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Introduction

One can hardly find homogeneous populations in real life, although most
of the studies on the failure rate modelling deal with a homogeneous case.
Neglecting existing heterogeneity can lead to substantial errors in stochastic
analysis in reliability, survival and risk analysis and other disciplines.

Mixtures of distributions usually present an effective tool for modelling
heterogeneity. The origin of mixing in practice can be ‘physical’ when, for
instance, a number of devices of different (heterogeneous) types, performing
the same function and not distinguishable in operation, are mixed together.
This occurs when we have ‘identical’ items, but of different manufacturers.
A similar situation arises when data from different distributions are pooled
to enlarge the sample size.

It is well known that mixtures of decreasing failure rate (DFR) distrib-
utions are always DFR (Barlow and Proschan, 1975). On the other hand,
mixtures of increasing failure rate distributions (IFR) can decrease at least
in some intervals of time, which means that the IFR class of distributions
is not closed under the operation of mixing (Lynch, 1999). As IFR distri-
butions usually model lifetimes governed by aging processes, it means that
an operation of mixing can change the pattern of aging dramatically, e.g.,
from positive aging (IFR) to the negative aging (DFR). It should be noted,
however, that the change in the aging pattern usually occurs at sufficiently
large age of items and therefore the role of asymptotic methods in analysis is
evident. These facts and other implications of heterogeneity should be taken
into account in applications.

A natural specific approach for this modelling exploits a notion of a non-
negative random unobserved parameter (frailty) Z. The term “frailty” was
suggested in Vaupel et al (1979) for Gamma-distributed Z and the multi-
plicative failure rate model of the form Zλ(t), where λ(t) is some baseline
failure rate. Since that time multiplicative frailty models were widely used in
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statistical data analysis (see, e.g., Andersen et al, 1993). It is worth noting,
however, that the specific case of a Gamma-frailty model was, in fact, first
considered by the British actuary R. Beard (1959) (see also his 1971 paper).

A random Z clearly leads to considering a random failure rate λ(t, Z) and
eventually to a mixture failure rate λm(t).

The mixture failure rate λm(t) is an observed failure rate in
heterogenous populations and the study of its properties is the
main goal of this thesis.

As the failure rate is a conditional characteristic, the ‘ordinary’ expec-
tation E[λ(t, Z)] with respect to Z does not define a mixture (or observed)
failure rate λm(t) and a proper conditioning should be performed (Yashin
and Manton, 1997):

λm(t) = E[λ(t, Z) |T > t],

where T is a population lifetime random variable, and as usually, when deal-
ing with a failure rate, this notation means considering the risk of failure
for survivors at time t. It is worth mentioning that a random failure rate is
a specific case of a hazard rate process (see, e.g., Kebir (1991) and Yashin
and Manton (1997)) and also, in some sense, of a stochastic intensity, which
describes point processes (Aven and Jansen, 2000).

It is already well known for some specific cases, and in Chapter 4 we prove
this result analytically for a rather general case, that the mixture failure rate
is “bent down” (or decelerated) in the following sense:

λm(t) = E[λ(t, Z)|T > t] < E[λ(t, Z)], t > 0.

This inequality can be interpreted as follows: if the family of failure rates
λ(t, z), z ∈ [0,∞) is ordered in z (see Chapter 4), then, as the weakest
populations are dying out first, the remaining population will have a smaller
(better) failure rate, than the population without this dying out effect.

A convincing ‘experiment’, showing the deceleration (bending down) of
the observed (mixture) failure rate is performed by nature. It is well known
that the human mortality follows the Gompertz (1825) lifetime distribution
with exponentially increasing mortality rate. Assume that heterogeneity can
be described by the specific proportional Gamma-frailty model:

λ(t, Z) = Zαeβt,
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where α and β are positive constants. Due to computational simplicity, the
Gamma-frailty model is practically the only one used in applications so far.
It can be shown (see, e.g., Finkelstein and Esaulova, 2001a) that the mixture
failure rate λm(t) in this case is monotone in [0,∞) and asymptotically tends
to a constant as t →∞. However, λm(t) is monotonically increasing for the
real values of parameters of this model. This fact explains recently observed
deceleration in human mortality for the oldest old (human mortality plateau,
as in Thatcher (1999)). A similar result is experimentally obtained for a large
cohort of medflies by Carey et al (1992).

On the other hand, in engineering applications an operation of mixing
can result in increasing in [0, tm), tm > 0 and decreasing asymptotically to
0 in [tm,∞) failure rate, which, e.g., was experimentally observed in Finkel-
stein (2005b) for the heterogeneous sample of miniature light bulbs (see the
following figure).
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light bulbs under the normal voltage of 5 volts. This shape of the failure rate
can be easily explained theoretically via the multiplicative Gamma-frailty
model with a baseline failure rate increasing in accordance with the Weibull
law as a power function (Gupta and Gupta, 1996; Finkelstein and Esaulova,
2001a). On the other hand, general engineering considerations on stochastic
modelling of wearing devices suggest that the accelerated life model (ALM)
is more appropriate in the case of light bulbs than a multiplicative one.

It should be noted that there are practically no results for mixture failure
rate modelling for the ALM in the literature. In Chapter 2 we consider this
model as a specific case of our general lifetime model and prove somehow an
unexpected result that irrespectively of the mixing and baseline distributions
and under very mild additional assumptions the asymptotic mixture failure
rate is proportional to 1/t. No wonder that it perfectly corresponds to the
tail of the mixture failure rate for the multiplicative Gamma-frailty model
with a baseline Weibull distribution, as only for this case the accelerated life
model can be reparameterized to end up with the multiplicative (proportional
hazards) model.

Chapter 1 is devoted to initial considerations, main settings and a brief
literature survey. We obtain some results on conditional expectations for the
multiplicative and additive hazards models and prove theorems describing
the shape of the corresponding mixture failure rate.

The literature on heterogeneity modelling can be roughly divided into
three parts. The first one is connected with demographic studies and is
mostly based on papers by J. Vaupel with different co-authors. The second
one is in the field of bio-medical and bio-statistical applications. The path
breaking results in this area are developed in the papers of O. Aalen and P.
Hougaard. Finally, general mathematical and asymptotical properties were
studied in a number of papers by H. Block and T. Savits and co-authors. In
the current study we are closer to the latter mathematical stream of research,
although our approach is different.

Chapter 2 contains main mathematical results of this thesis and considers
an important topic of asymptotic behavior of mixture failure rates. In Block
et al (2003a) it was proved that if the failure rate of each subpopulation
converges to a constant and this convergence is uniform, then the mixture
failure rate converges to the failure rate of the strongest subpopulation: the
weakest subpopulations are dying out first. This result generalizes a case of
constant failure rates of populations considered by Clarotti and Spizzichino
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(1990) and also presents a further development of Block et al (1993) (see also
Lynn and Singpurwalla, 1997; Gurland and Sethuraman,1995). In Block and
Joe (1997) the following asymptotic result, which already addressed the issue
of ultimate monotonicity, was obtained: let z0 be a realization of a frailty Z,
which corresponds to the strongest population. If λ(t, z)/λ(t, z0) uniformly
decreases as t → ∞, then λm(t)/λ(t, z0) also decreases. If, in addition,
limt→∞ λ(t, z0) exists, then this quotient decreases to 1. Note that analytical
restrictions in this findings, e.g., uniform convergence, are rather stringent.

In this Chapter 2 we suggest a class of distributions, which generalizes the
proportional hazards, the additive hazards and the accelerated life models
and prove asymptotic results for the mixture failure rate for this class of life-
time distributions. We develop a new for this kind of applications approach,
related to the ideology of generalized convolutions, e.g., Laplace and Fourier
transforms and, especially, Mellin convolutions (Bingham et al, 1987). For
proving our asymptotic results we use a convenient technique, which is used
for deriving asymptotics for the Laplace integrals. Similar methods are used
for obtaining Abelian, Tauberian and Mercerian theorems, although our the-
orems are not the direct corollaries of results in this field. It turns out that
the asymptotic behavior of mixture failure rates depends only on the behav-
ior of the mixing distribution in the neighborhood of the left end point of its
support and not on the whole mixing distribution. As it was mentioned, we
have obtained a striking result that asymptotical mixture failure rate for the
specific case of the accelerated life model is proportional to 1/t for a wide
class of mixing and baseline distributions.

Chapter 3 extends asymptotic univariate results of Chapter 2 to the multi-
variate (bivariate) case. We consider two specific, but important in practical
applications cases. The first one deals with the competing risks problem:
each of the two components in the series system has its own frailty and these
frailties are dependent random variables. Asymptotic formulas for the fail-
ure rate of the series system are derived and the conditions for ‘asymptotic
independence’ of the components are discussed. The second case deals with
one component with a bivariate frailty. Asymptotic formulas for the mixture
failure rate are also derived and the simplest examples are analyzed.

In Chapter 4 we consider heterogeneous populations in different envi-
ronments. The problem of mixture failure rates ordering for stochastically
ordered mixing random variables naturally arises in this setting. This topic
was not addressed in the literature before. We show that the natural type
of ordering for mixing models under consideration is ordering in a sense of
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the likelihood ratio (Ross, 1996; Shaked and Shanthikumar, 1993). This also
goes in line with general considerations of Block et al (1993) with respect
to a burn-in in heterogeneous populations. Specifically, when two frailties
are ordered in this way, the corresponding mixture failure rates are naturally
ordered as functions of time in [0,∞). Some specific results for the case of
frailties with equal means and different variances are also obtained.

We also discuss a ‘combination’ of a frailty and a proportional hazards
(PH) model. A case of a step-stress change-point in the proportional hazards
framework is considered and the corresponding bounds for the mixture failure
rate are also obtained. Another example deals with a special type of shocks,
which perform a burn-in heterogeneous populations.

Some preliminary results, modified and extended in Chapter 1, were first
published in:

Finkelstein, M.S., and V. Esaulova, V. (2001a). Modelling a failure rate
for the mixture of distribution functions. Probability in Engineering and
Informational Sciences, 15, 383-400.

Finkelstein, M.S., and V. Esaulova, V. (2001b). On inverse problem in
mixture hazard rates modelling. Applied Stochastic Models in Business and
Industry, 17, 221-229.

The following preprints contain most of the results of this thesis:

Finkelstein M. S., Esaulova V. Asymptotic behavior of mixture failure
rates. MPIDR (Max Planck Institute for Demographic Research). Working
Paper WP-2005-023.

Finkelstein M.S., Esaulova V. (2005). Failure rates in heterogeneous pop-
ulations. Technical report #353. University of the Free State.

A paper, based on the first preprint, which contains the description of
a new method in the mixture failure rate modelling and the main asymp-
totic results has been accepted for publication in the “Journal of Applied
Probability”.
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Chapter 1

Settings, initial results,
literature

In this chapter we define a mixture failure rate and discuss its properties
for the simplest models of mixing in terms of the corresponding conditional
characteristics.

1.1 Definitions

Let T ≥ 0 be a lifetime random variable with the cumulative distribution
function (Cdf) F (t) and the survival function F̄ (t) ≡ 1−F (t). Assume that
F (t) is indexed by a random variable Z in the following sense:

P (T ≤ t|Z = z) ≡ P (T ≤ t|z) = F (t, z)

and that the corresponding probability density function (pdf) f(t, z) exists.
The failure rate λ(t, z) can be defined in a usual way as

λ(t, z) =
f(t, z)

F̄ (t, z)
.

Let Z be interpreted as a non-negative random variable with support in
[a, b], a ≥ 0, b ≤ ∞ and probability density function π(z). This random
variable has also the meaning of an unobserved parameter, which is very
helpful in modelling of heterogeneity and is usually called “frailty” (Vaupel
et al, 1979).
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Assume for convenience of notation that a = 0, b = ∞. The cases when
a > 0 are important and will be specified later. A mixture Cdf is defined by

Fm(t) =

∫ ∞

0

F (t, z)π(z)dz. (1.1)

As the failure rate is a conditional characteristic, the mixture failure rate
λm(t) should be defined in the following way (see, e.g., Finkelstein and
Esaulova, 2001a):

λm(t) =

∫∞
0

f(t, z)π(z)dz∫∞
0

F̄ (t, z)π(z)dz
=

∫ ∞

0

λ(t, z)π(z|t)dz, (1.2)

where the conditional pdf (on condition that T > t) is:

π(z|t) ≡ π(z|T > t) = π(z)
F̄ (t, z)∫∞

0
F̄ (t, z)π(z)dz

. (1.3)

Therefore, this pdf defines a conditional random variable [Z|t], [Z|0] ≡ Z,
with the same support, which can be viewed as the frailty among survivors
at time t. In a natural Bayesian interpretation (Spizzichino, 1992) π(z) is a
prior density of Z, whereas by Bayes formula π(z|t) is the posterior density
after observing the survival the data T > t (Spizzichino, 1992).

On the other hand, consider the following unconditional characteristic

λP (t) =

∫ ∞

0

λ(t, z)π(z)dz, (1.4)

which, in fact, defines an expected value (as a function of t) for a spe-
cific stochastic process λ(t, Z). It follows from definitions (1.2) - (1.4) that
λm(0) = λP (0).

The function λP (t) is a supplementary one, but as a trend function of a
stochastic process, it captures the monotonicity pattern of the family λ(t, z).
Therefore, λP (t) under certain conditions has a similar to individual λ(t, z)
shape: if, e.g., λ(t, z), z ∈ [a, b] is increasing in t, then λP (t) is increasing as
well. For some specific cases (see later) it also characterizes the shape of the
baseline failure rate. On the contrary, the mixture failure rate λm(t) may
have a different pattern: it can ultimately decrease, for instance, or preserve
an increasing in t property, as in Lynch (1999). There is even a possibility
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of a few oscillations. However, despite all possible patterns, it will be proved
in Chapter 4 that the mixture failure rate is majorized by λP (t):

λm(t) < λP (t), t > 0 (1.5)

and under some additional assumptions that

(λP (t)− λm(t)) ↑ , t ≥ 0. (1.6)

Definition 1.1 Relation (1.5) defines a weak bending down property for the
mixture failure rate, whereas relation (1.6) is a definition of a strong bending
down property.

We will mostly deal with continuous mixtures in this study, although some
discrete case examples will be helpful for interpreting asymptotic results in
Chapter 2.

Similar to (1.1), the discrete mixture is defined by

Fm(t) =
∑

k

F (t, zk)π(zk), (1.7)

where π(zk) is the probability mass of zk. The failure rate in this case is
defined similar to (1.3).

In general, the mixture Cdf is defined as an integral

Fm(t) =

∫ ∞

0

F (t, z)dΠ(z), (1.8)

where Π(z) is a cumulative distribution function of Z. The failure rate and
other characteristics are defined correspondingly.

1.2 Conditional characteristics and simplest

models

Denote by E[Z|t] the expectation of the earlier defined random variable [Z|t]:

E[Z|t] =

∫ ∞

0

zπ(z|t)dz.

11



An important characteristic for further consideration is E ′[Z|t], the derivative
with respect to t:

E ′[Z|t] =

∫ ∞

0

zπ′(z|t)dz,

where

π′(z|t) = − f(t, z)π(z)∫∞
0

F̄ (t, z)π(z)dz
+

F̄ (t, z)π(z)λm(t)∫∞
0

F̄ (t, z)π(z)dz

= λm(t)π(z|t)− f(t, z)π(z)∫∞
0

F̄ (t, z)π(z)dz
.

(1.9)

While deriving (1.9), equation (1.3) was used. Eventually we obtain

Lemma 1.1 The following equation for E ′[Z|t] holds:

E ′[Z|t] = λm(t)E[Z|t]−
∫∞
0

zf(t, z)π(z)dz∫∞
0

F̄ (t, z)π(z)dz
. (1.10)

Now we shall consider two specific cases, where the mixing r.v. Z can be
entered directly into the failure rate model.

1.2.1 Additive model

Suppose that
λ(t, z) = λ(t) + z, (1.11)

where λ(t) is a baseline failure rate: some deterministic continuous increasing
function (λ(t) ≥ 0, t ≥ 0) to be specified later.

Denote by F (t) the corresponding Cdf. Then, noting that

f(t, z) = λ(t, z)F̄ (t, z),

and applying definition (1.2) for this concrete model:

λm(t) = λ(t) +

∫∞
0

zF̄ (t, z)π(z)dz∫∞
0

F̄ (t, z)π(z)dz
= λ(t) + E[Z|t]. (1.12)
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Remark 1.1 It is worth noting that in the additive model the pdf π(z|t) and
E[Z|t] do not depend on the baseline distribution.

Indeed, denoting cumulative failure rate Λ(t) =
∫ t

0
λ(u)du

π(z|t) =
π(z)F̄ (t, z)∫∞

0
F̄ (t, z)π(z)dz

=
π(z)e−Λ(t)−tz

∫∞
0

e−Λ(t)−ztπ(z)dz
=

e−ztπ(z)∫∞
0

e−ztπ(z)dz
.

(1.13)

Therefore, E[Z|t] also does not depend on F (t).

Using (1.12) and Lemma 1.1, a specific form of E ′[Z|t] can be easily obtained:

E ′[Z|t] = (λ(t) + E[Z|t]) E[Z|t]

−
∫∞

0

(
zλ(t)F̄ (t, z) + z2F̄ (t, z)

)
π(z)dz∫∞

0
F̄ (t, z)π(z)dz

= (E[Z|t])2 −
∫ ∞

0

z2π(z|t)dz = −V ar(Z|t),

(1.14)

where V ar(Z|t) denotes the variance of Z given T > t, which also does not
depend on F (t).

This result can be formulated in the form of

Lemma 1.2 The conditional expectation of Z for the additive model is a
decreasing function of t ∈ [0,∞), which follows from

E ′[Z|t] = −V ar(Z|t) < 0.

Differentiating (1.12) and using relation (1.14), we can obtain now the
result that was stated (without proof) in Lynn and Singpurwalla (1997):

Theorem 1.1 Let λ(t) be an increasing (non-decreasing) convex function in
[0,∞). Assume that V ar(Z|t) is decreasing in t ∈ [0,∞) and

V ar(Z|0) > λ′(0).

Then λm(t) decreases in [0, c) and increases in [c,∞), where c can be uniquely
defined by equation: V ar(Z|c) = λ′(c) (bathtub shape).
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In addition to Lynn and Singpurwalla (1997) we have included an as-
sumption that V ar(Z|t) should decrease in t for all values of t. Intuitively
it seems that similar to the fact that E[Z|t] is decreasing in [0,∞) (which
follows from (1.14)), V ar(Z|t) should also decrease, as the “weak populations
are dying out first” while t increases. But this is not true for the general case.
The counter-example is presented below, showing that the conditional vari-
ance is increasing in the neighborhood of 0. It is shown also that V ar(Z|t)
decreases in [0,∞) when Z is exponentially distributed. First, a technical
lemma:

Lemma 1.3 The second derivative of the conditional expectation E[Z|t] is
given by:

E ′′[Z|t] = 2E[Z|t]3 + E[Z3|t]− 3E[Z2|t]E[Z|t].

Proof Indeed, by (1.13) in the additive model:

π(z|t) =
e−ztπ(z)∫∞

0
e−ztπ(z)dz

, E[Z|t] =

∫ ∞

0

zπ(z|t)dz =

∫∞
0

ze−ztπ(z)dz∫∞
0

e−ztπ(z)dz
.

Then

π′(z|t) =
−ze−ztπ(z)∫∞
0

e−ztπ(z)dz
+

e−ztπ(z)
∫∞

0
ze−ztπ(z)dz(∫∞

0
e−ztπ(z)dz

)2

= π(z|t)(−z + E[Z|t]).

Therefore, using (1.14)

π′′(z|t) = π′(z|t)(−z + E[Z|t]) + π(z|t)E ′[Z|t]
= π(z|t) (

z2 − 2zE[Z|t] + E[Z|t]2 + E ′[Z|t])

= π(z|t) (
z2 − 2zE[Z|t] + 2E[Z|t]2 − E[Z2|t]) .

By definition,

E ′′[Z|t] =

∫ ∞

0

zπ′′(z|t)dz,

and from the last two relations we get

E ′′[Z|t] = 2E[Z|t]3 +

∫ ∞

0

z3π(z|t)dz − 3E[Z|t]
∫ ∞

0

z2π(z|t)dz,
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which completes the proof. ¤

Example 1.1 The sign of E ′′[Z|t] is of interest. As we will show now, it is
not necessarily positive.

Let t = 0 and thus π(z|0) = π(z). Using Lemma 1.3:

E ′′[Z|0] = 2

(∫ ∞

0

zπ(z)dz

)3

+

∫ ∞

0

z3π(z)dz

− 3

∫ ∞

0

zπ(z)dz

∫ ∞

0

z2π(z)dz.

Let, for instance, π(z) = 2z with support in [0, 1]. Then:

2

(
2

∫ 1

0

z2dz

)3

+ 2

∫ 1

0

z4dz − 3 · 4
∫ 1

0

z2dz

∫ 1

0

z3dz =
134

135
− 1 < 0.

This means that conditional variance is increasing in the neighborhood of 0.

Consider now the exponential distribution π(z) = e−z, z ∈ [0,∞):

π(z|t) =
e−z(t+1)

∫∞
0

e−z(t+1)dz
= (t + 1)e−z(t+1).

