
Visual Data Analysis in
Air Traf�c Management

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von FRANK REHM , M.Sc.

geboren am 25. März 1976 in Dresden

Gutachter:

Prof. Dr. Rudolf Kruse

Prof. Dr. Frank Klawonn

Prof. Dr. Karl Nachtigall

Magdeburg, den 12. Februar 2007





Zusammenfassung

In nahezu allen Bereichen von Handel, Dienstleistung, Indu strie und For-

schung werden große Mengen von Daten gesammelt. Der Grund da für liegt

meist in dem Wunsch, das Verhalten von Kunden zu verstehen so wie techni-

sche oder natürliche Phänomene beschreiben bzw. vorhersagen zu können.

Neben der Größe solcher Datensätze, die eine Analyse ohne Unterstüt-

zung von Computern unmöglich macht, stellt die Anzahl der At tribute, die

ein Datenobjekt beschreiben, eine Herausforderung dar. Während Datenob-

jekte, die durch zwei oder drei Attribute beschrieben sind, einfach graphisch

dargestellt werden können, ist die Visualisierung hoch-di mensionaler Daten

– also Daten, die durch sehr viele Attribute beschrieben wer den – nicht trivi-

al.

Das Forschungsgebiet Data Mining umfasst die Entwicklung g eeigneter

Methoden zur Datenaufbereitung und Datenanalyse vor dem Hi ndergrund

wachsender Datenbanken mit komplexen Datensätzen. Diese Arbeit liefert

einen Beitrag auf dem Gebiet der Methodenentwicklung zur Di mensions-

reduktion und Ausreißererkennung. Ein wesentlicher Beitr ag besteht in der

Visualisierung komplexer Daten, sowie der Visualisierung von Ergebnissen

verbreiteter statistischer Analysemethoden, wie Cluster ing oder Fuzzy-Klas-

si�katoren.

Am Beispiel der Analyse von Flug- und Wetterdaten vom Flugha fen Frank-

furt wird deutlich, welche Stärken und welche Grenzen die in dieser Arbeit

vorgestellten Methoden charakterisieren. In diesem Beispiel soll der Ein�uss

des Wetters auf die Flugzeit ankommender Flugzeuge am Frank furter Flug-

hafen bestimmt werden. Dadurch soll die Vorhersage von Flug zeiten mög-

lich werden, was die Optimierung verschiedener Abläufe am F lughafen zu-

lässt.





Abstract

Almost all branches of commerce, industry and research put g reat efforts in

collecting data with the objective to describe and predict c ustomer behaviour

or both technical and natural phenomena.

Besides the size of such data sets, which make manual analysis impracti-

cal, data analysis becomes challenging due to a large number of attributes

describing a data object. Whereas a graphical representation of data objects

that are described by means of two or three attributes can be realized easily,

the visualization of high-dimensional data – data that is de scribed through

many attributes – is not trivial.

The data mining research area comprises the development of suitable tech-

niques for data preprocessing and data analysis to cope with the problem of

aggrandizing databases including complex data sets. This thesis contributes

to the domain of methodology development, dimensionality r eduction and

outlier treatment. Another major focus is set on the visuali zation of complex

data as well as the visualization of complex results obtaine d from common

data mining techniques, e.g. clustering and fuzzy classi�e rs.

The characteristics of the proposed techniques become evident on the ex-

ample of the analysis of �ight data and weather data measured at Frankfurt

Airport. The objective of this application is the research o f weather factors

that affect the �ight duration of aircraft approaching Fran kfurt Airport. Un-

derstanding the interrelationship between weather and �ig ht duration per-

mits the optimization of various processes at the respectiv e airport and may

save time and money of customers and companies.
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1 Introduction

Nowadays, data collecting is practiced in almost every doma in of business

and science. Data mining or knowledge discovery is the hidde n agenda be-

hind this process. Ideally, one would input all the collecte d data into a black

box which outputs all the knowledge that comprehends the dat a. Unfor-

tunately, this is not available until now. Indeed, the proce ss of knowledge

extraction is all but trivial. First problems arise when exp eriments or mea-

surements produce data of low quality. Data mining algorith ms must thus

be able to deal with uncertainty or imprecision.

Most classical data mining methods expect a homogeneous input. In many

modern applications, however, the data to be analyzed come f rom heteroge-

neous information sources. We certainly cannot expect to �n d data mining

algorithms that are generally applicable to all kinds of inf ormation sources.

Due to his excellent capability of visual pattern recogniti on, a human can

easily group data into clusters or classify different pheno mena simply by

viewing them on a sheet of paper or on a computer screen. This hypothesizes

admittedly that the nature of the problem representation is 3-dimensional

at most. However, the problems we focus in this work are natur ally high-

dimensional in a virtual feature space and thusly not analyz able directly by

viewing only.

On the one hand, the issue of this work will be the visualizati on of prob-

lems that can be represented in a high-dimensional feature space. But we

will also provide some improvements to common techniques th at mine in-

formation from suchlike data.

1



2 1 Introduction

1.1 Data Mining and Visualization

The analysis of collected data is not a new activity. Statist icians have been

de�ning mathematical descriptions of data for many years. R esearch work

in statistical analysis, pattern recognition and machine l earning all contribute

to data mining. Often the available data comprise only a samp le from the

complete population. The aim may be to generalize from the sa mple to the

population. Such generalizations may not be achievable thr ough standard

statistical approaches because often the data are not random samples, but

rather represent a biased subsample [39].

According to [28] data mining is the mechanized process of id entifying or

discovering useful structures in data. The term structure r efers to patterns,

models or relations over the data. A pattern is described as a description of

a subset of data points. A model is a description of the entire data set. A

relation is an accurate, convenient and useful summary of so me aspect of

the data specifying some dependency between attributes over a subset of the

data. Typically favoured requirements of relations we seek are, of course,

novelty, but also simplicity. Relationships must be unders tandable to be ac-

cepted by a user.

Two general categories in data mining are prediction and kno wledge dis-

covery. Prediction involves using some variables to predic t unknown or fu-

ture values of other variables of interest. Prediction will be commonly dis-

tinguished between classi�cation, which implies the predi ction of discrete

variables, and regression that works on continuous variabl es [16]. Knowl-

edge discovery focuses on �nding interpretable patterns de scribing the data.

It has been de�ned as the nontrivial extraction of implicit, previously un-

known, interesting and potentially useful information fro m data.

Visual methods are important in data mining because they hel p to provide

comprehension of unexpected relationships. The goal is to reduce complex-

ity while capturing important information. Visualization s can be used to ex-

plore data, to con�rm or deny a hypothesis or to emphasize cer tain aspects

of the data to the viewer. In exploratory visualizations the user is searching
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Figure 1.1: The data mining process

for structure or trends attempting to formulate some hypoth eses. Visualiza-

tion can be static, animated or interactive. Without the pro per visualization

techniques, data mining models may not give us the desired in sight to help

humans understand the phenomena of interest [28]. A detaile d survey of

visualizations is given in [42].

The data mining process consists of different stages that are visualized in

�gure 1.1 and summarized in the following. The problem de�nitionstage in-

cludes the description of the form of input and output, but al so costs and

the appropriateness of using data mining. Data collectionis concerned with

deciding which data to collect and how to collect them. The data preprocessing

task assures that data conforms to a certain format and dupli cates or outliers

are treated appropriately. Selecting an appropriate mining methodconsists of se-

lecting an algorithm, e.g. regression, clustering, etc., and of setting algorithm
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parameters, such as the number of prototypes for the cluster ing. Training and

testing the datameans the training of the mining algorithm and testing it usi ng

an evaluation set of data in the trained architecture. A deta iled examination

of the data mining process can be explored in [16, 39, 90].

This work will mainly contribute to the data preprocessing s tage, the model

selection stage and the training and testing stage. For that purpose we will

describe some techniques for outlier treatment and visuali zation techniques

that help to select suitable mining methods. Further we cont ribute to the

visual evaluation of clustering algorithms and to the visua l presentation of

fuzzy rules.

1.2 Improving Air Tra�c Management with
Data Mining

Air traf�c growth has been stated in the past decades neglect ing a temporary

decrease in 2001–2002. Likewise traf�c forecast estimatesan increase of about

4% yearly for Europe [73]. The big effort that is made to lower the delay of

aircraft emphasizes that often airports already operate at their limit [1, 2, 26].

A serious problem is that heavy aircraft induce wake vortice s1 that constrain

separation to succeeding aircraft. Inventing procedures t o reduce separation

is subject of current research. Studies have shown that delay is also caused

to a big extent by bad weather [13, 26, 40, 71, 93]. Thunderstorms must be

dodged, heavy headwind reduces �ight speed and iced aircraf t must be de-

iced – just to mention some reasons for that. Besides the weather forecast

that is usually released by meteorological services also the prediction of the

delay under given weather conditions might improve the airp ort ef�ciency.

Of course, the impact of weather on air traf�c cannot be gener alized for all

airports since local particularities vary naturally. Pred icting the delay that an

aircraft may have allows to retard �ights on other airports t hat depart to the

airport but also to coordinate ground activities such as bag gage handling.

1Wake vortices are small tornadoes, counter-rotating, being generated at the end of the
wings of an aircraft.



1.3 Data Presentation 5

Analyzing a weather data set with the objective to predict ai rcraft delay will

be a thread in this thesis.

In [40] arriving �ights at Los Angeles International Airpor t (LAX) are fo-

cused. A metric – the Daily Flight Time Index (DFTI) – is devel oped that

captures the daily variation in �ight times for LAX arrivals . The day-to-day

variation in DFTI is analyzed relating it to weather, demand , and average

delays at origin airports. A linear regression model is appl ied to data which

describes several weather factors, traf�c information and an origin airport

delay variable. The model explains 75% of the variation in DF TI. Several

other models are estimated and compared to this baseline model.

The impact of thunderstorms at Frankfurt Airport has been st udied in [93].

Thunderstorm days were compared with adequate reference da ys with nor-

mal weather conditions. The difference in the delay times be tween a thun-

derstorm day and the reference day was determined on an hourl y basis. A

signi�cant increase in delay was observed. Since the total d elay depends on

the intensity and duration of the thunderstorm event and the instant capac-

ity of the airport, delay is varying strongly. In a period of t wo years delay

factors ranged between 0.1 and 12.7.

1.3 Data Presentation

Studies in this thesis are based either on some synthetic data sets, on well

known benchmark data sets and on two combined data sets comin g from an

industrial application. The last contains on the one hand th e weather con-

ditions at Frankfurt Airport and the complete traf�c data fo r the same time

period on the other hand. Details of the synthetic data and th e benchmark

data will be given later. A brief description of the weather d ata and the traf-

�c data will be given in the following. For detailed informat ion on both data

sets we refer to [61, 78].
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Weather Data

The weather data originate from the ATIS 2 weather data set of the year 1998:

different sensors present at the airport capture several weather characteristics

and form a weather report. Such a report is released every thi rty minutes

(in case of rapidly changing weather, the frequency is incre ased); this corre-

sponds to over 18000 data. Each weather report contains information such

as the temperature, the air pressure and precipitation info rmation, e.g. the

presence of snow, rain or hail.

Tra�c Data

In addition to the weather data set, information about the tr af�c is avail-

able, through a data set that contains the arrival times of al l aircraft at Frank-

furt Airport for the observed time period. Since the delay is of interest that

is caused by the weather factors in the vicinity of the airpor t, the point in

time of the aircraft's entrance in the airport vicinity (the so-called Terminal

Area, TMA) and the time when the corresponding aircraft is la nding are con-

sidered. The difference between these two times corresponds to the travel

time in the TMA. This quantity is independent of delay that mi ght have been

caused at the departure airport or during the �ight. In avera ge, the TMA

travel time is about thirty minutes.

Whereas the studies in [61, 76, 77, 78] aimed at analyzing theeffect of cer-

tain weather factors to �ight durations, we will demonstrat e the ef�ciency of

our techniques by means of these data sets.

1.4 Data Preprocessing

Advances in data collection and storage capabilities durin g the past decades

have led to an information overload in most sciences. In most of the cases

when it is to solve a task one gets raw data that have to be prepared for

2ATIS (Automatic Terminal Information Service) is a continu ous broadcast of recorded in-
formation in airports. ATIS broadcasts contain essential w eather information but also the
active runway and other information required by the pilots.
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concrete learning processes. Before a data set will be formatted to conform to

a certain analysis tool it is essential to determine appropr iate data structures

and then the data preprocessing method. Some important aspects in this

regard are:

� data cleaning

� data transformation

� data reduction.

Alike the weather data set requires all these preprocessing steps.

Data cleaning covers the handling of missing values, the identi�cation an d

processing of outliers and resolving inconsistencies. These steps are impor-

tant since outliers as well as inconsistencies have a bad impact on a multitude

of learning methods. In the recent years, much work has been d one to cope

with the outlier problem [3, 4, 12, 38, 52, 53]. Data cleaning is far from triv-

ial since suchlike (missing) data can be the result of erroneous measurement

but it can also comprehend important information [4, 96]. Mi ssing data can

be �lled in using imputation-based or model-based techniqu es. Replacing

missing values without capturing the information that they were missing ac-

tually removes information from the data set. The most predi ctive variable

in a data set could be the missing value pattern. For an extensive discussion

of missing value treatment we refer to [97]. Thus, the traf�c data set needs to

be cleaned because of some outlying values due to very heavy traf�c and due

to accidents in two cases during the observed time period. Th e weather data

set contains missing values when certain weather condition s are ful�lled but

also in case of the malfunction of different sensors.

Data transformations are needed for different reasons, amongst others for

aggregation and normalization. Often it may be suf�cient to classify data by

means of linguistic terms, e.g. travel time is low, mediumor high. In most of

the cases different attributes vary in range. Normalizatio n is then advisable

in order not to affect learning methods in an unjusti�ed way. As a matter of

fact, not all learning methods process every type of data. Tr ansformations,

e.g. dichotomization or binarization of nominal attribute s will be necessary
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to process data. Actually, the weather data set contains a nominal attribute

which describes precipitation by one or more facts, e.g. RASH which means

rain showerwhereas RA simply indicates rain. Constructing new features in

such cases in�ates the data set's complexity drastically.

Data reduction and dimensionality reduction may be essential to be able to

analyze data within an acceptable timeframe under maintain able resources.

Moreover, not all the measured variables are important for u nderstanding

the underlying phenomena of interest. Thus, the problem is t o identify rele-

vant features. The goal is to reduce complexity while losing the least amount

of information. Commonly used methods like principal compo nent anal-

ysis or multidimensional scaling provide dimensionality r eduction. Multi-

ple regression, regression trees or feature selection techniques facilitate the

identi�cation of indispensable variables. Sampling, whic h selects a repre-

sentative subset from a large population of data, is needed w hen analyzing

large data sets that overextend resources, be it time or memory storage. As

a preprocessing step for data mining, discretization consi sts of splitting the

values of a continuous variable into a small list of interval s. Each interval

is then treated as a discrete value by the data mining algorit hm. An effect

of discretization is to speed up the execution of several alg orithms, e.g. rule

induction algorithms [16].

1.5 Outline

In this work we advance the methodology regarding data visua lization and

data mining of high-dimensional data. Regarding the data mi ning process,

we will mainly contribute to the stages of data preprocessin g, mining al-

gorithms and model evaluation. In chapter 2, we review multi dimensional

scaling and focus on three own techniques. We apply our metho ds to syn-

thetic data and on real weather data as well to visualize them on the plane.

Chapter 3 deals with the improvement of fuzzy clustering and the visualiza-

tion of fuzzy partitions. Concerning clustering we aim at ma king existing

techniques more robust. Validity of fuzzy partitions is dif �cult to determine.
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Our visualizations target to identify single clusters. In c hapter 4, we review

the concept of fuzzy rules and describe a way to visualize hig h-dimensional

data in relation to their representing rule base. Finally, w e conclude with

chapter 5.





2 Multidimensional Scaling and Data
Navigation

Multidimensional scaling (MDS) is a family methods that see k to present the

important structure of the data in a reduced number of dimens ions3. For this

purpose MDS estimates the coordinates of a set of objectsY = f y1, . . . ,yng
in a feature space of speci�ed (low) dimensionality that com e from data

X = f x1, . . . ,xng � R p trying to preserve the distances between pairs of

objects. Different ways of computing distances and various functions relat-

ing the distances to the actual data are commonly used. Thesedistances are

usually stored in a distance matrix

Dx =
�

dx
ij

�
, dx

ij =

 xi � x j


 , i , j = 1, . . . ,n.

The estimation of the coordinates will be carried out under t he constraint,

that the error (or stress) between the distance matrix Dx of the data set and

the distance matrix Dy =
�

dy
ij

�
, dy

ij =

 yi � y j


 , i , j = 1, . . . ,n of the corre-

sponding transformed data set will be minimized.

2.1 Sammon's Mapping

Different error measures to be minimized were proposed, e.g . the absolute

error, the relative error or a combination of both. A commonl y used error

measure, the so-calledSammon's mapping

E =
1

n
å

i= 1

n
å

j= i+ 1
dx

ij

n

å
i= 1

n

å
j= i+ 1

�
dy

ij � dx
ij

� 2

dx
ij

(2.1)

3Principal component analysis can be regarded as a basic formof multidimensional scaling.

11
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Algorithm 1 Sammon's mapping

Given the data set X = f x1, . . . ,xng � R p

De�ne projection dimension q 2 f 1, . . . ,p � 1g

De�ne step size a and the threshold value E�

Compute dx
ij , i, j = 1, . . . ,n

Initialize Y = f y1, . . . ,yng � Rq

repeat

Compute dy
ij , i, j = 1, . . . ,n

Compute ¶E/ ¶yk, k = 1, . . . ,n

yk = yk � a � ¶E
¶yk

, k = 1, . . . ,n

until å n
k= 1 (¶E/ ¶yk)

2 < E�

Output projected data set Y = f y1, . . . ,yng � Rq

describes the absolute and the relative quadratic error [91]. To determine the

transformed data set Y by means of minimizing error E a gradient descent

method can be used. By means of this iterative method, the parametersyk to

be optimized, will be updated during each step proportional to the gradient

of the error function E. Calculating the gradient of the error function leads to

¶E
¶yk

=
2

n
å

i= 1

n
å

j= i+ 1
dx

ij

å
j6= k

dy
kj � dx

kj

dx
kj

yk � y j

dy
kj

. (2.2)

After random initialization for each projected feature vec tor yk a gradient

descent is carried out and the distancesdy
ij as well as the gradients

¶dy
ij

¶yk
will be

recalculated again. Algorithm 1 that shows the procedure wi th pseudo code

terminates when E becomes smaller than a certain threshold E� .

