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Abstract. In this short note we give a simple proof of the existence of an almost
contact metric structure on any orientable 3-dimensional Riemannian manifold (M3, g)
with the prescribed metric g as the adapted metric of the almost contact metric struc-
ture. By using the key formula for the structure tensor obtained in the proof of this
theorem, we give an application which allows us to completely determine the magnetic
flow of the contact magnetic field in any 3-dimensional Sasakian manifold.

1 Introduction

The existence of particular geometric structures (complex, almost complex, contact,
almost contact, symplectic, etc.) on a given n-dimensional manifold Mn is, in general,
a nontrivial problem. The more interesting and well-known results correspond with the
low-dimensional cases. For example, F. Hirzebruch [8] proved that the n-dimensional
quaternionic projective space Pn(H) does not admit any almost complex structure in
case n 6= 2, 3. According to Hirzebruch’s lecture at the 1958 International Congress [9],
Milnor has since proved that P 2(H) and P 3(H) do not admit almost complex structure.

An almost contact structure [4] on a connected (2n + 1)-dimensional manifold
M2n+1 is a triple (ϕ, ξ, η), where ϕ is a field of endomorphisms of the tangent spaces,
ξ is a vector field and η a 1-form such that

ϕ2 = −Id + η ⊗ ξ, η(ξ) = 1.(1)

Then (M2n+1, ϕ, ξ, η) is called an almost contact manifold. As a consequence of Eq. (1)
we have also ϕ(ξ) = 0 and η · ϕ = 0. Moreover, ϕ has rank 2n.

A Riemannian metric g on the almost contact manifold (M2n+1, ϕ, ξ, η) is said
to be adapted or compatible [4] if for all X, Y ∈ X(M2n+1) the following equation is
satisfied:

g(ϕ(X), ϕ(Y )) = g(X,Y )− η(X)η(Y ).(2)
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2 ALMOST CONTACT STRUCTURE AND THE CONTACT MAGNETIC FIELD

An immediate consequence is that η is the covariant form of ξ, that is, η(X) = g(ξ,X).
An almost contact metric manifold is an almost contact manifold endowed with

a compatible metric g, which is denoted by (M2n+1, ϕ, ξ, η, g). From Eq. (2) we have
that ‖ξ‖2 = g(ξ, ξ) = 1. Note that a conformal change of the metric, ḡ = ρ2g gives an
almost contact structure (ϕ̄, ξ̄, η̄) where ϕ̄ = ϕ, ξ̄ = (1/ρ)ξ, η̄ = ρη.

Let (M2n+1, ϕ, ξ, η, g) be an almost contact metric manifold. The fundamental
2-form of the almost contact metric structure [4] is the 2-form ω on M2n+1 given by
ω(X, Y ) = g(X, ϕ(Y )). Notice that in general ω 6= dη. More precisely, an almost contact
metric manifold with ω = dη is called a contact metric manifold. In a contact metric
manifold the integral curves of ξ are geodesics. A contact metric manifold such that the
vector field ξ is a Killing vector field with respect to g is called a K-contact manifold.
The first basic property of a K-contact manifold is that

∇Xξ = −ϕ(X).(3)

A Sasakian manifold is an almost contact metric manifold (M2n+1, ϕ, ξ, η, g) such
that

(∇Xϕ)Y = g(X, Y )ξ − η(Y )X

for all X,Y ∈ X(M2n+1). It is easy to see that any Sasakian manifold is K-contact. In
dimension 3, the converse is true.

Obviously, the first nontrivial case for M2n+1 to admit an almost contact metric
structure is when n = 1, i.e., the 3-dimensional case. In 1971 J. Martinet proved that
every compact orientable 3-dimensional manifold carries a contact structure [11]. The
requirement on M2n+1 of compactness is unnecessary for our purpose, therefore in this
note we first give in Section 2 a simple proof of the following existence theorem.

