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Abstract Computational signal detection constitutes a key
element of postmarketing drug monitoring and surveillance.
Diverse data sources are considered within the ‘search
space’ of pharmacovigilance scientists, and respective data
analysis methods are employed, all with their qualities and
shortcomings, towards more timely and accurate signal de-
tection. Recent systematic comparative studies highlighted
not only event-based and data-source-based differential
performance across methods but also their complementarity.
These findings reinforce the arguments for exploiting all
possible information sources for drug safety and the parallel
use of multiple signal detection methods. Combinatorial
signal detection has been pursued in few studies up to now,
employing a rather limited number of methods and data
sources but illustrating well-promising outcomes. However,
the large-scale realization of this approach requires sys-
tematic frameworks to address the challenges of the con-
current analysis setting. In this paper, we argue that semantic
technologies provide the means to address some of these
challenges, and we particularly highlight their contribution
in (a) annotating data sources and analysis methods with
quality attributes to facilitate their selection given the ana-
lysis scope; (b) consistently defining study parameters such
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as health outcomes and drugs of interest, and providing
guidance for study setup; (c) expressing analysis outcomes
in a common format enabling data sharing and systematic
comparisons; and (d) assessing/supporting the novelty of the
aggregated outcomes through access to reference knowl-
edge sources related to drug safety. A semantically-enriched
framework can facilitate seamless access and use of differ-
ent data sources and computational methods in an integrated
fashion, bringing a new perspective for large-scale, knowl-
edge-intensive signal detection.

Key Points

A number of comparative studies assessing various
signal detection methods applied to diverse types of
data have highlighted the need for combinatorial-
integrated approaches.

Large-scale integrated signal detection requires
systematic frameworks in order to address the
challenges posed within the underlying concurrent
analysis setting.

Semantic technologies and tools may provide the
means to address the challenges posed in integrated
signal detection, and establish the basis for
knowledge-intensive signal detection.

1 Introduction

One of the most important aspects of marketed-drug safety
monitoring is the identification and analysis of new,
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medically important findings (so-called ‘signals’) that
might influence the use of a medicine [1]. According to the
CIOMS VIII Working Group, a signal constitutes “infor-
mation that arises from one or multiple sources (including
observations and experiments), which suggests a new po-
tentially causal association, or a new aspect of a known
association, between an intervention and an event or set of
related events, either adverse or beneficial, that is judged to
be of sufficient likelihood to justify verificatory action” [2].

Computational analysis methods constitute an important
tool for signal detection [3, 4]. Lately, the field of signal
detection has been very active, with various large-scale
collaborative initiatives and projects, such as EU-ADR
(http://evadr-project.org/), Mini-Sentinel  (http://www.
mini-sentinel.org/), OMOP (http://omop.org/), and PRO-
TECT (http://www.imi-protect.eu/). While various ad-
vances have been illustrated, e.g. common data models [5],
reference datasets for evaluation [6], as well as new ana-
lysis methods and systematic empirical assessments [7—
12], the challenge of accurate, timely and evidence-based
signal detection still remains [13].

In this paper, we first present a brief overview of post-
marketing data sources and computational analysis meth-
ods, and highlight their strengths and limitations for signal
detection, taking into account recent comparative studies.
Under this perspective, we indicate the need for combi-
natorial signal detection, relying on the concurrent ex-
ploitation of diverse data sources and detection methods,
and refer to early successful paradigms. We argue that in
order to explore combinatorial signal detection in its full
potential, semantically-enriched detection frameworks are
required to overcome existing barriers. We also illustrate
how such a framework can be incorporated within the
signal detection workflow, refer to example applications of
semantic technologies in drug safety and, finally, discuss
this perspective in the scope of large-scale, knowledge-
intensive signal detection.

2 Data Sources and Signal Detection Methods: The
Need for Combinatorial Exploitation

The types of data sources employed for signal detection
vary [4]. According to the computational methods adopted/
required for their analysis, we may discriminate the main
sources into the following:

1. Spontaneous reporting systems (SRSs) These consti-
tute the dominant signal source through which cases of
suspected adverse drug reactions (ADRs) are reported
by healthcare professionals or citizens to regulatory
authorities or other bodies. Typically, methods for
the analysis of SRS data rely on the statistical
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investigation of disproportionality (DP) [14], or are
based on multivariate modeling [3, 4]. A comprehen-
sive review of SRS-based signal detection methods has
been presented by Hauben and Bate [15]. Despite
SRSs having been quite extensively analyzed, ad-
vances on detection methods are still being demon-
strated, such as the vigiRank algorithm [16], which
combines multiple strength-of-evidence prediction
indicators to improve accuracy compared with DP
analysis alone.

