�dence. While the empirical risk depends on



36 4 Statistical Learning Theory

the function chosen by the training procedure, the VC con�dence depends on
the chosen class of functions. To control the VC dimension, a structure is
introduced by dividing the set of functions F into nested subsets Fk:

Create subsets Fk of F with k ∈ N

F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ . . . (4.12)

whose VC dimensions result in

h(F1) ≤ h(F2) ≤ · · · ≤ h(Fk) ≤ . . . (4.13)

and proceed as follows: Find the function fk in the each subset Fk which
minimizes the empirical risk. Choose then the speci�c function for which the
sum of empirical risk and VC con�dence is minimal.

We can summarize that the SRM principle leads to tradeo� between the
complexity of the approximated function and the quality of the approxima-
tion. In section 5.3 we will present a popular example of this principle, namely
the Support Vector Machine. But beforehand we need to review some more
fundamentals of statistical learning theory, like the kernel trick and the re-
producing kernel Hilbert space.



4.5 Kernel Functions 37

4.5 Kernel Functions
4.5.1 Feature Space
For linear classi�cation functions it is not possible to discriminate classes
where the samples are distributed in a non-linearly separable way, which is
normally the case for real world data. Figure 4.3 illustrates a simple example
of two classes that can not be separated by a linear function.
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Figure 4.3: Example of a non-linear decision surface in the 2-dimensional space. Via a
non-linear mapping Φ into the 3-dimensional feature space the samples can be separated
by a linear hyperplane.

In this 2-dimensional space we have to create a decision region in the form
of a circle or other complex functions. On the other hand it might be helpful
to map the samples into a 3-dimensional space by a function Φ:

Φ : R2 → F = R3. (4.14)
In our example we choose the non-linear map in the form of monomials of

degree 2:
(x1, x2)→ (x2

1,
√

2x1x2, x
2
2). (4.15)

From �gure 4.3 it is clear that the two classes can be separated in the 3-
dimensional feature space by a linear hyperplane. This explicit transformation
works �ne for small and low dimensional datasets, but if we want to use M -
dimensional features and monomials of degree d the resulting feature space
blasts to

(
M+d−1

d

)
dimensions. If the samples occur only in the form of dot-
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products then the dot-product of the samples in the feature space is computed
by Φ(x)Φ(z).

Φ(x)Φ(z) = (x2
1,
√

2x1x2, x
2
2)(z

2
1 ,
√

2z1z2, z
2
2)
>

= x2
1z

2
1 + 2x1x2z1z2 + x2

2z
2
2

=
(
(x1, x2)(z1, z2)

>)2

= (x · z>)2 (4.16)

The results of equation (4.16) allows us to compute the dot-product of Φ(x)Φ(z)
in feature space F without explicit mapping the samples into F . Such a direct
computation method of the dot-product is called kernel function.

The consequence of this simple example leads to the reverse question, which
kernel function k corresponds to a dot-product in feature space F .

4.5.2 Reproducing Kernel Hilbert Space

Suppose we are given a function k : X × X → R and x1, . . . , xN ∈ X . Then
the N × N matrix K with entries Kij = k(xi, xj) is de�ned as the Gram
matrix of k. The matrix K is called positive de�nite for all xi ∈ R, if for any
α1, . . . , αN ∈ R

N∑
ij

αiαjKij ≥ 0 (4.17)

holds. The function k is also called a positive de�nite kernel, i� for all N ∈ N
and all x1, . . . , xN ∈ X the Gram matrix of k is positive de�nite. Since the
kernel matrix K is also symmetric, the following equation holds:

k(xi,xj) = k(xj,xi). (4.18)

If k is a real positive de�nite kernel and X 6= ∅, we de�ne the mapping from
X into the function space H = RX = {f : X → R} by

Φ : X → RX ,x→ k(·,x). (4.19)
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One can show that the set of all linear combinations

f(·) =
N∑
i

αik(·, xi) with any N ∈ N, αi ∈ R,x1, . . . , xN ∈ X (4.20)

forms a vector space. For this reason we construct a vector space by the linear
combination of the form

g(·) =
N ′∑
j

βjk(·, x′
j) with any N ′ ∈ N, βj ∈ R,x1, . . . , xN ′ ∈ X , (4.21)

and write the dot product of the two functions f(·) and g(·) as

〈f, g〉 =
N∑
i

N ′∑
j

αiβjk(xi,x
′
j) (4.22)

=
N∑
i

αig(xj) =
N ′∑
j

βjf(x
′
j), (4.23)

where 〈·, ·〉 denotes the dot product in some Hilbert space H. The positive
de�nite kernel k implies, that for function f

〈f, f〉 =
N∑

i,j=1

αiαjk(xi,xj) ≥ 0 (4.24)

holds. Equation (4.24) means, that the dot product is a positive de�nite
kernel by itself. It follows that the value f(x) of a function f ∈ H can be
expressed as a dot product in H by

f(x) = 〈k(·, x), f〉 (4.25)
and in particular k(x, x

′
) = 〈k(·, x), k(·,x′

)〉. (4.26)

Equation (4.26) is the reason why positive de�nite kernels are also called
reproducing kernels: they reproduce the evaluation of f on x. It also shows
that the kernel k indeed computes the dot product in F for Φ(x). Hence
(4.19) is one possible realization of the mapping associated with a kernel and
is called the feature map. The following de�nition of a Reproducing Kernel
Hilbert Space is based on the work of [Aronszajn, 1950].
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De�nition 4.2 (Reproducing Kernel Hilbert Space) Suppose we are given
a not-empty set X and a Hilbert space H f : X → R. Then H is called a re-
producing kernel Hilbert space (RKHS) with dot product 〈·, ·〉 and norm
‖f‖ =

√
〈f, f〉, i� there exists a function k : X × X → R

1. satisfying f(x) = 〈f, k(x, ·)〉 ∀f ∈ H
2. spanning H, i.e., H = span {k(x, ·)|x ∈ X}.

One can show, that the kernel k for such a RKHS is uniquely determined, a
complete overview of the concepts of RKHS can be found in [Aronszajn, 1950].

In [Vapnik, 2000] Mercer's Theorem is used as an alternative way to iden-
tify a feature space F together with an associated kernel function. Mercer's
Theorem states that if the kernel function k gives rise to a positive integral
operator, the kernel can be expressed as an absolute and uniformly conver-
gent series. Additionally, if the set X on which the kernel is de�ned, is also
compact, a kernel is a Mercer kernel i� it is a positive de�nite kernel.

Theorem 4.3 (Mercer's Theorem [Mercer, 1909]) Suppose k is a con-
tinuous symmetric function such that the integral operator Tk

Tk : L2(X )→ L2(X ), (Tkf)(x) =

∫

X
k(x,z)f(z)dz (4.27)

is positive, that is
∫

X×X
k(x,z)f(x)f(z)dxdz ≥ 0 (4.28)

for all f ∈ L2(X ) and X being a compact subset of Rd. Then there exists
an orthonormal basis consisting of eigenfunctions Φj ∈ L2(X ) such that the
associated sequence of eigenvalues λj is non-negative and the kernel function
can be written as

k(x,z) =
M∑

j=1

λjΦj(x)Φj(z), (4.29)

where M <∞.

If we construct a mapping function Φ and choose a feature space F = L2 such
as

Φ : x→
(√

λ1Φ1(x),
√

λ2Φ2(x), . . .
)

, (4.30)
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we see from equation (4.29) that the Mercer kernel k corresponds to the dot-
product in L2.

Common kernel functions satisfying Mercer's condition are the linear, the
polynomial and the Radial Basis Function (RBF) kernel. An overview is
given in table 4.1. More sophisticated kernels designed for special applications
can be found in [Vapnik, 2000], [Jaakkola and Haussler, 1999b], [Tsuda et al.,
2002] and [Shawe-Taylor and Cristianni, 2004].

Table 4.1: Widely used kernel functions that are known to ful�ll Mercer's condition: the
linear, the polynomial and Gaussian RBF kernel.

linear kernel k(x,z) = x>z (4.31)
polynomial kernel k(x,z) = ((ax>z) + b)d (4.32)

RBF kernel k(x,z) = exp

(−‖x− z‖2
2σ2

)
(4.33)

4.6 Regularization
We have shown in 4.2 that the minimization of the empirical risk Remp does
not lead to an optimal solution. One possible method to overcome this prob-
lem is to restrict the space of possible solutions to compact subsets of the
original function space F . This is achieved by minimizing the following ob-
jective function:

Rreg(f) = Remp(f) + λΩ(f). (4.34)
Here Remp(f) is the empirical risk (4.8) and λΩ(f) the regularization term.
The in�uence of the regularizer is controlled by λ. If we set λ = 0 then
equation (4.34) is reduced to the unregularized problem. Otherwise setting
λ → ∞ only the regularizer Ω(f) is minimized. Usually Remp(f) and Ω(f)
are chosen to be convex, since this ensures a global minimum of Rreg(f). In
the next subsection we show that regularization is not only restricted to the
input space of our data, but also holds in a reproducing kernel Hilbert space.
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4.6.1 Representer Theorem
The Representer Theorem is based on the work of [Kimeldorf and Wahba,
1971] and is expressed in the following theorem.

Theorem 4.4 (Representer Theorem [Kimeldorf and Wahba, 1971])
Let l(f(xi), yi) be an arbitrary loss function and Ω(‖f‖) any strictly mono-
tonically increasing function. If f ∈ F is a minimizer of the regularized risk
function

N∑
i=1

l(f(xi), yi) + λΩ(‖f‖) (4.35)

with λ > 0, then there exists a vector α ∈ RN such that

f(·) =
N∑

i=1

αik(·,xi), (4.36)

i.e., f ∈ span{k(x1, ·), . . . , k(xN , ·)}.

Any function f in RKHS can be decomposed into two parts,

f : f‖ + f⊥ (4.37)

where f‖ is contained in the linear span of k(x1, ·), . . . , k(xN , ·) and f⊥ is in
the orthogonal complement, i.e., 〈f‖, f⊥〉 = 0. By the reproducing property
of the kernel K in the native space, see section 4.5.2 we have

f ?(xk) = 〈f(·), k(xk, ·)〉

=
N∑

i=1

αi〈k(xi, ·)〉+ 〈f⊥, k(xk, ·)〉

=
N∑

i=1

αik(xk,xi) (4.38)

Consequently, every solution admits a representation of the form (4.35). The
Representer Theorem allows for a quite general class of learning algorithms to
be applied in the feature space. Examples of these algorithms are the Support
Vector Machine, section 5.3 and the kernel logistic regression, section 5.5.
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4.7 Summary
In this chapter we discussed the main ideas of statistical learning theory. We
used the VC-dimension as capacity measure and showed how the actual risk
is bounded by the VC-con�dence. This led us to an induction principle called
structural risk minimization.

To overcome the problem of only using linear functions we introduced the
idea of kernel functions. These functions allow us to compute a dot-product in
feature space F without explicit mapping the samples into that space. Finally,
we described the method of regularization as another approach of structural
risk minimization.

This chapter laid the necessary foundations of statistical learning theory
for the classi�ers which we will present in the next chapter.
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5 Discriminative Classi�ers
In supervised learning it is the goal to �nd a rule which assigns a sample x
to a label y. Suppose we are given a set of N labeled input/output pairs
{xi, yi}, i = 1, ..., N , where xi is denoted as the input sample in Rd and yi as
the associated output label with yi ∈ R for regression and yi ∈ {+1,−1} for
classi�cation.

As we have seen in chapter 4 we have to �nd a function f from the set of
functions F . From this set F we choose as a particular (but not necessarily
optimal) option linear functions f(xi) that are also called linear learning
machines in the �eld of machine learning.

5.1 Linear Regression
Linear regression attempts to model the relationship between variables xi and
yi. For each pair of training examples we have to �nd a linear function

f(xi) =
d∑

j=1

βjxi,j + β0 (5.1)

that best predicts the label yi from the sample xi.
Typically, that function f(xi) is chosen, that minimizes the sum of the

squares of the distances between the training points and the regression line.
This technique is called least squares and is given by

l(β) =
N∑

i=1

(yi − β>xi)
2 (5.2)

where each training sample is augmented by a constant entry of one, i.e.,
xi = (1, xi,1, . . . , xi,d)

> and β0 is added to the parameter vector β. The
function l(β) is called the square loss function (see section 4.1). For a more
compact notation we de�ne X as the (N × d) matrix of training vectors xi,
i.e., X = (x1, . . . , xN).
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The minimization of l(β) is realized by di�erentiating l(β) with respect to
the parameter vector β and setting the result to zero:

∂L

∂β
= −2Xy + 2X>Xβ = 0. (5.3)

If the inverse of X>X exists, the solution of the least squares problem is

β = (X>X)−1Xy. (5.4)

If the matrix X>X is singular one can use a solution that was proposed
by Hoerl and Kennard [Hoerl and Kennard, 1970], known as ridge regres-
sion. Ridge regression chooses a function that minimizes a combination of
the square loss and the L2-norm of the parameter vector β. The in�uence
of this kind of regularization is controlled by the regularization parameter λ
(section 4.6). The ridge regression version of equation (5.2) reads then:

l(β) =
N∑

i=1

(yi − β>xi)
2 + λ‖β‖. (5.5)

The minimization of (5.5) leads to

β = (X>X + λI)−1Xy, (5.6)

with the identity matrix I. The result of the regularization term is that an
adequate value λ is added on the main diagonal of the matrix X>X. If λ is
su�ciently large enough the matrix becomes positive de�nite.

5.2 Linear Classi�cation
Suppose we are given a set of N labeled input/output pairs {xi, yi}, i =
1, ..., N , where xi is an input vector in Rd and yi the corresponding class
label with yi ∈ {+1,−1}.