The complexity of MDS is O(c � n2), where c is the (unknown) number of it-

erations needed for convergence of the gradient descent scheme. Thus, MDS

is usually not applicable to larger data sets. Another probl em of MDS is that

it does not construct an explicit mapping from the high-dime nsional space to

the lower dimensional space, but just tries to position the l ower dimensional

feature vectors in a suitable way. Therefore, when new data h ave to be con-
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sidered, they cannot be mapped directly to the lower dimensi onal space, but

the whole MDS procedure has to be repeated.

2.2 Modern Multidimensional Scaling

In the past decade much research work has been done to improve multidi-

mensional scaling. Most effort has been accomplished to reduce the time

complexity of the algorithm in order to permit the applicati on of MDS to

larger data sets. There are too many approaches to review them all here, but

we will give a brief overview on some important representati ves.

Chalmers proposed in [14] a stochastically-based algorithm of linear com-

plexity per iteration to produce low-dimensional layouts. Instead of doing

all the possible pairwise gradient calculations as in Sammo n's mapping, this

method carries out gradient calculations between feature v ector xi and the

members of two sets whose size is bounded by a constant. One set contains

a dynamically maintained list of references to neighbour ob jects. Entries in

this set are stored in order of distance in the high-dimensio nal space. This

neighbour set is carried over between iterations. The second set, which is a

randomly chosen subset of all objects, is constructed anew each iteration and

has no member of the neighbour set. Candidate elements for the second set

will be inserted to the neighbour set instead if the distance to feature vector

xi is lower than the distance of one or more of the current neighb ours. In this

way, the neighbour set becomes more representative of the most similar ob-

jects toxi over successive iterations. Stress calculation is performed every
p

n

iterations. With this method Chalmers reports the applicab ility to larger data

sets. The overall costs of this approach areO(n2) because the total number

of iterations depends on the data set size as given in [14].

FastMap [27] approaches multidimensional scaling through the projection

of objects on a carefully selected arbitrary low-dimension al hyper-plane. The

key idea is to assume that the data are in some unknown high-di mensional

space. Only a distance matrix is given. A heuristic strategy is used to de-

termine a line between two pivot objectswhich allows projections with little



14 2 Multidimensional Scaling and Data Navigation

information loss. Thus, the task is to �nd a line on which the p rojections are

as far apart from each other as possible. To achieve this, pivot objects are

chosen such that the distance between them is maximized. The proposed

heuristic strategy is linear in the number of objects alike t he projection on

lower dimensions since distance preservation is only arran ged to pivot ob-

jects. FastMap achieves signi�cant time savings over MDS at the expense of

higher stress for a given target dimensionality. To obtain l ow stress FastMap

has to map the data set to a fairly higher feature space than conventional

MDS.

In [67] an improvement of Chalmers' algorithm is proposed wh ich has

O(n
p

n) time complexity. In this work a
p

n sample of the data set is taken

to build Chalmers' model. The complete layout of the entire d ata set is per-

formed by means of an interpolation strategy. The placement of an object

begins with �nding the most similar member of the initial lay out and then

�nding the best position on the circumference of the circle w hose radius is

de�ned by the original distance between the object to place a nd the most

similar member. This position is then re�ned by iteratively adding gradients

from a subset of the data, moving the object until its �nal loc ation. Further

re�nements have been proposed in [66].

The MDSteer algorithm, proposed in [99], iteratively alter nates between a

layout stage in which a sub-selection of points are added to t he set of active

points affected by the MDS iteration, and a binning stage whi ch increases

the depth of the bin hierarchy and organizes the currently un placed points

into separate spatial regions. This binning strategy allow s to select regions

of the layout to focus the MDS computation into the areas of th e data set

that are assigned to the selected bins. The authors emphasize the steerability

to MDS. The complexity of MDSteer is comparable to Chalmers' approach.

The main bene�t is the ability of interactive investigation of data sets with

high-dimensionality.

In [69, 70] an approach is proposed that reduces computational complexity

by means of using Sammon's mapping to map only some represent atives of

the data set which are obtained using a clustering algorithm . The remaining
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data points are mapped using a relative MDS procedure that co nsiders only

distances between the cluster centres and the data points leading to a reduced

number of computations.

Many other approaches related to multidimensional scaling have been pub-

lished in the recent years for which we refer to the literatur e [10, 23, 24, 43,

95, 103].

2.3 MDS polar

MDSpolar, a new approach that we have �rst described in [80], is about t he 2-

dimensional projection of a p-dimensional data set X. MDSpolar tries to �nd

a representation in polar coordinates Y = f ( l1, j 1), . . . ,( ln, j n)g, where the

length lk of the original vector xk is preserved and only the angle j k has to be

optimized. Thus, our solution is de�ned to be optimal if all a ngles between

pairs of data objects in the projected data set Y coincide as good as possible

with the angles between data objects X in the original feature space.

A straight forward de�nition of an objective function to be m inimized for

this problem would be

E =
n

å
k= 2

k� 1

å
i= 1

(j j i � j kj � y ik)2 (2.3)

where j k is the angle of yk, y ik is the positive angle between xi and xk, 0 �
y ik � 180� . E is minimal, if the differences of the angles of all pairs of ve ctors

of data set X and the corresponding two vectors in data set Y are zero. The

absolute value is chosen in equation (2.3) because the orderof the minuends

can have an in�uence on the sign of the resulting angle. The pr oblem with

this notation is that the functional E is not differentiable, exactly in those

points we are interested in, namely, where the term j j i � j kj becomes zero.

Another meaningful approach would be

E =
n

å
k= 2

k� 1

å
i= 1

(( j i � j k)
2 � y 2

ik)2. (2.4)

In this case the derivative can be easily determined, however, resulting in a
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system of nonlinear equations for which no analytical solut ion can be pro-

vided.

In order to overcome these dif�culties, we propose an ef�cie nt method

that enables us to compute an approximate solution for a mini mum of the

objective function (2.3) and related ones. In a �rst step we i gnore the absolute

value in (2.3) and consider

E =
n

å
k= 2

k� 1

å
i= 1

( j i � j k � y ik)2 (2.5)

instead. When we simply minimize (2.5), the results will not be acceptable.

Although the angle between yi and yk might perfectly match the angle y ik,

j i � j k can either be y ik or � y ik. Since we assume that 0 � y ik holds, we

always have (j j i � j kj � y ik)2 � ( j i � j k � y ik)2. Therefore, �nding a min-

imum of (2.5) means that this is an upper bound for the minimum of (2.3).

Therefore, when we minimize (2.5) in order to actually minim ize (2.3), we

can take the freedom to choose whether we want the term j i � j k or the

term j k � j i to appear in (2.5). Before we discuss techniques to minimize

(2.5) with the freedom of reordering, we have to preprocess t he data in order

to �t them best to our approach.

2.3.1 Data Preprocessing

Figure 2.1 illustrates an important problem by means of a sim ple data set.

The table next to the graphics contains the values of the angles between the

three feature vectors.

Even though, this feature space has only two dimensions and t herefore an

exact reproduction of the data set should be possible, this cannot be achieved

without additional preprocessing. Since we only want to pre serve the angles

between data vectors, it is obvious that any solution will be invariant with

respect to rotation of the data set. Thus, assuming without l oss of generality

j 1 = 0 enforcing j 2 = 135, then according to our objective function (2.3)

j 3 = 180 leads to the optimal solution, which is obviously not wha t we

are looking for. This problem is caused by the fact that y ik is de�ned as a
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y x1 x2 x3

x1 0 135 135
x2 135 0 90
x3 135 90 0

Figure 2.1: A preprocessing step for MDS polar

positive angle which satis�es y ik � 180� . This problem can be solved easily

by translating all feature vectors into the �rst quadrant. M ore generally, for a

high-dimensional data set we apply a translation that makes all components

of data vectors non-negative. For this we only have to determ ine for each

component the largest negative value occurring in the data s et and using

this as a positive value of the corresponding component of th e translation

vector. Note that, when the data set is normalized, i.e. all c omponents are

between 0 and 1, no further preprocessing is required.

Thus, doing this kind of preprocessing, we actually do not pr eserve the

original data properties but those after the transformatio n. Of course, rota-

tion and translation is not changing any inter-data propert ies. The transla-

tion vector has to be stored so that for incremental adding of new objects the

transformation can be performed accordingly. For most of th e new objects

the transformation will be as requested. It may occur that fo r new objects

which have one or more extreme components the translation wi ll not be suf-

�cient to eliminate the negative components. In such a case, which is rather

rare if the previous data is representative, the mapping of t he respective ob-

ject is still working, but might lead to non-optimal solutio ns.
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2.3.2 Approximation of MDS polar

When we are free to choose betweenj i � j k and j k � j i in (2.5), we take the

following into account

( j k � j i � y ik)2 = ( � ( j k � j i � y ik))2 = ( j i � j k + y ik)2.

Therefore, instead of exchanging the order of j i and j k, we can choose the

sign of y ik, leading to

E =
n

å
k= 2

k� 1

å
i= 1

( j i � j k � aiky ik)2 (2.6)

with aik = f� 1, 1g. In order to solve this modi�ed optimization problem of

equation (2.6) we take the partial derivatives of E, yielding

¶E
¶j k

= � 2
k� 1

å
i= 1

( j i � j k � aiky ik). (2.7)

Thus, on the one hand, neglecting that we still have to choose aik, our solution

is described by a system of linear equations which means its solution can be

calculated directly without the need of any iteration proce dure. On the other

hand, as described above, we have to handle the problem of determining the

sign of y ik in the form of the aik-values.

To ful�l the necessary condition for a minimum we set equatio n (2.7) equal

to zero and solve for the j k-values, which leads to

j k =
å k� 1

i= 1 j i � å k� 1
i= 1 aiky ik

k � 1
. (2.8)

Different optimization strategies are conceivable. Of cou rse, an important

condition is the computational complexity of the respectiv e approximation

algorithm. In this work we describe a number of different str ategies, starting

with a greedy algorithm which is quadratic with the number of data objects

in time, but is linear in space. Later on, we propose an algori thm that can

even reduce the complexity to O(n � log n).
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2.3.3 A Greedy Algorithm for the Approximation of
MDS polar

As mentioned above, the solution of MDS polar is described by a system of

linear equations. Since the minimization problem (see equation 2.6) is rota-

tion invariant, i.e. any rotation of a solution will also min imize (2.6), j 1 can

be set to any value, e.g. j 1 = 0. By means of a greedy algorithm we choose

aik 2 f� 1, 1g such that for the resulting j k the error E of the objective func-

tion (2.6) is minimal. For j 2 the exact solution can always be found, since a12

is the only parameter to optimize. For the remaining j k the greedy algorithm

setsaik in turn either � 1 or 1, verifying the validity of the result, setting aik to

the better value immediately and continuing with the next aik until all k � 1

values for aik are set.

Algorithm 2 describes in a simpli�ed way the greedy method. W hen im-

plementing the method, it can be optimized in that way, that t he �rst j k in

the f or-loop has not always to be recalculated if in step i � 1 the parameter

aik has not been changed to � 1. In such casesj k keeps the value from the

previous step.

As mentioned above, j 1 can be set to any value and j 2 can always be

chosen in such a way that the angle y 12 is preserved exactly. For the remain-

ing angles j k no guarantee can be given that the greedy algorithm �nds the

optimal solution. Incremental adding of feature vectors ca n be achieved by

simply extending the outer f or-loop by another iteration for each new object.

The angle j k will be computed analogously as for previous feature vector s.

For more accurate transformations (accepting higher calculating times) the

inner f or-loop can be encapsulated be another loop that enables the algo-

rithm to �nd better sign con�gurations that are ignored in th e previous loop

due to the greedy heuristic. A suchlike loop should be limite d by an ap-

propriate constant and can be cancelled immediately if no si gn has changed

during the last loop. By means of this extension the algorith m is still greedy

and yields signi�cantly improved local minimum solutions.
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Algorithm 2 Greedy MDSpolar

Given the data set X = f x1, x2, . . . ,xng
Let Yn� n be a matrix with the pairwise angles y i j between all (xi , x j)
j 1 = 0

for k = 2 to n do

aik = 1 for all i = 1 . . .k � 1

for i = 1 to k � 1 do

j k =
å k� 1

j= 1 j j � å k� 1
j= 1 ajky jk

k� 1 ek = å k� 1
j= 1( j j � j k � ajky jk)2

t = j k

aik = � 1

j k =
å k� 1

j= 1 j j � å k� 1
j= 1 ajky jk

k� 1 fk = å k� 1
j= 1( j j � j k � ajky jk)2

if ek < fk then

aik = 1

j k = t

end if

end for

end for

2.3.4 Relative MDS polar

As for conventional MDS, also for MDS polar different approaches regarding

the objective function are feasible. The solution described above minimizes

the absolute differences of pairwise angles of the original data set and the

transformed data set. Large angles, which cause in tendency a large E may

affect the solution in that way, that the transformation wil l represent vectors

with small angles to others less correctly. Considering the relative error leads

to

E =
n

å
k= 2

k� 1

å
i= 1

�
j i � j k � aiky ik

y ik

� 2

(2.9)

¶E
¶j k

= � 2
k� 1

å
i= 1

�
j i � j k � aiky ik

y ik

�
1

y ik
. (2.10)
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The greedy algorithm 2 can be applied only modifying the calc ulation speci-

�cation for j k

j k =
å k� 1

i= 1
j i
y 2

ik
� å k� 1

i= 1 aik
1

y ik

å k� 1
i= 1

1
y 2

ik

. (2.11)

Because of the different objective functions the validity o f solutions with the

absolute MDSpolar and the relative MDS polar cannot be compared by means

of E.

2.3.5 Weighted MDS polar

In certain cases the objective when transforming data is to p reserve relations

of feature vectors of the original feature space in the targe t feature space.

Thus, feature vectors that form a cluster should be represented as exact as

possible in the target feature space, too. The transformation of feature vec-

tors with a large distance to the respective feature vector can have a lower

accuracy. An approach to achieve this goal is the introducti on of weights wik

to our objective function

E =
n

å
k= 2

k� 1

å
i= 1

wik( j i � j k � aiky ik)2. (2.12)

Determining the partial derivative leads to

¶E
¶j k

= � 2
k� 1

å
i= 1

wik( j i � j k � y ik) (2.13)

and solving for j k to

j k =
å k� 1

i= 1 wik( j i � aiky ik)

å k� 1
i= 1 wik

. (2.14)

Note that this is a generalization of relative MDS polar. For relative MDS polar

we simply choose the weights as wik = 1/ y 2
ik.

Since our transformation preserves the length of each data vector, it is

guaranteed that vectors with a large difference in length wi ll not be mapped
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to close points in the plane, even though their angle might no t be matched at

all. Therefore, we propose to use a small or even zero weight for pairs of data

vectors that differ signi�cantly in their length. The weigh t could be de�ned

as a function of the difference between the length values l i and l j of two data

vectors:

wik = w( l i , lk) = w(z). (2.15)

We can use the absolute difference forz, i.e.

z = za = j l i � lkj .

This might be useful if certain information about the struct ure of the data is

known in advance. The argument zr for relative weighting functions

z = zr = min
�

l i
lk

,
lk
l i

�

might be useful if a certain threshold value can be speci�ed, whose excess ex-

cludes the calculation of the angle j k between the respective pair of vectors.

To decrease the computational complexity, weights should b e chosen in such

a way, that for feature vectors with a certain (large) distan ce the respecting

weights become zero. The following function describes a sim ple weighting

function, which is the function shown in Figure 2.2(b):

w(zr ) =

8
<

:

r �
zr � J
1� J

�
, if zr � J

0 , otherwise
(2.16)

where J 2 [0, 1].

With the threshold J one can control indirectly the fraction of the data that

will be used to determine the respective angle j k. Thus, small values for J

lead to many weights w 6= 0 which is associated with high computational

complexity. Values near 1 for J lead to a quickly decreasing weighting func-

tion and to low computational complexity, respectively. An y other function

can be used as weighting function. For reasons of an easy implementation

and low computational complexity a decreasing function whi ch leads to a

more or less large fraction of zero weights should be used.
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For an ef�cient implementation it is useful to sort the featu re vectors by

means of their length. Note that this can be achieved with O(n � log n) time

complexity. When determining the weights for the calculati on of j k it is suf-

�cient to consider the feature vectors starting from index k. Weights will

be calculated stepwise. With every step the weights become smaller until a

weight becomes zero. Since the weighting function is decreasing, a further

iteration would lead to zero, too. Thus, the calculation of w eights stops at

this point. In cases where clusters with a large amount of dat a are expected

in a data set, it might rather be useful to limit the maximum nu mber of it-

erations for the calculation of the weights than setting a la rger threshold. In

this case, the projected vectors will be forced to a proper position already by

a signi�cantly large fraction of other feature vectors in th e data set. It might

also be useful to reduceJ locally, when only few vectors satisfy the condition

in equation (2.16).

With a limitation of the number of weights w > 0 and a moderate J at

the same time, it can be achieved that the number of weights considered for

the calculation of j k does not differ too much for different j k and limited

computation time can be guaranteed. Instead of considering the angles of

all feature vectors with the greedy algorithm 2 it might be us eful to consider

only few feature vectors and calculate the exact solution of the sign problem.

Using a weighting function enables the user of MDS polar to set a certain bin

size which indicates the number of feature vectors that will be considered

when calculating the desired j k. By means of this one can reduce the com-

putation time and reinvest it in �nding the exact solution of the sign problem.

Solving the sign problem with the greedy strategy for a given maximum bin

size b and using a certain number c of iterations accounts with O(n � b � c) to

the algorithm complexity. Thus, the upper bound for the comp lexity of our

algorithm is O(n � log n) due to sorting the data.