Taking into account that for k = 1, 2, ...
∫ ∞

0

zkπ(z|t)dz =

∫ ∞

0

zk(t + 1)e−z(t+1)dz

=
1

(t + 1)k

∫ ∞

0

zke−zdz

=
k!

(t + 1)k
,

we arrive at

E ′′[Z|t] = 2 ·
(

1

t + 1

)3

+
6

(t + 1)3
− 3 · 1

(t + 1)
· 2

(t + 1)2

=
2

(t + 1)3
> 0.

Hence, in this case the conditional variance is decreasing for all values of
t ∈ [0,∞). ♦
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Finally, an example of the uniform in [0, 1] distribution of Z can be stud-
ied. Similar to the previous examples, it can be shown that the conditional
variance in this case is decreasing at least for small values of t.

Thus, the purpose of this example was to show that the assumption of
decreasing conditional variance is quite natural and usually holds for widely
used in practice mixing distributions, but it is not valid for arbitrary distri-
butions.

Lynn and Singpurwalla (1997) were primarily interested in the bathtub
shape of λm(t). We, along with other features, are interested in preservation
of IFR properties:

Corollary 1.1 Let all other assumptions of Theorem 1.1 hold, whereas

V ar(Z|0) ≤ λ′(0).

Then λm(t) increases in [0,∞).

It means that the IFR-closure property exists under this assumption. In
other words: the family of distributions with increasing failure rates is closed
under the operation of mixing. We shall call it the IFR-stability property.
In certain situations it can be very important to know that non-parametric
properties of distributions (e.g., characteristics of aging) are not changed
after the operation of mixing. It is worthwhile noting that the governing
factor in this analysis is the conditional variance V ar(Z|t): if it is sufficiently
small, then the mixture is IFR-stable. This conclusion also follows from some
general considerations: the variance is responsible for possible decreasing of
λm(t). When V ar(Z|t) = 0 (Z is deterministic), λm(t) is increasing due to
the assumption that λ(t) is increasing.

1.2.2 Multiplicative model

Suppose that
λ(t, z) = zλ(t), (1.15)

where λ(t) is some deterministic, increasing (non-decreasing) at least for suf-
ficiently large t, continuous function (λ(t) ≥ 0, t ≥ 0). Thus, we are mostly
interested in the case of ultimately increasing (non-decreasing) baseline fail-
ure rate λ(t), especially when λ(t) →∞ as t →∞. The frailty model (1.15)
is often called a proportional hazards (PH) model while the previous one is
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called an additive hazards (AH) model. See Section 4.2.1 for a brief discus-
sion of ‘difference’ between frailty and proportional hazards models, which,
in fact, is not important for our study. Applying relation (1.2):

λm(t) =

∫ ∞

0

λ(t, z)π(z|t)dz = λ(t)E[Z|t]. (1.16)

After differentiating

λ′m(t) = λ′(t)E[Z|t] + λ(t)E ′[Z|t]. (1.17)

It follows immediately from this equation that when λ(0) = 0, the failure
rate λm(t) increases in the neighborhood of t = 0. Further behavior of this
function depends on the other parameters involved.

The unconditional characteristic (1.4) is simplified to

λP (t) =

∫ ∞

0

λ(t, z)π(z)dz = λ(t)E[Z]

and in some sense defines the baseline model.

Example 1.2 Consider the specific type of the Weibull distribution with
linear failure rate λ(t, z) = 2zt and assume that π(z) is the Gamma prob-
ability density function:

π(z) =
νβzβ−1e−zν

Γ(β)
, β, ν > 0, z ≥ 0.

The mixture failure rate can be easily obtained via direct integration:

λm(t) =
2βt

ν + t2
.

It is equal to zero at t = 0 and tends to zero as t → ∞ with a single max-
imum at t =

√
ν. Hence, the mixture of IFR distributions has a decreasing

(tending to zero!) failure rate for sufficiently large and this is rather surpris-
ing. Furthermore, the same result asymptotically holds for arbitrary Weibull
distributions with increasing failure rates. The light bulbs example of the
Introduction suggests that the underlying (baseline) Cdf in this case is likely
to be the Weibull distribution. ♦
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It follows from (1.17) that the mixture will be IFR-stable if and only if
for all t ∈ [0,∞) :

λ′(t)
λ(t)

≥ −E ′[Z|t]
E[Z|t] . (1.18)

Substituting λm(t) and

f(t, z) = λ(t, z)F̄ (t, z) = zλ(t)F̄ (t, z)

in (1.10), similar to (1.14), we obtain the explicit formula for the derivative
of the conditional expectation in this case, which shows that E[Z|t] is a
decreasing in t function:

Lemma 1.4 The conditional expectation of Z for the multiplicative model is
a decreasing function of t ∈ [0,∞), as follows from

E ′[Z|t] = −λ(t)V ar(Z|t) < 0. (1.19)

Combining this result with (1.15) and (1.16) for the specific case λ(t) ≡
const, we arrive at the well known result on the DFR property of the mixture
of exponentials. Thus, the foregoing can be considered as a new proof of
this fact.

With the help of (1.19) inequality (1.18) can be written as

λ′(t)
λ2(t)

≥ V ar(Z|t)
E[Z|t] . (1.20)

Thus, the first two conditional moments and the function λ(t) are responsible
for the IFR (DFR) properties of the mixture distribution. A similar result
was obtained in a different way by Gurland and Sethuraman (1995). In
this paper the right hand side of inequality (1.20) was written in terms of
the moment generating function of the mixing Cdf Π(z). Considering these
problems with the help of conditional characteristics of Z can be often more
convenient for the analysis of the corresponding monotonicity properties.

1.3 Laplace transform and inverse problem

The Laplace transform methodology in multiplicative and additive models
gives us a convenient way of dealing with the mixture failure rates and con-
ditional expectations, especially if the Laplace transforms of the mixing dis-
tribution can be explicitly calculated. It is also useful for solving the inverse
problem.
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Consider now a rather general class of mixing distributions, called the
exponential family, which is given by the following relation

π(z) = e−θzµ(z)/η(θ), (1.21)

where µ(z), η(θ) are some functions, θ is a parameter, varying in the distribu-
tion family. The function η(θ) plays the role of a normalizing constant, chosen
so that the integral

∫∞
0

π(z)dz = 1. It is a very convenient representation of
the distribution family to work with. It allows for the Laplace transform
to be easily calculated. Many distributions can be represented in this form,
such as Gamma, Inverse Gaussian (and Generalized inverse Gaussian), PVF
distributions, positive stable distributions.

In this case the Laplace transform depends only on the function η(θ),
which is really remarkable:

Lπ(s) =
1

η(θ)

∫ ∞

0

e−sze−θzµ(z)dz =
η(θ + s)

η(θ)
. (1.22)

It is well known that given only the failure data, a mixing distribution is
non-identifiable. (Yashin and Manton, 1997). On the other hand, with the
help of the Laplace transform approach the following inverse problem can be
easily solved analytically:

Given the mixture failure rate and the mixing distribution, obtain the
failure rate of the governing (baseline) distribution.

Now we consider additive and multiplicative models separately.

1.3.1 Additive model

In the additive model
λ(t, z) = λ(t) + z

the survival function and the corresponding pdf are

F̄ (t, z) = e−Λ(t)−zt, f(t, z) = (λ(t) + z)e−Λ(t)−zt,

respectively, where

Λ(t) =

∫ t

0

λ(u)du
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is a cumulative baseline failure rate. The mixture survival function F̄m(t) in
(1.1) can be writen via the Laplace transform as:

F̄m(t) = e−Λ(t)

∫ ∞

0

e−ztπ(z)dz = e−Λ(t)Lπ(t), (1.23)

where Lπ(s) = E[e−sZ ] is the Laplace transform of the mixing distribution
π(z). Thus, the mixture failure rate is

λm(t) = λ(t) +

∫∞
0

ze−ztπ(z)dz∫∞
0

e−ztπ(z)dz
= λ(t)− [log Lπ(t)]′. (1.24)

In accordance with (1.12), the second term equals to the conditional expec-
tation

E[Z|t] = −[log Lπ(t)]′,

which, as we noted before, is free from the initial baseline function and de-
pends only on the mixing distribution.

In this case the solution to the inverse problem is trivial:

λ(t) = λm(t)− E[Z|t] = λm(t) + [log Lπ(t)]′.

If the Laplace transform of the mixing distribution can be explicitly cal-
culated, we have a simple analytical solution to the inverse problem. We
consider some examples of the Laplace transforms for specific distributions
in the next section.

1.3.2 Multiplicative model

Consider the multiplicative model:

λ(t, z) = zλ(t),

with the corresponding survival function

F̄ (t, z) = e−zΛ(t).

The mixture survival function F̄m(t) in (1.1) is then defined as

F̄m(t) =

∫ ∞

0

e−zΛ(t)π(z)dz = Lπ{Λ(t)}, (1.25)
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where, as previously, Lπ(s) = E[e−sZ ] is the Laplace transform of the mixing
pdf π(z).

The mixture failure rate is given by

λm(t) = − F̄ ′
m(t)

F̄m(t)
= −(Lπ{Λ(t)})′

Lπ{Λ(t)} = − (log Lπ{Λ(t)})′ . (1.26)

Taking into account (1.17), the conditional expectation in this case can be
written as

E[Z|t] = −L′π{Λ(t)}
Lπ{Λ(t)} = − (log Lπ)′ {Λ(t)}. (1.27)

As we see, the use of the Laplace transform in the multiplicative model
is also very convenient. For computational reasons, the only condition is
that the Lapalce transform of the mixing distribution should be calculated
explicitly. This is why the models with Gamma distributed frailties are so
popular (see e.g. Vaupel et al. (1979), Lancaster (1979), Lancaster and
Nickel (1980)). Other distributions: the uniform distribution, the Weibull
and the log normal, have been also proposed (Vaupel and Yashin, 1985).
Hougaard (1984, 1986, 2000) generalized this approach on a broader class of
distributions: exponential families and especially Power Variance Function
(PVF) distributions.

Specifically, for the exponential family of mixing densities (1.21) and the
multiplicative model, the mixture failure rate is obtained from (1.22) and
(1.26):

λm(t) = − [log η(θ + Λ(t))]′ = −λ(t)
η
′
(θ + Λ(t))

η(θ + Λ(t))
(1.28)

and

E[Z|t] = −η
′
(θ + Λ(t))

η(θ + Λ(t))
.

It follows from (1.26) that the general solution to the inverse problem in
the multiplicative model is

λ(t) = Λ′(t) =
(
L−1

π (e−Λm(t))
)′

, (1.29)

Specifically, for the exponential family, using (1.28):

Λ(t) = η−1
(
e−Λm(t)η(θ)

)− θ
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and

λ(t) =
(
η−1[η(θ)e−Λm(t)]

)′
=

η(θ)λm(t)e−Λm(t)

η′[η−1 (η(θ)e−Λm(t))]
.

We now consider some particular distributions for the multiplicative model.

Example 1.3 Gamma distribution. The mixing density is:

π(z) =
b

Γ(c)
(zb)c−1e−zb.

In accordance with (1.21):

η(b) =
Γ(c)

bc
, Lπ(t) =

bc

(b + t)c
,

and

λm(t) =
cλ(t)

b + Λ(t)
, E[Z|t] =

c

b + Λ(t)
.

We will see that these formulas coincide with those of Chapters 2 and 4 in
this particular case.

The inverse problem simply follows:

λ(t) = −c
E ′

t[Z|t]
E[Z|t]2 =

b

c
λm(t)eΛm(t)/c,

where Λm(t) =
∫ t

0
λm(u)du is the cumulative mixture failure rate. ♦

Example 1.4 Inverse Gaussian distribution. Consider the density

π(z) = (2π)−1/2z−3/2ν1/2e
√

θνe−θz/2−ν/2z.

Then, in accordance with (1.21), the corresponding functions µ(z) and η(θ)
in the exponential family are

µ(z) = (2π)−1/2e−ν/2zν1/2z−3/2, η(θ) = e−
√

θν ,

22



thus,

λm(t) =

√
νλ(t)

2
√

θ + Λ(t)
, E[Z|t] =

√
ν

2
√

θ + Λ(t)
.

and the solution to the inverse problem is given by

λ(t) =
2

ν
λm(t)(

√
θν + Λm(t)).

♦

Example 1.5 Positive stable distributions. A distribution is strictly
stable (See Feller, 1971 p. 169, Bingham et al., p. 343) if the normalized
sum of independent random variables from the distribution follows the same
distribution:

D(Z1 + ... + Zn) = D(cnZ1)

for any n.
It turns out that the constant cn must be of the form n1/α for some

α ∈ (0, 2]. The stable distributions with finite variance are the normal, α = 2,
and the degenerate distributions, α = 1. The positive stable distributions
have α ∈ (0, 1] and apart from the scale factors have the Laplace transform

L(t) = e−βtα/α (1.30)

and the density (see, for example Hougaard, 2000, p. 503)

π(z) = − 1

πz

∞∑

k=1

Γ(kα + 1)

k!
(−z−αβ/α)k sin(akπ). (1.31)

The Laplace transform is already given, therefore:

λm(t) = (βΛ(t)α/α)′ = λ(t)βΛ(t)α−1, E[Z|t] = βΛ(t)α−1

and we obtain the solution to the inverse problem

λ(t) =
α1/α−1

β1/α
λm(t)Λm(t)1/α−1.

♦
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The next family of distributions has been suggested by Tweedie (1984)
and later independently derived by Hougaard (1986) and Bar-Lev and Enis
(1986). It is thoroughly discussed in Hougaard (2000). We give its definition
and the formulas for the density, and also obtain the mixture failure rate, a
conditional expectation and solve the inverse problem for the multiplicative
model.

Example 1.6 Power Variance Function. This family of distributions
unites all three examples above. It is a distribution, which Laplace transform
solves the equation

(log L(t))′ = −β(γ + t)α−1 (1.32)

The distribution is denoted PV F (α, β, γ). The parameter set is α ≤ 1, β > 0,
with γ ≥ 0 for α > 0, and γ > 0 for α ≤ 0. The distribution is concentrated
on positive numbers for α ≥ 0, and is positive or zero for α < 0.

For α = 0, the Gamma distribution is obtained, for α = 1/2 it turns into
the inverse Gaussian, for γ = 0 it is a positive stable distribution.

Simply from definition and relations (1.26) and (1.27) we obtain

λm(t) = βλ(t)(γ + Λ(t))α−1, E[Z|t] = β(γ + Λ(t))α−1.

As previously, the solution to the inverse problem is given by

λ(t) =
1

β
λm(t)

(
α

β
Λm(t) + γα

) 1
α
−1

.

We do not need the mixing distribution density function to derive all the
results, only its Laplace transform.

It is worth noting that the pdf is given by

π(z) = −e−γze−βγα/α 1

πz

∞∑

k=1

Γ(kα + 1)

k!
(−z−αβ/α)k sin(akπ).

When α < 0, the Γ-term in the density might not be defined. In this case
we can use the alternative expression

π(z) = e−γz+βα/α 1

z

∞∑

k=1

(−βz−α/α)k

k!Γ(−kα)
.
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This expression holds for z > 0 and all α-values, except 0 and 1, with the
convention that when the Γ-function in the denominator is undefined (which
happens when kα is a positive integer), the whole term in the sum is 0. For
α < 0, there is probability eβγα/α of the random variable being 0. For α ≥ 0,
the distribution is unimodal. ♦

1.4 Literature review

There was a brief review of some relevant papers in the Introduction. As the
notation and initial results were already discussed in the previous sections of
this chapter, we are able to turn to a more detailed analysis of the literature.

1.4.1 Monotonicity of mixture failure rates

Probably the first explanation of the decreasing failure rate for the mixture of
exponential distributions was presented by Proschan (1963) (see also Barlow,
1985 and Mi, 1998). The proof of the closure property of the family of DFR
distributions is given by Barlow and Proschan (1975) (see also Ross, 1996).
Although mathematically simple, it was very important to show engineers,
biologists and demographers that this is what really happens when you mix
exponential distributions in practice. A more striking example is the mul-
tiplicative model with the Weibull mixing distribution (Example 1.2). The
mixture failure rate in this case is equal to zero at t = 0 and then tends to
zero as t →∞ with a single maximum. Hence, the mixture of IFR distribu-
tions has a decreasing (tending to zero!) failure rate for sufficiently large and
this is rather surprising. The corresponding formal asymptotic analysis will
be given in the next chapter. However, it can be easily seen from equation
(1.17) that in the multiplicative model the resulting shape of the mixture
failure rate λm(t) for the IFR distribution can be described by the product
of the increasing baseline λ(t) and the decreasing conditional expectation
E[Z|t]. From this perspective the DFR closure property under operation of
mixing is trivially explained as both λ(t) and E[Z|t] are decreasing.

It was stated in Barlow and Proschan (1985) that the IFR property is not
preserved under the operation of mixing. Therefore, additional assumptions
which can guarantee this property are of interest in this respect. Lynch
(1999) had derived the corresponding conditions:
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The mixture failure rate λm(t) for increasing λ(t, z) is increasing, if:

1. F̄ (t, z) is log-concave in (t, z),

2. F̄ (t, z) is increasing in z for each t,

3. The mixing distribution is IFR.

The log-concavity is a natural, equivalent requirement for the IFR prop-
erty of univariate distributions (Barlow and Proschan, 1975). Therefore,
the first condition also seems natural for the bivariate case. The important
stringent condition is, however, the second one. It is clear that for the multi-
plicative model (1.15) this condition does not hold, as the survival function

F̄ (t, z) = e−z
R t
0 λ(u)du

is decreasing in z for each t ≥ 0 (larger values of z result in larger values of
the failure rate). Therefore, the simplest candidate e.g., for the linear failure
rate, which meets the above conditions, would be

λ(t, z) = 2
t

z
.

It can be easily seen that
∫ t

0
λ(u, z)du for this specific case is a convex

function of (t, z) (Block et al, 2003), but the practical application of this
inverse variation law with respect to z is not so evident as of the proportional
law (1.15). The choice of the IFR mixing distribution is not so important and
therefore the last assumption is not so restrictive. Note that some general
preservation properties for mixtures were studied in Block, Li and Savits
(2003b).

1.4.2 Mixture models

There can be various specific mixing models. In this chapter we have dis-
cussed only additive and multiplicative models. Another model that speaks
for itself and has a clear meaning is the one based on the accelerated life
model (ALM) (Cox and Oakes, 1984, Finkelstein, 1999, Bagdonavicius and
Nikulin, 2000).

It is clear that relation (1.1) for absolutely continuous baseline F (t) can
be written for the multiplicative model as

Fm(t) =

∫ b

a

F z(t)π(z)dz, (1.33)
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whereas the ALM mixing model is given by

Fm(t) =

∫ b

a

F (zt)π(z)dz. (1.34)

Therefore, the corresponding mixture model is defined by (compare with
(1.15)):

λ(t, z) = zλ(zt) (1.35)

The linear scale transformation in the argument of the baseline failure
rate in (1.35) makes our life much more difficult for modelling the shape of
the corresponding mixture failure rate and other derivations, compared with
the multiplicative model (1.15)-(1.16). This is why this model was practically
not considered in the literature before. One can probably mention a paper by
Anderson and Lois (1995), were the differences between the mixture failure
rates defined via the ALM model (1.35), the multiplicative λm(t) (1.16) and
the baseline λP (t) (1.4) are illustrated graphically. The formal equations
for the difference between the mixture failure rates in the multiplicative and
ALM models are given in Shaked and Spizzichino (2001). Note that these
relations are too general and do not allow the relevant analysis. Shaked
(1981) studied bounds on the distance of a mixture distribution function
(not of a mixture failure rate!) from its parental distribution for some specific
cases. We shall consider asymptotic properties of the mixture failure rate for
the ALM in the next chapter.

Lynch (1999) has also noted that the convolution of two IFR distributions
is IFR. On the other hand, this convolution can be viewed as specific mixture
model, when we observe only T1+T2 and do not observe T1 and T2, where T1,
T2 are the corresponding lifetimes. A similar mixture model was considered
in Finkelstein (2002). The failure rate of a distribution, which describes
a lifetime random variable with unknown initial age, was studied in this
paper. In accordance with this mixing model, it turned out that under
certain assumptions the operation of mixing distributions with increasing
failure rates could result in the mixture failure rate with a bathtub shape:
decreasing in the initial interval of time and then increasing, asymptotically
approaching the failure rate of the baseline distribution.

As it has already been mentioned in the Introduction, our definition of
the mixture failure rate (1.2) can be written in a more general form as

λm(t) = E[λ(t, Z)|T > t]. (1.36)
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It follows from Yashin and Manton (1997), that this equation is true when
Z is not just a random variable, but an unobserved or partially observed
stochastic process.

It is shown in Block et al (1993) that the natural ordering for the condi-
tional random variables [Z|T > t] is the likelihood ratio order, which means
that

[Z|T > t] ≥LR [Z|T > t′], 0 < t < t′. (1.37)

In Chapter 4 we shall use this ordering for comparison of mixture failure
rates with different mixing distributions. In fact, our results of this chapter
suggest the same conclusion, but in a different way.

1.4.3 Biological and demographic aspects

Our study is devoted to mathematical properties and results in mixture fail-
ure rate modelling. Therefore, we shall only briefly discuss heterogeneity
analysis in demographic and bio-medical applications. In fact, the input of
these studies is hard to overestimate. J. Vaupel (Vaupel et al. 1979, Vau-
pel and Yashin, 1985) was the first to apply the frailty approach to human
mortality. He had explained the departure (deceleration) of the oldest-old
mortality from the Gompertz curve (see also Carey et al, 1992). Vaupel
and Yashin (1985) had presented the graphs of the failure rate function for
several mixtures. They have shown graphically (see also, Wang et al, 1998)
that the failure rates of mixtures of some distributions may strictly decrease
over some interval in [0,∞), even in the case, when all of the distributions
that are being mixed have strictly increasing failure rates. They also studied
graphically the combination of a classical proportional hazards model with a
frailty model. In Chapter 4 we prove mathematically some of these results.
Hougaard (1984) had generalized the multiplicative gamma-frailty model on
some other mixing distributions. As we have seen in Section 1.3, the ’nice’
Laplace transform is crucial for that. Hougaard (1984) describes some gen-
eral classes of distributions (exponential families) and considers the subject
in more generality in his 2000 book, defining the general class of distributions
which he calls Power Variance Function (PVF) distributions.

Gurland and Sethuraman (1994) considered some further examples of
mixtures that have strictly decreasing failure rates, although each of the
distributions that are being mixed has a non-decreasing failure rate. They
showed, for example, that a truncated extreme value distribution with ex-
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ponentially increasing failure rate, when it is slightly mixed (5 %) with an
exponential distribution, gives rise to a mixed distribution with a strictly
decreasing failure rate in [0,∞).

Aalen (1992, 2005) uses the compound Poisson distribution as a frailty
distribution in the disease modelling It allows some individuals in a popula-
tion to be non-susceptible to a disease, which can be useful in many settings.
A randomization of the Poisson parameter is also performed to end up with a
new frailty distribution, which seems to be flexible and convenient especially
for the shared frailty models. In Aalen (1988) a very helpful general discus-
sion of the frailty concept in bio-medical applications is presented. These
papers had a substantial impact on the field.

Brooks et al (1994) demonstrated the decrease in mortality rate with age
in an entire population of nematodes even though each of several subpopu-
lations showed continuously increasing mortality.

In Block et al (2003a) different shapes of the failure rate of the mixture
of two distributions were studied. This is a rather complicated problem.
For instance, in Block et al (2003b) the failure rate of a mixture of two
distributions with linearly increasing failure rates can exhibit a rather bizarre
behavior: it was proved that there can be up to four changes in monotonicity.

1.4.4 Asymptotic behavior

Most of the basic mathematical results of this thesis are presented in Chapter
2, dealing with modelling of tails of mixture failure rates. We develop a new
approach and obtain some explicit and implicit results. Asymptotic theory
for mixture failure rates had attracted attention of a number of researchers.
Among the first to consider the limiting behavior of mixture failure rates were
Clarotti and Spizzichino (1993), who stated that for the mixture of exponen-
tial subpopulations λ(t, z) = z, z ∈ S ⊂ (0,∞) the following convergence to
the mixture failure rate of the strongest population takes place:

lim
t→∞

λm(t) = inf{z : z ∈ S}. (1.38)

In Block et al (2003a) the following theorem (Theorem 2.1), generalizing
the last equation and improving the results of Block et al (1993), was proved:

Consider the mixture failure rate as given by (1.2). Assume that
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1. The failure rate λ(t, z) converges to a function a(z) uniformly on S, where
0 ≤ a(z) ≤ ∞.

Let I = {z ∈ S : a(z) = ∞}. If 0 < P (I) < 1, assume that

2. There exist constants L,D, such that 0 ≤ L,D < ∞ and λ(t, z) ≤ eLt for
all z ∈ I and t ≥ D.

Then
lim
t→∞

λm(t) = α, (1.39)

where

α = essinfz∈S a(z) = inf{0 ≤ c < ∞ : P ({z ∈ S : a(z) ≤ c}) > 0}.

This theorem can be interpreted as saying that the mixture failure rate
is asymptotically converging to the failure rate of the strongest population.

The assumptions of this theorem are rather stringent, especially the as-
sumption 1 of the uniform convergence. For instance, it fails for our simplest
Example 1.2. Block et al (2003a) also show some other important for prac-
tical analysis of heterogeneity examples, where one or both of these assump-
tions fail. Note that our approach of Chapter 2 does not need the stringent
assumptions of this kind.

In Block and Joe (1997) the following asymptotic result, which already
addressed the issue of ultimate monotonicity, was obtained: let z0 be a re-
alization of a frailty Z, which corresponds to the strongest population. If
λ(t, z)/λ(t, z0) uniformly decreases as t → ∞, then λm(t)/λ(t, z0) also de-
creases. If, in addition, limt→∞ λ(t, z0) exists, then this quotient decreases
to 1. Again, an extremely stringent assumption of the uniform convergence
is imposed.

The recent paper of Li (2005) generalizes the results of Block et al (2003a),
using the similar analytical tools and approaches. Instead of assuming, as
in Assumption 1 of the foregoing theorem, that each individual failure rate
has a limit, the author assumes that there exists an asymptotic baseline
function λ(t) such that the ratio of each individual failure rate with the
asymptotic baseline function λ(t, z)/λ(t) has a limit. He shows that under
certain conditions the ratio of the mixture failure rate with the asymptotic
baseline function has a limit. As in Block et al (2003a) it is shown that this
limit is the corresponding essential infimum. Again, the stringent condition

30



of the uniform convergence of λ(t, z)/λ(t) to some a(z) is imposed. Therefore
this paper combines the analytical reasoning of Block et al (2003a) with the
’ratio approach’ of Block and Joe (1997).

The models in the foregoing papers are generalized proportional hazards
models. The most general are based on the asymptotic equivalence λ(t, z) ∼
λ(t)a(z) in the sense of the uniform convergence of the ratio to 1.

Our approach of Chapter 2 is totally different. Our main focus is on
explicit asymptotic formulas and on proving the results linking asymptotic
behavior of mixture failure rates with the behavior of a mixing distribution
in the neighborhood of the left end point of its support. Since mixtures
are defined via integrals, it is very natural to exploit the corresponding ana-
lytical technique for analyzing these integrals (regular variation, generalized
convolutions, etc).

1.4.5 Mean remaining lifetime

In this study we are looking at the mixture failure rate and consider general
and specific models of mixing. The mean remaining lifetime (MRL) func-
tion, uniquely defined by the failure rate, can also constitute a convenient
and reasonable in applications model of mixing, although we think that this
approach did not receive the proper attention in the literature so far. The
MRL function is defined as

m(t) =

∫∞
t

F̄ (u)du

F̄ (t)
.

Therefore, the mixing model is given by

m(t, z) =

∫∞
t

F̄ (u, z)du

F̄ (t, z)
, (1.40)

and the mixture MRL function is

mm(t) =

∫∞
t

∫∞
0

F̄ (u, z)π(z)dzdu∫∞
0

F̄ (t, z)π(z)dz
=

∫∞
t

F̄m(u)du

F̄m(t)
. (1.41)

These models and comparison of λm(t) with mm(t) were considered in Finkel-
stein (2003), Zahedi (1991) and Badia et al (2001).
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Chapter 2

Asymptotic theory for mixture
failure rates

In this chapter we obtain explicit asymptotic results for the mixture failure
rate λm(t). We suggest a new class of distributions and formulate the results
on asymptotic behavior. For proving our asymptotic results we use a con-
venient technique for Laplace integrals, which is similar to the one used for
obtaining Abelian, Tauberian, and Mercerian-type theorems, although our
theorems are not the direct corollaries of results in this field. Then we discuss
possible generalizations.

It should be noted that the developed approach is new and differs from
the one described in Block et al (2003a, 2003b), Li (2005). On one hand, we
obtain explicit asymptotic formulas in a direct way, on the other hand, we
are also able to discuss some general asymptotic properties of our models.

But first, we turn to some introductory results that will help us in under-
standing the nature of the problem and demonstrate some examples in the
settings, which are already familiar.

2.1 Initial results. Discrete mixtures in the

multiplicative model

Let the frailty Z be a discrete random variable taking values in a set z1, ..., zn.
The discrete case can be very helpful for understanding certain basic issues
for a more ‘general’ continuous one.
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The conditional probability π(zi|t) of Z = zi given T > t, 1 ≤ i ≤ n, is
defined as

π(zi|t) =
π(zi)F̄ (t, zi)∑n

j=1 F̄ (t, zj)π(zj)
.

Then the mixture failure rate can be written as

λm(t) =
n∑

j=1

λ(t, zi)π(zi|t)dz,

whereas for the multiplicative case the model (1.15) turns into

λ(t, zi) = ziλ(t), i = 1, 2 . . . , n.

This relation, as in Chapter 1, leads to

λm(t) = λ(t)E[Z|t]
and can be used for the direct analysis of the limiting behavior of λm(t) as
t →∞.

For simplicity, let n = 2. Denote π(z1) = p1, π(z2) = p2; p1 + p2 = 1. Let
z2 > z1 > 0. Then

λm(t) = λ(t, z1)π(z1|t) + λ(t, z2)π(z2|t), (2.1)

where

π(zi|t) =
piF̄ (t, zi)

p1F̄ (t, z1) + p2F̄ (t, z2)
, i = 1, 2. (2.2)

Example 2.1 Consider the Weibull distribution of the following form:

F̄ (t, zi) = e−zit
b

, λ(t, zi) = zibt
b−1, b > 1, i = 1, 2.

Thus, in accordance with (2.1) and (2.2), for the multiplicative model:

λm(t) = z1bt
b−1 p1e

−z1tb

p1e−z1tb + p2e−z2tb
+ z2bt

b−1 p2e
−z2tb

p1e−z1tb + p2e−z2tb
.

These relations suggest that as t →∞

λm(t)− λ(t, z1) = (z2 − z1)bt
b−1 p2e

−z2tb

p1e−z1tb + p2e−z2tb

= (z2 − z1)bt
b−1p2

p1

e−(z2−z1)tb(1 + o(1)) → 0

(2.3)
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and the mixture failure rate is asymptotically “converging” to the failure
rate of the strongest population from above. It is interesting to note that
although the Weibull distribution has a power function failure rate, the speed
of convergence ( in the sense of the difference λm(t)−λ(t, z1) ) is exponential.
When b = 1, the setting is reduced to a well-known exponential case.

In addition to this convergence result, the corresponding piecewise mono-
tonicity properties can be analyzed. For this specific case the sign of λ′m(t)
is of interest:

λ′m(t) =

(
btb−1(z1p1e

−z1tb + z2p2e
−z2tb)

p1e−z1tb + p2e−z2tb

)′

= (p1e
−z1tb + p2e

−z2tb)−2
[{

b(b− 1)tb−2(z1p1e
−z1tb + z2p2e

−z2tb)

− b2t2b−2(z2
1p1e

−z1tb + z2
2p2e

−z2tb)
}
(p1e

−z1tb + p2e
−z2tb)

+ b2t2b−2(z1p1e
−z1tb + z2p2e

−z2tb)2
]
.

Thus, the sign of λ′m(t) is the same as the sign of

(b− 1)(z1p1e
−z1tb + z2p2e

−z2tb)(p1e
−z1tb + p2e

−z2tb)

− bp1p2(z1 − z2)
2tbe−(z1+z2)tb .

(see also Theorem 1 in Gurland and Sethuraman (1995)).
If b ≤ 1, then this quantity is negative and, therefore, λ′m(t) < 0 for all

t > 0.
For the case b > 1, it is clear that for t ∈ [c,∞), where c is sufficiently

large, λ′m(t) > 0. Hence, the mixture failure rate is increasing in this inter-
val. On the other hand, it also holds for t ∈ [0, d), where d is sufficiently
small. The behavior in the intermediate interval depends on the parameters
involved. For instance, one can always find a sufficiently small ε > 0 such that
if z2−z1 < ε, then the inequality holds in [0,∞). In this case the mixture is
IFR-stable, which means that its failure rate is increasing (non-decreasing).

♦
As usually, throughout this thesis we use the terms “increasing”, “de-

creasing” meaning “non-decreasing”, “non-increasing” respectively.

It should be noted that the condition

lim
t→∞

π(z2|t) = 0, lim
t→∞

π(z1|t) = 1
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is not sufficient for the convergence result (2.3).
When dealing with the limiting behavior of the mixture failure rate λm(t)

for a general case of the multiplicative model with increasing λ(t) (λ(t) →∞
as t → ∞), we are sometimes interested, as in Example 2.1, in the ‘strong’
convergence of the mixture failure rate to the failure rate of the strongest
population:

λm(t)− λ(t, z1) → 0 as t →∞. (2.4)

On the other hand, a conventional weaker asymptotic equivalence

λm(t) = λ(t, z1)(1 + o(1)) as t →∞, (2.5)

denoted as
λm(t) ∼ λ(t, z1)

will be of prime interest in the rest of this chapter.

The following theorem is a simple consequence of the above considera-
tions. It describes the convergence to the failure rate of the strongest popu-
lation in the case of two populations.

Theorem 2.1 Let:

λ(t, z1) = z1λ(t), λ(t, z2) = z2λ(t), z2 > z1 > 0,

where λ(t) →∞ as t →∞.
Then:

a. Relation (2.5) takes place.

b. Relation (2.4) holds if and only if:

λ(t)e−(z2−z1)Λ(t) → 0 as t →∞, (2.6)

where Λ(t) =
∫ t

0
λ(u)du is a cumulative baseline failure rate.

Proof The proof of this result is absolutely straightforward. Indeed,
denote for convenience c ≡ z2/z1 > 1. Using simple transformations, similar
to Block and Joe (1997)

λm(t)

λ(t, z1)
= 1 +

p1(c− 1)

p1 + p2

(
F̄1(t, z1)

)1−c .
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As F̄ (t, z1) → 0 for t → ∞, we immediately arrive at (2.5), while the
condition

λ(t, z1)
(
F̄1(t, z1)

)1−c → 0 as t →∞,

which is equivalent to (2.6), leads to convergence (2.4). ¤

Condition (2.6) is a rather weak one. In essence it states that the pdf of
a distribution with (ultimately) increasing failure rate (z2 − z1)λ(t) tends
to 0 as t → ∞. All distributions, which are typically used in a lifetime
data analysis, meet this condition. But one can consider some “bizarre”
distributions, for which relation (2.6) does not hold. Let, for instance

λ(t) = βn+1 for t ∈ [n, n + 1), n = 0, 1, 2...

and
β1 = 1, βn+1 = e

Pn
i=1 βi ; n = 1, 2, 3, ...

The defined λ(t) is piecewise continuous, but it can be made continuous
increasing (non-decreasing) function in an obvious way. It is easy to verify
in this case that (2.6) does not hold. Therefore, there is no convergence
defined by relation (2.4). We are grateful to professor Block for this example
(personal communication).

As it was already mentioned, a general convergence result for the mixture
of distributions in a generalized multiplicative model was obtained in Block,
Mi and Savits (1993) (Theorem 4.1). As we are dealing with the specific
model of mixing in a direct way, only one assumption on the growth of
λ(t) in the form of (2.6) is considered. This assumption is weaker than the
corresponding condition (C) in Block, Mi and Savits (1993), which states for
our case that there exists non-negative constants L and T such that λ(t) ≤ eLt

for all t ≥ T . Indeed, let, for instance, λ(t) = et2 , then assumption (2.6)
holds while condition (C) is not satisfied.

The next sections are devoted to a much more general model, which
includes the additive, the multiplicative, and the accelerated life models as
specific cases. We deal with the absolutely continuous distributions, but
some generalizations may also be discussed. We consider the following as the
main mathematical results of this thesis.
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2.2 The survival model

We define a class of lifetime distributions F (t, z) and will study asymptotic
behavior of the corresponding mixture failure rate λm(t). It is more conve-
nient at the start to give this definition in terms of the cumulative failure
rate Λ(t, z) =

∫ t

0
λ(u, z)du, rather than in terms of the failure rate λ(t, z).

The basic model is defined by the following relation:

Λ(t, z) = A(zφ(t)) + ψ(t). (2.7)

General assumptions for the model (2.7):

Natural properties of the cumulative failure rate of the absolutely continuous
distribution F (t, z) (for all z ∈ [0,∞)) imply that the functions A(s), φ(t),
and ψ(t) are differentiable, the right hand side of (2.7) is non-decreasing in
t and tends to infinity as t →∞, and that A(zφ(0)) + ψ(0) = 0. Therefore,
these properties will be assumed throughout, although some of them will not
be needed for formal proofs. We will also relax them to a certain extent in
Section 2.7.

An important additional simplifying assumption is that

A(s), s ∈ [0,∞); φ(t), t ∈ [0,∞)

are increasing functions of their arguments, although some generalizations
(e.g., for ultimately increasing functions) can be easily performed. Therefore,
we will consider 1− e−A(zφ(t)), z 6= 0 here as a lifetime Cdf.

It should be noted that model (2.7) can be also easily generalized to the
form

Λ(t, z) = A(g(z)φ(t)) + ψ(t) + η(z)

for some properly defined functions g(z) and η(z). As it was mentioned, we
will consider this and some other generalizations in Section 2.7. However, we
cannot go generalizing further (at least, at this stage) and the multiplicative
form of arguments in A(g(z)φ(t)) is important for our method of deriving
asymptotic relations. It is also clear that the additive term ψ(t), although im-
portant in applications, gives only a slight generalization for further analysis
of λm(t), as (2.7) can be interpreted in terms of two components in series (or,
equivalently, via two competing risks). However, this term will be essential
in next section, while defining the strongest population.
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The failure rate, corresponding to the cumulative failure rate Λ(t, z), is

λ(t, z) = zφ′(t)A′(zφ(t)) + ψ′(t). (2.8)

Now we are able to explain why we start with the cumulative failure rate
and not with the failure rate itself, as often in lifetime modelling. The reason
is that one can easily suggest intuitive interpretations for (2.7), whereas it
is certainly not so simple to interpret the failure rate structure in the form
(2.8) without stating that it just follows from the structure of the cumulative
failure rate.

Relation (2.7) defines a rather broad class of survival models, which can
be used, e.g., for modelling an impact of environment on characteristics of
survival. The widely used in reliability, survival analysis, and risk analy-
sis proportional hazards (PH), additive hazards (AH), and accelerated life
(ALM) models are obvious specific cases of our relations (2.7) or (2.8):

PH (multiplicative) Model:

Let
A(u) ≡ u, φ(t) = Λ(t), ψ(t) = 0.

Then

λ(t, z) = zλ(t), Λ(t, z) = zΛ(t). (2.9)

Accelerated Life Model:

Let
A(u) ≡ Λ(u), φ(t) = t, ψ(t) = 0.

Then

Λ(t, z) =

∫ tz

0

λ(u)du = Λ(tz), λ(t, z) = zλ(tz). (2.10)

AH Model:

Let
A(u) ≡ u, φ(t) = t, ψ(t) is increasing, ψ(0) = 0.
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Then

λ(t, z) = z + ψ′(t), Λ(t, z) = zt + ψ(t). (2.11)

The functions λ(t) and φ′(t) play the role of baseline failure rates in
equations (2.9), (2.10) and (2.11), respectively. Note that in all these models
the functions φ(t) and A(s) are monotonically increasing.

Asymptotic behavior of mixture failure rates for PH and AH models was
studied for some specific mixing distributions, e.g., in Gurland and Sethura-
man (1995) and Finkelstein and Esaulova (2001a). On the other hand, as far
as we know, the mixture failure rate for the ALM was considered at a very
descriptive level only in Anderson and Louis (1995).

2.3 General results

In this section we formulate the main asymptotic theorems. The correspond-
ing proofs are deferred to Section 2.4, applications to the multiplicative and
the accelerated life models are considered in subsequent sections 2.5 and 2.6.

The next theorem derives an asymptotic formula for the mixture failure
rate λm(t) under rather mild assumptions.

Theorem 2.2 Let the cumulative failure rate Λ(t, z) be given by model (2.7)
and the mixing pdf π(z) be defined as

π(z) = zαπ1(z), (2.12)

where α > −1 and π1(z), π1(0) 6= 0, is a bounded in [0,∞) and continuous
at z = 0 function.

Assume also that
φ(t) →∞ as t →∞ (2.13)

and ∫ ∞

0

e−A(s)sαds < ∞, (2.14)

where A(s) is also ultimately increasing.
Then

λm(t)− ψ′(t) ∼ (α + 1)
φ′(t)
φ(t)

. (2.15)
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By relation (2.15) we, as usual, mean asymptotic equivalence and write
a(t) ∼ b(t) as t →∞, if limt→∞[a(t)/b(t)] = 1.

It is easy to see that assumption (2.12) holds for the main lifetime distri-
butions such as Weibull, Gamma, lognormal etc. Assumption (2.13) states
a natural condition for the function φ(t), which can be often viewed as a
scale transformation. Condition (2.14) means that the Cdf 1− e−A(s) should
not be ‘too heavy tailed’ (as, e.g., the Pareto distribution 1 − s−β, for
s ≥ 1, β − α > 1) and in our assumptions is equivalent to the condition
of existence of the moment of order α + 1 for this Cdf. Examples of the next
section will clearly show that these conditions are not stringent at all and
can be easily met in most practical situations.

A crucial feature of this result is that the asymptotic behavior of the
mixture failure rate depends only (omitting an obvious additive term ψ(t))
on the behavior of the mixing distribution in the neighborhood of zero and on
the derivative of the logarithm of the scale function φ(t) :

(log φ(t))′ = φ′(t)/φ(t).

When π(0) 6= 0 and π(z) is bounded in [0,∞), the result does not depend on
the mixing distribution at all, as α = 0!

Theorem 2.2 (as well as later theorems 2.3 and 2.5) can be formally gen-
eralized to the case when the mixing random variable Z does not necessarily
posses an absolutely continuous Cdf in [0,∞): it is sufficient that it should
be absolutely continuous (from the right) at z = 0.

We can formulate a more general result, which states a similar dependence
on the behavior of the mixing distribution at zero in terms of asymptotic
comparison of two mixture failure rates:

If, under some assumptions, two mixing distributions are equivalent at
z = 0, then the mixture failure rates are equivalent as t →∞.

Formally:

Theorem 2.3 Let f(t, z) and π(z) be the lifetime and mixing pdf’s in a
general mixing model (2.7), respectively. Assume that there exists a positive
function α(t), which is ultimately decreasing to 0 as t →∞ and that

∫ α(t)

0
f(t, z)π(z)dz∫∞

0
f(t, z)π(z)dz

→ 1. (2.16)
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Denote another mixing pdf by ρ(z) and assume that ρ(z)/π(z) is bounded in
[0,∞), continuous at 0, and limz→0 ρ(z)/π(z) 6= 0. Then:

λπ
m(t) ≡

∫∞
0

f(t, z)π(z)dz∫∞
0

F̄ (t, z)π(z)dz
∼

∫∞
0

f(t, z)ρ(z)dz∫∞
0

F̄ (t, z)ρ(z)dz
≡ λρ

m(t) (2.17)

as t →∞.

It is worth noting that if ψ ≡ 0 and all other conditions of Theorem 2.2
hold, condition (2.13) of this theorem guarantees assumption (2.16).

It is important that for applying Theorem 2.3 we do not need a specific
form of a survival model. As it will be seen from the proof, π(z) and ρ(z)
also need not necessarily be probability density functions (local integrability,
in fact, is sufficient). The following corollary exploits the latter fact for the
case π(z) ≡ 1:

Corollary 2.1 Let f(x, t) be a lifetime pdf in a general mixing model (2.7).
Assume that there exists a positive function α(t) such that α(t) is ultimately
decreasing to zero as t →∞ and

∫ α(t)

0
f(t, z)dz∫∞

0
f(t, z)dz

→ 1. (2.18)

Let ρ(z) be positive function bounded in [0,∞), continuous at zero, and
ρ(0) 6= 0. Then: ∫∞

0
f(t, z)ρ(z)dz∫∞

0
F̄ (t, z)ρ(z)dz

∼
∫∞
0

f(t, z)dz∫∞
0

F̄ (t, z)dz
. (2.19)

as t →∞.

Condition (2.18) is not that unnatural and holds, for instance, for multi-
plicative model and accelerated life models with the condition α(t)Λ(t) →∞
as t →∞.

Theorems 2.2 and 2.3 consider the case when the support of a mixing
distribution includes 0: z ∈ [0,∞). If the support is separated from 0,
z ∈ [a,∞), a > 0 the situation changes significantly and we can observe a
well-known principle that the mixture failure rate tends to the failure rate of
the strongest population (Block and Joe, 1992; Block et al, 2003; Finkelstein
and Esaulova, 2001a). Note that when a = 0, the strongest population
cannot be defined.
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Theorem 2.4 Let the class of lifetime distributions be defined by equation
(2.7), where φ(t) → ∞, A(s) is twice differentiable,

∫∞
0

e−A(s)ds < ∞.
Assume that as s →∞

A′′(s)
(A′(s))2

→ 0 (2.20)

and
sA′(s) →∞. (2.21)

Assume also that for all b, c > a, b < c the quotient A′(bs)/A′(cs) is bounded
as s →∞.

Let the mixing pdf π(z) be defined in [a,∞), a > 0, bounded in this inter-
val, continuous at z = a, and π(a) 6= 0.

Then as t →∞
λm(t)− ψ′(t) ∼ aφ′(t)A′(aφ(t)). (2.22)

It is clear that conditions (2.20) and (2.21) trivially hold for specific mul-
tiplicative and additive models of the previous section. We will discuss them
within the framework of the accelerated life model later. More generally,
these conditions hold if A(s) belongs to a class of functions of smooth varia-
tion (Bingham et al, 1987).

Assume additionally that the family of failure rates (2.8) is ordered in z,
at least, ultimately (this ordering will be very important for our results in
Chapter 4):

λ(t, z1) < λ(t, z2), ∀z1, z2 ∈ [z0,∞), z1 < z2, z0 ≥ 0, t ≥ 0.

Then, as it was mentioned, Theorem 2.4 can be interpreted via the principle
that the mixture failure rate converges to the failure rate of the strongest
population. (Note that the right hand side in (2.22) also can be interpreted
in this case as the failure rate of the strongest population for a survival model,
defined by a random variable with the Cdf 1 − e−A(zφ(t)) ). An interesting
question arises: whether this principle is a ‘universal law’, or a consequence
of sufficient assumptions of Theorem 2.4? Theorem 2.2 gives us an idea for
creating counter-examples:

Example 2.2 Assume that all conditions of Theorem 2.2 hold and, addi-
tionally, A′(s) is increasing in [0,∞). Then an ordering of failure rates in
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the family (2.8) with respect to z (for each fixed t > 0) holds resulting for-
mally in the strongest population defined as λ(t, 0) = φ′(t). Note, however,
that 1−e−A(zφ(t)), z = 0, cannot be viewed as a Cdf. Therefore, the principle
under question implies that

λm(t) ∼ ψ′(t).

On the other hand, it follows from (2.15) that

λm(t) ∼ ψ′(t) + (α + 1)(log φ(t))′

and if the second term on the right hand side of this relation is increasing
faster than ψ′(t) as t → ∞, then this term defines asymptotic behavior of
λm(t). It is clear that it is possible for fast increasing functions (e.g., for
exp{tn}, n ≥ 1). Thus, if

ψ′(t) = o((log φ(t))′),

then
λm(t) ∼ (α + 1)(log φ(t))′,

whereas the Principle holds only when (log φ(t))′ = o(ψ′(t)). ♦

Theorem 2.2 gives us only the asymptotics const · φ′(t)/φ(t). The next
example shows us that it is not the only option and if the mixing distribution
π(z) behaves differently at z = 0, the asymptotics also might be different.

Example 2.3 Consider the multiplicative model

λ(t, z) = zλ(t).

The survival function and the pdf are

F̄ (t, z) = e−Λ(t)z, f(t, z) = zλ(t)e−Λ(t)z,

respectively, where Λ(t) is a cumulative baseline failure rate.
Consider the mixing distribution density of the form:

π(z) =
1√

πz
√

z
e−1/z.
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Then the mixture failure rate is

λm(t) = λ(t)/
√

Λ(t),

whereas in terms of the survival model (2.7): φ′(t)/φ(t) = λ(t)/Λ(t).

Indeed, the mixture survival function is

F̄m(t) =
1√
π

∫ ∞

0

e−Λ(t)z− 1
z · 1

z
√

z
dz.

Changing the variable of integration z = u/
√

Λ(t):

F̄m(t) =
Λ(t)1/4

√
π

∫ ∞

0

e−
√

Λ(t)(u+ 1
u) · 1

u
√

u
du.

Similarly, the mixture pdf:

fm(t) =
1√
π

∫ ∞

0

zλ(t)e−Λ(t)z− 1
z · 1

z
√

z
dz

=
λ(t)√

π

∫ ∞

0

e−Λ(t)z− 1
z · 1√

z
dz

=
λ(t)√

πΛ(t)1/4

∫ ∞

0

e−
√

Λ(t)(u+ 1
u) · 1√

u
du

Changing again the variable of integration, u = 1/s, we obtain that

∫ ∞

0

e−
√

Λ(t)(u+ 1
u) · 1√

u
du =

∫ ∞

0

e−
√

Λ(t)( 1
s
+s) · 1

s
√

s
ds,

thus, the integrals in the numerator and denominator cancel out and the
mixture failure rate is

λm(t) =
fm(t)

F̄m(t)
=

λ(t)√
πΛ(t)1/4

·
√

π

Λ(t)1/4

=
λ(t)√
Λ(t)

.

♦
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2.4 Proofs

2.4.1 Proof of Theorem 2.2

First we need a simple lemma for the Dirac sequence of functions:

Lemma 2.1 Let g(z), h(z) be nonnegative locally integrable functions defined
in [0,∞) and satisfying the following conditions:

∫ ∞

0

g(z)dz < ∞,

and h(z) is bounded and continuous at z = 0.
Then, as t →∞:

t

∫ ∞

0

g(tz)h(z)dz → h(0)

∫ ∞

0

g(z)dz. (2.23)

Proof Substituting u = tz:

t

∫ ∞

0

g(tz)h(z)dz =

∫ ∞

0

g(u)h(u/t)du.

The function h(u) is bounded and h(u/t) → h(0) as t → ∞; thus, conver-
gence (2.23) holds by dominated convergence theorem.

¤

Now we prove Theorem 2.2. The proof is straightforward, as we use
definition (2.7) and Lemma 2.1.

The survival function for the model (2.7) is

F̄ (t, z) = e−A(zφ(t))−ψ(t).

Taking into account that φ(t) → ∞ as t → ∞, and applying Lemma 2.1 to
the function g(u) = e−A(u)uα:

∫ ∞

0

F̄ (t, z)π(z)dz =

∫ ∞

0

e−A(zφ(t))−ψ(t)zαπ1(z)dz

=
e−ψ(t)

φ(t)α

∫ ∞

0

e−A(zφ(t))(zφ(t))απ1(z)dz

∼ e−ψ(t)π1(0)

φ(t)α+1

∫ ∞

0

e−A(s)sαds,

(2.24)
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where the integral is finite due to condition (2.14). The corresponding prob-
ability density function is:

f(t, z) = [A′(zφ(t))zφ′(t) + ψ′(t)] e−A(zφ(t))−ψ(t)

= A′(zφ(t))zφ′(t)e−A(zφ(t))−ψ(t) + ψ′(t)F̄ (t, z).

Similarly, applying Lemma 2.1:

∫ ∞

0

f(t, z)π(z)dz − ψ′(t)
∫ ∞

0

F̄ (t, z)π(z)dz

= φ′(t)e−ψ(t)

∫ ∞

0

A′(zφ(t))e−A(zφ(t))zα+1π1(z)dz

∼ φ′(t)e−ψ(t)π1(0)

φ(t)α+2

∫ ∞

0

A′(s)e−A(s)sα+1ds.

(2.25)

Due to condition (2.14) and the fact that A(s) is ultimately increasing,

e−A(s)sα+1 → 0 as s →∞. (2.26)

Indeed, by the mean value theorem

∫ 2s

s

e−A(u)uαdu = se−A(s1)sα
1

for some s ≤ s1 ≤ 2s. The right-hand side tends to 0. For s larger than
some s0 we have A(s1) > A(s); thus, the left-hand side is smaller than
2αsα+1e−A(s), and this leads to (2.26). Using it while integrating by parts,
we get ∫ ∞

0

A′(s)e−A(s)sα+1ds = (α + 1)

∫ ∞

0

e−A(s)sαds. (2.27)

Combining (2.24)-(2.27), finally:

∫∞
0

f(t, z)π(z)dz∫∞
0

F̄ (t, z)π(z)dz
− ψ′(t) ∼ (α + 1)

φ′(t)
φ(t)

.
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2.4.2 Proof of Theorem 2.3

Lemma 2.2 Let {g(t, z), z ∈ [0,∞)} be a family of functions and h(z) a
function, satisfying the following conditions:

(i) for every z ∈ [0,∞) the function g(t, z) is integrable in t and for every
t ∈ [0,∞) it is integrable in z.

(ii) there exists a function α(t), α(t) → 0 as t →∞ and

∫ α(t)

0
g(t, z)dz∫∞

0
g(t, z)dz

→ 1 (2.28)

as t →∞.

(iii) a function h(z) is locally integrable, bounded in [0,∞), and continuous
at z = 0.

Then, as t →∞: ∫∞
0

g(t, z)h(z)dz∫∞
0

g(t, z)dz
→ h(0).

Proof Let h(z) ≤ M, z ∈ [0,∞). Then:

∫∞
0

g(t, z)h(z)dz∫∞
0

g(t, z)dz
=

∫ α(t)

0
g(t, z)h(z)dz∫∞

0
g(t, z)dz

+

∫∞
α(t)

g(t, z)h(z)dz∫∞
0

g(t, z)dz
.

The second term is majorized by

M

∫∞
α(t)

g(t, z)dz∫∞
0

g(t, z)dz
= M

(
1−

∫ α(t)

0
g(t, z)dz∫∞

0
g(t, z)dz

)
,

which is due to condition (2.28). The first term converges to h(0) due to the
same condition and the fact that h(z) is continuous at z = 0. ¤

For proving Theorem 2.3 we first show in a direct way that for F̄ (t, z)
there holds a condition similar to (2.16). For every ε > 0 we choose tε such
that for u > tε the function α(u) already decreases and

∫ α(u)

0

f(u, z)π(z)dz > (1− ε)

∫ ∞

0

f(u, z)π(z)dz.
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Since α(t) decreases

∫ α(t)

0

f(u, z)π(z) >

∫ α(u)

0

f(u, z)π(z)dz

for u > t > tε. Thus

∫ α(t)

0

F̄ (t, z)π(z)dz =

∫ α(t)

0

∫ ∞

t

f(u, z)du π(z)dz

=

∫ ∞

t

∫ α(t)

0

f(u, z)π(z)dz du

>

∫ ∞

t

∫ α(u)

0

f(u, z)π(z)dz du

> (1− ε)

∫ ∞

t

∫ ∞

0

f(u, z)π(z)dz du

= (1− ε)

∫ ∞

0

F̄ (t, z)π(z)dz.

Now we apply Lemma 2.2 with h(z) = π1(z)/π(z) and g(t, z) = f(t, z)π(z),
which results in ∫∞

0
f(t, z)ρ(z)dz∫∞

0
f(t, z)ρ(z)dz

→ h(0).

In a similar way g(t, z) = F̄ (t, z)π(z) with the same h(z) gives
∫∞

0
F̄ (t, z)ρ(z)dz∫∞

0
F̄ (t, z)ρ(z)dz

→ h(0),

as t →∞, and relation (2.17) follows immediately.

2.4.3 Proof of Theorem 2.4

This theorem is rather technical and we must first prove three supplementary
lemmas, which present consecutive steps on our way to asymptotic relation
(2.22).

Lemma 2.3 Let h(x) be a twice differentiable function with an ultimately
positive derivative, and ∫ ∞

0

e−h(y)dy < ∞. (2.29)
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Let also
h′′(x)

(h′(x))2
→ 0 (2.30)

as x →∞. Then ∫ ∞

x

e−h(y)dy ∼ e−h(x) 1

h′(x)

as x →∞.

Proof The function h′(x) is ultimately positive. Let x0 be such that
h′(x) > 0 for x > x0. Due to (2.29) we have: h(x) →∞ as x →∞. Then
there exists an inverse function g(x) defined in [x0,∞):

g(h(x)) ≡ h(g(x)) ≡ 1.

The function g(x) is also twice differentiable and g′(x) = 1/h′(g(x)). Inte-
grating by parts for x > x0:

∫ ∞

x

e−h(y)dy =

∫ ∞

h(x)

e−ug′(u)du

= e−h(x)g′(h(x)) +

∫ ∞

h(x)

e−ug′′(u)du.

(2.31)

Since
g′′(u)

g′(u)
= − h′′(g(u))

h′(g(u))2
→ 0

as u → ∞, the right-hand side integral vanishes compared with the one on
the left-hand side. Therefore, eventually

∫ ∞

x

e−h(y)dy ∼ e−h(x)g′(h(x)) = e−h(x) 1

h′(x)
.

¤

Lemma 2.4 Let assumptions of Lemma 2.3 hold. Assume additionally that
as x →∞

xh′(x) →∞ (2.32)

and for any b, c ≥ a > 0, b < c the quotient h′(bx)/h′(cx) is bounded in
[0,∞).
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Let µ(u) be a positive, bounded and locally integrable function, defined in
[a,∞), continuous at u = a, and µ(a) 6= 0.

Then ∫ ∞

a

e−h(ux)µ(u)du ∼ µ(a)e−h(ax)

xh′(ax)

as x →∞.

Proof As the first step, we prove that.

I(x) =

∫ ∞

a

e−h(ux)µ(u)du ∼ µ(a)

∫ ∞

a

e−h(ux)du.

As µ(u) is continuous at u = a, for ε > 0 there is δ such that

|µ(u)− µ(a)| < ε, if |u− a| < δ.

The function µ(u) is bounded, therefore,

µ(u) < M, ∀u ∈ [a,∞)

for some positive M > µ(a). Then

I(x) =

∫ a+δ

a

e−h(ux)µ(u)du +

∫ ∞

a+δ

e−h(ux)µ(u)du

and

I(x)− µ(a)

∫ ∞

a

e−h(ux)du =

∫ a+δ

a

e−h(ux)(µ(u)− µ(a))du

+

∫ ∞

a+δ

e−h(ux)(µ(u)− µ(a))du.

Therefore,

|I(x)− µ(a)

∫ ∞

a

e−h(ux)du|

< ε

∫ a+δ

a

e−h(ux)du + (M + µ(a))

∫ ∞

a+δ

e−h(ux)du

= ε

∫ ∞

a

e−h(ux)du + (M + µ(a)− ε)

∫ ∞

a+δ

e−h(ux)du.

50



Then

∣∣∣∣
I(x)

µ(a)
∫∞

a
e−h(ux)du

− 1

∣∣∣∣ <
ε

µ(a)
+

M + µ(a)− ε

µ(a)
·
∫∞

a+δ
e−h(ux)du∫∞

a
e−h(ux)du

(2.33)

Using Lemma 2.3:

∫∞
a+δ

e−h(ux)du∫∞
a

e−h(ux)du
=

∫∞
ax+δx

e−h(u)du∫∞
ax

e−h(u)du
∼ h′(ax)

h′(ax + δx)
e−(h(ax+δx)−h(ax)).

It follows from condition (2.32) and the mean value theorem that

h(ax + δx)− h(ax) = δxh′(s) > sh′(s)
δ

a + δ
(2.34)

for some ax < s < ax + δx. Thus,

h(ax + δx)− h(ax) →∞ as x →∞,

the quotient h′(ax)/h′(ax + δx) is bounded and, therefore, the second sum-
mand in (2.33) tends to zero, whereas the first summand can be made arbi-
trarily small. This yields

I(x) ∼ µ(a)

∫ ∞

a

e−h(ux)du

as x →∞. Applying Lemma 2.3 completes the proof. ¤

Lemma 2.5 Under assumptions of Lemma 2.4 the following asymptotic re-
lation holds as x →∞

∫ ∞

a

h′(ux)e−h(ux)uµ(u)du ∼ aµ(a)

x
e−h(ax).

Proof We first show that
∫ ∞

a

h′(ux)e−h(ux)u du ∼ a

x
e−h(ax). (2.35)
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Simple calculations give

x2

∫ ∞

a

h′(ux)e−h(ux)u du =

∫ ∞

ax

h′(u)e−h(u)u du

= axe−h(ax) +

∫ ∞

ax

e−h(u)du.

By Lemma 2.4: ∫ ∞

ax

e−h(u)du ∼ e−h(ax) 1

h′(ax)
.

We have assumed that

axh′(ax) →∞ as x →∞,

thus, 1/h′(ax) = o(ax) and

x2

∫ ∞

0

h′(ux)e−h(ux)u du ∼ axe−h(ax),

which is the same as (2.35).

The next step is to prove that

∫ ∞

a

h′(ux)e−h(ux)uµ(u)du ∼ µ(a)

∫ ∞

a

h′(ux)e−h(ux)u du (2.36)

As in Lemma 2.4, we use the same ε, δ,M and the similar reasoning to get

∣∣∣∣∣

∫∞
a

h′(ux)e−h(ux)uµ(u)du

µ(a)
∫∞

a
h′(ux)e−h(ux)u du

− 1

∣∣∣∣∣ <
ε

µ(a)
+

M̃

µ(a)
·
∫∞

a+δ
h′(ux)e−h(ux)u du∫∞

a
h′(ux)e−h(ux)u du

,

where M̃ = M + µ(a)− ε.
Applying (2.35) and using (2.34), we obtain:

∫∞
a+δ

h′(ux)e−h(ux)u du∫∞
a

h′(ux)e−h(ux)u du
∼ a + δ

a
e−(h(ax+δx)−h(ax)) → 0

as x → ∞. Again ε/µ(a) can be made arbitrarily small, which gives us
(2.36). Combining it with (2.35) completes the proof of the lemma. ¤
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Now we are ready to prove Theorem 2.4 itself. Applying Lemma 2.4 as
t →∞ results in:

∫ ∞

a

F̄ (t, z)π(z)dz =

∫ ∞

a

e−A(zφ(t))−ψ(t)π(z)dz

= e−ψ(t)

∫ ∞

a

e−A(zφ(t))π(z)dz

∼ π(a)e−ψ(t)

φ(t)A′(aφ(t))
e−A(aφ(t)).

Similar to the proof of Theorem 2.2:
∫ ∞

a

f(t, z)π(z)dz − ψ′(t)
∫ ∞

a

F̄ (t, z)π(z)dz

= φ′(t)e−ψ(t)

∫ ∞

a

A′(zφ(t))e−A(zφ(t))zπ(z)dz.

Using Lemma 2.5:
∫ ∞

a

A′(zφ(t))e−A(zφ(t))zπ(z)dz ∼ aπ(a)

φ(t)
e−A(aφ(t)).

Combining the last three statements arrive at (2.22)

λm(t)− ψ′(t) =

∫∞
a

f(t, z)π(z)dz∫∞
a

F̄ (t, z)π(z)dz
− ψ′(t)

∼ φ′(t)e−ψ(t)aπ(a)e−A(aφ(t))

φ(t)
· A′(aφ(t))φ(t)

π(a)e−ψ(t)e−A(aφ(t))

= aφ′(t)A′(aφ(t)),

which completes the proof.

2.5 Multiplicative model

As previously, denote the baseline failure rate by λ(t). Therefore, model (2.9)
reads

λ(t, z) = zλ(t), Λ(t, z) = zΛ(t) = z

∫ t

0

λ(u)du, (2.37)
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and the mixture failure rate is given by

λm(t) =

∫∞
0

zλ(t)e−zΛ(t)π(z)dz∫∞
0

e−zΛ(t)π(z)dz
. (2.38)

As A(u) ≡ u, φ(t) = Λ(t), ψ(t) ≡ 0 in this specific case, theorems 2.2 and
2.4 are simplified to

Corollary 2.2 Assume that the mixing pdf π(z), z ∈ [0,∞) can be written
as

π(z) = zαπ1(z), (2.39)

where α > −1 and π1(z) is bounded in [0,∞), continuous at z = 0, and
π1(0) 6= 0.

Then the mixture failure rate for the multiplicative model (2.37) has the
following asymptotic behavior:

λm(t) ∼ (α + 1)λ(t)∫ t

0
λ(u)du

. (2.40)

Corollary 2.3 Assume that the mixing pdf π(z), z ∈ [a,∞) (we can define
π(z) = 0, z ∈ [0, a)) is bounded, right semi-continuous at z = a and π(a) 6= 0.

Then, in accordance with relation (2.22), the mixture failure rate for the
model (2.37) has the following asymptotic behavior:

λm(t) ∼ aλ(t). (2.41)

Corollary 2.2 states a remarkable fact: asymptotic behavior of the
mixture failure rate λm(t) depends only on the behavior of the mixing pdf in
the neighborhood of z = 0 and the baseline failure rate λ(t).

Corollary 2.3 describes the convergence of a mixture failure rate to the
mixture failure rate of the strongest population. In this simple multiplicative
case the family of the failure rates is trivially ordered in z and the strongest
population has the failure rate aλ(t).

The next theorem generalizes the result of Corollary 2.3:
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Theorem 2.5 Assume that the mixing pdf π(z) in model (2.37) has support
in [a, b], a > 0, b ≤ ∞, and for z ≥ a it can be defined as

π(z) = (z − a)απ1(z − a), (2.42)

where α > −1, π1(z) is bounded in [0, b− a], and π1(0) 6= 0.
Then

λm(t) ∼ aλ(t). (2.43)

Proof As in Theorem 2.2, we consider the numerator and the denom-
inator in (2.38) separately. Changing the variables and applying Lemma
2.1:

∫ ∞

0

F̄ (tz)π(z)dz =

∫ ∞

a

e−zΛ(t)(z − a)απ1(z − a)dz

= e−aΛ(t)

∫ ∞

0

e−zΛ(t)zαπ1(z)dz

∼ e−aΛ(t)π1(0)Γ(α + 1)

(Λ(t))α+1
.

(2.44)

Similarly,

∫ ∞

0

zf(tz)π(z)dz = λ(t)

∫ ∞

a

ze−zΛ(t)(z − a)απ1(z − a)dz

= λ(t)e−aΛ(t)

∫ ∞

0

e−zΛ(t)zα+1π1(z)dz

+ aλ(t)e−aΛ(t)

∫ ∞

0

e−zΛ(t)zαπ1(z)dz.

The first integral on the right hand side is asymptotically equivalent to
π1(0)Γ(α + 2)Λ(t)−α−2 and the second to π1(0)Γ(α + 1)Λ(t)−α−1, which
decreases slower. Thus,

∫ ∞

0

zf(tz)π(z)dz ∼ aπ1(0)Γ(α + 1)λ(t)
e−aΛ(t)

(Λ(t))α+1
. (2.45)

Finally using (2.44) and (2.45) in (2.38), we arrive at (2.43). ¤
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The asymptotic result in Theorem 2.5 differs from the case a = 0 in
Corollary 2.2. Relation (2.43) also describes the convergence to the failure
rate of the strongest population, which differs dramatically from the conver-
gence described by (2.40). Explanation of this difference is quite obvious and
due to the multiplicative nature of the model: the behavior of zλ(t) in the
neighborhood of z = 0 for the pdf (2.39) is different from the behavior of
this product in the neighborhood of z = a for the pdf (2.42). Note that the
result of Theorem 2.5 does not depend on a mixing distribution even in the
case of a singularity at z = a.

Block et al. (1993) proved that if (under some assumptions) the failure
rate λ(t, z) converges to a positive function ν(z), then the mixture failure
rate converges to essinfzν(z) with respect to the probability measure gen-
erated by the random variable Z. Later Block and Joe (1997) and Li (2005)
developed this result further for the ratio λ(t, z)/λ(t) converging to some
positive ν(z). As we are interested here only in the multiplicative model, the
corresponding generalizations will be considered later. In this setting The-
orem 2.5 is weaker then the results of Block and Joe (1997) and Li (2005),
since it considers the behavior of the mixing distribution described by (2.42),
whereas the results of these authors do not specify the mixing distribution.

On the other hand, our theorem is a simple corollary of the technique
used. We can also obtain the same “convergence to the strongest population”
result. Indeed, directly from (2.38):

λm(t)

λ(t)
=

∫∞
a

ze−zΛ(t)π(z)dz∫∞
a

e−zΛ(t)π(z)dz

=

∫∞
0

(z + a)e−(z+a)Λ(t)π(z + a)dz∫∞
0

e−(z+a)Λ(t)π(z + a)dz

= a +

∫∞
0

ze−Λ(t)π(z + a)dz∫∞
0

e−zΛ(t)π(z + a)dz

and it is sufficient to prove that the second summand in the last relation
converges to 0 as t → ∞. Employing the standard bounds and asymptotic
derivations for the Laplace integrals yields the needed convergence, but this
result is anyway presented in the foregoing papers and we omit the proof.

To say more, our approach allows for a much stronger result in terms of the
rate of convergence to the strongest population. In this case the conditions
on the mixing distribution are crucial and cannot be omitted. The following
theorem is obtained, using our technique developed previously:
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Theorem 2.6 Under the assumptions of Theorem 2.5 as t →∞:

λm(t)− aλ(t) ∼ (α + 1)
λ(t)

Λ(t)
e−aΛ(t).

The proof is rather simple and straightforward, it uses the already known
asymptotics (2.41) from Corollary 2.3.

Proof From the form of the mixture failure rate (2.38) we obtain

λm(t)

λ(t)
− a =

∫∞
a

ze−zΛ(t)(z − a)απ1(z − a)dz∫∞
a

e−zΛ(t)(z − a)απ1(z − a)dz
− a

=

∫∞
a

e−zΛ(t)(z − a)α+1π1(z − a)dz∫∞
a

e−zΛ(t)(z − a)απ1(z − a)dz

= e−aΛ(t)

∫∞
0

e−zΛ(t)zα+1π1(z)dz∫∞
0

e−zΛ(t)zαπ1(z)dz
.

Now we are already in the setting of Corollary 2.3 as if we consider the mixing
density zαπ1(z), defined on [0,∞). Thus, the last quotient is equivalent to
(α + 1)/Λ(t) and

λm(t)

λ(t)
− a ∼ 1

Λ(t)
(α + 1)e−aΛ(t).

¤

In Section 1.3 we already discussed the connection between the mixture
failure rate in the multiplicative model and the Laplace transform of the
mixing distribution. The mixture failure rate is expressed via the Laplace
transform by relation (1.26).

We will now give some examples for particular mixing distributions and
baseline ones and use Laplace transforms for calculating failure rates. Con-
sider the Gamma mixing distribution, which we already studied in Example
1.3. We are interested in the exact formulas for mixture failure rates and in
the asymptotic behavior as well.

Example 2.4 Let the mixing distribution be the Gamma distribution with
the pdf

π(z) =
(z

b

)c−1

e−z/b 1

bΓ(c)
, (2.46)
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where b, c > 0. The Laplace transform of π(z) is

π̃(t) =
1

(tb + 1)c

and, therefore, the mixture failure rate is given by the following expression:

λm(t) =
bcλ(t)

1 + b
∫ t

0
λ(u)du

. (2.47)

Since
∫ t

0
λ(t)(u)du = Λ(t) → ∞ as t → ∞, the following asymptotic

relation holds:

λm(t) ∼ cλ(t)

Λ(t)
,

which coincides with the result obtained from Corollary 2.2.
The expected value of a random variable Z with a pdf (2.46) is bc and

the variance is b2c. Thus, for the fixed expectation E[Z] = 1, the variance
σ2 = b and equation (2.47) turns into

λm(t) =
λ(t)

1 + σ2
∫ t

0
λ(u)du

,

which first appeared in Vaupel et al (1979) in a demographic context. This
form allows to compare different mixtures for the fixed baseline distribution.
We can see that when the variance of the mixing distribution increases, the
mixture failure rate decreases. More detailed properties of a similar kind will
be discussed for a rather general setting in Chapter 4.

Obviously, asymptotic behavior of λm(t) can be explicitly analyzed. Con-
sider two specific cases, which are important for applications:

1. If the baseline distribution is Weibull with λ(t) = atβ, β > −1, then
the mixture failure rate (2.47) is (see also Gupta and Gupta, 1996):

λm(t) =
(β + 1)abctβ

(β + 1) + abtβ+1
,

which as t →∞ converges to 0 and

λm(t) ∼ (β + 1)c

t
,
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exactly as prescribed by our formula (2.40) of Corollary 2.2 (c = α + 1).
Thus, if specifically β > 0, then the operation of mixing of IFR distributions
results in ultimately decreasing to 0 mixture failure rate, which is, in a way,
an amazing fact!

2. If the baseline distribution is Gompertz with λ(t) = µeβt, µ >
0, β > 0, then simple transformations result in

λm(t) =
βceβt

eβt +
(

β
µb
− 1

) .

If b = β/µ, then λm(t) ≡ βc, if b > β/µ, then λm(t) increases to β/µ, and
if b < β/µ, it decreases to β/µ.

As it was stated in the Introduction, the case b > β/µ describes the
deceleration in mortality rates of human populations, which was traditionally,
starting with Gompertz (1985), described by µeβt - the mortality rate of
exponentially increasing Gompertz law. ♦

2.6 Accelerated life model

In a conventional notation this model is written as:

λ(t, z) = zλ(tz), Λ(t, z) = Λ(tz) =

∫ tz

0

λ(u)du. (2.48)

Although the definition of the ALM is also very simple, the presence of a
mixing parameter z in the arguments make analysis of the mixture failure rate
more complex than in the multiplicative case. Therefore, as it was already
mentioned, this model was practically not studied before. The mixture failure
rate in this specific case is

λm(t) =

∫∞
0

zλ(tz)e−Λ(tz)π(z)dz∫∞
0

e−Λ(tz)π(z)dz
.

Asymptotic behavior of λm(t) can be described as a specific case of The-
orem 2.2 with A(s) = Λ(s), φ(t) = t and ψ(t) ≡ 0:
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Corollary 2.4 Assume that the mixing pdf π(z), z ∈ [0,∞) can be defined
as π(z) = zαπ1(z), where α > −1, π1(z) is continuous at z = 0 and bounded
in [0,∞), π1(0) 6= 0.

Let the baseline distribution with the cumulative failure rate Λ(t) have a
moment of order α + 1.

Then

λm(t) ∼ α + 1

t
(2.49)

as t →∞.

The conditions of Corollary 2.4 are not that strong and are relatively
natural. The most of the widely used lifetime distributions have all moments.
The Pareto distribution will be discussed in the next example.

As it was already stated, the conditions on the mixing distribution hold,
e.g., for the Gamma and the Weibull distributions which are commonly used
as mixing distributions.

Relation (2.49) is really surprising, as it does not depend on the base-
line distribution, which seems striking, at least, at the first sight. It is also
dramatically different from the multiplicative case (2.40).

It follows from Example 2.4 that both asymptotic results coincide in the
case of the Weibull baseline distribution, which is obvious, as only for the
Weibull distribution the ALM can be re-parameterized to end up with a PH
model and vise versa.

The following example formally shows other possibilities for the asymp-
totic behavior of λm(t) when one of the conditions of the Corollary 2.4 does
not hold.

Example 2.5 Consider the Gamma mixing distribution, written in a more
convenient form for this example, than (2.46)

π(z) = zαe−x/Γ(α + 1).

Let the baseline distribution be the Pareto-type distribution. For β > 0 we
define the corresponding pdf as

f0(t) =

{
0, 0 ≤ t < 1

β/tβ+1, t ≥ 1.
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For β > α + 1 the conditions of Corollary 2.4 holds and relation (2.49)
takes place. Let β ≤ α+1, which means that the baseline distribution does
not have the (α+1)th moment. Therefore, one of the conditions of Corollary
2.4 is violated. In this case it can be shown by direct derivations (see the
forthcoming proof) that

λm(t) ∼ β

t

as t →∞, whereas for the general case:

λm(t) ∼ min(β, α + 1)

t
.

It can be shown that the same asymptotics holds not only for the Gamma-
distribution, but also for any other mixing pdf of the form π(z) = zαπ1(z).
If β > α + 1, the function π1(z) should be bounded and π1(0) 6= 0. ♦

Proof Calculating directly:

∫ ∞

0

f0(tz)zπ(z)dz =

∫ ∞

1/t

βz

tβ+1zβ+1
· 1

Γ(α + 1)
e−zzαdz

=
β

Γ(α + 1)tβ+1

∫ ∞

1/t

zα−βe−zdz

∼ Γ(α− β + 1)β

Γ(α + 1)tβ+1

and
∫ ∞

0

F̄0(tz)π(z)dz =

∫ 1/t

0

e−zzα

Γ(α + 1)
dz +

∫ ∞

1/t

1

tβzβ
· e−zzα

Γ(α + 1)
dz,

where the fact that F̄0(t) = 1 for 0 ≤ t < 1 was used. As t → ∞, the first
integral on the right-hand side is equivalent to

1

Γ(α + 1)

∫ 1/t

0

zαdz =
1

tα+1Γ(α + 2)

and the second integral is equivalent to

Γ(α− β + 1)/Γ(α + 1)tβ,
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which in case β < α + 1 decreases slower; therefore the sum of two integrals
is equivalent to Γ(α− β + 1)/Γ(α + 1)tβ.

Eventually

λm(t) ∼ Γ(α− β + 1)β

Γ(α + 1)tβ+1
· Γ(α + 1)tβ

Γ(α− β + 1)
=

β

t
.

If β = α + 1, then
∫ ∞

0

zf0(tz)π(z)dz =
α + 1

Γ(α + 1)tα+2

∫ ∞

1/t

z−1e−zdz,

and since ∫ 1/t

0

zαdz = o

(
t−α−1

∫ ∞

1/t

z−1e−zdz

)
,

we obtain:
∫ ∞

0

F̄0(tz)π(z)dz ∼
∫ ∞

1/t

1

tα+1z
· e−z

Γ(α + 1)
dz

=
1

tα+1Γ(α + 1)

∫ ∞

1/t

z−1e−zdz.

Therefore,

λm(t) ∼ α + 1

t
=

β

t
.

¤

As A(s) = Λ(s), φ(t) = t, Theorem 2.4 is simplified in this case to the
following result:

Corollary 2.5 Assume that the mixing pdf π(z), z ∈ [a,∞) is bounded, con-
tinuous at z = a and π(a) 6= 0. Let

λ′(t)
(λ(t))2

→ 0, tλ(t) →∞ (2.50)

as t →∞. Assume also that for all b, c > a, b < c the quotient λ0(bx)/λ0(cx)
Then, in accordance with relation (2.22), the mixture failure rate for the
model (2.48) has the following asymptotic behavior:

λm(t)− ψ′(t) ∼ aλ(at).
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Conditions (2.50) are rather weak. E.g., the marginal case of the Pareto
distribution - the baseline failure rate of the form λ0(t) = ct−1, c > 0, t ≥ 1
does not comply with (2.50), but in mixing we are primarily interested in
increasing, at least ultimately, baseline failure rates. This is due to the fact
that the family of DFR distributions is closed under the operation of mixing
(which means that λm(t) is always decreasing in this case), whereas the family
of IFR distributions is not closed under this operation.

Asymptotic behavior of λm(t) in the additive hazards model, (2.11)
due to its simplicity, does not deserve special attention. As A(s) ≡ s and
φ(t) ≡ t, conditions (2.13) and (2.14) of Theorem 2.2, for instance, hold and
asymptotic result (2.15) is simplified to:

λm(t)− ψ′(t) ∼ α + 1

t
.

2.7 Some generalizations

Here we present some further results including generalizations of the model
(2.7). Generalizations to the multivariate case will be considered in the next
chapter.

2.7.1 Generalizations of the survival model

As we have noted before, the model (2.7) can be generalized to the following
one:

Λ(t, z) = A(g(z)φ(t)) + ψ(t) + η(z). (2.51)

We will now discuss what conditions we should impose on the functions
A(u), φ(t), ψ(t), η(z), so that the proofs of theorems 2.2 and 2.4 stay the
same. We will turn to discussing the function g(z) afterwards. The natural
general assumption is

(C1) The functions A(u), φ(t), ψ(t) are differentiable.

We do not need to assume anything else specifically for ψ(t), because this
additive term cancels out in all the calculations and the asymptotic results
deal with λm(t)− ψ′(t). We do not even need ψ′(t) to be positive.
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The next natural condition arises from the fact that F̄ (t, z) = e−Λ(t,z) is
a survival function and F (0, z) ≡ 0, i.e.

(C2) A(g(z)φ(0)) + ψ(0) + η(z) = 0 for all z ≥ 0.

On the other hand, F̄ (t, z) decreases to 0 as t →∞:

(C3) A(g(z)φ(t)) + ψ(t) →∞ as t →∞ for all z ≥ 0,

which imposes the only additional condition on ψ(t). The second half is that
Λ(t, z) increases with respect to t, i.e.

(C4) λ(t, z) = Λ(t, z)′t = g(z)φ′(t)A′(g(z)φ(t)) + ψ′(t) > 0,

which, in fact, states that the corresponding failure rate should be positive.

These were preliminary conditions for our model. In both theorems 2.2 and
2.4 the following general assumptions were made:

(C5); φ(t) →∞ as t →∞,

(C6); A(s) is ultimately increasing.

Our goal now is to change the variables and impose some additional
assumptions, so that the generalized model (2.51) can be treated similarly
to (2.7).

For simplicity, we assume ψ(t) ≡ 0, as we have seen before, it does not
affect any of the proofs. Assume

(C7) Let g(z) be positive, differentiable and strictly monotone.

It is clear that then there exists an inverse function g−1(z) = k(z). If π(z)
is defined in [a, b], a ≥ 0, b ≤ ∞, then after the change of variable y = g(z),
the mixture survival function can be written as

F̄m(t) =

∫ b

a

e−A(g(z)φ(t))−η(z)π(z)dz

=

∫ g(b)

g(a)

e−A(yφ(t))π(k(y))e−η(k(y))k′(y)dy,
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and the mixture density function as:

fm(t) =

∫ b

a

φ′(t)g(z)A′(g(z)φ(t))e−A(g(z)φ(t))−η(z)π(z)dz

= φ′(t)
∫ g(b)

g(a)

yA′(yφ(t))e−A(yφ(t))π(k(y))e−η(k(y))k′(y)dy.

Therefore, a new mixing function can be considered:

π̃(y) = π(k(y))e−η(k(y))k′(y). (2.52)

Note that in our proofs we did not use the fact that π(z) was a proper
density function, i.e.,

∫∞
0

π(z)dz = 1, we used only the assumptions stated
in the theorems, therefore we can apply our reasoning to π̃(y).

We have several possibilities for the limiting behavior of the mixture
failure rate λm(t) = fm(t)/F̄m(t), depending on the domain of the inverse
function and the corresponding monotonicity. Also the assumptions on π̃(y)
are the same as on π(z), depending on the theorem. Which theorem is used
for generalization, 2.2 or 2.4, depends on the limits of integration g(a) and
g(b).