2. Structured longitudinal
databases These are primarily obtained from Elec-
tronic Health Record (EHR) and administrative claim
systems, and offer the potential to enable active and
real-time surveillance [5]. Signal detection methods
applied to this type of data typically involve data-
mining techniques that have their origin from statis-
tical epidemiology [7, 17], e.g. case—control methods
[8], cohort methods [11], self-controlled case-series
methods [10], and self-controlled cohort design meth-
ods [7, 9]. Notably, DP-based methods, originally
proposed for the analysis of SRS data, have also been
applied to observational data [12], following appro-
priate extensions and data transformations [18]. A
comprehensive review of signal detection methods
exploiting observational data has been presented by
Suling and Pigeot [19].

3. Unstructured/free-text sources Typical examples in-
clude clinical narratives, scientific literature and
patient-generated content, e.g. in social media. Ex-
traction of information associating drugs with adverse
events from unstructured text requires the employment
of text-mining techniques [20]. Clinical narratives are
a major part of many clinical information systems and,
despite the complexity and barriers in processing
clinical text [21], successful information extraction
paradigms have been illustrated [22, 23]. The literature
has also been explored to provide indications for
signals, e.g. by using corpuses extracted from PubMed,
and methods relying on the Medical Subject Headings
(MeSH) indexing system and statistical inference [24,
25]. Patient-generated data, either shared among
networked communities using social media (e.g. blogs,
messaging/micro-blogging platforms and forums) [26]
or implicitly captured through Web search logs [27],
have been more recently explored for signal detection,
with interesting findings. A review on text mining for
adverse drug event detection considering various types
of free-text data has been presented by Harpaz et al.
[28].

observational healthcare

Each one of the above sources is attributed with ad-
vantages and limitations that affect the signal detection


http://euadr-project.org/
http://www.mini-sentinel.org/
http://www.mini-sentinel.org/
http://omop.org/
http://www.imi-protect.eu/

Toward Integrated and Semantically-Enriched Signal Detection

[82] ¢yroq asn 1o ‘Surssaooxd

1x9) 21nd A[dde ‘suonejouue Jurxopur 9zI1N)
Q0uapIAd papraoid

ay jo ySuans Surkiea ay) YPim ado)
e

sonAJeue pue jusweSeuew ejep S1q JUAOYIH
[82] 1uoned owes oy 10J suodax

Suowre uoneroosse [eroduwrd) I0J JUNOIIY

[9Z ‘Sz] Sururw Jx9) paseq-1xauo)

[8Z]

'3 ‘s10119 Surjads/[eonewweld ‘ofendue|

[embo[[0d 10J Junodoe 03 Sulssadold
onsm3ur] pajeonsiydos 10j juowainbay

[8¢€] synsax jo uonesrdoy

[¢€] serq oryredojoxd pue [¢]
Surpunojuod se yons sjoedse I0J JUN0ddY
[9€ ‘b€ G] BIBP 9SIQAIP ‘SNOAUZ0I)AY 0)
pordde oseo ur sSurddew ejep jo uonmuygeg
[g¢] aamsodxa pue ‘SJuUaAd/SIUIONO YI[BIY
Surugep 10j 9[qe[eae suondo opdniniy
[eel
amsodxe Snip uo ejep JusIdYIns I0J PIAN
[e€] (sSnap
Yy 03 pasodxa are oym drdoad jo requnu
9} 10U ‘UMOUY JUIAD 9} 9ABY pue SInIp
0] pasodxa are oym 9doad jo roquinu
Yy A[uo "9°T) JOTRUILIOUDP JO OB, I,
[] sired Juoad as1oape—3nip 9[Suls
Surpaoox? ‘suroned Ajoyes xoidwos AJnuopy
[¢1] yuswissasse pue uonerouas sisayjodAy
10J $92IN0S uoneuLIOyul Juapuadapur Jo as()
[z€ ‘€] 100330 Surysew oy} I0J JUNOIDY
[ ‘€] sereorydnp pue ejep Sursstw ym ado)
(1€ ¢l Sunrodor
oy ur suroped [eIo1ARYq JOJ JUNOJIY

