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BIKE SHARING SYSTEM: SOLVING THE STATIC REBALANCING PROBLEM

DANIEL CHEMLA, FRÉDÉRIC MEUNIER, AND ROBERTO WOLFLER CALVO

Abstract. This paper deals with a new problem that is a generalization of the many to many pickup and
delivery problem and which is motivated by operating self-service bike sharing systems. There is only one
commodity, initially distributed among the vertices of a graph, and a capacitated single vehicle aims to
redistribute the commodity in order to reach a target distribution. Each vertex can be visited several times
and also can be used as a bu�er in which the commodity is stored for a later visit. This problem is NP-hard,
since it contains several NP-hard problems as special case (the TSP being maybe the most obvious one).
Even �nding a tractable exact formulation remains problematic.

This paper presents e�cient algorithms for solving instances of reasonable size, and contains several the-
oretical results related to these algorithms. A branch-and-cut algorithm is proposed for solving a relaxation
of the problem. An upper bound of the optimal solution of the problem is obtained by a tabu search, which
is based on some theoretical properties of the solution, once �xed the sequence of the visited vertices. The
possibility of using the information provided by the relaxation receives a special attention, both from a
theoretical and practical point of view. It is proved that to build a feasible solution of the problem by using
the one obtained by the relaxation is an NP-hard problem. Nevertheless, a tabu search initialized with the
optimal solution of the relaxation often shows that it is the optimal one.

The algorithms have been tested on a set of instances coming from the literature, proving their e�ective-
ness.

1. Introduction

Nowadays self-service bike sharing systems are �ourishing all over the world. The exploitation of such
transport systems implies various problems and one of them is to ensure people that they will be able to
�nd a bike or to park it at each station all the day long. Therefore, a regulation system is necessary for
maintaining a pre�xed optimal number of bikes at each station in order to ful�ll at best the demand. It is
done with a �eet of vehicles which are driven around the city and move bikes from a place to another. This
work restrains to the rebalancing problem with one vehicle and in the static case. Static means that users
cannot act on the bikes during the rebalancing process. The static rebalancing problem can be classi�ed as
a Single Vehicle One-commodity Capacitated Pickup and Delivery Problem (SVOCPDP). This problem is
the one faced by an operator during the night when the number of moving bikes is negligible and when the
city is divided into districts. Each district is covered by a single truck that has to redistribute the bikes in
order to respond to the morning peak at best. This is a realistic problem since it is during the night that the
impact of the regulation is the most important, as explained by operators. There are even such systems (for
instance the one in Lyon, France), which are closed during the night, to make this regulation task easier.

To get an idea of the size of such a system, the numerical features of the Vélib system in Paris are
presented. This system o�ers more than 20′000 bikes deployed in about 1′200 stations that are in Paris and
its border cities and a �eet of twenty three trucks of capacity equal to 20 are used to move bikes during
the day to match the demand. If the city is divided into areas on which only one truck operates, then each
truck has to work on about 50 stations. This paper focus on this part of this operating problem: how to
deal with a part of the city assigned to a single vehicle. The multiple vehicles case is currently under study
(see [CMWC11]).

The problem can be formalized as follows. Let G = (V,A) be a complete directed graph where V =
{0, . . . , n} is the vertex set composed by n + 1 vertices, the vertices in {1, . . . , n} representing the stations
and the vertex 0 representing the depot, and where A is the set of arcs. For each arc (i, j) ∈ A, we denote by
c(i,j) the cost of the arc (i, j). The cost is assumed to satisfy the triangular inequality (i.e., c(i,j)+c(j,k) ≥ c(i,k)

for all i, j, k ∈ V ). Each vertex i has a capacity Ci ∈ Z+. For each vertex i ∈ V , its initial state in bikes is
de�ned by pi ∈ Z+ and its target, or �nal, state by qi ∈ Z+. A vertex is in excess (resp. in default ) if pi > qi
(resp. pi < qi). Some vertex can be initially balanced i.e. pi = qi. Moreover, throughout the paper the
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imbalance di = pi−qi is used and the depot is always assumed to have no bike: C0 = p0 = q0 = 0 and d0 = 0.
The vehicle has also a capacity Q.

A feasible solution for the SVOCPDP, also called a route, is a sequence of vertices, starting and �nishing
with the depot 0, together with bike displacements within the limits of capacity constraints, at the end of
which the system is balanced: each vertex i has been brought from its initial state pi to its target state qi.
In this case, the sequence of vertices is said to be induced by the route. The goal of the SVOCPDP is to
�nd the minimal cost route. Note that the convergence for each vertex from pi to qi is not required to be
monotonous: drops and multiple visits of the vertices are allowed, i.e. bikes can be loaded from vertices in
default or unloaded at vertices in excess and transfers can take place at initially balanced vertices. Figure
1 shows an example of instance with 9 vertices (the depot and 8 stations) including one initially balanced
vertex. A pair of values representing (pi, qi) is displayed next each vertex and the capacity of the vehicle is
equal to 8. Figure 2 shows a feasible solution.

(4; 10)

(6; 7)
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0

Figure 1. Example of an instance.
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Figure 2. Example of a feasible solution (i.e. a route)
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1.1. Complexity. The SVOCPDP is NP-hard since it contains NP-hard problems as special cases. It is
easy to see it, but details are given for sake of completeness. The TSP is obviously one of them. Set pi = 0
and qi = 1 for all vertices i ∈ {1, . . . , n − 1}, and set pn = n − 1 and qn = 0. Add a depot at distance 0
from the vertex n. Set Q = n− 2. The optimal solution of the SVOCPDP coincides with the optimal TSP
solution.

The 2-partition is another special case. Let b1, . . . , bn be n non-negative integers such that
∑
i bi is

even. De�ne m = 1
2

∑n
i=1 bi. The 2-partition problem is a decision problem asking whether there exists

I ⊆ {1, . . . , n} such that
∑
i∈I bi = m. Take the complete graph with n+ 3 vertices: n vertices with pi = bi

and qi = 0; 2 vertices with pi = 0 and qi = m and the depot. De�ne the c(i,j) to be 1 for each arc (i, j) and
the capacity of the vehicle equal to m. The optimal solution of the SVOCPDP problem is equal to n+ 3 if
and only if there is a subset I ⊆ {1, . . . , n} such that

∑
i∈I bi = m.

Moreover, an optimal route of the SVOCPDP problem may not have an encoding that is polynomial in
the size of the input. The simple case with three vertices � the depot 0, one vertex 1 with p1 = B and q1 = 0
and one vertex 2 with p2 = 0 and q2 = B � is enlightening. Assuming that Q = 1, the optimal sequence of
vertices is 0, 1, 2, 1, 2, . . . , 0, with a number of terms = 2B + 2, although the input is in O(log2B).

1.2. Main contributions of this paper. This paper deals with a new problem (see [BBC+11] for a �rst
reference on this problem with theoretical results such as approximation algorithms or special polynomial
cases). We emphasize that we are not only interested by e�cient algorithms for solving it, but also by
theoretical results linked with these algorithms and giving a better understanding of the problem.

An exact model is presented, which does not seem to be tractable. Therefore, a relaxation, which turns
out to be an integer program with an exponential number of constraints, is proposed and solved by a branch-
and-cut algorithm. The optimal solution of this relaxation generally provides a good lower bound of the
optimal solution of the original problem (the quality of this lower bound is proven experimentally). For a
�xed sequence of vertices visited by the vehicle, we prove that it is possible to �nd in polynomial time the
operations that bring the system to the possible state nearest to the target state (Propositions 1 and 2).
In particular, we prove that it is possible to decide in polynomial time whether there is a feasible solution
inducing precisely a �xed sequence of visited vertices. It allows to derive a purely combinatorial tabu search
providing upper bounds for the problem: the underlying neighborhood does not take care of the loading of
the vehicle. The tabu search proves good behaviors.

Moreover, a special attention is given to the way of using the information provided by the relaxation:
both from a theoretical point of view and from a practical one. From a theoretical point of view, we are able
to prove that even if the relaxation is quite natural and provides (experimentally) good lower bounds, it is
an NP-complete problem to decide whether there is an optimal solution of same cost. More precisely, given
the number of times each arc is traversed, and given the number of bikes carried on each visit on each arc,
it is an NP-complete problem to decide whether there is an optimal solution realizing these numbers. This
property is formalized in Propositions 5�8. From a practical point of view, it is experimentally shown that
the solutions obtained with the relaxation are often the optimal ones. Indeed, the tabu search is in general
able to �nd a solution of almost the same cost, when initialized with the optimal solution of the relaxation.

1.3. Notations and basic notions. We de�ne for all subsets S ⊆ V :
• S̄ = V \S
• δ+(S) := {(i, j) ∈ A : i ∈ S; j ∈ S̄}
• δ−(S) := {(i, j) ∈ A : i ∈ S̄; j ∈ S}
• δ(0) := δ+({0}) ∪ δ−({0})
• d(S) =

∑
j∈S dj

• µ(S) is equal to 1 whenever there is at least one initially non-balanced vertex in S, 0 otherwise.

Given z ∈ RA+, G[z] is the directed graph obtained from G by deleting the arcs a with za = 0. This graph
is called the support graph of z.

A notion used several times in the paper is the one of a b-�ow. A b-�ow is an usual notion in combinatorial
optimization (see for instance [Sch03, KV02]). Given a directed graph D = (U,A′), a value b ∈ RU , and
capacities l, u ∈ RA′ with l ≤ u, a b-�ow is a map f : A′ → R such that la ≤ f(a) ≤ ua for all a ∈ A′

and
∑
a∈δ+(v) f(a) = bv +

∑
a∈δ−(v) f(a) for all v ∈ U . If it exists, a b-�ow can be computed in strongly
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polynomial time. Moreover, when all the bv and the la, ua are integral, if a b-�ow exists, there is an integral
one.

1.4. Plan. In Section 2, di�erences between the SVOCPDP and problems in the literature are presented.
Section 3 presents the aforementioned proposition that enables to �nd in polynomial time the operations
that bring the system to the possible state nearest to the target state, given a �xed sequence of vertices
visited by the vehicle. An exact model of the problem is given in Section 4, and a relaxation is presented
in Section 5. In Section 6, we prove that deciding whether a solution of the relaxation is a feasible solution
for the SVOCPDP is NP-complete. The Section 7 contains the description of the branch-and-cut algorithm
that is used to solve the relaxation. The proposition of Section 3 is used in Section 8 for deriving a tabu
search. Finally, Section 9 presents the computational results on instances from the literature with a slight
adaptation in order to �t the SVOCPDP's features.