Using the linear function of equation (5.1) we have to map the real values
of f(xi) to ±1. This is realized by applying the signum function to f(xi).
We now assign the input vector to the positive class, if sign(f(xi)) ≥ 0 and
otherwise to the negative class.

For the special case where f(xi) = 0 the resulting hyperplane is called
decision boundary. The parameters of the classi�er can be estimated by
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several learning methods, popular ones are linear discriminants [Fisher,
1936] and perceptrons [Rosenblatt, 1958]. Other methods are described
in [Duda et al., 2001, Hastie et al., 2001] or [Wendemuth, 1994] for correct
estimation of the margin-optimal normal vector and threshold.

In this thesis we focus on two learning machines, namely the Support
Vector Machine (SVM) and the Logistic Regression (LR), that are based
on the theoretical concepts given in chapter 4.

5.3 Support Vector Machines
The Support Vector Machine (SVM) developed by Vapnik [Vapnik, 1998]
and others [Boser et al., 1992, Cortes and Vapnik, 1995, Schölkopf, 1997]
is one of the most successful and popular classi�cation techniques over the
last decade. SVMs optimize their parameters by minimizing the classi�ca-
tion error using the concept of structural risk minimization (see section 4.4).
Structural risk minimization strikes a balance between the empirical risk and
the complexity of the mapping function.

The decision hyperplane of the binary classi�cation problem can be ex-
pressed as

w>xi + b = 0 (5.7)
w>xi + b ≥ +1 yi = +1 i = 1, ..., N, (5.8)
w>xi + b ≤ −1 yi = −1 i = 1, ..., N, (5.9)

where b is the distance of the hyperplane from the origin. The margin of the
SVM is de�ned as the distance from the separating hyperplane to the closest
positive and negative samples. If the equality condition of equation (5.7) holds
for the data point x then x lies on the separating hyperplane. Therefore the
marginal hyperplane can be characterized by

w>x + b = ±1. (5.10)

Additionally, the points xi that satisfy

w>x+ + b = +1 and w>x− + b = −1 (5.11)

will fall on the two hyperplanes parallel to the decision plane and orthogonal
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to w. Subtracting (5.11, left) from (5.11, right) results in

w>(x+ − x−) = 2, (5.12)(
w>

‖w‖
)

(x+ − x−) =
2

‖w‖ , (5.13)

where we normalize the margin by the norm of the normal vector to the
hyperplane and 1

‖w‖ is the distance d between the two parallel hyperplanes:

2d =
2

‖w‖ . (5.14)

This distance provides an objective measure of how separable the two classes
of training data are. The distance d can also be considered as a safety margin
of the classi�er.

The combination of the constraints (5.8) and (5.9) gives the single constraint

yi(w
>xi + b) ≥ 1 ∀i = 1, ..., N. (5.15)

During the optimization process the objective is to �nd vectors x+ and
x− that maximize the margin of separation. These training vectors are called
support vectors. Instead of minimizing equation (5.14) it is possible to min-
imize the complexity term by minimizing 1

2
‖w‖2. This leads to the quadratic

optimization problem
min
w,b

1

2
‖w‖2, (5.16)

subject to equation (5.15).

5.3.1 Dual Formulation
We now transform the optimization process into its corresponding dual formu-
lation. Introducing the Lagrange multipliers αi gives the primal Lagrangian

L(w, b, α) =
1

2
‖w‖2 −

N∑
i=1

αi(yi(w
>xi + b)− 1) (5.17)

where L(w, b, α) has to be minimized with respect to w and b and maximized
with respect to α. For the minimization the partial derivations lead to the
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Karush-Kuhn-Tucker (KKT) conditions

∂L(w, b, α)

∂b
= 0 ⇒

N∑
i=1

αiyi = 0 (5.18)

∂L(w, b, α)

∂w
= 0 ⇒ w =

N∑
i=1

αiyixi. (5.19)

Substituting (5.18) in (5.17) results in the dual formulation of the optimization
problem:

LD(w, b, α) =
1

2
(w>w)−

N∑
i=1

αiyi(w
>xi)−

N∑
i=1

αiyib +
N∑

i=1

αi

=
1

2

N∑
i=1

αiyixi

N∑
j=1

αjyjxj −
N∑

i=1

αiyixi

N∑
j=1

αjyjxj +
N∑

i=1

αi

=
N∑

i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyj(x
>
i xj) (5.20)

which �nally leads to maximization of LD with respect to αi:

max
α

N∑
i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyj(x
>
i xj) (5.21)

subject to
N∑

i=1

αiyi = 0 (5.22)

αi ≥ 0, i = 1, . . . , N (5.23)

Substituting (5.19) in (5.7) leads to the decision function

f(x) =
N∑

i=1

αiyix
>
i x + b. (5.24)

If a binary decision (−1, +1) is required, this is achieved by y = sign(f(x)).
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5.3.2 The Non-Separable Case

The SVM algorithm so far will �nd no feasible solution if it is applied to
linear non-separable problems. There are several ways of dealing with this
problem, [Wendemuth, 1995a,b]. The given error measures in [Wendemuth,
1995b] lead to non-convex solutions which are believed to be NP-complete.
In any case, they have no global optimum solution and hence require iterative
solution approaches.

In order to overcome these problems, a new error measure is introduced,
using slack variables. This error measure is a compromise since it allows a
di�erent slack for each xi and aims at minimizing the sum of all these slacks,
not the maximum. The compromise is achieved by controlling the in�uence
of the slack variables with a new, global parameter C. The constraints of the
optimization problem then become:

yi(w
>xi + b) ≥ 1− ξi (5.25)

ξi ≥ 0 i = 1, . . . ,M. (5.26)

The optimization problem by itself has to be expanded by minimizing∑N
i=1 ξi, which leads to the modi�ed optimization problem:

min
w,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi (5.27)

subject to equation (5.25). The parameter C > 0 controls the in�uence of the
summed slack variables with respect to the optimization problem. In other
words, it is a tradeo� between the capacity and accuracy of the model. The
resulting Lagrangian now reads

L(w, b, α, ξ, γ) =
1

2
‖w‖2 + C

N∑
i=1

ξi

−
N∑

i=1

αi

(
yi(w

>xi + b)− 1 + ξi

)−
N∑

i=1

γiξi, (5.28)

where γi is the Lagrangian multiplier of the slack variables ξi. The corre-
sponding KKT conditions for the primal problem are found by optimizing
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equation (5.28) with respect to w, b and ξi:

∂L(w, b, α, ξ, γ)

∂w
= w −

N∑
i=1

αiyixi = 0 (5.29)

∂L(w, b, α, ξ, γ)

∂b
= −

N∑
i=1

αiyi = 0 (5.30)

∂L(w, b, α, ξ, γ)

∂ξi

= C − αi − γi = 0 (5.31)

αi ≥ 0 (5.32)
γi ≥ 0 (5.33)

αi(w
>xi + b)yi − 1 + ξi = 0 (5.34)

γiξi = 0 (5.35)

If αi < C it follows from equation (5.31) together with equation (5.35) that
ξi = 0. This is possible in 2 cases: a) the problem is linearly separable or b) the
problem is non-linearly separable, but for data xi, no slack variable is needed,
i.e. the solution under inspection will already classify xi correctly. Obviously,
this cannot hold for all data xi. Finally, substituting equations (5.29), (5.31)
and (5.34) into the Lagrangian, the dual optimization problem becomes:

max
α

N∑
i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyj(x
>
i xj) (5.36)

subject to
N∑

i=1

αiyi = 0 (5.37)

0 ≤ αi ≤ C, i = 1, . . . , N. (5.38)

Setting C → ∞ leads to the same optimization problem as in the linear
separable case.

5.3.3 Non-Linear Support Vector Machines
using Kernels

We are now able to transform the linear SVM into the feature space either by
an explicit mapping Φ or by kernel functions. Using a kernel function k the
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linear dot product (xixj) in the dual optimization problem of equation (5.36)
is replaced by a kernel k(xi,xj):

max
N∑

i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyjk(xi,xj) (5.39)

subject to
N∑

i=1

αiyi = 0 (5.40)

0 ≤ αi ≤ C, i = 1, . . . , N. (5.41)

5.3.4 Probabilistic Outputs for Support Vector
Machines by a Sigmoid Function

As already mentioned, the output f(x) of the SVM is a distance measure to
the decision boundary, which is also called unmoderated output of the SVM.

To interprete this distance as a posterior probability, the unmoderated SVM
output has to be transformed into the [0, 1] interval by an adequate method.

One method of generating probabilistic outputs from this kernel machine
was proposed by Hastie [Hastie and Tibshirani, 1998]. The idea is to �t two
Gaussians to the class-conditional densities p(f(x)|y = 1) and p(f(x)|y =
−1). The posterior probabilities can then be computed by Bayes' rule:

P (y = 1|f(x)) =
p(f(x)|y = 1)P (y = 1)

p(f(x)|y = −1)P (y = −1) + p(f(x)|y = 1)P (y = 1)
(5.42)

The most popular method of transforming unmoderated SVM outputs to pos-
terior probabilities was proposed by Platt [Platt, 2000]. Instead of estimating
the class-conditional densities Platt suggested to �t the posterior probability
P (y = 1|f(x)) directly. He considered two exponential functions and used
the Bayes' rule of equation (5.42) to transform the SVM outputs to posterior
probabilities by a sigmoid function:

P (y = +1|x) =
1

1 + exp(Af(x) + B)
. (5.43)

where the parameters A and B have to be estimated on an adequate training
set.
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5.3.5 Probabilistic Outputs for Support Vector
Machines by Isotonic Regression

A more general calibration of the SVM outputs is given by the isotonic regres-
sion. This method is only restricted to the assumption that the calibration
function is an isotonic function dependent on the SVM output f(x). An iso-
tonic function implies a strict increase of function values. The isotonic regres-
sion is computed by the pair-adjacent violators (PAV) algorithm [Ayer et al.,
1955] that �nds a stepwise constant solution according to the mean-squared
error criterion, see also [Zadrozny and Elkan, 2002]. Assuming training ex-
amples xi and corresponding function values g(xi) that give the values to be
learned the PAV algorithm estimates the isotonic regression ĝ. If g is not
already isotonic, it follows that g(xi−1) ≥ g(xi) where the examples xi−1 and
xi are called pair-adjacent violators. All these pair-adjacent violators are now
replaced by their average to ful�ll the isotonic assumption.
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Figure 5.1: Comparison of the sigmoid and the isotonic score calibration on a arti�cal
dataset.

In �gure 5.1 we show the behavior of the two di�erent calibration methods
on an arti�cial dataset. While the parametric assumption of the sigmoid
�tting leads to the sigmoid shape of the curves, the isotonic �t shows that the
function just transforms the data to increasing values.
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5.4 Logistic Regression

The idea of Logistic Regression (LR) is to model the posterior probabil-
ity of a classi�cation problem via a linear regression function. Therefore we
discussed the simple regression model in section 5.1, where the regression
function f(x) has a real valued output. The transition from linear to Logistic
Regression is a transition from the approximation of a continuous function to
a binary classi�cation problem.

We de�ne the response of the model to be y = 1 denoting the occurrence of
the event of interest and y = 0 otherwise. Furthermore, we are not interested
in a hard yes/no decision of the classi�er, but we want to estimate the prob-
ability of one of these two states. Using the ordinary linear regression model
of equation (5.1) for the probability estimation with p(y = 1) = f(x) leads
to values that clearly can exceed 1 or are negative. The range for regression
lies between [−∞; +∞] and so we have to normalize the success probability
p(yi = 1) to the range of [0, 1]. Therefore we �rst introduce the so called odds:

oddsi =
p(yi = 1)

(1− p(yi = 1))
(5.44)

with the upper limit for the range p→ 1:

lim
p→1

(
p

1− p
) = +∞. (5.45)

Using the logarithm of the odds, the log odds, the lower limit of the range
p→ 0 is given by

lim
p→0

ln(
p

1− p
) = −∞. (5.46)

This logarithm of the odds is called the logit. As discussed earlier we restrict
the model complexity to linear functions and model the logit by:

logit(p(yi = 1)) = ln

[
p(yi = 1)

(1− p(yi = 1))

]
= β0 + β1 · x1,i + · · ·+ βn · xn,i

= β0 + β̃>x̃i (5.47)

To get rid of the constant β0 it is useful to augment each example vector by
a constant entry of one, i.e. xi = (1, x1, . . . , xn)> and β = (β0, β1, . . . , βn)>.
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Then we can rewrite (5.47) as

logit(p(yi = 1)) = β>xi. (5.48)

From 5.47 follows

p(xi, β) = exp(β>xi)− p(xi, β) exp(β>xi) (5.49)

=
exp(β>xi)

1 + exp(β>xi)
(5.50)

=
1

1 + exp(−β>xi)
. (5.51)
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Figure 5.2: Output of the logistic function. Comparison of three di�erent weights β.

The function in equation (5.51) is called the logistic function and is plot-
ted in �gure 5.2. As can be seen in �gure 5.2 the logistic function (or logistic
curve) is a monotonic, continuous function, bounded between 0 and 1. The
shape of this curve depends on the coe�cient β, for small coe�cients the
logistic curve converge to a straight line.