THEOREM 1.1 Let (M3, g) be an oriented 3-dimensional Riemannian manifold. Then,
there exists on M3 an almost contact metric structure with g as the adapted metric.

As a direct application of the key formula obtained in the proof of this theorem, in
Section 3 we completely determine the normal magnetic flow of the contact magnetic
field on any 3-dimensional Sasakian manifold. It is a well-known fact that a charged
particle in a static uniform magnetic field in Euclidean space R3 moves along a circular
helix (i.e., a curve of constant curvature and torsion) around the line flow of the magnetic
fields (the charged particle has a circular component of motion in the plane normal to the
magnetic field, the constant angular frequency of revolution is the cyclotron frequency,
but also drifts at constant speed in the direction of the field). As a generalization of this
fact, we shall prove in Section 3 that on any (not necessarily compact) 3-dimensional
Sasakian manifold, for the contact magnetic field F = dη, charged particles move along
helices around the orbits of the global Reeb vector field ξ of the Sasakian manifold (a
helix in a Riemannian manifold is an arclength parametrized curve such that all its
curvatures are constants).

2 Proof of the theorem

Let us first recall the following well-known standard topological result (see, for example,
Refs. [13] p. 149 or [14] p. 11-30 and p. 11-51).
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LEMMA 2.1 For a connected orientable manifold Mm the following assertions are
equivalent.

1. There is a nonvanishing vector field on Mm.

2. Either Mm is noncompact, or Mm is compact and has Euler number χ(Mm) = 0.

Proof of Theorem 1.1. From Lemma 2.1, if m = 3 there is a nonvanishing vector
field Z on M3. Define on M3 the unit vector field ξ = Z/ ‖ Z ‖ .

Let Ω denote the volume element on (M3, g). For any vector fields U, V ∈ X(M3)
define their cross product U × V as the vector field on M3 such that

g(U × V, W ) = Ω(U, V, W ),(4)

for all W ∈ X(M3). Now, let ϕ : X(M3) −→ X(M3) be the 2-rank endomorphism
defined by

ϕ(U) = ξ × U,(5)

for any U ∈ X(M3). Then, Eq. (5) shows that ϕ(ξ) = 0, and if η = ξ[ is the g-
dual 1-form of ξ then we have also that η(ξ) = 1. It is not difficult to see that if
X, Y, Z,W ∈ X(M3), then the identities

X × (Y × Z) = g(X,Z)Y − g(X,Y )Z,

g(X × Y, Z ×W ) = g(X, Z)g(Y, W )− g(X,W )g(Y, Z)

are fulfilled. Therefore, from Eq. (5) we have also that

ϕ2(U) = ϕ(ξ × U) = ξ × (ξ × U) = −g(ξ, ξ)U + g(ξ, U)ξ = −U + η(U)ξ,

that is, ϕ2 = −Id + η ⊗ ξ.
What is left to show is that the metric g is adapted to the almost contact structure

(ϕ, ξ, η). In fact, if U, V ∈ X(M3), then

g(ϕU,ϕV ) = g(ξ × U, ξ × V ) = g(U, V )− η(U)η(V ),

and this proves the theorem. ¤

REMARK 2.2

(a) For a given unit vector field ξ on M3, the particular dimension of this manifold
allowed us to define the tensor field ϕ by means of equation (5). But if we
start with any given almost contact metric manifold of dimension 3 with the
suitable orientation, then this equation (5) is always satisfied. In fact, assume
that (M3, ϕ, ξ, η, g) is a 3-dimensional almost contact metric manifold. Let G
be a coordinate neighborhood and take U a unit vector field on G orthogonal
to ξ. Then {ξ, U, ϕ(U)} is a local orthonormal frame which is called a ϕ-basis
[4]. Define the orientation in such a way that the volume element Ω satisfies
Ω(ξ, U, ϕ(U)) = 1. As ϕ(U) is an unit vector field orthogonal to ξ and U, then
ϕ(U) = ± ξ×U. But g(ξ×U,ϕ(U)) = Ω(ξ, U, ϕ(U)) = 1, and hence ϕ(U) = ξ×U.
Therefore ϕ(X) = ξ ×X for any X ∈ X(M3).
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(b) A similar geometrical construction to the one showed in the proof of Theorem
1.1 has been used to define special almost contact structures on 7-dimensional
manifolds endowed with a 2-fold vector cross product [12]. On the other hand,
the cross product defined by Eq. (4) is an example of the r-fold cross product on
manifolds introduced by Brown and Gray (see Refs. [5] and [7]).