2. Literature review

In the literature, similar problems are the One-Commodity Pickup-and-Delivery TSP (1PDTSP) studied
by [HPSG04a] and the Swapping Problem de�ned by [AH92]. This latter has been solved by [BGG08, BGL09]
in its preemptive and its non-preemptive versions. For solving the 1PDTSP, several papers have been
published recently in the literature. They propose di�erent exact and heuristic algorithms (see [HPSG04b],
[HPSG07], [HPRMSG09] and [HIMU12]). Since these two problems present several similarities with our
problem, more details about them are given in the next paragraph. A recent conference paper by [RTF09] is
motivated by the same application. They discuss di�erent variants of the problem of repositioning the bikes
which are modeled by mixed linear programs and solved using CPLEX. For some variants, they are able
to solve several instances to optimality (up to 60 stations and 2 vehicles for their so-called �Arc-Indexed�
variant). Our model is close to their �Sequence-Indexed� variant (see Section 3.4 of [RTF09]), but instead of
computing a minimum cost route with �xed target states, they try to �nd the best repartition of bikes that
can be achieved by a �eet of one or several vehicles within a time limit. Moreover, in the Sequence Index
formulation given by [RTF09], drops are not allowed, a thing that will be �xed in an upcoming version by
[RT11].

The SVOCPDP gathers aspects from both the Swapping Problem and the 1PDTSP but di�ers by main
features. In the Swapping Problem a single vehicle has to move unitary objects from a vertex to another.
There are m di�erent types of objects and the vehicle has a unitary capacity: it can only move one object
at the time. [AH92] showed that a vertex could be visited at most three times in the optimal solution. This
theorem was the starting point of the work of [BGG08, BGL09] for solving the Swapping Problem with a
branch-and-cut algorithm. The SVOCPDP is di�erent since there is only one type of object (bikes), but the
supply and the demand are greater than one and the vehicle capacity is Q. Anily and Hassin's theorem does
not hold anymore: for example in the trivial instance with one pickup vertex with pi = 5Q and qi = 0 and
one delivery vertex with pi = 0 and qi = 5Q, the vehicle has to do �ve round trips between the two vertices.

The main di�erence with the 1PDTSP is that in the SVOCPDP a vertex can be visited several times,
whereas in the 1PDTSP the solution is required to be an Hamiltonian cycle. In the 1PDTSP, the depot
is assumed to have an unlimited number of objects, but this fact can be modelled in the SVOCPDP by a
vertex at distance 0 from the depot with Q bikes available and a target state of Q bikes. A solution of the
1PDTSP is a feasible solution for the SVOCPDP, but the SVOCPDP can have a lower-cost optimal solution.
Moreover, the 1PDTSP may have instances without feasible solutions (the instance of Figure 3, with Q = 3,
is an example), something that can not happen for the SVOCPDP.

The fact that one can get better solutions in routing problems when customers are allowed to be visited
several times has already be noticed in other works. Note for instance the work by [ASH06], in which a Split
Delivery Problem is solved through a tabu search. In the SVOCPDP, any vertex can be used as a bu�er
where bikes can be indi�erently temporary loaded or unloaded before being moved to their �nal destination.
In particular, initially balanced vertices are not required to be visited, but may act as temporary depot in
some optimal solutions.

The bu�ers can improve the optimal solution in some instances such as shown in the example given in
Figure 3 and in Figure 5. In Figure 3 the square with the 0 inside is the depot and its distance with vertex
1 is null. For any other vertex i, (pi; qi) is given. The capacity of the vehicle is Q = 3 and the distances

4



between all the peripheral vertices to the central one is 1. We show here the optimal solution, whose value
is equal to 10. In this solution a bike is temporary unloaded at the central vertex 6 and then reloaded on
the vehicle. The optimal solution would be equal to 12, if drops would be forbidden, because one of the odd
number vertices would have to be visited twice.

(2; 0)

0

(2; 0)

(2; 0)

(0; 3)(0; 3)

(0; 0)

2

0

00

0

0

2

0

33

1 31

3

2 4

6

5

Figure 3. Drops can help optimality

Figures 4 and 5 present a situation where the non-monotonous convergence of the load of the vertices
improves the solution. Figure 4 shows the best solution of the 1PDTSP. The two �rst vertices with initial
and target states (Q; 0) and (0;Q) (Q being the capacity of the vehicle) are here to prevent a use of the
unlimited number of bikes in an optimal solution, available in the depot for the 1PDTSP. Figure 5 represents
the optimal solution for the SVOCPDP. In both �gures, the square with 0 is the depot, as in Figure 3. In
Figure 5, the vehicle takes a bike from the left-corner vertex of the square, increasing momentary the de�cit
in bikes, before coming back with the two missing bikes. With Euclidean distances, the solution of the
SVOCPDP is better than the one of the 1PDTSP.

0

(0; 1)

(3; 0)

3
0

0
(Q; 0) (0;Q)

Q

(2; 3)

(2; 3)

1

2

0

Figure 4. An optimal solution for the 1PDTSP

3. Dealing with sequences and routes

The di�culty of the SVOCPDP is that a feasible solution is identi�ed by both a sequence of vertices and
a set of numbers of bikes carried on arcs. The following proposition (and its companions Propositions 2
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Figure 5. An optimal solution for the SVOCPDP with the same input as for Figure 4, the
non-monotonous convergence helps

and 3) enables us to work only with sequences of vertices. It will be particularly useful in Section 8 when
we will design a local search for the SVOCPDP.

Proposition 1. Let i1, i2 . . . , ik be a sequence of vertices, starting and �nishing at the depot 0 = i1 = ik.
There is a polynomial algorithm �nding new initial and target states (p′i, q

′
i) for each vertex i and a route

inducing this sequence of vertices and satisfying these new states such that

• 0 ≤ p′i ≤ pi and 0 ≤ q′i ≤ qi for each vertex i
• ∑i p

′
i =

∑
i q
′
i

• the quantity
∑
i∈V p

′
i is maximal.

In particular, it is possible to decide in polynomial time whether a sequence of vertices is induced by a feasible
solution (in this later case, p′i = pi for each vertex i).

1

1′

1′′

2

2′

3

3′

s

t

Figure 6. Example of the graph used in the algorithm of Proposition 1

The proposition says roughly speaking that it is possible to �nd the best bike displacements compatible
with the sequence of vertices. The quantity

∑
i∈V (qi − q′i) can be interpreted as a kind of �degree of

infeasibility� of a sequence and the proposition shows how to minimize it polynomially.
6



Proof. Let us build a directed graph D = (U,A′) as follows. U has k + 2 elements: each vertex ij (make as
many copies of a vertex i of G as there are occurrences of i in the sequence) and two more vertices s and t.
The arcs in A′ are of four types:

(1) one arc between s and the �rst occurrence of each vertex i in the sequence, with capacity pi,
(2) one arc (ij , ij+1) for each j = 1, . . . , k − 1, with capacity Q,
(3) one arc between the rth occurrence of each vertex i and its (r+ 1)th occurrence, if there is one, with

capacity Ci,
(4) one arc between the last occurrence of each vertex i in the sequence and t, with capacity qi.

See Figure 6 for an illustration with the sequence 0 → 1 → 2 → 3 → 1 → 3 → 1 → 2 → 0. Computing
a maximum s-t �ow in this graph leads to the proposition. Indeed, any s-t �ow on D encodes possible bike
displacements compatible with the given sequence of vertices. The numbers of bikes to be moved while going
from ij to ij+1 are given by the �ow on arc (ij , ij+1) (arcs de�ned in 2.); the number of bikes remaining in
a vertex i after the rth visit of the vehicle is given by the �ow on arc between the rth occurrence of vertex i
and its (r+ 1)th occurrence (arcs de�ned in 3.); the initial and �nal numbers of bikes in a vertex i are given
respectively by the �ows on arcs de�ned in 1. and 4. And conversely, any bike displacements compatible
with the given sequence of vertices induce an s-t �ow.
p′i is then the value of the �ow in the arc between s and the �rst occurence of i, and q′i the value of the

�ow in the arc between the last occurence of i and t. If a vertex i is not present in the sequence, then we
set p′i = q′i = min(pi, qi). � �

In the case that all Ci are su�ciently large, Proposition 1 has a nice and maybe quite unexpected corollary,
formalized by the following proposition. If we are not allowed to change the initial states, but only the �nal
ones, the solution given by Proposition 1provides a route with new �nal states closest to the original ones.

Proposition 2. Assume that we have Ci = +∞ for all vertices i. Let i1, i2 . . . , ik be a sequence of vertices,
starting and �nishing at the depot 0 = i1 = ik. Consider the problem of �nding bike displacements along
this sequence leading to the �nal state q̃ closest to q when starting from the initial state p, where �closest�
means the state that minimizes the L1 norm ||q̃ − q||1 =

∑
i∈V |q̃i − qi|. The bike displacements given by

Proposition 1 for this sequence are precisely the solution of this problem.

Proof. See Appendix. � �

As a by-product of the proof of Proposition 1, we get

Proposition 3. Assume that we have a feasible solution to the SVOCPDP with fractional numbers of bikes
carried during some moves. Then there is also a feasible solution of the same cost with only integral numbers
of bikes carried during the moves.

Thanks to this proposition, we can �forget� the integrality constraint without changing the cost of the
optimal solution.

4. An exact model

The exact model is based on the assumption that a constant βi is given for each vertex i, which is an
upper bound of the number of times the vehicle has to visit i in any optimal solution. For instance, given a
feasible solution of total cost O, we can set βi := O/minj 6=i c(i,j) ([Min10]). The model is intractable with a
direct approach, since the βi computed in this way can be quite huge and since the model involves variables
with four indices. It would be interesting to compute a tighter βi, which would reduce the size of the exact
model, but whether it is possible from a priori considerations remains an open question.

We introduce the following variables. xi,t takes the value 1 only if vertex i is visited at least t times.
zi,t,i′,t′ takes the value 1 only if the vehicle visits vertex i′ for the t′th time just after having visited i for
the tth time, and yi,t,i′,t′ is then the number of bikes that is carried by the vehicle during this move. The
variables y are not required to be integral since, according to Proposition 3, it does not change the optimal
value of the linear program. ui,t,i′,t′ is a variable which takes the value 1 if the t′th visit of vertex i′ comes
in the route after the tth time of vertex i (but not necessarily right after).
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(P ) z(P ) = min
∑

(i,i′)∈A

βi∑
t=1

β
i′∑

t′=1

c(i,i′)zi,t,i′,t′

s.t.

xi,t ≤ xi,t−1 ∀i ∈ V, ∀t ∈ {2, . . . , βi}(1)

∑
i′∈V \{i}

β
i′∑

t′=1

zi,t,i′,t′ = xi,t ∀i ∈ V, ∀t ∈ {1, . . . , βi} except for (i, t) = (0, 2)(2)

∑
i′∈V \{i}

β
i′∑

t′=1

zi′,t′,i,t = xi,t ∀i ∈ V, ∀t ∈ {1, . . . , βi} except for (i, t) = (0, 1)(3)

ui,t,i′,t′ ≥ ui,t,i′′,t′′ + zi′′,t′′,i′,t′ − 1 ∀i, i′, i′′ ∈ V, ∀t ∈ {1, . . . , βi}, ∀t′ ∈ {1, . . . , βi′},
∀t′′ ∈ {1, . . . , βi′′}(4)

ui,t,i′,t′ ≥ zi,t,i′,t′ ∀i, i′ ∈ V, ∀t ∈ {1, . . . , βi}, ∀t′ ∈ {1, . . . , βi′}(5)

ui,t,i,τ = 0 ∀i ∈ V, ∀t, τ ∈ {1, . . . , βi} with τ ≤ t(6)

yi,t,i′,t′ ≤ Qzi,t,i′,t′ ∀i, i′ ∈ V, ∀t ∈ {1, . . . , βi}, ∀t′ ∈ {1, . . . , βi′}(7)

0 ≤
∑

i′∈V \{i}

t∑
τ=1

β
i′∑

τ′=1

(yi′,τ′,i,τ − yi,τ,i′,τ′ ) + pi ≤ Ci ∀i ∈ V, ∀t ∈ {1, . . . , βi}(8)

∑
i′∈V \{i}

βi∑
τ=1

β
i′∑

τ′=1

(yi′,τ′,i,τ − yi,τ,i′,τ′ ) + pi = qi ∀i ∈ V(9)

zi,t,i′,t′ , ui,t,i′,t′ ∈ {0, 1} ∀i, i′ ∈ V, ∀t ∈ {1, . . . , βi}, ∀t′ ∈ {1, . . . , βi′}(10)

yi,t,i′,t′ ∈ R+ ∀i, i′ ∈ V, ∀t ∈ {1, . . . , βi}, ∀t′ ∈ {1, . . . , βi′}(11)

xi,t ∈ {0, 1} ∀i ∈ V, ∀t ∈ {1, . . . , βi}(12)

A way to see the exactness of this formulation consists in introducing a new graph, Gβ , obtained by
making βi copies of each vertex i of G, and whose arcs link any pair of copies of distinct vertices. The idea
is similar to the one for dynamic �ows, for which one introduces usually time-expanded graph. A vertex of
Gβ is of the form (i, t) with i ∈ V and t ∈ {1, . . . , βi} and any arc of the form ((i, t), (i′, t′)), with i 6= i′. A
vertex (i, t) in Gβ models the tth passage of the vehicle on vertex i. A feasible solution of the SVOCPDP
is equivalent to an elementary directed path in Gβ , starting from (0, 1), �nishing at (0, 2) and visiting (i, t)
only if all (i, τ) with τ < t have been visited.

(P) models this equivalent version on Gβ . Constraints (1) are logical constraints implied by the de�nition
of xi,t. Constraints (2) and (3) ensure that we get in Gβ an elementary path starting at (0, 1) and �nishing
at (0, 2). At �rst glance, there might be circuits as well. Constraints (4), (5), and (6) ensure that the
solution is coherent with the t index: the tth visit of vertex i comes after the τth visit, for any τ < t. As a
direct by-product, we get also that there is actually no circuit.

Constraints (7) limit the number of bikes transshipped on an arc at each move to the capacity of the
vehicle. Constraints (8) bound the number of bikes parked at a vertex i between 0 and its maximal capacity
Ci at any time step. Constraints (10), (11) and (12) ensure that the vertices have all reached their target
state at the end of the route.

Remark. The coherence on the t indices implied by the variables ui,t,i′,t′ and the constraints (4), (5) and
(6) in (P ) can alternatively be obtained by the introduction of variables hi,t ∈ {1, . . . ,

∑n
i=1 βi} encoding

the instant of tth passage on vertex i and the use of �big-M � constraints, in a similar spirit as for the TSP
with time windows (see for instance [DL91]).

5. Relaxations

This section presents two equivalent mixed integer programs. They represent a relaxation of the original
problem, since even solved to optimality they produce a lower bound of the optimal solution.

5.1. A �rst relaxation. Using the variables of the exact model (P ) of Section 4, a relaxation for the

SVOCPDP can be obtained by de�ning z(i,i′) =
∑βi
t=1

∑βi′
t′=1 zi,t,i′,t′ , which represents the number of times
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the arc (i, i′) ∈ A is traversed in the solution, and by de�ning y(i,i′) =
∑βi
t=1

∑βi′
t′=1 yi,t,i′,t′ , which represents

the total number of bikes transported on it.
The relaxation is

(RP1) z(RP1) = min
∑

(i,j)∈A
c(i,j)z(i,j)(13)

s.t.∑
j∈V

z(i,j) =
∑
j∈V

z(j,i) ∀i ∈ V(14)

∑
i∈V \{0}

z(0,i) = 1(15)

∑
i∈V \{0}

y(0,i) = 0(16)

pi +
∑

j∈V \{i}
y(j,i) = qi +

∑
j∈V \{i}

y(i,j) ∀i ∈ V(17)

∑
(i,j)∈δ+(S)

z(i,j) ≥ µ(S) S ⊆ V \ {0}(18)

0 ≤ y(i,j) ≤ Qz(i,j) ∀(i, j) ∈ A(19)

z(i,j) ∈ Z+, ∀(i, j) ∈ A(20)

Again, requiring that the y(i,j) are integral does not improve the value of the relaxation (RP1). Indeed,
whenever the values of the z(i,j) are �xed, the variables y(i,j) are solutions of a b-�ow problem, and hence,
since the pi, qi and Q are integer numbers, there is an optimal solution with integral values for the y(i,j).

Constraints (14) and (15) come from the constraints (2), and (3). Constraints (16), (17) and (19) come
from the constraints (7) and (9). Finally, constraints (18) ensure the connectivity of the solution, while
initially balanced vertices might be skipped in an optimal solution.

The proposed relaxation does not take into account the evolution on the number of bikes on each vertex at
each time-step: all the moves are considered simultaneously and so the sequential dimension of the problem
disappears. Therefore, although any solution of the SVOCPDP provides a solution of (RP1), a solution of
model (RP1) might not be a solution of the SVOCPDP, as shown by the example given in Figure 7. In this
example the values (pi; qi) are displayed next to each vertex, Q ≥ 2 and the optimal solution of (RP1) is
represented: each arc a in the �gure corresponds to za = 1, the others za being equal to 0 and the numbers
near each arc are the ya. The optimal solution satis�es model (RP1), but violates SVOCPDP: the vehicle
would have to take one bike from the �rst vertex that is not yet arrived there.

However, the solution of (RP1) is often a solution to the SVOCPDP as illustrated in the computational
results section (Section 9).

5.2. A second relaxation. The former mixed integer program requires two families of variables z(i,j) and
y(i,j). Linear program solvers are sensitive to the number of variables, and even if the y(i,j) can be assumed
to be real, (RP1) is too big to be solved by standard solvers. A way to get a tractable formulation consists
in reducing the number of variables. Therefore, we now de�ne an integer program which contains only the
z(i,j) variables and we show that solving the new integer program is equivalent to solving the former one.

(RP2) z(RP2) = min
∑

(i,j)∈A
c(i,j)z(i,j)(21)

s.t.∑
j∈V

z(i,j) =
∑
j∈V

z(j,i) ∀i ∈ V(22)
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Figure 7. A solution of (RP1) that is not a solution of the SVOCPDP

∑
i∈V \{0}

z(0,i) = 1(23)

∑
(i,j)∈δ+(S)

z(i,j) ≥ µ(S), ∀S ⊆ V \ {0}(24)

∑
(i,j)∈δ+(S)\δ(0)

z(i,j) ≥
⌈
d(S)

Q

⌉
∀S ⊆ V(25)

z(i,j) ∈ Z+, ∀(i, j) ∈ A(26)

Any feasible solution of the SVOCPDP induces z(i,j) that satisfy the constraints of program (RP2).
Constraints (22), (23) and (24) are similar to those of the �rst relaxation (RP1). Constraints (25) are the

capacity constraints requiring that, for any subset S ⊆ V , the vehicle goes at least
⌈
|d(S)|
Q

⌉
times into S.

The absolute value | · | is useless in (RP2). Indeed, if d(S) ≥ 0, it is not necessary. If d(S) < 0, (25) are
redundant and in anyway, when (25) is written with S̄, we obtain precisely what would have been obtained
with the |.| for S.

Constraints (25) are well-known in the CVRP context and it is still an open question whether a polynomial
algorithm separating these constraints exists (see for example [ABB+99]). In Subsection (7.2), we explain
how to deal with them.

Variables y(i,j) disappear in (RP2). However, for any feasible solution z(i,j) of (RP2), there is a feasible
solution to (RP1) with the same z(i,j) (and hence the same value of the objective function), and conversely.
This fact is summarized in the following proposition.

Proposition 4. Let y, z be a feasible solution of (RP1). Then z is a feasible solution of (RP2). Conversely,
let z be a solution of (RP2). Then there exists y such that y, z is a feasible solution of (RP1).

This property is also proven by [HPSG02] when z encodes an Hamiltonian circuit. Here the proposition
is proven in a more general case, and the proof is maybe slightly simpler since it does not involve Bender's
decomposition but the cut condition for b-�ows.
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Proof. Take a feasible solution y, z of (RP1). We show that the z(i,j) satisfy (RP2). The only thing that
has to be checked is that the z(i,j) satisfy constraints (25). Let S ⊆ V . Using constraints (16) and (19),
aggregated over (i, j) ∈ S we get ∑

(i,j)∈δ+(S)\δ(0)

z(i,j) ≥
1

Q

∑
(i,j)∈δ+(S)

y(i,j).

Hence ∑
(i,j)∈δ+(S)\δ(0)

z(i,j) ≥
1

Q

 ∑
(i,j)∈δ+(S)

y(i,j) −
∑

(i,j)∈δ−(S)

y(i,j)

 .

Since

∑
(i,j)∈δ+(S)

y(i,j) −
∑

(i,j)∈δ−(S)

y(i,j) =
∑
i∈S

 ∑
j∈V \{i}

y(i,j) −
∑

j∈V \{i}
y(j,i)

 ,

we get with the help of constraints (17) that∑
(i,j)∈δ+(S)\δ(0)

z(i,j) ≥
1

Q
d(S).

Conversely, take a feasible solution z of (RP2). The only thing that has to be checked is that there exists
a non-negative b-�ow y with bi = pi − qi for all i ∈ V with a capacity = Qz(i,j) on each arc (i, j). But
constraints (25) are precisely the well-known cut condition for �ows on networks (see for instance [Gal57]).
The integrality is a consequence of the integrality of bi. � �

Note that the two programs (RP1) and (RP2) are NP-hard, since they obviously contain the TSP as a
special case. Moreover, the continuous relaxation of (RP2) provides a better lower bound than the continuous
relaxation of (RP1) thanks to d·e in constraints (25).

6. Relaxation vs original problem

The hardness of SVOCPDP, already emphasized in Subsection 1.1, appears also through the following
four propositions, which show that even if we have a feasible solution or an optimal solution of (RP1) or
(RP2), it is an NP-complete problem to decide whether this solution is induced by a feasible solution for the
SVOCPDP.

Proposition 5. Let y, z be a feasible solution of (RP1). Deciding whether there is a feasible solution of the
SVOCPDP inducing y, z is NP-complete.

Proof. Let b1, . . . , br be r non-negative integers with
∑
l bl even. De�ne m = 1

2

∑r
l=1 bl. Consider then the

graph of Figure 8. It encodes a feasible solution y, z of program (RP1): each arc (i, j) has z(i,j) = 1 and
each number next to it is the corresponding value for y(i,j). Assume that the capacity of the vehicle is m+1.
We are going to prove now that there is a feasible solution for the SVOCPDP inducing such y(i,j), z(i,j) if
and only if there is a subset I ⊆ {1, . . . , r} such that

∑
l∈I bl = m, whence showing that deciding whether

such a route exists is NP-complete. Note that there are exactly 2m+ 1 bikes in the network.
Assume that such a feasible solution exists. Consider again Figure 8 and the following instant: the vehicle

takes arc (u, u′). At this time, the vehicle carries m+ 1 bikes. Therefore, it has already taken the arc (s, u)
(in order to have m bikes) and exactly one of the arcs (v, v′) (in order to get the remaining bike). It cannot
have already taken the other arc (v, v′), otherwise it should go back to the depot. It has not taken the arc
(u′, s) yet. Thus, m + 1 bikes among the 2m + 1 are on the vehicle, and m bikes are on vertex v′: there is
no bike left on vertex s. When the vehicle goes back to vertex s, using arc (u′, s), it carries exactly m bikes.
These m bikes have to be carried to vertex v, using arcs (s, v). Hence, the feasible solution selects (s, v) arcs
whose bl sum exactly to m.

Conversely, assume that there is a subset I such that
∑
l∈I bl = m. The sequence starting with the depot,

then going through s, u, s in this order, then going back and forth between s and v, using the arcs indexed by
I, to carry m bikes to v, then going through v′, u, u′, s in this order, then using the remaining arcs between
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s and v, and �nally going through v, v′ in order to �nish again at the depot is a feasible solution for the
SVOCPDP. � �

s

m

m

0
(2m; 0) (0; 0) (0; 1)

1

0

(0; 0)

m

m

(1; 2m)v′

0

v

0

u u′

m+ 1

b1
b2

br
. . .

0 0. . .

r − 2 arcs

Figure 8. Proof of NP-completeness

Proposition 6. Let z be a feasible solution of (RP2). Deciding whether there is a feasible solution of the
SVOCPDP inducing z is NP-complete.

Proof. See Appendix. � �

Those two propositions deal with feasible solutions of programs (RP1) and (RP2). Now, even if we have
a special solution, especially the optimal one, the question whether it is induced by an optimal one of the
SVOCPDP is NP-complete. We have indeed the following propositions.

Proposition 7. Let z∗ be an optimal solution of (RP2). Deciding whether there is a feasible solution of the
SVOCPDP inducing z∗ is NP-complete.

Proof. See Appendix. � �

Proposition 8. Let y∗, z∗ be an optimal solution of (RP1). Deciding whether there is a feasible solution of
the SVOCPDP inducing y∗, z∗ is NP-complete.

Proof. See Appendix. �

7. Lower Bound

The integer program (RP2) has an exponential number of capacity and connectivity constraints. The
problem is solved through a branch-and-cut algorithm. At each node of the branch-and-cut tree, the contin-
uous relaxation of the problem (RP2) is solved, but only a subset of constraints (24) and (25) are activated.
The continuous optimal solution z̄ is checked by di�erent routines that try to determinate violated con-
straints. If a violated constraint is found, it is added into the linear relaxation which is again optimally
solved. If no violated constraint is found, but z̄ is still fractional, branching goes on.

If the solution is integer, then it is a feasible solution of (RP2). Its value is kept and can be used as
an upper bound on the optimal value of (RP2). When the algorithm reaches the end, updating the upper
bound during the branch-and-cut process gives at the end the optimal solution of (RP2). If it stops before
(for instance if there is a time limit), we get at the end the best feasible solution encountered during its
exploration and a lower bound on the optimal solution value, used for calculating the gap.
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7.1. Separation of connectivity constraints. Given a solution z̄, computed at a node of the branch-and-
cut tree, we check that constraints (24) are satis�ed as follows. We consider the support graph G[z̄] together
with a capacity equal to z̄(i,j) on each arc (i, j). For each unbalanced vertex i, we compute the minimum

cut δ+(S) separating i from the depot 0 (with the algorithm by [EK72]). If this minimum cut has a value
strictly lower than 1, then we add the corresponding constraint to the linear program.

7.2. Separation of capacity constraints. As already noted when we have de�ned (RP2), there is no
known polynomial algorithm that checks the capacity constraints (25).

The following constraints are less tight but can be separated in polynomial time.

∑
(i,j)∈δ+(S)\δ(0)

z(i,j) ≥
d(S)

Q
, (∀S ⊆ V )(27)

These constraints are the relaxation of the constraints (25) in (RP2). They are called �relaxed capacity
constraints�. A method for �nding violated relaxed capacity constraints for the CVRP is proposed by
[ABB+99]. In the SVOCPDP, the di�erence is that a vertex can either be in excess or in default. Therefore
their method has been adapted to �t the speci�c characteristics of the SVOCPDP. The two arcs incident
to the vertex 0 are deleted and two new vertices s and t are added. Vertex s is linked to all vertices in
excess with the capacity κ(s,i) = di

Q whereas all vertices in default are linked to vertex t with the capacity

κ(i,t) = −di
Q . The capacity is equal to z̄(i,j) on the original arcs (i, j).

We compute an s-t min-cut (again with the Edmonds-Karp algorithm). Let X be the subset of vertices
such that δ+(X) is the s-t min-cut. s is in X and we de�ne S := X \ {s}. We still de�ne S̄ as V \ S, where
V is the vertex set of the original graph, and contains neither s nor t.

capacity of δ+(X) =
∑

i∈S\{0},j∈S̄\{0}
z̄(i,j) +

∑
i∈S̄\{0}

κ(s,i) +
∑

i∈S\{0}
κ(i,t)(28)

=
∑

(i,j)∈δ+(S)\δ(0)

z̄(i,j) −
d(S)

Q
+

∑
i∈V : d(i)>0

d(i)

Q
.(29)

If the capacity of δ+(X) minus
∑
i∈V : d(i)>0

d(i)
Q (which is a �xed value) is less than 0, it means that a

relaxed capacity constraint is violated and the corresponding constraint are added to the linear relaxation.
Otherwise, there is no violated relaxed capacity constraint as shown in Figure 9, which represents a possible
solution of the linear relaxation when solving the instance presented in Figure 2, but with a capacity of the
vehicle set to Q = 10. The fractional value of each arc is given next to it.

When the relaxed capacity constraints are respected a second procedure runs looking for violated capacity
constraints. The interest to look for these constraints in addition to the former is to increase the speed of the
general algorithm. Indeed, we get in this case tighter constraints. The used procedure is again an heuristic
presented in [ABB+99], since there is no known polynomial algorithm. It is a tabu search that tries to �nd a
subset S violating the constraints. A short explanation of the tabu search method is done later in Section 8.
The main idea is starting from a subset S of vertices, vertices are either added to S or removed from S
in order to �nd a new subset where capacity constraints are violated. Roughly speaking, the vertex that
is added to or removed from the subset is kept in a tabu list and cannot be used for a given number of
iterations. If the procedure �nds a violated capacity constraint, it is added to the linear program.

7.3. Initial relaxation, separation strategy and branching rules. The initial relaxation solved is
(RP2) without (24) and with (25) only for S = {i} for all i ∈ V . The separation routines are called with
respect to the following order:

• connectivity constraints (24)
• relaxed capacity constraints (25)
• capacity constraints (27)

The branch-and-bound tree framework SCIP has been used for the computational results. Two di�erent
branching strategies have been tested.
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Figure 9. Construction of the new graph from the graph of Figure 2 to check the relaxed
capacity constraints

The �rst one is the so-called reliability branching rule de�ned in their paper (see in [AKM05] for more
details), which is the one that seems the most e�ective one for solving SVOCPDP after several tests that
have been done. For the node selector, the rule is the best estimate search rule, which is the default rule of
SCIP.

The second one consists in branching �rst on
∑
j∈V z(j,i). If there is a vertex i for which this quantity is

equal to a non-integral u, we add two constraints:∑
j∈V

z(j,i) ≥ due and
∑
j∈V

z(j,i) ≤ buc.

The vertex for which u − buc is the nearest from 0.5 is selected in priority. When there is no such vertex,
the branching uses the former strategy. This second strategy (called in the following degree branching rule)
is interesting since it based on the idea of branching on constraints instead of branching simply on variables.
For the node selector, the rule is the same of the previous branching.

7.4. Adding valid inequalities. The clique cluster inequalities de�ned in Section 3.1 of [HPSG07] can be
straightforwardly adaptated. We have implemented them but the fact that the variables are not restricted
to binary values have lead to huge computation times. It comes partially from the fact that their e�cient
version (7) of that paper is no longer valid. The still valid version is separated in a more di�cult way. The
results were dominated by the version without them. We have not included the results in the present paper.
It seems that adding cuts in e�cient way for the SVOCPDP is an open problem. Other inequalities could
be adaptated, such as the comb inequalities. We have not tried them.

8. Upper Bound

The algorithm chosen for computing an upper bound of the optimal value is a tabu search. Several
problems like: job shop scheduling, graph coloring, traveling salesman problem and other vehicle routing
have been successfully tackled by the tabu search. For an introduction to this method, see for instance [GL97].
While a greedy local search stops when no improving move is found in the neighborhood N(s) of the current
solution s, the basic principle of a tabu search is to continue the search by allowing non-improving moves.
To avoid cycling on the same solution, the last ` moves are kept in the tabu list that is updated at each
iteration. Its size ` is a parameter.
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Various stopping criteria can be used, such for example: the predetermined number of iterations with
no improvement, the maximum number of iterations, the maximum amount of time spent in the method.
To de�ne a tabu search properly, we have to describe how to compute the cost of the current solution, the
neighborhood, the way to encode the tabu list, a heuristic to build the �rst current solution and the stopping
criterion.

8.1. Cost of the current solution. Proposition 1 allows to encode the solution as a sequence of vertices,
starting and ending with the depot 0, without specifying bike displacements. The score of a sequence

i1 → i2 . . . → ik is the cost of the traveled distance
∑k−1
j=1 c(ij ,ij+1) to which we add a penalty when the

sequence is infeasible, i.e. when there is no feasible solution for the SVOCPDP inducing this sequence. The
feasible sequence space may be disconnected, whence to explore e�ciently the used neighborhood is enlarged
allowing the tabu in visiting infeasible solutions. Then, the infeasibility is penalized in the objective function.
Thanks to Proposition 1 we are able to evaluate the infeasibility of any sequence indicated in the following
with s. It is the �degree of infeasibility� we have de�ned in Section 3. The relaxed constraints are (8) and (9)
and the resulting cost function f(s) de�ned in (30) is inspired by the one proposed by [GHL94] for the VRP
and is the following:

(30) f(s) =

k−1∑
j=1

c(ij ,ij+1) + γ
∑
i∈V

(pi − p′i)

where γ is a positive constant and the p′i are computed through the max-�ow algorithm of Proposition 1.
Recall that according to that proposition, p′i ≤ pi.

In our experiment we have de�ned γ as 10 times the mean distance of a direct trip from the depot to a
vertex. This choice is a way to convert at the right scale in term of cost the number of bikes that remain to
be displaced (and was experimentally tuned).

8.2. Initial solution. We propose two distinct methods to compute the initial sequence needed for the tabu
search.

8.2.1. Greedy heuristics. The method �rst tries to close vertices. Closing a vertex means bringing a vertex
from its original state to its target state qi in one move. The �rst criterion used, for deciding which vertex
visit �rst, consists in ranking the unbalanced vertices with respect to their distance from the vehicle position
and then in choosing the nearest vertex it can close. If it is impossible to close any vertex, then for each
vertex the number of bikes the vehicle can load or unload is computed and the vehicle is driven toward the
vertex with the highest absolute number of bikes that can be exchanged (i.e., either loaded or unloaded). In
case of equality between several vertices, it goes to the nearest one. With this method we are sure to start
from a feasible sequence.

8.2.2. The solution of (RP2). A solution z of relaxation (RP2) of Section 5 is such that G[z] is an Eulerian
graph. A closed Eulerian path in the supported graph G[z] provides a sequence of vertices that can be used as
an initial solution of the tabu search. To compute such a closed Eulerian path various classical methods are
available (see for instance page 31 of the book by [KV02]). Since the relaxation is quite good, this sequence
is often not too far from an optimal solution. Note that if the sequence is feasible for the SVOCPDP, it is
an optimal solution. Unfortunately, even if we have an instance for which the relaxation is tight, there is no
polynomial algorithm for �nding the optimal solution of the original problem (Proposition 7 above, Section
6).

8.3. Neighborhood description. At each iteration the whole neighborhood is explored. The de�nition of
neighborhood is essential, since di�erent neighborhoods o�er di�erent ways to explore the solution space but
require di�erent computational e�orts. For solving the addressed problem, four di�erent moves have been
de�ned and used in the tabu search framework. Note that any time a vertex appears two consecutive times
in a sequence one of the occurrences can be removed.

Let k denote the length of the sequence and note that k is in general larger than n. We therefore evaluate
the complexity for computing the neighborhood in terms of k instead of n. To illustrate the di�erent moves
the solution displayed on Figure 2 is used each time as initial solution.
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0→ 7→ 6→ 4→ 5→ 2→ 8→ 1→ 0

Following this sequence, the vehicle leaves the depot to go to vertex 7. Then it goes on with vertex 6 and
so on until vertex 1 from where it goes back to the depot.

8.3.1. 2-OPT. This move is classical for routing problems. A pair of non consecutive arcs are removed from
the sequence and two new arcs are inserted. They link the two tails and the two heads of the removed arcs
and therefore the travelling direction of the subset of nodes between the two removed arcs is reversed to
obtain a new sequence. An example of 2-OPT is obtained by removing arcs (0,7) and (5,2), by inserting arcs
(7,2) and (0,5) and reversing the sequence 5, 4, 6, 7, therefore the following sequence is obtained:

0→ 5→ 4→ 6→ 7→ 2→ 8→ 1→ 0

This move is tested for each pair of arcs in the sequence. It takes O(k2) to test all the moves of this type.

8.3.2. Suppression. This move tries to delete a vertex in the sequence. If we delete vertex 4 in the example
of Figure 2, we obtain

0→ 7→ 6→ 5→ 2→ 8→ 1→ 0

This move is tested for each vertex in the sequence. It takes O(k) to test all moves of this type.

8.3.3. Add unbalanced vertex. This move is active when the current sequence is infeasible. All the vertices
are checked and both the most unbalanced vertex i in excess and the most unbalanced vertex j in default
are selected (vertices for which |(qi − q′i) − (pi − p′i)| are maximal). One neighbor is obtained by adding,
just after i in the sequence, the moves → j → i →. The other neighbor is obtained by adding the moves
→ i → j → in the sequence just after j. If neither i nor j are present in the sequence, then there is only
the neighbor obtained by adding → i → j at the end of the sequence. Testing all moves of this type takes
O(k2).

Once more with the example reported in Figure 2, if the capacity of the vehicle is lower than 8, the
vertices are not balanced at the end of the sequence. Let Q = 6, the vehicle cannot bring vertices 1, 6 and
8 to their target state: 2 bikes need to be loaded from 6 while 1 bike is requested by both node 1 and node
8. The moves → 8→ 6 are tried to be added and we obtain the following sequence

0→ 7→ 6→ 8→ 6→ 4→ 5→ 2→ 8→ 1→ 0

This sequence is a feasible solution.

8.3.4. Add bu�er vertex. This move tries to add a second time a vertex in the sequence. The second copy
of a vertex can be used as bu�er vertex, since in the bu�er vertex bikes are either delivered or picked up.
Thus, if a vertex is used as a bu�er vertex, it has to be visited at least twice. Every vertex can be used as a
bu�er vertex. A copy of each vertex already present in the sequence is tried to be inserted at each possible
position. If a vertex is not present in the sequence (for example the initially balanced vertices), then it is
inserted twice.

This move is very time consuming and testing all moves of this type takes O(k3). Thus it is not called at
each iteration but in 20% of the cases.

8.4. The tabu list. The fact that arcs could be used more than once leads to a management of the tabu
list slightly di�erent from the classical one used, for example, for solving classical routing problems. When
a move is made, some arcs leave the solution and others enter the solution. Each exiting arc is kept in the
tabu list along with the position of its occurrence in the last solution. This arc is forbidden for ` iterations,
but it is allowed to be reinserted in a di�erent position.

The tabu list is kept using the multimap structure in the STL of C++, which ensures a quick access.
16



8.5. The tabu search. The components previously described are integrated in the general algorithm sum-
marized in Algorithm 1. The following notations are used in the pseudo-code: s is the current solution;
s∗ is the best feasible solution encountered from the beginning of the tabu search. f(s) is the value of the
objective function for the solution s; NbIterMax is the maximum number of iterations done before the tabu
search stops. i is the current iteration; s̄X is the best solution encountered using the move X; s# is the best
solution in the whole neighborhood. a is a random variable uniformly distributed between 0 and 1.

Algorithm 1 Tabu search algorithm

1: s← ComputeInitialSolution()
2: s∗ ← s
3: i← 0
4: while i ≤ NbIterMax do
5: s̄2OPT ← Explore2OPT(s)
6: s̄Sup← ExploreSuppresion(s)
7: s# ← argmin(f(s̄2OPT ), f(s̄Sup))
8: if s is not a route then
9: s̄AddUnb ← ExploreAddUnbalanced(s)
10: if f(s#) > f(s̄AddUnb) then
11: s# ← s̄AddUnb
12: end if

13: end if

14: a← Random()
15: if a ≤ 0.2 then
16: s̄AddBuf ← ExploreAddBu�er(s)
17: if f(s#) > f(s̄AddBuf ) then
18: s# ← s̄AddBuf
19: end if

20: end if

21: s← s# and Update the tabu list
22: if s is a route and f(s) < f(s∗) then
23: s∗ ← s
24: end if

25: i← i+ 1
26: end while

9. Computational Study

The algorithms have been coded in C++, embedded into SCIP (a Constraint Integer Programming frame-
work, see [AKM05]) and tested on a PC AMD Athlon 5600+ clocked at 2.8 GHz, with 16 GB RAM. To
the best of our knowledge, this paper is the �rst solving instances of the SVOCPDP, therefore the following
Subsection 9.1 presents how the instances have been created, the results obtained are reported in Subsection
9.2 while Subsection 9.3 reports a discussion on the results.

9.1. Instances. The instances are taken from [HPSG04a] which de�nes, for various values of n, 10 instances

named from A to J, with an algebraic demand d̃i between −10 and 10 for each vertex i. We work on these
instances for n ∈ {20, 40, 60, 100}. In order to get an initial state pi and a target state qi for each vertex i,
as required for the SVOCPDP, the demands have been modi�ed. We do it twofold. A �rst set of instances
has been obtained by setting pi = 10, qi = 10 + d̃i and Ci = 20 for each vertex i. We refer to these instances
by the indication p̄i = q̄i = 10 (average state). A second set of instances is obtained by setting pi = 30,

qi = 30 + 3 × d̃i and Ci = 60 for each vertex i. We refer to these instances by the indication p̄i = q̄i = 30
(average state).
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Figure 10. An optimal solution already found by the branch-and-cut for the instance n20G,
with Q = 10 and p̄i = q̄i = 10

9.2. Computational results. The proposed algorithms have been tested on these instances for all Q ∈
{10, 30, 45, 1000}. Note that even with huge capacity for the vehicle our problem is not a TSP with pickup
and delivery. Initially balanced vertices can be skipped, nevertheless visiting a vertex several times can
improve the cost of the solution (see for example the solution reported in Figures 4 and 5). The algorithms
tested are the tabu search initialized with the greedy heuristics from Subsection 8.2.1, the branch-and-cut
of Section 7 which provides a lower bound for the problem, and the tabu search initialized with the solution
of the branch-and-cut as explained in Subsection 8.2.2.

The results achieved by all our algorithms for solving the generated instances are reported respectively in
Tables 1, 3, 5 and 7 for the reliability branching rule and the tabu search, and Tables 9, 11, 13 and 15 for
the degree branching rule. For each pair n,Q, we give the results for two instances � the one achieving the
smallest gap and the one achieving the largest one � and also the average performance on the ten instances.
We have treated the results for n = 100 in distinct tables since the results obtained for such dimensions
are less good than those obtained with n < 100. The following webpage gathers the best results we have
obtained so far for the complete set of instances.

http://cermics.enpc.fr/∼meuniefr/SVOCPDP.html

The tabu search initialized with the greedy heuristic (indicated in the following with TS1) has the following
set of parameters: maximum number of iterations = 1′000, the size of the tabu list (i.e. `) = 30 and the
maximum amount of time = 1′000 seconds. The method also stops when no improvement has been done
for 80 consecutive iterations. The tabu search initialized with the solution obtained by the branch-and-cut
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Figure 11. An optimal solution already found by the branch-and-cut for the instance n20G,
with Q = 10 and p̄i = q̄i = 30

(indicated in the following with TS2) has the following parameters: the tabu list size is set to 3, the maximum
number of iterations to 50 and the maximum amount of time to 300 seconds. The search is stopped whenever
15 consecutive iterations did not improve the best solution or if a solution is found with a cost equal to the
lower bound obtained by the branch-and-cut. The abbreviations used in these tables are the following:

n is the number of vertices.
Q is the vehicle capacity.

UB1 is the value obtained by TS1.
Time is the cpu time (in seconds) used by the Tabu Search TS1.
Iter. is the number of iterations.
UB2 is the best solution obtained by the tabu searches TS1 and TS2.
T.t. is the cpu time (in seconds) elapsed for executing TS1+B&C+TS2.
LB is the best lower bound found by the branch-and-cut on (RP2).

Gap % is the percentage gap between the previous LB and UB2.

The results achieved by the branch-and-cut alone are reported respectively in Tables 2, 4, 6 and 8 for the
reliability branching rule, and Tables 10, 12, 14 and 16 for the degree branching rule. The maximum time
was set to 10′000 seconds. The abbreviations used in these tables are the following:

n is the number of vertices.
Q is the vehicle capacity.

UB-BC is the best solution found by the branch-and-cut.
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LB is a lower bound on the optimal solution of the relaxation.
LBr is the lower bound that has been found at the root node.

Gap % is the percentage gap between UB-BC and LB.
Time is the computational time.

# Nodes is the number of nodes of the Branch-and-Cut tree.

Table 1. Performance of the overall method for p̄i = q̄i = 10, less than 60 vertices, and a
vertex capacity equal to 20 � reliability branching

Instance name n Q UB1 Time Iter. UB2 T.t. LB Gap %

n20A 20 10 4764 9 132 4702 10 4702.00 0.00
n20B 20 10 4776 7 124 4769 8 4769.00 0.00

20 10 7 126 9 0.00
n20D 20 30 4156 4 93 4089 5 4089.00 0.00
n20E 20 30 4556 5 88 4556 5 4299.00 5.97

20 30 5 105 6 1.13
n20B 20 45 3792 5 102 3792 5 3792.00 0.00
n20C 20 45 4045 8 88 4045 8 3891.00 3.96

20 45 6 129 7 0.83
n20B 20 1000 3792 7 90 3792 7 3792.00 0.00
n20C 20 1000 4042 6 138 4042 6 3891.00 3.88

20 1000 7 138 8 0.83
n40B 40 10 6377 198 121 5949 468 5949.00 0.00
n40F 40 10 7373 391 216 7138 10473 6651.57 7.31

40 10 367 220 4266 1.54
n40B 40 30 5297 142 91 5110 145 5110.00 0.00
n40C 40 30 4806 261 179 4692 262 4644.00 1.03

40 30 225 157 228 0.10
n40B 40 45 5297 141 136 5110 144 5110.00 0.00
n40C 40 45 4941 185 113 4656 187 4522.00 2.96

40 45 227 110 230 0.53
n40B 40 1000 5297 152 91 5110 157 5110.00 0.00
n40H 40 1000 5060 183 128 5006 187 4772.00 4.90

40 1000 273 130 279 0.96
n60H 60 10 9100 1007 76 8123 11043 7747.60 4.84
n60F 60 10 9234 1004 54 8374 11034 7387.74 13.35

60 10 1003 69 11036 10.48
n60J 60 30 6543 1026 85 6389 1177 6389.00 0.00
n60I 60 30 6918 995 77 6480 11028 6153.33 5.31

60 30 1013 73 2218 1.05
n60J 60 45 6602 988 60 6374 1047 6374.00 0.00
n60H 60 45 6122 1037 51 6122 1055 5825.00 5.09

60 45 998 67 1046 2.25
n60D 60 1000 6345 1022 57 6223 1946 6223.00 0.00
n60I 60 1000 6387 988 65 6355 1469 5914.00 7.45

60 1000 1007 67 1255 2.19

Figure 10 gives the solution for the instance n20G with Q = 10, and an average number of bikes per
station equal to 10. The depot appears as a square with a 0 and (pi; qi) is given next to each vertex. The
solution displayed is the one obtained at the end of the following sequence of algorithms: the tabu search
�rst, then the branch-and-cut with the result of the tabu search as upper bound, and, �nally, the tabu search
which starts from the solution given by the branch-and-cut. In this example the route displayed is exactly
the solution of the branch-and-cut. It is the optimal solution even if a vertex (vertex 18) is visited twice.
Compare with Figure 11. It is the same instance, but this time with an average number of bikes per station
equal to 30. Again, the branch-and-cut is able to �nd the optimal solution. Interestingly, we can see that,
with an increasing average number of bikes but with the same vehicle capacity, optimal solutions may visit
vertices several times.

9.3. Discussion of the performances. As expected, the computational time and the number of nodes of
the branch-and-cut algorithm increase with the number of vertices and decrease with the capacity of the
vehicle. In Tables 2, 4, 6 and 8 (and 10, 12, 14 and 16), the number of nodes used in the branch-and-cut
could seem really huge. However, since variables are integers (not binary), several branchings must be done
on the same variable before obtaining the optimal solution. Except for the large instances with 100 vertices,
the results reported in Tables 1 and 5 show that the distance between the best upper bound found and the
lower bound is really small. The gap is on average less that 5%. The local search is very e�cient on small
and medium instances (up to 60 vertices) and becomes less e�ective for larger instances. This is probably a
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Table 2. Performance of the branch-and-cut cited in Table 1 � reliability branching

Instance name n Q UB-BC LB LBr Gap % Time # Nodes

n20A 20 10 4702 4702.00 4634.23 0.00 0.87 23
n20B 20 10 4769 4769.00 4683.50 0.00 0.91 87

20 10 0.00 1.77 350
n20D 20 30 4089 4089.00 4089.00 0.00 0.19 1
n20E 20 30 4299 4299.00 4299.00 0.00 0.20 1

20 30 0.00 0.18 3
n20B 20 45 3792 3792.00 3792.00 0.00 0.07 1
n20C 20 45 3891 3891.00 3891.00 0.00 0.06 1

20 45 0.00 0.15 6
n20B 20 1000 3792 3792.00 3792.00 0.00 0.20 1
n20C 20 1000 3891 3891.00 3891.00 0.00 0.09 1

20 1000 0.00 0.19 2
n40B 40 10 5949 5949.00 5723.67 0.00 45.07 2507
n40F 40 10 7147 6651.57 6371.78 7.45 10000.00 715318

40 10 1.56 3863.36 274129
n40B 40 30 5110 5110.00 5086.50 0.00 2.62 9
n40C 40 30 4644 4644.00 4644.00 0.00 1.17 1

40 30 0.00 2.46 28
n40B 40 45 5110 5110.00 5040.50 0.00 2.37 26
n40C 40 45 4522 4522.00 4522.00 0.00 1.16 1

40 45 0.00 2.57 33
n40B 40 1000 5110 5110.00 5040.50 0.00 4.75 29
n40H 40 1000 4772 4772.00 4765.50 0.00 3.17 9

40 1000 0.00 4.56 18
n60H 60 10 8147 7547.60 7664.40 5.15 10000.00 157357
n60F 60 10 8555 7387.74 7257.74 15.80 10000.00 113536

60 10 15.20 10000.00 148362
n60J 60 30 6389 6389.00 6151.83 0.00 149.12 2598
n60I 60 30 6390 6153.33 6021.00 3.84 10000.00 245505

60 30 0.38 1199.32 28002
n60J 60 45 6374 6374.00 5974.07 0.00 129.90 1701
n60H 60 45 5825 5825.00 5751.17 0.00 17.68 110

60 45 0.00 47.50 612
n60D 60 1000 6223 6223.00 6055.29 0.00 915.27 1752
n60I 60 1000 5914 5914.00 5729.00 0.00 474.56 1627

60 1000 0.00 244.17 613

Table 3. Performance of the overall method for p̄i = q̄i = 10 and 100 vertices of capacity
20 � reliability branching

Instance name n Q UB1 Time Iter. UB2 T.t. LB Gap %

n100F 100 10 14759 1184 5 12621 11206 10048.40 25.60
n100I 100 10 17799 1181 7 16602 11206 11829.80 40.34

100 10 1176 4 11210 32.54
n100A 100 30 12175 1262 4 8033 11282 7496.55 7.15
n100B 100 30 11066 1309 5 10223 11337 7441.96 37.37

100 30 1066 4 11191 16.60
n100H 100 45 9506 1172 4 7796 11191 7548.23 3.28
n100B 100 45 8838 954 11 8020 10975 6941.07 15.54

100 45 1317 6 11340 9.68
n100H 100 1000 9275 968 2 7786 8215 7549.00 3.14
n100J 100 1000 9178 1087 1 8655 11114 7045.60 22.84

100 1000 1187 3 10934 12.92

Table 4. Performance of the branch-and-cut cited in Table 3 � reliability branching

Instance name n Q UB-BC LB LBr Gap % Time # Nodes

n100F 100 10 13022 10048.37 10036.87 29.59 10000.03 29066
n100I 100 10 17069 11829.79 11771.75 44.28 10000.12 23018

100 10 40.07 10000.05 25279
n100A 100 30 8127 7496.55 7386.66 8.40 10000.01 36791
n100B 100 30 9445 7441.96 7378.37 26.91 10000.04 35819

100 30 16.87 10000.03 37999
n100H 100 45 7742 7548.22 7513.67 2.56 10000.00 36301
n100B 100 45 8177 6941.06 6869.58 17.80 10000.09 30280

100 45 9.33 9246.13 33951
n100H 100 1000 7549 7549.00 7522.22 0.00 7225.74 936
n100J 100 1000 8868 7045.60 7039.61 25.86 10001.42 865

100 1000 13.34 9724.77 1081
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Table 5. Performance of the overall method for p̄i = q̄i = 30, less than 60 vertices and a
vertex capacity equal to 60 � reliability branching

Instance name n Q UB1 Time Iter. UB2 T.t. LB Gap %

n20A 20 10 9112 220 1453 9084 122 9084.00 0.00
n20B 20 10 9888 120 1453 9883 56 9883.00 0.00

20 10 176 1 126 0.00
n20A 20 30 5010 6 97 4702 8 4702.00 0.00
n20B 20 30 5009 6 107 4769 7 4769.00 0.00

20 30 8 153 11 0.00
n20B 20 45 4174 5 99 4174 5 4174.00 0.00
n20C 20 45 5295 5 90 5137 6 5113.00 0.47

20 45 8 124 11 0.05
n20B 20 1000 3792 5 100 3792 5 3792.00 0.00
n20C 20 1000 4042 8 143 4042 8 3891.00 3.88

20 1000 6 125 7 0.84
n40E 40 10 13527 994 69 13159 5286 13159.00 0.00
n40F 40 10 15447 1009 71 15439 11078 14534.00 6.22

40 10 993 59 9697 2.38
n40E 40 30 6645 312 202 6424 790 6424.00 0.00
n40F 40 30 7576 284 155 7074 10351 6709.18 5.44

40 30 247 159 3710 1.04
n40E 40 45 5951 137 95 5671 474 5671.00 0.00
n40C 40 45 6252 618 116 5847 1059 5847.00 0.00

40 45 255 184 560 0.00
n40B 40 1000 5297 127 91 5110 132 5110.00 0.00
n40C 40 1000 4814 195 135 4656 197 4552.00 2.96

40 1000 137 5 233 0.49
n60H 60 10 27776 774 1 17100 10813 16230.10 5.36
n60C 60 10 28405 759 3 20918 10799 17799.60 17.51

60 10 978 2 11012 10.52
n60H 60 30 9562 1030 86 8216 11062 7672.27 7.09
n60C 60 30 10355 1031 78 9667 11060 8360.76 15.62

60 30 1004 73 11035 12.81
n60H 60 45 7333 992 78 6743 2765 6743.00 0.00
n60D 60 45 9327 1010 106 8793 11049 7631.00 15.22

60 45 1003 82 9349 6.62
n60J 60 1000 6598 986 58 6374 1237 6374.00 0.00
n60I 60 1000 6376 1022 78 6355 1610 5914.00 7.45

60 1000 1010 74 1177 2.39

consequence of the size of the neighborhood, which can be quite huge when the vehicle has to make several
visits at some vertices. For n = 100, the second tabu search makes sometimes only one or two iterations.

Note also that the smaller is the capacity, the harder is the problem. It is in accordance with the intuition,
since for instances with small vehicle capacity, the mean number of visits by vertex increases. Instances n20B
for Q = 10 and Q = 45 and n40E for Q = 10 and Q = 30 in Table 1 are illustrations for such a phenomenon.
We have also such a phenomenon for n20B and n40E in Table 5 for Q = 10 and Q = 30.

The reliability branching rule seems to be slightly better than the degree branching one. However, this
latter improves sometimes the lower bound: for instance, n60I, with Q = 30 and 10 bikes per station in
average (Tables 1 and 9), or n60D, with Q = 45 and 30 bikes per station in average (Tables 5 and 13).

If we go back to the size of the Vélib system in Paris (one truck of capacity 20 for 50 vertices of capacity
30), the instances that are close to these numerical features are the instances with n = 60, Q = 30, and 10
bikes in average per station (Tables 1 and 9) and the instances with n = 40, Q = 30 and 30 bikes in average
per station (Tables 5 and 13). We get solutions that have most of the time a gap smaller than 2%. It would
certainly be possible to improve the time consumption of the �ow algorithm in the tabu search. Stopping
the branch-and-cut after a �xed time would also be a reasonable solution to reduce the total time to get
a good solution. However, we see that the instances of this kind can already be solved within an average
optimality gap of less than 2% in less than 40 minutes.
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Table 6. Performance of the branch-and-cut cited in Table 5 � reliability branching

Instance name n Q UB-BC LB LBr Gap % Time # Nodes
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Table 7. Performance of the overall method for p̄i = q̄i = 30 and 100 vertices of capacity
60 � reliability branching

Instance name n Q UB1 Time Iter. UB2 T.t. LB Gap %

n100D 100 10 47489 18910 1 37972 29235 31412.70 20.88
n100E 100 10 41002 1889 1 30222 12021 23311.00 29.65

100 10 6989 1 17146 25.50
n100A 100 30 16110 1075 2 13366 11101 10345.00 29.20
n100B 100 30 18739 844 1 15537 10866 11114.10 39.80

100 30 1076 4 11118 34.70
n100A 100 45 11372 1747 11 10694 11766 8335.32 28.30
n100D 100 45 15845 1034 2 15845 11053 9745.95 62.58

100 45 1238 6 11266 39.98
n100D 100 1000 9832 1294 3 7595 11318 7352.00 3.30
n100F 100 1000 9371 1756 10 8783 11777 7288.92 20.50

100 1000 1176 4 10282 10.65

Table 8. Performance of the branch-and-cut cited in Table 7 � reliability branching

Instance name n Q UB-BC LB LBr Gap % Time # Nodes

n100D 100 10 40057 31412.72 31375.48 27.52 10000.03 13188
n100E 100 10 31898 23311.01 23293.71 36.84 10000.00 18166

100 10 33.11 10000.05 16045
n100A 100 30 14228 10345.00 10339.62 37.54 10000.01 26628
n100B 100 30 16059 11114.08 11088.10 44.49 10000.04 24334

100 30 41.82 10000.43 24077
n100A 100 45 10647 8335.32 8271.49 27.73 10000.03 34072
n100D 100 45 13762 9745.95 9695.37 41.21 10000.01 25337

100 45 34.38 10000.03 33923
n100D 100 1000 7593 7352.00 7347.37 3.28 10003.89 933
n100F 100 1000 9017 7288.92 7273.37 23.71 10000.23 1146

100 1000 11.37 9086.88 3811
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Table 9. Performance of the overall method for p̄i = q̄i = 10, less than 60 vertices, and a
vertex capacity equal to 20 � degree branching

Instance name n Q UB2 T.t. LB Gap %

n20A 20 10 4702 8 4702.00 0.00
n20B 20 10 4769 6 4769.00 0.00

20 10 13 0.00
n20D 20 30 4089 14 4089.00 0.00
n20E 20 30 4574 6 4299.00 6.40

20 30 7 1.13
n20B 20 45 3792 5 3792.00 0.00
n20C 20 45 4042 8 3891.00 3.88

20 45 7 1.13
n20B 20 1000 3792 6 3792.00 0.00
n20C 20 1000 4045 6 3891.00 3.96

20 1000 7 0.83
n40B 40 10 5949 468 5949.00 0.00
n40A 40 10 7063 10363 6418.81 10.04

40 10 9344 5.63
n40B 40 30 5110 181 5110.00 0.00
n40C 40 30 4822 297 4644.00 3.83

40 30 222 0.38
n40B 40 45 5110 221 5110.00 0.00
n40C 40 45 4656 192 4522.00 2.96

40 45 223 0.49
n40B 40 1000 5110 173 5110.00 0.00
n40C 40 1000 4656 311 4522.00 2.96

40 1000 232 0.67
n60H 60 10 8129 11025 7592.00 7.07
n60D 60 10 11530 11044 9377.78 22.95

60 10 11049 15.32
n60J 60 30 6389 1054 6389.00 0.00
n60I 60 30 6480 11028 6209.50 4.36

60 30 2590 0.95
n60J 60 45 6374 1047 6374.00 0.00
n60A 60 45 5945 1088 5740.00 3.57

60 45 1086 1.59
n60D 60 1000 6223 1215 6223.00 0.00
n60F 60 1000 6109 1182 5778.00 5.73

60 1000 1258 1.93
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Table 10. Performance of the branch-and-cut cited in Table 1 � degree branching

Instance name n Q UB-BC LB LBr Gap % Time # Nodes

n20A 20 10 4702 4702.00 4636.50 0.00 0.96 121
n20B 20 10 4769 4769.00 4729.00 0.00 0.58 57

20 10 0.00 0.15 1691
n20D 20 30 4089 4089.00 4089.00 0.00 0.19 1
n20E 20 30 4299 4299.00 4282.50 0.00 0.2 3

20 30 0.00 0.16 7
n20B 20 45 3792 3792.00 3792.00 0.00 0.07 1
n20C 20 45 3891 3891.00 3891.00 0.00 0.06 1

20 45 0.00 0.15 6
n20B 20 1000 3792 3792.00 3792.00 0.00 0.18 1
n20C 20 1000 3891 3891.00 3891.00 0.00 0.09 1

20 1000 0.00 0.18 3
n40B 40 10 5949 5949.00 5686.67 0.00 267.36 19507
n40A 40 10 7169 6418.81 6292.70 11.69 10000.00 466167

40 10 5.99 9026.36 535641
n40B 40 30 5110 5110.00 5070.67 0.00 3.06 46
n40C 40 30 4644 4644.00 4644.00 0.00 0.95 1

40 30 0.00 7.98 426
n40B 40 45 5110 5110.00 5040.50 0.00 6.66 337
n40C 40 45 4522 4522.00 4522.00 0.00 0.87 1

40 45 0.00 2.83 71
n40B 40 1000 5110 5110.00 5040.50 0.00 6.71 77
n40C 40 1000 4522 4522.00 4522.00 0.00 2.24 1

40 1000 0.00 3.93 21
n60H 60 10 8130 7592.00 7554.00 7.08 10000.00 153855
n60D 60 10 11530 9377.78 9253.01 22.95 10000.00 109576

60 10 19.67 10000.00 147342
n60J 60 30 6389 6389.00 6212.76 0.00 61.59 1077
n60I 60 30 6390 6209.50 6112.50 2.90 10000.00 272621

60 30 0.29 1573.97 41027
n60J 60 45 6374 6374.00 6300.45 0.00 57.85 1071
n60A 60 45 5740 5740.00 5685.40 0.00 99.32 1924

60 45 0.00 89.72 1915
n60D 60 1000 6223 6223.00 6136.67 0.00 169.22 411
n60F 60 1000 5778 5778.00 5726.00 0.00 146.02 653

60 1000 0.00 247.83 979

Table 11. Performance of the overall method for p̄i = q̄i = 10 and 100 vertices of capacity
20 � degree branching

Instance name n Q UB2 T.t. LB Gap %

n100F 100 10 14243 11445 10109.80 40.88
n100E 100 10 16261 10847 9965.80 63.17

100 10 11190 49.20
n100A 100 30 7959 11002 7360.16 8.14
n100J 100 30 9814 11072 7285.04 34.71

100 30 11092 20.17
n100C 100 45 7998 7849 7950.00 0.60
n100B 100 45 8622 11056 7198.00 19.78

100 45 10616 7.00
n100E 100 1000 7824 3716 7700.00 1.61
n100B 100 1000 8529 10952 6967.55 22.41

100 1000 10417 8.09

Table 12. Performance of the branch-and-cut cited in Table 3 � degree branching

Instance name n Q UB-BC LB LBr Gap % Time # Nodes

n100F 100 10 14375 10109.80 10032.50 42.18 10000.03 19571
n100E 100 10 17199 9965.80 9921.62 72.58 10000.00 10211

100 10 54.01 10000.05 10327
n100A 100 30 8169 7360.16 7223.22 10.98 10000.01 58191
n100J 100 30 9635 7285.04 7195.73 32.25 10000.04 42752

100 30 20.19 10000.03 50138
n100C 100 45 7950 7950.00 7706.46 0.00 6860.80 33643
n100B 100 45 7886 7198.00 7113.44 9.55 10000.09 60118

100 45 4.31 9246.13 47180
n100E 100 1000 7700 7700.00 7564.24 0.00 2740.29 339
n100B 100 1000 8235 6967.55 6964.61 18.19 10001.42 1990

100 1000 8.22 9275.77 1649
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Table 13. Performance of the overall method for p̄i = q̄i = 30, less than 60 vertices and
a vertex capacity equal to 60 � degree branching

Instance name n Q UB2 T.t. LB Gap %

n20B 20 10 9883 58 9883.00 0.00
n20C 20 10 14039 102 14039.00 0.00

20 10 130 0.00
n20D 20 30 5989 5 5989.00 0.00
n20E 20 30 6245 33 6245.00 0.00

20 30 10 0.00
n20B 20 45 4174 5 4174.00 0.00
n20C 20 45 5137 7 5113.00 0.47

20 45 7 0.05
n20B 20 1000 3792 9 3792.00 0.00
n20C 20 1000 4042 9 3891.00 3.88

20 1000 8 0.84
n40H 40 10 13578 11040 13311.80 2.00
n40F 40 10 15046 11935 14455.10 4.09

40 10 11856 3.10
n40B 40 30 5949 459 5949.00 0.00
n40F 40 30 7244 10412 6661.40 8.74

40 30 8732 3.59
n40B 40 45 4879 212 5319.00 0.00
n40C 40 45 5912 901 5912.00 0.00

40 45 682 0.00
n40B 40 1000 5110 157 5110.00 0.00
n40H 40 1000 4951 236 4772.00 3.75

40 1000 224 0.94
n60H 60 10 16993 11210 16278.40 4.39
n60C 60 10 23986 11032 17808.80 34.67

60 10 11053 13.15
n60H 60 30 8123 11010 7782.14 4.38
n60I 60 30 10509 11005 8169.54 28.64

60 30 11022 14.92
n60H 60 45 6743 3967 6743.00 0.00
n60D 60 45 8842 11167 7689.96 14.98

60 45 10231 7.36
n60D 60 1000 6223 1050 6223.00 0.00
n60I 60 1000 6355 1469 5914.00 7.45

60 1000 1130 1.83
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Appendix

Proof of Proposition 2. Denote by Q the set of all target states q̃i such that there exists a feasible solution for
initial states pi and target states q̃i inducing the sequence. We are interested in the solution of minq̃∈Q ||q̃−
q||1.