Similar to the idea of stress for standard multidimensional scaling, an eval-

uation of the transformation can be done by determining the a verage devia-

tion from the original angles. In general this can be obtaine d by dividing E by

the number of terms summed up. For the error function (2.6) on e has to di-
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(a) (b)

(c) (d)

Figure 2.2: Different weighting functions for MDS polar

vide by n2+ n
2 . With this measured value one can compare different mapping s

even if they vary in the number of objects.

2.3.6 Illustrative Examples

Figure 2.4 shows some results of MDSpolar in comparison with Sammon's

mapping. In favour of an easy veri�cation of the results we ap plied MDS polar

to some 3-dimensional data sets. The validity of the solutio n can be evalu-
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(a) Cube data set (b) Coil data set

Figure 2.3: Two synthetic data sets

ated by visual inspection. The Cube data set (see �gure 2.3(a)) is about a

synthetic data set, where data points scatter around the corners of an imag-

inary 3-dimensional cube. Thus, the Cube data set contains eight well sep-

arated clusters. The Coil data set (depicted in �gure 2.3(b) ) is comparable

to a serpentine. As �gures 2.4(b) and 2.4(c) show, the transformations of

MDSpolar are similar to these of conventional MDS (�gure 2.4(a)). Whe reas

MDS needs some thousand iterations until convergence, MDSpolar �nds an

explicit solution after solving the system of equations and some hundreds

sign adjustments. Figure 2.4(d) shows the Sammon's mapping of the Coil

data set. The transformations in �gure 2.4(e) and 2.4(f) result from weighted

MDSpolar with weighting functions where at most twelve weights got va l-

ues greater than zero. Thus, the transformation is based only on a relatively

small number of angle comparisons. Therefore, locally these transformations

are very accurate, but generally the loss of information is s ometimes higher.

Since the value of j k is calculated from all preceding j 1 . . . j k� 1 according

to equation (2.8) or equation (2.11) respectively, a solution with MDS polar,

either absolute or relative, depends to some degree on the order of the data

set. Our tests have shown that in such cases only few feature vectors lead to

higher errors, while others will not. Thus, not the complete transformation

will be wrong, but only some feature vectors. Initializatio n is also a crucial

step for conventional MDS.
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(a) Sammon's mapping (b) relative MDS polar

(c) weighted MDS polar (d) Sammon's mapping

(e) relative MDSpolar (f) weighted MDS polar

Figure 2.4: Different transformations of synthetic data with MDS polar
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Figure 2.5: Mapping of the weather data with MDS polar

2.3.7 Visualizing Weather Data with MDS polar

Figure 2.5 shows a mapping of non-cloudy weather using relat ive MDS polar

with a bin size of 200. In order to examine the relationships b etween the

weather factors and the �ight duration, three classes of tra vel times are de-

�ned: one class represents weather data associated with short travel times

with up to one minute more than the average travel time. It is r epresented

in green. A second class, represented in blue, corresponds to medium travel

times with up to eight minutes delay compared to the average t ravel time

value. The last class, in red, stands for weather data associated with even

later �ights. Early �ights prevail, less than 10% of the �igh ts are more than

eight minutes later than the average. The �gure shows clearl y that the three

classes overlap to some degree. Whereas the green class is spread all over

the feature space, the blue class and the red class take the upper right re-

gion of the feature space mainly. Figures A.1–A.5 in appendi x A show some

mappings of the weather data set using various bin sizes.
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2.4 POLARMAP

In this section we discuss another approach for dimension re duction that we

have presented in [82]. This approach - POLARMAP - is a modi�c ation of

MDSpolar. As for MDS polar, this algorithm transforms high-dimensional fea-

ture vectors into 2-dimensional feature vectors under the c onstraint that the

length of each vector is preserved and the angles between vectors approxi-

mate the corresponding angles in the original space as good as possible. As

an improvement of MDS polar, we will describe an algorithm that learns a

function that enables the user to map even new feature vectors to the target

space. Finally, we will describe a technique to learn such mappings from

data with O(n � log n) time complexity.

As an extension of MDSpolar, POLARMAP is a method that learns a func-

tion f that provides for any p-dimensional feature vector xk the correspond-

ing angle j k that is needed to map the feature vector to a 2-dimensional fea-

ture space. As for MDSpolar the length of vector xk is preserved. With the

obtained function also angles for new feature vectors can be computed. A

2-dimensional scatter plot might not be suitable, when visu alizing mappings

for large data sets. With the computed function it is simple t o produce infor-

mation murals, which allow more comprehensive visualizati ons [46].

Analogous to functional (2.3) we de�ne our objective functi on E as follows:

E =
n� 1

å
i= 1

n

å
j= i+ 1

� �
� f (xi ) � f (x j )

�
� � y i j

� 2 . (2.17)

E is minimal, if, for each pair of feature vectors, the differe nce of the two

angles, which are computed by the respective function f is equal to the mea-

sured angle y i j of the two vectors in the original space. Since functional (2 .17)

is not differentiable, we propose analogous to the procedur e for MDSpolar to

minimize the following differentiable objective function

Ẽ =
n� 1

å
i= 1

n

å
j= i+ 1

�
f (xi ) � f (x j ) � y i j

� 2 . (2.18)



2.4 POLARMAP 29

Since we have alwaysy i j � 0 according to our de�nition, it is obvious that

Emin � Ẽmin. Thus, a minimum of Ẽ might not be the minimum of E, but it

can be used as a conservative estimation. Albeit, f might be any function, we

discuss in this work only the following function style

f (x) = aT � x̃ (2.19)

where a is vector whose components are the parameters to be optimized and

x̃ is feature vector x itself or a modi�cation of x. In the simplest case we use

x̃ = x (2.20)

a = ( a1, a2, . . . ,ap)T

where f describes in fact the linear combination of the components o f x. As-

suming that a certain component of x affects the transformation not linearly

but quadratically or exponentially, it may be useful to comp ute some addi-

tional components from x with the objective to gain more coef�cients, which

could improve the transformation. An example for quadratic components

derived from x is described by the following choice:

x̃ = ( x1, . . . ,xp, x1x1, . . . ,x1xp,

x2x2, . . . ,x2xp, . . . ,xpxp)T (2.21)

a = ( a1, . . . ,ap, a11, . . . ,a1p,

a22, . . . ,a2p, . . . ,app)T. (2.22)

Similar to kernel methods POLARMAP can implicitly represen t the data in a

new feature space to improve the transformation [41, 94].

Replacing term f by the respective function we obtain

Ẽ =
n� 1

å
i= 1

n

å
j= i+ 1

�
aT x̃i � aT x̃ j � y i j

� 2
(2.23)

=
n� 1

å
i= 1

n

å
j= i+ 1

�
aT( x̃i � x̃ j ) � y i j

� 2
. (2.24)

For a better readability we replace x̃i � x̃ j by x̃i j and obtain

Ẽ =
n� 1

å
i= 1

n

å
j= i+ 1

�
aT x̃i j � y i j

� 2
. (2.25)
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The derivative of Ẽ w.r.t. a can be easily obtained as

¶Ẽ
¶a

= 2
n� 1

å
i= 1

n

å
j= i+ 1

�
aT x̃i j � y i j

�
x̃i j . (2.26)

Setting equation (2.26) equal to zero to ful�l the necessary condition for a

minimum we infer

0 =
n� 1

å
i= 1

n

å
j= i+ 1

�
aT x̃i j � y i j

�
x̃i j (2.27)

which results in a system of linear equations in a = ( a1, a2, . . . ,ap)T.

As mentioned already, angles computed by f (xi ) � f (x j ), might be posi-

tive or negative, while y i j is always positive by de�nition. Thus, in the case

where aT x̃i j < 0 holds, Ẽ might be minimal, but our original objective func-

tion E might not be minimal. We discussed this issue already with MD Spolar

in section 2.3 where an analogous problem arises as well. Hence, replacing

x̃i j by � x̃i j in this case might lower the error. Consequently, �nding the ap-

propriate sign for x̃i j is a crucial step when minimizing Ẽ. For usual data sets

determining the exact solution for this problem is too expen sive regarding

computation time. In the following section we describe a gre edy strategy

that approximates a relaxation of this problem.

2.4.1 A Greedy Algorithm for the Approximation of
POLARMAP

Determining the sign for each x̃i j requires exponential need of computation

time in the number of feature vectors. For real-world data se ts this is un-

acceptable. When relaxing the problem in favour to an approx imation of

the exact solution one can reduce the time complexity down to O(n � log n).
In this section we begin with a very fast greedy algorithm tha t �nds rather

poor approximations of the exact solution, which are suitab le for initializa-

tion purposes for more complex approximation schemes.

In the following we use an n � n-matrix Q with qi j = 1 when the sign for

x̃i j is positive and qi j = � 1 when the sign for x̃i j is negative4. As algorithm 3

4Implementation aspects to improve ef�ciency we consider la ter.
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Algorithm 3 Greedy POLARMAP 1

Given the data set X̃ = f x̃1, x̃2, . . . ,x̃ng
Let Yn� n be a matrix with the pairwise angles y i j between all (xi , x j)
Let Qn� n be a matrix where qi j = 0, 8i , j

a  solve
�

å n� 1
i= 1 å n

j= i+ 1

�
aT x̃i j � y i j

�
x̃i j = 0

�

Compute Ẽ
repeat

Ẽ0  Ẽ
for i = 1 to n � 1 do

for j = i + 1 to n do
if qi j aT x̃i j < 0 then

qi j  1 � qi j

end if
end for

end for
a  solve

�
å n� 1

i= 1 å n
j= i+ 1

�
qi j aT x̃i j � y i j

�
x̃i j = 0

�

Compute Ẽ
until Ẽ0 � Ẽ

shows this greedy algorithm does not change these signs for the respective

x̃i j until qi j aT x̃i j < 0 is satis�ed and computes afterwards the updated com-

ponents of a by solving the revised system of linear equations. Usually, this

algorithm converges after a few iterations. This approach i s very ef�cient

and simple at the same time.

Algorithm 4 shows another greedy algorithm. Always, when qi j changes,

a will be recomputed immediately and the next iteration start s. Q changes

during one iteration at most in one point – namely qi j , otherwise the algo-

rithm ends without changing any q. Thus, the algorithm greedily changes

the �rst qi j , when condition qi j aT x̃i j < 0 is satis�ed. From this it follows that

the algorithm only �nds a local minimum of Ẽ, which is the reason why we

speak about a relaxation of the problem.

It is advisable to initialize Q with algorithm 3. Otherwise, too many it-

erations will be needed until convergence. With algorithm 4 very accurate

transformations will be found – indeed computational costs are fairly high.
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Algorithm 4 Greedy POLARMAP 2

Given the data set X̃ = f x̃1, x̃2, . . . ,x̃ng
Let Yn� n be a matrix with the pairwise angles y i j between all (xi , x j)
Let Qn� n be a matrix where qi j = 0, 8i , j

a  solve
�

å n� 1
i= 1 å n

j= i+ 1

�
aT x̃i j � y i j

�
x̃i j = 0

�

Compute Ẽ
repeat

Ẽ0  Ẽ
for i = 1 to n � 1 do

for j = i + 1 to n do
if qi j aT x̃i j < 0 then

qi j  1 � qi j

a  solve
�

å n� 1
i= 1 å n

j= i+ 1

�
qi j aT x̃i j � y i j

�
x̃i j = 0

�

Compute Ẽ
GOTO: check

end if
end for

end for
LABEL: check

until Ẽ0 � Ẽ

In the following subsection, we describe a technique that re duces the com-

putation costs drastically.

2.4.2 Generalization of POLARMAP

Although the above greedy algorithm is ef�cient, for large d ata sets too many

iterations will be needed until convergence. Its time and sp ace complex-

ity are also quadratic in the number of data, so that it is not a pplicable to

larger data sets. In order to evaluate the objective functio n, all x̃i j - and all

y i j -values must be computed in advance, causing already the quadratic com-

plexity. The greedy algorithm must also compute many (again quadratic in

the number of data) scalar products aT x̃i j that contribute not or only little

to the quality of the transformation. Thus, if we had a measur e to decide
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whether an adaptation of qi j might be target-oriented or not, we could save

computation time by skipping the computation of nonessenti al scalar prod-

ucts.

As a matter of fact, the computation of the error Ẽ accounts for most of the

computation resources. In the following we will discuss the problem how to

reduce computation time due to dropping hopefully dispensa ble terms. As

for MDS polar we provide for POLARMAP a generalization by introducing

weights wi j for our objective function Ẽ, that results in

Ẽ =
n� 1

å
i= 1

n

å
j= i+ 1

wi j

�
aT x̃i j � y i j

� 2
. (2.28)

Again, we obtain the following system of linear equations af ter taking partial

derivatives of Ẽ

¶Ẽ
¶a

= 2
n� 1

å
i= 1

n

å
j= i+ 1

wi j

�
aT x̃i j � y i j

�
x̃i j (2.29)

and setting equation (2.29) to zero to ful�l the necessary co ndition for a min-

imum which leads to

0 =
n� 1

å
i= 1

n

å
j= i+ 1

wi j

�
aT x̃i j � y i j

�
x̃i j . (2.30)

The introduction of weights opens new ways to de�ne and handl e the objec-

tive function. We cannot only assign a weight to individual e rrors, control-

ling in this way how much in�uence single errors have on the �n al result.

We can also consider relative instead of absolute errors. For example, choos-

ing wi j = 1/ y 2
ij corresponds to minimizing the relative error, similar as in

the case of MDSpolar. The difference between the angle in the original space

and the corresponding angle in the target space will not acco unt directly to

the computation of the parameter a but weighted with wi j . Weights can be

chosen in such a way, that only feature vectors, which are sim ilar to a certain

degree, will be taken into account, when computing qi j .

Since our transformation preserves the length of each data vector, it is

guaranteed that vectors with a large difference in length wi ll not be mapped
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to close points in the plane, even though their angle might no t be matched

at all. Therefore, we propose to use a small or even zero weight for pairs

of data vectors that differ signi�cantly in their length. We skip the discus-

sion of de�ning appropriate weights here since we explained the use of suit-

able weighting control functions in section 2.3.5 already i n conjunction with

MDSpolar.

Algorithm 5 is a modi�cation of the previous algorithm consi dering the

mentioned aspects. Besides sortingX, the inner f or-loop now contains the

condition to terminate the loop if the weighting function in dicates that for

the given i no further x̃i j has to be considered.

Note that we reduce computation time drastically, if we choo se an appro-

priate weighting function. Instead of O(c � n2) with c as number of iterations,

we obtain O(c � n � m) where m is the maximum bin size. Since sorting is es-

sential for the binning approach, the costs for sorting have to be added. The

bin size for a feature vector xi refers to the number of non-zero weights wi j .

With this binning strategy we do not only reduce the number of pairs x̃i j to

be considered, much more important is the effect on the compu tation of a

and Ẽ. With algorithm 5 we introduce the array ni , i = 1 . . .n, that is initial-

ized with ni = min (i + maxbinsize, n), 8i . When computing a and Ẽ, it is no

longer necessary to sum up the difference between the target angle and y i j

for all vectors that are out of the bin, since they be weighted with wi j = 0. Of

course, if the bin size is only limited by a weighting functio n that only leads

to few weights wi j = 0, the gain of computation time tends to zero. Further,

a threshold w� is set which ensures that the bin size can be reduced locally,

if, for a given feature vector, the number of similar feature vectors is smaller

than the bin size.

The major part in terms of memory usage attributes to the sign matrix Q

since conventional programming languages do not support bi t variables or

arrays of bits. Using a byte variable to code a single sign wou ld mean eight-

fold memory wastage. In order to reduce the space complexity it is recom-

mendable to code the sign matrix binary which allows an optim al resource

management.
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Algorithm 5 Greedy POLARMAP 3

X̃ = f x̃1, x̃2, . . . ,x̃ng

Sort X

Setmaxbinsize

Setw�

Initialize ni

Let Yn� n be a matrix with the pairwise angles y i j between all (xi , x j)

Let Qn� n be a matrix where qi j = 0, 8i , j

a  solve
�

å n� 1
i= 1 å

ni
j= i+ 1 wi j

�
aT x̃i j � y i j

�
x̃i j = 0

�

Compute Ẽ

repeat

Ẽ0  Ẽ

for i = 1 to n � 1 do

for j = i + 1 to ni do

wi j  w( l i , l j)

if wi j > w� then

ni  j � 1

GOTO: check1

end if

if qi j aT x̃i j < 0 then

qi j  1 � qi j

a  solve
�

å n� 1
i= 1 å

ni
j= i+ 1 wi j

�
qi j aT x̃i j � y i j

�
x̃i j = 0

�

Compute Ẽ

GOTO: check

end if

end for

LABEL: check1

end for

LABEL: check

until Ẽ0 � Ẽ
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(a) Algorithm 3 ( x̃ = x) (b) Algorithm 3 ( x̃ according to eq. (2.21))

(c) Algorithm 4 ( x̃ = x) (d) Algorithm 5 ( x̃ = x)

Figure 2.6: Results of POLARMAP on the Cube data set

2.4.3 Illustrative Examples

In this section we discuss the results of POLARMAP on two synt hetic 3-

dimensional data sets that we already showed in �gure 2.3. Fu rthermore,

we apply POLARMAP on the well known Iris data set and the Wine d ata

set. A Sammon's mapping of the 4-dimensional Iris data set is shown in �g-

ure 2.8 (a). We split this data set into a training data set and a test data set

to demonstrate the capability of POLARMAP to generalize. Th e Wine data

set results from a chemical analysis of wines grown in the sam e region in

Italy but derived from three different cultivars. The analy sis determined the

quantities of 13 constituents found in each of the three type s of wines. A
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Sammon's mapping of the 13-dimensional Wine data set is show n in �gure

2.8 (c).

Our tests have shown, that algorithm 3 is a good initializati on for algo-

rithm 4 and 5. Since algorithm 4 and 5 compute the actual coef� cients imme-

diately after changing one sign, without initialization, m any iterations would

be needed for large data sets until convergence. For that reason it is advisable

to initialize algorithm 4 and 5 with algorithm 3. Note that al gorithm 3 does

not have exponential complexity, when we introduce corresp onding weights

leading to moderate bin sizes. The following transformatio ns result from this

procedure.