In all the corollaries we formulate sufficient conditions on k(y), π(z) and
η(z), which guarantee that the conditions of the corresponding theorem hold
for π̃(y). A condition on η(z) is that η(k(y)) is continuous at the left end of
the interval of integration, i.e., at min{g(a), g(b)}, and bounded from above
in the whole interval. Keeping in mind that we will state the corresponding
condition on k(y) later, we can assume now

(C8) η(z) is bounded from above in [a, b], continuous at z = k(c) =
g−1(c), where c = min{g(a), g(b)}.

Now we are able to formulate generalizations of Theorems 2.2 or 2.4.

1. If g(z) is increasing, g(a) = 0, then Theorem 2.2 should be applied.
The assumptions on π̃(y) are that it must be of the form π̃(y) = yα̃π̃1(y),
where α̃ > −1, π̃1(y) is bounded in [0, g(b)], continuous at y = 0, π̃1(0) 6= 0.
Then the following corollary can be formulated:

Corollary 2.6 Let conditions (C1)-(C8) hold. Let the mixing function π(z)
be defined in [a, b], a ≥ 0, b ≤ ∞, g(a) = 0. Assume additionally that
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(C9.1) π(z) = π1(z − a)(z − a)α, where π1(z) is bounded in [0, b − a],
continuous at z = 0, π1(0) 6= 0, α > −1,

(C10.1) g−1(y) ≡ k(y) = a + yβk1(y), where again k1(y) is bounded,
continuous at y = 0, k1(0) 6= 0, and its derivative can be written as k′1(y) =
yβ−1k2(y), where k2(y) is bounded, continuous at y = 0, k2(0) 6= 0, β > 0.

(C11.1)
∫∞

0
e−A(s)sβ(α+1) < ∞.

Then

λm(t)− ψ′(t) ∼ β(α + 1)
φ′(t)
φ(t)

.

Condition (C10.1) follows, for instance, from the assumption that k′(y) is
a regularly varying function of the order β − 1 (see Bingham et al, page 21).
If the derivative k′1(y) is slowly varying (i.e. β = 1), then the asymptotic
behavior is the same as in Theorem 2.2.

2. Consider an increasing g(z) and g(a) > 0. If g′(z) is continuous at
z = a, then k(y) and k′(y) continuous at y = g(a), k′(g(a)) = 1/g′(a) 6= 0.
In this case Theorem 2.4 is generalized to:

Corollary 2.7 Let conditions (C1)-(C8) hold. Let the mixing function π(z)
be defined in [a, b], a ≥ 0, b ≤ ∞, g(a) > 0. Assume additionally that

(C9.2) π(z) is bounded on [a, b], continuous at z = a, π(a) 6= 0.

(C10.2) g′(z) is continuous at z = a.

(C11.2)
∫∞

0
e−A(s)ds < ∞, and as s →∞

A′′(s)/(A′(s))2 → 0, sA′(s) →∞,

Assume also that for all c > b > 0 the quotient A′(bs)/A′(cs) is bounded
from above as s →∞.

Then
λm(t)− ψ′(t) ∼ g(a)φ′(t)A′(g(a)φ(t)).

Similar corollaries can be formulated for decreasing g(z).
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2.7.2 Uniform equivalence of families of distributions

Consider two families of distributions F1(t, z) and F2(t, z) with failure rates
λ1(t, z) and λ2(t, z) respectively. The variable z is, as previously, understood
as a realization of a frailty Z, which is the same for both families. We are
interested in conditions that guarantee the asymptotic equivalence of the
corresponding mixture failure rates λm1(t) and λm2(t). The following result
exploits assumptions of the uniform convergence and therefore is close to the
reasoning of Block et al (2003a) and Li (2005), although our approach is
different. We see that the sufficient assumptions are rather strong.

Theorem 2.7 Let Z be a mixing random variable with a probability measure
Π(z). Let this measure be concentrated on set D(z).

Assume that as t →∞

Λ2(t, z)− Λ1(t, z) → 0, λ2(t, z)/λ1(t, z) → 1

uniformly in z ∈ D(z).
Then the corresponding mixture failure rates are also asymptotically equiv-

alent:
λm1(t) ∼ λm2(t) as t →∞.

Proof First we need a simple lemma

Lemma 2.6 Let g(t, u), h1(t, u), h2(t, u) be locally integrable positive func-
tions, t > 0, u ∈ D. Assume that

∫

D

g(t, u)h1(t, u)du < ∞.

If h2(t, u)/h1(t, u) → 1 as t →∞ uniformly in u ∈ D, then

∫

D

g(t, u)h1(t, u)du ∼
∫

D

g(t, u)h2(t, u)du.

Proof The condition of uniform convergence of h2(t, u)/h(t, u) to 1 means
that there exists such c(t) > 0 that for u ∈ D

h1(t, u)(1− c(t)) < h2(t, u) < h1(t, u)(1 + c(t))
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and c(t) → 0 as t →∞. Hence,

1− c(t) <

∫
D

g(t, u)h2(t, u)du∫
D

g(t, u)h1(t, u)du
< 1 + c(t),

which yields Lemma 2.6. ¤

The theorem itself immediately follows from the lemma. Indeed, Λ2(t, z)−
Λ1(t, z) uniformly converges to 0, then F̄2(t, z)/F̄1(t, z) uniformly converges
to 1 as t →∞, and their integrals are equivalent:

F̄m2(t) ∼ F̄m1(t).

The failure rates are also uniformly equivalent, then again the probabil-
ity density functions fi(t, z) = λi(t, z)F̄i(t, z) are uniformly equivalent, i.e.,
f2(t, z)/f1(t, z) converges to 1 as t → ∞ uniformly in z. Then the mixture
densities are equivalent

fm1(t) ∼ fm2(t)

and this completes the proof as

λmi(t) =
fmi(t)

F̄mi(t)
, i = 1, 2.

¤
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Chapter 3

Asymptotic behavior of
mixture failure rates for
multivariate frailty

In the previous chapter we considered a lifetime random variable T indexed
by frailty Z. The next obvious step of generalization is to consider mul-
tivariate frailty when Z is a vector. This means that there can be several
unobserved parameters (independent or dependent), which is often the case in
practice. The simplest model to be considered in Section 3.2 is the bivariate
multiplicative model, which is an obvious generalization of the multiplicative
model (1.15):

λ(t, z1, z2) = z1z2λ(t). (3.1)

For simplicity consider the bivariate case, but our reasoning can be easily
generalized to a multivariate one.

Let Z = (Z1, Z2) and let Z1, Z2 be interpreted as non-negative random
variables with supports in [a1, b1], [a2, b2], respectively, a1, a2 ≥ 0, b1, b2 ≤ ∞.
Similar to Section 1.1,

P (T ≤ t|Z1 = z1, Z2 = z2) ≡ P (T ≤ t|z1, z2) = F (t, z1, z2),

and

λ(t, z1, z2) =
f(t, z1, z2)

F̄ (t, z1, z2)
.
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Assume that Z1 and Z2 have a joint probability density function π(z1, z2).
We define the bivariate mixture failure rate in this case as

λm(t) =

∫ b2
a2

∫ b1
a1

f(t, z1, z2)π(z1, z2)dz1dz2∫ b2
a2

∫ b1
a1

F̄ (t, z1, z2)π(z1, z2)dz1dz2

=
fm(t)

F̄m(t)

=

∫ b2

a2

∫ b1

a1

λs(t, z1, z2)π(z1, z2 | t)dz1dz2,

(3.2)

where the conditional probability density function, similar to relation (1.3),
is defined as

π(z1, z2 | t) = π(z1, z2)
F̄ (t, z1, z2)∫ b2

a2

∫ b1
a1

F̄ (t, z1, z2)π(z1, z2)dz1dz2

. (3.3)

In what follows we consider two specific bivariate models. Our goal is
to illustrate the usage of the developed in Chapter 2 methodology in the
multivariate setting.

3.1 Competing risks

Consider a system of two statistically independent components in series with
lifetimes T1 ≥ 0, T2 ≥ 0 (competing risks). The Cdf function of this system
is

Fs(t) = 1− F̄1(t)F̄2(t),

where F1(t), F2(t) are the Cdfs of the lifetime random variables T1, T2 (and
the survival functions F̄i(t) ≡ 1− Fi(t) ), respectively.

As in the univariate case, assume now that Fi(t), i = 1, 2 are indexed
by random variables Zi in the following sense:

P (Ti ≤ t |Zi = z) ≡ P (Ti ≤ t | z) = Fi(t, z), i = 1, 2

and that the pdfs fi(t, z) exist. Then the corresponding failure rates λi(t, z)
are fi(t, z)/F̄i(t, z).

Let Zi, i = 1, 2 be interpreted as non-negative random variables with
supports in [ai, bi], a1 ≥ 0, bi ≤ ∞ and the pdf πi(z). A mixture Cdf for
the ith component is defined by

Fm,i(t) =

∫ bi

ai

Fi(t, z)πi(z)dz. (3.4)
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The corresponding mixture failure rate is:

λm,i(t) =

∫ bi

ai
fi(t, z)πi(z)dz

∫ bi

ai
F̄i(t, z)πi(z)dz

=

∫ bi

ai

λi(t, z)π(z | t)dz, (3.5)

where the conditional pdf (on condition that Ti > t) is

πi(z | t) = πi(z)
F̄i(t, z)∫ bi

ai
F̄i(t, z)πi(z)dz

. (3.6)

Assume fist that the components of our system are conditionally inde-
pendent given Z1 = z1, Z2 = z2. Then the Cdf of the system is:

Fs(t, z1, z2) = 1− F̄1(t, z1)F̄2(t, z2) (3.7)

and the corresponding probability density function is

fs(t, z1, z2) = f1(t, z1)F̄2(t, z2) + f2(t, z2)F̄1(t, z1). (3.8)

The mixture failure rate in this case is defined similar to (3.2):

λm,s(t) =

∫ b2
a2

∫ b1
a1

fs(t, z1, z2)π(z1, z2)dz1dz2∫ b2
a2

∫ b1
a1

F̄s(t, z1, z2)π(z1, z2)dz1dz2

=

∫ b2

a2

∫ b1

a1

λs(t, z1, z2)π(z1, z2 | t)dz1dz2,

(3.9)

where, similar to (3.3)

π(z1, z2 | t) = π(z1, z2)
F̄s(t, z1, z2)∫ b2

a2

∫ b1
a1

F̄s(t, z1, z2)π(z1, z2)dz1dz2

, (3.10)

and π(z1, z2) is the bivariate joint probability density function of Z1 and Z2.
It is clear that for our series system, defined by (3.7):

λs(t, z1, z2) = λ1(t, z1) + λ2(t, z2). (3.11)

It is clear also that if Z1 and Z2 are independent, which means

π(z1, z2) = π1(z1)π2(z2)
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for some densities π1(z1) and π2(z2); then these random variables are also
conditionally independent

π(z1, z2|t) = π1(z1|t)π2(z2|t),

where, as usual, for i = 1, 2

πi(zi|t) = πi(zi)
F̄i(t, zi)∫ bi

ai
F̄i(t, zi)πi(zi)dzi

.

Indeed, using definitions (3.7) and (3.10), we get

π(z1, z2|t) = π1(z1)π2(z2)
F̄1(t, z1)F̄2(t, z2)∫ b2

a2

∫ b1
a1

F̄1(t, z1)F̄2(t, z2)π1(z1)π2(z2)dz1dz2

=
π1(z1)F̄1(t, z1) · π2(z2)F̄2(t, z2)∫ b1

a1
F̄1(t, z1)π1(z1)dz1 ·

∫ b2
a2

F̄2(t, z2)π2(z2)dz2

= π1(z1|t)π2(z2|t).

Hence, when the components of the system are conditionally independent,
the mixture failure rate of the system is the sum of the mixture failure rates
of individual components:

λm,s(t) = λm,1(t) + λm,2(t).

Indeed, using relations (3.9) and (3.11)

λm,s =

∫ b2

a2

∫ b1

a1

λs(t, z1, z2)π(z1, z2 | t)dz1dz2

=

∫ b2

a2

∫ b1

a1

[λ1(t, z1) + λ2(t, z2)] π1(z1|t)π2(z2|t)dz1dz2

=

∫ b2

a2

π2(z2|t)dz2 ·
∫ b1

a1

λ1(t, z1)π1(z1|t)dz1

+

∫ b2

a2

λ2(t, z2)π2(z2|t)dz2 ·
∫ b1

a1

π1(z1|t)dz1

= λm,1(t) + λm,2(t).
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It turns out that asymptotically this property is preserved for a much
broader class of joint distributions of Z1 and Z2, given that the distribution
families are defined by survival model (2.7), where for simplicity of notation
we set ψi(t) ≡ 0. Therefore, let

F̄i(t, zi) = e−Ai(ziφi(t)). (3.12)

The following generalization of Theorem 2.2 holds:

Theorem 3.1 Consider the competitive risks model described by (3.7). Let
the corresponding survival functions be defined by (3.12).

Suppose that the mixing variables Z1 and Z2 have a joint probability den-
sity function π(z1, z2), which is defined in [0, b1]× [0, b2], 0 < b1, b2 ≤ ∞.

Let the following properties hold:

(a) π(z1, z2) = zα1
1 zα2

2 π0(z1, z2), where α1, α2 > −1.

(b) π0(z1, z2) is continuous at (0, 0), π0(0, 0) 6= 0.

(c) assumptions on Ai(s), i = 1, 2 in Theorem 2.2: positive ultimately
increasing differentiable functions,

∫ ∞

0

e−Ai(s)sαids < ∞.

Assume finally that φ1(t), φ2(t) →∞ as t →∞.

Then

λm,s(t) ∼ (α1 + 1)
φ′1(t)
φ1(t)

+ (α2 + 1)
φ′2(t)
φ2(t)

.

The following corollary is proved in exactly the same way as the theorem.

Corollary 3.1 For a more general model, where not necessarily ψi(t) ≡ 0,
the corresponding asymptotic relation reads:

λm,s(t)− ψ′1(t)− ψ′2(t) ∼ (α1 + 1)
φ′1(t)
φ1(t)

+ (α2 + 1)
φ′2(t)
φ2(t)

.
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It is clear that under some additional regularity assumptions Theorem
2.2 can be applied to the marginal mixing densities and

λm,1(t) ∼ (α1 + 1)
φ′1(t)
φ1(t)

, λm,2(t) ∼ (α2 + 1)
φ′2(t)
φ2(t)

.

Therefore, Theorem 3.1 states that under some technical assumptions, which
are not that stringent

λm,s(t) ∼ λm,1(t) + λm,2(t).

This asymptotic relation can be interpreted in the following way: the mixture
failure rate of the described system is (asymptotically) equivalent to the sum
of asymptotic failure rates of individual components (given that the other
cause of failure does not exist). Therefore conditions of Theorem 3.1 are
sufficient for some ‘asymptotic independence’ of components in the described
series system.

Proof We need a supplementary lemma, analogous to Lemma 2.1:

Lemma 3.1 Let g(z1, z2) be a nonnegative integrable function in [0,∞)2.
Let h(z1, z2) be a nonnegative locally integrable function defined in [0,∞)2,
such that it is bounded everywhere and continuous at the origin.

Then as t1 →∞, t2 →∞:

t1t2

∫ ∞

0

∫ ∞

0

g(t1z1, t2z2)h(z1, z2)dz1dz2 → h(0, 0)

∫ ∞

0

∫ ∞

0

g(z1, z2)dz1dz2.

Proof The proof is rather straightforward and similar to the univariate
case:

t1t2

∫ ∞

0

∫ ∞

0

g(t1z1 , t2z2)h(z1, z2)dz1dz2

=

∫ ∞

0

∫ ∞

0

g(z1, z2)h

(
z1

t1
,
z2

t2

)
dz1dz2.

Indeed, h(z1, z2) is bounded; assume that it is bounded by some M . The
function g(z1, z2) is integrable, then for any ε > 0 there is a finite b > 0,
such that ∫∫

[0,∞)2−[0,b]2
g(z1, z2)dz1dz2 < ε.
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Then
∣∣∣∣
∫ ∞

0

∫ ∞

0

g(z1, z2)

[
h

(
z1

t1
,
z2

t2

)
− h(0, 0)

]
dz1dz2

∣∣∣∣

≤
∫ b

0

∫ b

0

g(z1, z2)

∣∣∣∣h
(

z1

t1
,
z2

t2

)
− h(0, 0)

∣∣∣∣ dz1dz2

+ 2M

∫∫

[0,∞)2−[0,b]2
g(z1, z2)dz1dz2.

The first double integral tends to zero since h(z1, z2) is continuous at (0, 0),
and the second can be made arbitrarily small. ¤

Now let us turn to the proof of the theorem itself. Substituting (3.7) and
(3.8) into (3.9) we get

λm,s(t) =

∫ b1
0

∫ b2
0

f1(t, z1)F̄2(t, z2)π(z1, z2)dz2dz1∫ b1
0

∫ b2
0

F̄1(t, z1)F̄2(t, z2)π(z1, z2)dz2dz1

+

∫ b2
0

∫ b1
0

f2(t, z2)F̄1(t, z1)π(z1, z2)dz1dz2∫ b2
0

∫ b1
0

F̄2(t, z1)F̄1(t, z1)π(z1, z2)
.

(3.13)

Denote the first term on the right-hand side by λ1
m,s(t) and the second one

by λ2
m,s(t). Then

λm,s(t) = λ1
m,s(t) + λ2

m,s(t).

We consider λ1
m,s(t) and λ2

m,s(t) separately. The probability density function
of T1 is

f1(t, z1) = A′
1(z1φ1(t))z1φ

′
1(t)e

−A1(z1φ1(t)) (3.14)

and

λ1
m,s(t) =

∫ b1
0

∫ b2
0

A′
1(z1φ1(t))z1φ

′
1(t)e

−A1(z1φ1(t))−A2(z2φ2(t))π(z1, z2)dz2dz1∫ b1
0

∫ b2
0

e−A1(z1φ1(t))−A2(z2φ2(t))π(z1, z2)dz2dz1

,

As in the univariate case, applying Lemma 3.1 to the numerator, we see
that it is asymptotically equivalent to

φ′1(t)π0(0, 0)

φ1(t)α1+2φ2(t)α2+1

∫ ∞

0

A′
1(u)uα1+1e−A1(u)du

∫ ∞

0

sα2e−A2(s)ds
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and the denominator is equivalent to

π0(0, 0)

φ1(t)α1+1φ2(t)α2+1

∫ ∞

0

uα1e−A1(u)du

∫ ∞

0

sα2e−A2(s)ds.

Hence, using (2.27), eventually

λ1
m,s(t) ∼

φ′1(t)
φ1(t)

·
∫∞
0

A′
1(u)uα1+1e−A1(u)du∫∞
0

uα1e−A1(u)du

= (α1 + 1)
φ′1(t)
φ1(t)

.

Similarly,

λ2
m,s(t) ∼ (α2 + 1)

φ′2(t)
φ2(t)

.

Thus,

λ1
m,s(t) ∼ λm,1(t),

λ2
m,s(t) ∼ λm,2(t).

¤

Another corollary from a univariate case is the next theorem, which is
based on Theorem 2.4. Note that distinct from the previous theorem, the
case a1, a2 > 0 is of interest.

Theorem 3.2 Consider the competing risks model described by (3.7). Let
the survival functions be defined by (3.12).

Suppose that the mixing variables Z1 and Z2 have a joint probability den-
sity function π(z1, z2), which is defined in [a1, b1]× [a2, b2], a1, a2 > 0.

Let the following properties hold:

(a) the function π(z1, z2) is bounded in [a1, b1] × [a2, b2], continuous at
(a1, a2), π(a1, a2) 6= 0.

(b) conditions from Theorem 2.4 on both A1(s) and A2(s) hold.

Then

λm,s(t) ∼ a1φ
′
1(t)A

′
1(a1φ1(t)) + a2φ

′
2(t)A

′
2(a2φ2(t)).
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Note that the meaning of this theorem in terms of a notion of asymptotic
independence is the same as discussed for Theorem 3.1.

Proof As in the previous theorem, we denote

λm,s(t) = λ1
m,s(t) + λ2

m,s(t).

where

λ1
m,s(t) =

∫ b1
a1

∫ b2
a2

A′
1(z1φ1(t))z1φ

′
1(t)e

−A1(z1φ1(t))−A2(z2φ2(t))π(z1, z2)dz2dz1∫ b1
a1

∫ b2
a2

e−A1(z1φ1(t))−A2(z2φ2(t))π(z1, z2)dz2dz1

,

(3.15)
The following lemmas are proved similarly to Lemma 3.1 and the correspond-
ing lemmas from Chapter 2:

Lemma 3.2 Let the assumptions of Lemma 2.4 on h1(x1) and h2(x2) hold.
Let µ(u1, u2) be a positive bounded and locally integrable function, continuous
at (a1, a2), µ(a1, a2) 6= 0.

Then, as x1 →∞ and x2 →∞:
∫ ∞

a1

∫ ∞

a2

e−h1(x1u1)−h(x2u2)µ(u1, u2)du1du2

∼ µ(a1, a2)e
−h1(a1x1)−h2(a2x2)

x1x2h′1(a1x1)h′2(a2x2)
.