(a) We �rst show that for any solution of minq̃∈Q ||q̃ − q||1, there exist loading and unloading operations
compatible with initial and target states p′i and q

′
i, such that

• 0 ≤ p′i ≤ pi and 0 ≤ q′i ≤ qi for each vertex i
• ∑i p

′
i =

∑
i q
′
i

and such that ||q̃ − q||1 = 2
∑
i∈V (pi − p′i).

We have the following central observation: let q̃′ ∈ Q; there exists q̃ ∈ Q such that ||q̃ − q||1 ≤ ||q̃′ − q||1
and such that, on each vertex i, there are at least max(0, q̃i − qi) bikes that have not been moved. Indeed,
for each vertex i, choose max(0, q̃′i − qi) bikes among the q̃′i bikes at the end of the route. Consider now the
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Table 14. Performance of the branch-and-cut cited in Table 5 � degree branching

Instance name n Q UB-BC LB LBr Gap % Time # Nodes

n20B 20 10 9883 9883.00 9815.00 0.00 0.30 25
n20C 20 10 14039 14039.00 13877.67 0.00 57.43 48393

20 10 0.00 44.59 32422
n20D 20 30 5989 5989.00 5976.50 0.00 0.41 3
n20E 20 30 6245 6245.00 5928.12 0.00 21.70 14575

20 30 0.00 3.83 2150
n20B 20 45 4174 4174.00 4174.00 0.00 0.07 1
n20C 20 45 5113 5113.00 4968.00 0.00 1.71 567

20 45 0.00 1.50 800
n20B 20 1000 3792 3792.00 3792.00 0.00 0.20 1
n20C 20 1000 3891 3891.00 3891.00 0.00 0.09 1

20 1000 0.00 0.19 2
n40H 40 10 13585 13311.78 13135.01 2.05 9994.00 970628
n40F 40 10 15079 14455.07 14234.90 4.32 9994.00 944740

40 10 3.25 9995.36 829525
n40B 40 30 5949 5949.00 5789.25 0.00 64.62 9930
n40F 40 30 7244 6661.40 6549.20 8.74 10000.01 840174

40 30 3.91 8594.44 844082
n40B 40 45 5319 5319.00 5234.25 0.00 7.20 504
n40C 40 45 5912 5912.00 5440.00 0.00 757.16 91073

40 45 0.00 514.57 82412
n40B 40 1000 5110 5110.00 5076.00 0.00 11.75 393
n40H 40 1000 4772 4772.00 4739.00 0.00 1.17 5

40 1000 0.00 6.02 142
n60H 60 10 16993 16278.43 16061.96 4.39 10000.00 251254
n60C 60 10 24938 17808.74 17725.78 40.03 10000.00 53851

60 10 15.49 10000.00 166580
n60H 60 30 8207 7782.14 7674.16 5.46 10000.00 278678
n60I 60 30 10539 8169.53 8098.99 29.00 10000.00 187564

60 30 17.38 10000.32 232967
n60H 60 45 6743 6743.00 6442.70 0.00 2945.90 125993
n60D 60 45 9061 7689.97 7406.96 17.83 1000.68 241350

60 45 0.00 9.78 303051
n60D 60 1000 6223 6223.00 6085.39 0.00 100.27 451
n60I 60 1000 5914 5914.00 5729.00 0.00 564.56 5056

60 1000 0.00 139.00 1020

Table 15. Performance of the overall method for p̄i = q̄i = 30 and 100 vertices of capacity
60 � degree branching

Instance name n Q UB2 T.t. LB Gap %

n100D 100 10 46600 26720 31803.30 46.52
n100F 100 10 42007 10995 23346.30 79.93

100 10 15489 65.45
n100F 100 30 14200 11008 10002.20 41.96
n100E 100 30 16491 10880 10049.10 64.10

100 30 10937 51.54
n100E 100 45 11725 10956 8725.60 34.37
n100B 100 45 15362 10921 9040.11 69.93

100 45 11035 46.12
n100F 100 1000 7648 3667 7648.00 0.00
n100D 100 1000 8952 11245 7491.00 19.50

100 1000 7776 5.94

Table 16. Performance of the branch-and-cut cited in Table 7 � degree branching

Instance name n Q UB-BC LB LBr Gap % Time # Nodes

n100D 100 10 47489 31803.33 31785.56 49.32 10000.03 7262
n100F 100 10 43544 23346.26 23317.48 86.51 10000.00 7121

100 10 69.01 10000.05 7845
n100F 100 30 14375 10002.20 9928.76 43.71 10000.01 25271
n100E 100 30 16867 10049.18 10027.11 67.85 10000.04 16586

100 30 56.75 10000.03 15472
n100E 100 45 12028 8725.60 8692.98 37.85 10000.09 61194
n100B 100 45 16153 9040.11 8985.35 78.68 10000.09 35639

100 45 51.49 10000.29 44260
n100F 100 1000 7648 7648.00 7621.75 0.00 1705.78 2100
n100D 100 1000 7491 7491.00 7364.41 0.00 8924.07 9184

100 1000 2.04 9275.77 1649
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solution q̃ obtained with the same bike displacements except for these bikes, which are not allowed to leave
their initial vertices. Denoting by p̄i the number of bikes on vertex i that are not allowed to move, we have∑

i

p̄i =
∑

i: qi<q̃′i

q̃′i − qi

and

q̃i =

{
q̃′i + p̄i for each vertex i such that qi ≥ q̃′i
qi + p̄i for each vertex i such that qi < q̃′i

Note that p̄i ≥ q̃i − qi. The distance to q is equal to

||q̃− q||1 =
∑

i: qi≥q̃′i

|q̃i− qi|+
∑

i: qi<q̃′i

|q̃i− qi| ≤
∑

i: qi≥q̃′i

|q̃′i− qi|+
∑

i: qi≥q̃′i

p̄i +
∑

i: qi<q̃′i

p̄i =
∑
i

|q̃′i− qi| = ||q̃′− q||1.

We can therefore choose the target state q̃ ∈ Q minimizing ||q̃ − q||1 such that at least max(0, q̃i − qi)
bikes have not been moved for each vertex i. Let us now de�ne, for the route with these target states, pMi
the number of bikes among the pi initial ones that have left vertex i and q

M
i the number of bikes that have

been brought to vertex i. Note that according to our choice for q̃, we have qMi ≤ qi (and of course pMi ≤ pi).
We have

(31) ||q̃ − q||1 =
∑
i∈V
|q̃i − qi| =

∑
i∈V
|pi − pMi + qMi − qi|.

Let δi := min(pi − pMi , qi − qMi ) and de�ne p′i := pMi + δi and q
′
i := qMi + δi for each vertex i. Note that the

initial and target states p′i and q
′
i are feasible in the sense of Proposition 1. According to Equation (31), we

have ||q̃ − q||1 =
∑
i∈V |pi − p′i + q′i − qi|. Using the fact that for each i, at least one of pi − p′i and qi − q′i is

equal to 0, we get that ||q̃ − q||1 = 2
∑
i∈V (pi − p′i).

(b) Conversely, assume that we have loading and unloading operations compatible with initial and target
states p′i and q

′
i, with

• 0 ≤ p′i ≤ pi and 0 ≤ q′i ≤ qi for each vertex i
• ∑i p

′
i =

∑
i q
′
i

• the quantity
∑
i∈V p

′
i is maximal.

We show that these operations are also compatible with the initial state p and a �nal state q̃ ∈ Q such that
||q̃ − q||1 = 2

∑
i∈V (pi − p′i).

Since C = +∞, if p′i < pi and q
′
i < qi, we could have taken into account one more bike on i (increasing

by one p′i), which would have not left vertex i. Therefore, for each i, we have at least one of pi − p′i and
qi − q′i that is equal to 0 and thus, we have 2

∑
i∈V (pi − p′i) =

∑
i∈V |pi − p′i + q′i − qi|. Let us now consider

what we have as a �nal state when we start instead with pi, while making the same loading and unloading
operations: we get q̃i := pi − p′i + q′i bikes on each vertex i, for which we have ||q̃ − q||1 = 2

∑
i∈V (pi − p′i).

According to (b), starting from initial state p, the same loading and unloading operations as for an optimal
solution in the sense of Proposition 1 lead to a �nal state q̃ such that ||q̃− q||1 = 2

∑
i∈V (pi− p′i). (a) shows

that this q̃ minimizes ||q̃ − q||1 over Q, as required. � �

Proof of Proposition 6. The proof is very similar to the one of Proposition 5. Again, we work with a reduction
from the 2-partition and with the graph of Figure 8. In order to adapt the proof for (RP2), we simulate the
y(i,j) by subdividing each arc a = (i, j) in �ve arcs, introducing four new vertices ua, u

′
a, va and v′a, with

pua = 0, qua = y(i,j), pva = m+ 1, qva = 0, pv′a = 0, qv′a = m+ 1, pu′a = y(i,j), qu′a = 0. Figure 12 illustrates
this transformation. The capacity of the vehicle is set to m+1. The vertices of this new graph G′ provide an
instance of the SVOCPDP, and the arcs encode a feasible solution of (RP2) for this instance. The solution
satis�es constraints (25) since there are values y(i,j) satisfying constraints (17).

Because of the construction, these values y(i,j) are unique and entirely determined by the initial and target
states on each vertex. If there is a feasible solution on the new graph, it will induce a feasible solution on
the original graph of Figure 8. This route will imply the existence of a 2-partition, for the same reasons as

28



ya

a
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Figure 12. Construction of G′ in the proofs of Propositions 6, 7, 8

those exposed in the proof of Proposition 5. Conversely, if there is a 2-partition, it implies a feasible solution
for the original graph, which will in turn implies a feasible solution for the new graph. � �

Proof of Proposition 7. We can force the solution built in the proof of Proposition 6 to be optimal, and then
the same proof does the job. To force the solution to be optimal, we consider now the graph G′ obtained
in the proof of Proposition 6 by subdividing each arc in �ve new arcs. We assume that the cost to traverse
each of these arcs is 1. Now, we build from this graph a complete graph for which each arc (i, j) gets for cost
the cost of a shortest path between i and j. This complete graph provides an instance of the SVOCPDP.
The arc of G′ encodes a solution z for (RP2), which is optimal since each new vertex ua, u

′
a, va, v

′
a has to be

visited. � �

[Proof of Proposition 8. There is only one solution for y once z has been de�ned according to the proof of
Proposition 6, whence the same proof as for Proposition 7 works. � �
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