Figure 2.6 shows some results on the Cube data set. The greedyalgorithm 3

converges already after three iterations if using x̃ according to equation (2.20)

(see �gure 2.6(a)). Similarly, greedy algorithm 3 converge s after �ve itera-

tions, when using x̃ according to equation (2.21) (see �gure 2.6(b)). For the

relatively simple Cube data set it is not of much importance, to generate addi-

tional components for x̃ and additional components a, respectively. Figures

2.6(c) and 2.6(d) result from applying algorithm 4 and algor ithm 5, respec-

tively. These transformations are based on the choice x̃ = x for the Cube

data set. Obviously, a linear function with three coef�cien ts a is suf�cient to

map the Cube data set to a 2-dimensional feature space. The eight clusters

are clearly separated in the target space, too. Using weights according to

algorithm 5 and the following weighting function

w(za) =
�

1 if za < w�

0 otherwise

with c = 1
4n leads to the transformation shown in �gure 2.6(d). Note, as t he

histogram depicts (see �gure 2.9) roughly four groups of vec tor lengths are

present in the Cube data set. Since the Cube data set containseight clusters,

each one composed of twenty points, the chosen bin size c guarantees that

each bin comprehends data from at least two clusters. This has the effect that

vectors, whose lengths are similar, will be considered for t he adaptation of

the angles. The results with algorithm 4 and algorithm 5 are q uite similar for

the Cube data set, even though algorithm 5 needs less computation time.
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(a) Algorithm 3 ( x̃ = x) (b) Algorithm 3 ( x̃ according to eq. (2.21))

(c) Algorithm 5 ( wi j = 1) (d) Algorithm 5 ( wi j = 1/ y 2
ij )

Figure 2.7: Results of POLARMAP on the Coil data set

The results for the Coil data set are shown in �gure 2.7. Again , �gure 2.7(a)

results from algorithm 3 with x̃ = x and �gure 2.7(b) results from x̃ accord-

ing to equation (2.21). The results for both representations of the data set are

similar regarding a majority of the characteristics. Algor ithm 3 converges af-

ter few iterations for both data sets. Figures 2.7(c) and 2.7(d) show the results

of algorithm 5 on the data set ( x̃ = x) without initializing Q other than 1. Fig-

ure 2.7(c) results from using a bin size of 10. Figure 2.7(d) results from using

wi j = 1/ y 2
ij for all wi j inside the bin of size 10. Choosing maximum bin size

10 leads to the fact that no sign will be changed and thus the al gorithm stops

after one iteration. Designing the weighting function such that a larger bin
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(a) Sammon's mapping of the Iris data set (b) Mapping with POLARMAP of the Iris
data set

(c) Sammon's mapping of the Wine data set (d) Mapping with POLARMAP of the Wine
data set

Figure 2.8: Results of Sammon's mapping and POLARMAP on the Iris data set a nd
the Wine data set

size has to be taken into account, one can observe that already after only three

signs have changed, the transformation gets the major characteristics as the

one in �gure 2.7(a). Even if this transformation is very simp le, some require-

ments, e.g. preserving distances between feature vectors approximately, are

ful�lled.

Since a function is learned by POLARMAP it becomes possible to map

new vectors to the target space. To demonstrate the power of POLARMAP

in this regard, we applied it on the well known Iris data set. F igure 2.8(a)
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Figure 2.9: Histogram of vector
lengths of the Cube data
set

Figure 2.10: The effect of the bin
size on POLARMAP and
Sammon's mapping

shows the Sammon's mapping of the Iris data set. The differen t classes are

represented by different symbols (class 1: + , class 2:2 , class 3:3 ). Figure

2.8(b) shows the transformation with POLARMAP. For this exa mple, the Iris

data set is split into a training data set and a test data set. The training data

set consists of 80% of each class. This part of the data is usedto learn the

desired coef�cients. The test data set that contains the remaining 20% of the

data, is mapped to the target space by means of the learned function. The

mapping of the training data set is plotted with the differen t symbols again,

each for the corresponding class. The mapped feature vectors of the test data

set are additionally marked with a circle around the corresp onding symbol.

As the �gure shows, the learned function maps the feature vec tors according

to our intuition.

Figure 2.8(c) shows the Sammon's mapping of the Wine data set. The three

classes are marked with different symbols again. Based on the Sammon's

mapping, the three classes cannot be separated linearly. Notably class 2 and

class 3 cannot be distinguished. The transformation of the Wine data set

with POLARMAP is shown in �gure 2.8(d). Both transformation s are similar

regarding the scattering of the different classes. The mapping of the test data

(marked with a circle around the respective symbol) meets th e expectations

from the mapping of the training data set.

Figure 2.10 shows the effect of the bin size on the transformation accuracy
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according to the POLARMAP criterion (solid line) and the Sam mon criterion

(dashed line) on the Wine data set5. Both measures indicate a better mapping

with increasing bin size at the beginning. This is what we exp ect indeed. For

larger bin sizes the error is increasing slightly again. The probability to get

stuck in a local minimum seems to increase with larger bin siz es. As the

�gure reveals as well, the error is not decreasing linearly. Thus, using the

binning technique, the user has to make the compromise between transfor-

mation quality and computation/space complexity. In many c ases it may be

suf�cient to use a small bin size to get an overall view of the d ata. As for the

Wine data set, the error can be reduced drastically, investi ng resources in the

consideration of a higher bin size.

2.4.4 Visualizing Weather Data with POLARMAP

Recently, we have published a study concerning the predicti on of aircraft

�ight durations [61, 78]. The study is based on two combined d ata sets, con-

cerning the weather conditions and the traf�c, respectivel y, at Frankfurt Air-

port. A brief description of the data sets was given in sectio n 1.3.

POLARMAP is applied to the data to visualize the relationshi ps between

�ight duration and weather factors. An earlier study has sho wn that the

weather can be easily divided into cloudy and non-cloudy wea ther since the

data form two distinct clusters that can be separated almost linearly [78]. For

the purpose of visualization this procedure is followed and both subsets of

data are transformed separately. For illustration purpose s, we discuss in this

work just the non-cloudy weather. In the mentioned study, a s trong effect

of the traf�c on the travel time could be determined. Therefo re, this section

shows visualization results of the weather data, both, incl uding the traf�c

attribute and excluding it.

Figure 2.11(a) shows a mapping of the non-cloudy weather inc luding the

5The error in the �gure is without a unit. Actually, both measu res cannot be used directly
for comparison of the two methods since both optimization cr iteria are quite different.
Of course, the Sammon stress for a POLARMAP transformation i s quite higher than for
Sammon's mapping and vice versa. Thus, the normalized error in the �gure only re�ects
the behaviour of both techniques varying the bin size.
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traf�c attribute using POLARMAP. The colouring that is used here to visual-

ize the distribution of different �ight duration classes ha s been already dis-

cussed in section 2.3.7. As for the mapping with MDS polar, the �gure shows

clearly that the three classes overlap to some degree. Whereas the green class

(�ights with short �ight durations) is spread all over the fe ature space, the

blue class (�ights with medium �ight durations) and the red c lass (�ights

with long �ight durations) take the upper right region of the feature space

mainly. This effect is mainly due to the traf�c information. Figure 2.11(b)

shows the transformation of the same data set excluding the t raf�c informa-

tion. This �gure reveals that, without traf�c information, the different classes

are even harder to distinguish.
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(a) Transformation with POLARMAP of the non-cloudy weather
data including traf�c information

(b) Transformation with POLARMAP of the non-cloudy weather
data excluding traf�c information

Figure 2.11: Mapping of the weather data set with POLARMAP
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2.5 Density-Based Mappings

The idea of density-based visualization is to re�ect densit y variations of high-

dimensional data sets. We have presented this approach in [88]. In the fol-

lowing we formalize the problem of density preservation by m eans of an

objective function that can be minimized through a gradient descent tech-

nique.

For each data object in the original data space a multivariat e Gaussian dis-

tribution is de�ned that represents a data point's potentia l energy. When

adding those single potentials we get a sort of multidimensi onal potential

mountains. Summits of the mountains can be found where many d ata objects

are located. Accordingly, valleys can be found in areas of lo w data density.

Similarly, one can reproduce the mountains in the low-dimen sional feature

space (usually two or tree dimensions). For this purpose each data object of

the original space will be placed in the projection space. Ov er every single

data point a potential (in form of a two- or three-dimensiona l Gaussian dis-

tribution) will be applied. The criterion for the mapping is that the potentials

in the original space coincide as good as possible with the potentials at the

corresponding points in the target space.

Given the data set X = f x1, . . . ,xng � R p we seek for the mapped data set

Y = f y1, . . . ,yng � Rk with k = 2 or k = 3 with the following potential for

xi :

fi (x) =
1
c

exp

0

@�
1
2

p

å
t= 1

 
x(t) � x(t)

i

s

! 21

A (2.31)

with

c =
1

s p
p

(2p )p
.

By x(t) and x(t)
i we denote the t th attribute of data object x and xi , respec-

tively. Function fi simply describes the density of a p-dimensional Gaussian

distribution with mean value xi and variance s2 in each dimension. The pa-

rameter s must be �xed for the entire procedure. If s is rather small, then the
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potentials do rarely overlap. For very large s the potential landscape will be

blurred completely with little variance in height.

Therefore, it is useful to de�ne s according to the diameter d of the data

space, the average distance between data points, the numbern of data and

the dimensionality p. A straight forward approach would be to assume that

the data is uniformly distributed in a hyper-cube or hyper-s phere. In this

case the potentials would have approximately the same heigh t. Of course,

this assumption is fairly theoretical. In practice mountai ns will be formed

due to the heterogeneous structure of the data. However, und er this assump-

tion the average density can be computed and the potentials on and between

data points can be determined. The larger the variance s2, the smaller the dif-

ference in the potentials. For small data sets the density is low and therefore

a larger s should be chosen.

Similar to Sammon's mapping we seek the projected data point s Y =
f y1, . . . ,yng � Rk. Over each data point we apply a potential (in this case

a k-dimensional Gaussian distribution) as for the original sp ace:

gi (y) =
1
c̃

exp

0

@�
1
2

k

å
t= 1

 
y(t) � y(t)

i

s̃

! 21

A (2.32)

with

c̃ =
1

s̃k
p

(2p )k
.

Then the objective is to place the feature vectors such that the potentials co-

incide at least in these points with those in the original spa ce. Note, s̃ should

be chosen similarly to s. In the ideal case we have approximately the same

diameter d in the target space, too. However, the area (or the volume) of the

target space will be much smaller compared to the hyper volum e of the orig-

inal space (k � p). This means that the density in the target space is also

higher for the same size of the data set. Thus, s̃ should be chosen smaller

than s. Still the potentials in the target space might not match the potentials

in the original space yet. It should be assured that the maxim um height of

the single potentials in the original space and in the target space match, i.e.
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the respective maxima of the Gaussian distributions should be:

fi (xi ) � gi (yi ).

Since normally this will not be the case we introduce a consta nt a:

a � fi (xi ) = gi (yi )

which can be derived from equations (2.31) and (2.32):

a =
s p

s̃k

q
(2p )p� k.

Now we can formulate our objective function. The accumulate d modi�ed

potential in the original space at xi is

n

å
j= 1

a � f j (xi )

and in the target space at yi
n

å
j= 1

gj (yi ).

In the ideal case, both potentials should be equal. Hence, we de�ne the ob-

jective function as follows:

Edensity =
n

å
i= 1

 
n

å
j= 1

gj (yi ) �
n

å
j= 1

a � f j (xi )

! 2

=
n

å
i= 1

 
n

å
j= 1

�
gj (yi ) � a � f j (xi )

�
! 2

. (2.33)

Now, we only have to determine the gradient for each componen t s:

¶Edensity

¶yls
= 2

n

å
i= 1

n

å
j= 1

�
gj (yi ) � a � f j (xi )

�
�

¶
¶yls

gj (yi ). (2.34)

¶
¶yls

gj (yi ) is only zero when we have l = i or l = j. For both cases we derive

from equation (2.34):

¶
¶yls

gl (yi ) =
1
c̃

exp

0

@�
1
2

k

å
t= 1

 
y(t)

i � y(t)
l

s̃

! 21

A �
y(s)

i � y(s)
l

s̃
(2.35)
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¶
¶yls

gj (yl ) = �
1
c̃

exp

0

B
@�

1
2

k

å
t= 1

0

@
y(t)

l � y(t)
j

s̃

1

A

2
1

C
A �

y(s)
l � y(s)

j

s̃
. (2.36)

It can be easily seen that for i = j = l we have ¶
¶yls

gj (yi ) = 0. Finally we

obtain for the gradient:

¶Edensity
¶yls

=
2
c̃

n

å
i= 1

0

@(gl (yi ) � a � fl (xi )) � exp

0

@�
1
2

k

å
t= 1

 
y(t)

i � y(t)
l

s̃

! 21

A �
y(s)

i � y(s)
l

s̃

� (gi (yl ) � a � fi (xl )) � exp

0

@�
1
2

k

å
t= 1

 
y(t)

l � y(t)
i

s̃

! 21

A �
y(s)

l � y(s)
i

s̃

1

A.(2.37)

Combining the Sammon gradient Esammon(see equation 2.2) and the density

gradient Edensity through linear combination we �nally obtain:

E = a
¶Esammon

¶yl
+ b

¶Edensity

¶yl
. (2.38)

The parameters a and b can be considered as learning rates or weights to

control the impact of the respective mapping strategy. Thus , higher weights a

for the Sammon gradient favour distance-based mappings and larger values

b for the density gradient favour the density approach.

2.5.1 Illustrative Examples

In this section we will discuss some results of the proposed t echnique on

the Cube data set and on the Wine data set. Figure 2.13 shows a Sammon's

mapping of the Cube data set. The eight data clusters are well re�ected by

the mapping. The transformation with the density-based app roach, setting

a = 0 and thusly optimizing the density aspect exclusively, lea ds to the map-

ping visualized in �gure 2.14. It is surprising that already the density as-

pect in the optimization is suf�cient in this example to re�e ct the structure

of the data set. Applying a linear combination of both, the Sa mmon gradi-

ent and the density gradient, we obtain the mapping depicted in �gure 2.15.
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Figure 2.12: Cube data set Figure 2.13: Sammon's mapping
of the Cube data set

Figure 2.14: Density-based mapping
of the Cube data set

Figure 2.15: Mapping of the Cube data
set (distance-based and
density-based)

Figure 2.16: Sammon's mapping
of the Wine data set

Figure 2.17: Density-based mapping
of the Wine data set
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Whereas the distance-based approach seams to favour the preservation of

the inter-cluster structure, the linear combination of dis tance and density as-

pects gives a better overall impression of the data set. Figures 2.16 and 2.17

show transformations of the Wine data set with Sammon's mapp ing and

with the density-based approach, respectively. Both trans formations show

similar characteristics.

Based on the empirical tests we cannot constitute that the density-based

approach is superior to the distance-based approach. Indeed, the computa-

tional complexity per iteration of the density-based appro ach is rather higher

since the density gradient has to be computed additionally. Our tests have

shown that the number of iterations can be reduced with densi ty preserva-

tion.

2.6 Navigation Through High-Dimensional Data

In this section we discuss a visualization technique that ma ps a high-dimen-

sional data set onto a plane without optimizing any objectiv e function or

using an iteration scheme. Thus, our method is linear with th e number of

objects.

The method we propose in this work is to map the data set into a 2 -dimen-

sional feature space by means of preserving angles to a certain reference vec-

tor. Initially, a reference vector r can be chosen at random out of the original

data set or it can be an appropriately generated vector, e.g. the centre vector

of the data set in the original space. Not only the angle j rj to the reference

vector will be preserved but also the length of each feature v ector x j . Thus,

for the target vector x̂ j we obtain the following simple equation for the trans-

formation

x̂ j =
�

cosj rj
�
� x j

�
�

sin j rj
�
� x j

�
�

�
.

Of course, when choosing the reference vector randomly, an adequate trans-

formation can be only obtained by chance. Therefore, it woul d be advisable

to choose the reference vector by means of an appropriate heuristic. We sug-

gest in this work two different approaches. If there is no fur ther information
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about the data available transformations with any referenc e vector could be

of interest. Hence, a dynamic visualization that shows tran sformations of the

data set by means of an animation could reveal interesting da ta structures.

Such a dynamic visualization would only be helpful if consec utive transfor-

mations are derived from slightly changing reference vecto rs. Otherwise, the

perspective of the transformation would always change dras tically, since the

reference vector jumps from anywhere in the feature space to anywhere else

without any plan. The only problem is how similarity can be as certained.

An ad hoc approach would be to sort the feature vectors by mean s of their

length. A sorting like this re�ects at least that feature vec tors with a short

length are quite different from those with a great length. Th e fact that feature

vectors with a similar length can have a far distance to each other will not be

recovered by sorting. Clustering could be another techniqu e to choose the

sequence of reference vectors according to their similarity. For a sequence of

visualizations one would choose feature vectors from the or iginal data set to

act as reference vectors beginning with the one that is the closest to the clus-

ter prototype vector going stepwise to the border of the clus ter. If all feature

vectors of a certain cluster have served as reference vector, the next cluster

will be processed analogously. For large data sets it might b e suf�cient to use

the prototype vectors of a clustering partition for the dyna mic visualization.

2.6.1 Illustrative Examples

Before we apply our visualization method on a benchmark data set, we dem-

onstrate some qualities on an arti�cial data set. Figure 2.1 8(a) shows again

the Cube data set, which was already introduced in section 2. 3.6. Thus, the

Cube data set contains eight well separated clusters. Figures 2.18(b)-2.18(d)

show some transformations of the Cube data set. As these �gur es show, if

the reference vector is randomly chosen, quite different tr ansformations will

be obtained. Figure 2.18(b) shows a transformation that reveals four clusters.

Obviously, some clusters are overlapped by others. Labelli ng the clusters

and using different symbols or colours for the plot would vis ualize this ef-

fect. This is what �gure 2.18(c) shows. Each of the two cluste rs in the middle
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(a) (b)

(c) (d)

Figure 2.18: Some transformations of the Cube data set with data navigato r

represent again two clusters of the original data set. To dis tinguish the differ-

ent origin of these points they are drawn by diamonds ( � ) and squares (2 ).

Finally, �gure 2.18(d) shows a transformation that most sui tably preserves

the original cluster structures. The differences in the thr ee transformations

originate from the fact that – depending on the choice of the r eference vector

– some feature vectors have approximately the same angle to the reference

vector and similar length. Even if these feature vectors hav e large distances

to each other in the original space, they will be placed to sim ilar regions in

the target space.
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(a) (b)

(c) (d)

Figure 2.19: Some transformations of the Wine data set with data navigato r

Figure 2.19 shows some transformations of the well known Win e data set

that was introduced in section 2.4.3 already . Figure 2.19(a) shows a Sam-

mon's mapping of the Wine data set. Figures 2.19(b)-(d) show some trans-

formations with the proposed visualization technique. As t he �gures reveal,

both techniques – Sammon's mapping and the proposed method – lead to

similar results regarding some aspects. Obviously, the class symbolized by

the diamond ( � ), can be separated much better from the rest of the data as the

other two classes. The class symbolized by a point and the one symbolized

by the square (2 ) overlap in both transformations. Different from Sammon's

mapping, which needs hundreds of iterations for one transfo rmation, our

approach runs only once through the data. This permits to pro vide interac-
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tive and even dynamic visualizations. By interaction vecto rs of interest can

be chosen as reference vector.

Of course, a simple transformation without any optimizatio n heuristics

often yields fairly poor results. In contrast to many other t echniques aiming

at dimension reduction, see e.g. [54, 60, 62], the proposed technique is very

fast and can thusly give interesting insights to the data.





3 Fuzzy Clustering and Cluster
Visualization

Cluster analysis divides data into groups (clusters) such t hat similar data ob-

jects belong to the same cluster and dissimilar data objects to different clus-

ters. The resulting data partition improves data understan ding and reveals

its internal structure. Partitional clustering algorithm s divide a data set into

clusters or classes, where similar data objects are assigned to the same clus-

ter whereas dissimilar data objects should belong to differ ent clusters. In real

applications there is very often no sharp boundary between c lusters so that

fuzzy clustering is often better suited for the data. Member ship degrees be-

tween zero and one are used in fuzzy clustering instead of cri sp assignments

of the data to clusters. The most prominent fuzzy clustering algorithm is

fuzzy c-means, a fuzzi�cation of k-means [7].

3.1 Fuzzy c-means Clustering

Many fuzzy clustering algorithms aim at minimizing an objec tive function

that describes the sum of weighted distances di j between c prototype vectors

vi and n feature vectors x j of the feature spaceR p:

J =
c

å
i= 1

n

å
j= 1

(ui j )mdi j . (3.1)

With the fuzzi�er m 2 (1,¥ ] one can determine how much the clusters over-

lap. While high values for m lead to overlapping clustering solutions, small

values, m tending to 1, lead to rather crisp partitions. In order to avo id the

trivial solution assigning no data to any cluster by setting all ui j to zero and

55
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avoiding empty clusters, the following constraints are req uired:

ui j 2 [0, 1] 1 � i � c, 1 � j � n (3.2)
c

å
i= 1

ui j = 1 1 � j � n (3.3)

0 <
n

å
j= 1

ui j < n 1 � i � c. (3.4)

When the squared Euclidian norm

di j = d2(vi , x j) = ( x j � vi )T(x j � vi )

is used as distance measure for distances between prototypevectors vi and

feature vectors x j , the fuzzy clustering algorithm is called fuzzy c-means al-

gorithm. Modi�cations of the fuzzy c-means algorithm (FCM) by means of

the distance measure, e.g. by using the Mahalanobis distance [63], allow the

algorithm to adapt different cluster shapes. Two common rep resentatives

applying this modi�cation are the algorithms of Gustafson- Kessel (GK) and

Gath-Geva (GG) [33, 36]. The minimization of the functional (3.1) repre-

sents a nonlinear optimization problem that is usually solv ed by means of

Lagrange multipliers, applying an alternating optimizati on scheme [6]. This

optimization scheme considers alternatingly one of the par ameter sets, either

the membership degrees

ui j =
1

å c
k= 1

�
dij
dkj

� 1
m� 1

(3.5)

or the prototype parameters

vi =
å n

j= 1(ui j )mx j

å n
j= 1(ui j )m (3.6)

as �xed, while the other parameter set is optimized accordin g to equations

(3.5) and (3.6), respectively, until the algorithm �nally c onverges. Neverthe-

less, the alternating optimization scheme can lead to a local optimum. There-

fore, it is advisable to execute several runs of FCM to ascertain a reliable

partition. With the Euclidian distance measure the fuzzy c-means algorithm

�nds approximately equally sized (hyper)-spherical clust ers.
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Algorithm 6 Fuzzy c-means clustering
Given the data set X = f x1, . . . ,xng 2 R p

Set number of prototypes c 2 f 2, . . . ,n � 1g
Set fuzzi�er m
Set error E
Set maximum number of iterations tmax

Set iteration counter t = 0
Initialize partition matrix U
repeat

Calculate prototype vectors vi

Update partition matrix U t

t = t + 1
until kU (t) � U (t � 1)k � E or t � tmax

Output partition matrix U
Output prototype vectors V

3.2 Possibilistic Clustering

For FCM probabilistic membership degrees are used. The sum of all mem-

bership degrees for each datum equals 1. A disadvantage of probabilistic

fuzzy clustering is that values of memberships do not expres s how typical a

datum is regarding a certain cluster.

For possibilistic c-means (PCM), a variation of FCM, condition (3.3) will be

dropped. Whereas the sum of membership degrees to overlappi ng clusters

thusly can be > 1, the sum of membership degrees to outliers can be< 1. To

avoid the trivial solution of the optimization problem sett ing all membership

degrees to zero, the objective function is modi�ed to

J =
c

å
i= 1

n

å
j= 1

(ui j )mdi j +
c

å
i= 1

hi

n

å
j= 1

(1 � ui j )m. (3.7)

The �rst term provides minimization of the distances betwee n feature vectors

and prototype vectors as for probabilistic clustering. The second term is used

to maximize the membership degrees ui j . hi speci�es the distance where the

membership degree to cluster i has the value 0.5, in other words the cluster's
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expected size. According to equation (3.7) the following fo rmula describes

the calculation speci�cation for the membership degrees

ui j =
1

1 +
�

dij
hi

� 1
m� 1

. (3.8)

The computation of the prototype vectors is carried out as fo r FCM. In [57] it

is proposed to determine hi as follows

hi = K
å n

j= 1 um
ij di j

å n
j= 1 ui j

. (3.9)

Usually, K will be set to 1. It is advised to estimate hi based on a preced-

ing probabilistic partitioning. In contrast to FCM where th e characteristic

of partitioning is emphasized and expressed by means of the p artition ma-

trix, membership degrees determined by PCM describe how typ ical a feature

vector is regarding a certain cluster. Figure 3.1 illustrat es this property on a

simple example. The �gure shows the centre vectors of an FCM- clustering

(blue) and the centre vectors of a PCM-clustering (green) as well. The mem-

bership of two interesting points exposes the difference. T he lower left point

is quite distant from any cluster but yields a high membershi p degree to the

left cluster for the FCM case. Although, this meets not our ex pectation re-

garding natural membership to the left cluster, a forced dec ision whether the

point belongs to the left cluster or to the right cluster lead s to the noted mem-

bership degrees, since FCM operates exactly like this. We get more intuitive

membership degrees using PCM. Since both points of interest have large dis-

tances to any prototype vector, their membership degrees to any of them is

fairly low.

PCM widely depends on initialization. It is advisable to ini tialize proto-

types and membership degrees with FCM. Different from proba bilistic clus-

tering single prototypes cannot be in�uenced by other proto types. It may

occur that some identical clusters will be found with PCM. A c ommon ap-

proach is to initialize PCM with the initial value for hi obtained from FCM

and then to re-calculate hi followed by few iterations with the new value of

hi .
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Figure 3.1: An illustrative example of a 2-cluster-partition with FCM a nd PCM.

PCM is suitable for outlier detection when the data set compr ehends com-

pact and separable clusters. Initialization is a crucial st ep, anyhow. Due to

its sensitivity to initialization including the chosen num ber of prototypes and

the value of hi , it often occurs that too many feature vectors will be regard ed

as outliers. Improvements of PCM that overcome the shortcom ing of �nding

identical clusters are given in [58, 72, 102].

3.3 Fuzzy Clustering with Outliers

This section brie�y describes a modi�ed objective function with an addi-

tional weighting factor for each datum [47]. The aim of this a pproach is

not only to assign fuzzy membership degrees to the data point s, but also to

determine a kind of representativeness of each datum. The approach is de-

signed to enable the expert to determine and separate the critical data from

the whole sample data so that the in�uence of outliers will be reduced. The

objective function of outlier clustering

Joutlier =
c

å
i= 1

n

å
j= 1

1
wr

j
(ui j )mdi j (3.10)
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differs only in one point – the introduction of the weighting factor w j whose

in�uence can be controlled with the constant parameter r. Considering the

constraint

n

å
j= 1

w j = w (3.11)

where w is a constant value leads to the following equation for the we ighting

parameter

w j =
(å c

i= 1(ui j )mdi j )
1

r+ 1

å n
l= 1(å c

i= 1(uil )mdil )
1

r+ 1

� w. (3.12)

The membership degrees will be calculated using

ũm
ij =

um
ij

wr
j
. (3.13)

The calculation of the prototypes does not differ from the fu zzy c-means

scheme.

The objective of outlier clustering is to assign small weigh ting factors wk

to feature vectors �tting well to at least one cluster, incre asing their in�uence

on the clustering result in this way. Outliers are naturally de�ned as being

points having a large distance to all data clusters or being e qually shared

among many clusters. Outlying points get a large weight, so t hat they have a

small in�uence on the clustering result. Parameter r in�uences the clustering

procedure as follows: for r ! ¥ all w j ! w
n and no outlier treatment is done.

For r ! 0 the weighting in�uence reaches its maximum.

3.4 Noise Clustering

Fuzzy clustering with the fuzzy c-means algorithm allows, based on the

membership degrees ui j , the estimation of the degree of assignment of a fea-

ture vector x j to a prototype vector vi . Since the sum of all membership de-

grees of a feature vector equals one, according to equation (3.3), even outliers

can achieve high membership degrees as we have seen in �gure 3.1. Small
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membership degrees occur always due to border regions between two or

more clusters. The treatment of noisy data is often motivate d by the fact that

measurements are naturally imperfect. The performance of n oise sensitive

clustering methods is strongly affected since the presence of outliers impairs

the assignment of the representative data [15].

The idea of noise clustering (NC) is based on the introductio n of an ad-

ditional cluster that is supposed to contain all outliers [1 8, 19, 20]. Feature

vectors that are about the noise distance d or further away from any other

prototype vector get high membership degrees to this noise c luster. Hence,

the prototype for the noise cluster has no parameters. Let vc be the noise

prototype and x j the feature vector. Then the noise prototype is such that the

distance dcj, the distance from feature vector x j to vc, is the �xed constant

value

dcj = d2, 8j.

The remaining c � 1 clusters are assumed to be the good clusters in the data

set. The prototype vectors of these clusters are optimized in the same way

as mentioned in equation (3.6). The membership degrees are also adapted as

described in equation (3.5). As mentioned above, the distance to the virtual

prototype is always d. The only problem is the speci�cation of d. If d is chosen

too small, too many points will get classi�ed as noise, while a large d leads

to small membership degrees to the noise cluster, which means that noise

data are not identi�ed and have a strong in�uence on the proto types of the

regular clusters.

3.5 Noise Clustering Based Outlier Detection

The speci�cation of the noise distance depends on several factors, e.g. the

maximum percentage of the data set to be classi�ed as noise [48], the distance

measure, the number of assumed clusters and the expansion of the feature

space. The noise distance proposed in [17] is a simpli�ed statistical average
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over the non-weighted distances of all feature vectors to al l prototype vectors

d2 = l
å c� 1

i= 1 å n
j= 1 di j

n(c � 1)

where l is the value of the multiplier used to obtain d from the average of

distances. As mentioned above one can show that in this way d suffers from

the fact that with an increasing number of prototypes d takes relatively high

values. As a consequence, the placing of the prototypes will be affected by

the outliers, which we intended to avoid.

We proposed in [79, 81] a noise distance which depends primar ily on the

number of prototypes used for the clustering process and the expansion of

the feature space. Under the constraint of the preservation of the hypervol-

ume of the feature space, we choose ford a value which corresponds to the

cluster radius of the hyperspherical cluster. The cluster r adius, so d, will be

chosen such that the sum of the hypervolumes of the c � 1 good clusters

with approximately same size, equals the hypervolume of the feature space.

A uniformly distributed feature space would not have any out liers in this

case. Consequently, if there are regions of high density, some prototypes will

be attracted to these regions. Feature vectors which are located a larger dis-

tance away from any other prototype vector get high membersh ip degrees to

the noise cluster.

So the �rst step is to estimate the hypervolume of the feature space. A

simple solution for this is shown in Figure 3.2(a). By means o f the data set's

extreme feature vectors the area of the resulting rectangle, or more gener-

ally the hypervolume V of the cuboid in an n-dimensional feature space, can

be easily computed. A closer approximation of the hypervolu me V can be

achieved by subdividing the feature space into smaller piec es and summing

up the single volumes of the respective hyperboxes. Figures 3.2(b) and 3.2(c)

show two naive partitions of the feature space. Note that suc h a grid should

subdivide the feature space into hyperboxes of approximate ly the same size,

since the fuzzy c-means algorithm searches for approximately equally sized

clusters.



3.5 Noise Clustering Based Outlier Detection 63

(a)

(b)

(c)

Figure 3.2: Volume preservation on an illustrative data set
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Assuming that clusters in the data set have approximately th e same size,

the cluster radius and the noise distance, respectively, have approximately

the radius r of the hyper-sphere with a hypervolume about V / (c � 1), when

using c � 1 regular prototypes for the clustering. Since our estimati on of the

hypervolume is based on a rectangular shape, the radius of a correspond-

ing hyper-sphere would not cover all feature vectors in the h yperbox. Fur-

thermore, huge clusters may be approximated by several prot otypes. The

feature vectors in border regions of those prototypes shoul d not get high

membership degrees to the noise cluster. By all means, different applications

require variable de�nitions regarding outliers. Thus, the noise distanced can

be tuned by a parameter a. Finally we obtain

d = ar. (3.14)

Although, any positive value can be chosen for a, our tests have shown that

we achieve good results with a = 1.5. In fact, smaller values for a lead to

more compact clusters with a higher number of outliers. With a ! ¥ NC

tends to behave like FCM.

After de�ning the noise distance we have to specify the minim um mem-

bership degree of a feature vector to the noise cluster in ord er to classify it as

an outlier. It is obvious that no constant value will be appro priate to cover

all NC partitions. Analogous to the noise distance, also the membership de-

grees mainly depend on the number of prototypes used for the c lustering. In

[100] it is already discussed that the probability achievin g high membership

degrees with FCM, decreases with an increasing number of pro totypes. The

lower bound for highest membership degrees is of course 1/ c. Of course,

the noise distance affects the membership degrees to the regular clusters,

too, since a small noise distance forces high membership degrees to the noise

cluster and small membership degrees to the regular clusters. So it makes

sense to de�ne outliers not only depending on the number of pr ototypes, but

also by the fact which typical high membership degrees occur for a certain

partition, which is naturally affected by the noise distanc e.

As we have discussed above, an outlier may be de�ned over the e xpected

fraction of noise. With a simple method we can de�ne outliers on the basis of
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the feature vector's probability not belonging to a regular cluster. Therefore,

we estimate the mean value mand the standard deviation s of the member-

ship degrees to the noise cluster and consider a feature vector as an outlier,

if its membership degree to the noise cluster deviates more than a certain

factor b from the mean value. Thus, the function isOutlier returns 1 when,

according to this de�nition, a feature vector is an outlier, otherwise the func-

tion returns zero:

isOutlier (x j ) =

(
1 if ucj � b � s > m,

0 otherwise
(3.15)

with

m =
1
n

n

å
j= 1

ucj (3.16)

s =

vu
u
t 1

n � 1

n

å
j= 1

�
ucj � m

� 2. (3.17)

Adjusting parameter b one can �nally in�uence the fraction of outliers.

3.5.1 Illustrative Examples

Figure 3.3(a) shows the results of both NC approaches. This data set obvi-

ously contains two clusters that are surrounded by some nois e points. Using

the conventional noise distance for partitioning the data s et results in po-

sitioning the prototypes as plotted by squares in the �gure. Applying the

isOutlier function with b = 1.4 the data points marked by the small circle

are declared as outliers. The prototypes of the regular clusters are plotted

in the �gure with the square symbol ( 2 ). Since the conventional approach

tends to overestimate the noise distance, the optimal cluster centres cannot

be found.

When we estimate the noise distance with our volume preservi ng approach,

we obtain a much smaller value for d. Now, the prototypes that are plotted

for this run with the � symbol are placed closer to the respective cluster cen-

tre. In this way, two additional data points were identi�ed a s outliers, when
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(a) Partitioning with 2 regular prototypes

(b) Partitioning with 4 regular prototypes

Figure 3.3: Noise clustering on an illustrative data set

we use the isOutlier -function again with b = 1.4. The outliers found with

the new d are marked by the bigger circle in the �gure.

Figure 3.3(b) shows the results on the same data set using four regular pro-

totypes for the clustering. Real-life data sets usually con tain cluster struc-

tures that differ from our assumption of hyperspherical clu sters. Then the

cluster structures must be approximated by several prototy pes. A noise clus-

tering technique should be able to deal with such challenges . As the �gure

shows, the conventional NC cannot �nd any outlier in this exa mple. This

is the case, because the noise distance, when estimated by the conventional

approach, will be approximately the same as for the two proto types. But,

as it can be easily veri�ed by visual assessment, the distance from the pro-

totypes to the representing data points is signi�cantly sma ller compared to
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partitioning with only two prototypes. Thus, when the avera ge distance de-

creases with an increasing number of prototypes and the nois e distance is

almost constant, or even worse, increasing, then results similar to the one

above will be obtained.

With our volume preserving approach we obtain again the same result as

with partitioning with two prototypes. The noise distance i s, according to

equation (3.14), much smaller. Therefore, the cluster centres can be placed

better and distant points will be declared as outliers. The o utliers found with

the new d are marked again by bigger circles in the �gure. This noise cl us-

tering technique can even be applied, when we are not interes ted in �nding

a cluster structure, but only want to identify outliers.

3.6 Cluster Validity

Fuzzy clustering algorithms as described above need some parameters to be

provided by an expert. A very crucial parameter is the expect ed number of

clusters c to be found in the data set. Admittedly, this is something we o ften

do not know in advance. Also the fuzzi�er needs to be adjusted depending

on the data set and, of course, depending on the desired fuzziness of the

partition. Finally, fuzzy clustering algorithms only �nd l ocal minima and

must be run repeatedly to assure a stable result.

For high-dimensional data sets it is not possible to validat e a partition by

visual inspection. The objective function itself that is mi nimized by the opti-

mization scheme is not suf�cient to compare partitions with different num-

bers of prototypes. Assuming an optimal placement of the pro totype vectors,

an increasing number of prototypes is naturally associated with decreasing

intra-cluster distances and thusly smaller J.

Actually, two kinds of validity measures are commonly used t o evalu-

ate clustering partitions, namely global validity measure s and local validity

measures. Compatible cluster merging (CCM) [44, 56] is a commonly used

representative for the latter that can be applied on Gustafs on-Kessel cluster-

ing partitions and related ones for line detection. The obje ctive of CCM is to
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estimate the optimal number of clusters during the clusteri ng process. CCM

starts with a relatively large number of prototypes and merg es clusters that

are compatible according to a compatibility relation. CCM i s quite sensitive

to initialization. Merged clusters need some iterations to stabilize. Parame-

ters need to be carefully adjusted to avoid that all clusters will be merged to

one or the other extreme – no clusters will be merged. A robust i�cation of

compatible cluster merging can be found in [30]. While only p articular appli-

cations are suitable for local validity measures, global va lidity measures are

commonly used on a variety of clustering problems. We will br ie�y discuss

some global validity measures in the following. Many other v alidity mea-

sures, de�ned to measure to what degree the data objects are similar inside

one cluster while dissimilar between different clusters, h ave been described

in the literature, see e.g. [9, 21, 22, 44, 101].

Partition Coe�cient

The partition coef�cient F is a simple validity measure based on the idea that

good partitions are characterized through clearly assigne d feature vectors

[7]. The more crisp the membership degrees the better the partition

F =
1
n

c

å
i= 1

n

å
j= 1

u2
ij .

Good partitions are rated by values tending to F ! 1. Week partitions will be

rated about 1/ c. In practice the partition coef�cient gives only week hints re-

garding the appropriate number of clusters. The main proble m is the strong

dependency of F on the number of prototypes used for the clustering. Of

course, an increasing number of prototypes improves the cha nces to explore

the data set profoundly and high membership degrees can be obtained for

data near the cluster centres. However, the amount of border regions be-

tween clusters increases, too. Prototypes compete there for the data which

results in relatively small membership degrees. This is the reason why F

often rates partitions with many prototypes badly.
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Non Fuzzyness Index

The non fuzzyness index (NFI) is an improvement of the partit ion coef�cient

NFI =
cF � 1
c � 1

.

As mentioned above, the partition coef�cient strongly depe nds on the num-

ber of prototypes used for the clustering. [100] explains in detail why the

expected value of F decreases with an increasing number of prototypes. Ac-

cording to this the probability to obtain high values for F becomes smaller.

The domain is between 1/ c and 1. The comparison of different partitions is

thusly only meaningful if the number of prototypes is consid ered, too. The

non fuzzyness index achieves this by linear transformation of F to a range

between 0 (week partitioning) and 1 (hard partitioning) [89 ].

Proportion Exponent

Windham proposed in [100] the proportion exponent validity measure

P = � log2

0

@
n

Õ
j= 1

0

@
m� 1

j

å
k= 1

(� 1)k+ 1
�

c
n

�
(1 � kmj )c� 1

1

A

1

A

with mj = max1� i � c ui j . The number of feature vectors is included in the

calculation of P. Therefore, data sets of different size are not comparable

regarding their cluster validity. Already the existence of one single mem-

bership degree near 1 initiates the proportion exponent to s tate a positive

evaluation even if the remaining membership degrees are rat her fuzzy. Since

an increasing number of prototypes naturally increases the probability to ob-

tain at least one high membership degree, P tends to favour partitions that

result from clustering with many prototypes.

3.7 Visual Validation of Clustering Results

The measures above have one thing in common – they condense the clus-

tering result to a single value which is associated with a hug e loss of infor-

mation. Moreover, it cannot be derived which part of the data needs to be
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(a) (b)

Figure 3.4: Distribution of membership degrees for two out of nine proto types clus-
tering the Cube data set

investigated more. Many more measures have been developed so far which

cannot be considered here, see e.g. [9, 31, 33, 44, 101]. In the following we

discuss the visual validation of clustering results.

Visualizing Frequencies of Membership Degrees

An intuitive approach validating fuzzy clustering results is to visualize the

distribution of the membership degrees. Denominate the cri sp result as the

ideal case, i.e. each datum is assigned to exactly one cluster with member-

ship degree 1 and to all other clusters with membership degre e 0, one would

expect that the relative frequency of the membership degree 1 should be 1/ c

and accordingly the relative frequency of the membership de gree 0 should be

(c � 1)/ c. The chart diagram for the ideal case of crisp membership degrees

shows a distribution of membership degrees as follows: a val ue of (c � 1)/ c

on the left side and 1/ c on the right side and zero values in between.

Figure 3.4 shows the distribution for two kinds of prototype s that will be

obtained when clustering the Cube data set with nine prototy pes. Mem-

bership degrees are grouped into ten classes obtained by subdividing the

possible membership range into ten equisized sections. Seven clusters will

be represented by a prototype like the one that is depicted in �gure 3.4(a).

A suchlike prototype is ideal. The �gure reveals that the pro totype repre-
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sents some data clearly. To the rest of the data this prototype has only very

low membership degrees. The distribution of membership deg rees for the

second prototype, depicted in �gure 3.4(b), state a non-ide al cluster. Two

prototypes of this kind are obtained for this example. It is n ot surprising

that these two prototypes represent parts of one identical d ata cluster of the

Cube data set. The relatively large amount of medium members hip degrees

indicates that a data cluster was improperly represented by more prototypes

than appropriate.

In [49] an improvement to visualize membership distributio ns is proposed.

A scaling is carried out in such way that in the ideal case (cri sp partitioning)

the chart diagram would show a value of 1 on both, the left and t he right

side. For this purpose a weighting factor is introduced when counting the

frequencies of the membership degrees.

Visualizing Membership Degrees of the two most Competing Cl usters

Another approach visualizing clustering results is to cons ider for each fea-

ture vector x j the cluster with the highest membership degree, say i, and the

cluster yielding the second highest membership degree, say ` . Then for each

feature vector x j a point is plotted at the coordinates (ui j , u` j ).
Consequently, all points must lie within the triangle de�ne d by the points

(0, 0), (0.5, 0.5) and (0, 1), since the �rst coordinate must always be larger

than the second one and according to the probabilistic constraint we have

ui j + u` j � 1.

Regarding the ideal case all points would be plotted near the point (1, 0).
Ambiguous data that are shared by two clusters are indicated by points near

(0.5, 0.5). Points near (0, 0) originate from data that cannot be assigned to

any cluster clearly. Such points either indicate that an imp roper number of

prototypes was chosen for the clustering or that the cluster ing technique is

not appropriate for the data structure.

Figure 3.5 shows the results of this technique on two differe nt partitionings

of the Cube data set. The left �gure shows an almost ideal clus tering of the

Cube data set. Eight prototypes where used here which compli es with the
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(a) Clustering with 8 prototypes (b) Clustering with 5 prototypes

Figure 3.5: Visualizing membership degrees of the two most competing cl usters of
the Cube data set

data set's natural number of clusters. Most of the points are concentrated

near (1, 0). Of course, memberships are decreasing smoothly when using a

moderate fuzzi�er m = 2 as we did here. Therefore, some points can be

found slightly elongated tending to (0.5, 0.5).
The right �gure clearly shows that some data is badly represe nted by the

available prototypes. This �gure shows the clustering resu lt using only �ve

prototypes. Comparable to the left �gure, some points lie ne ar (1, 0). These

points are well approximated by some prototypes. Contrary, the presence of

a considerable amount of points lying between (0.5, 0.5) and (0, 0) indicates

a misjudged number of prototypes used for the clustering.

Visualizing Membership Degrees over Intra-Cluster Distan ces

The above approaches solely consider the membership degrees for the visu-

alization. Even more insight can be gained from a plot of the m embership

degrees over the distances for each cluster, as stated in [49]. For each cluster

i a point is plotted for each datum x j at (di j , ui j ).
For an ideal graph one would expect high membership degrees f or small

distances and low membership degrees for large distances. When cluster

centres are not chosen appropriately two different effects can be observed. If

the number of prototypes is chosen too small, one cluster has to cover two or
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(a) An ideal cluster (b) An unfavourable cluster

Figure 3.6: Visualizing membership degrees over intra-cluster distan ces of the Cube
data set (clustering with nine prototypes)

more data clusters. In this case, fewer points are plotted in the upper left part

of the graph. We will rather �nd more points in the middle of th e graph. If

the number of prototypes is chosen to high, then two or more cl usters com-

pete and share the same data cluster. Consequently, even forsmall distances

low membership degrees occur which will be re�ected by point s in the lower

left part of the corresponding diagram.

Figure 3.6 shows the results of this technique on two interes ting clusters

resulting from clustering the Cube data set using nine proto types. The left

graph shows an ideal cluster. Data with small distances to th e cluster centre

yield high membership degrees. The gap to the rest of the data emphasizes

the compactness of the depicted cluster. The aforesaid clustering yields seven

clusters of that kind. The continuous slide from high to low m embership

degrees on the right graph indicates that this cluster is not well separated

from another cluster. Indeed, two prototypes represent the remaining data

cluster.

Figures 3.7(a) and 3.7(c) show two clusters of a clustering with �ve proto-

types. Figures 3.7(b) and 3.7(d) show the data set and all prototypes obtained

by the clustering. The prototype that is visualized by the re spective left �g-

ure is marked by a surrounding circle. An interesting fact in �gure 3.7(a)

is that some data points obtain different membership degree s even though
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(a) (b)

(c) (d)

Figure 3.7: Visualizing membership degrees over intra-cluster distan ces of the Cube
data set (clustering with �ve prototypes)

their distance to the prototype is similar. The reason for th is can be seen in

�gure 3.7(b). There are two data clusters that are not well re presented by any

prototype vector. Another data cluster which has approxima tely the same

distance is well represented. Thus, the prototype obtains o nly small mem-

bership degrees to the data points in this cluster.

Figure 3.7(c) shows a prototype where this effect cannot be observed. Data,

which has similar distances to this prototype, obtain simil ar membership de-

grees, too. This is evident as �gure 3.7(d) shows. All other p rototypes have

approximately the same distances to the data in question.
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Visualization of Clustering Results by Modi�ed Sammon's Ma pping

Earlier we discussed Sammon's mapping as a common representative for

multidimensional scaling. It is also common knowledge that Sammon's map-

ping is not applicable to larger data sets since its time comp lexity is about

O(t � n2), where t is the algorithm's unknown number of iterations. In [29]

an ef�cient modi�cation is described that aims at visualizi ng fuzzy cluster-

ing results. This approach was �nally re�ned and described i n [55]. The

algorithm maps the cluster centres and the data in such a way t hat the orig-

inal distances between the clusters and the feature vectorswill be preserved

as good as possible. This means that the algorithm only considers distances

of a usually small number c of prototype vectors to the n feature vectors min-

imizing the following functional

E =
c

å
i= 1

n

å
j= 1

(ui j )m(dx
ij � dy

ij )
2 (3.18)

where dx
ij represents the distance between feature vectorx j and the cluster vi

measured in the original p-dimensional space, while dy
ij represents the dis-

tance between the projected cluster centrezi and the projected data y j in the

low-dimensional space (usually the plane). The proposed al gorithm uses the

gradient descent method taking the partial derivatives of E yielding

¶E
¶yk

= � 2
c

å
i= 1

um
ik(dx

ik � dy
ik)

yk � zi

dy
ik

.

For each iteration t the cluster centres zi in the plane will be determined ac-

cording to

z(t)
i =

å n
j= 1(ui j )my(t)

j

å n
j= 1(ui j )m

and the mapping of each projected feature vector yk according to

y(t � 1)
k = y(t � 1)

k � Dy(t)
k

where Dy(t)
k = ¶E(t) / ¶y(t)

k . The algorithm �nally converges when the error

terms of two consecutive iterations are nearly identical, i .e. kE(t � 1) � E(t)k
becomes smaller than a user de�ned threshold #, or a maximum number of

iterations tmax has been reached.
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(a) Clustering with 8 prototypes

(b) Clustering with 5 prototypes

Figure 3.8: Visualization of partitions of the Cube data set using the mo di�ed Sam-
mon's mapping
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Even though the complexity per iteration is quite low, many i terations will

be needed until convergence as our tests reveal. Figure 3.8 shows two map-

pings of the Cube data set obtained using the described method. The upper

graph shows a mapping using eight prototypes for the cluster ing and the

mapping, respectively. The mapping re�ects the original cl uster structure ap-

proximately presenting eight well separated clusters and t heir corresponding

prototypes. The lower graph shows the mapping of a �ve-clust er-partition

of the same data set. It is clearly visible that some data are in the proxim-

ity of the cluster centres and thusly well represented. Howe ver, there are

also some data which are not covered by any cluster clearly wh ich meets our

expectations due to the unsuitable choice of prototypes.

Visual Assessment of Cluster Tendency

VAT, Visual Assessment of Cluster Tendency, is a tool to visu alize pairwise

dissimilarity information of objects X = f x1, . . . ,xng as a square image with

n2 pixels [8]. VAT reorders the data objects so that the image highlights po-

tential cluster structures. The reordering algorithm in VA T is similar to �nd-

ing a minimal spanning tree, but with two differences. One di fference is that

VAT does not generate the minimal spanning tree but it �nds th e order in

which the vertices are added to the tree. The second difference is that VAT

requires the de�nition of an initial vertex. Reordering beg ins by building a

dissimilarity matrix R with Ri j =
�
� xi � x j

�
� and taking the object that has the

largest distance to any other object and �nding the object cl osest to it. VAT

then �nds the object closest to either of the �rst two objects . This procedure

is repeated until all objects have been considered in the reordering.

Figure 3.9 shows two dissimilarity images of the Cube data se t using the

normalized Ri j -value as grey tone for each feature vector. Whereas dark pix-

els correspond to nearby objects do light pixels stand for di stant objects. The

left graph shows the unordered Cube data set. The right graph shows the

dissimilarity image produced by VAT. The eight data cluster s of the Cube

data set, visualized by dark blocks, can be easily found in th e graph. Their

separation to other clusters is indicated by the sharp contr ast to neighbour-
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(a) Dissimilarity image of the unordered
Cube data set

(b) Dissimilarity image of the Cube data set
produced by VAT

Figure 3.9: Visual assessment of cluster tendency of the Cube data set

ing blocks. The clusters' sizes can also be read from the blocks' dimensions.

As a modi�cation of VAT, bigVAT allows the visualization for larger data

sets reducing computational complexity by performing a qua si-ordering of

the objects and enableling graphical representations larger than usual screen

sizes [45]. VCV, Visual Cluster Validity, is related to VAT, but takes the inter-

datum distances into account that come from partitioning th e data set [37].

3.8 Visualizing Single Clusters

We proposed in [86, 87] an approach – called Single Cluster Visualization

(SCV) – to visualize single clusters by projection of the dat a points onto

the plane under the constraint that the membership degrees t o clusters are

preserved. Note, membership degrees can be obtained directly when using

a fuzzy clustering algorithm (e.g. fuzzy c-means), but also when calculat-

ing membership degrees after the partitioning, which can be done for any

prototype-based clustering algorithm. To achieve the obje ctive of member-

ship preservation, we adopt the noise distance aspect of the noise clustering

technique [17].

Noise clustering is based on the introduction of an addition al noise clus-

ter that is supposed to contain all feature vectors that are about a certain
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distance, the noise distanced, away from all other prototype vectors. This

means that the prototype vc for the noise cluster c has no parameters. The

clustering scheme differs only in one point from k-means or fuzzy c-means.

When calculating the membership degrees the distance of the feature vector

x j to the noise cluster vc is the �xed constant value dcj = d2. The proper

speci�cation of d is discussed in [17, 81].

With the objective to place the cluster in the plane, we need t wo coordi-

nates for each data point. Note that the constraint for the pr ojection is not to

preserve the distancesdi j but the membership degrees ui j . The idea for our

visualization is to compute the distances to the cluster pro totypes by means

of the membership degrees. To achieve this we consider the usual computa-

tion of membership degrees as mentioned in equation (3.5). This provides a

very simple connection between membership degrees and distances

ui j

u` j
=

1

å c
k= 1

�
dij
dkj

� 1
m� 1

1

å c
k= 1

�
d` j
dkj

� 1
m� 1

=

 
d` j

di j

! 1
m� 1

. (3.19)

For the purpose of visualization we propose to place the clus ter i to be visu-

alized at (0, 0) and to choose a second cluster` at (1, 0). The cluster at (1, 0)
is a virtual cluster that contains all feature vectors with t he highest member-

ship degree apart from ui j . The intention of this cluster is to collect all feature

vectors that are assigned to another cluster than the one we want to visu-

alize. Let us denote the membership degree to the most competing cluster

by u` j . Furthermore, we introduce a noise cluster to cover the clus ters apart

from i and ` . According to the distance of the two chosen cluster prototy pes

at (0, 0) and (1, 0), we de�ne the noise distance d = 1. This means we have

unoisej = 1 � ui j � u` j . According to equation (3.19) this leads to

ui j

unoisej
=

 
1

d̂i j

! 1
m� 1

. (3.20)

We denote the distance between clusteri and x j on the plane by d̂i j to empha-

size the fact that we do not deal with original distances any m ore but with
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0 1

x̂ j

d̂i j
d̂` j

Figure 3.10: Placement of x̂j in the plane

representative distances with respect to the according membership degrees.

