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1. Introduction

The theory of dynamical systems has a long prehis-
tory, but essentially started in its present form with
the work of Poincaré and Birkhoff on problems con-

nected with celestial mechanics. In particular, the
theory of discrete dynamical systems, which mainly
uses iteration theory, is one of the most relevant
topics in the subject.

The purpose of this tutorial is to give a par-
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tial account of the progress obtained in discrete and
continuous systems is recent years, to present some
open and new problems. It consists of four sections.
In Sections 2 and 3 we consider some results in the
topological dynamics in non-autonomous discrete
systems and in Section 4 we give a rather complete
review of multi-valued dynamical systems arising
from models involving partial differential equations.
Finally, in Section 5 we provide an overview of many
problems in non-autonomous and random dynami-
cal systems, in particular on new concepts of non-
autonomous and random attractors.

2. Autonomous discrete dynamical systems

The development of the theory of topological dy-
namics began in the earlier part of the last century.
It focused in particular on problems related to au-
tonomous discrete dynamical systems given by the
pair (X, f), where X is a topological space and f a
continuous map of X into itself. The crucial prob-
lem was the study of properties of all orbits of all
points in the space state X. For x ∈ X, the orbit
of x by f is the sequence (fn(x))∞n=0, where fn =
f(fn−1) for all n ≥ 1 and f0 = idX (identity on X).
In most cases X is a compact metric space and, in
particular, extensive results were obtained when X
= I = [a, b] because many phenomena from social,
natural and economical sciences can be formulated
as systems evolving with time in a discrete way in
such spaces. Moreover, when X = Rd, or a subset
thereof, we generally speak of problems on differ-
ence equations.

Although the number of new results has been
impressive, we will include here some of them from
one of the subjects more active in the field in last
years, dynamical systems on continua.

2.1. Autonomous dynamical systems on

continua

One line of research that has been very active
in recent years is that of dynamical systems on
continua, i.e., where X is a continuum (a compact
and connected topological space) and f ∈ C(X,X).
For definitions and detailed account of results see
[Nadler, 1995]. Problems such as periodic struc-
ture using methods from combinatorial dynamics
have been studied on circles, trees and finite
graphs (see [Alsedà et al., 2000]), as well as on

centers and depth of centers [Ye, 1993, Kato, 1995,
Kato, 1998, Efremova & Makhrova, 2003] on
trees, graphs and dendrites, and on the
structure of ω-limit sets [Kocan et al., 2010,
Balibrea & Garćıa Guirao, 2005], in particular,
ω-limit sets on hereditarily locally connected
continua [Spitalský, 2008], etc.

Within dynamical systems theory one of the
most interesting topics is that of minimal systems,
i.e., systems that do not contain non-trivial sub-
systems. A system (X, f) is minimal if there is no
proper subset Y ⊆ X which is non-empty, closed
and f-invariant, i.e. satisfies f(Y ) ⊆ Y . It is im-
mediate that (X, f) is minimal if and only if the
forward orbit of all points in X are dense in X. We
will say also that in this case f is also minimal.
Here we will concentrate on the progress on mini-
mal systems in the case that the phase space X is
one-dimensional.

The topological characterization of minimal
sets of one-dimensional X has been carried out for
intervals, circles, trees, finite graphs and dendrites.
In the interval case, these are finite and Cantor
sets (see [Block & Coppel, 1992]), while for the cir-
cle case the circle itself can also be minimal. These
results can be generalized to graphs, where minimal
sets are characterized as finite sets, Cantor sets and
also unions of finitely many pairwise disjoint circles
[Balibrea et al., 2003, Mai, 2005].

A dendrite is defined as a locally con-
nected continuum which contains no simple closed
curve. In this case, besides partial results in
[Balibrea et al., 2003], a complete characterization
has been given recently in [Balibrea et al., 2009] as
a consequence of a more general result based on the
new notion of almost totally disconnected spaces. A
space X is almost totally disconnected if the set of
its degenerate components is dense in X. The main
results says that an almost totally disconnected
space admits a minimal map if and only if it is ei-
ther a finite set or has no isolated point. By a brain
we mean a cantoroid whose degenerate components
are dendrites and form a null family (for any ε > 0,
only a finite number of its members have diameters
greater than ε). A cantoroid is a compact metric
and almost totally disconnected space without iso-
lated points. With these ingredients we can now
state the characterization in [Balibrea et al., 2009].
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Theorem 2.1. Let D be a dendrite and let M be
a subset of D. Then M is a minimal set for some
dynamical system (D, f) if and only if M is either
a finite set or a brain.

In addition, the following characterization was
given in [Balibrea et al., 2009] for general almost
totally disconnected spaces.

Theorem 2.2. An almost totally disconnected
compact metric space admits a minimal dynamical
system if and only if it is either a finite set or a
cantoroid.

Question 2.3. Is it possible to give a topological
characterization of minimal sets in other families
of one-dimensional continua like arc-like, tree-like
or circle-like ? (For definitions see [Nadler, 1995]).

3. Non-autonomous discrete systems

We now consider the situation in which the map
describing the evolution of the dynamics is itself al-
lowed to change with time. This admits the follow-
ing formulation. Given a compact topological space
X and a sequence of continuous self-maps (fn)

∞
n=1

= f1,∞ from X into itself, the pair (X, f1,∞) will be
called a non-autonomous discrete system where the
orbit of a point x ∈ X is described by the sequence

x, f1(x), f2(f1(x)), . . . , fn(fn−1)...(f2(f1(x)))...)

We will use the notation

fn1 = fn ◦ fn−1 ◦ ... ◦ f2 ◦ f1

which was introduced in [Kolyada & Snoha, 1996].
When all of the maps are the same, i.e., fn = f

for all n ∈ N, then we have a autonomous discrete
dynamical system or, simply, a discrete dynamical
system, which we considered above.

There is not a large literature on truly non-
autonomous discrete systems and, as consequence,
there are a few results. In the following subsec-
tions we will survey some interesting developments.
Other results can be found in the expository article
[Kloeden, 2000].

3.1. Topological entropy

The authors of [Kolyada & Snoha, 1996] defined
the topological entropy of a non-autonomous dis-

crete system, which they denoted by h(f1,∞), using
the technique of open covers of X as in the orig-
inal paper [Adler et al., 1965] on autonomous sys-
tems. In the case that X is metric or metrizable,
they also used separated and spanning sets as in
[Bowen, 1970]. It is easy to see that such defini-
tions give similar results when the system is in fact
autonomous. What is really interesting, is that it is
now possible to define the entropy h(f1,∞, Y ), when
Y is a subset of X which is not necessarily compact
or invariant under f(f1,∞). Such an extension was
necessary to deal with other problems considered in
[Kolyada & Snoha, 1996].

An interesting and surprising consequence of
the paper [Kolyada & Snoha, 1996] was a proof of
the commutativity of the entropy autonomous dy-
namical systems, i.e., the entropy of the composi-
tion of two continuous self-maps on a compact space
does not depend on the order in which they are
taken, i.e., h(f ◦ g) = h(g ◦ f). The first time that
the commutativity of the entropy was mentioned
seems to have been in [Dinaburg, 1970].

Inspired by [Kolyada & Snoha, 1996], the com-
mutativity or non-commutativity of other types
of entropy such sequence entropy were proved in
[Balibrea et al., 1999a, Balibrea et al., 1999b]).

It is well known (see [Misiurewicz,1989]) that
for interval maps, the entropy is positive if and
only if one of its iterates has a structure called
horseshoe. An interval map f has a horseshoe if
there are two disjoint intervals J and K such that
f(J) ∩ f(K) ⊃ J ∪K. It is difficult to extend this
definition to non-autonomous interval systems be-
cause it is associated to a unique map and f1,∞ is
a sequence. If such notion were possible while re-
taining properties similar to those of horseshoes for
autonomous dynamical interval systems, then one
can ask:

Question 3.1. If a non-autonomous interval sys-
tem f1,∞ has positive entropy, does it possess a
structure of horseshoe type?

Another way to obtain non-autonomous dy-
namical systems is to allow not only maps to
change, but also spaces. This leads to the following
generalization: a non-autonomous dynamical sys-
tem is the pair (X, f) given by X = (Xn)

∞
n=1 and

f = (fn)
∞
n=1), where each Xn is a compact metric
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space and fn : Xn → Xn+1 for n ∈ N. Such a no-
tion is used for example in [Kolyada et al., 1999] to
construct a class of smooth triangular maps on the
unit square of type 2∞ having positive topological
entropy and thus extending a previous result from
[Balibrea et al., 1995]. Another example is to con-
sider skew-product maps which were introduced in
[Bowen, 1970] and are often called triangular maps
when defined on [0, 1]2, i.e. with

F (x, y) = (f(x), g(x, y)) = (f(x), gx(y)),

where f ∈ C(I, I) and gx ∈ C(I, I) are continuous.
Dynamical systems generated by continuous maps
on hereditarily locally connected continua such as
dendrites can also be interpreted as a sequence of
spaces and maps between them and hence as as gen-
eralized non-autonomous systems. The sequence of
spaces can be, for example, trees approaching den-
drites (see [Nadler, 1995]). Results on entropy can
be also obtained in such cases.

The above generalization was used also to ob-
tain a formula for entropy in terms of the num-
ber of pieces of monotonicity of the functions fn1
when all the Xn are compact real intervals and
maps are piecewise monotone. This is a general-
ization of the well-known Misiurewicz-Szlenk for-
mula for a continuous piecewise interval map (see
[Misiurewicz & Slenk,1980]).

3.2. Periodic non-autonomous systems

We will restrict now our attention to the case Xn =
I or R for each n ∈ N since a lot of results have
been obtained in this setting. Let us suppose that
there exists a positive integer p (prime period) such
that fn+p = fn for each n ≥ 0. Then the system

xn+1 = fn(xn)

is called a p-periodic non-autonomous system.
In the setting of economical theory, the two

periodic case has an interpretation in terms of
Parrondo’s paradox [Cánovas et al., 2006]. This
paradox says that two losing games can result,
under random or periodic alternation of their
dynamics, in a winning game. That is, it can
happen that combination of losing + losing
can result winning. For more information on
this paradox see [Harmer & Abbott, 1999a,
Harmer & Abbott, 1999b,

Parrondo, Harmer & Abbott, 2000]. A partial
analysis of when the paradox is impossible is given
in [Cánovas, 2010]. It would be interesting to
consider examples in two dimensional settings and
analyse whether the paradox is possible or not.

Motivated by Sharkovskii’s results on the co-
existence of periodic orbits of certain periods
([Sharkovskii, 1994, Sharkovskii, 1964]) and forc-
ing relationships, we wonder if the same type
of such relationships can be obtained in the
non-autonomous case. There are several papers
on this for interval maps ([Alsharawi et al., 2006,
Alves, 2009, Cánovas & Linero, 2006]). It is stated
in [Alves, 2009] that if the condition

Card{x ∈ I, fi(x) = fj(x)} <∞, ∀ i 6= j (mod p)

holds, then if the system has a periodic orbit of
period r such that lcm(r,p)

p
is odd and larger than 1,

then the system has periodic orbits of all periods
forced by the Sharkovskii ordering. When p = 1 we
recover the Sharkovskii’s original result. To clarify
the situation, the sets

Aq =
{

n ∈ Z+ : lcm(n, p) = pq
}

for q ∈ Z+

were introduced in [Alsharawi et al., 2006]. If ≺ de-
notes Sharkovskii’s ordering, then we have

Theorem 3.2. If Al ∩ P 6= ∅ for some l ∈ Z+,
then Aq ∩ P 6= ∅ for all l ≺ q.

It is necessary distinguish the periods of the p-
periodic equation in Aq. To this end we introduce

Q = {n ∈ P : p . n} .

Note, by the definition of Aq, we have Aq ∩ pZ+ =
{pq} for every q ∈ Z+. As a consequence Aq ∩P =
{pq} whenever Aq∩P 6= ∅ and Aq∩Q = ∅. Finally,
if l ∈ Z+, then

Sl = {pq ∈ Z+ : q ≺ l, or Aq ∩ Q 6= ∅

With such notation we reformulate the former the-
orem.

Theorem 3.3. If Al ∩ P 6= ∅ for some l ∈ Z+,
then S \ Sl = (Q ∪ pZ+) \ Sl

Reasons for interest of knowing the ele-
ments of Q are given in [Alves, 2009] and the
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case of two periodic equations is studied in
[Cánovas & Linero, 2006], where it is shown that
if such an equation has an odd period larger than
1, then

P = Q ∪ 2Z+.

Such results underline the role played by the set Q.

Question 3.4. Is it possible to obtain a general
formula for all periods of a p-periodic difference
equation similar to that above?

3.3. Lyapunov exponents in periodic non-

autonomous systems

Let us start with an example coming from us-
ing the Poincaré map to understand the behavior
of orbits in non-linear and non-autonomous differ-
ential equations of second order (see for example
[Chacón, 2001]), namely

xn+1 = [α+ ε(bn + βcn)]xn = anxn (1)

with α > 1, 0 < β < 1, bn =
√

2 sinn, cn =√
2[2K(m)(n + Θ)/π;m]. That is, for the sake

of clarity and possibility of comparing results we
choose the main resonance regime Tsin = Tsn = 2π,
where sn denotes the Jacobian elliptic function of
parameter m, while K(m) is the complete elliptic
integral of the first kin and Θ is the initial phase,
i.e. with 0 ≤ Θ ≤ 2π.

The model is a particular case of general non-
autonomous systems xn+1 = fn(xn), where f1, f2,
. . . are continuous maps of X into itself, and X =
R or X = I = [0, 1]. The form of the perturba-
tion is designed to capture only the effect of weak
non-autonomous excitations on the stability of a
generic unstable limit cycle. The elliptic function
sn is chosen to introduce in the control excitation in
a simple way the effect of the excitation waveform
on the control scenario.

The behavior of the system is investigated by
exploiting the connection between the sensitivity
to initial conditions and Lyapunov exponents in
autonomous systems: when a point x ∈ X has
a positive Lyapunov exponent, then its orbit and
that of a point nearby diverge at a positive ex-
ponential rate. This connection was explored in
[Abraham et al., 2004], while the connection be-
tween Lyapunov exponents and positive metric en-
tropy was clarified in [Barrio, 2007].

We can extend the notion of Lyapunov expo-
nent for an autonomous dynamical system (X, f)
to a non-autonomous systems (X, f1,∞) by the for-
mula

λ(x) = lim
n→∞

1

n
log |(fn ◦ ...f2 ◦ f1)

′(x)|

= lim
n→∞

1

n

n−1
∑

j=1

log |f ′

j(x(j))| (2)

As a consequence we can give a notion of chaotic
behavior for systems. We will say that a non-
autonomous discrete system has chaotic behavior
if there is a Lebesgue measurable set of points L in
the space state X with positive Lyapunov exponent
(in the extended sense). In turn this is interpreted
in the application considered in the above paper
as the existence of homoclinic chaos, i.e., the exis-
tence in the phase space of the non-linear second
order differential equation of a homoclinic orbit in
the neighborhood of a separatrix. The system is
non-chaotic if there is no such set L.

Exercise 3.5. Propose new examples and applica-
tions of the extension of Lyapunov exponents and
develop a complete theory in the setting of (X, f1,∞)
with X = I or X = R.

3.4. Li-Yorke chaos in non-autonomous

systems

Since the notion of chaos in the sense of Li and
Yorke is given in terms of the behavior of orbits of
points in X, we can extend it to the setting of non-
autonomous systems given by sequences of maps
f1,∞

Definition 3.6. The system (X, f1,∞) is chaotic in
the sense of Li and Yorke (resp., δ-chaotic) if there
is an uncountable set S ⊂ X (called a scrambled
set) such that for all pairs x, y ∈ X with x 6= y

(i) lim sup
n→∞

d(fn1 (x), fn1 (y)) > 0 (> δ, resp.)

(ii) lim inf
n→∞

d(fn1 (x), fn1 (y)) = 0.

As a consequence, we can state similar prob-
lems in this new setting similar to what has been
proved in the case of autonomous discrete dynami-
cal systems.
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Exercise 3.7. Prove or disprove that, when X =
I, if there is a Li-Yorke pair, then there is an un-
countable number of pairs.

For topological entropy we have

Question 3.8. If h(f1,∞) > 0, is it true that f1,∞
is Li-Yorke chaotic?

There are many problem for autonomous sys-
tems with zero topological entropy which can also
be considered in the setting of non-autonomous sys-
tems.

3.5. Li-Yorke chaos in Rn with n > 1

The notion of snap-back repeller for maps f ∈
C1(Rn,Rn) was introduced in [Marotto, 1978] as
follows. Assume that x⋆ is an expanding fixed point
of f in the ball Br(x

⋆), i.e. where f(x⋆) = x⋆, and
all eigenvalues of Df(x) are greater than one in
norm for every x ∈ Br(x

⋆)). Then x⋆ is a snap-
back repeller for f if there is a point x0 ∈ Br(x

⋆)
with x0 6= x⋆ such that fp(x0) = x⋆ for some pos-
itive integer p and the determinant detDfp(x0 6=
0.

In the same paper, Marotto proved that the
existence of a snap-back repeller is a sufficient
condition to have Li-Yorke chaos (in a general-
ized sense of the usual notion). Marotto’s the-
orem was improved after by a theorem of Shi
and Chen in [Shi & Chen, 2004]. Other exten-
sions to the Banach space setting can be found in
[Kloeden & Li, 2006] .

Exercise 3.9. It would be interesting to know if
such theory could be extended to non-autonomous
systems. That would require also extending the no-
tion of snap-back repeller to another notion avail-
able in the new setting.

3.6. Non-autonomous difference equations

The field of difference equations has developed
quickly over the last thirty years. In many cases,
problems can be formulated in terms of autonomous
systems given by the pair (X, f) where X is either
(0,∞) or R and f : X → X is a non necessarily
continuous map. The main problem is the study
of properties of solutions of the equation which are

given by the sequences (xn)
∞
n=0 where x0 is the ini-

tial point and xn = fn(x0) with the same meaning
that in previous paragraphs.

In many recent applications we have to consider
xn+1 = fn(xn), where (fn)

∞
n=0 is a sequence of maps

of X into itself, which need not be continuous. The
traditional problems to be solved are: boundedness,
periodicity, convergence, local and global stability
of solutions. Equations with delays which are also
important in applications are formulated by

xn+1 = fn(xn, xn−1, ..., xn−k),

where fn : Rk+1 → R is a continuous map for each
n = 0, 1,. . ., k ≥ 1 and x−k, x−k+1, . . ., x0 ∈
R1. These can be reformulated as first order (i.e.
without delay) vector valued difference equations in
terms of Xn := (xn−k, xn−k+1, . . . , xn) ∈ Rk+1.

3.6(A). Examples of non-autonomous rational
equations

Non-autonomous rational equations are non-
autonomous differential equations involv-
ing rational functions. They are common
in applications in population dynamics (see
[Kulenovic & Ladas, 2002]).

1. The non-autonomous delay Pielou logistic
equation:

xn+1 =
anxn

1 + xn−k
,

where (an)
∞
n=0 is a positive periodic sequence

with period p, i.e. with

an+p = an, n = 0, 1, ....

When an = α the equation is autonomous
and the asymptotic behavior and oscillation
of its positive solutions have been studied in
[Kulenovic & Ladas, 2002].

When (an)
∞
n=0 is bounded and persistent (be-

low bounded), [Kocic & Ladas, 1993] gives
sufficient conditions for boundedness and the
global attractivity of solutions. In the peri-
odic case, sufficient conditions in the coeffi-
cients which ensure that there are periodic
solutions are also given.
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2. The previous model is an extension of the pe-
riodically forced Beverton-Holt model

xn+1 =
rKnxn

Kn + (r − 1)xn
,

which represents a population with inherent
growth rate r > 1 and a carrying capacity
represented by the periodic positive sequence
(Kn)

∞
n=1 which is assumed to have a prime

period p ≥ 2.

3. Non-autonomous Lyness equation: Let
(bn)

∞
n=1 be a sequence of positive numbers.

The non-autonomous Lyness equation

xn+1 =
xn + bn
xn−1

, x0 > 0, x1 > 0,

is a non-autonomous version of the Lyness
equation given by

xn+1 =
xn + b

xn−1
, x0 > 0, x1 > 0,

which is well-known in the literature. See for
example [Camouzis & Ladas, 2007], where a
complete report of such equation is given and
stated some interesting open problems. In
the non-autonomous case, it has been conjec-
tured that solutions are bounded and persist
(i.e. are bounded away form zero and infin-
ity) if (bn)

∞
n=1 has the same properties. One

can ask which other more general sequences
(bn)

∞
n=1 ensure that the solution (xn)

∞
n=0 is

bounded and persistent. An interesting ex-
ample in [Angelis, 2004] shows that (xn)

∞
n=0

can even be non-bounded when (bn)
∞
n=1 at-

tains only two values and proves that is suffi-
cient for (bn)

∞
n=1 to be a monotone sequence

to prove that the conjecture is true.

4. It is well-known [Camouzis & Ladas, 2007]
that the solutions of the difference rational
equation with two delays

xn+1 =
xn + xn−2

xn−1
, (3)

tends to a period-four solution. It was
shown for extension of the model in
[Papaschinopoulos & Schinas, 2008],

xn+1 =
pn + qnxn + qn

xn−k
,

n = 0, 1, . . . , k = 1, 2, . . . ,

with positive initial values x−k, x−k+1, . . .,
x0, that the solutions are bounded, persist
and have certain periodicity properties under
some conditions on the sequences (pn)

∞
n=1 and

(qn)
∞
n=1,

The following open problem was stated in
[Papaschinopoulos & Schinas, 2008].

Question 3.10. Consider the difference equation
(3) with k = 3,4, . . . where (pn)

∞
n=1 and (qn)

∞
n=1

are positive sequences such that (pn)
∞
n=1 is bounded

and either

pn − pn−k ≥ 0 and qn = qn−k, n = k, k + 1, . . .

or

pn − pn−k ≤ 0 and qn = qn−k, n = k, k + 1, . . .

Is every solution of (3) bounded and persistent?

4. Multi-valued dynamical systems

4.1. Equations without uniqueness

The theory of semigroups of operators has been a
powerful tool for studying the properties (and, in
particular, the asymptotic behavior) of solutions
of autonomous differential equations in partial
derivatives with uniqueness of the Cauchy problem.
In this situation the existence and properties of
global attractors have been established for a
wide type of equations such as reaction-diffusion
systems, the two-dimensional Navier-Stokes
equations, wave equations and many others
(see, e.g., [Babin & Vishik, 1992, Hale, 1988,
Ladyzhenskaya, 1991, Sell & You, 1995,
Temam, 1988]).

However, in many situations concerning sys-
tems of physical relevance either uniqueness fails
or it is not known to hold. In such cases we cannot
define a classical semigroup of operators, so that
another theory involving multi-valued maps is nec-
essary, namely, the theory of multi-valued dynami-
cal systems. Often a system is really multi-valued
(example of this cases will be given) but, in other
cases, we are simple not able to prove the unique-
ness of solutions. Hence, the theory of multi-valued
dynamical systems allows us to continue when the
proof of uniqueness fails due to technical problems,
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and it is still possible to study the asymptotic be-
havior of solutions no matter we have uniqueness
or not.

There exists now in the literature a great num-
ber of equations of physical interest for which
uniqueness of solutions fails. Among these we can
cite, for example, the three-dimensional Navier-
Stokes system, the Ginzburg-Landau equation, the
Lotka-Volterra system with diffusion, the wave
equation or differential inclusions (including some
models from climatology). This is, of course, one
important reason justifying the interest of multi-
valued dynamical systems. Another (not less im-
portant) reason is the fact that there is usually a
gap between the conditions that we need to im-
pose to obtain existence of solutions and the con-
ditions necessary to prove uniqueness. Hence, we
can weaken the conditions imposed on a differen-
tial equations and then consider more general situ-
ations.

We shall give now in more detail some examples
of equations in which either uniqueness is not true
or is not known to hold.

4.1(A). Three-dimensional Navier-Stokes equa-
tions

Let Ω ⊂ R3 be a bounded open subset with smooth
boundary. For given ν > 0 we consider the Navier-
Stokes system






















∂u

∂t
− ν∆u+ (u·∇)u = −∇p+ f, in (0, T ) × Ω,

div u = 0,

u|∂Ω = 0, u (0, x) = u0 (x) ,
(4)

where u (t, x) = (u1 (t, x) , u2 (t, x) , u3 (t, x)) is the
velocity of an incompressible fluid, p is the pressure
and f is an external force.

If we consider the usual function spaces

V = {u ∈ (C∞
0 (Ω))3 : div u = 0},

H = cl(L2(Ω))3V, V = cl(H1(Ω))3V, (5)

and assume that f ∈ H, then the following results
are well known (see e.g. [Lions, 1969, Temam, 1979,
Temam, 1988]):

1. For every u0 ∈ V there exists a unique strong
solution of problem (4) which exists in some
interval [0, T (‖u0‖V )).

2. For every u0 ∈ H there exists at least one
weak solution of (4) which exists in the whole
half-line [0,+∞).

Therefore, strong solutions are unique, but they
cannot be defined globally in time. On the other
hand, weak solutions exist globally in time, but it
is not known whether uniqueness holds or not.

Thus, if we intend to study the asymptotic be-
havior of solutions as time goes to infinity, then we
need to work with weak solutions and we have a
problem for which uniqueness fails.

In the two-dimensional case, i.e., Ω ⊂ R2,
uniqueness of weak solutions is true (see, e.g.,
[Temam, 1979]), so a semigroup of operators can
be defined in the phase space H, and the ex-
istence of a finite-dimensional global attractor is
a well known result (see [Ladyzhenskaya, 1982,
Temam, 1988, Babin & Vishik, 1992]).

4.1(B). Reaction-diffusion systems

Let d > 0 and N ≥ 1 be integers and let Ω ⊂ RN

be a bounded open subset with smooth boundary.
We denote by |·| the norm in the space Rd (or R),
and by (·,·) the scalar product in Rd. Consider the
problem






















∂u

∂t
− a∆u+ f(u) = h(x), (t, x) ∈ (0, T ) × Ω,

u|x∈∂Ω = 0
(

or ∂u
∂ν

|x∈∂Ω = 0
)

,

u (0, x) = u0(x),
(6)

where T > 0, x ∈ Ω, ν is the unit outward nor-
mal, u = (u1(t, x),. . ., ud(t, x)), a is a real d × d
matrix with a positive symmetric part 1

2(a+ at) ≥
βI with β > 0 and h ∈

(

L2 (Ω)
)d

. Moreover, f =
(f1,. . .,fd) is a continuous function satisfying the
following conditions:

d
∑

i=1

|f i(u)|
pi

pi−1 ≤ C1(1 +
d

∑

i=1

|ui|pi), (7)

(f(u), u) ≥ α
d

∑

i=1

|ui|pi − C2, (8)

where pi ≥ 2, α,C1, C2 > 0.

LetH =
(

L2 (Ω)
)d

, V =
(

H1
0 (Ω)

)d
for Dirichlet

boundary conditions and V =
(

H1 (Ω)
)d

for Neu-
mann boundary conditions. Also, for p = (p1, ..., pd)



Three perspectives 9

define the spaces

Lp (Ω)
def
= Lp1 (Ω) × · · · × Lpd (Ω) ,

Lp (0, T ;Lp (Ω))
def
= Lp1 (0, T ;Lp1 (Ω)) ×

× · · · × Lpd (0, T ;Lpd (Ω)) .

By a globally defined weak solution of (6)
we mean a function u (·) which belongs to
L∞ (0, T ;H)∩L2 (0, T ;V )∩Lp (0, T ;Lp (Ω)) for all
T > 0 and satisfies the equation in the sense of
distributions. As the regularity of u implies that
u ∈ C ([0,∞),H), the initial condition makes sense
[Chepyzhov & Vishik, 1996]. Under these condi-
tions there exists at least one globally defined weak

solution for every initial condition u0 ∈
(

L2 (Ω)
)d

[Chepyzhov & Vishik, 2002b; p.283].
Uniqueness is true, for example, if

the following conditions holds (see e.g.
[Chepyzhov & Vishik, 2002b; p.283]): the function
f is continuously differentiable and

(fu(u)w,w) ≥ −C3 |w|2 , ∀u,w ∈ Rd, (9)

where C3 ≥ 0 and fu denotes the Jacobian matrix
of u 7→ f (u) .

If we consider a bit more general situation
where f = f (x, u) is a Carathéodory function, then
we can give an example for which at least two weak
solutions corresponding to a given initial condition
exist. Let λ1 > 0 be the first eigenvalue of −∆ in
H1

0 (Ω), and ψ1 be the corresponding eigenfunction.
Without loss of generality we can assume that ψ1(x)
> 0 for any x ∈ Ω. It is known that ψ1 ∈ C(Ω), so
that max

x∈Ω
|ψ1(x)| ≤ K. We put

f(x, u) =







−λ1u−
√

ψ1(x)
√
u, u ∈ [0, 1],

−λ1u−
√

ψ1(x)u+ u2(u− 1), u 6∈ [0, 1],

and h ≡ 0. It is easy to check that f(x, u) satisfies
conditions (7)-(8) with p = 4. Suppose that a = 1,
u0 = 0. Then u(t, x) ≡ 0 is a trivial solution of the
Cauchy problem (6). For fixed r ≥ 0 we define

ur(t, x) :=



















0, 0 ≤ t ≤ r,

1
4(t− r)2ψ1(x), r ≤ t ≤ r + 2√

K
,

vr (t, x) tr ≤ t ≤ T,

where tr = r + 2√
K

and vr (t, x) is a solution on

[tr, T ] with vr (tr, x) = ψ1(x)
K

. It is easy to see that
the function uτ (t, x) is a solution of (6) until 1

4(t−
r)2ψ1(x) ≤ 1, and it is clear that |ur(t, x)| ≤ 1 for
all t ∈ [r, tτ ]. Hence, ur (t, x) is another solution of
problem (6). This example shows that conditions
(7)-(8) are not enough to give uniqueness.

Let us consider some models for which condi-
tion (9) fails.

The complex Ginzburg-Landau equation
The complex-valued Ginzburg-Landau equation is
the following:







∂u

∂t
= (1 + iη) ∆u+Ru− (1 + iβ) |u|2 u+ g (x) ,

u |∂Ω= 0, u (x, 0) = u0 (x) ,
(10)

where u = u (t, x) = u1 (t, x) + iu2 (t, x) for (x, t) ∈
Ω× [0, T ] and g (x) = g1 (x)+ig2 (x) ∈ L2 (Ω,C) for
η,β ∈ R and R > 0. We assume that gi ∈ L2 (Ω).

For v =
(

u1, u2
)

and u = u1 + ıu2, equation
(10) can be written as the real-valued system































∂v

∂t
=





1 −η

η 1



∆v +





g1 (x)

g2 (x)





+





Ru1 −
(

∣

∣u1
∣

∣

2
+

∣

∣u2
∣

∣

2
)

(

u1 − βu2
)

Ru2 −
(

∣

∣u1
∣

∣

2
+

∣

∣u2
∣

∣

2
)

(

βu1 + u2
)





and conditions (7)-(8) hold with p = (4, 4).
Also, condition (9) holds if |β| ≤

√
3

[Chepyzhov & Vishik, 2002b; p.42].

Hence, if |β| ≤
√

3, there exists a unique so-

lution for every initial data in
(

L2 (Ω)
)2

. We note
that, if N = 1, 2, uniqueness is proved for every
β [Temam, 1988; p.224]. However, if N ≥ 3 and
we do not assume the condition |β| ≤

√
3, then it

is not known whether this equation possesses the
property of uniqueness of the Cauchy problem or
not.
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The Lotka-Volterra system with diffusion
We consider the system



































∂u1

∂t
= D1∆u

1 + u1
(

a1 − u1 − a12u
2 − a13u

3
)

,

∂u2

∂t
= D2∆u

2 + u2
(

a2 − u2 − a21u
1 − a23u

3
)

,

∂u3

∂t
= D3∆u

3 + u3
(

a3 − u3 − a31u
1 − a32u

2
)

,

(11)
with Neumann boundary conditions

∂u1

∂ν
|∂Ω =

∂u2

∂ν
|∂Ω =

∂u3

∂ν
|∂Ω = 0,

where ui = ui(x, t) ≥ 0 and ai > 0. Also, the Di

are positive constants and Ω ⊂ R3.

Conditions (7)-(8) hold for u ∈ R3
+ with p =

(3, 3, 3).
Uniqueness of the Cauchy problem for this sys-

tem has been proved only if we consider solutions
confined in an invariant region (for example, in a
parallelepiped D = {

(

u1, u2, u3
)

: 0 ≤ ui ≤ ki})
(see [Marion, 1987] and [Smoller, 1983]). However,

in the general case for initial data just in
(

L2 (Ω)
)3

it is still an open problem.

4.1(C). Parabolic equations with a discontinu-
ous nonlinearity

Let Ω ⊂ RN be a bounded open set with smooth
boundary ∂Ω and consider the differential inclusion







∂u

∂t
− ∆u+ f1 (u) − f2 (u) ∋ h, in (0,∞) × Ω,

u |∂Ω= 0, u |t=0= u0,
(12)

where h ∈ L2 (Ω) and fi : R → 2R for i = 1 and 2
are maximal monotone maps with domain D (fi) =
R and satisfying

sup
y∈f2(s)

|y| ≤ K1 +K2 |s| , (13)

(y1 − y2) s ≥ (−λ1 + ε) s2 −M, ∀yi ∈ fi (s) (14)

for i = 1 and 2, where λ1 is the first eigenvalue of
−∆ in H1

0 (Ω), for some K1, K2, M ≥ 0 and ε > 0.
As shown in [Valero, 2001] this equation is a

particular case of an abstract differential inclusion
generated by a difference of sub-differential maps
of proper convex lower semicontinuous functionals

[Otani, 1977], and then we can guarantee the global
existence of strong solutions for every u0 ∈ L2 (Ω)
(see also [Rossi et al., 2008], where the case of more
regular initial data is considered). However, we can-
not expect to have uniqueness when the function
f2 is not continuous. Indeed, consider the following
equation







∂u

∂t
− ∂2u

∂x2
∈ H0 (u) , on (0, T ) × (0, 1) ,

u |∂Ω= 0, u |t=0= u0,

(15)

where

H0(u) =







−1 if u < 0,
[−1, 1] if u = 0,

1 if u > 0,

is the Heaviside function. If we consider the initial
condition u0(x) = 0, then obviously u(t, x) ≡ 0, for
all t ≥ 0, is a solution, but it is not the only one.
In fact, it was shown in [Arrieta et al., 2006] that
problem (15) possesses an infinite (but countable)
number of stationary points, and for each of these
points there exists at least one solution with initial
data u0(x) = 0 converging to it as t→ +∞. Hence,
there exists in fact an infinite number of solutions
corresponding to the initial data u0(x) = 0.

We now consider some models of physical in-
terest.

A model of combustion in porous media
Consider the equation







∂u

∂t
− ∂2u

∂x2
− f (u) ∈ λH (u− 1) , in (0, T ) × (0, π) ,

u (0) = u (π) = 0, u |t=0= u0,

where f : R → R is continuous and non-decreasing,
λ > 0 and where

H(z) =







0, if z < 0,
[0, 1] if z = 0,

1, if z > 0.

Suppose also that there exist K1 ≥ 0, 0 ≤ K2 <
1 such that |f (s)| ≤ K1 + K2 |s| . This equation
models a process of combustion in porous media
(see [Feireisl & Norbury, 1991]) and it is easy to see
that conditions (13)-(14) hold [Valero, 2001].
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A model of conduction of electrical impulses
in nerve axons Consider the equation






∂u

∂t
− ∂2u

∂x2
+ u ∈ H (u− a) , in (0, T ) × (0, π) ,

u (0) = u (π) = 0, u |t=0= u0,

where a ∈
(

0, 1
2

)

. In this case f1 (s) = s and f2 (s)
= H (s− a). It is clear that (13)-(14) are satisfied
[Valero, 2001]. This inclusion is used as a model
of conduction of electrical impulses in nerve axons
(see [Terman, 1983, Terman, 1985]).

4.1(D). A model from climatology

We now consider a climate energy balance
model proposed in [Budyko, 1969], and which
has been studied from the dynamical point of
view in several works (see e.g. [D́ıaz et al., 1997,
D́ıaz & D́ıaz, 2002, D́ıaz et al., 2002]). The prob-
lem is the following:


































∂u

∂t
− ∂2u

∂x2
+Bu ∈ QS(x)β(u) + h(x),

(t, x) ∈ R+ × (−1, 1),

ux(−1, t) = ux(1, t) = 0, t ∈ R+,

u(x, 0) = u0(x), x ∈ (−1, 1),

(16)

where B, Q and ε are positive constants, S, h ∈
L∞ (−1, 1), u0 ∈ L2 (−1, 1) and β is a maximal
monotone graph in R2, which is bounded, i.e., there
exist m, M ∈ R such that

m ≤ z ≤M, for all z ∈ β(s), s ∈ R. (17)

We also assume that

0 < S0 ≤ S(x) ≤ S1, a.e. x ∈ (−1, 1). (18)

The unknown u(t, x) represents the averaged
temperature of the Earth surface, Q is the so called
solar constant, which is the average (over a year
and over the surface of the Earth) value of the in-
coming solar radiative flux, and the function S(x)
is the insolation function given by the distribution
of incident solar radiation at the top of the atmo-
sphere. When the averaging time is of the order of
one year or longer, the function S(x) satisfies (18),
for shorter periods we must assume than S0 = 0.
The term β represents the so called co-albedo func-
tion, which can be possibly discontinuous. It rep-
resents the ratio between the absorbed solar energy

and the incident solar energy at the point x on the
Earth surface. Obviously, β(u(x, t)) depends on the
nature of the Earth surface. For instance, it is well
known that on ice sheets β(u(x, t)) is much smaller
than on the ocean surface because the white color
of the ice sheets reflects a large portion of the in-
cident solar energy, whereas the ocean, due to its
dark color and high heat capacity, is able to absorb
a larger amount of the incident solar energy.

We point out that this model is very close to
(12). In fact, if we consider that the function f2 can
depend on x, then it would be a particular case of
that equation. Therefore, we cannot expect to have
uniqueness for problem (16) either.

4.1(E). Wave equation

Let Ω ⊂ RN be a bounded open set with smooth
boundary ∂Ω and let us consider the nonlinear wave
equation







































∂2u

∂t2
− ∆u+ β

∂u

∂t
+ f (u) = 0,

(t, x) ∈ (0, T ) × Ω,

u |∂Ω= 0,

u (x, 0) = u0 (x) ,
∂u

∂t
(x, 0) = u1 (x) , x ∈ Ω,

(19)
where β > 0 and f : R → R is continuous and
satisfies the sign condition

lim inf
|u|→∞

f (u)

u
> −λ1,

with λ1 > 0 the first eigenvalue of −∆ in H1
0 (Ω).

When N ≥ 3 we assume that

|f (u)| ≤ C0

(

|u| N
N−2 + 1

)

, (20)

for some C0 > 0, while for N = 2 we suppose that

|f (u)| ≤ eθ(u),

where θ (u) satisfies

lim
|u|→∞

θ (u)

u2
= 0.

These conditions guarantee the existence of at
least one globally weak solution for every initial
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data inH1
0 (Ω)×L2 (Ω) [Ball, 2004]. A similar equa-

tion on an unbounded cylindrical domain is consid-
ered in [Babin, 1995].

In order to obtain uniqueness we need to
impose stronger assumptions on f . Usually
a growth condition on the derivative of f is
used (see, for example, [Babin & Vishik, 1985b,
Babin & Vishik, 1992, Ghidaglia & Temam, 1985,
Ghidaglia & Temam, 1987, Hale, 1985,
Haraux, 1985, Ladyzhenskaya, 1987,
Temam, 1988]).

4.1(F). Phase-field equations

The phase-field system of equations is a widely
studied model which describes the temperature u
and the order parameter ϕ in solid-liquid phase
boundaries. These equations are very useful for
studying materials exhibiting a fine mixture of
phases, which is a common phenomenon in many
settings. Such processes appear, for example, in
the theory of solidification. The problem is the fol-
lowing:







































µ
∂ϕ

∂t
− ξ2∆ϕ+ f(x, ϕ) = 2u+ h1(x),

∂u

∂t
+
l

2

∂ϕ

∂t
= k∆u+ h2(x), x ∈ Ω, t > 0,

u|∂Ω = ϕ|∂Ω = 0, t > 0,

u|t=0 = u0, ϕ|t=0 = ϕ0, x ∈ Ω,
(21)

where Ω ⊂ R3 is a bounded open subset with
smooth boundary ∂Ω and µ, ξ, l and k are posi-
tive constants, and the functions f : Ω × R → R

and hi : Ω → R for i = 1 and 2 satisfy:

hi ∈ L2(Ω), (22)

f(·, ·) : Ω × R 7→ R is Carathéodory, i.e, it is
measurable on x and continuous on r.

(23)
Also, there exists C ≥ 0 such that

F (x, r) :=
r
∫

0

f(x, s)ds ≥ −C,

f(x, r)r − F (x, r) ≥ −C,

|f(x, r)| ≤ C(1 + |r|3).

(24)

Under these conditions existence of globally de-
fined solutions for every initial data in H1

0 (Ω) ×

H1
0 (Ω) can be proved [Kapustyan et al., 2003,

Kapustyan et al., 2008].

As in the previous examples to get uniqueness
we need to assume stronger assumptions on the
nonlinear term as, for example, the monotonicity
condition ∂

∂r
f (x, r) ≥ −C [Kalantarov, 1991] (see

also [Bates & Zheng, 1992, Brochet et al., 1993,
Jiménez-Casas & Rodŕıguez-Bernal, 2002]).

In [Rossi et al., 2008] the following quasi-
stationary phase-field model was considered:







































∂

∂t
(v + χ) − ∆v = 0,

F ′ (χ) = v, x ∈ Ω, t > 0,

v|∂Ω =
∂χ

∂n
|∂Ω = 0, t > 0,

v|t=0 = u0, χ|t=0 = ϕ0, x ∈ Ω,

(25)

where F ′ is the Gâteaux derivative of a functional
F , which is possibly neither smooth nor convex.
This arises as a suitable generalization of the quasi-
stationary asymptotics of the phase-field model.
One usual choice for F is

F (χ) =
1

2

∫

Ω
|∇χ|2 dx+

1

4

∫

Ω

(

χ2 − 1
)2
dx.

In [Rossi et al., 2008] the existence of solutions
is established by using the abstract framework of a
parabolic equation generated by the limiting sub-
differential of a proper lower semicontinuous (pos-
sibly non-convex) functional. Uniqueness for such
problems is not known to hold.

Of course, there exist many more examples
of systems for which uniqueness can fail or it is
not known to be true. Among them we men-
tion differential inclusions of several types (see,
among many others, [Aubin & Cellina, 1984,
Otani, 1984, Papageorgiuou & Papalini, 1996,
Tolstonogov & Umansky, 1992a,
Tolstonogov & Umansky, 1992b, Vrabie,1997,
Yamazaki, 2004]), the Euler equation
[Bessaih & Flandoli, 2000, Constantin, 2007,
Shnirelman, 1997], degenerate parabolic equations
[Elmounir & Simonolar, 2000], delay ordinary
differential equations with continuous nonlin-
ear term [Hale, 1977, Caraballo et al., 2005],
some kinds of three-dimensional Cahn-Hilliard
equations [Segatti, 2007, Schimperna, 2007],
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the Boussinesq system [Birnir Svanstedt, 2004,
Norman, 1999] or lattice dynamical systems
[Morillas & Valero, 2009].

4.2. Multi-valued dynamical systems

One of the most important problems in partial
differential equations is the asymptotic behavior
of solutions as time goes to infinity. Stability,
asymptoptic stability, ω-limit sets and global at-
tractors are key concepts in this theory. Beginning
from the pioneering works [Ladyzhenskaya, 1972,
Hale & Lasalle, 1972] the theory of global attrac-
tors of infinite dimensional dynamical systems has
become a relevant object for investigation. For the
application of this classical theory to partial and
functional differential equations it was necessary to
have global existence and uniqueness of solutions of
the Cauchy problem for all initial data of the phase
space, as in such a case we are able to define a
semigroup of operators. Since then a great number
of results concerning existence, structure and frac-
tal dimension of global attractors for a wide class
of dissipative systems have been obtained (see e.g.
[Temam, 1988, Hale, 1988, Babin & Vishik, 1992,
Ladyzhenskaya, 1991] among many others).

However, as become clear from the previous ex-
amples this classical theory cannot be applied to a
huge number of equations in which uniqueness of
the Cauchy problem either fails or it is not known
to be true. In order to work with these problems
three main methods have been developed:

1. The method of multi-valued semi-flows;

2. The method of generalized semi-flows;

3. The theory of trajectory attractors.

It is important to point out that the first
method for treating non-uniqueness is in fact very
old, as it was born many years before the theory
of attractors for infinite-dimensional dynamical
systems began to be developed in the 70’s. We can
find multi-valued semi-flows already in the papers
[Barbashin, 1948, Barbashin & Alimov, 1961,
Budak, 1952, Bronstein, 1963, Minkevic, 1948]
and, later on, for example, also in
[Bridgland, 1969a, Bridgland, 1969b,

Bushaw, 1963, Kloeden, 1974, Roxin, 1965a,
Roxin, 1965b, Szego & Treccani, 1969].

However, the application of multi-
valued semi-flows to the theory of attrac-
tors for partial differential equations was
given at first in [Babin & Vishik, 1985a],
and extended later in other papers
[Babin, 1995, Melnik, 1994, Melnik & Valero, 1998]
(see also the book [Cheban & Fakeeh, 1992]).

On the other hand, the concept of general-
ized semi-flow was introduced in [Ball, 1978] and
a theory of global attractors for such semigroups
was developed in [Ball, 1997, Ball, 2000] (see also
[Elmounir & Simonolar, 2000, Segatti, 2007]).

The theory of trajectory attractors was intro-
duced in the papers [Chepyzhov & Vishik, 1996,
Chepyzhov & Vishik, 1997, Malek & Necas, 1996,
Sell, 1996].

4.2(A). Multi-valued semi-flows and general-
ized semi-flows

The method of multi-valued semi-flows and the
method of generalized semi-flows are in fact very
close and use the same idea: to allow non-
uniqueness of the Cauchy problem and to consider
the set (or some subset) of its solutions at every mo-
ment of time t. Hence, a multi-valued analogue of a
classical semigroup is considered. The main differ-
ence between them is that in the method of multi-
valued semi-flows, the multi-valued map is consid-
ered from the phase space X onto a non-empty sub-
set of the phase space for each moment of time (the
set of values attained by the solutions at this time)
satisfying some properties similar to the classical
ones for semigroups, whereas in the other method,
the generalized semi-flow is defined as a set of solu-
tions satisfying some translation and concatenation
properties, avoiding in this way the use of multi-
valued maps. A comparison between these two the-
ories can be found in [Caraballo et al., 2003a].

We shall give a brief review of the main points
of these theories and illustrate the results in one of
the possible applications.

Let X be a complete metric space with met-
ric ρ. Denote by P (X) (B(X), C (X), K(X)) the
set of all nonempty (nonempty bounded, nonempty
closed, nonempty compact) subsets of X. We de-
fine the Hausdorff semi-distance for the set A to the
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set B by

dist (A,B) = sup
a∈A

inf
b∈B

ρ (a, b) .

Denote by Nε (B) = {y ∈ X : dist (y,B) < ε} an
ε-neighborhood of the set B.

To begin with, following [Melnik, 1994,
Melnik & Valero, 1998], we define a multi-valued
semi-flow G on the phase space X:

Definition 4.1. The (possibly multi-valued) map
G : R+ ×X → P (X) is called a multi-valued semi-
flow (m-semi-flow) if the next conditions are satis-
fied:

1. G (0, ·) = I is the identity map;

2. G (t1 + t2, x) ⊂ G (t1, G (t2, x)) for all t1, t2 ∈
R+ and x ∈ X,

where G (t, B) := ∪
x∈B

G (t, x) for B ⊂ X.

It is called strict if, in addition, G (t1 + t2, x) =
G (t1, G (t2, x)) for all t1, t2 ∈ R+ and x ∈ X.

This definition generalizes the concept of semi-
group to the multi-valued case.

Let us show how a multi-valued semi-flow is
defined, for example, in system (6). We put X =
(

L2 (Ω)
)d

. Let D (u0) be the set of all globally de-
fined weak solutions such that u (0) = u0. Define
the map G as

G (t, u0) = {u (t) : u (·) ∈ D (u0)} . (26)

It is proved in [Kapustyan & Valero, 2006; Lemma
9] that the map G is a strict multi-valued semi-
flow. The inclusion G (t1 + t2, x) ⊂ G (t1, G (t2, x))
is a consequence of the fact that the translation
u (· + τ) of any weak solution u (·) is a weak solution
for any τ > 0. Also, the converse inclusion follows
from the property of concatenation of solutions: if
u (·), v (·) ∈ D (u0), then

z (t) =

{

u (t) if 0 ≤ t ≤ t1,

v (t− t1) if t ≥ t1,

is a new weak solution. We note that the last prop-
erty can fail sometimes (as we will see later for
the example of the three-dimensional Navier-Stokes

system). This is the reason of considering in the
definition of the map G an inclusion and not an
equality.

We observe also that the definition of weak so-
lution for (6) implies certain regularity of the func-
tions included in D (u0). Hence, we are not con-
sidering all possible solutions of (6) corresponding
to a given initial data, but some subset of the so-
lutions. This is important, as in order to obtain
some properties of the map G it is necessary a min-
imal regularity of solutions. For example, we have
seen that the weak solutions of (6) are continuous,
and this property is crucial in order to prove the
compactness of the operator G (t, ·) for t > 0.

Further, let us define the concepts of ω-limit set
and global attractor for a general m-semi-flow G.
For any set B ⊂ X we put γ+

t (B) = ∪s≥tG (s,B)
and define the ω-limit set of B ∈ B (X) by

ω (B) =
⋂

t≥0

γ+
t (B). (27)

It is not difficult to prove that y ∈ ω (B) if and only
if there exists a sequence yn ∈ G (tn, B), where tn
→ +∞ such that yn → y in X.

A set A is said to be negatively (resp., posi-
tively) semi-invariant if A ⊂ G (t, A) (resp., G (t, A)
⊂ A) for all t ≥ 0, and invariant if A = G (t, A) for
all t ≥ 0.

Definition 4.2. The set A is called a global attrac-
tor of the m-semi-flow G if it satisfies the following:

1. A attracts any B ∈ B (X), i.e.,

dist (G (t, B) ,A) → 0 as t→ +∞. (28)

2. A is negatively semi-invariant.

The main property of a global attractor is thus
the attraction property. If we consider for example
the semi-flow G given by (26), then this property
means that all the weak solutions starting at the
bounded set B uniformly converge to the set A as
time goes to +∞. The second property implies for
system (6) (using the property of concatenation of
solutions) that for any initial data inside the global
attractor backward solutions exist.

Usually, the global attractor is assumed to be
also compact. However, as this property can fail
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in some applications, we prefer to give this more
general definition. We note that if A is compact,
then it is the minimal attracting set, that is, for any
closed set C satisfying the attracting property (28)
we have A ⊂ C and, moreover, A is unique.

Let us introduce now some definitions that are
necessary to obtain a global attractor.

Definition 4.3. The m-semi-flow G is called
asymptotically compact if any sequence ξn ∈
G (tn, B) with tn → +∞ is precompact in X.

In [Melnik & Valero, 1998] a slightly weaker
definition was used. Namely, the property of com-
pactness of ξn ∈ G (tn, B) was assumed to be true
only for those sets B ∈ B (X) such that γ+

T (B) (B)

∈ B (X) for some T (B) ∈ R+, i.e., for eventu-
ally bounded sets. We think that Definition 4.3
is better, since, in fact, it was supposed later in
[Melnik & Valero, 1998] that all the sets are eventu-
ally bounded, so that the property is satisfied for all
the bounded sets. Of course, the asymptotic com-
pactness as given in Definition 4.3 implies eventu-
ally boundedness of every B ∈ B (X), which allows
to use less assumptions and make the exposition of
the results easier for the reader.

The following result is useful and easy to prove:

Lemma 4.4. If every B ∈ B(X) is eventually
bounded and the map G (t, ·) is compact for some
t > 0 (i.e., it maps bounded sets into precompact
ones), then G is asymptotically compact.

Definition 4.5. The set B0 is said to be absorbing
if for any B ∈ B (X) there exists T (B) such that

G (t, B) ⊂ B0, ∀t ≥ T.

Definition 4.6. A multi-valued map F : X →
P (X) is called upper semicontinuous if for all u0 ∈
X and any neighborhood O (F (u0)) there exists δ
> 0 such that F (u) ⊂ O(F (u0)), as soon as ρ(u, u0)
< δ.

We have:

Theorem 4.7. [Melnik & Valero, 1998; Theorem
3 and Remark 8] Let G (t, ·) : X → P (X) be up-
per semicontinuous for any t ≥ 0 and have closed
values (i.e. G (t, x) ∈ C (X) for all (t, x)). Also,

assume that G is asymptotically compact and that
a bounded absorbing set B0 exists. Then a global
compact minimal attractor A exists. Moreover, if
G is strict, then the global attractor is invariant.

Remark 4.8. If we assume that the map G (t, ·)
has closed graph for any t ≥ 0 and eliminate
the assumption of upper semi-continuity, then the
above results remains true [Melnik & Valero, 2008;
Lemma 3].

Also, we observe that in fact the conditions
given in [Melnik & Valero, 1998; Theorem 3 and
Remark 8] are weaker, since, instead of supposing
the existence of a bounded absorbing set, it is as-
sumed only that G is point dissipative, which means
that there exists a bounded set B0 for which

dist (G (t, x) , B0) → 0 as t→ +∞, (29)

for all x ∈ X. We remark that in this situation if we
change the upper semi-continuity of G (t, ·) by the
assumption of having closed graph, then we need
to suppose also that the semi-flow G is strict (see
[Melnik & Valero, 2008]).

The global attractor given in Theorem 4.7
can be characterized as the union of all the ω-
limit sets for bounded sets. Indeed, as shown in
[Melnik & Valero, 1998; Theorem 1] the conditions
of Theorem 4.7 imply that for any B ∈ B (X) the
ω-limit set ω (B) is non-empty, negatively semi-
invariant and the minimal closed set attracting B.
Hence, as the global attractor A attracts every B
∈ B (X), we have ω (B) ⊂ A. Also, since ω (B0)
attracts B0, where B0 is the absorbing set, then for
τ ≥ T (A) and any ε > 0 we have

A ⊂ G (t,A) ⊂ G (t,G (τ,A))

⊂ G (t, B0) ⊂ Nε (ω (B0)) if t ≥ T (ε,B0) ,

so that A ⊂ ω (B0). Hence,

A = ω (B0) =
⋃

B∈B(X)

ω (B) .

One important topological property of the
global attractor is its connectivity. For this we need
additional assumptions.

The map x(·) : R+ → X is said to be a tra-
jectory of the m-semi-flow G corresponding to the



16 Balibrea, Caraballo, Kloeden & Valero

initial condition x0 if x(t + τ) ∈ G(t, x(τ)) for all
t, τ ∈ R+ and x(0) = x0. The m-semi-flow G :
R+ ×X → P (X) is said to be time-continuous if it
is the union of continuous trajectories for all x0 ∈
X, i.e.,

G(t, x0) =

{

x(t) : x(·) is a trajectory

and x(·) ∈ C(R+,X)

}

.

Theorem 4.9. [Melnik & Valero, 1998; Theorem
5] Let us suppose that the conditions of Theorem
4.7 are satisfied. Assume also that G is a strict
time-continuous m-semi-flow with connected values
(i.e., G (t, x) is a connected set for every (t, x)). If
the space X is connected, then the global attractor
A is connected.

Remark 4.10. We can avoid the assumptions that
G is strict and time continuous, if we assume the
existence of a bounded connected set in X contain-
ing the global attractor A [Amigó et al., 2009; The-
orem 4.5]. We note that in order to prove the con-
nectivity is essential to keep the property of upper
semi-continuity of G (t, ·) .

Let us apply these results to the m-semi-flow
(26).

First note that the following estimate is true
[Kapustyan & Valero, 2000; p.625]:

‖u (t)‖2 ≤ e−δt ‖u0‖2 +K, (30)

for any weak solution of (6), where the constants δ
and K > 0 are universal. Then a bounded absorb-
ing set exists (for example, a ball in X of radius√

1 +K centered at 0) and γ+
0 (B) ∈ B (X) for all

B ∈ B (X).

Also, the following lemma holds:

Lemma 4.11. [Kapustyan & Valero, 2006;
Lemma 2] Let {un} be an arbitrary sequence
of solutions of (6) with un(0) → u0 weakly in H.
Then for any tn → t0, where tn,t0 ∈ (0, T ], there
exists a subsequence such that un(tn) → u(t0) in
H, where u(·) is a weak solution of (6) and u(0) =
u0.

As a consequence of this lemma we have that
the map G (t, ·) is compact for every t > 0. Hence,

Lemma 4.4 implies that G is asymptotically com-
pact. Also, it follows that the graph of G is closed
and that G has compact values. Finally, by a con-
tradiction argument (see the proof of Corollary 7 in
[Kapustyan & Valero, 2006]) it can be shown that
G (t, ·) is upper semi-continuous.

On the other hand, it is proved in
[Kapustyan & Valero, 2009a] that the map G
has connected values, and the other conditions in
Theorem 4.9 are obviously satisfied.

Hence, by Theorems 4.7, 4.9 we have:

Theorem 4.12. The m-semi-flow G generated by
(6) possesses a global compact minimal attractor,
which is invariant and connected.

Let us consider now the method of generalized
semi-flows.

One of the difficulties of the method of multi-
valued semi-flows is that we have to work with
multi-valued maps. This is avoided in this other
method. Also, the method of generalized semi-flows
has the advantage of working directly with solu-
tions.

Following [Ball, 1997, Ball, 2000] we have:

Definition 4.13. A generalized semi-flow S on X
is a family of maps ϕ : [0,∞) → X (called solu-
tions) which satisfy:

(H1) For each x ∈ X there exists at least one ϕ ∈ S
such that ϕ (0) = x;

(H2) (Translation) If ϕ ∈ S and τ ≥ 0, then ϕτ ∈
S, where ϕτ (t) = ϕ (τ + t).

(H3) (Concatenation) If ϕ, ψ ∈ S with ψ (0) =
ϕ (t1) , then φ ∈ S, where

φ (t) =







ϕ (t) , 0 ≤ t ≤ t1,

ψ (t− t1) , t ≥ t1.

(H4) If ϕj ∈ S with ϕj (0) → z, then there exist ϕ
∈ S with ϕ (0) = z and a subsequence such
that ϕj (t) → ϕ (t), for all t ≥ 0.

We note here that we can define a multi-valued
semi-flow G : R+ ×X → P (X) by

G (t, x) =
⋃

ϕ∈S,
ϕ(0)=x

ϕ (t) . (31)
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Then conditions (H2)−(H3) imply thatG is a strict
multi-valued semi-flow and condition (H4) implies
that the map x 7→ G (t, x) is upper semi-continuous
and has compact values. Therefore, Definition 4.13
contains stronger conditions than Definition 4.1.

If we consider the reaction-diffusion system (6),
then we have seen that the weak solutions satisfy
properties (H1) − (H3). Also, by Lemma 4.11 we
have (H4). Hence, taking S as the union of all weak
solutions we obtain a generalized semi-flow.

It is obvious that the associated multi-valued
semi-flow defined in (31) coincides with the semi-
flow given in (26).

We introduce in this case the concepts of ω-
limit set and global attractor. For B ∈ B (X) we
set

ω (B) =
{

z ∈ X : there exist ϕj ∈ S, with ϕj (0) ∈ B,
and tj → +∞ such that ϕj (tj) → z.

}

It is clear that ω (B) coincides with the omega-limit
set (27) for the associated multi-valued semi-flow
given in (31).

Definition 4.14. The set A is said to be a global
attractor for the generalized semi-flow S if the as-
sociated multi-valued semi-flow G satisfies the at-
traction property (28) and A ⊂ G (t,A), that is, it
is negatively semi-invariant.

In other words, A is a global attractor for S
if it is a global attractor for the associated multi-
valued semi-flow G. In [Ball, 1997, Ball, 2000] it
is assumed also that the global attractor has to be
compact and invariant, but, as we have commented
before, we prefer to give a more general definition
and add these properties in the statement of the
theorem. The reason is that, although usually in
applications these additional properties hold (as is
the case of the reaction-diffusion system (6)), some-
times they can fail. When the global attractor is
compact, one can check that it is also minimal and
unique.

As before in order to obtain the existence of a
global attractor we need some previous definitions.

Definition 4.15. The generalized semi-flow S is
asymptotically compact if for any sequence ϕj ∈

S with ϕj (0) bounded, any sequence ϕj (tj), where
tj → +∞, is precompact in X.

It is clear that S is asymptotically compact if
and only if the associated multi-valued semi-flow is
asymptotically compact.

Definition 4.16. The generalized semi-flow S is
said to be point dissipative if there exists a bounded
set B0 such that for any ϕ ∈ S there exists T (ϕ)
such that ϕ (t) ∈ B0 for all t ≥ T.

This definition of point dissipativity is weaker
than the one given for multi-valued semi-flows in
(29). The difference is that if (29) holds for the as-
sociated semi-flow G, this implies that all the solu-
tions starting at ϕ (0) entry uniformly in a bounded
set B0 after some time, that is, there exists a time
T (ϕ (0)) such that for any solution ϕ ∈ S we have
ϕ (t) ∈B0 for all t ≥ T.

The following lemma implies that an asymp-
totically compact and point dissipative generalized
semi-flow satisfies property (29).

Lemma 4.17. [Ball, 2000; Lemma 3.5] Let S be
an asymptotically compact and point dissipative
generalized semi-flow. Then there exists a bounded
set B1 such that given any compact K ⊂ X there
exist ε = ε (K) > 0, t1 = t1 (K) > 0 such that
G (t,Nε (K)) ⊂ B1 for all t ≥ t1.

It is important to remark that property (H4)
is crucial in the proof of this lemma.

We now state the theorem concerning the exis-
tence of a global attractor.

Theorem 4.18. [Ball, 2000; Theorem 3.3] Let S
be an asymptotically compact and point dissipative
generalized semi-flow. Then there exists a compact
global attractor given by

A =
⋃

B∈B(x)

ω (B) ,

which, moreover, is invariant.

With respect to the connectivity of the attrac-
tor we have:

Theorem 4.19. [Ball, 2000; Corollary 4.3] As-
sume the conditions of Theorem 4.18. Let X be
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a connected space. Assume that the operator G has
connected values and that every ϕ ∈ S belongs to
C ((0,∞) ;X). Then the global attractor A is con-
nected.

We note that the definition of the generalized
semi-group S implies that the associated semi-flow
G is strict and that the map G (t, ·) is upper semi-
continuous. Also, it follows from the fact that every
ϕ ∈ S belongs to C ((0,∞) ;X) that G can be repre-
sented as the union of trajectories which are contin-
uous on t ∈ (0,∞). Thus the conditions imposed
in this theorem are almost the same as in Theo-
rem 4.9 (in fact, the only difference is that there it
is assumed that the trajectories are continuous on
t ∈ [0,∞).

Let us apply these results to equation (6). As
we have seen before it follows from (30) and Lemma
4.11 that S is an asymptotically compact and point
dissipative generalized semi-flow. Also, as the weak
solutions of (6) are continuous, it is clear that every
ϕ ∈ S belongs to C ((0,∞) ;X). The space X =
(

L2 (Ω)
)d

is connected and we have seen that G
has connected values.

Hence, by Theorems 4.18, 4.19 we have:

Theorem 4.20. The generalized semi-flow S gen-
erated by (6) possesses a global compact minimal
attractor, which is invariant and connected.

Remark 4.21. Since the associated multi-valued
semi-flow G coincides with the semi-flow defined in
(26) and the global attractor is unique, we see that
the global attractors given in Theorems 4.12, 4.20
are the same.

Remark 4.22. Under some conditions the global at-
tractors given in Theorems 4.7, 4.18 are described
as the union of all bounded complete trajectories
of the semi-flow [Ball, 2000, Kapustyan et al., 2008,
Simsen & Gentile, 2008].

In conclusion, we can say that these two meth-
ods are very close and allow rather similar results
to be obtained. The main difference is that in the
method of generalized semi-flows several extra con-
ditions are included in the definition, whereas in the
method of multi-valued semi-flows such conditions

are added when they become necessary. On the
other hand, the method of generalized semi-flows
allows to use a weaker definition of point dissipa-
tivity.

These approaches have been very useful
and productive and have allowed results about
existence and properties of attractors to be
obtained for a wide class of dissipative sys-
tems without uniqueness. For example, these
results have been applied fruitfully to reaction-
diffusion equations [Iovane & Kapustyan, 2006,
Kapustyan, 2002, Kapustyan & Shkundin, 2003,
Kapustyan & Valero, 2006,
Morillas & Valero, 2005], the three-dimensional
Navier-Stokes equation [Ball, 1997, Ball, 2000,
Cheskidov, 2006, Cheskidov & Foias, 2006,
Kapustyan et al., 2007, Kapustyan & Valero, 2007,
Kloeden & Valero, 2007, Rosa, 2006],
the wave equation [Ball, 2004,
Horban & Stanzhyts’kyi, 2008,
Iovane & Kapustyan, 2005, Wang & Zhou, 2007],
differential inclusions [Carvalho & Gentile, 2003,
Cheban & Mammama, 2006,
Kapustyan & Valero, 2000,
Kenmochi & Yamazaki, 2001, Kloeden & Li ,2005,
Li et al., 2008, Melnik & Valero, 1998,
Segatti, 2006, Valero, 2000, Valero, 2001,
Yamazaki, 2004], delay ordinary differ-
ential equations [Caraballo et al., 2005,
Caraballo et al., 2007], degenerate parabolic
equations [Elmounir & Simonolar, 2000], lattice
systems [Morillas & Valero, 2009], the phase-field
equation [Kapustyan, 1999, Kapustyan et al., 2003,
Morillas & Valero, 2008, Rossi et al., 2008,
Valero, 2005] or the Cahn-Hilliard equa-
tion [Segatti, 2007, Schimperna, 2007]. See
also the monographs [Kapustyan et al., 2008,
Cheban, 2004].

Of course, in the case of uniqueness of solutions
all results in the two methods coincide with the
classical ones.

4.2(B). The method of trajectory attractors

In order to avoid the problem of non-
uniqueness of the Cauchy problem in
the papers [Chepyzhov & Vishik, 1996,
Chepyzhov & Vishik, 1997,
Chepyzhov & Vishik, 2002a, Malek & Necas, 1996,
Sell, 1996] (see also [Chepyzhov & Vishik, 2002b,
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Malek & Prazak, 2002]) a new method for studying
the asymptotic behavior of solutions was proposed,
which is now known as the method of trajectory
attractors.

The main idea of this method is the follow-
ing. Let us consider some collection of solutions
of an equation, denoted by K+ = {ϕ (s) , s ≥ 0}.
These solutions belong to some topological space
W , which usually is a space with some local con-
vergence topology on any interval [t1, t2] ⊂ R+. If
we assume that for any ϕ ∈ K+ we have that ϕτ (·)
:= ϕ(·+ τ) ∈ K+ for all τ ≥ 0, then the translation
semi-group S (t, ·) : W → W given by

S (t)ϕ (·) = ϕt(·) = ϕ (· + t)

is well defined.
This method has the advantage that a

global attractor for such problems as the three-
dimensional Navier-Stokes equations can be con-
structed, whereas this question remains still open
using the theory of multi-valued semi-flows or gen-
eralized semi-flows. However, as pointed out in
[Ball, 2000], the disadvantage is that the direct con-
nection with the evolution of the system in the
physical phase space is lost.

In the cited papers different approaches are
used in order to construct a trajectory attractor,
i.e., a global attractor for the translation semi-
group. We shall describe briefly the methods
given in [Chepyzhov & Vishik, 2002a, Sell, 1996]
and their application to the three-dimensional
Navier-Stokes system (4).

In [Sell, 1996] it is considered that W is a com-
plete metric space. Then the standard theory of
attractors for classical semi-groups is used.

On the other hand, in
[Chepyzhov & Vishik, 2002a] a bit different
approach is used. Let us take some Banach spaces
E and E0 such that E ⊆ E0 with continuous
embedding (it is possible to have E = E0), and let

W = L∞(R+;E) ∩C(R+;E0).

We note that if ϕ(·) ∈ W , then ϕ(·) ∈ Cw(R+;E)
(i.e., it is continuous with respect to the weak topol-
ogy of E) and

‖ϕ(t)‖E ≤ ‖ϕ‖L∞(R+;E), ∀t ≥ 0.

The convergence in C(R+;E0) is given by

fn(·) → f(·) in C(R+;E0) ⇐⇒

ΠMfn(·) → ΠMf(·) in C([0,M ];E0), ∀M > 0,

where ΠM is the operator of restriction on [0,M ].
We observe that the translation semi-

group is continuous in the space C(R+;E0)
[Chepyzhov & Vishik, 2002a; Proposition 1.1].

Definition 4.23. The set U ⊂ K+ is called a tra-
jectory attractor (with respect to the space of tra-
jectories K+ in the topology C(R+;E0), if:

1. U is compact in C(R+;E0) and bounded in
L∞(R+;E);

2. U is invariant, that is, T (t)U = U for all t ≥
0;

3. U is an attracting set, that is, for every set B
⊂ K+, bounded in L∞(R+;E), we have that
for any M > 0,

distC([0,M ];E0)(ΠMT (t)B,ΠMU) → 0, (32)

as t → ∞.

The function ϕ(·) ∈ L∞(R;E) ∩ C(R;E0) is
called a complete trajectory for K+, if

Π+ϕh(·) ∈ K+, ∀h ∈ R,

where ϕh(s) = ϕ(s + h) and Π+ is the operator
of restriction on [0,∞). Let K be the union of all
complete trajectories for K+.

Theorem 4.24. [Chepyzhov & Vishik, 2002a] If
there exists an attracting set P ⊂ K+, which is
compact in C(R+;E0) and bounded in L∞(R+;E),
then there exists a trajectory attractor U ⊆ P and

U = Π+K. (33)

In the case where uniqueness of the Cauchy
problem holds (and then a semi-group S can be
given), in [Chepyzhov & Vishik, 2002a; Corollary
2.1] it is shown a relation between the trajectory
attractor U and the global attractor of the semi-
group S. Namely, assume that for any z ∈ E there
exists a unique trajectory ϕ (·) ∈ K+ such that ϕ (0)
= z. Then the semi-group given by S (t, z) = ϕ (t)
for all t ≥ 0 is well defined. Then if we assume
also that the set ∪t≥0S (t, B) is bounded in E for
any set B, which is bounded in E, then under the
assumptions of Theorem 4.24 the set A = U (0) is
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a global (E,E0)-attractor for S. This means that
the set A is bounded in E, compact in E0, it is in-
variant (i.e., S (t,A) = A for all t ≥ 0) and attracts
every bounded set of E in the metric of E0.

This result can be generalized to the case of
non-uniqueness, that is, when we assume that for
any z ∈ E there exists at least one trajectory
ϕ (·) ∈ K+ such that ϕ (0) = z. In such a
case we define a multi-valued semi-flow G given by
G (t, z) = {ϕ (t) : ϕ (·) ∈ K+ such that ϕ (0) = z}
and assuming that ∪t≥0G (t, B) is bounded in E for
any set B, bounded in E, we can obtain the same
result [Kapustyan & Valero, 2009a].

Let us consider system (4). In the paper
[Chepyzhov & Vishik, 2002a] the set K+ is the
union of all weak solutions of (4) satisfying a suit-
able energy inequality. We take E = H and
E0 = H−δ, where H is given in (5) and Hσ stands
for the scale of Hilbert spaces corresponding to the
Hilbert space H. Then it is proved that an attract-
ing set U , which is compact in C(R+;H−δ) and
bounded in L∞(R+;H), exists. Therefore, Theo-
rem 4.24 implies the existence of a trajectory at-
tractor.

Now let us consider Sell’s approach [Sell, 1996].
There the set K+ is the union of all weak solutions
of (4) satisfying some regular assumptions and suit-
able dissipation and energy inequalities, as well.
The space W is defined as the set K+ endowed
with the topology of L2

loc (0,∞;H), which is a com-
plete metric space. Then, using the classical theory
of attractors for semi-groups [Ladyzhenskaya, 1991,
Sell & You, 1995], it is proved that the translation
semi-group has a compact global attractor U in
W , that is, U is compact in W , it attracts every
bounded set of W and is invariant (S (t)U = U for
all t ≥ 0).

As the two previous methods, the method
of trajectory attractors has been fruitfully ap-
plied to different partial differential equations.
For example we can cite applications to the
three-dimensional Navier-Stokes equation and
related systems [Chepyzhov & Vishik, 1997,
Chepyzhov & Vishik, 2002a, Cutland, 2005,
Feireisl, 2000, Flandoli & Schmalfuß, 1999,
Malek & Necas, 1996, Malek & Prazak, 2002,
Norman, 1999, Sell, 1996,
Vorotnikov & Zvyagin, 2007], reaction-

diffusion systems [Chepyzhov & Vishik, 1996,
Efendiev & Zelik, 2001], differential inclusions
[Hetzer, 2001, Hetzer & Tello, 2002], the wave
equations [Chepyzhov & Vishik, 1997] or equations
with delay [Chepyzhov et al., 2006].

4.3. Technical difficulties and open prob-

lems in multi-valued dynamical sys-

tems

In the previous subsection we reviewed the main
points of two different theories for multi-valued dy-
namical systems. It is natural to ask about addi-
tional technical problems which arise if we compare
them with the classical case for which uniqueness
holds.

4.3(A). Asymptotic compactness and the 3D
Navier-Stokes system

One of the difficulties which appears as a conse-
quence of the lack of uniqueness is that, unlike the
case with uniqueness, there are strong restrictions
in the kind of estimates that we can obtain. This oc-
curs because, usually, we do not have a regular ap-
proximation for each solution of the equation and,
as a result, we cannot obtain formally the necessary
estimates and justify them through suitable approx-
imations. We are only able to obtain the estimates
that the regularity properties of the solutions allow.

In particular, this problem arises when we need
to prove the property of asymptotic compactness
of a multi-valued semi-flow or a generalized semi-
group which, as we have seen, it is crucial in order
to prove the existence of a global attractor.

For example, let us consider the reaction-
diffusion system (6). In this case the asymptotic
compactness of the multi-valued semi-flow (or the
single-valued semi-group if we have uniqueness) is
proved by checking that the map G (t, ·) is compact
for any t > 0. If the monotonicity assumption (9)
holds (so that we have uniqueness), then for any
weak solution we can obtain (formally) an estimate
of the type

‖u (t)‖V ≤ C (t, ‖u0‖H) , ∀ t > 0, (34)

where V =
(

H1 (Ω)
)d

or
(

H1
0 (Ω)

)d
and H =

(

L2 (Ω)
)d

, and C (t, ‖u0‖H) → ∞ as t → 0+

[Chepyzhov & Vishik, 1996; p.67]. Then using the
compact embedding V ⊂ H we obtain that the
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semi-group S (t) is compact for any t > 0. Since
the solution is unique, we can justify this result
as follows: we take a suitable regular approxima-
tion sequence for which the estimate is correct (for
example, a Galerkin approximative sequence) and
then passing to the limit we obtain the estimate for
the weak solutions of the equation.

When condition (9) is not satisfied, this ar-
gument fails, as we cannot state that every weak
solution can be approximated by a Galerkin se-
quence: we just can say that at least one weak
solution can be approximated. Hence, we cannot
obtain (34) for all weak solutions. The same prob-
lem appear in other equations as the phase-field sys-
tem (21) or the wave equation (19), although it is
worth to point out that in some multi-valued sys-
tems we have enough regularity in order to obtain
estimates of the kind (34), as for example equation
(12) [Valero, 2001].

To avoid this problem two appropriate tools
have been used in several papers: the method
of the energy equation and the monotonicity
method. For example, the first one has been ap-
plied in [Ball, 2004] to the wave equation (19)
and in [Morillas & Valero, 2005] to the reaction-
diffusion system (6) in unbounded domains, and
the second one in [Kapustyan et al., 2003] to the
phase-field system (21) and to the reaction-
diffusion system (6) in [Morillas & Valero, 2005,
Kapustyan & Valero, 2006]. We note that the
method of the energy equation has been also suc-
cessfully used in many papers for equations with
uniqueness of solutions (see e.g. [Ghidaglia, 1994,
Lu & Wang, 2001, Moise et al., 1998, Rosa, 1998,
Wang, 1999]).

The key idea in these methods is the follow-
ing. Let the phase space X be a Hilbert space (of
course, more general situations are possible). In
such spaces if xn → x weakly and ‖xn‖ → ‖x‖,
then xn → x strongly. If we consider the property of
asymptotic compactness, then we take a sequence
yn ∈ G (tn, xn) with xn ∈ B (X), where G is the
multi-valued semi-flow generated by the equation,
and we need to prove that {yn} is precompact. As-
suming that the a priori estimates of the equation
give us that this sequence is bounded, we obtain
passing to a subsequence that yn → y weakly in X.
Then

‖y‖ ≤ lim inf
n→∞

‖yn‖

and in order to obtain ‖yn‖ → ‖y‖ (so yn → y
strongly) it is enough to show that

lim sup
n→∞

‖yn‖ ≤ ‖y‖ .

Hence, estimates in more regular spaces are
avoided. The two methods diverge in the way of
proving the last inequality, as one can check in the
cited papers.

We observe that these methods fail in the case
of the three-dimensional Navier-Stokes system (4),
so that the problem of obtaining the property of
asymptotic compactness for this equation remains
open so far. For example, the method of mono-
tonicity does no work because the weak solutions
are not known to be continuous (just weakly contin-
uous) and this property is necessary in this method.
Nowadays, if we consider an arbitrary external
force f ∈ H, then the question about the asymp-
totic compactness for the solutions of (4) is open.
In the papers [Ball, 2000, Cheskidov & Foias, 2006,
Kapustyan & Valero, 2007, Rosa, 2006] some con-
ditional results have been obtained in this di-
rection (that is, under assumptions that are not
known to hold). On the other hand, in the papers
[Birnir Svanstedt, 2004, Bondarevski, 1997] under
some quite restrictive conditions on the external
force f , it is shown that for every bounded set B
all the weak solutions starting at B become regular
after a time T (B), and in this way it is proved the
existence of a global attractor.

On the other hand, there can be also difficulties
in obtaining an absorbing set. Although this prob-
lem does not appear in reaction-diffusion systems or
in the phase-field system (as we have enough regu-
larity to obtain similar estimates as in the case of
uniqueness), again some extra effort is needed for
the three-dimensional Navier-Stokes system. If we
multiply equation (4) by u and make some standard
operations, one can obtain (formally) an estimate
in the norm of the space H of the kind:

‖u (t)‖2 ≤ e−νλ1t

(

‖u (0)‖2 − 1

ν2λ2
1

‖f‖2

)

+
1

ν2λ2
1

‖f‖2 , ∀ t ