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CURRENT OPINION
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Frameworks
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� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Computational signal detection constitutes a key

element of postmarketing drug monitoring and surveillance.

Diverse data sources are considered within the ‘search

space’ of pharmacovigilance scientists, and respective data

analysis methods are employed, all with their qualities and

shortcomings, towards more timely and accurate signal de-

tection. Recent systematic comparative studies highlighted

not only event-based and data-source-based differential

performance across methods but also their complementarity.

These findings reinforce the arguments for exploiting all

possible information sources for drug safety and the parallel

use of multiple signal detection methods. Combinatorial

signal detection has been pursued in few studies up to now,

employing a rather limited number of methods and data

sources but illustrating well-promising outcomes. However,

the large-scale realization of this approach requires sys-

tematic frameworks to address the challenges of the con-

current analysis setting. In this paper, we argue that semantic

technologies provide the means to address some of these

challenges, and we particularly highlight their contribution

in (a) annotating data sources and analysis methods with

quality attributes to facilitate their selection given the ana-

lysis scope; (b) consistently defining study parameters such

as health outcomes and drugs of interest, and providing

guidance for study setup; (c) expressing analysis outcomes

in a common format enabling data sharing and systematic

comparisons; and (d) assessing/supporting the novelty of the

aggregated outcomes through access to reference knowl-

edge sources related to drug safety. A semantically-enriched

framework can facilitate seamless access and use of differ-

ent data sources and computational methods in an integrated

fashion, bringing a new perspective for large-scale, knowl-

edge-intensive signal detection.

Key Points

A number of comparative studies assessing various

signal detection methods applied to diverse types of

data have highlighted the need for combinatorial-

integrated approaches.

Large-scale integrated signal detection requires

systematic frameworks in order to address the

challenges posed within the underlying concurrent

analysis setting.

Semantic technologies and tools may provide the

means to address the challenges posed in integrated

signal detection, and establish the basis for

knowledge-intensive signal detection.

1 Introduction

One of the most important aspects of marketed-drug safety

monitoring is the identification and analysis of new,
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Université Paris 13, Sorbonne Paris Cité,
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medically important findings (so-called ‘signals’) that

might influence the use of a medicine [1]. According to the

CIOMS VIII Working Group, a signal constitutes ‘‘infor-

mation that arises from one or multiple sources (including

observations and experiments), which suggests a new po-

tentially causal association, or a new aspect of a known

association, between an intervention and an event or set of

related events, either adverse or beneficial, that is judged to

be of sufficient likelihood to justify verificatory action’’ [2].

Computational analysis methods constitute an important

tool for signal detection [3, 4]. Lately, the field of signal

detection has been very active, with various large-scale

collaborative initiatives and projects, such as EU-ADR

(http://euadr-project.org/), Mini-Sentinel (http://www.

mini-sentinel.org/), OMOP (http://omop.org/), and PRO-

TECT (http://www.imi-protect.eu/). While various ad-

vances have been illustrated, e.g. common data models [5],

reference datasets for evaluation [6], as well as new ana-

lysis methods and systematic empirical assessments [7–

12], the challenge of accurate, timely and evidence-based

signal detection still remains [13].

In this paper, we first present a brief overview of post-

marketing data sources and computational analysis meth-

ods, and highlight their strengths and limitations for signal

detection, taking into account recent comparative studies.

Under this perspective, we indicate the need for combi-

natorial signal detection, relying on the concurrent ex-

ploitation of diverse data sources and detection methods,

and refer to early successful paradigms. We argue that in

order to explore combinatorial signal detection in its full

potential, semantically-enriched detection frameworks are

required to overcome existing barriers. We also illustrate

how such a framework can be incorporated within the

signal detection workflow, refer to example applications of

semantic technologies in drug safety and, finally, discuss

this perspective in the scope of large-scale, knowledge-

intensive signal detection.