(c) The topology of 3-dimensional Sasakian manifolds is well-known in the compact
case. In fact, any compact Sasakian manifold is a Seifert fibration but the Sasakian
structures can be explicitly described [3].

3 An application to magnetic fields

Let (Mm, g) be a Riemannian manifold and denote by ∇ its Levi-Civita connection. A
magnetic field on (Mm, g) is a closed 2-form F on Mm ([1, 2, 6, 10]). The Lorentz force
of F is the skew-symmetric tensor field Φ given by

g(Φ(X), Y ) = F (X, Y ).(6)

Let us remark that Φ is metrically equivalent to F , so that no information is lost
when Φ is considered instead of F . In classical terminology, it is said that Φ is obtained
from F by raising its second index, and Φ an F are then said to be physically equivalent.

A smooth parametrized curve γ(t) in Mm is called a magnetic curve or a flowline
of the magnetic field F if it satisfies the Lorentz force equation

∇γ′γ
′ = Φ(γ′).(7)

Since the Lorentz force is skew-symmetric

d

dt
g(γ′, γ′) = 2g(∇γ′γ

′, γ′) = 0,

that is, magnetic curves have constant speed v(t) =‖ γ′(t) ‖= v0. When the magnetic
curve γ(t) is arc-length parametrized (v0 = 1), then it is called a normal magnetic
curve.

For the trivial magnetic field, F = 0, Eq. (7) says that normal magnetic curves
are the geodesics of (Mm, g). As it is well-known, they represent trajectories of free
fall charged particles travelling under the influence of only gravity. Moreover, for each
point p ∈ Mm and for any unit direction u ∈ TpM

m there exits a unique geodesic γ(t)
such that γ(0) = p and γ′(0) = u. When F 6= 0, the same existence and uniqueness
property can be stated for normal magnetic curves [2]. Nevertheless, it is worth pointing
out that the well-known homogeneity result for geodesics is no longer true for magnetic
curves. More precisely, if γ is the inextendible magnetic curve of (Mm, g, F ) determined
from the initial data (p, u), the curve β, defined by β(t) = γ(λt), λ ∈ R\{0}, is a
magnetic trajectory of (Mm, g, λF ) and also, when λ > 0, of (Mm, 1

λ g, F ), in both cases
determined from initial data (p, λu). Furthermore, for any constant λ > 0 the whole
families of magnetic curves of (Mm, g, F ) and (Mm, λg, λF ) coincide. Consequently, we
see that for a nontrivial magnetic field F on (Mm, g) there exists no affine connection
on Mm whose geodesics are magnetic curves of (Mm, g, F ) [2].
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Note that we are dealing with time-independent magnetic fields, so that in physical
terminology our approach belongs to the classical magnetostatic theory [16].

Now, let ω be the fundamental 2-form of the contact metric manifold (M2n+1, ϕ, ξ, η, g).
In such a background we have the distinguished magnetic field F = dη = ω, which is
naturally called the contact magnetic field. In fact, in Ref. [10] if (Mm, J, g) is a Kähler
manifold with Kähler form ω, the Kähler magnetic field is F = ω.

LEMMA 3.1 Let (M2n+1, ϕ, ξ, η, g) be a Sasakian manifold. Then

1. The Lorentz force Φ of the contact magnetic field F = dη = ω satisfies Φ = −ϕ.

2. If γ(t) is a normal magnetic curve of F and θ(t) denotes the angle between γ′(t)
and ξγ(t), then θ(t) is a constant θ(t) = θ0.