SUOISN[OU0d 3ATd[qns
urejuod pue suondunsse uo Afax Aejy

[8Z] seanpaosoxd
UOT)BIUSWNOOP [BO0] £ PRonponur sergq
(sonssT $s2008 SUIPNOUT) BJEp JOBNXD
03 sanriqeut [enuajod pue senrxs[dwo)

UoneIyNUPI

juapIoul A3o5es Snip 10j pauSIsop JON
sasodind Jurqiq
J10J paurejurew aIe A9y} ouls AorInooe

pue A)jLre[nuers UoneuIoJul 9[qeuonsang)
(AoeIndoe jo
SSO[ pue UOTJBULIOJUT PaydjewsIu [enuajod
J0 1509 3} I® ‘[€ ‘G] SI2INOS BIEP AUIQUIOD
0} spoyjow Suik[dde £q pasearour oq
ued az1s uonendod ‘19A9MOY) SJUIAS pue
s3nip 10y suonendod 9SIGAIP JI9A0D 0} AZIS

ordwres ayenbope ue Jurnnboe ur Lynoyjig
[82] sorreingeooa

/Se130[0UIULId) [890] AQ padnponul selg
(sonssT $s9008 FUIpn[oul) BIEp JOBNXD

0) saniiqeur [enuajod pue senrxajdwo))
uoneOYNUIPI

juapIour A3o5es Snip 10j pauSIsop JON

$10J0BJ SUIPUNOJUOD I0J JUNOIIE 0] :ﬁo@ﬂﬂ
[0g] Aouae]

[6T ‘€] uoneuuogur ajeordng

[62 “¢] seiq Suniodoy

[6 ‘v ‘€] Sul [esned painquyesiw/elep
9yordwoour 1o JurssruySuntodar Juaroynsuy

[8Z] Surxopur (sawnowos) pue
Surmaraar-1ead ySnoryy paqjonuod-Aend)

K10181y Juened pue ‘sjusuwnean; ‘SUONIPUOd
[eSTUT[d JO UOTIBIUSWNIOP YILI UTRIUOD)

steuorssajoid oreoyieay £q paonpoid

JUQIUOD UOTIRULIOJUT JSBA

uonendod oy ur Kjorrea 1eaId
Sunayjo ‘a3re] Apueoyudis oq Aew aseqereq

(oun

uonensIurwpe pue aesop Snip ‘s)nsax

KI10ye10QR] ‘sIsougeIp ajeindde apraoid

0) pasoddns are eyep YHH uanedur)
UONBULIOJUT PI[TRIAP ‘PI[[01u0d-KiIfend)

QOUR[[IOAINS SWIT)-[BAI PUER QATIOR d[qeuy
SeIq JOMITAIUI ON

(JJms 2AnRnNSIUTWPE
10 2Iedy)[eay) s[euorssajoid £q paurejurewr
UONRULIOJUT 9IBOY)[BSY [eUIpmISuo |

(syavd
'3°9 ‘sased awos ur) AJfIqe[reAe drqnd

SSYS [euoneuIuI

ut suonendod 9s1oAIp JO 95BIA0D)
(swioj piepuels

/paugepaid era pamides eyep) po[jonuo))
(uomeIIAWINOOP JUSPIOUT K1oJes

Snip uo snooy oyroads) jueasrar AYSiH

QeI

SOATIRIIRU [BOTUID)

am@OHSOm Blep 1X91-9al

SWITE[O QATIBNSIUTPY

SYHA

Saseqeep
QIRIYI[EAY [BUOTIBAIISqQ

saseqeiep SYS

saguayrey)d

sSurwooloys

sagejueApy

Qo1nos [eusis

QInjeI Ay) pue a5pajmouy]

eoundwe uo paseq spoyjaw uond)ap [eudis reuoneindwod jo juswdoroasp/uonestjdde yy 10J seSus[[eyo 2andadsal pue SSUTWOIIOYS ‘SoSeIUBAPE (UOIOOP [eUSIS JOJ S90INOS vle( T dqeL

A\ Adis



V. G. Koutkias, M.-C. Jaulent

Challenges

Shortcomings

Advantages

Table 1 continued

Signal source
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Highly subjective data [26, 39, 40] Encapsulate mechanisms for quality control

Real-time nature [26]

Patient-generated data

[40]
Cope with missing data and filter duplicates

Questionable reliability, validity and quality

Large-scale data production [27]

of data [40]
Duplicates (reproduction of content from

[26, 40]
Construct real-time surveillance methods

users)

[26]
Efficient big data management and analytics

SRS spontaneous reporting system, FAERS FDA Adverse Event Reporting System, EHRs electronic health records

# The features that are attributed to observational healthcare databases are also applicable to their subcategories, i.e. EHRs and administrative claims databases

® The features that are attributed to free-text data sources are also applicable to their subcategories, i.e. clinical narratives, literature and patient-generated data

capacity, such as relevance, coverage, quality, reliability
and bias, to name a few. Without aiming to cite an ex-
haustive list, Table 1 summarizes some of these attributes,
as well as the challenges involved in using these sources
for signal detection based on empirical knowledge and the
literature.