2 Data Sources and Signal Detection Methods: The

Need for Combinatorial Exploitation

The types of data sources employed for signal detection

vary [4]. According to the computational methods adopted/

required for their analysis, we may discriminate the main

sources into the following:

1. Spontaneous reporting systems (SRSs) These consti-

tute the dominant signal source through which cases of

suspected adverse drug reactions (ADRs) are reported

by healthcare professionals or citizens to regulatory

authorities or other bodies. Typically, methods for

the analysis of SRS data rely on the statistical

investigation of disproportionality (DP) [14], or are

based on multivariate modeling [3, 4]. A comprehen-

sive review of SRS-based signal detection methods has

been presented by Hauben and Bate [15]. Despite

SRSs having been quite extensively analyzed, ad-

vances on detection methods are still being demon-

strated, such as the vigiRank algorithm [16], which

combines multiple strength-of-evidence prediction

indicators to improve accuracy compared with DP

analysis alone.

2. Structured longitudinal observational healthcare

databases These are primarily obtained from Elec-

tronic Health Record (EHR) and administrative claim

systems, and offer the potential to enable active and

real-time surveillance [5]. Signal detection methods

applied to this type of data typically involve data-

mining techniques that have their origin from statis-

tical epidemiology [7, 17], e.g. case–control methods

[8], cohort methods [11], self-controlled case-series

methods [10], and self-controlled cohort design meth-

ods [7, 9]. Notably, DP-based methods, originally

proposed for the analysis of SRS data, have also been

applied to observational data [12], following appro-

priate extensions and data transformations [18]. A

comprehensive review of signal detection methods

exploiting observational data has been presented by

Suling and Pigeot [19].

3. Unstructured/free-text sources Typical examples in-

clude clinical narratives, scientific literature and

patient-generated content, e.g. in social media. Ex-

traction of information associating drugs with adverse

events from unstructured text requires the employment

of text-mining techniques [20]. Clinical narratives are

a major part of many clinical information systems and,

despite the complexity and barriers in processing

clinical text [21], successful information extraction

paradigms have been illustrated [22, 23]. The literature

has also been explored to provide indications for

signals, e.g. by using corpuses extracted from PubMed,

and methods relying on the Medical Subject Headings

(MeSH) indexing system and statistical inference [24,

25]. Patient-generated data, either shared among

networked communities using social media (e.g. blogs,

messaging/micro-blogging platforms and forums) [26]

or implicitly captured through Web search logs [27],

have been more recently explored for signal detection,

with interesting findings. A review on text mining for

adverse drug event detection considering various types

of free-text data has been presented by Harpaz et al.

[28].

Each one of the above sources is attributed with ad-

vantages and limitations that affect the signal detection

V. G. Koutkias, M.-C. Jaulent
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capacity, such as relevance, coverage, quality, reliability

and bias, to name a few. Without aiming to cite an ex-

haustive list, Table 1 summarizes some of these attributes,

as well as the challenges involved in using these sources

for signal detection based on empirical knowledge and the

literature.

In addition, a number of recent comparative studies of

signal detection methods exploiting SRS and observational

healthcare data illustrated the following (information re-

garding the employed data, methods and comparison

measures, as well as noteworthy analysis choices are

summarized in Table 2):

1. Shortcomings in detection accuracy/efficiency A high

rate of false-positive indications [38, 43] and difficul-

ties in detecting rare ADRs [43], while some events

were not detectable despite the variety of the employed

methods [33].

2. Performance variation Event-based differential per-

formance of methods [31], as well as differential

performance with respect to the data used for analysis

[43, 44].

3. Complementarity A time-to-onset (TTO)-based

method with a DP-based method when applied to

SRS data [41], and DP-based methods with multivari-

ate-based signal detection strategies exploiting obser-

vational data [31], were found to be complementary.

Based on the above remarks, we can conclude that all

the available data sources and the concurrent use of dif-

ferent signal detection methods need to be considered in

the construction of a holistic signal detection framework. In

the following section, we refer to two characteristic studies,

which elaborated on combining information across diverse

data sources and signal detection methods.