5.4.1 Fitting Logistic Regression Models
For binary outcomes, the distribution of the output yi is a binomial distri-
bution. The binomial distribution is the discrete probability distribution of
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the number of successes in a sequence of N independent yes/no experiments,
each of which yields success with probability p. Such a success/failure exper-
iment is also called a Bernoulli trial. If we assume that the training data are
drawn from such a binomial distribution conditioned on the samples xi, the
conditioned probability of P (yi|β, xi) is

P (yi|xi,β) =

{
P (xi,β) yi = 1

1− P (xi,β) yi = 0
(5.52)

= P (xi,β)yi(1− P (xi, β))1−yi . (5.53)

The estimation of the unknown parameter vector β can be realized by
maximum likelihood estimation (MLE), where the likelihood function
L(β) =

∏N
i=1 P (yi|xi, β) is maximized. Usually the log-likelihood func-

tion is chosen to transform the product into a sum, because in any case, the
same values will maximize both and it is easier to deal with sums than with
products.

However, instead of a maximization process we choose the minimization of
the negative log-likelihood (NLL) of equation (5.53)

L(β) =
N∑

i=1

yi log[p(xi, β)](1− yi) log[1− p(xi,β)] (5.54)

=
N∑

i=1

yi (log[p(xi,β)]− log[1− p(xi,β)]) + log[1− p(xi,β)] (5.55)

=
N∑

i=1

yi

(
log[

p(xi,β)

1− p(xi,β)
]

)
+ log[

1

1 + exp(β>xi)
]. (5.56)

And this �nally results in

L(β) = −
N∑

i=1

yiβ
>xi + log

(
1 + exp(β>xi)

)
. (5.57)

To avoid over-�tting to the training data it is necessary to impose a penalty on
large �uctuations of the estimated parameters β. As described in section 5.1
the most popular method is the ridge penalty λ

2
‖β‖2 that was introduced

by [Hoerl and Kennard, 1970]. This quadratic regularization is added to the
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NLL function
L(β)ridge = L(β) +

λ

2
‖β‖22 (5.58)

where λ is the regularization parameter.

To estimate the parameters β of the logistic regression model we have to
minimize the regularized NLL by computing the derivatives ∂L(β)ridge

∂β
and

setting the result to zero:

∂L(β)ridge

∂β
=

N∑
i=1

xi(yi − p(xi,β))− λβ (5.59)

=
N∑

i=1

xi(yi − 1

1 + exp(−β>x)
)− λβ = 0. (5.60)

Since equation (5.60) is non-linear in β no closed-form solution exists to min-
imize L(β)ridge. Therefore the Newton-Raphson algorithm is applied, which
requires the second derivative of equation (5.57):

∂2L(β)ridge

∂ββ>
= −

N∑
i=1

xix
>
i p(xi, β)(1− p(xi,β))− λβ (5.61)

= −X>WX − λI (5.62)

where W is a N ×N diagonal matrix with the entries p(xi, β)(1− p(xi, β))
on the diagonal, and I is the identity matrix.

Starting with βold, a single step of the iterative Newton-Raphson algorithm
is given by

βnew = βold −
(

∂2L(β)ridge

∂ββ>

)−1
∂L(β)ridge

∂β
. (5.63)

This algorithm is referred to as iteratively re-weighted least squares
(IRLS) in this case, see e.g. [Nabney, 1999]:

βnew =
(
X>WX + λI

)−1
X>Wz (5.64)

with the adjusted response:

z = Xβold + W−1(y − p) (5.65)
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where p is now the vector of �tted probabilities with the i'th element P (βold,xi).
As can be seen in equation (5.64) each of the iterations solves a weighted least
squares problem

βnew ← argmin
β

(z −Xβ)>W (z −Xβ). (5.66)

In each iteration of the IRLS algorithm the inversion of
(
X>WX + λI

)
is

required. Therefore, the computational cost of this algorithm depends on the
dimension d of the input samples xi. However, the convergence rate also
depends on the regularization parameter λ, i.e., for larger λ convergence is
reached with fewer iterations of the IRLS algorithm. Usually the regulariza-
tion parameter is optimized on a development set. A good scheme would be
to start with a large λ and gradually anneal it to zero.

Since the NLL is convex, global convergence is guaranteed, but usually
the iterative procedure stops when a certain convergence criterion is reached.
Popular convergence criteria are based on the averaged change in the coe�-
cients β or in the probability p(x, β). Alternatively, the algorithm converges
when the change in the NLL becomes very small. After each update of βnew

the ratio |L{β}new − L{β}old|
|L{β}old| (5.67)

is computed and the procedure stops if the ratio in (5.67) is less than a
prede�ned value ε.

In [Minka, 2003] several algorithms of estimating the Logistic Regression
coe�cients are compared. Minka speci�cally investigated the computational
cost of the estimation versus the performance (measured according to the NLL
value).

5.5 Kernel Logistic Regression
The complexity of the function class F used for our discriminative classi�ers is
limited to linear functions. If we want to apply the logistic regression to non-
linear classi�cation problems we can extend LR by the use of kernel methods
as stated in section 4.5.

The extension from the linear model to the non-linear one is realized by the
non-linear mapping Φ : Rd → F into the feature space F and yields to a new
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parameter vector β that lies in the span of all Φ(xi), (i = 1, . . . , N):

β =
N∑

i=1

αiΦ(xi). (5.68)

The Representer theorem (see theorem 4.4) guarantees that it is possible to
rewrite the weight vector β in terms of weights on the mapped data. If we
extend equation (5.64) and (5.65) with equation (5.68) the whole optimization
process is transferred into the feature space F :

(
Φ>WΦ + λI

)
Φ>αnew = Φ>W

(
ΦΦ>αold + W−1(y − p)

)
, (5.69)

where Φ denotes the matrix of all mappings Φ(xi). If we want to express the
optimization in the form of kernels functions, we have to sort equation (5.69)
in a way that all Φ(x) occur as dot-products only:

ΦΦ>WΦΦ>αnew + λΦΦ>αnew = ΦΦ>WΦΦ>αold (5.70)
+ ΦΦ>(y − p). (5.71)

Introducing now the kernel matrix K with entries k(xi,xj) = Φ(xi)Φ(xj)
and K = ΦΦ> we can write

(KWK + λK) αnew = KW
(
Kαold + W−1(y − p)

)
(5.72)(

K + λW−1
)
αnew = Kαold + W−1(y − p). (5.73)

Note, that by the use of the kernel trick there is no need to perform the map-
ping into the feature space explicitly. The optimal values of the parameter
vector α are again estimated via an iteratively re-weighted least squares pro-
cedure. Since IRLS requires the inversion of

(
K + λW−1

)
at each iteration,

this method becomes very expensive when the number of training examples
is large. For that reason, [Keerthi et al., 2005] developed a dual formulation
similar to the dual arising in SVMs that allows an e�cient optimization of α.
But in contrast to SVM, the elements of α are usually non-zero, i.e., the op-
timization of the Kernel Logistic Regression does not lead to a sparse model
by itself. Sparseness can be achieved by approximation techniques as we
will discuss in the next section. Another promising but computational more
expensive techniques called the least absolute shrinkage and selection
operator (LASSO) was proposed by [Tibshirani, 1996]. Instead of optimiz-
ing regression coe�cients subject to a bound on the L2-norm like in ridge
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regression, the LASSO imposes a L1-penalty on the coe�cients that leads to
an automatic variable selection. Optimization techniques for the LASSO can
be found in [Roth, 2004, Zou and Hastie, 2005].

5.6 Sparse Kernel Logistic Regression
The main drawback of the kernel logistic regression is that all training vectors
are involved in the �nal solution which is not acceptable for large datasets like
speech or speaker recognition tasks. A sparse solution of the kernel expansion,
the Sparse Kernel Logistic Regression (SKLR), could be achieved if we
involve only basis functions corresponding to a subset S of the training set
X . This is realized by approximating the Representer theorem by

β =
M∑
i=1

αiΦ(xi) M ¿ N. (5.74)

with M training samples.
If we apply equation (5.74) instead of (5.68) in the IRLS algorithm of equa-

tion (5.64) we get the following sparse formulation of the kernel logistic re-
gression:

(
Φ>WΦ + λI

)
Φ>

Mαnew = Φ>W
(
ΦΦ>

Mαold + W−1(y − p)
)
, (5.75)

where ΦM denotes the matrix of all selected mappings Φ(xi). If we now
expand both sides with the matrix ΦM on the right we can write

ΦMΦ>WΦΦ>
Mαnew + λΦMΦ>

Mαnew = ΦMΦ>WΦΦ>
Mαold (5.76)

+ ΦMΦ>(y − p). (5.77)

Finally, we can express αnew in terms of kernel functions with the N ×M
matrix KNM = k(xi,xj); xi ∈ X , xj ∈ S and the M × M regularization
matrix KMM = k(xi,xj); xi, xj ∈ S.

αnew =
(
KT

NMWKNM + λKMM

)−1
KT

NMWz̃ (5.78)

where z̃ is the new adjusted response of the sparse kernel logistic regression:

z̃ = KNMαold + W−1(y − p) (5.79)
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Equation (5.78) provides a sparse approximation of kernel logistic regression,
but one important question still remains: How to choose a new basis function
for the optimization process?

5.6.1 Subset Selection
The selection approach provided in this thesis is a greedy method which im-
poses sparsity on the �nal solution. In subset selection we retain only a sub-
set of the training data, and eliminate the rest from the model. Rather than
search through all possible subsets, we can apply a search strategy to �nd a
path through them. Greedy subset algorithms are forward selection and
backward selection, for more details we refer to [Hocking, 1976, Draper and
Smith, 1998, Miller, 2002]. Forward selection starts with an empty subsets,
and then sequentially adds into the model the predictor that most improves
the �t. However, the improvement in �t can be measured in several ways,
e.g., decrease of the residual error.

In contrast, backward selection starts with the full model and sequentially
removes predictors that are not relevant. This is computationally more ex-
pensive since in the �rst step the whole kernel matrix has to be computed.

In our approach we choose the NLL as selection criterion and include into
the model the predictor that provides the minimum value of the NLL. This
procedure of vector selection is summarized in algorithm 1. In each step α is
approximated by the �tted result from the current subset S which is estimated
in the minimization process (see also [Zhu and Hastie, 2005]).

The selection routine continues until convergence is reached or until a max-
imum number of samples is selected.

As convergence criterion the relative change in the NLL is used (see equa-
tion (5.67)). After each update of αnew the change in the NLL of the current
and the previous subset is computed and the selection routine stops if the
ratio in (5.67) is less than a prede�ned value ε.

5.7 Sparse Kernel Logistic Regression
based on Feature Vector Selection

An alternative method of incorporating sparseness into kernel logistic regres-
sion is based on the feature vector selection (FVS) algorithm presented by
[Baudat and Anouar, 2001]. The main idea of this algorithm is to construct
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Algorithm 1 Sparse Kernel Logistic Regression
1: Let S = ∅, X = {x1, . . . , xN}, k = 0, Lk =∞
2: repeat
3: for all xi ∈ X do
4: minimize L(xi)
5: if L(xi) < Lk then
6: Lk = L(xi)
7: x?

i = xi

8: end if
9: end for

10: Set:
11: S = S ∪ {x?

i }
12: X = X \ {x?

i }
13: Lk = L({x?

i })
14: k = k + 1
15: until |Lk−Lk−1|

|Lk| < ε

a new basis in the subspace of F and to project the training data on this
subspace. Therefore the normalized Euclidean distance between the training
data in the feature space Φ(xi) and a set S of selected training vectors ΦS(xi)
is calculated by:

δi =
‖Φ(xi)− ΦS(xi)‖2

‖Φ(xi)‖2 . (5.80)

Rewriting equation (5.80) in matrix form, e.g., ΦS = (Φ(x1), ..., Φ(xM)) we
can express this distance in terms of inner products and �nally in terms of
kernel functions:

δi = 1− K
>
MiK

−1
MMKMi

kii

(5.81)

where KMM is the kernel matrix of selected training vectors and KMi repre-
sents a column vector of inner products of the training vector xi and selected
vectors {xj}j∈S. To form a new basis we have to minimize the mean recon-
struction error δi over all samples which results in the maximization of the
�tness function:

JS =
1

N

∑
xi∈X

KT
MiK

−1
MMKMi

kii

(5.82)
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where KMM is again the kernel matrix of the selected vectors with the entries
k(xi, xj)i,j∈S and KMi is is a column vector of dot-product between xi and the
selected vector set S. Starting with S = ∅ we add to S the sample combined
with vectors already in S that maximizes JS in each iteration. The algorithm
stops, if the matrix is no longer invertible or when the error is below a given
value, or a prede�ned maximum number of selected vectors is reached.

5.8 E�cient Algorithms
We now focus on two e�cient implementation aspects of the optimization
process for kernel logistic regression. The �rst aspect in 5.8.1 deals with a
probabilistic speed-up of subset selection for the parameter optimization. The
computationally most expensive part of the optimization process is the matrix
inversion. Therefore we investigate e�cient methods of inversion concerning
the speed of convergence in subsection 5.8.2.

5.8.1 Probabilistic Speed-up
Using the sparse kernel logistic regression methods presented in the last sub-
sections we have to estimate the regularized NLL for all N − M training
samples in every iteration.
A possible speed-up is presented in [Smola and Schölkopf, 2000] and success-
fully applied to the computation of Kernel Fisher Discriminant (KFD) in
[Mika et al., 2001].

For uniformly distributed objectives it can be su�cient to consider a learn-
ing set of size κ = log 0.05/ log 0.95 = 59 random samples. This means with
a probability of 0.95 we obtain an estimate that is among the best 5% of all
estimates. So in each iteration we choose just a small fraction of the training
samples to estimate the NLL.

5.8.2 Matrix Inversion
The IRLS algorithm solves in each iteration a weighted least squares linear
regression problem. The direct computation of the regression coe�cients re-
quires to invert the regularized matrix which is of the size d×d in logistic and
of size N ×N in kernel logistic regression. Applying standard techniques for
the matrix inversion induce computational costs of the order O(dN2) for the
standard logistic and O(N3) for the kernel logistic, which is extremely slow.
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In [Minka, 2003] several alternative algorithms of computing the logistic
regression coe�cients are compared. To approximate the solution of the sub-
problems one can apply a linear conjugate gradient method to accelerate the
estimation in each iteration. The computational costs are then reduced to
O(N2).