In addition, a number of recent comparative studies of
signal detection methods exploiting SRS and observational
healthcare data illustrated the following (information re-
garding the employed data, methods and comparison
measures, as well as noteworthy analysis choices are
summarized in Table 2):

1. Shortcomings in detection accuracy/efficiency A high
rate of false-positive indications [38, 43] and difficul-
ties in detecting rare ADRs [43], while some events
were not detectable despite the variety of the employed
methods [33].

2. Performance variation Event-based differential per-
formance of methods [31], as well as differential
performance with respect to the data used for analysis
[43, 44].

3. Complementarity A  time-to-onset (TTO)-based
method with a DP-based method when applied to
SRS data [41], and DP-based methods with multivari-
ate-based signal detection strategies exploiting obser-
vational data [31], were found to be complementary.

Based on the above remarks, we can conclude that all
the available data sources and the concurrent use of dif-
ferent signal detection methods need to be considered in
the construction of a holistic signal detection framework. In
the following section, we refer to two characteristic studies,
which elaborated on combining information across diverse
data sources and signal detection methods.

3 On Combinatorial Computational Signal Detection:
Examples

3.1 Joint Signaling in a Spontaneous Reporting System
and an Electronic Health Record System

Given the maturity of drug surveillance based on SRS data,
the progress made in the use of observational healthcare
data, and the expectation that the two sources may com-
plement each other, Harpaz et al. [45] argued that it makes
sense to consider computational approaches that may
combine information from these two types of sources. The
motivation for the study was the assumption that a com-
binatorial investigation would either lead to increased
evidence or statistical power of findings, or would facilitate
new discoveries that may not be possible with either source
separately. In particular, the study elaborated on the joint
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analysis of 4 million reports obtained from the FDA Ad-
verse Event Reporting System (FAERS) and information
extracted from 1.2 million EHR narratives, using DP ana-
lysis, in order to generate a highly selective ranked set of
candidate ADRs and, consequently, advance the accuracy
of signal detection. Ranking of outcomes relied on the
‘Precision at K’ metric [46]. The focus was on three serious
adverse reactions, while a reference set of over 600
established and plausible ADRs was used to evaluate the
proposed approach against the single, FAERS-based signal
detector.

The combined signaling system demonstrated a statis-
tically significant large improvement over the FAERS in
the precision of top-ranked signals (i.e. from 31 % to al-
most threefold for different evaluation categories). Prob-
ably even more important, this combinatorial analysis
enabled the detection of a new association between a drug
agent and an event that was supported by clinical review.
Thus, the study concluded with promising initial evidence
that exploring FAERS and EHR data in the scope of
replicated signaling can improve the accuracy of signal
detection in specific cases.

3.2 Signal Detection by Integrating Chemical,
Biological and Phenotypic Properties of Drugs

The study of Liu et al. [47] followed an integrative per-
spective for ADR prediction by employing data beyond the
phenotype level. Specifically, ADRs were predicted by
jointly exploiting chemical (e.g. compound fingerprints or
substructures), biological (including protein targets and
pathways), and phenotypic properties of drugs (including
indications and other known ADRs). Interestingly, the
study suggested an approach for ADR prediction by com-
bining the above types of information at the different stages
of drug surveillance, i.e. chemical and biological for pre-
clinical drug screening, and chemical, biological and phe-
notypic for postmarket surveillance.

This integrative analysis was focused on the prediction
of 1385 known ADRs of 832 approved drugs, through five
different analysis methods, namely logistic regression,
naive Bayes, K-nearest neighbor, random forest and a
support vector machine. The elaborated data were obtained
from public databases, while the evaluation was based on
accuracy, precision, and recall, which were obtained from
the best operating points of the global receiver operating
characteristic (ROC) curve (resulting from merging the
prediction scores for all ADRs). The study indicated that
from the three types of information, phenotypic data were
the most informative for ADR prediction. However, when
biological and phenotypic features were added to the
baseline chemical information, the proposed prediction
model achieved significant improvements and successfully

predicted ADRs associated with the withdrawal of specific
drugs.

4 Towards Semantically-Enriched, Integrated Signal
Detection

4.1 Rationale

The studies presented in Sect. 3 differ, not only regarding
the employed data but also in the computational methods
used. Nevertheless, both studies explored ways to reinforce
signal detection outcomes either via replicated signaling or
by integrating phenotype data with biological and chemical
drug information, respectively, with significant findings.
Given the heterogeneity of data sources and the variety of
computational methods employed for signal detection, in
order to further elaborate and systematically establish such
combinatorial approaches we find the adoption of methods
and tools originating from the field of semantic technolo-
gies and knowledge engineering important.

As illustrated in Fig. 1, combinatorial signal detection
scales up from (a) studies where one data source is being
explored by a single computational method (in a kind of
‘coupled’ setting); (b) benchmarking studies (in which one
data source is being explored by various methods to enable
comparisons in the methods’ performance); and (c) studies
focusing on replication of outcomes (i.e. one method ap-
plied to various data sources, typically of the same type), to
settings where multiple data sources are explored by diverse
methods. This may be seen as a natural evolution thanks to
the increase in data availability for analysis, the develop-
ment of more efficient computational methods, and the need
for more accurate and evidence-based assessments.

Going a step further, Fig. 2 provides an overview of the
signal detection process within an integrated perspective,
where we discriminate among the diverse data sources
considered for signal detection (part A), the respective
computational signal detection methods per data source
type (part B), the overall signal detection workflow that has
to be supported in this integrated setting (part C), and the
stakeholders involved in signal detection (part D), who use
or contribute the above data sources and methods under a
common framework. Ideally, the computational signal de-
tection workflow in this case would first require mapping
the analysis requirements defined by stakeholders (step 1)
to the appropriate datasets and computational methods, and
then (upon selection) launching the analysis (step 2). Next,
aggregation of the output from the involved computational
methods shall be performed (step 3), and then subsequently
evaluating and ranking the provided indications based on
reference knowledge sources, before providing the out-
comes of the analysis to the respective end-users (step 4).
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Fig. 1 Scaling-up computational signal detection towards combinatorial-integrated approaches: a the quite typical approach of one data source
being explored by a single method in a ‘coupled’ fashion; b the benchmarking setting, i.e. one data source explored by various methods to enable
the methods’ comparison; ¢ studies assessing replication of outcomes, i.e. one method applied to various data sources (typically of the same
type); and d the integrated perspective, i.e. various data sources of different types explored by diverse methods in parallel

4.2 Challenges for Large-Scale, Combinatorial Signal
Detection

The above scenario foresees the provision of uniform-
combined access to data and computational methods for the
end-users by hiding the underlying technical complexities.
To this end, it is evident that the combinatorial signal de-
tection approach poses new challenges for its realization,
especially within a large-scale setting involving heteroge-
neous data sources and different methods, as well as the
potential collaboration among stakeholders. Beyond the
need to cope with privacy issues related to health data
integration from different sources [48], big data analytics
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[49], and hybrid signaling strategies [41], we discriminate
the following issues (I represents ‘issue’):

L1

Employing an appropriate description schema to
express quality attributes of data sources, useful for
signal detection, as regards their structure, content and
provenance. For SRSs, example attributes may be the
coverage of predominant drugs and adverse effects, as
well as the level of seriousness of the reports.
Attributes for observational data sources may be the
population size and the observation period. Similarly,
a concise description of signal detection methods with
respect to their input, output and analysis parameters
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Fig. 2 Overview of the computational signal detection process in an integrated perspective. a Diverse data sources; b relevant computational
signal detection methods per data source type; ¢ the signal detection workflow; d stakeholders involved in signal detection for whom uniform-
combined access to data and computational methods for signal detection shall be provided; e proposed add-ons for semantically-enriched, large-
scale signal detection. ATC Anatomical Therapeutic Chemical classification system, EHR electronic health record, MedDRA Medical Dictionary
for Regulatory Activities, NLP Natural Language Processing, OMOP Observational Medical Outcomes Partnership, SRS spontaneous reporting
system

1.2

L3

is required, enabling their combined use either in
parallel or in a conditional pipeline based on the
output of individual steps. These descriptions shall be
used by stakeholders contributing data and methods to
the framework, in order to facilitate their selection
and combined use by stakeholders interested in
conducting signal detection.

The concrete definition of study parameters, concern-
ing, for example, the drugs and health outcomes of
interest (HOIs), enabling consistent comparisons of
analysis experiments and their findings. Studies
exploring observational data illustrated that this issue
is of paramount importance and has a major impact on
the outcomes of the analysis [35, 50].

Hiding the technical complexity in using signal
detection method implementations and guide users
to select and fine-tune their parameters. A significant

1.4

L5

variation among researchers in study design choices
for signal detection has been highlighted by Stang
et al. [51], due to various factors. Thus, it is important
to provide guidance on study setup, given the focus of
a signal analysis experiment. The PROMPT tool of
Mini-Sentinel constitutes relevant work along this line
(http://mini-sentinel.org/methods/methods_develop-
ment/details.aspx?ID=1044).

Supporting evaluation of analysis outcomes in com-
parison with reference sources for both novelty
detection (i.e. to exclude known ADRs) and acquisi-
tion of supportive evidence (e.g. biological attributes
of drugs).

The common description of analysis results originated
from experiments involving multiple data sources and
signal detection method implementations along with
the parameterization applied, including provenance
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information (i.e. the origin of the results with respect
to the data, methods and parameter values that have
been employed). Such a description will facilitate
results sharing, systematic comparisons and assessing
whether replication of experiments leads to similar
results.

4.3 Semantically-Enriched Integrated Signal Detection

In order to address the above issues, it is imperative to
establish systematic frameworks capable of supporting the
concurrent exploitation of diverse data and methods. Se-
mantic technologies bring many tools and benefits to cope
with these aspects [52]. Examples of such technologies
include ontologies (i.e. formal descriptions of the meaning
of concepts), mappings among concepts/terms used in
heterogeneous systems with the same meaning (semantic
mapping), query languages, knowledge representation
formalisms such as rules, as well as automatic inference
mechanisms. To this end, in Fig. 2 we introduce an add-on
layer (part E) with specific components relying on semantic
technologies to conduct semantically-enriched, integrated
signal detection comprising of the following elements (E
represents ‘element’):

E.1 Ontologies for annotating with quality attributes
datasets and methods involved in signal detection
(to address issue I.1). To some extent, such an
annotation has been elaborated in the scope of
defining common data models to facilitate the
analysis of observational data from various sources
[34], with a major focus on the syntactic level, rather
than on semantics. Moreover, a common description
of methods is missing.

E.2 Semantic mappings between terminologies and/or
ontologies obtained from ontology repositories (e.g.
BioPortal, http://bioportal.bioontology.org/) that can
facilitate the consistent definition of health outcomes
and/or drugs of interest for a given signal detection
scenario exploring diverse data sources through ter-
minological/ontological reasoning (to address issue
1.2).

E.3 Semantic rules linking the above quality attributes in
order to support users in selecting the appropriate
data, analysis methods and parameter settings for
their drug surveillance use case, e.g. the targeted
drug(s) or health conditions of interest (to address
issue 1.3).

E.4 Multifaceted querying of diverse drug safety resources
for novelty assessment and for obtaining supporting
evidence to interpret the findings of signal detection
(to address issue 1.4). This feature is possible thanks to
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the public availability of exploitable repositories of
linked data in the domain of life sciences, such as
Bio2RDF [53] and the EBI RDF platform [54], which
provide programmatic access to resources such as
chEMBL (https://www.ebi.ac.uk/chembl/), Clinical
Trials.gov  (http://clinicaltrials.gov/),  DrugBank
(http://www.drugbank.ca/) and SIDER (http://
sideeffects.embl.de/), to name a few.

E.5 Ontology-based annotation of outcomes with prove-
nance information, enabling their sharing and fa-
cilitating comparisons (to address issue 1.6).

We implement some of the above elements in the
scope of the SAFER project (http://safer-project.eu/),
which develops a semantically-enriched platform for
combinatorial signal detection by exploring diverse open-
source signal detection method implementations and
publicly available data. In particular, we elaborate on the
semantic harmonization of computational signal detection
methods through an ontology model [55], aspiring to
build a semantic registry of such methods and an inte-
grated platform for experimentation on pharmacovigilance
signal detection. Based on this ontology, we design and
implement software interfaces to mediate between exist-
ing signal detection method implementations and to ag-
gregate their outcomes, facilitating their exploitation
under a common integrated framework. Besides using the
built-in criteria of the employed computational methods
for signal generation and ranking, we investigate other
ways to address prioritization and management of the
obtained outcomes (e.g. factors used in triage models [56,
57]), a challenging issue stemming from the parallel use
of multiple signal detection methods that has also been
remarked on by van Holle and Bauchau [41] and Harpaz
et al. [45].

Notably, the Observational Health Data Sciences and
Informatics (OHDSI, http://ohdsi.org/) collaborative ela-
borates on developing a global knowledge base (KB)
bringing together and standardizing information for drugs
and HOIs from various electronic sources relevant to drug
safety [58]. This KB will be extremely useful for estab-
lishing a common reference for assessing the outcomes of
computational signal detection methods, and is closely
related to the element E.4 described above.

Taking into account the availability of diverse signal
detection method implementations as open source (e.g.
http://omop.org/MethodsLibrary, http://cran.r-project.org/
web/packages/PhViD/,  http://mini-sentinel.org/methods/
methods_development/), public repositories of linked data
related to drug safety, as well as initiatives for openly
exposing drug safety data through programming interfaces
such as openFDA (https://open.fda.gov/), we believe that,
although challenging, the establishment of semantically-
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enriched platforms for integrated signal detection is
feasible.

Although not explicitly related to the integrated signal
detection perspective presented in this paper, semantic
technologies have been employed in several drug safety
applications, e.g. in order to automate signal detection,
address heterogeneous data integration for safety assess-
ment, normalize drug safety data, facilitate adverse event
reporting, and semantically analyze case reports. Aiming to
illustrate the applicability and added value of these tech-
nologies in the domain of drug safety, the following section
refers to some interesting examples.

5 Applications of Semantic Technologies in Drug Safety

Bousquet et al. [59] developed PharmaMiner, a tool aiming
to reinforce automated signal detection when using the
Medical Dictionary for Regulatory Activities (MedDRA®)
to express adverse events. The study relied on the argument
that automatic grouping of MedDRA® terms expressing
similar medical conditions would increase the power of
detection algorithms. Through an ontology, PharmaMiner
employed terminological reasoning in order to group se-
mantically-linked adverse events, and applied standard
statistical analysis methods for the detection of potential
signals. Evaluation of PharmaMiner with a dataset of
42,284 case reports extracted from the French Pharma-
covigilance database illustrated that the approach enabled
the identification of more occurrences of drug-ADR as-
sociations than using the original MedDRA® hierarchy,
and could thus help pharmacovigilance experts to increase
the number of responses to their queries when investigating
case reports coded with MedDRA®. Recently, Bousquet
et al. extended the approach for automatically grouping
MedDRA® terms through the OntoADR ontology [60].
Stephens et al. [61] presented a use case of semantic
web technologies for drug safety by focusing on hetero-
geneous data integration and analysis. The motivation was
that semantic technologies can simplify data integration
across multiple sources and support the logic to infer ad-
ditional insights from the data. Given that effective deci-
sion making regarding a drug’s safety profile requires the
assessment of all the available information regarding, for
example, the compound, the target and the patient group,
Stephens et al. employed ontology-based inferencing and
rules in order to guide decisions on either continuing to
pursue a compound or withdrawing a drug from the market
through the analysis of diverse data. The approach was
illustrated via an example rule assessing the drug toxicity
risk, which employed diverse parameters used along the
drug discovery and development pipeline, such as the
structural similarity of the compound of interest with others

that failed due to toxicity, the compound binding to the
target expressed with a number of single nucleotide poly-
morphisms (associated with the range of response to the
drug), the therapeutic index, clinical findings, therapeutic
dose, etc.

Wang et al. [62] elaborated on the normalization of
FAERS data through semantic technologies. The objectives
of their work were, first, improving the mining capacity of
FAERS data for signal detection and, second, promoting
semantic interoperability between the FAERS and other
data sources. As drugs are registered in the FAERS by
arbitrary names, e.g. trade names and abbreviations, and
may even contain typographical errors, the lack of drug
normalization introduces substantial barriers for data inte-
gration in signal detection. Wang et al. normalized drug
information contained in the FAERS using RxNorm (http://
www.nlm.nih.gov/research/umls/rxnorm/), a standard ter-
minology for medication, while drug class information was
obtained from the US National Drug File Reference Ter-
minology (NDF-RT, http://www.nlm.nih.gov/research/
umls/sourcereleasedocs/current/NDFRT). Regarding ad-
verse event names, although the FAERS provides nor-
malized terms based on MedDRA® preferred terms (PT),
Wang et al. demonstrated that this normalization reinforces
the data aggregation capability when linking PT terms to
their corresponding system organ class (SOC) categories.
The study resulted in a publicly available knowledge re-
source  (http://informatics.mayo.edu/adepedia/index.php/
Download), which can be extended by connecting data
from clinical notes, scientific literature, gene expression,
etc., and various other ontologies.