3 On Combinatorial Computational Signal Detection:

Examples

3.1 Joint Signaling in a Spontaneous Reporting System

and an Electronic Health Record System

Given the maturity of drug surveillance based on SRS data,

the progress made in the use of observational healthcare

data, and the expectation that the two sources may com-

plement each other, Harpaz et al. [45] argued that it makes

sense to consider computational approaches that may

combine information from these two types of sources. The

motivation for the study was the assumption that a com-

binatorial investigation would either lead to increased

evidence or statistical power of findings, or would facilitate

new discoveries that may not be possible with either source

separately. In particular, the study elaborated on the jointT
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analysis of 4 million reports obtained from the FDA Ad-

verse Event Reporting System (FAERS) and information

extracted from 1.2 million EHR narratives, using DP ana-

lysis, in order to generate a highly selective ranked set of

candidate ADRs and, consequently, advance the accuracy

of signal detection. Ranking of outcomes relied on the

‘Precision at K’ metric [46]. The focus was on three serious

adverse reactions, while a reference set of over 600

established and plausible ADRs was used to evaluate the

proposed approach against the single, FAERS-based signal

detector.

The combined signaling system demonstrated a statis-

tically significant large improvement over the FAERS in

the precision of top-ranked signals (i.e. from 31 % to al-

most threefold for different evaluation categories). Prob-

ably even more important, this combinatorial analysis

enabled the detection of a new association between a drug

agent and an event that was supported by clinical review.

Thus, the study concluded with promising initial evidence

that exploring FAERS and EHR data in the scope of

replicated signaling can improve the accuracy of signal

detection in specific cases.

3.2 Signal Detection by Integrating Chemical,

Biological and Phenotypic Properties of Drugs

The study of Liu et al. [47] followed an integrative per-

spective for ADR prediction by employing data beyond the

phenotype level. Specifically, ADRs were predicted by

jointly exploiting chemical (e.g. compound fingerprints or

substructures), biological (including protein targets and

pathways), and phenotypic properties of drugs (including

indications and other known ADRs). Interestingly, the

study suggested an approach for ADR prediction by com-

bining the above types of information at the different stages

of drug surveillance, i.e. chemical and biological for pre-

clinical drug screening, and chemical, biological and phe-

notypic for postmarket surveillance.

This integrative analysis was focused on the prediction

of 1385 known ADRs of 832 approved drugs, through five

different analysis methods, namely logistic regression,

naı̈ve Bayes, K-nearest neighbor, random forest and a

support vector machine. The elaborated data were obtained

from public databases, while the evaluation was based on

accuracy, precision, and recall, which were obtained from

the best operating points of the global receiver operating

characteristic (ROC) curve (resulting from merging the

prediction scores for all ADRs). The study indicated that

from the three types of information, phenotypic data were

the most informative for ADR prediction. However, when

biological and phenotypic features were added to the

baseline chemical information, the proposed prediction

model achieved significant improvements and successfully

predicted ADRs associated with the withdrawal of specific

drugs.

4 Towards Semantically-Enriched, Integrated Signal

Detection

4.1 Rationale

The studies presented in Sect. 3 differ, not only regarding

the employed data but also in the computational methods

used. Nevertheless, both studies explored ways to reinforce

signal detection outcomes either via replicated signaling or

by integrating phenotype data with biological and chemical

drug information, respectively, with significant findings.

Given the heterogeneity of data sources and the variety of

computational methods employed for signal detection, in

order to further elaborate and systematically establish such

combinatorial approaches we find the adoption of methods

and tools originating from the field of semantic technolo-

gies and knowledge engineering important.

As illustrated in Fig. 1, combinatorial signal detection

scales up from (a) studies where one data source is being

explored by a single computational method (in a kind of

‘coupled’ setting); (b) benchmarking studies (in which one

data source is being explored by various methods to enable

comparisons in the methods’ performance); and (c) studies

focusing on replication of outcomes (i.e. one method ap-

plied to various data sources, typically of the same type), to

settings where multiple data sources are explored by diverse

methods. This may be seen as a natural evolution thanks to

the increase in data availability for analysis, the develop-

ment of more efficient computational methods, and the need

for more accurate and evidence-based assessments.