Lemma 3.3 Under the assumptions of Lemma 3.2 the following asymptotic
relation holds as x1 →∞, x2 →∞:

∫ ∞

a1

∫ ∞

a2

h′1(u1x1)e
−h1(x1u1)−h(x2u2)µ(u1, u2)du1du2

∼ a1a2µ(a1, a2)

x1x2

e−h1(a1x1)−h2(a2x2).

From these lemmas, using the proof of Theorem 2.4 we derive

λ1
m,s(t) ∼ a1φ

′
1(t)A

′
1(a1φ1(t)).
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The similar relation holds for λ2
m,s(t) and this completes the proof. ¤

As it can be seen from the proofs of Theorems 3.1 and 3.2, the general-
ization from the bivariate to arbitrarily multivariate case is rather straight-
forward, which means that the competing risks problem for a system of
m, m > 2 components in series is considered similar to the case m = 2.

3.2 Bivariate frailty

In this section we will discuss another (and maybe more natural) bivariate
model: when there is only one lifetime random variable T , but two unob-
served possibly dependent frailties Z1, Z2, as defined by relations (3.2) and
(3.3). Let Z1, Z2 take values in [0,∞).

Consider the following survival model, which generalizes the simplest bi-
variate multiplicative model (3.1):

Λ(t, z1, z2) = Λ(t)A(z1, z2), (3.16)

where A(z1, z2) is some positive function. The failure rate is

λ(t, z1, z2) = λ(t)A(z1, z2).

The survival and the probability density functions are

F̄ (t, z1, z2) = e−Λ(t)A(z1,z2), f(t, z1, z2) = λ(t)A(z1, z2)e
−Λ(t)A(z1,z2),

respectively.
Suppose that A(z1, z2) is invertible with respect to z1, and B is an inverse

function, i.e.,

B(A(z1, z2), z2) ≡ z1 and A(B(z1, z2), z2) ≡ z1.

Substituting s = A(z1, z2)

F̄m(t, z1, z2) =

∫ ∞

0

∫ ∞

0

e−A(z1,z2)Λ(t)π(z1, z2)dz1dz2

=

∫ ∞

0

e−Λ(t)s

∫ ∞

0

B′
1(s, z2)π(B(s, z2), z2)dz2ds

=

∫ ∞

0

e−Λ(t)sg(s)ds,
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where B′
1 is the partial derivative of B with respect to the first variable and

g(s) =

∫ ∞

0

B′
1(s, z2)π(B(s, z2), z2)dz2

=

∫ ∞

0

1

A′
1(B(s, z2), z2)

π(B(s, z2), z2)dz2.

(3.17)

Similarly,

fm(t, z1, z2) =

∫ ∞

0

∫ ∞

0

λ(t)A(z1, z2)e
−A(z1,z2)Λ(t)π(z1, z2)dz1dz2

= λ(t)

∫ ∞

0

se−Λ(t)s

∫ ∞

0

B′
1(s, z2)π(B(s, z2), z2)dz2ds

= λ(t)

∫ ∞

0

e−Λ(t)ssg(s)ds.

If g(s) satisfies the conditions of the main univariate theorems (2.2 and
2.4), then the following corollaries can be easily obtained in terms of this
function:

Corollary 3.2 If the function g(s) can be represented as g(s) = sαg1(s),
where α > −1, g1(s) is bounded in [0,∞), continuous at s = 0 and g1(0) 6= 0,
then

λm(t) ∼ (α + 1)λ(t)

Λ(t)
.

Note that this result is formulated via the properties of the function g(s).

The second corollary deals with the case A(z1, z2) ≥ a for z1, z2 such that
π(z1, z2) > 0 and some positive a. Then under similar assumptions we again
can observe a principle similar to the one in the univariate case: the mixture
failure rate tends to the failure rate of the strongest population as t →∞.

Corollary 3.3 If the function g(z) is defined in [a, b], a > 0, b ≤ ∞, and
for s ≥ a it can be defined as

g(s) = (s− a)αg1(s− a),

where α > −1, g1(z) is bounded in [0, b− a] and g1(0) 6= 0.
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Then

λm(t)− aλ(t) ∼ (α + 1)
λ(t)

Λ(t)
e−aΛ(t).

Conditions on the function g1(s) need further discussion. So far we man-
aged to formulate the results stating the conditions on the distribution family
and on the mixing distribution separately. Note that g(s) can be interpreted
as a pdf: ∫ ∞

0

g(s)ds =

∫ ∞

0

∫ ∞

0

π(z1, z2)dz1dz2 = 1

It is also worth noting that the assumption that g(s) is bounded does not seem

restrictive for the model. The following remark states rather strong sufficient
general conditions in terms of A(z1, z2) and π(z1, z2) for two conditions to
hold:

Remark 3.1 If on the support of π(z1, z2): A(z1, z2) is continuously differ-
entiable in [0,∞)2, A′

1(z1, z2) > 0, π(z1, z2) is strictly positive and uniformly
continuous, then the conditions of the two corollaries hold and α = 0.

Consider two specific cases, which will clarify the developed approach.

Example 3.1 Let
A(z1, z2) = z1z2.

If π(z1, z2) has a compact support and is continuous in it, then it is
uniformly continuous there. The condition A′

1(z1, z2) > 0 does not hold since
A′

1(z1, 0) = 0, whereas the asymptotic behavior stays the same.
Obviously,

B(s, z2) =
s

z2

, A′
1(z1, z2) = z2, B′

1(s, z2) =
1

z2

.

Consider now the mixing distribution to be a uniform one in [0, b]2 for
some b > 0

π(z1, z2) =

{
1/b2, 0 ≤ z1, z2 ≤ b

0, otherwise.
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Then

F̄m(t) =
1

b2

∫ b

0

∫ b

0

e−Λ(t)xydxdy

=
1

b2

∫ b

0

1

Λ(t)y

(
1− e−Λ(t)by

)
dy

=
1

Λ(t)b2

∫ Λ(t)b2

0

1

u

(
1− e−u

)
du.

It is easy to show that as v →∞
∫ v

0

1

u

(
1− e−u

)
du ∼ log v,

thus,

F̄m(t) ∼ log Λ(t)

Λ(t)b2
(3.18)

as t →∞. Similarly,

fm(t) =
λ(t)

b2

∫ b

0

∫ b

0

xy e−Λ(t)xydxdy

=
λ(t)

Λ(t)2b2

∫ b

0

1

y

∫ Λ(t)by

0

ue−ududy

=
λ(t)

Λ(t)2b2

∫ b

0

1

y

(
e−Λ(t)byΛ(t)by + 1− e−Λ(t)by

)
dy

=
λ(t)

Λ(t)2b2

[∫ Λ(t)b2

0

1

u

(
1− e−u

)
du + 1− e−Λ(t)b2

]

and

fm(t) ∼ λ(t) log Λ(t)

Λ(t)2b2
, (3.19)

hence,

λm(t) ∼ λ(t)

Λ(t)
,

which is a remarkably simple asymptotic, similar to the univariate case. ♦
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Example 3.2 Consider the following specific case of the model (3.16) with
additive A(z1, z2):

A(z1, z2) = z1 + z2,

Then
B(s, z2) = s− z2, A′

1(z1, z2) ≡ B′
1(s, z2) ≡ 1,

and finally

λm,s(t) ∼ (α1 + α2 + 2)
λ(t)

Λ(t)
. (3.20)

On the other hand, this model can be also interpreted in terms of the
series system of two identical components. Then φ1(t) = φ2(t) = Λ(t) and
it follows from Theorem 3.1 that (3.20) also holds.

Indeed, if π(z1, z2) = zα1
1 zα2

2 π0(z1, z2), π0(z1, z2) is continuous at the origin
and π0(0, 0) 6= 0, then as s → 0

g(s) =

∫ s

0

π(s− z2, z2)dz2 ∼ sα1+α2+1 · π(0, 0).

Thus, if g(s) is also bounded in [0,∞), then the conditions of the both
corollaries hold and (3.20) also holds.

♦

82



Chapter 4

Stochastic ordering and bounds
on mixture failure rate

In this chapter we will look at several comparison problems for the mixture
failure rates. First the bending down property will be proved, stating that

λm(t) < λP (t) ≡
∫ b

a

λ(t, z)π(z)dz, t > 0, λm(0) = λP (0)

(see Definition 1.1). Then we will consider the ordering of mixture failure
rates for different mixing distributions. Finally, some bounds for λm(t) in
the proportional hazards framework will be obtained.

4.1 Ordering of failure rates

4.1.1 Comparison with λP (t)

The main additional assumption that will be needed for the following result
is that the family of failure rates λ(t, z), z ∈ [a, b] should be ordered in z.

Theorem 4.1 Let the failure rate λ(t, z) in the mixing model (1.2) be dif-
ferentiable with respect to both arguments and be ordered as

λ(t, z1) < λ(t, z2), z1 < z2, ∀z1, z2 ∈ [a, b], t ≥ 0. (4.1)

Assume that conditional and unconditional expectations in relations (1.2) and
(1.4), respectively, are finite for all t ∈ [0,∞).
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Then:

(a) The mixture failure rate λm(t) bends down with time at least in a weak
sense.

(b) If, additionally, ∂λ(t, z)/∂z is increasing in t, then λm(t) bends down
in a strong sense.

Proof It is clear that ordering (4.1) is equivalent to the condition that
λ(t, z) is increasing in z for each t ≥ 0. In accordance with equations (1.2)
and (1.4) and integrating by parts (Finkelstein, 2004) we obtain

4λ(t) ≡ λP (t)− λm(t)

=

∫ b

a

λ(t, z)[π(z)− π(z|t)]dz

= λ(t, z)[Π(z)− Π(z|t)]|ba −
∫ b

a

λ′z(t, z)[Π(z)− Π(z|t)]dz

=

∫ b

a

−λ′z(t, z)[Π(z)− Π(z|t)]dz > 0, t > 0,

(4.2)

where
Π(z) = P (Z ≤ z); Π(z|t) = P (Z ≤ z|T > t),

and the term
λ(t, z)[Π(z)− Π(z|t)]|ba

vanishes for b = ∞ as well.

Inequality (4.2) and, therefore, the first part of the theorem follows from
the fact that λ(t, z) increases in z, i.e., λ′z(t, z) > 0, and the following in-
equality:

Π(z)− Π(z|t) < 0, ∀t > 0, z ∈ [a, b]. (4.3)

This inequality can be interpreted as “the weakest populations are dying out
first”. This interpretation is widely used in various specific cases, especially
in the demographic literature (e.g., Vaupel, 2003). For obtaining (4.3), it is
sufficient to prove that

Π(z|t) =

∫ z

a
F̄ (t, u)π(u)du∫ b

a
F̄ (t, u)π(u)du
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increases in t, which can be easily done by considering the corresponding
derivative.

The derivative Π′
t(z|t) > 0, if

∫ z

a
F̄ ′

t(t, u)π(u)du∫ z

a
F̄ (t, u)π(u)du

>

∫ b

a
F̄ ′

t(t, u)π(u)du∫ b

a
F̄ (t, u)π(u)du

.

As F̄ ′
t(t, z) = −λ(t, z)F̄ (t, z), it is sufficient to show that

B(t, z) ≡
∫ z

a
λ(t, u)F̄ (t, u)π(u)du∫ z

a
F̄ (t, u)π(u)du

increases in z. Inequality B′
z(t, z) > 0 is equivalent to:

λ(t, z)

∫ z

a

F̄ (t, u)π(u)du >

∫ z

0

λ(t, u)F̄ (t, u)π(u)du,

which follows from ordering (4.1).

Thus, due to additional assumption in (b), the integrand in the end part
of (4.2) is increasing and therefore 4λ(t) as well, which immediately leads
to the strong bending down property (1.6). ¤

The light bulbs example of the Introduction shows the strong bending
property of the mixture failure rate in practice. The results were really
convincing: the failure rate is initially increasing (a tentative fit showed the
Weibull law) and then decreasing to a very low level. The pattern of the
observed failure rate is exactly the same as predicted in Finkelstein and
Esaulova (2001a) for the Weibull baseline Cdf. Some biological experiments
on frailties and worms suggest the same conclusion (Carey et al, 1992).

4.1.2 Likelihood ordering of mixing distributions

We will show now that a natural ordering for our mixing model (1.2) is the
likelihood ratio one. A somewhat similar reasoning can be found in Block et
al (1993) and Shaked and Spizzichino (2001).

Let Z1 and Z2 be continuous nonnegative random variables with the same
support and densities π1(z) and π2(z), respectively. Recall (Ross, 1996;
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Shaked and Shanthikumar, 1993) that Z2 is smaller than Z1 in the sense
of the likelihood ratio (Kaas et al, 1994):

Z1 ≥LR Z2, (4.4)

if π2(z)/π1(z) is a decreasing function.

Definition 4.1 Let Z(t), t ∈ [0,∞) be a family of random variables indexed
by parameter t (time) with probability density functions p(z, t). We say that
Z(t) is decreasing in t in the sense of the likelihood ratio, if

L(z, t1, t2) =
p(z, t2)

p(z, t1)

decreases in z for all t2 > t1.

The following simple result states that our family of conditional mixing
random variables [Z|t], t ∈ [0,∞) is decreasing in this sense:

Theorem 4.2 Let the family of failure rates λ(t, z) in the mixing model (1.2)
be ordered as in relation (4.1).

Then the family of random variables [Z|t] ≡ [Z|T > t] is decreasing in
t ∈ [0,∞) in the sense of the likelihood ratio.

Proof In accordance with definition (1.3) of the density π(z|t), we have

L(z, t1, t2) =
π(z| t1)
π(z| t2) =

F̄ (t2, z)
∫ b

a
F̄ (t1, u)π(u)du

F̄ (t1, z)
∫ b

a
F̄ (t2, u)π(u)du

. (4.5)

Therefore, monotonicity in z of L(z, t1, t2) is defined by

F̄ (t2, z)

F̄ (t1, z)
= e−

R t2
t1

λ(s,z)ds,

which, due to ordering (4.1), is decreasing in z for all t2 > t1. ¤

Consider now two different mixing random variables Z1 and Z2 with prob-
ability density functions π1(z), π2(z), and cumulative distribution functions
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Π1(z), Π2(z), respectively. Assuming some type of stochastic ordering for Z1

and Z2, we intend to arrive at a simple ordering of the corresponding mixture
failure rates. It can be seen using simple examples that the ’usual’ stochastic
ordering (stochastic dominance) is too weak for this purpose. It was shown
in the previous section that the likelihood ratio ordering is a natural one
for the family of random variables [Z|t] in our mixing model. Therefore,
it seems reasonable to order Z1 and Z2 in this sense too. First, consider a
supplementary lemma.

Lemma 4.1 Let

π2(z) =
g(z)π1(z)∫ b

a
g(z)π1(z)dz

, (4.6)

where g(z) is a decreasing function.

Then Z1 is stochastically larger than Z2:

Z1 ≥st Z2 ( Π1(z) ≤ Π2(z), z ∈ [a, b] ) (4.7)

Proof Indeed,

Π2(z) =

∫ z

a
g(u)π1(u)du∫ b

a
g(u)π1(u)du

=

∫ z

a
g(u)π1(u)du∫ z

a
g(u)π1(u)du +

∫ b

z
g(u)π1(u)du

=
g∗(a, z)

∫ z

a
π1(u)du

g∗(a, z)
∫ z

a
π1(u)du + g∗(z, b)

∫ b

z
π1(u)du

≥
∫ z

a

π1(u)du = Π1(z),

(4.8)

where g∗(a, z) and g∗(z, b) are the mean values of the function g(z) in the
corresponding integrals. As this function decreases: g∗(z, b) ≤ g∗(a, z). ¤

Equation (4.6) for decreasing g(z) means that Z1 ≥LR Z2, and it is well
known (see, e.g., Ross, 1996) that the likelihood ratio ordering implies the
corresponding stochastic ordering. But we need the foregoing reasoning for
deriving the following result:
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Theorem 4.3 Let relation (4.6), where g(z) is a decreasing function hold,
which means that Z1 is larger than Z2 in the sense of the likelihood ratio
ordering.

Assume that ordering (4.1) holds.

Then for all t ∈ [0,∞) the corresponding mixture failure rates are ordered
as:

λm1(t) ≡
∫ b

a
f(t, z)π1(z)dz∫ b

a
F̄ (t, z)π1(z)dz

≥
∫ b

a
f(t, z)π2(z)dz∫ b

a
F̄ (t, z)π2(z)dz

≡ λm2(t) (4.9)

Proof Inequality (4.9) means that the mixture failure rate, which is
obtained for the stochastically larger (in the likelihood ratio ordering sense)
mixing distribution, is larger for all t ∈ [0,∞) than the one obtained for the
stochastically smaller mixing distribution.

We shall prove first that

Π1(z|t) =

∫ z

a
F̄ (t, u)π1(u)du∫ b

a
F̄ (t, u)π1(u)du

≤
∫ z

a
F̄ (t, u)π2(u)du∫ b

a
F̄ (t, u)π2(u)du

= Π2(z|t). (4.10)

Indeed, using representation (4.6), we get

∫ z

a
F̄ (t, u)π2(u)du∫ b

a
F̄ (t, u)π2(u)du

=

∫ z

a
F̄ (t, u)g(u)π1(u)(

∫ b

a
g(s)π1(s)ds)−1du∫ b

a
F̄ (t, u)g(u)π1(u)(

∫ b

a
g(s)π1(s)ds)−1du

=

∫ z

a
g(u)F̄ (t, u)π1(u)du∫ b

a
g(u)F̄ (t, u)π1(u)du

≥
∫ z

a
F̄ (t, u)π1(u)du∫ b

a
F̄ (t, u)π1(u)du

,

where the last inequality follows using exactly the same argument, as in
inequality (4.8) of Lemma 4.1. Similar to (4.2), and taking into account
relation (4.10), we obtain
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λm1(t)− λm2(t) =

∫ b

a

λ(t, z)[π1(z|t)− π2(z|t)]dz

= λ(t, z)[Π1(z|t)− Π2(z|t)]|ba −
∫ b

a

λ′z(t, z)[Π1(z|t)− Π2(z|t)]dz

=

∫ b

a

−λ′z(t, z)[Π1(z|t)− Π2(z|t)]dz ≥ 0.

A starting point of this theorem was equation (4.6) with a crucial as-
sumption of a decreasing function g(z). It should be noted, however, that
this assumption can be rather formally justified directly by considering the
difference λm1(t)− λm2(t) and using definitions (1.2)-(1.3). The correspond-
ing numerator (the denominator is positive) is transformed into a double
integral in the following way:

∫ b

a

λ(t, z)F̄ (t, z)π1(z)dz

∫ b

a

F̄ (t, z)π2(z)dz

−
∫ b

a

λ(t, z)F̄ (t, z)π2(z)dz

∫ b

a

F̄ (t, z)π1(z)dz

=

∫ b

a

∫ b

a

F̄ (t, u)F̄ (t, s)[λ(t, u)π1(u)π2(s)− λ(t, s)π1(u)π2(s)]duds

=

∫∫

b>u>s>a

F̄ (t, u)F̄ (t, s)[π1(u)π2(s)(λ(t, u)− λ(t, s))

+ π1(s)π2(u)(λ(t, s)− λ(t, u)]duds

=

∫∫

b>u>s>a

F̄ (t, u)F̄ (t, s)(λ(t, u)− λ(t, s))[π1(u)π2(s)− π1(s)π2(u)]duds.

(4.11)

Therefore, the final double integral is positive if ordering (4.1) holds and
π2(z)/π1(z) is decreasing. ¤
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4.1.3 Another useful ordering

Consider the multiplicative model with two frailties Z1 and Z2. The use of
the Laplace transforms technique (see Section 1.3.2) allows us to formulate
another elegant result for the ordering of mixture failure rate.

Suppose that the second frailty Z2 equals in distribution to a sum:

Z2 =D Z1 + Y, (4.12)

where Y is some random variable, Y and Z1 are independent.

Theorem 4.4 The mixture failure rates are ordered:

λm2(t) > λm1(t), ∀ t ≥ 0

if and only if Y is a positive (nonnegative) random variable.

Although this result seems to be intuitively evident (at least, for the
case when Y is positive), intuition in mixture failure rate modelling can be
sometimes deceiving. The counter-reasoning is based on the fact that the
larger the failure rate of a subpopulation λ(t, z), the more intensive is the
process of dying out.

Note that this theorem states both necessary and sufficient conditions for
the corresponding ordering of mixture failure rates, given the representation
(4.12).

Proof As the mixture failure rate for the multiplicative model is given
by (1.26), i.e., the failure rates ordering is equivalent to the following inequal-
ity for all t ≥ 0 (and therefore for all Λ(t))

(log Lπ2(t))
′ < (log Lπ1(t))

′ , (4.13)

where Lπ1(t), Lπ2(t) are the corresponding Laplace transforms:

Lπi
(t) = Ee−tZi , i = 1, 2.