Solving equation (3.20) for d̂i j we obtain

d̂i j =

 
unoisej

ui j

! m� 1

. (3.21)

Analogously, we obtain for the second cluster `

d̂` j =

 
unoisej

u` j

! m� 1

. (3.22)

This approach enables us to visualize some useful aspects:

� which feature vectors can be assigned clearly to the cluster i of interest,

� if a feature vector cannot be assigned to i, is there another cluster ` ,

where the vector can be assigned to,

� which feature vectors are near to one or more prototypes apar t from i

and ` ,

� are there feature vectors that cannot be assigned to any cluster clearly.

With equation (3.21) one can compute the distance of each feature vector x j

to the cluster i, so that it is possible to draw a circle around (0, 0) as one hint

for the feature vector's position in the plane. With the dist ance to the other

cluster (1, 0), one could draw another circle around the cluster centre. Th e

intersection point of these two circles would be the positio n of the new fea-

ture vector in the plane. Note that there are usually two inte rsection points.

We only consider the one above the x-axis. It is also possible that the two
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circles do not intersect at all. This case will be discussed in the section on

implementation aspects.

Figure 3.10 illustrates this approach. The small circle that represents the

potential coordinates of x̂ j , can be drawn with radius d̂i j obtained from equa-

tion (3.21). Analogously, the bigger circle can be drawn wit h radius d̂` j that

we get with equation (3.22). The intersection point of these two circles repre-

sents the feature vector x̂ j in the plane.

3.8.1 Implementation Aspects

Apart from the clustering itself, which leads to the members hip degrees ui j

another parameter affects the transformation, namely m (see equations (3.20,

3.21, 3.22)). A priori, one would take the same value for m as for the clus-

tering. But it can also be useful to modify this parameter. Pr actical tests

have shown that in some cases, e.g. when a feature vector is very close to a

prototype vector, no intersection point can be obtained in t he plane and con-

sequently the membership degrees to the respecting featurevector cannot be

preserved exactly.

The rules shown in algorithm 7 handle such cases while trying to preserve

membership degrees approximately. Let us denote the transformed data set

X̂. The two circles have no intersection point only in the case, when the fea-

ture vector is very close to one of the clusters. In this case,we place the point

on the x-axis, i.e. x̂2j = 0. The rest of the rule tries to �nd the proper posi-

tion for x̂ j on the x-axis balancing the distances to cluster (0, 0) and cluster

(1, 0). If the distance to both clusters is relatively small, say ma x(d̂i j , d̂` j) < 1,

then we compute a position between both clusters in relation to d̂i j and d̂` j .

Otherwise, which means one or both clusters are about a distance of 1 or fur-

ther away from the feature vector, we distinguish whether cl uster (0, 0) or

cluster (1, 0) is nearer. If the distance of x j to cluster (0, 0) is higher than the

distance to cluster (1, 0) then x̂ j will be placed to the right of cluster (1, 0) at

x̂ j = ( 1 + d̂` j , 0). If the distance d̂i j to cluster (0, 0) is smaller than the dis-

tance d̂` j to cluster (1, 0) then x̂ j will be placed to the left of cluster (0, 0) at

x̂ j = ( � d̂i j , 0). This concept enables an accurate placement of data points
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Algorithm 7 Placement of x̂ j on the x-axis

if no intersection point then
x̂2j = 0
if max(d̂i j , d̂` j) < 1 then

x̂1j = d̂i j /
�

d̂i j + d̂` j

�

else
if d̂i j > d̂` j then

x̂1j = 1 + d̂` j

else
x̂1j = � d̂i j

end if
end if

end if

relative to the nearest cluster at least. However, it is not essential to know the

exact distance of the feature vector to the other cluster, since the distance is

quite large in fact.

With these rules the membership degrees cannot be preservedexactly, but

approximated intuitively. Alternatively, one can avoid th is kind of approx-

imation by modifying parameter m for the transformation process. Small

values m ! 1 prevent that no intersection point can be met. Otherwise, o ne

can set higher values for m to force placements on the x-axis. Such transfor-

mations may not be that differentiated, but information can be reduced to

some essential facts if needed. Generally, data points situated left from 0.5

on the x-axis can be assigned to cluster(0, 0), while data points on the other

side belong to another cluster.

3.8.2 Illustrative Examples

Let us �rst apply our visualization method to an arti�cial da ta set. The Cube

data set (see �gure 3.11(a)), that we have used before already, consists of

eight well separated clusters, which are in the corners of an imaginary 3-

dimensional cube. A fuzzy c-means partition of the data set with �ve proto-

types is shown in the �gure. Of course, eight prototypes woul d be the best
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(a) Clustering of the Cube data set with 5
prototypes

A

B

C

(b) Transformation of the Cube data set
from the perspective of prototype A

1 2 3

4

(c) Transformation of the Cube data set
from the perspective of prototype B

(d) Transformation of the Cube data set
from the perspective of prototype C

Figure 3.11: SCV - an illustrative example

choice to partition the Cube data set. Thus, we can illustrat e with this parti-

tion which information one can get from the visualization to ol, if the number

of clusters is chosen wrongly.

Figure 3.11(b) shows the SCV-transformation of the Cube data set from

the perspective of prototype A. Clearly four groups of data points can be

observed (circled with a dashed line). The data points in gro up 1 are those,

which can be clearly assigned to prototype A. Data points that are located in

group 2 are those, which are not assigned to prototype A at all, but to another

prototype. Note, a partition that only consists of these bot h groups is ideal.
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(a) (b)

Figure 3.12: SCV transformations of single clusters of the Wine data set

(a) Transformation with m = 1.2 (b) Transformation with m = 1.02

Figure 3.13: The effect of parameter m on SCV transformations

Group 3 stands for feature vectors, which are not assigned to prototype A

and not to any other prototype. Instead, the data points have approximately

the same membership degree to two or more prototype vectors ( but not to

prototype A). Group 4 represents feature vectors that have approximately

the same membership degree to prototype A and another prototype.

Figure 3.11(c) shows the transformation of the Cube data set from the per-

spective of prototype B. At �rst sight one can notice that group 4 is absent.

That means in fact that no other prototype than prototype B has high mem-

bership degrees to the data points in group 1. A closer look re veals that the
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distance of prototype B to some misrepresented data is higher comparing to

other prototypes, such as prototype A and C. All other data points that could

contribute to group 4 are clearly represented by some protot ypes.

The transformation of the Cube data set from the perspective of prototype

C is shown in �gure 3.11(d). Now group 3 is missing in the plot. T his be-

comes evident, because all data points that are underrepresented are directly

between prototype C and at least one other prototype. As we have discussed

above, group 3 only occurs when data points have low membersh ip degrees

to the regarding prototype and approximately equal members hip degrees to

two or more other prototypes. Since prototype C is at least as near to the data

as other prototypes, group 3 cannot be formed.

Figure 3.12 shows some results on the well known Wine data set. The �g-

ure shows as an example two clusters of a partitioning with fo ur prototypes.

The left one is a visualization of a quite compact cluster. Da ta points left from

0.5 on the x-axis whose component on the y-axis is greater than zero have

only small membership degrees to the cluster (1, 0) even if their distance to

cluster (0, 0) seems to be far. This is due to the relatively small fuzzi�er t hat is

used during the clustering. The cluster shown in �gure 3.12( b) is much more

overlapping other clusters as the points on the x-axis, fairly in the middle

between both clusters, indicate. As mentioned above, using small values for

m leads to rather sensitive transformations. Even a relative ly small member-

ship degree to a certain cluster attracts the data points in t he transformation.

To smooth this effect it is advisable to decrease m for the transformation or

increasem for the clustering if possible.

The effect of decreasingm for the transformation is shown in �gure 3.13.

While �gure 3.13(a) shows the transformation of a cluster of the Wine data

set with m = 1.2, �gure 3.13(b) shows the same cluster transformed with

m = 1.02. The changeover from cluster (0, 0) to cluster (1, 0), which is the

imaginary line at 0.5 through the x-axis, is rather sparse. This fact indicates

a compact cluster with only few feature vectors which cannot be assigned

clearly to any cluster.
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3.8.3 Discovering Weather Clusters Impacting Air Tra�c
Management

In this section we discuss the results of SCV applying it to th e weather data

set [84]. Three categories are de�ned (short, medium and lon g �ights) ac-

cording to the �ight durations in the TMA. Short �ights corre spond to �ights

taking up to one minute more than the average �ight duration i n the TMA.

Medium �ights exceed the average �ight duration up to eight m inutes. The

remaining �ights correspond to the longer �ights.

Figure 3.14(a) shows one cluster of a three-cluster-partition. Short �ights

are visualized by green points, medium �ights by blue points and long �ights

by red points. All feature vectors left from 0.5 on the x-axis have their highest

membership degree to the cluster we try to visualize here. At �rst sight it is

visible that no compact cluster could be found. The changeov er from cluster

i to cluster ` is quite �uent. According to the visualization no clear bord er

between cluster i and another cluster can be drawn. A second cluster, de-

picted in �gure 3.14(b), represents �ights of all three cate gories. Estimating

�ight durations based on the cluster's average �ight durati on produces in

comparable cases a considerable variance and poor predictions accordingly.

Borders between cluster i and cluster ` cannot be decided.

These visualizations reveal that �ight durations can be par tly classi�ed

using weather data as �gure 3.14(a) evinces. However, the entire data set

should not be analyzed only by partitioning methods. Some re gions in the

feature space seem to be more complicated and �ight duration categories

cannot be separated linearly. Recent studies applying support vector ma-

chines could improve prediction quality and underline our a ssumptions [61,

98].
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(a) Cluster of short �ight durations

(b) Cluster of mixed �ight durations

Figure 3.14: Visualization of weather clusters with SCV
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3.9 Prototype-Based Outlier Detection

The detection of outliers as we proposed in [51] is a modi�ed v ersion of the

one proposed in [92] and is composed of two different techniq ues namely

clustering and statistical outlier detection.

The technique is described by means of an alternating procedure that re-

peats clustering of the data set as a �rst step and removing ou tliers as a

second step. In the clustering step the data set will be parti tioned with a

prototype-based clustering technique, such as k-means or fuzzy c-means, so

that the feature space is approximated with an adequate numb er of proto-

types. According to the clustering algorithm, the prototyp es will be placed

in the centre of regions with a high density of feature vector s. Even though

outliers are far away from the typical data they in�uence the placing of the

prototypes [25].

Algorithm 8 describes the outlier detection procedure sche matically. After

partitioning the data, feature vectors are considered as belonging only to a

single cluster. Note, when using a fuzzy clustering algorit hm a defuzzi�ca-

tion has to be done. For each attribute t of the feature vectors of the con-

sidered cluster, the mean value, i.e. vi , and the standard deviation svi has to

be calculated. For the vector x j with the largest distance to the mean vector,

which is assumed to be an outlier, the value z(t)
j of the z-transformation

z(t)
j =

�
�
� x

(t)
j � v(t)

i

�
�
�

s
v( t)

i

for each of its components is compared to a critical value whi ch depends

on the sample size. If one of these values is higher than the respective crit-

ical value, then this vector is declared as an outlier. One can use the Maha-

lanobis distance as in [92], however, since simple clustering techniques like

the (fuzzy) c-means algorithm tend to spherical clusters, we apply a modi -

�ed version of Grubbs' test [35], not assuming correlated at tributes within a

cluster.

The critical value is a parameter that must be set for each attribute de-
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Algorithm 8 Prototype-based outlier detection

Given the data set X = f x1, . . . ,xng � R p

Clustering of the data set yielding c prototypes vi

De�ne critical z(t) for each attribute t

repeat

for i = 1 to c do

for all data x j in cluster i do

for each attribute t of x j do

Compute z(t)
j =

�
�
� x

( t)
j � v( t)

i

�
�
�

s
v
( t)
i

if z(t)
j > z(t) then

remove x j

end if

end for

end for

Compute new positions for all prototypes vi

Update critical z(t) for each attribute t according to the new cluster

size

end for

until no outlier found

pending on the speci�c de�nition of an outlier. One typical c riterion can

be the maximum number of outliers with respect to the amount o f data [48].

Eventually, large critical values lead to smaller numbers o f outliers and small

critical values lead to very compact clusters. Note that the critical value is set

for each attribute separately. This leads to an axes-parallel view of the data,

which in case of axes-parallel clusters leads to a better outlier detection than

the (hyper)-spherical view on the data.

If an outlier was found, the feature vector has to be removed f rom the

data set. With the new data set, the mean value and the standard deviation

have to be calculated again for each attribute. With the vect or that has the
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largest distance to the new centre vector, the outlier test w ill be repeated by

checking the critical values. This procedure will be repeat ed until no outlier

will be found anymore. The other clusters are treated in the s ame way.

3.9.1 Illustrative Examples

Figure 3.15 shows the results of the proposed algorithm on an illustrative ex-

ample. The crosses in this �gure are feature vectors, which a re recognized

as outliers. As expected, only few points are declared as outliers, when ap-

proximating the feature space with one prototype only (see � gure 3.15(a)).

The prototype will be placed in the centre of all feature vect ors. Hence, only

points on the edges are recognized as outliers. Comparing the solutions with

three and ten prototypes one can determine that both solutio ns are almost

identical. Even in the border regions, where two prototypes compete for

some data points, the algorithm rarely identi�es these poin ts as outliers, in

accordance to our intuition.

The �gure shows that the algorithm can identify outliers in t he illustra-

tive data set in a stable way. With only few parameters the sol ution can

be adapted to different requirements concerning the speci� c de�nition of an

outlier. With the choice of the number of prototypes, it is po ssible to in�uence

the result in that way that with a larger number of prototypes even smaller

data groups can be found. To avoid an over�tting to the data it makes sense

in certain cases, to eliminate very small clusters before applying the outlier

elimination procedure. However, �nding out the proper numb er of proto-

types should be of interest of further investigations.

In case of using a fuzzy clustering algorithm like FCM to part ition the data,

it is possible to assign a feature vector to different protot ype vectors. In that

way one can consolidate that a certain feature vector is an outlier or not, if

the algorithm decides for each single cluster, or at least for the clusters that

yield the highest membership degree, that the correspondin g feature vector

is an outlier.

FCM provides membership degrees for each feature vector to every clus-

ter. One approach could be, to assign a feature vector to the corresponding
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(a) 1 prototype

(b) 3 prototypes

(c) 10 prototypes

Figure 3.15: Outlier detection with different number of prototypes
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Cluster
mean �ight
duration (s)

(before outlier test)
RMSE

mean �ight
duration (s)

(after outlier test)
RMSE

1 2021.18 266.17 2021.18 266.17
2 2497.13 407.90 2465.71 358.68
3 2136.85 268.93 2136.85 268.93
4 2303.41 409.35 2303.41 409.35
5 2186.22 292.04 2186.22 292.04
6 1872.23 180.45 1872.23 180.45
7 2033.31 395.33 2033.31 395.33
8 1879.28 187.12 1879.28 187.12
9 1839.65 90.95 1839.65 90.95
10 2566.15 517.01 2523.28 492.60

Table 3.1: Estimated �ight duration before and after outlier treatmen t

clusters with the two highest membership degrees. The featu re vector is con-

sidered as an outlier if the algorithm comes to the same decision for both

clusters. In cases where the algorithm gives no de�nite answ ers, the feature

vector can be labelled and processed by further analysis.

3.9.2 Eliminating Outlying Weather Data

We applied the above method on a weather data set describing the weather

situation at Frankfurt Airport at 12:20 PM. Partitioning th e weather data is

done using k-means with 10 prototypes. Since the weather data set is high-

dimensional in the feature space we prescind here from showi ng a visualiza-

tion of the clustering results. Though, table 3.1 shows some numerical results

for the �ight duration before the outlier treatment and afte rwards.

The proposed outlier procedure removes a total of four outli ers in two clus-

ters. The according clusters are highlighted in the table by means of light

grey background. Indeed, both clusters bene�t from removin g the outliers

insofar that the estimation of the �ight duration, using a si mple measure like

the mean, can be improved to a considerable extent. The lower RMSE for the

�ight duration estimation in both clusters con�rms this.
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Classi�cation aims at associating input data to prede�ned c lasses. Many

techniques, such as neural networks and support vector machines (SVM),

have been successfully applied for this purpose. Unfortuna tely, these tech-

niques have the disadvantage of being hardly interpretable . The user of a

suchlike technique cannot see why the system behaves like it does. Available

expert knowledge cannot be easily integrated into the syste m.

Both these issues are not the case for fuzzy systems [59]. Fuzzy rules can be

understood by a user and own rules can be integrated if necessary. Typically,

fuzzy rules describe an inference scheme:

R : if antecedent then consequent

where the antecedent is described by the input variables:

x1 is A1 and . . . and xl is A l

and the consequent by a single output variable y is B6. Input variables are

de�ned by means of membership functions.

Instead of constructing an entire rule base by hand, one can automatically

derive rules from data. Fuzzy rules are usually obtained fro m fuzzy clus-

ters by projecting the clusters to the coordinate spaces, but also various other

techniques are commonly used [5, 34, 50]. Despite the good interpretability

of single fuzzy rules, the analysis of an entire fuzzy rule ba se can be exhaust-

ing. Particularly if the data comprehend many attributes, i .e. the input data

is high-dimensional, interpretation becomes dif�cult. Th e following section

therefore discusses a technique to visualize fuzzy rules and the data set clas-

si�ed by the rule system as well. We have presented this appro ach in [83, 85].

6There are also other concepts of fuzzy rules, e.g. where the rule consequent is employed
as a linear function of the input variables, which are not con sidered here.
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4.1 Rule Classi�cation Visualization

To start with, we follow the terminology of fuzzy rules accor ding to the de�-

nition that is given in [5, 32]. Later we will apply the rule ba se visualization

approach on a rule base that is generated by a more general rule construction

technique.

A trapezoidal membership function of a fuzzy rule is de�ned b y four pa-

rameters < ai , bi , ci , di > (see �gure 4.1). The rule's core regionfor attribute

i is de�ned by parameter bi and ci . It describes the region of the member-

ship function that is supported by training examples during the rule learn-

ing phase. The rule's support regionfor attribute i is de�ned by parameter

ai and di . The support region might be constrained as the �gure shows, but

also open to � ¥ depending on the training algorithm. In addition, a centre

vector of each rule can be determined by means of the core region's centre

for each attribute of the rule.

Further, we de�ne neighbourhood of rule centre vectors acco rding to over-

lap regarding the core regions of the rule system. Neighbour hood Ne f of rule

R e and R f can either be 1 if all core regions of both rules overlap, or 0 i f not.

Combining the centre vectors and the neighbourhood Ne f we can de�ne

a dissimilarity (or distance) matrix D as it is used with Sammon's mapping

that we already described in section 2.1. Sammon's mapping � nds a low-

dimensional representation of high-dimensional data tryi ng to preserve dis-

tances between feature vectors. Accordingly, we can use Sammon's mapping

to �nd a two- or three-dimensional mapping of the rule centre vectors (or

their representation by means of the dissimilarity matrix) . Thus, we use the

normalized rule centre vectors to determine the required di stance matrix and

enlarge the distance of non-neighbouring rules by Ne f. Of course, no guaran-

tee can be given, that all neighbouring rules will be placed a ppropriately, but

considering core based neighbourhood might improve the cha nce to obtain

feasible transformations.

Once the rule centre vectors are mapped in the plane or the 3D-space, we

propose to place the data set's feature vectors according totheir membership
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Figure 4.1: A trapezoidal membership function

degree to the two rules that yield the highest response. Thus , we place the

feature vectors proportional to both rule centre vectors. A visualization like

this reveals some interesting aspects of the rule system:

� Similar rules and neighbouring rules can be visualized by th eir distance

and a drawn link, respectively.

� Classi�ed feature vectors symbolize by their colour and the ir propor-

tional distance to the respective rule centre vector which r ule �res to

what degree.

� Misclassi�ed feature vectors can be detected when using app ropriate

symbols or colours for them.

� Con�icting rules (visualized by connected rule centres of d ifferent colours)

can be identi�ed.

In the next section we will demonstrate the proposed techniq ue on some

benchmark examples.

4.1.1 Illustrative Examples

Figure 4.2 shows an exemplary rule classi�er that is learned based on the well

known Wine data set (see section 2.4.3). We applied the fuzzy rule learning

algorithm as described in [5] and obtained ten rules which cl assify the entire
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Figure 4.2: 2D-Visualization of an example for a rule classi�er on the Win e data set

data set correctly. Rule centre vectors are visualized by squares (2 ). Connec-

tions between rule centre vectors indicate their neighbour hood regarding the

core region. Rules of the same class are visualized by the same colour. Ad-

ditionally, data objects are visualized by means of points. A feature vector's

membership to a certain rule can be differentiated by means o f its colour and

its distance to rule centre vectors.

The �gure reveals some interesting facts. In consequence of placing vectors

in the plane depending on their membership degree to the two r ules that

yield the highest response, classi�ed feature vectors will be placed on an

imaginary line that connects two rule centre vectors. Note, feature vectors

may not only be represented by neighbouring rules correspon ding to the core

based neighbourhood de�nition whose neighbourhood is visu alized by lines

in the �gure. As the �gure reveals, for some neighbouring rul es the data set

contains no data that lie in the core regions of those rules. Two of ten rules

represent data that lie not in any of the core regions of these rules. If two

rules yield similar membership degrees to a feature vector, it will be placed

in the middle between these rule centre vectors. Of course, the classi�cation

that will be done in such cases is not that con�ding since the d ecision comes
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randomly if no further information is available.

This classi�er is almost ideal. Despite of one con�icting re d rule that over-

laps with one blue rule and one green rule no misclassi�catio ns occur. There

are also no rule pairs representing different classes that compete for some

data. Actually, the visualization tool can provide much mor e insight into

classi�ers that comprise problematic aspects. The followi ng examples will

demonstrate some more prospects of this technique.

The second example is the Wisconsin breast cancer data set [64]. Each pa-

tient in the database had a �ne needle aspirate taken from her breast. Then

nine attributes where determined and analyzed to discrimin ate benign from

malignant breast lumps. Figure 4.3(a) shows the visualizat ion of the learned

rule system and the corresponding classi�ed data set. For th is example we

divided the data set into a training data set and a test data se t by choosing

randomly 50% of the data for each of both data sets. We used the training

data set to learn the fuzzy rule classi�er. The test data set w as applied on the

learned classi�er which yields the �gure above using the pro posed visual-

ization technique.

The �gure shows clearly that rule centre vectors which repre sent the same

class are mapped in the same region in the plane. There are two neighbour-

ing rules that represent different classes. These rules misclassify some feature

vectors. Some rules respond only with small membership degr ees to few fea-

ture vectors and do not yield high response to any other featu re vector. This

fact is shown in the �gure by rule centre vectors that have no a djacent feature

vectors. Thus, the �gure reveals that the rule system can be p runed here.

Figure 4.3(b) shows a 3-dimensional visualization of the ru le classi�er on

the training data of the Wisconsin breast cancer data set. Feature vectors of

different classes are visualized by small spheres of different colours. Rule

centres are visualized by cubes. Transparency helps to identify feature vec-

tors which are positioned exactly on the same coordinate as rule centres.

Light grey connections between rule centres indicate rule n eighbourhood.

Three-dimensional visualization is mainly ef�cient when i nteraction (zoom-

ing, rotating, etc.) is provided. The �gure results from a Ja va3D implemen-
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(a) 2D-Visualization of an examle for a rule classi�er on the
Wisconsin breast cancer data set

(b) 3D-Visualization of an examle for a rule classi�er on
the Wisconsin breast cancer data set

Figure 4.3: Visualization of rule classi�ers on the Wisconsin breast can cer data set
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tation that enables the user to interact. In the foreground o f the �gure a dark

grey connection can be found. In the actual implementation, feature vectors

can be clicked and the two rules that yield the highest respon se to the feature

vector will be visualized by a dark grey connection. Clickin g the same fea-

ture vector again causes the disappearance of the accordingconnection. This

feature helps the analyst to identify interesting rules and feature vectors as

well.

4.1.2 Visualization of Classi�cation Rules for Flight
Duration Prediction Based on Weather Data

The impact of weather on �ight duration of arriving aircraft has been ana-

lyzed in various studies [61, 76, 78]. Several techniques, such as neural net-

works, support vector machines, linear regression and regr ession trees have

been applied to the data [11, 65, 74, 75].

Figure 4.4 shows an example of a rule classi�er that was learn ed on a sam-

ple of the weather data using the method described in [5]. As m entioned

earlier, the weather data set consists of weather reports which are regularly

released every thirty minutes and describe the weather situ ation at Frankfurt

Airport. To demonstrate our visualization technique that i s suitable mainly

for smaller data sets or rule bases respectively, we consider here only the

weather reports given at 12:20 PM for the year 1998. Due to some missing

weather reports for the considered time period the data set c omprehends

333 data. The �ight duration times were grouped into three cl asses: short

�ights with one minute delay with respect to the average �igh t duration in

the TMA, medium �ights with eight minutes delay and long �igh ts with

even more delay.

A rule classi�er was learned using this data set and pruned to eleven rules.

For a better interpretability some additional lines are plo tted (light grey) to

visualize which rule pair yields the highest response to a ce rtain weather re-

port that could not be classi�ed correctly. Solid black line s indicate overlap-

ping rules again. It can be observed that rules covering shor t �ights (green

rule centre vectors) and medium �ights (blue rule centre vec tors) overlap
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Figure 4.4: 2D-Visualization of an exemplary rule classi�er on the weath er data

Figure 4.5: POLARMAP-Visualization of the weather data set
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sometimes. Rules that cover long �ight durations (red rule c entre vectors)

are fairly distant to other rules in the �gure which emphasiz es the impact of

weather on �ight duration. The proximity of rules that cover short �ights,

re�ects the similarity of those weather conditions. Of cour se, rules, cover-

ing medium �ights, are sometimes alike to short �ight rules b ut also to long

�ight rules. This is re�ected by the rule centres' positions in the �gure. If only

one rule covers a certain weather report the feature vector w ill be placed di-

rectly on the rule centre vector. Thus, it cannot be inspected on the graph,

how many feature vectors overlap. Further development shou ld focus this

problem. Due to pruning 118 weather reports cannot be classi �ed correctly.

These weather reports are depicted by the circles in the �gur e.

Figure 4.5 shows a 2-dimensional mapping of the weather data set using

POLARMAP. Data points surrounded by a circle correspond to m isclassi�ed

weather reports. The �gure reveals why this data is not cover ed by any rule

of the pruned rule system. Mostly these points are located in areas where

all classes of weather reports appear. In these cases the rule learner has to

use many rules to classify the data set correctly. Since the pruning strat-

egy simply removes those rules which cover only few weather r eports, these

points cannot be classi�ed correctly thereafter. The �gure also gives some

hints for the partly low classi�cation rates (green: 61%, bl ue: 48%, red: 89%).

The discretization of the continuous �ight duration times t o three �ight du-

ration classes generates numerous misclassi�cations especially on class bor-

ders. Further analysis should investigate a suitable binni ng. Binning could

be improved using histograms (e.g. see �gure 4.6) to �nd an ap propriate

discretization of the �ight duration attribute. As it can be seen in �gure 4.6,

there are two signi�cant gaps at 1900s and 2150s that might be a better choice

to use for discretization.

The rule construction technique as discussed in section 4.1assumes that for

each rule a centre vector can be computed. Indeed, the aforesaid technique

always generates membership functions for each variable of the data set in

each rule. However, other rule construction algorithms try to �nd rules that

use a minimal number of variables to describe the classi�cat ion task. Differ-
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Figure 4.6: Histogram of �ight durations

ent rules of a rule base consider different variables. Consequently, rule centre

vectors that we have used so far to build a distance matrix for the Sammon's

mapping procedure cannot be determined directly.

To build up a distance matrix (or generally a dissimilarity m atrix) distances

are not essentially needed. Dissimilarity can be de�ned by c omparing single

membership functions of rule pairs. Starting with an initia lly zero valued

dissimilarity matrix, dissimilarity of a rule pair has to be augmented if mem-

bership functions for the same variable do not overlap. Diss imilarity of a

rule pair that is not overlapping or that predicts different classes can also be

augmented. A suchlike derived dissimilarity matrix can be s traightly used

with Sammon's mapping.

Figure 4.7 shows two rule bases that are generated by the NEFCLASS

fuzzy rule learner [68]. The rule base that is visualized in t he upper �gure is

built using the same class de�nition as described earlier in this section. The

classi�cation rate is comparable to the rule classi�er that we have discussed

in this context. For a better readability only misclassi�ed short �ights are

depicted in the �gure. The visualization reveals that the ru le base contains

some overlapping rules – rules that get non-zero membership degrees to a

shared subset of data of the same class – but also two con�icting rules that
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(a) A rule classi�er with 11 rules

(b) A rule classi�er with 5 rules

Figure 4.7: 2D-Visualization of rule classi�ers on the weather data incl uding some
misclassi�ed short �ights (Sammon's mapping based on a dissi milarity
matrix)
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get non-zero membership degrees to a shared subset of data ofa different

class. Eye-catching are some misclassi�ed short �ights who se two highest

membership degrees get rules that actually classify long �i ghts. Investiga-

tions on the raw traf�c data have shown that the �ight duratio ns for these

�ights where originally missing. These missing values were replaced by the

mean value which obviously does not suitably re�ect the real ity. There are

also some short �ights that get high membership degrees to ru les that classify

medium and long �ights. Despite of bad weather conditions an d demanding

traf�c at the airport these aircraft could land very fast.

Figure 4.7(b) shows the mapping of a rule base that is composed by �ve

rules only. The reduction of the rule number is an effect that arises when

taking the �ight duration frequencies (as shown in �gure 4.6 ) into account.

Flight duration classes are de�ned according to the gaps in t he histogram at

1900s (as the upper bound for short �ights) and at 2150s (as the upper bound

for medium �ights) 7. The classi�cation rate is approximately the same as

for the rule base with 11 rules. As the �gure reveals, this rul e base contains

more con�icting rules. Since the class de�nition has change d the intra class

classi�cation rate cannot be compared directly with the pri or fuzzy classi�er.

7Using the gap at 2450s as the upper bound for medium �ights doe s not improve the fuzzy
classi�er.
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In this work we have contributed to the �eld of data mining and data visu-

alization against the background of air traf�c management t asks. We have

presented some new visualization techniques as well as somesuitable exten-

sions to well-known methods.

Visualization of high-dimensional data is an active resear ch area. Mul-

tidimensional scaling aims at �nding a low-dimensional rep resentation of

high-dimensional data while preserving similarity of obje cts. We focused in

this thesis on the development of two new MDS-related techni ques, namely

MDSpolar and POLARMAP, that provide some valuable aspects. Besides

computational ef�ciency, both approaches allow to map new d ata that has

not been used to learn the model. So far only few approaches support this

feature while being computational expensive. In contrast t o conventional

MDS approaches were distances or dissimilarities will be pr eserved, our

transformation bases in both approaches on the preservation of angles be-

tween feature vectors when mapping high-dimensional data o nto the plane.

MDSpolar provides the possibility to map new data that has not been use d

to learn the model, since the solution is described by means of a system of

linear equations. POLARMAP's solution is even more comfort able because

a function is learned that can be applied for new data objects . Similar to ker-

nel methods POLARMAP can implicitly represent the data in a n ew feature

space to improve the transformation. The application of the se visualization

techniques revealed interesting correlations between weather and �ight du-

rations at airports. With density-based multidimensional scaling we have

introduced another approach that combines conventional MD S and density

preservation successfully.

Clustering is the process of grouping data into several clus ters containing

similar objects. The task of clustering is to maximize the in traclass similarity
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and minimize the interclass similarity. Many clustering te chniques are fairly

sensitive to noisy data. The effect is that prototypes, centre vectors that repre-

sent the clusters, will be placed on suboptimal positions in the feature space.

Noise clustering is a common technique that robusts well-kn own clustering

algorithms, like fuzzy c-means. However, noise clustering depends strongly

on the number of prototypes used for the clustering which is n ot covered by

the original noise clustering approach. We provided in this work a technique

that estimates the respective control parameter - the noise distance - such

that noise clustering becomes widely robust to the prototyp e number. Fur-

ther we discussed a new technique that combines clustering and statistical

outlier detection. On the basis of the weather data we have shown that the

treatment of outliers by means of our technique yields more a ccurate results

for the �ight duration prediction.

Validation of clustering partitions is a crucial step to che ck whether the

prototypes �t the data clusters. To date, plenty of validity indices exist con-

densing the clustering result to a single value to rate the pa rtition quality. We

have also discussed some visual techniques to validate clustering partitions.

With the approach called single clustering visualization w e have presented

a new technique to visualize a clustering partition from the perspective of

a certain cluster. Interesting aspects become visual, suchas compactness of

clusters, the existence of outliers and whether the number of prototypes is

chosen appropriately or not.

Furthermore, we provided a very ef�cient technique to visua lize fuzzy rule

classi�ers. Fuzzy rules a known to be easily interpretable. Therefore they are

often used to classify data. Our 2D- or 3D-visualizations of rule bases reveal

important aspects and thusly improve interpretability. Th e application of

this visualization technique enabled us to identify miscla ssi�ed data as well

as outliers and helped us to identify con�icting and overlap ping rules for the

combined weather and �ight duration data set.

The application of the different visualization and data pre processing tech-

niques has shown that there is still some work to do. Our multi dimensional

scaling techniques might sometimes have a large constant in the computa-
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tion scheme which restrains their ef�ciency for large data s ets. To cope with

this problem we have discussed the binning issue that allows to consider

relevant data pairs only. Further investigations should co ncern the criterion

for data that belong to the same bin and �nding the appropriat e bin size to

improve transformation quality and ef�ciency. Of course, v isualization can

only re�ect existing underlying data structures. Conseque ntly, the proposed

techniques are fairly dependent on the provided data. The in terpretation

of the obtained results cannot completely substitute exper t knowledge. Fi-

nally, visualization with scatter plots and related method s is restricted to the

displaying medium. Thus, visualization of very large data s ets demands so-

phisticated techniques to overcome such limitations. Futu re work should

concern these aspects.

Aside from improving the prediction accuracy by means of dat a cleaning

we have to declare that ultimate accuracy cannot be achieved since devia-

tions in air traf�c occur naturally. The application of supp ort vector regres-

sors on this data have shown that taking non-linearities int o account may im-

prove prediction accuracy signi�cantly which proves that t here is still room

for advancement at the expense of interpretability. Visual ization is a very

important medium to transmit knowledge to experts and decis ion makers

and should be elaborated in future particularly for powerfu l and hardly in-

terpretable techniques.
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A Mappings of the Weather Data

The following �gures show the effect of the bin size on MDS polar-mappings of

a weather data set that contains 3510 data8. When using smaller bin sizes (say

50 or 100) the mapping already reveals some of the characteristics that can

be observed for mappings with larger bin sizes. Accordingly , short �ights

(green points) are spread over the entire feature space, whereas medium

�ights (blue points) and long �ights (red points) are mainly represented in a

separate area. A stable mapping will be obtained when using a bin size of

200 or higher.

Figure A.1: Mapping of the weather data with MDS polar (bin size=50)

8Due to its similar approach the effect of the bin size on mappi ngs with POLARMAP is
comparable with MDS polar.
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Figure A.2: Mapping of the weather data with MDS polar (bin size=100)

Figure A.3: Mapping of the weather data with MDS polar (bin size=200)
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Figure A.4: Mapping of the weather data with MDS polar (bin size=500)

Figure A.5: Mapping of the weather data with MDS polar (bin size=1000)
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