PROOF. For the Lorentz force Φ of F we have that

g(Φ(X), Y ) = F (X,Y ) = ω(X, Y ) = g(X, ϕ(Y )) = −g(ϕ(X), Y )

for any X,Y ∈ X(M2n+1), and hence Φ = −ϕ.
Since every Sasakian manifold M2n+1 is K-contact, equation ∇Xξ = −ϕ(X) is

satisfied for any X ∈ X(M2n+1). Covariant derivation of cos θ(t) = g(γ′(t), ξγ(t)) gives

d

dt
cos θ(t) = g(∇γ′(t)γ

′(t), ξγ(t)) + g(γ′(t),∇γ′(t)ξγ(t)) =

= g(Φ(γ′(t)), ξγ(t)) + g(γ′(t),−ϕ(γ′(t)) = 0,

because Φ = −ϕ are both skew-symmetric tensors and ϕ(ξ) = 0. Thus, θ(t) is a
constant θ(t) = θ0. In particular, if θ0 = 0 or θ0 = π, the normal magnetic curve γ(t)
is an integral curve of ξ, and therefore γ(t) is simultaneously geodesic and magnetic
curve.

¤

From now on, we will assume n = 1, therefore our background is an oriented 3-
dimensional Riemannian manifold (M3, g). The theory of magnetic fields in dimension
three is quite special. In particular, 2-forms are in bijective correspondence with vector
fields. In fact, given a 2-form, F ∈ Λ2(M3), we consider its star 1-form ?F ∈ Λ1(M3)
and the g-equivalent vector field (? F )] ∈ X(M3). Thus we have defined a one-to-one
map between 2-forms and vector fields. The converse trip is described as follows. For
a given vector field V ∈ X(M3), consider its g-equivalent 1-form V [ and then compute
its star, ? V [. Then we obtain a 2-form which can be also written, using the interior
contraction iV , as ? V [ = iV Ω, where Ω is the volume form of (M3, g).

On the other hand, it is well-known that the Lie derivative of the volume form
satisfies

LV Ω = d (iV Ω) = div(V )Ω

and therefore the 2-form ? V [ = iV Ω is closed if and only if div(V ) = 0, i.e., the volume
element is invariant by the local flows of V . This allows us to regard the magnetic fields
in dimension three as divergence free vector fields. In particular, if V is Killing, then
div(V ) = 0.
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Let (M3, ϕ, ξ, η, g) be a 3-dimensional (not necessarily compact) Sasakian manifold.
The vector field ξ is Killing, and therefore, it has associated a magnetic field Fξ. The
normal magnetic flow of this magnetic field Fξ is completely determined as follows.

THEOREM 3.2 Let (M3, ϕ, ξ, η, g) be a 3-dimensional Sasakian manifold. The nor-
mal flowlines γ(t) of the contact magnetic field Fξ are the helices of axis ξ with constant
curvature κ0 = sin θ0 and torsion τ0 = 1 − cos θ0, where θ0 is the (constant) angle be-
tween γ′(t) and ξγ(t).

Proof. Suppose γ(t) is a normal magnetic curve of Fξ. Then, Lemma 3.1 says that
g(γ′(t), ξγ(t)) = cos θ0, and it was also noticed that if θ0 satisfies θ0 = 0, π then γ(t)
can be regarded as a degenerate helix of axis ξ. Therefore from now on we shall assume
that 0 < θ0 < π. On the other hand, the key formula (5), Eq. (7) and Φ = −ϕ yield

∇γ′γ
′ = Φ(γ′) = −ϕ(γ′) = −ξ × γ′.(8)

Let {γ′(t), N(t), B(t)}, κ(t), τ(t) be the Frenet frame, the (geodesic) curvature and the
torsion of γ(t), respectively. The first Frenet equation for γ reads