Instead of the conjugate gradient algorithm the so called inversion lemma
or Sherman-Morrison-Woodbury formula [Hager, 1989, Golub and van
Loan, 1996] can be used to update the inverse matrix. The inverse of the
k-order matrix, where k is the number of basis functions in the model, is
known from the previous iteration. Thus the inverse of the k + 1 -order
matrix of the next iteration can be stated as

(
A U
V −C−1

)(
X
Y

)
=

(
I
0

)
(5.83)

and transformed into an inversion of the k − 1-order matrix. The inverse
of a rank-k correction of some matrix can be computed by doing a rank-k
correction to the inverse of the original matrix.
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Figure 5.3: CPU time for solving the system of linear equations Ax = b depending on
data dimension.

We compare the three matrix inversion methods in an arti�cial experiment
and present the CPU time for the computation of Ax = b in �gure 5.3.
The CPU time is averaged over 100 repetitions of computing the problem
by a naive matrix inversion, by the conjugate gradients methods and by the
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inversion lemma. As a result of this experiment we choose the inversion lemma
for the SKLR parameter estimation because it is more e�cient than the other
two methods.

5.9 Binary Classi�ers for Multi-class
Problems

In this section we address the problem of applying binary classi�ers, like SVM
and SKLR, for multi-class problems. Since for binary problems only one deci-
sion boundary must be inferred, we construct a set of binary classi�ers where
the data of the observed class is classi�ed against the data of all others. This
standard approach is called one-versus-rest and is one of the easiest com-
bination strategies for binary classi�ers. This one-versus-rest method obtains
a membership probability for each class and assigns the sample to the class
with the highest probability.

An alternative approach for multi-class problems was proposed in [Price
et al., 1995] and is referred to as one-versus-one. If the binary classi�ers
provide class probability outputs, we can construct a binary classi�er for all
possible pairs in the dataset and learn C(C − 1)/2 binary classi�ers. The
binary class probability estimates are then coupled into a joint probability
estimate for all C classes.

Let Pij = P (y = i|y ∈ i, j, f(x) be the probabilities for all classi�cation
pairs (i, j) with i 6= j and that each example belongs only to one class:

P (
C⋃

j=1

yj|f(x)) = 1. (5.84)

It follows for any given i:

P (
C⋃

j=1

yj|f(x)) = P (
C⋃

j=1,j 6=i

yij|f(x)) = 1 (5.85)

Using the closed form expression for the probability of the union of N events
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Ei

P (
N⋃

j=1

Ei) =
N∑

i=1

P (Ei) + · · ·+ (−1)k−1

N∑
i1<···<ik

P (Ei1 ∧ · · · ∧ Eik) + . . .

+ (−1)N−1P (E1 ∧ · · · ∧ EN) (5.86)

it follows from (5.85):

C∑

j=1,j 6=i

P (yij|f(x))− (C − 2)P (yi|f(x)) = 1. (5.87)

With

Pij = P (yi|yij ∧ f(x)) =
P (yi ∧ yij ∧ f(x))

P (wij ∧ f(x))
=

P (yi|f(x))

P (yij|f(x))
(5.88)

we �nally obtain for the C posterior probabilities P (yi|f(x)) given the class
probabilities Pij of the C(C − 1)/2 classi�cation pairs (i, j):

P (yi|f(x)) =
1∑C

j=1,j 6=i 1/Pij − (C − 2)
. (5.89)

Hastie and Tibshirani presented an alternative approach of pairwise cou-
pling that is based on the minimization of the Kullback Leibler (KL) dis-
tance [Hastie and Tibshirani, 1998], which is summarized in algorithm 2.

Algorithm 2 Pairwise coupling for multi-class problems
1: Start with a guess for the P̂i and corresponding νij

2: repeat
3: P̂i ← P̂i

P
i6=j nijνijP
i6=j nij ν̂ij

4: renormalize P̂i and recompute ν̂ij

5: P̂ ← P̂ /
∑C

i=1 P̂i

6: until convergence
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5.10 Classi�cation Experiments
For a comparison of the discussed classi�ers we report in this section classi�ca-
tion experiments on three small speech datasets. The Deterding [Robinson,
1989], the Peterson & Barney [Peterson and Barney, 1952] and the iso-
let [Fanty and Cole, 1991] task. These three datasets are brie�y described in
the following.

The �rst task, the Deterding dataset, consists of 11 spoken vowels that are
characterized by 10 LPC coe�cients. The training set contains 528 samples
composed of six samples of each vowel spoken by eight speakers. For testing
seven speakers produced six samples of each vowel. This results in 462 samples
for testing.

The features of the second task, the Peterson & Barney dataset, are repre-
sented by the four formants of 10 vowels spoken by 76 speakers. The training
and the test set consist of 760 samples each.

The third task, the isolet dataset, contains all 26 spoken letters of the
alphabet and is characterized by 617 spectral coe�cients. The training set
contains two realizations of each letter spoken by 120 speakers. The test set
is constructed of two realizations spoken by 30 speakers. This results in 6240
samples for training and 1560 samples for testing. Additionally to the whole
isolet task we performed experiments on a subset of this task, which is called
E-set. The E-set consists of 240 examples of each letter {B C D E G P T
V Z} for training and 60 realizations per letter for testing. Interestingly the
letters of this subset are harder to classify [Smith and Gales, 2002].

To start the experiments we estimated the SVM parameters by using the
SVMTorch library [Collobert and Bengio, 2001]. Since the SVM has no
probabilistic output the a-posteriori probabilities are estimated by Platt's
algorithm (5.43).

The algorithms of the KLR, the SKLR and the feature vector selection were
implemented in Matlab, which is a numerical computing environment and
programming language [The MathWorks, 1997].

Since the discussed classi�ers are binary classi�ers (section 5.9) we applied
the one-versus-one classi�cation scheme. Therefore, the data was divided into
C(C − 1)/2 classi�cation pairs, where C represents the number of classes in
the dataset. In all experiments we used the RBF kernel (4.33) since this
kernel outperforms the polynomial kernel (4.32) in several previous publica-
tions [Clarkson and Moreno, 1999, Ganapathiraju, 2001, Krüger et al., 2005,
Scha�öner et al., 2006]. The kernel parameters were optimized by a cross-
validation procedure on the training set. The KLR regularization parameter
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λ and the SVM trade-o� parameter C were optimized in the same way.

For a better comparison we also report classi�cation results achieved by
Gaussian mixture models. The GMM baseline results yield an error rate of
37.9% for the Deterding dataset and 18.3% for Peterson & Barney. These
GMM error rates were taken from [Clarkson and Moreno, 1999].

Table 5.1: Classi�cation experiments on three small speech datasets. Test errors rates
(%) of several KLR versions are compared to GMM and SVM models. Error rates for
Deterding and Peterson & Barney are taken from [Clarkson and Moreno, 1999].

Dataset GMM SVM KLR SKLR KLR-FVS
vowel Det. 37.9 28.36 30.02 29.44 32.19
vowel P.B. 18.3 11.45 11.17 11.17 13.77
isolet E-set 7.20 4.45 4.63 4.45 4.63
isolet full 5.06 2.89 2.89 3.02 3.14

Table 5.1 shows the classi�cation error rates of the di�erent classi�ers on
the four datasets (see also [Katz et al., 2005]). It can be clearly seen that all
discriminative classi�ers outperform the Gaussian mixture models. The clas-
si�cation results of the standard KLR and the SKLR method are comparable
to the SVM on all datasets. It becomes apparent that the KLR based on
feature vector selection method is outperformed by all other kernel classi�ers.

Additionally, we present the sparsity of the discriminative classi�ers by
comparing the number of kernel functions used in the �nal solution of each
classi�er. The results of this comparison are presented in table 5.2. For a
better representation the number of kernel functions was averaged over the
C(C − 1)/2 classi�cation pairs. At �rst it is obvious that for the standard
KLR as a non-sparse method, the number of kernel functions is equal to the
number of training vectors.

Table 5.2: Sparseness of di�erent KLR variants compared to SVM. The number of kernel
functions is averaged by the number of classi�cation pairs.

Dataset SVM KLR SKLR KLR-FVS
vowel Det. 35.9 96.0 31.1 29.0
vowel P.B. 12.6 152.0 10.1 19.4
isolet E-set 140.0 480.0 76.9 120.0
isolet full 100.9 480.0 59.5 120.0
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As can be observed in table 5.2 the SKLR provides classi�ers that require
a fewer number of kernel functions than the Support Vector Machine in all
cases. Especially on the isolet tasks the SKLR is superior. The Support Vec-
tor Machines utilizes about 140 kernel functions for the E-set and 100.9 for
the full set compared to 76.9 and 59.5 kernel functions for the Sparse Kernel
Logistic Regression.

For further investigations of sparsity we performed additional experiments
on several partitions of the isolet dataset. We divided the training data into
subsets of 50 to 90 percent of the whole isolet task. Using the same parameters
as for the full dataset the results in table 5.3 show that the SKLR classi�ers
achieved a higher sparsity than SVMs on all subsets.

Table 5.3: Sparsity of SKLR compared to SVM on di�erent training sizes of the isolet
dataset. The number of kernel functions is averaged by the number of classi�cation pairs.

Dataset SVM SKLR
isolet-50 75.7 55.0
isolet-60 82.8 58.3
isolet-70 86.5 56.3
isolet-80 92.1 60.0
isolet-90 96.4 58.8
isolet-100 100.9 59.5

Whereas the averaged number of kernel functions for the SVM increases
from about 75.7 to 100.9, the SKLR solution varies between 55 and 60 kernel
functions. The results in table 5.3 clarify the advantage of SKLR compared to
SVM. Whereas the SVM requires more than 20% of the training data on the
full isolet task, the solution of the SKLR only depends on 12%. This e�ect is
also observed in other kernel classi�ers that are based on forward selection,
e.g. [Andelic et al., 2006, Scha�öner et al., 2006].

Summarizing we can say that the SKLR requires dramatically fewer kernel
functions for the same amount of training data by a comparable classi�cation
performance. Furthermore, in contrast to SVMs the SKLR provides a proba-
bilistic output that gives us the possibility to quantify the uncertainty about
the predicted class memberships.
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5.11 Summary
In this chapter we described two di�erent classi�ers which are rooted in the
theories presented in chapter 4. First, we gave a brief overview of Support Vec-
tor Machines (SVMs) and introduced in detail the Kernel Logistic Regression
(KLR) and its sparse version SKLR. Secondly, we compared the classi�cation
performance of these discriminative classi�ers with Gaussian Mixtures Models
(GMMs) on four speech datasets. Thirdly, we discussed the issue of sparsity
when kernel classi�ers are applied to speech classi�cation problems. Whereas
the number of kernel functions required by the SVM is strongly in�uenced
by the size and complexity of the training set, the SKLR provides dramati-
cally sparse solutions. This sparsity is achieved by approximating the optimal
solution in an iterative way by construction until convergence is reached.

As we will see in the following chapter, the sparsity of the SKLR is an im-
portant advantage with regard to several applications in speaker recognition.



6 Speaker Recognition on Limited
Training Data

This chapter presents a novel speaker recognition system for speaker identi-
�cation and veri�cation on limited training data. The classi�ers which we
presented in chapter 5 were directly applied to feature vectors of correspond-
ing speech data in this system.

The recognition system is compared to a traditional GMM system in sec-
tion 6.6 for speaker identi�cation and in section 6.7 for speaker veri�cation.
All experiments were performed on the POLYCOST dataset [Melin and Lind-
berg, 1996].

6.1 The POLYCOST corpus
The following section describes the POLYCOST corpus that is used to eval-
uate the proposed methods on small speaker identi�cation and veri�cation
tasks. This dataset [Melin and Lindberg, 1996] is a telephone based speaker
recognition corpus. It was created during 1996-1999 within the framework of
the European project COST250 as a reference database for baseline exper-
iments. The dataset contains 110 speakers (61 females and 49 males) from
di�erent European countries. Their utterances are prompted in English as
well as in the speaker's native language. The whole dataset is divided into
four baseline experiments (BE1-BE4), from which we used two, the text-
independent BE4 set for speaker identi�cation and the text-dependent set
BE1 for speaker veri�cation experiments. Each of these two sets provides
four training sentences and up to �ve test sentences for each speaker. In the
standard setup only the �rst two sentences were used for enrollment, the other
two serve as development data, see [Melin and Lindberg, 1996].
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6.2 The Front-End
To extract feature vectors containing relevant speaker information, the front-
end of the speaker identi�cation system applied speech parameterization meth-
ods, which were previously described in chapter 3.2.

First, feature vectors were extracted from speech using a 20ms Hamming
window and a window shift of 10ms. Furthermore non-speech frames were
removed using energy-based speech activity detection. Since it is useful to
reject lower and higher frequency regions for processing telephone speech, the
frequency range was limited from 300Hz to 3400Hz.

Afterwards the number of Mel cepstrum coe�cients was optimized on the
development set. For speaker identi�cation we computed 13 component MFCC
feature vectors and added the �rst and second order time di�erences. Then
the �rst and second order time di�erences of the frame energy were computed
and appended to each feature vector, which results in a 41 dimensional feature
vector. Finally, the MFCC feature vectors were normalized to zero mean and
unit standard deviation on the remaining speech data.

6.3 The GMM System
The baseline GMM system for speaker identi�cation on limited training data
was designed for the POLYCOST dataset. For each of the 110 speakers in
the set an individual GMM was trained using the Expectation-Maximization
algorithm. These models were composed of 16 mixture components with
diagonal covariance matrices.

6.4 The Frame-based Kernel Classi�er
Systems

In the frame-based approach the extracted feature vectors from the speech
data were directly used to train the SVM and (S)KLR parameters [Katz
et al., 2006c,a]. More speci�cally, the feature vectors of the target speaker
were trained against feature vectors of a set of background speakers. These
models of the target speaker were then estimated against all speakers of the
background set using the one-versus-one classi�cation scheme as discussed
in section 5.9. The developed algorithms for the (S)KLR parameter estima-
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tion were implemented in the C++ programming language [Stroustrup, 2000].
SVM models for the frame-based system were trained with SVMTorch [Col-
lobert and Bengio, 2001].

6.5 Design and Implementation
The GMM speaker recognition system used in this thesis is based on the
ALIZE toolkit, a well known open source software package developed by
the Laboratoire d'Informatique d'Avignon, France [Bonastre et al., 2005].
This toolkit provides statistical functionalities especially for the estimation
of GMM parameters and likelihood computation. The general architecture
of the toolkit is based on a split of functionalities between several software
servers. The main servers are the mixture server which deals with Gaussian
mixture models and the feature server which manages the extracted feature
vectors.

For the speaker recognition evaluation with discriminative classi�ers we in-
tegrated these classi�cation machines into the existing framework. To increase
the computational power we used a Beowulf computer cluster [Sterling et al.,
1999]. Beowulf is a design for high-performance parallel computing clusters by
combining cheap personal computer hardware. The software was parallelized
by splitting independent tasks, like the veri�cation of di�erent speakers into
separate cooperating processes located on di�erent computers of the cluster.
A commonly used library called Message Passing Interface (MPI) [Snir
et al., 1998] was used for this purpose.

6.6 Speaker Identi�cation
Our novel speaker identi�cation system was especially designed for the POLY-
COST dataset [Melin and Lindberg, 1996]. As described in section 6.1 the
POLYCOST dataset contains a text-independent speaker identi�cation task
where all speakers are registered as client speakers. Since it is a closed-set
speaker identi�cation task no explicit impostor trials were performed.

6.6.1 Experiments
As in the baseline GMM system the (S)KLR and the SVMmodels were applied
at the frame-level. For the identi�cation experiments we used two sentences of



74 6 Speaker Recognition on Limited Training Data

each speaker for training and two sentences as development set. Altogether a
total amount of only 10 to 20 seconds of free speech is available for parameter
estimation of the speaker models. The evaluation set contains up to �ve
sentences per speaker and each utterance has a duration of about �ve seconds
of free speech. This results in 664 true identity tests. Numerous publications
present recognition performance on the BE4 speaker identi�cation dataset,
e.g., the results of [Magrin-Chagnolleau and Durou, 1999, 2000], [Chakroborty
et al., 2007] are given in table 6.1.

Table 6.1: Summary of speaker identi�cation experiments on the BE4 set of the POLY-
COST database.

Publication IER (%)
Chakroborty et al. [2007] 18.43
Magrin-Chagnolleau and Durou [1999, 2000] 9.11

For the SVM and the (S)KLR classi�ers we used the RBF kernel func-
tion (4.33) and validated the kernel and regularization parameters of the dif-
ferent classi�ers on the development set. Due to the fact that all speakers are
known to the system, the error rate is simply computed as Identi�cation
Error Rate (IER):

IER =
number of incorrect identi�cations
total number of identi�cation tests (6.1)

The log-likelihood was computed over the whole test utterance and the sen-
tence was assigned to the speaker with the highest probability over the whole
speech sequence as formulated in equation (2.2). The IER is presented in the
left column of table 6.2. Additionally, we generated an N-best list of each test
utterance and give the results of �nding the best speaker within the 5-best
alternatives. These error rates are given in the right column of the table.

Table 6.2: Speaker identi�cation experiments on the BE4 set of the POLYCOST database.

Classi�er IER (%) 5-best (%)
GMM 10.84 6.48
SVM 8.89 4.67
KLR 8.58 4.97
SKLR 8.58 5.87
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As can be seen in table 6.2, both classi�ers, the SVM and the KLR clearly
outperform the GMM baseline system. The KLR as well as the SKLR clas-
si�er decreases the IER of the baseline system by more than 20% relatively.
Furthermore, evaluating the classi�cation on the 5-best alternatives, the SVM
reaches the lowest error rate followed by the non-sparse KLR.

Additionally, we compared the sparseness of the di�erent discriminative
classi�ers. Therefore we divided the training set into subsets of 50 to 90%
of the full BE4 task. Apart from this we used the same SVM and (S)KLR
parameters as for the full dataset.

Table 6.3: Sparseness (%) of SKLR compared to SVM on di�erent training sizes using
the BE4 dataset.

Dataset SVM SKLR KLR
BE4-50 66.8 82.8 0.0
BE4-60 61.3 81.4 0.0
BE4-70 56.2 80.3 0.0
BE4-80 51.3 79.3 0.0
BE4-90 46.6 78.8 0.0
BE4-100 41.7 78.1 0.0

As result of this experiment we report the sparseness of each subset in
table 6.3. The sparseness is de�ned as the portion of data not used in the
�nal solution. The lower the sparseness the more kernel functions are part of
the classi�er.

As can be seen in table 6.3 the models of the SKLR approach are sparser
than the SVM models on all subsets. On the full set the SVM solution requires
about 58.3% of all training data, whereas the SKLR requires only 21.9%. Nat-
urally the non-sparse KLR needs all training vectors in the experiments and
its sparsity level is 0%. The number of support vectors increases nearly linear
with the amount of training data which results in a decreasing sparseness.
Conversely the number of relevant feature vectors for the SKLR increases
only slightly for larger datasets. Consequently this is an obvious computa-
tional advantage over the SVM as a much smaller portion of kernel products
have to be calculated in the test.

With the aim to compare the decision quality of the explored identi�cation
systems, we normalized the log-likelihood scores in the N-best list by the T-
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Norm (see section 2.10.1). In this case the models of the T-Norm speakers
for the (S)KLR and the SVM systems were trained in the same way (one-
versus-one) as the models for speakers in the closed set. Figure 6.1 displays
the histograms of the true speakers (right) and the average of the 10-best
alternatives in the N-best list (left). It is important to note that for the
GMM and the SKLR systems the overlap of the distributions is larger than
for the other ones. This overlap leads to a higher probability of errors as
discussed in section 2.9. In contrast, the smallest overlap could be observed
for the SVM models.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

gmm

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

svm

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

sklr

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

klr

S(x)

Figure 6.1: Scores of the 10-best alternatives (left) compared to the scores of the true
speakers (right) for the di�erent classi�cation methods.

Based on the true and the alternative N-best speakers we can now introduce
a threshold for accepting or rejecting a speaker of the identi�cation set as
described in section 2.9. The resulting Equal Error Rate (EER) gives the



6.6 Speaker Identi�cation 77

lowest error rate by an equal rate of false-accepts and false-reject errors. The
results are given in table 6.4.

Table 6.4: Equal Error Rates of the speaker identi�cation experiments using a decision
threshold.

Classi�er EER (%)
GMM 6.69
SVM 5.15
KLR 5.39
SKLR 6.15

With regard to the score distributions of �gure 6.1 it becomes clear that
the SVM outperforms all other systems. Due to the small overlap of the two
distributions the decision threshold leads to a lower EER for the SVM than
for the GMM and the Kernel Logistic Regression models. Interestingly, the
non sparse KLR achieved a signi�cantly lower error rate than the SKLR.
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6.7 Speaker Veri�cation
It was aimed to compare the novel speaker recognition system presented in sec-
tion 6.4 with a standard GMM veri�cation system. Therefore, the extracted
feature vectors from the speech data are directly used to train the parameters
of the discriminative kernel classi�ers. That means, that the feature vectors
of the target speaker are marked as members of the positive class and the
feature vectors of a background speaker set are assigned to the negative class
(for details see [Katz et al., 2006a] and section 6.4). The following section
presents our speaker veri�cation experiments on limited training data.

6.7.1 Experiments
In the veri�cation experiments the sentence �Joe took father's green shoe
bench out� is given as a �xed password sentence shared by all clients. Follow-
ing the corpus guidelines version 2.0 [Melin and Lindberg, 1996] the corpus
provides two sentences for enrollment, one from the �rst recorded session and
one from the second session. The evaluation set contains up to �ve sentences
per speaker and each utterance has a duration of about �ve seconds of free
speech. This results in 664 true client and 824 impostor (non client) tri-
als. The genders were evaluated separately and no cross gender trials were
performed.

Results from experiments on the POLYCOST veri�cation set BE1 have
been reported in several publications, e.g. [Nordström et al., 1998, Katz et al.,
2006a]. Our baseline GMM environment consists of gender-dependent back-
ground models that were trained by 22 non-client speakers from the POLY-
COST database. Speaker models were adapted from the background GMM
by MAP adaptation as described in section 6.3.

With the aim to compare the in�uence of the amount of speech data for
enrollment we trained the baseline GMM system as well as the novel dis-
criminative classi�er system on one (1sent) or two sentences (2sent) of each
speaker. The results of the three classi�ers are given in �gure 6.2 as detec-
tion error tradeo� (DET) plots. The DET plots show the tradeo� between
false-rejects (FR) and false-accepts (FA) as a decision threshold [Martin
et al., 1997]. The actual decision costs are denoted as circles.

Additionally we report the equal error rates and the DCF values as perfor-
mance measure in table 6.5. The parameters of the cost function used in the
experiments are CFR = 10, CFA = 1 and PTarget = 0.01. The right column of
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Figure 6.2: In�uence of amount of speech data for enrollment using GMM, SVM and
SKLR classi�ers. The DET curves show systems trained on one sentence (left) and two
sentences (right).

the table gives the averaged evaluation time (CPU time) of an identi�cation
claim.

Figure 6.2 shows that the discriminative classi�ers clearly outperform the
GMM baseline in both experiments. Regarding the DET curves of the 1sent
experiment we can observe that SVM and SKLR achieved comparable DCF
values. However the SKLR system leads to an EER that is about 14% less
than the SVM result. It is important to notice that the behaviour concerning
optimal operating points is di�erent for the 2sent experiment. This is illus-
trated in the right DET curves of �gure 6.2. When the emphasis is placed
on security the SVM provides a better operating point than SKLR. This is,
for example, the case in security applications where the false accept (or false
alarm) probability is more important and should be minimized. In contrast,
when emphasis is placed on speaker detection, where the miss (or false reject)
probability is more important, the SKLR results in lower miss probabilities
than the SVM. Concerning the equal error rate the SKLR again outperforms
the SVM system. It leads to an EER that is about 10% less than for the SVM
(see table 6.5).

Table 6.5 also shows the computational costs of the veri�cation process.
Whereas the costs of computing the GMM probabilities depend on the number
of mixture components, the costs for the discriminative approaches result on
the number of kernel functions. Independently of the number of training
sentences the GMM system requires about 3.75ms per identi�cation claim.
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For the 2sent experiment the GMM system is about 40 times faster than SVM
system and about 20 times faster than the SKLR system. This computational
drawback of the discriminative classi�ers is due to the calculation of numerous
kernel functions for each feature vector. But the sparse solutions of the SKLR
is again an important advantage compared to the SVM.

Table 6.5: Comparison of the EER, DCF value and evaluation time (per identi�cation
claim) for three systems trained on one ore two sentences of the POLYCOST-BE1 speaker
veri�cation task.

Training Evaluation
Sentences Classi�er EER (%) DCF Time (ms)

GMM 16.01 0.0456 3.75
1 sent SVM 11.03 0.0380 112.77

SKLR 9.49 0.0381 69.39
GMM 8.61 0.0348 3.75

2 sent SVM 6.05 0.0210 148.86
SKLR 5.45 0.0215 75.22

It can be summarized that in both experiments the SVM yields a better
tradeo� between a low false accept (or false alarm) probability and a high miss
(false reject) probability than the two other classi�ers. Whereas the SKLR
system achieves results with respect to low miss (false reject) and high false
accept (or false alarm) probabilities.

6.8 Summary
In this chapter we introduced a novel speaker recognition system. The key
idea of this system is to directly apply discriminative kernel classi�ers on
parameterized speech frames. Experimental evaluations on two speaker iden-
ti�cation and veri�cation tasks of the POLYCOST dataset con�rmed the high
competitiveness of the discriminative classi�er approach.

In general it can be concluded that the SVM as well as the SKLR sys-
tem outperformed the GMM classi�ers concerning recognition accuracy in
all experiments when directly applied on parameterized speech frames. Fur-
thermore the Sparse Kernel Logistic Regression leads to very sparse solutions
compared to the Support Vector Machine.

The drawback of discriminative kernel classi�ers is the computational cost
in parameter estimation as well as in evaluation. Especially for larger training
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sets this classi�cation methods would be computationally intractable. For
this reason we investigate a di�erent approach of using kernel classi�ers on
extended training and test data in the following chapter.
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7 Speaker Recognition on
Extended Training Data

In the following chapter we present the speaker recognition system which was
especially designed for the NIST speaker recognition evaluation campaign1.
It focuses on speaker detection using a large amount of speech data.

In section 7.1 we �rst give a short overview of the NIST speaker recogni-
tion evaluation campaign and outline datasets which we used for enrollment,
development and evaluation of the system. Furthermore we describe the front
end in section 7.2 and present the baseline GMM system together with base-
line experiments using di�erent GMM model sizes as well as di�erent feature
parameterization methods in section 7.3.

The integration of discriminative kernel classi�ers and related methods is
given in section 7.4 �. Moreover, we discuss the compensation of interses-
sion variabilities and apply this method to our recognition framework (see
section 7.6).

A comparative evaluation of SVM and SKLR using di�erent parameteri-
zation techniques is performed. Finally, we perform experiments on di�erent
fusion techniques of the three subsystems in section 7.7 and conclude the chap-
ter with an experiment on score calibration of unmoderated SVM outputs in
section 7.7.2.

7.1 NIST Speaker Recognition
Evaluation

Since 1996 the National Institute of Standards and Technology (NIST)
organizes annual speaker recognition evaluation (SRE) campaigns where
participating parties can present and openly discuss their speaker recognition
systems [Przybocki and Martin, 2004]. The NIST evaluations primarily focus
1http://www.nist.gov/speech/tests/sre/
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on speaker detection in the context of conversational telephone speech. The
GMM system which we will introduce in section 7.3, is a further development
of the system we presented at the NIST 2006 SRE campaign [Katz et al.,
2006b].

Each SRE campaign provides an explicit evaluation plan with rules and
de�nitions of training and test combinations. The NIST SRE-04, SRE-05 and
SRE-06 corpora were drawn from the Mixer corpus [Martin et al., 2004], a
multilingual and multi-modal (cross-channel) data collection project under-
taken by the Linguistic Data Consortium (LDC)2. The main language of
the collection is English. However a special e�ort has been made to addition-
ally recruit bilingual subjects who are also able to speak Arabic, Mandarin,
Russian or Spanish.

The NIST 2006 corpus serves as state-of-the-art speaker recognition corpus
to evaluate the performance of the speaker veri�cation system developed in
this thesis.

Table 7.1: Used Datasets in the NIST 2006 evaluation. The number of sentences is given
for males and females
Dataset UBM T-Norm Development Evaluation
SWITCHBOARD Cell. 50/50 25/25 - -
NIST SRE 2000 100/100 - - -
NIST SRE 2004 75/75 75/100 - -
NIST SRE 2005 25/25 - 274/372 -
NIST SRE 2006 - - - 354/462

Therefore we mixed data from four di�erent corpora for background model
training, score normalization and parameter optimization on development
sets. The background models were trained on parts of the SWITCHBOARD
Cellular dataset, the NIST 2000 evaluation set and a part of the NIST 2004
evaluation set. Furthermore we also used data from the SWITCHBOARD and
the NIST 2004 sets for T-Norm models. Model parameters were optimized on
the NIST 2005 corpus.

The data of the NIST SRE 2006 task is divided into several training and
test partitions, for further details see [Przybocki and Martin, 2006]. The main
task of these partitions is the so called core test with same conditions for
training and test; these are a two-channel conversation of approximately �ve
minutes total duration with the target speaker channel designated. The data
2http://www.ldc.upenn.edu/
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of this condition contains di�erent languages as well as di�erent transmission
channels and telephone types. The training set consists of 351 male and 462
female speaker sentences for model training. Each target model is trained
and tested by one conversation (1conv) using a four wire telephone line (4w).
All together there are 51448 (29317 female and 22131 male) trials in this
1con4w-1con4w evaluation test condition.

Restricting to English-only conditions the number of trials is reduced to
24013 (14293 female and 9720 male). We also present results on this subset
to compare our system to other recently published results. In the framework
of this evaluation it is possible to use alternative conditions like three or eight
conversations for training and one conversation for testing, 3con4w-1con4w
and 8con4w-1con4w respectively.

An excerpt of di�erent DET plot de�nitions used in the evaluation are
summarized in table 7.2. In this thesis we focus on the core test, de�ned as
DET1 in the �rst row of the table, and on the so called English-only condition
(DET3), which shows the performance of the system when all data are limited
to English. Additionally, we report results by gender (DET2, DET4) for the
core test and the English-only condition.

Table 7.2: Description of di�erent test conditions used in the NIST 2006 Speaker Recog-
nition Evaluation.

Data Description
DET1 Shows the overall performance (core test)
DET2 Shows the overall performance by gender
DET3 Shows the performance when all data (test segments and

model training) are limited to English (English-only)
DET4 Shows performance when all data (test segments and model

training) are limited to English by gender

7.2 The Front-End
The front-end of the speaker veri�cation system for large datasets is based on
speech parameterization methods described in chapter 3.2. In all experiments
we used three di�erent feature extraction methods, namely Mel Frequency
Cepstral Coe�cients (MFCC), Perceptual Linear Prediction (PLP) and Lin-
ear Predictive Cepstral Coe�cients (LPCC).
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Feature vectors were extracted from speech by using a 20ms Hamming
window and a window shift of 10ms. Previous to the extraction of features
the audio was band �ltered between 300Hz and 3400Hz. Non-speech frames
were removed using an energy-based speech activity detection as described in
chapter 3.3. After feature extraction all parameter vectors were normalized
to �t a zero mean and a unit variance distribution. Corresponding means and
variances were estimated on each speech �le independently.

The �rst system consisted of 19 LPCC and their �rst order time di�erences,
for a total of 39 features per vector.

For the MFCC front-end we used a 24-channel �lter bank and 13 MFCC as
well as 13∆ and 13∆∆ coe�cients. The �rst and second order time di�erences
of the energy were appended.

The PLP system used 50 components including 19 PLP coe�cients, 19
�rst order and 11 second order time di�erences. Finally, the ∆-energy was
appended to complete the PLP feature vector.

In general, the feature extraction was carried out using the SPRO toolkit
[Gravier, 2004] and some additional implementations to perform PLP. The
optimal number of features for each system was found on the development set
using the GMM system presented in the next section.

7.3 The GMM System
The GMM system of our proposed system is based on the Universal Back-
ground Model (UBM) approach (see section 2.5). For all systems gender de-
pendent UBMs were trained on background data which was taken from several
datasets (see table 7.1). The background data contain di�erent speaker char-
acteristics as well as di�erent microphone and transmission channels to cover
a large spectrum of di�erent speech sources. Each gender dependent UBM
consists of Gaussian mixture components with diagonal covariances and is
trained via the Expectation Maximization (EM) algorithm (section 2.6.1).

In general it is possible to model the speaker speci�c models from scratch
in the same way as the UBM. However, due to limited training data this
may result in underestimated parameters of the speaker GMM. It is then
possible that unseen feature vectors are classi�ed according to randomly gen-
erated mixture distributions. To overcome this problem, the speaker models
were adapted from the well trained background model. Therefore the speaker
speci�c models were derived from the UBMs using a one step Maximum A-
Posteriori adaptation [Reynolds et al., 2000]. Only the means of the mixtures



7.3 The GMM System 87

were adapted with a prede�ned relevance factor τ (see section 2.6.2).
During the recognition or detection phase, probabilities of UBM and speaker

models have to be computed. According to the GMM de�nition, one has to
sum up all weighted mixture probabilities of both models. Using M mixture
components this results in the computation of 2 ·M Gaussian mixture prob-
abilities. It has been found in [Reynolds et al., 2000], that it is su�cient to
approximate the �nal probabilities by the computation of the N highest mix-
ture probabilities of the speaker model with respect to the background GMM.
This reduces the computational cost to M + N probability calculations. An
important step in speaker recognition via telephone is the compensation of
channel mismatches. This compensation was realized by feature mapping
(section 2.7) which was performed on the acoustic feature vectors during en-
rollment and evaluation.

Detection probabilities were computed through equation (section 2.1) over
the whole sequence and normalized by the TNorm, see 2.10.1. The GMM
system presented in this section serves as baseline detection system for the
following system extentions.

7.3.1 Baseline Speaker Detection Experiments
In a �rst experiment we investigated the in�uence of model size on the recog-
nition performance. The DET curves in �gure 7.1 show the results using the
LPCC, the MFCC and the PLP subsystems. Models with 128, 256, 512, 768
and 1024 mixture components were compared for each subsystem. For all of
these subsystems we observe that the EER as well as the DCF value decreases
when more than 256 mixture components were used. It becomes apparent in
the �gure that the performance of systems using 512 and more components
is absolutely comparable. Since more components did not improve the per-
formance anymore, we chose GMMs with 512 mixture components for all
following experiments.

The DET curves of the three baseline GMM subsystems for the core test
and the English-only condition are shown in �gure 7.2. The actual DCF values
are denoted by circles on the DET curve. Additionally, table 7.3 summarizes
the gender dependent Equal Error Rates as well as the DCF values of the
three baseline speaker detection systems. The comparison of all presented
subsystems points out that in general the detection performance for the female
speaker is inferior to the male speaker system. The best detection performance
for both gender on the core test was achieved by the PLP subsystem with a
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Figure 7.1: In�uence of model size on di�erent GMM systems. The DET curves show
the LPCC (left) the MFCC (center) and the PLP (right) subsystems with T-Norm on the
NIST 2005 development corpus.

DCF value of 0.0345 compared to 0.0365 of the MFCC subsystem and 0.0426
of the LPCC subsystem. Besides, the PLP subsystem achieved the lowest
Equal Error Rates compared to the the MFCC and LPCC subsystems. As
can be seen in �gure 7.2, the performance of the subsystems is consistent over
the whole error ranges.
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Figure 7.2: Performance comparison of the three baseline GMM systems with TNorm
on the NIST 2006 Evaluation corpus. Left: core test results (DET1), right: English-only
condition (DET3)

As expected, the evaluation on the English-only condition set yields lower
EERs as well as lower DCF values. In contrast to the core test, where the PLP
subsystems outperforms the other two subsystems in both measurements, the
MFCC subsystem achieves the lowest EER on this subset.
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Table 7.3: Detailed comparison of the EER and the DCF for gender dependent GMM
subsystems on the NIST 2006 SRE task. Results are reported for core test and the English-
only condition.

GMM core test English-only
System EER (%) DCF EER (%) DCF
LPCC 9.3 0.0385 7.15 0.0302

male MFCC 7.57 0.0325 5.27 0.0261
PLP 7.26 0.0315 5.80 0.0251
LPCC 11.36 0.0455 10.42 0.0406

female MFCC 9.02 0.0394 8.79 0.0355
PLP 8.28 0.0357 8.26 0.0338
LPCC 10.49 0.0426 9.18 0.0338

both gender MFCC 8.39 0.0365 7.39 0.0319
PLP 8.03 0.0345 7.50 0.0310

The comparison of the results on these two set points out that on the core
test the LPCC and MFCC Equal Error Rates are about 14% (rel.) greater
than on the English-only condition. Interestingly, the EER the PLP subsys-
tem only drops about 7% (rel.). It can be inferred that the PLP subsystem is
more robust against language variabilities. However, it has to be considered
that this behaviour can also be caused by more general e�ects like channel or
session variabilities.
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7.4 Classifying Patterns of Variable
Length

The frame-based classi�cation method which has been described in in detail
in section 6.4 directly classi�es parameterized speech frames. Due to the
fact that these frames consist of a �xed dimension they are applicable with
nonparametric classi�cation methods like SVM or KLR.

However, the direct classi�cation of such feature vectors arises numerous
disadvantages of which two are outlined in the following. One major problem
is the enormous amount of speech data during enrollment. Through using
a frame shift of 10ms in a text-independent speaker veri�cation system and
1 minute of speech per speaker we are faced with 6000 frames per speaker;
this is not feasible for discriminative kernel classi�ers by one of the described
classi�cation schemes. The second clear disadvantage of the direct classi�ca-
tion of frames is the fact that this method discriminates frames whereas our
main aim is to discriminate speakers. Consequently, we either have to �nd
a classi�er which can deal with patterns of variable length or a projection of
variable length patterns to �xed length vectors. Through such a method of
mapping variable length patterns to �xed length vectors it is possible to apply
standard classi�cation methods like SVMs.

Up to date there exist some approaches in speech recognition where a se-
quence of observations is �rst split into segments by a standard speech recog-
nizer where each segment represent a speech unit such as a single monophone.
In [Ganapathiraju, 2001] these segments were then divided into three subseg-
ments according to a 3−4−3 ratio. The frames within each subsegment were
averaged and �nally concatenated to build a �xed size vector representing a
single speech segment. Then the SVM was used to post classify the mono-
phones using N-best lists of the speech recognizer or to rescore the phoneme
lattice [Stuhlsatz et al., 2006].

Alternatively, one can also apply a model based mapping instead of mapping
variable length patterns to �xed length vectors. The length of the resulting
vector is then independent of the data but it depends on the number of used
parameters in the statistical model. Such a popular mapping is the Fisher
kernel introduced by [Jaakkola and Haussler, 1999a]. The Fisher kernel is
a kind of similarity measure between two sequences. Given a pre-trained
generative model and the corresponding parameterization vector λ, then the
probability that this model generates the observation sequence X is denoted
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by P (X, λ). A �xed length vector can be constructed by computing the
derivatives of the log likelihood of the model P (X, λ), with respect to each
of the parameters of the generative model:

U(X) = ∇λ log P (X,λ). (7.1)

The vector U(X) of equation (7.1) is called the Fisher score. For two ob-
servation sequences X1 and X2 with the corresponding Fisher information
matrix F = E(U(X1)U(X2)) the Fisher kernel returns a scalar k(X1, X2)
where

k(X1,X2) = (∇λ log P (X1,λ))> F−1∇λ log P (X2,λ). (7.2)
However, for large datasets the Fisher information matrix F becomes very
large, which makes an inversion di�cult to compute. In [Jaakkola and Haus-
sler, 1999a] it is shown that in this case F can be replaced by the Identity
matrix I.

Interestingly, a generalization of the Fisher kernel was proposed by [Smith
and Gales, 2002] and is referred to as a score space approach. This variant
uses the ratio between the likelihood P (X,λ1) that the observation sequence
is generated by model λ1 and P (X, λ2) that the observation sequence is
generated by model λ2:

φ(X) = log
P (X,λ1)

P (X,λ2)
(7.3)

Another popular scheme for performing kernel classi�ers on variable length
patterns is the Generalized Linear Discriminant Sequence (GLDS) ker-
nel [Campbell, 2002]. The latest and most powerful solution of this problem is
the GMM supervector modeling concept, that we will describe in the following
section.
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7.5 GMM Supervector Modeling

The GMM supervector modeling concept was introduced by [Campbell et al.,
2006]. In this approach the connection between discriminative classi�ers
and GMMs is based on the similarity measurement of GMMs. A natural
choice of computing the similarity of two probability distributions is the
Kullback-Leibler (KL) divergence. The KL divergence between the dis-
tributions p(x|λa) and p(x|λb) is de�ned as:

D(p(x|λa)||p(x|λb)) =

∫
p(x|λa) log

(
p(x|λa)

p(x|λb)

)
dx. (7.4)

Using Gaussian mixture models with parameter vector λ = {c,µ,Σ} to
model p(x|λa) and p(x|λb) no closed form expression exists and the diver-
gence D(p(x|λa)||p(x|λb)) has to be estimated. In [Hershey and Olsen, 2007]
several estimation methods like the Monte-Carlo method are investigated.

Instead of the divergence in equation (7.4) we use the log-sum inequality
presented by [Cover and Thomas, 1991] to approximate the KL divergence of
the two GMMs. This divergence is upper bounded as follows [Do, 2003]:

D(p(x|λa)||p(x|λb)) ≤ D(ca||cb)

+
C∑

i=1

ciD(N (·; µa
i ,Σ

a
i )||N (·; µb

i ,Σ
b
i)). (7.5)

In case of MAP adaptation, and when only the GMM means were adapted
from the background model, i.e. ca = cb and Σa

i = Σb
i , the approximation in

equation (7.5) leads to the estimate (upper bound) De as follows:

De(µa||µb) =
C∑

i=1

ci(µ
a
i − µb

i)
>Σ−1

i (µa
i − µb

i). (7.6)

If Σi is a diagonal covariance matrix, equation 7.6 results in a similarity
measure between the two mixture models that is homogenous with the square
of the Euclidean distance between the weighted mean vectors µa and µb.

Therefore we consider the Euclidean distance between two vectors Φ(µa)
and Φ(µb) in feature space F . This distance can be computed in form of
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kernel functions as

D(µa||µb) = ‖Φ(µa)− Φ(µb)‖22
= K(µa,µa)− 2K(µa, µb) + K(µb,µb). (7.7)

Equating now the distance De(µa||µb) of equation (7.6) and D(µa||µb) of
equation (7.7) we can �nd the corresponding inner product which is the kernel
function

K(µa, µb) = Φ(µa)Φ(µb)

=
C∑

i=1

(
√

ciΣ
− 1

2
i µa

i )
>(
√

ciΣ
− 1

2
i µb

i). (7.8)

This kernel only contains the means µa and µb of Gaussian mixture models
that are weighted by the corresponding mixture weights and covariances.

Figure 7.3: Illustration of the GMM supervector construction. All means of a single GMM
are concatenated into a so called GMM supervector.

We can now apply this kernel to speaker recognition as follows: Speaker
speci�c GMMs are adapted from the UBM for all background and target
speakers. From these adapted models all resulting means of each GMM are
concatenated into single supervectors as shown in �gure 7.3 and a discrimi-
native kernel classi�er can be trained on this data.

7.5.1 GMM Supervector Experiments
In our �rst GMM supervector experiment we trained SVM and SKLR models
with supervectors generated from background and target speakers using the
linear kernel given in equation (7.8). We applied a one-vs-UBM training
procedure where the target vector of a speaker is trained against the whole
UBM set. During testing we �rst created a GMM on the acoustic data of the
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test utterance. This model was adapted from the UBM in the same way as
the client models, and �nally the GMM supervector of the test segment was
classi�ed by the classi�er of the claimed target speaker.

Based on the structure of the dot product kernel given in equation (7.8) we
can precompute the results of the discriminative classi�ers up to a single dot
product. For the case of SVM this results in:

f(µ) =

(
M∑
i=1

αiyiΦ(µi)

)>

Φ(µ) + b0 (7.9)

with M support vectors, corresponding class labels yi and the bias b0. Dur-
ing evaluation we only have to calculate a single dot product between the
precomputed bracket of equation (7.9) and the GMM supervector of the test
segment.
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Figure 7.4: Performance comparison of SVM systems (left) and SKLR systems (right)
using GMM supervectors on the NIST 2006 Evaluation corpus (core test).

The DET curves of this GMM supervector system are presented in �g-
ure 7.4. We applied the SVM as well as the SKLR classi�er to GMM super-
vectors of the LPCC, MFCC and PLP subsystems.

Additionally, we summarize the results of the SVM and SKLR classi�ers
in table 7.4 and table 7.5, respectively. In comparison to the standard GMM
system both discriminative classi�er increased the recognition performance.
The best GMM subsystem (the PLP system) achieved a DCF value of 0.0345
compared to 0.0295 and 0.0312 of the corresponding SVM and SKLR sub-
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systems respectively. On the average of all three subsystems the DCF values
of the SVM approach decrease more than 13% (rel.). However, applying the
SKLR classi�er the DCF values are about 9% (rel.) lower than the values of
the GMM systems.

Table 7.4: Detailed comparison of EER and DCF for gender dependent SVM subsystems
using GMM supervectors on the NIST 2006 SRE task.

System EER (%) DCF
SVM_LPCC 7.13 0.0316

male SVM_MFCC 6.11 0.0286
SVM_PLP 5.67 0.0274
SVM_LPCC 8.57 0.0366

female SVM_MFCC 6.90 0.0332
SVM_PLP 6.80 0.0309
SVM_LPCC 7.86 0.0345

both gender SVM_MFCC 6.58 0.0315
SVM_PLP 6.29 0.0295

Table 7.5: Detailed comparison of EER and DCF for gender dependent SKLR subsystems
using GMM supervectors on the NIST 2006 SRE task.

System EER (%) DCF
SKLR_LPCC 7.45 0.0331

male SKLR_MFCC 6.37 0.0288
SKLR_PLP 6.11 0.0283
SKLR_LPCC 9.02 0.0390

female SKLR_MFCC 7.30 0.0350
SKLR_PLP 7.15 0.0324
SKLR_LPCC 8.25 0.0365

both gender SKLR_MFCC 6.92 0.0324
SKLR_PLP 6.70 0.0312
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7.6 Intersession Variability
Compensation

The compensation of intersession variabilities is considered to be one of the
major problems in speaker recognition. These variabilities occur between
training and testing by using di�erent telephone handsets and/or di�erent
transmission channels. One of the �rst methods of compensating these vari-
abilities in the acoustic space was the Feature Mapping approach, proposed
by [Reynolds, 2003]. In the GMM framework [Kenny et al., 2005] proposed the
Factor Analysis method. To address the problem in the SVM framework,
the Nuisance Attribute Projection (NAP) was proposed by [Solomono�
et al., 2005].

7.6.1 Nuisance Attribute Projection
In addition to feature mapping in the acoustic space we need to compen-
sate the session variabilities of speakers (see section 2.4) in the GMM-space.
This compensation of channel and session variabilities in the SVM expan-
sion space can be realized by the Nuisance Attribute Projection (NAP),
introduced by [Solomono� et al., 2005], which is based on the well known
Principal Component Analysis (PCA). This projection tries to remove
the subspaces containing nuisance variabilities by a particular projection of
the GMM supervectors. Therefore, the NAP method constructs a new kernel
in the feature space by two speakers ua and ub:

K(ua, ub) = 〈PΦ(ua),PΦ(ub)〉 (7.10)
= Φ(ua)

>PΦ(ub) (7.11)
= Φ(ua)

>(I − SS>)Φ(ub). (7.12)

The projection matrix P is represented by (I − SS>) with the low rank
matrix S whose columns are orthonormal. It can be shown that the solution
of an optimal projection matrix P is equal to the principle components of the
supervectors [Campbell et al., 2006]. Therefore, the covariance matrix

C =
1

M

M∑
i=1

µiµ
>
i (7.13)



7.6 Intersession Variability Compensation 97

is set up by all M GMM supervectors µi. The eigenvectors of the covariance
matrix C have to be computed to determine the principle components. The
projection tries to remove the subspaces containing nuisance variabilities by
the projection:

µ∗ = (I − SS>)µ (7.14)
= µ− S(S>µ) (7.15)

where (I − SS>) is the complementary PCA projection with matrix S con-
taining the eigenvectors corresponding to the largest eigenvalues of the PCA
eigenvalue problem on features µ. In a further step we reduce the in�uence of
speakers by subtracting the mean of supervectors corresponding to the same
speaker:

C =
1

S

S∑
s=1

W s (7.16)

W s =
1

MS

MS∑
i=1

(µs,i − µ̃s)(µs,i − µ̃s)
> (7.17)

where MS represents the number of supervector and µ̃s the supervector mean
of the sth speaker in the set.

Resulting from the structure of the NAP kernel in equation (7.12) we do
not need to project the supervectors of the test data into the subspace.

7.6.2 Experiments
For each of the three gender dependent subsystems we created a projection
matrix P̃ on data from the SRE 2004 corpus using the GMMmodels of section
2.6.1. The number of utilized eigenvectors for the projection is optimized on
the development set. The in�uence of the number of utilized eigenvectors for
the data projection is presented in �gure 7.5.

The results obtained in the �gure suggest that more than 48 but less than
80 eigenvalues lead to promising results. Especially the performance of the
MFCC system decreases when more eigenvalues are selected. In the average
we obtain the best improvement for all subsystems by selecting the 64 largest
eigenvalues.

Therefore, we used in the evaluation experiments the corresponding eigen-
vectors of the 64 largest eigenvalues for the data projection. The results of
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Figure 7.5: In�uence of the number of utilized eigenvectors on the SVM supervector
system. Comparison of the resulting DCF on the NIST SRE05 1conv-1conv development
test, both gender.

the SVM and SKLR subsystems on the core test using the Nuisance Attribute
Projection are presented in �gure 7.6.

Table 7.6: Comparison of EER and DCF for gender dependent SVM systems using NAP
on the NIST 2006 SRE task.

System core test English-only
EER (%) DCF EER (%) DCF

SVM_LPCC 3.88 0.0186 2.15 0.0109
male SVM_MFCC 3.82 0.0192 2.29 0.0117

SVM_PLP 3.44 0.0193 2.03 0.0115
SVM_LPCC 4.70 0.0205 3.50 0.0169

female SVM_MFCC 4.95 0.0226 4.22 0.0182
SVM_PLP 4.89 0.0237 3.86 0.0204
SVM_LPCC 4.26 0.0200 3.02 0.0147

both gender SVM_MFCC 4.57 0.0212 3.50 0.0157
SVM_PLP 4.24 0.0220 3.18 0.0170

Whereas the LPCC achieved the highest error rates and DCF values in
the GMM experiments, the DCF value of the SVM_LPCC is lower than the
DCF values of the MFCC and PLP systems. The best equal error rates were
achieved by the supervector SKLR_PLP approach with an EER of 4.10%
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Figure 7.6: Performance comparison of gender dependent SVM (left) and SKLR systems
(right) using NAP on the NIST 2006 Evaluation corpus.

Table 7.7: Comparison of EER and DCF for gender dependent SKLR systems using NAP
on the NIST 2006 SRE task.

System core test English-only
EER (%) DCF EER (%) DCF

SKLR_LPCC 3.71 0.0189 1.89 0.0109
male SKLR_MFCC 3.77 0.0189 2.16 0.0122

SKLR_PLP 3.25 0.0184 2.05 0.0112
SKLR_LPCC 4.55 0.0208 3.60 0.0168

female SKLR_MFCC 4.99 0.0222 4.13 0.0178
SKLR_PLP 4.75 0.0232 3.86 0.0197
SKLR_LPCC 4.21 0.0201 3.02 0.0149

both gender SKLR_MFCC 4.51 0.0209 3.55 0.0157
SKLR_PLP 4.10 0.0214 3.13 0.0164

compared to 4.21% of the SKLR_LPCC and 4.51% of the SKLR_MFCC
system. In comparison to the SVM approach, which achieved Equal Error
Rates of 4.24%, 4.26% and 4.57% on the equivalent subsystems, the SKLR
has the lowest error rates. In contrast to the EER, the lowest DCF values are
achieved by the LPCC subsystems. Interestingly, the SVM_LPCC system
achieved a slightly lower DCF value compared to the SKLR_LPCC system.

For a better comparison to other published systems we also present our
results of the English-only condition. Together with the outcomes of our best
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subsystems we give a summary of competitive state-of-the-art single systems
in table 7.8.

Table 7.8: Summary of recently published results based on single systems on the NIST
2006 SRE task, both gender.

System core test English-only
EER (%) DCF EER (%) DCF

[Shriberg and Ferrer, 2007] - - 4.00 0.0197
[Matejka et al., 2007] 5.40 0.0283 3.61 0.0171
proposed SVM_LPCC system 4.26 0.0200 3.02 0.0147
proposed SKLR_LPCC system 4.21 0.0201 3.02 0.0149

All systems in table 7.8 are based on Support Vector Machines. The ap-
proach presented in [Matejka et al., 2007] also applies the supervector concept
as well as nuisance attribute projection to remove channel variabilities. Cor-
responding eigenvector of the �rst 40 eigenvalues are used for the projection.
The system used in [Shriberg and Ferrer, 2007] is a maximum likelihood
linear regression (MLLR) system that additionally makes use of informa-
tion from a speech recognizer to obtain speaker speci�c model transforms (for
more details see [Stolcke et al., 2007]).

As we can see in table 7.8 our proposed speaker recognition subsystems
based on LPCC clearly outperform recently published systems. In contrast
to our best performing subsystem, both published approaches are based on
cepstral features. Another di�erence to [Matejka et al., 2007] is the number
of eigenvectors used for NAP. Relating to our �ndings presented in �gure 7.5
we used 64 eigenvectors for the projection.

In the next section we will apply di�erent score combination methods on
the results of our three subsystems and compare these fusions with the single
subsystems.

7.7 Fusion Schemes
As we have seen in section 6.4 and 7.5 there exist several di�erent methods
like SVMs or SKLR for classifying and detecting speakers. We also can apply
di�erent feature extraction methods like LPCC, MFCC or PLP. In numerous
publications, the successful combination of independently developed systems
has been shown. Most of these systems combine so called low and high-
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level systems. In general low-level systems are based on acoustic features
like MFCC and high-level systems represent pitch-based, phone-based and
word-based systems. In this work we explore fusion of di�erent low-level
subsystems, namely LPCC, MFCC and PLP subsystems. In the following we
discuss three di�erent fusion approaches.

In feature-level fusion, di�erent feature vectors from several modalities or
di�erent feature extraction algorithms are combined directly. In this approach
one has to guarantee that the feature vectors are synchronous, i.e. the same
frame-shift and the same time index is used in the feature extraction. The
combination can then be realized by concatenating the feature vectors in each
time step. Examples of feature-level fusion of features derived from di�erent
modalities can be found in [Chibelushi et al., 1997].

The second approach, the GMM-Level fusion, is based on the GMM su-
pervector method of section 7.5. Di�erent GMM supervectors can be con-
catenated to form combined feature vectors for the following discriminative
classi�er. Notwithstanding, the resulting dimension of these concatenated su-
pervectors is very high and additional subspace transformations like Linear
Discriminant Analysis (LDA) should be used to extract relevant informa-
tion for the classi�er.

The score-level fusion is the third approach and combines the scores from
di�erent subsystems in a post classi�cation step. In this approach it is possible
to fuse several independent systems. Fusion performed in this work is based
on the score-level approach.

However, there are di�erent ways of fusing scores, e.g., weighted sum

Ssum(X) =
M∑
i=1

ωiS(X i) (7.18)

where the score S(X i) of each subsystem is weighted by its own weight ωi.
The weights can be estimated on a development set by minimizing a certain
error criterion. Other approaches are fusion by maximum rule

Smax(X) = max S(X i), (7.19)

where the �nal score is obtained by �nding that subsystem with the highest
score.

Another approach of score fusion is concatenate all scores of the subsystem
in an M -dimensional score vector S, where the dimension M is equal to the
number of used subsystems. These score vectors serves as input of a new
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binary classi�er with one impostor and one client class. Again, a number of
classi�cation approaches like GMMs, SVM or Neural Networks (NNs) are
candidates for this approach.

7.7.1 Score Fusion Experiments
In this thesis we restrict to three simple score fusion techniques: Logistic
Regression (5.51), weighted sum (7.18) and average. The average is identical
to the weighted sum with equal weights for each score.
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Figure 7.7: Performance comparison of fused SVM and SKLR systems using simple av-
erage (left) and logistic regression (right) on the NIST 2006 Evaluation corpus.

Fusion results are presented in �gure 7.7 and table 7.9. As we can see
from �gure 7.7 both classi�ers achieve comparable DET curves. In all cases
the SKLR systems performs slightly superior to the SVM system but not
signi�cantly. Comparing equal error rates for the Logistic Regression fusion
in table 7.9 we can see that the fused SKLR system achieves equal error rates
that are about 4.0% (core test) and 4.5% (English-only) lower than the SVM
results.

Again, we compare our results with �ndings of competitive state-of-the-art
systems in table 7.10. The fused system presented in [Matejka et al., 2007] is
based on several SVM low-level subsystems that were independently developed
by di�erent groups. Their best subsystem also applies the supervector concept
as well as nuisance attribute projection. Score fusion is realized by Logistic
Regression.
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Table 7.9: Comparison of the EER and the DCF for di�erent fused SVM subsystem on
the NIST 2006 SRE task, both gender.

GMM core test English-only
System EER (%) DCF EER (%) DCF
Average 3.47 0.0178 2.48 0.0129

SVM Weighted Sum 3.52 0.0176 2.43 0.0129
Logistic Regression 3.46 0.0176 2.43 0.0127
Average 3.43 0.0174 2.43 0.0128

SKLR Weighted Sum 3.44 0.0174 2.42 0.0130
Logistic Regression 3.32 0.0173 2.32 0.0128

Campbell et al. presented the performance of their fused system on the
NIST 2006 task (post-evaluation) in [Campbell et al., 2007]. This system
combines several low-level subsystems based on GMMS, SVM-NAP and SVM
with GLDS kernel [Campbell, 2002]. Additionally they used high-level (word-
based) subsystems and fused their scores with a Neural Network.

The system given in [Shriberg and Ferrer, 2007] also uses di�erent SVM sub-
systems that are based on GMM supervectors as well as on MLLR (see 7.6.2).
They combine these low-level subsystems with high-level systems based on
prosody, phones and words.

Table 7.10: Summary of recently published results based on fused systems on the NIST
2006 SRE task.
System Fusion core test English-only

EER DCF EER DCF
[Campbell et al., 2007] Neural Net 4.40 0.0220 2.70 0.0140
[Shriberg and Ferrer, 2007] feature-level - - 2.59 0.0144
[Matejka et al., 2007] LR 3.83 0.0214 2.32 0.0126
proposed SVM LR 3.46 0.0176 2.43 0.0127
proposed SKLR LR 3.32 0.0173 2.32 0.0128

Table 7.10 shows that the performance of our fused SKLR system is compa-
rable with the results presented in [Matejka et al., 2007] on the English-only
condition. However, the recognition environment introduced in this thesis to-
gether with the novel SKLR classi�er achieved the lowest DCF value as well
as the lowest EER on the core test. As can be seen in table 7.10 the fusion
of subsystems based on di�erent speech parameterization techniques leads to
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better results than the fusion of di�erent classi�cation approaches.
In general we can conclude that the fusion of our subsystem scores com-

plement each other and that the fused SVM as well as the SKLR systems
outperform all single subsystems presented in section 7.6.2.

Since the SVM output scores are not restricted to a de�ned range, we will
apply a score calibration on the unmoderated SVM scores in the next section.

7.7.2 Score Calibration of SVM output scores
In this �nal experiment we investigate a calibration of unmoderated SVM
score for a better fusion of the subsystem scores. Therefore we transformed
the scores of the SVM subsystems by Platt's algorithm to probabilities and
fused these moderated scores by di�erent fusion techniques. The parameters
for Platt's algorithm (see section 5.3.4) were estimated on the development
set. It is important to note that since no speaker dependent development data
could be used for parameter optimization, the �nal calibration parameters are
speaker independent. The results of the calibrated and fused subsystems are
presented in table 7.11.

Table 7.11: Comparison of the EER and the DCF for di�erent fused SVM subsystems
on the NIST 2006 SRE task. SVM scores are calibrated by a sigmoid function.

Fusion EER (%) DCF
Average 3.46 0.0177
Weighted Sum 3.50 0.0177
Logistic Regression 3.42 0.0176

Table 7.11 shows that a speaker independent score calibration has no in-
�uence on the DCF value. Only the EER slightly decreased in all cases. For
example the EER of the additionally calibrated LR fusion decreases about
1.2% compared to the un-calibrated one.

7.8 Summary
In this chapter we presented a speaker veri�cation/detection system that suc-
cessfully combines discriminative and generative classi�ers. The system is
based on three di�erent acoustic parameterization techniques and fuses the
scores of these subsystems.
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First, we reviewed related methods for classifying patterns of variable length
in section 7.4 and gave a brief overview of the GMM supervector concept in
section 7.5. Secondly, we described the Nuisance Attribute Projection (NAP)
as compensation of intersession variabilities in section 7.6.1.

In the following we presented our experiments which were carried out with
two discriminative kernel classi�ers, namely SVM and SKLR, on the current
NIST SRE 2006 data. Compared to traditional GMM systems our new SKLR
supervector system improves the EER on the core test about 50% from 8.03%
to 4.10% and the DCF value from 0.0345 to 0.0214 using the PLP-subsystem.
We achieved the best result by fusing the SKLR subsystems using Logistic
Regression. While the SVM system achieved an EER of 3.46% and a DCF
value of 0.0176, our novel SKLR approach outperforms the SVM system with
an EER of 3.32% and a DCF value of 0.0173.
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8 Conclusion
This thesis aimed to address the integration and combination of di�erent
discriminative classi�ers, like Support Vector Machines (SVM) and Kernel
Logistic Regression (KLR) into the �eld of speaker recognition.

First, we gave an overview of how speaker recognition is linked to the �eld of
biometrics and discussed advantages and disadvantages of identifying or veri-
fying claimants by their voice. Furthermore, the most common techniques for
speaker recognition were surveyed in chapter 2, including speaker veri�cation
based on the likelihood ratio test with Gaussian Mixture Models (GMMs).
Moreover, chapter 3 reviewed the speech production in human beings and de-
scribed di�erent parameterization methods of speech data that are applicable
for speaker recognition.

In chapter 4 we revisited the theoretical background of statistical learning
theory and addressed the principles of structural risk minimization with the
aim to lay the foundation for the discriminative classi�ers presented in this
thesis.

After describing the popular Support Vector Machine and its abilities in
chapter 5 we introduced the Kernel Logistic Regression (KLR) as a non-
linear expansion of Logistic Regression, a well known method in the world
of statistics. Since memory requirements for parameter optimization of the
standard KLR depend on the size of the training data this approach is not
feasible for large training data.

Due to this fact we developed the so called Sparse Kernel Logistic Regres-
sion (SKLR) that provides a sparse solution where the memory requirements
scale with the size of the solution. The solution is achieved by a forward
selection of adequate training samples. In comparison to the SVM the SKLR
also provides a probability output of class membership instead of a distance
measure.

Rooted in the framework of realizing speaker recognition by discriminative
classi�ers we presented our novel speaker recognition environment as one ma-
jor result of this work. The discriminative classi�ers were integrated into the
recognizer in two di�erent ways: The �rst recognition approach is designed
especially for limited training data as it is often the case in real world security
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applications. The second realization is developed for speaker detection with
an extended amount of speech data.

With reference to the �rst approach we demonstrated the power of SVM and
SKLR classi�ers in chapter 6 on small real world identi�cation and veri�cation
problems, where the classi�ers were applied directly on feature vectors in the
same way as in the GMM approach. While the SKLR inherently provides a
probability output, the unmoderated SVM outputs had to be transformed to
probability measures. In case of speaker identi�cation we additionally applied
techniques for combining all probabilities of the one-vs-one pairs into multi-
class probabilities.

Importantly, both discriminative classi�ers achieved signi�cantly better iden-
ti�cation and veri�cation rates than the traditional GMM method on the
POLYCOST corpus. Although the recognition rates of SVM and SKLR are
comparable to each other it is important to notice that the SKLR also pro-
vides a very sparse solution that contains less selected vectors than the SVM.
Thus, it clearly outperforms the SVM concerning classi�cation speed. Due
to the computational cost of SVM and SKLR this frame-based classi�cation
method is not feasible for large speech utterances.

Therefore we set up our second state-of-the-art speaker recognition system
designed for speaker detection on large datasets which has been reported in
chapter 7. This system is based on the Universal Background Model (UBM)
approach and uses gender-dependent GMMs for background models as well
as MAP adapted GMMs for speci�c speaker models. We compared several
approaches of projecting variable length speech utterances to �xed sized vec-
tors that could be classi�ed by our discriminative classi�ers. As a result of
this comparison the GMM supervector concept was chosen and successfully
integrated into the recognition system. Further, the discriminative classi�ers
were then applied to the GMM supervectors.

We demonstrated the outstanding recognition ability of the SKLR in sev-
eral experiments on the NIST 2006 Speaker Recognition Evaluation task and
compared our results with comparable published systems.

Simultaneously, we also compared di�erent feature extraction methods in
this work to identify the most suitable one for speaker recognition. After
a comparison of di�erent parameterization techniques this goal was accom-
plished by a fully text-independent speaker recognition system that combines
classi�cation results of di�erent feature extraction methods. We could show
that the fusion of subsystem scores complement each other and that the �nal
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SVM and SKLR systems outperform all single subsystems.
Signi�cantly, the combination of di�erent subsystems also bene�ts from the

probability output of the SKLR because all scores are well calibrated and lie
in a de�ned range between zero and one.

In general the performance of speaker recognition systems is deeply in�u-
enced by the amount of speech data used during enrollment and test. This
was also shown in chapter 6. In future works one needs to investigate this
in�uence to SVM and SKLR. In case of using discriminative classi�ers di-
rectly on feature vectors, more e�cient optimization algorithms for SVM and
SKLR would solve the problem of more speech data in the enrollment. How-
ever, at the same time alternative classi�cation schemes that are more e�cient
than the used one-vs-one approach should be investigated. Future work also
includes exploring alternative supervector constructions for smaller datasets.
As a consequence of other construction methods that are not based on a MAP
adaptation of speaker models, a development of di�erent kernel functions is
needed.

In conclusion we could prove that discriminative classi�ers can be success-
fully applied to the �eld of speaker recognition in di�erent ways. More gener-
ally, future research is needed to further improve and re�ne these new ideas
in the �eld of speaker recognition.
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