Aiming to address interoperability issues that hamper the
conduction of postmarketing safety analysis studies on top
of EHR systems, the SALUS project (http://www.
salusproject.eu/) built a semantic framework and a
dedicated toolkit to serve this purpose. An interesting part
of this toolkit was a component aimed at facilitating spon-
taneous reporting by prepopulating the respective forms
with relevant EHR data [63]. To this end, standard (e.g.
based on HL7) and proprietary EHR data models were
mapped to the E2B data model (Electronic Standards for the
Transfer of Regulatory Information, http://estri.ich.org/),
while terminology mapping and reasoning services were
designed to ensure the automatic conversion of local EHR
terminologies, e.g. International Classification of Diseases,
Tenth Revision (ICD-10, http://www.who.int/
classifications/icd/en/) or Logical Observation Identifiers
Names and Codes (LOINC®, http://loinc.org/), to Med-
DRA®, which is dominant for adverse event reporting. The
partial automation of the adverse event reporting process
achieved through this tool is expected to contribute to the
reduction of underreporting, which has been often argued as
a limitation of SRSs.
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Sarntivijai et al. [64] employed an ontology to conduct a
comparative analysis of adverse events associated with two
different types of seasonal influenza vaccines, namely
killed and live influenza vaccines. The study analyzed re-
ports from the US Vaccine Adverse Event Reporting
System (VAERS), referring to a number of vaccines of the
above categories based on measures such as the propor-
tional reporting ratio and Chi-square. The identified ad-
verse events were grouped using the Ontology of Adverse
Events (OAE, http://www.oae-ontology.org/), based on
their semantic similarity. This approach provided better
classification results compared with MedDRA® and Sys-
tematized Nomenclature of Medicine—Clinical Terms
(SNOMED-CT®)-based classifications. The analysis indi-
cated that live influenza vaccines had a lower chance of
inducing two severe adverse events compared with the
other vaccine category, while previously reported positive
correlation between one of the serious events and influenza
vaccine immunization was based on trivalent influenza
vaccines rather than monovalent influenza vaccines.

6 Discussion and Conclusions

Lately, signal detection has been a very active research
field, demonstrating not only important advances but also
many new challenges [4, 28, 65, 66]. Further data sources
are considered for signal detection and, consequently, new
computational methods and approaches are constantly be-
ing proposed for their analysis [16, 26, 27]. Important
findings as regards the capacity of new/established methods
and data sources for signal detection have been illustrated
by a number of comparative studies [31, 33, 38, 41, 43, 44].
Although it is arguable to what extent the outcomes of
these studies are generalizable, it is clear that the concur-
rent use of multiple methods and data sources is essential.

Interestingly, increased drug surveillance through the
synthesis of all possible information sources has been
suggested by regulatory bodies [67] and highlighted in the
literature [68]. Given the need to obtain more reliable and
timely insights on drug safety risks, it has been reasonably
argued that combining information across data sources
could lead to more effective and accurate signal detection.
These combinatorial investigations are expected to increase
evidence on the obtained results, or provide new insights
that may be not possible by investigating a single source.
Some early successful examples of this approach for signal
detection have been recently presented in the literature
[45, 47].

However, in order to explore this perspective in its full
potential we need systematic frameworks that will facilitate
pharmacovigilance stakeholders to seamlessly share,
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access, and effectively use different data sources and
computational methods for signal detection. In this article,
we highlighted the challenges towards such a development
and argued that semantic technologies bring the technical
endeavor for this advancement. We also introduced con-
crete elements towards an integrated, semantically-en-
riched signal detection framework, spanning from the
description of data sources and computational methods for
selection, support in study setup, advanced access to ref-
erence linked-data resources for evaluation, and uniform
description of the obtained outcomes.

The applicability and virtue of semantic technologies in
drug safety have been illustrated in several applications.
Aligned with the integrated signal detection perspective,
we are currently developing a semantically-enriched signal
detection platform relying on the semantic harmonization
of signal detection methods and data sources [55]. Our
research complements other efforts in the field, such as the
OHDSI KB [63] and the SALUS semantic interoperability
platform and tools [58], bringing a new perspective on
large-scale, knowledge-intensive signal detection, and
aspiring to increase efficiency, automation, support and
collaboration for pharmacovigilance stakeholders.
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