Going a step further, Fig. 2 provides an overview of the

signal detection process within an integrated perspective,

where we discriminate among the diverse data sources

considered for signal detection (part A), the respective

computational signal detection methods per data source

type (part B), the overall signal detection workflow that has

to be supported in this integrated setting (part C), and the

stakeholders involved in signal detection (part D), who use

or contribute the above data sources and methods under a

common framework. Ideally, the computational signal de-

tection workflow in this case would first require mapping

the analysis requirements defined by stakeholders (step 1)

to the appropriate datasets and computational methods, and

then (upon selection) launching the analysis (step 2). Next,

aggregation of the output from the involved computational

methods shall be performed (step 3), and then subsequently

evaluating and ranking the provided indications based on

reference knowledge sources, before providing the out-

comes of the analysis to the respective end-users (step 4).

Toward Integrated and Semantically-Enriched Signal Detection



4.2 Challenges for Large-Scale, Combinatorial Signal

Detection

The above scenario foresees the provision of uniform-

combined access to data and computational methods for the

end-users by hiding the underlying technical complexities.

To this end, it is evident that the combinatorial signal de-

tection approach poses new challenges for its realization,

especially within a large-scale setting involving heteroge-

neous data sources and different methods, as well as the

potential collaboration among stakeholders. Beyond the

need to cope with privacy issues related to health data

integration from different sources [48], big data analytics

[49], and hybrid signaling strategies [41], we discriminate

the following issues (I represents ‘issue’):

I.1 Employing an appropriate description schema to

express quality attributes of data sources, useful for

signal detection, as regards their structure, content and

provenance. For SRSs, example attributes may be the

coverage of predominant drugs and adverse effects, as

well as the level of seriousness of the reports.

Attributes for observational data sources may be the

population size and the observation period. Similarly,

a concise description of signal detection methods with

respect to their input, output and analysis parameters
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V. G. Koutkias, M.-C. Jaulent



is required, enabling their combined use either in

parallel or in a conditional pipeline based on the

output of individual steps. These descriptions shall be

used by stakeholders contributing data and methods to

the framework, in order to facilitate their selection

and combined use by stakeholders interested in

conducting signal detection.

I.2 The concrete definition of study parameters, concern-

ing, for example, the drugs and health outcomes of

interest (HOIs), enabling consistent comparisons of

analysis experiments and their findings. Studies

exploring observational data illustrated that this issue

is of paramount importance and has a major impact on

the outcomes of the analysis [35, 50].

I.3 Hiding the technical complexity in using signal

detection method implementations and guide users

to select and fine-tune their parameters. A significant

variation among researchers in study design choices

for signal detection has been highlighted by Stang

et al. [51], due to various factors. Thus, it is important

to provide guidance on study setup, given the focus of

a signal analysis experiment. The PROMPT tool of

Mini-Sentinel constitutes relevant work along this line

(http://mini-sentinel.org/methods/methods_develop-

ment/details.aspx?ID=1044).

I.4 Supporting evaluation of analysis outcomes in com-

parison with reference sources for both novelty

detection (i.e. to exclude known ADRs) and acquisi-

tion of supportive evidence (e.g. biological attributes

of drugs).

I.5 The common description of analysis results originated

from experiments involving multiple data sources and

signal detection method implementations along with

the parameterization applied, including provenance
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information (i.e. the origin of the results with respect

to the data, methods and parameter values that have

been employed). Such a description will facilitate

results sharing, systematic comparisons and assessing

whether replication of experiments leads to similar

results.

4.3 Semantically-Enriched Integrated Signal Detection

In order to address the above issues, it is imperative to

establish systematic frameworks capable of supporting the

concurrent exploitation of diverse data and methods. Se-

mantic technologies bring many tools and benefits to cope

with these aspects [52]. Examples of such technologies

include ontologies (i.e. formal descriptions of the meaning

of concepts), mappings among concepts/terms used in

heterogeneous systems with the same meaning (semantic

mapping), query languages, knowledge representation

formalisms such as rules, as well as automatic inference

mechanisms. To this end, in Fig. 2 we introduce an add-on

layer (part E) with specific components relying on semantic

technologies to conduct semantically-enriched, integrated

signal detection comprising of the following elements (E

represents ‘element’):

E.1 Ontologies for annotating with quality attributes

datasets and methods involved in signal detection

(to address issue I.1). To some extent, such an

annotation has been elaborated in the scope of

defining common data models to facilitate the

analysis of observational data from various sources

[34], with a major focus on the syntactic level, rather

than on semantics. Moreover, a common description

of methods is missing.

E.2 Semantic mappings between terminologies and/or

ontologies obtained from ontology repositories (e.g.

BioPortal, http://bioportal.bioontology.org/) that can

facilitate the consistent definition of health outcomes

and/or drugs of interest for a given signal detection

scenario exploring diverse data sources through ter-

minological/ontological reasoning (to address issue

I.2).

E.3 Semantic rules linking the above quality attributes in

order to support users in selecting the appropriate

data, analysis methods and parameter settings for

their drug surveillance use case, e.g. the targeted

drug(s) or health conditions of interest (to address

issue I.3).

E.4 Multifaceted querying of diverse drug safety resources

for novelty assessment and for obtaining supporting

evidence to interpret the findings of signal detection

(to address issue I.4). This feature is possible thanks to

the public availability of exploitable repositories of

linked data in the domain of life sciences, such as

Bio2RDF [53] and the EBI RDF platform [54], which

provide programmatic access to resources such as

chEMBL (https://www.ebi.ac.uk/chembl/), Clinical

Trials.gov (http://clinicaltrials.gov/), DrugBank

(http://www.drugbank.ca/) and SIDER (http://

sideeffects.embl.de/), to name a few.

E.5 Ontology-based annotation of outcomes with prove-

nance information, enabling their sharing and fa-

cilitating comparisons (to address issue I.6).

We implement some of the above elements in the

scope of the SAFER project (http://safer-project.eu/),

which develops a semantically-enriched platform for

combinatorial signal detection by exploring diverse open-

source signal detection method implementations and

publicly available data. In particular, we elaborate on the

semantic harmonization of computational signal detection

methods through an ontology model [55], aspiring to

build a semantic registry of such methods and an inte-

grated platform for experimentation on pharmacovigilance

signal detection. Based on this ontology, we design and

implement software interfaces to mediate between exist-

ing signal detection method implementations and to ag-

gregate their outcomes, facilitating their exploitation

under a common integrated framework. Besides using the

built-in criteria of the employed computational methods

for signal generation and ranking, we investigate other

ways to address prioritization and management of the

obtained outcomes (e.g. factors used in triage models [56,

57]), a challenging issue stemming from the parallel use

of multiple signal detection methods that has also been

remarked on by van Holle and Bauchau [41] and Harpaz

et al. [45].

Notably, the Observational Health Data Sciences and

Informatics (OHDSI, http://ohdsi.org/) collaborative ela-

borates on developing a global knowledge base (KB)

bringing together and standardizing information for drugs

and HOIs from various electronic sources relevant to drug

safety [58]. This KB will be extremely useful for estab-

lishing a common reference for assessing the outcomes of

computational signal detection methods, and is closely

related to the element E.4 described above.

Taking into account the availability of diverse signal

detection method implementations as open source (e.g.

http://omop.org/MethodsLibrary, http://cran.r-project.org/

web/packages/PhViD/, http://mini-sentinel.org/methods/

methods_development/), public repositories of linked data

related to drug safety, as well as initiatives for openly

exposing drug safety data through programming interfaces

such as openFDA (https://open.fda.gov/), we believe that,

although challenging, the establishment of semantically-
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enriched platforms for integrated signal detection is

feasible.

Although not explicitly related to the integrated signal

detection perspective presented in this paper, semantic

technologies have been employed in several drug safety

applications, e.g. in order to automate signal detection,

address heterogeneous data integration for safety assess-

ment, normalize drug safety data, facilitate adverse event

reporting, and semantically analyze case reports. Aiming to

illustrate the applicability and added value of these tech-

nologies in the domain of drug safety, the following section

refers to some interesting examples.

5 Applications of Semantic Technologies in Drug Safety

Bousquet et al. [59] developed PharmaMiner, a tool aiming

to reinforce automated signal detection when using the

Medical Dictionary for Regulatory Activities (MedDRA�)

to express adverse events. The study relied on the argument

that automatic grouping of MedDRA� terms expressing

similar medical conditions would increase the power of

detection algorithms. Through an ontology, PharmaMiner

employed terminological reasoning in order to group se-

mantically-linked adverse events, and applied standard

statistical analysis methods for the detection of potential

signals. Evaluation of PharmaMiner with a dataset of

42,284 case reports extracted from the French Pharma-

covigilance database illustrated that the approach enabled

the identification of more occurrences of drug–ADR as-

sociations than using the original MedDRA� hierarchy,

and could thus help pharmacovigilance experts to increase

the number of responses to their queries when investigating

case reports coded with MedDRA�. Recently, Bousquet

et al. extended the approach for automatically grouping

MedDRA� terms through the OntoADR ontology [60].

Stephens et al. [61] presented a use case of semantic

web technologies for drug safety by focusing on hetero-

geneous data integration and analysis. The motivation was

that semantic technologies can simplify data integration

across multiple sources and support the logic to infer ad-

ditional insights from the data. Given that effective deci-

sion making regarding a drug’s safety profile requires the

assessment of all the available information regarding, for

example, the compound, the target and the patient group,

Stephens et al. employed ontology-based inferencing and

rules in order to guide decisions on either continuing to

pursue a compound or withdrawing a drug from the market

through the analysis of diverse data. The approach was

illustrated via an example rule assessing the drug toxicity

risk, which employed diverse parameters used along the

drug discovery and development pipeline, such as the

structural similarity of the compound of interest with others

that failed due to toxicity, the compound binding to the

target expressed with a number of single nucleotide poly-

morphisms (associated with the range of response to the

drug), the therapeutic index, clinical findings, therapeutic

dose, etc.

Wang et al. [62] elaborated on the normalization of

FAERS data through semantic technologies. The objectives

of their work were, first, improving the mining capacity of

FAERS data for signal detection and, second, promoting

semantic interoperability between the FAERS and other

data sources. As drugs are registered in the FAERS by

arbitrary names, e.g. trade names and abbreviations, and

may even contain typographical errors, the lack of drug

normalization introduces substantial barriers for data inte-

gration in signal detection. Wang et al. normalized drug

information contained in the FAERS using RxNorm (http://

www.nlm.nih.gov/research/umls/rxnorm/), a standard ter-

minology for medication, while drug class information was

obtained from the US National Drug File Reference Ter-

minology (NDF-RT, http://www.nlm.nih.gov/research/

umls/sourcereleasedocs/current/NDFRT). Regarding ad-

verse event names, although the FAERS provides nor-

malized terms based on MedDRA� preferred terms (PT),

Wang et al. demonstrated that this normalization reinforces

the data aggregation capability when linking PT terms to

their corresponding system organ class (SOC) categories.

The study resulted in a publicly available knowledge re-

source (http://informatics.mayo.edu/adepedia/index.php/

Download), which can be extended by connecting data

from clinical notes, scientific literature, gene expression,

etc., and various other ontologies.

Aiming to address interoperability issues that hamper the

conduction of postmarketing safety analysis studies on top

of EHR systems, the SALUS project (http://www.

salusproject.eu/) built a semantic framework and a

dedicated toolkit to serve this purpose. An interesting part

of this toolkit was a component aimed at facilitating spon-

taneous reporting by prepopulating the respective forms

with relevant EHR data [63]. To this end, standard (e.g.

based on HL7) and proprietary EHR data models were

mapped to the E2B data model (Electronic Standards for the

Transfer of Regulatory Information, http://estri.ich.org/),

while terminology mapping and reasoning services were

designed to ensure the automatic conversion of local EHR

terminologies, e.g. International Classification of Diseases,

Tenth Revision (ICD-10, http://www.who.int/

classifications/icd/en/) or Logical Observation Identifiers

Names and Codes (LOINC�, http://loinc.org/), to Med-

DRA�, which is dominant for adverse event reporting. The

partial automation of the adverse event reporting process

achieved through this tool is expected to contribute to the

reduction of underreporting, which has been often argued as

a limitation of SRSs.

Toward Integrated and Semantically-Enriched Signal Detection

http://www.nlm.nih.gov/research/umls/rxnorm/
http://www.nlm.nih.gov/research/umls/rxnorm/
http://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NDFRT
http://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NDFRT
http://informatics.mayo.edu/adepedia/index.php/Download
http://informatics.mayo.edu/adepedia/index.php/Download
http://www.salusproject.eu/
http://www.salusproject.eu/
http://estri.ich.org/
http://www.who.int/classifications/icd/en/
http://www.who.int/classifications/icd/en/
http://loinc.org/


Sarntivijai et al. [64] employed an ontology to conduct a

comparative analysis of adverse events associated with two

different types of seasonal influenza vaccines, namely

killed and live influenza vaccines. The study analyzed re-

ports from the US Vaccine Adverse Event Reporting

System (VAERS), referring to a number of vaccines of the

above categories based on measures such as the propor-

tional reporting ratio and Chi-square. The identified ad-

verse events were grouped using the Ontology of Adverse

Events (OAE, http://www.oae-ontology.org/), based on

their semantic similarity. This approach provided better

classification results compared with MedDRA� and Sys-

tematized Nomenclature of Medicine–Clinical Terms

(SNOMED–CT�)-based classifications. The analysis indi-

cated that live influenza vaccines had a lower chance of

inducing two severe adverse events compared with the

other vaccine category, while previously reported positive

correlation between one of the serious events and influenza

vaccine immunization was based on trivalent influenza

vaccines rather than monovalent influenza vaccines.

6 Discussion and Conclusions

Lately, signal detection has been a very active research

field, demonstrating not only important advances but also

many new challenges [4, 28, 65, 66]. Further data sources

are considered for signal detection and, consequently, new

computational methods and approaches are constantly be-

ing proposed for their analysis [16, 26, 27]. Important

findings as regards the capacity of new/established methods

and data sources for signal detection have been illustrated

by a number of comparative studies [31, 33, 38, 41, 43, 44].

Although it is arguable to what extent the outcomes of

these studies are generalizable, it is clear that the concur-

rent use of multiple methods and data sources is essential.

Interestingly, increased drug surveillance through the

synthesis of all possible information sources has been

suggested by regulatory bodies [67] and highlighted in the

literature [68]. Given the need to obtain more reliable and

timely insights on drug safety risks, it has been reasonably

argued that combining information across data sources

could lead to more effective and accurate signal detection.

These combinatorial investigations are expected to increase

evidence on the obtained results, or provide new insights

that may be not possible by investigating a single source.

Some early successful examples of this approach for signal

detection have been recently presented in the literature

[45, 47].

However, in order to explore this perspective in its full

potential we need systematic frameworks that will facilitate

pharmacovigilance stakeholders to seamlessly share,

access, and effectively use different data sources and

computational methods for signal detection. In this article,

we highlighted the challenges towards such a development

and argued that semantic technologies bring the technical

endeavor for this advancement. We also introduced con-

crete elements towards an integrated, semantically-en-

riched signal detection framework, spanning from the

description of data sources and computational methods for

selection, support in study setup, advanced access to ref-

erence linked-data resources for evaluation, and uniform

description of the obtained outcomes.

The applicability and virtue of semantic technologies in

drug safety have been illustrated in several applications.

Aligned with the integrated signal detection perspective,

we are currently developing a semantically-enriched signal

detection platform relying on the semantic harmonization

of signal detection methods and data sources [55]. Our

research complements other efforts in the field, such as the

OHDSI KB [63] and the SALUS semantic interoperability

platform and tools [58], bringing a new perspective on

large-scale, knowledge-intensive signal detection, and

aspiring to increase efficiency, automation, support and

collaboration for pharmacovigilance stakeholders.
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