∇γ′γ
′ = κN,(9)

Then equations (8) and (9) give κN = −ξ × γ′, and hence

κ2 = g(ξ × γ′, ξ × γ′) = 1− cos2 θ0 = sin2 θ0.(10)

Thus κ(t) = κ0 = sin θ0 is a constant. Now, the binormal vector of γ is defined by

B = γ′ ×N = − 1
κ0

γ′ × (ξ × γ′) = − 1
κ0

(ξ − cos θ0γ
′) .(11)

From Eq. (11) and the third Frenet equation ∇γ′B = −τN we have

− 1
κ0

(∇γ′ξ − cos θ0∇γ′γ
′) = τ

(
1
κ0

ξ × γ′
)

,(12)

and hence
ϕ(γ′)− cos θ0 ϕ(γ′) = τ ξ × γ′ = τ ϕ(γ′),

which gives τ = τ0 = 1 − cos θ0. Therefore γ is a helix (curvature and torsion are
constant) with axis ξ.

Conversely, assume that γ(t) is an arc-length parametrized helix with axis ξ, con-
stant curvature κ0 = sin θ0 > 0 and constant torsion τ0 = 1− cos θ0, 0 < θ0 < π, where
θ0 is the angle between γ′(t) and ξγ(t). Then, the covariant derivative of cos θ0 = g(γ′, ξ)
along γ gives

0 = g(∇γ′γ
′, ξ) + g(γ′,∇γ′ξ) = g(κ0N, ξ) + g(γ′,−ϕ(γ′) = κ0g(N, ξ),

where we have used the Frenet equation (9) and the fundamental equation on Sasakian
manifolds ∇Xξ = −ϕ(X). Thus, N is orthogonal to ξ, and therefore N = λ ξ×γ′, where
λ(t) is a nonvanishing function. Computing modules on both sides of this equation we
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obtain 1 = |λ(t)| sin θ0 and hence we conclude that λ(t) = λ0 6= 0 is a constant. Thus,
we have that

B = γ′ ×N = λ0γ
′ × (ξ × γ′) = λ0 (ξ − cos θ0 γ′) .

A substitution of this formula for B in the third Frenet equation ∇γ′B = −τ0 N yields

λ0 (∇γ′ξ − cos θ0∇γ′γ
′) = −τ0 λ0 ξ × γ′ = −τ0 λ0 ϕ(γ′).

But since ∇γ′ξ = −ϕ(γ′), the last equation then reads

−ϕ(γ′)− cos θ0∇γ′γ
′ = −τ0 ϕ(γ′),

or equivalently,

∇γ′γ
′ =

τ0 − 1
cos θ0

ϕ(γ′) = −ϕ(γ′) = Φ(γ′).

Therefore ∇γ′γ
′ = Φ(γ′), and this proves that γ is a normal flowline of the contact

magnetic field Fξ.
¤

REMARK 3.3

(a): As we noticed, the limit cases θ0 = 0, π mean that γ is an integral curve
of ξ. But the trajectories of ξ are then geodesics (∇ξ ξ = 0), which fit with
our formula κ = sin θ0 = 0 for the geodesic curvature in Theorem 3.2.

(b): It is a well-known conjecture of Weinstein [17] that on a compact contact
manifold satisfying H1(M2n+1, R) = 0, the vector field ξ must have a closed
orbit. In a recent paper Taubes [15] proved that the conjeture is true but
the second hypothesis is superfluos, that is, on any compact oriented 3-
dimensional contact manifold the vector field ξ has a closed orbit. But even
in such case, to the authors knowledge, the existence of closed magnetic
curves (closed helices around a closed or not orbit of ξ) is an open problem.

4 ACKNOWLEDGEMENTS

Research partially supported by MCYT FEDER Grant MTM 2007-61284 and by Grupo
de Investigación FQM-327, Junta de Andalućıa
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