On the other hand, Z2 = Z1 + Y , where random variables Y and Z1 are
independent, therefore

Lπ2(t) = Ee−tZ2 = Ee−tZ1−tY = Ee−tZ1Ee−tY = Lπ1(t)LπY
(t),
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where LπY
(t) is the Laplace transform of Y . Hence, (4.13) turns into

(log Lπ1(t))
′ + (log LπY

(t))′ < (log Lπ1(t))
′ ,

or
(log LπY

(t))′ < 0,

which is equivalent to the decreasing of the Laplace transform LπY
(t). This

is obviously the case if Y is a nonnegative random variable.
Consider the case P (Y < 0) > 0. The two-sided Laplace transform of Y

exists because Z2 =D Z1 + Y , where Z1, Z2 are both positive r.v., then

LπY
(t) = Lπ2(t)/Lπ1(t),

then

LπY
(t) =

∫ 0

−∞
e−tsπY (s)ds +

∫ ∞

0

e−tsπY (s)ds;

where the second integral decreases and the first integral increases to infinity
as t →∞, therefore

LπY
(t) →∞ as t →∞,

which completes the proof. ¤

This simple theorem results in a non-trivial interpretation: let the possible
Y be ‘contaminated’ (or pertubed) to end up with some random variable Ỹ
such that P (Ỹ < 0) > ε. Theorem 4.4 says that for arbitrarily small ε

λm2(t) < λm1(t) as t →∞,

which, in fact, again comes from the principle “the weakest populations are
dying out first”.

4.1.4 Ordering of variances of mixing distributions

If Z1 and Z2 are ordered in the sense of the likelihood ordering (4.7), then
automatically

E[Z1] ≥ E[Z2].
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Assume now that distributions Π1(z) and Π2(z) have equal means and let
us ‘play’ with the corresponding variances. It follows from equation (1.16)
that for the multiplicative model, which will be considered in this section:

λm1(0) = λm2(0).

Intuitive considerations and reasoning based on the principle: “the weakest
populations are dying out first” suggest that, unlike (4.9), the mixture failure
rates will be ordered as

λm1(t) < λm2(t)

for all t > 0 if, e.g., the variance of Z1 is larger than the variance of Z2.
We will show that this is true for a specific case, whereas for a general
multiplicative model this ordering holds only for the sufficiently small time
t. Therefore, a stronger condition on ordering ‘variabilities’ of Z1 and Z2

should be imposed.

Example 4.1 For a meaningful specific example, consider again the frailty
model (1.15), where Z has a Gamma distribution:

π(z) =
βα

Γ(α)
zα−1e−βz ; α, β > 0.

We have already obtained in Examples 1.3 and 2.4 that

λm(t) =
λ(t)

∫∞
0

e−zΛ(t)zπ(z)dz∫∞
0

e−zΛ(t)π(z)dz
=

αλ(t)

β + Λ(t)
, (4.14)

where Λ(t) =
∫ t

0
λ(u)du is a cumulative baseline failure rate. It can be shown

that equation (4.14) can be written now in terms of E[Z] and V ar(Z):

λm(t) = λ(t)
E2[Z]

E[Z] + V ar(Z)Λ(t)
, (4.15)

which for the specific case E[Z] = 1 gives the widely used in demography
result of Vaupel et al (1979):

λm(t) =
λ(t)

1 + V ar(Z)Λ(t)
.
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Using equation (4.15), we can easily compare and analyse mixture failure
rates for two populations with different Z1 and Z2 on condition that E[Z2] =
E[Z1]. If, for instance,

V ar(Z1) ≥ V ar(Z2),

the mixture failure rates are ordered in the reversed way:

λm1(t) ≤ λm2(t).

♦

Intuitively it can be expected that this result could be valid for arbitrary
mixing distributions in the multiplicative model. However, the mixture fail-
ure rate dynamics can be much more complicated even for this specific case
and this topic needs further attention in the future research. A somehow
similar situation was observed in Finkelstein and Esaulova (2001a): although
the conditional variance V ar(Z|t) was decreasing in t for the multiplicative
Gamma-frailty model, a counter example was constructed for the case of the
uniform mixing distribution in [0, 1].

The following theorem shows that ordering of variances is a sufficient and
necessary condition for ordering of mixture failure rates, only for the initial
time interval.

Theorem 4.5 Let Z1 and Z2 (E[Z2] = E[Z1]) be two mixing distributions
in the multiplicative model (1.15)-(1.16) with the same baseline failure rate
λ(t).

Then ordering of variances

V ar(Z1) > V ar(Z2) (4.16)

is a sufficient and necessary condition for ordering of mixture failure rates
in the neighborhood of t = 0:

λm1(t) < λm2(t); t ∈ (0, ε), (4.17)

where ε > 0 is sufficiently small.

Proof Sufficient condition:
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From results of the previous sections:

4λ(t) = λm1(t)− λm2(t) = λ(t)(E[Z1|t]− E[Z2|t]), (4.18)

E ′
t[Zi|t] = −λ(t)V ar(Zi|t) < 0, i = 1, 2, t ≥ 0, (4.19)

where
E[Zi|0] ≡ E[Zi], V ar(Zi|t) ≡ V ar(Zi). (4.20)

As the means of mixing variables are equal, relation (4.18) for t = 0 reads:
4λ(0) = 0 and therefore the time interval in (4.17) is open. Thus, if ordering
in variances holds, ordering (4.17) follows immediately after considering the
derivative of

λm1(t)

λm2(t)
=

E[Z1|t]
E[Z2|t]

at t = 0 and taking into account relations (4.19) and notation (4.20).

Necessary condition:

The proof of the first part of the theorem was, in fact, trivial. The second
one is a bit more technical. Similar to (4.11), the numerator of the difference
4λ(t) is

λ(t)

∫ b

a

∫ b

a

e−Λ(t)(s+u)(u− s)π1(u)π2(s)duds.

After changing variables to x = (u + s)/2, y = (u− s)/2, the double integral
is transformed to the iterated integral and denoted by G(t):

G(t) ≡
∫ b

a

e−2Λ(t)x

∫ x

−x

y π1(x + y)π2(x− y)dydx.

Denote the internal integral by g(x). Then:

G(t) =

∫ b

a

e−2Λ(t)xg(x)dx.

On the other hand, coming back to initial variables of integration and
taking into account that Λ(0) = 0:
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G(0) =

∫ b

a

g(x)dx =

∫ b

a

∫ b

a

(u− s)π1(u)π2(s)duds

=

∫ b

a

uπ1(u)du−
∫ b

a

uπ2(u)du

= E[Z1]− E[Z2] = 0.

Assume first that λ(0) 6= 0. As G(0) = 0, the function G(t) is negative
in the neighborhood of 0 if G′(0) < 0:

G′(t) = −2λ(t)

∫ b

a

e−2Λ(t)xxg(x)dx,

and

G′(0) < 0 =⇒
∫ b

a

xg(x)dx > 0.

If 4λ(t) < 0, t ∈ (0, ε) (condition (4.17), then G(t) < 0, t ∈ (0, ε), and
taking into account that

∫ b

a

xg(x)dx =

∫ b

a

∫ b

a

u + s

2
(u− s)π1(s)π2(s)duds

=
1

2

∫ b

a

∫ b

a

(u2 − s2)π1(s)π2(s)duds

=
1

2
(V ar(Z1)− V ar(Z2)),

we arrive at ordering (4.16).
Similar considerations are valid for λ(0) = 0. The function G(t) is nega-

tive in this case in the neighborhood of 0, if G′′(0) < 0. As

G′′(0) = −2λ′(0)

∫ b

a

xg(x)ds

and λ′(0) > 0 (as λ(t) > 0, t > 0 and λ(0)), the foregoing reasoning, which
was used for the case λ(0) 6= 0, also takes place. ¤

A trivial but important consequence of this theorem is:

Corollary 4.1 Let mixtures failure rate ordering (4.17) holds for t ∈ (0,∞).
Then inequality (4.16) holds.
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4.2 Modelling Impact of Environment

4.2.1 Bounds in the proportional hazards model

Consider a specific multiplicative frailty model (1.15)-(1.16). Combine for-
mally this model with a proportional hazards (PH) model in a following
way:

λ(t, z, k) = zkλ(t) ≡ λ(t), (4.21)

where z, as previously, comes from a realization of an unobserved random
frailty Z, and k is a proportional factor from the ‘conventional’ PH model. As
we are not performing data analysis, this factor is written in the ‘aggregated’
form k (and not as eBT X for regression analysis). PH model is often used
for modelling an impact of environment (covariates), therefore the combined
model can be aslo used for this purpose (Wienke, 2003).

In accordance with (4.21), the baseline F (t) can be viewed as being in-
dexed by the random variable Zk = kZ with the pdf πk(z) = π(z/k), whereas
the corresponding conditional pdf πk(z|t) is given by the right hand side of
equation (1.3), where π(z) is substituted by πk(z). Equivalently, (4.21) can
be interpreted as a frailty model with a mixing random variable Z and the
baseline failure rate kλ(t). These two simple equivalent interpretations will
help us in what follows. Without loosing generality assume that a = 0 and
b = ∞. Thus, similar to the previous situations, the mixture failure rate in
this case is:

λmk(t) = kλ(t)

∫ ∞

0

zπk(z|t)dz ≡ λ(t)E[Zk|t], (4.22)

As Zk = kZ, its density function is

πk(z) =
1

k
π

(z

k

)
.

Theorem 4.6 Let the mixture failure rates for the multiplicative models
(1.15) and (4.21) be given by relations (1.16) and (4.22), respectively, where
k > 1.

Assume that the following quotient increases in z:

πk(z)

π(z)
=

π (z/k)

kπ(z)
↑ (4.23)
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Then the following ordering holds:

λmk(t) > λm(t); ∀t ∈ [0,∞). (4.24)

Proof Although inequality (4.24) seems intuitively trivial at first sight,
it is valid only for some specific cases of mixing (e.g., the multiplicative
model)! It is clear that (4.24) is always true for sufficiently small t, whereas
for larger values of time the ordering can be different for general mixing
models. Denote:

4λm(t) = λmk(t)− λm(t).

Using definitions (1.2)-(1.3), it can be seen similar to relation (4.11) that the
sign of this difference is defined by the sign of:

∫ ∞

0

zF̄ (t, z)πk(z)dz

∫ ∞

0

F̄ π(z)dz −
∫ ∞

0

F̄ (t, z)πk(z)dz

∫ ∞

0

zF̄π(z)dz

=

∫ ∞

0

∫ ∞

0

F̄ (t, u)F̄ (t, s)[aπk(u)π(s)− sπk(u)π(s)]duds

=

∫∫

0<s<u<∞
F̄ (t, u)F̄ (t, s)[πk(u)π(s)(u− s) + πk(s)π(u)(s− u)]duds

=

∫∫

0<s<u<∞
F̄ (t, u)F̄ (t, s)(u− s)[πk(u)π(s)− πk(s)π(u)]duds.

(4.25)

Therefore, the sufficient condition for inequality (4.24) is condition (4.23),
which is, in fact, rather crude. It is easy to verify that this condition is
satisfied e.g., for the Gamma and the Weibull densities, which are often used
for mixing. ¤

Example 4.2 Consider the same setting as in Example 4.1. Condition
(4.23) is satisfied for the Gamma distribution. The mixture failure rate λm(t)
in this case is given by relation (4.15). A similar equation obviously exists
for λmk(t), and the corresponding comparison can be performed explicitly:
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λmk(t) = λ(t)
E2[Zk]

E[Zk] + V ar(Zk)Λ(t)

= λ(t)
k2E2[Z]

kE[Z] + k2V ar(Z)Λ(t)
> λm(t).

(4.26)

♦

Now we will obtain an upper bound for λmk(t).

Theorem 4.7 Let the mixture failure rates for the multiplicative models
(1.15) and (4.21) be given by relations (1.16) and (4.22), respectively, where
k > 1. Then:

λmk < kλm(t); ∀t ∈ (0,∞). (4.27)

Proof Consider the difference λmk(t)− kλm(t) similar to (4.25), but
in a slightly different way: λmk(t) will be equivalently defined by the baseline
failure rate kλ(t) and the mixing variable Z (in (4.25) it was defined by the
baseline λ(t) and the mixing variable kZ). This means:

λmk(t)− kλm(t) = kλ(t)(Ê[Z|t]− E[Z|t]), (4.28)

where conditioning in Ê[Z|t] is different from the one in E[Z|t] in the de-
scribed sense. Denote:

F̄k(t, z) = e−zkΛ(t).

‘Symmetrically’ to (4.25), sign[λmk(t)− kλm(t)] is defined by

sign

∫∫

∞>u>s>0

π(u)π(s)(u− s)[F̄k(t, u)F̄ (t, s)− F̄ (t, u)F̄k(t, s)]duds,

which is negative for all t > 0, as

F̄k(t, z)

F̄ (t, z)
= e−(k−1)zΛ(t)
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is decreasing in z for k > 1. ¤

It is worth noting that we do not need additional condition for this bound
as in the case of Theorem 4.6. Also it is clear that λmk(0) = kλm(0). As it
was already mentioned, model (4.21) defines a combination of a PH and a
frailty model. When Z = 1, it is an ’ordinary’ PH model. In the presence of
a random Z, as follows from (4.27), the observed failure rate λmk(t) cannot
be obtained as kλm(t) due to the nature of mixing. Therefore:

The PH model in each realization does not result in the PH model for the
corresponding mixture failure rates.

Example 4.2 can be continued to illustrate inequality (4.27):

λmk(t) = λ(t)
k2E2[Z]

kE[Z] + k2V ar(Z)λ(t)

< λ(t)
kE2[Z]

E[Z] + V ar(Z)Λ(t)
= kλm(t).

4.2.2 Change point in environment

Assume that there are two possible environments (stresses): ε(t) and εs(t) -
the baseline and a more severe one, respectively. The baseline environment
for our heterogeneous population corresponds to the observed failure rate
λm(t) and a more severe one to λmk(t), k > 1. As previously, assume also
that the PH model for each subpopulation (for each fixed z) holds.

Consider a piece-wise constant step stress with a single change point at
t1:

ε(t1) =

{
ε, 0 ≤ t < t1

εk t ≥ t1
(4.29)

where the stresses ε and εk correspond to the failure rates zλ(t) and zkλ(t),
respectively (k > 1, z ≥ 0), and z, as previously, is a realization of the frailty
Z. In accordance with a ’memory-less property’ of the PH model, the stress
(4.29) results in the following failure rate:

λ(t, t1, z, k) =

{
zλ(t), 0 ≤ t < t1

kzλ(t) t ≥ t1
(4.30)
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for each subpopulation.

Denote the resulting mixture failure rate in this case as:

λ(t, t1) =

{
λm(t), 0 ≤ t < t1

λ̃mk(t) t ≥ t1
(4.31)

where, similar to the previous section:

λ̃mk(t1) = kλm(t1). (4.32)

It is worth noting that relation (4.32) means that this model with a step
stress is proportional for the mixture failure rates only at the switching point
t1.

We want to prove the following inequality:

λmk(t) < λ̃mk(t); ∀t ∈ [t1,∞). (4.33)

In accordance with (4.31), consider two initial (for the interval [t1,∞))
mixing random variables: Z1 = [Z|T1 > t1], where T1 is defined by the
baseline failure rate kλ(t) and Z̃1 = [Z|T̃1 > t1], where T̃1 is defined by the
baseline failure rate λ(t). As follows from definition (1.3), the corresponding
ratio

π̃(z, t1)

π(z, t1)
= e(k−1)zΛ(t1)

increases in z for k > 1. Then inequality (4.33) follows immediately after
taking into account the proof of Theorem 4.1 with obvious alterations caused
by the change in the left end point of an interval from 0 to t1.

Inequality (4.33) was graphically illustrated in Vaupel and Yashin (1985)
(fig. 10) for a specific case of a discrete mixture of two subpopulations and
the Gompertz baseline failure rate. The demographic meaning was the fol-
lowing: suppose we decrease mortality rates of subpopulations at early life
([0, t1)). Then the observed mortality rate in [t1,∞) is larger than the ob-
served mortality rate for the initial mixture without changes. In other words:
“early successes results in further failures” (Vaupel and Yashin (1985)).

4.2.3 Shocks in heterogeneous populations

In this section we consider another type of environmental impact - shocks.
The shock models form an interesting and elaborated area in reliability math-
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ematics. We shall look only at one specific model, but hopefully the approach
can be generalized to a wider class of settings.

Consider now a general mixing model (1.2)-(1.3) and assume that at
time t = t1 an instantaneous shock had occurred, which affects the whole
population: with the corresponding complementary probabilities it either
kills an individual, or ‘leaves him unchanged’. Without loosing generality let
t1 = 0, otherwise, as in previous sections, a new initial mixing variable [Z|t1]
should be defined and the corresponding procedure can be easily adjusted
to this case. It is natural to suppose that the more frail individuals or
populations (with larger failure rate) are more susceptible to killing.

This setting can be defined probabilistically in a following way: let π1(z)
denote a frailty pdf of a random variable Z1 after a shock and let λms(t) be
the corresponding observed (mixture) failure rate after it. Assume:

π1(z) =
g(z)π(z)∫ b

a
g(z)π(z)dz

, (4.34)

where π(z) is a frailty pdf before a shock and g(z) is a decreasing function
and, therefore, π1(z)/π(z) is decreasing. It means that a shock performs a
kind of a burn-in operation (Block et al, 1993) and random variables Z and
Z1 are ordered in the sense of the likelihood ratio (Ross, 1996; Shaked and
Shanthikumar,1993):

Z ≥LR Z1. (4.35)

Now we able to formulate the following result:

Theorem 4.8 Let relation (4.34), defining a mixing density after a shock at
t = 0, where g(z) is a decreasing function, hold.

Assume also that ordering (4.1) holds. Then:

λms(t) < λm(t); ∀t ∈ [0,∞). (4.36)

Proof Inequality (4.1) is a natural ordering in the family of failure rates
λ(t, z), z ∈ [0,∞) and trivially holds for the specific multiplicative model
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(1.15). Conducting all steps as when obtaining relation (4.25) we obtain that
the sign of λms(t)− λm(t) is the same as the sign of

∫∫

∞>u>s

F̄ (t, u)F̄ (t, s)(λ(t, u)− λ(t, s))(π1(u)π(s)− π1(s)π(u))duds,

which is negative due to definition (4.34) and assumptions of this theorem.
¤

At t = 0, for instance:

λm(0)− λms(0) =

∫ ∞

0

λ(0, z)(π(z)− π1(z))dz.

In accordance with inequality (4.36), the curve λms(t) lies beneath the curve
λm(t) for t ≥ 0, which means that the weakest populations are ‘burned-out’
by the shock. This fact seems intuitively evident, but, in fact, it is valid
only due to rather stringent conditions of this theorem. It can be shown,
for instance, that the replacement of condition (4.35) by a weaker one of
stochastic dominance: Z ≥st Z1 will not guarantee ordering (4.36) for all t.
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Conclusions

Populations are often heterogeneous in real life and the assumption of homo-
geneity usually simplifies the corresponding statistical analysis. The failure
rate is a crucial characteristic of lifetime random variables, as it probabilisti-
cally defines the instantaneous hazard (risk) of failure (death) for survivors.
A shape of the failure rate is an important feature, which among other things,
is responsible for aging properties of lifetime distributions. If, for instance,
the failure rate increases, then the corresponding distribution belongs to the
IFR class and is usually appropriate for modelling lifetimes of wearing ob-
jects.

This thesis is devoted to a mixture failure rate modelling. Mixtures of
distributions usually present an effective tool for modelling heterogeneity. It
turns out that the shape of the mixture failure rate differs from the shape of
the baseline failure rate and even the pattern can be surprisingly different.
Under certain assumptions, for instance, the baseline IFR distribution can
change to the DFR one after the operation of mixing.

The main emphasis of the study is on asymptotic properties of the mixture
failure rate λm(t) as t →∞. These properties are studied in chapters 2 and
3. We develop a new asymptotic approach, which allows for explicit asymp-
totic formulas for λm(t). The suggested class of survival models is rather
broad and includes the conventional proportional hazards, accelerated life
and additive models. It is shown that asymptotic behavior of mixture fail-
ure rates under reasonable assumptions depends only on the behavior of the
mixing distribution in the neighborhood of the left end point of its support
and not on the whole mixing distribution. The approach is generalized to a
multivariate (bivariate) case.

The behavior of λm(t) in [0,∞) is also studied. Specifically, we develop
a methodology for the mixture failure rates ordering for stochastically or-
dered mixing random variables. We show that the natural type of ordering
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for mixing models is ordering in the sense of likelihood ratio. It is proved,
specifically, that when two frailties are ordered in this way, the corresponding
mixture failure rates are naturally ordered as functions of time in [0,∞). A
‘combination’ of a frailty and a proportional hazards model is studied and
the bounds for the mixture failure rate in this case are also obtained.

The obtained mathematical results are new and they are not extensions or
generalizations of the previous results in the literature. Asymptotic analysis
is based on the original approach, based on considering the corresponding
Laplace integrals. Stochastic ordering of the mixture failure rates was not
considered in the literature before.

We see a lot of engineering and biological applications of our results.
Human and animal populations are heterogeneous and understanding the
shape of the mortality rate is very important. For instance, we can explain
the deceleration in human mortality for the oldest old under rather general
assumptions without assuming the oversimplified Gamma-frailty model, as
it was done before. Another example is the accelerated life model, which
is widely used for modelling lifetimes of engineering objects. The mixture
failure rate for this model was not studied before and our methodology can
help, e.g., in the proper analysis of reliability and maintenance strategies in
the presence of random factors.
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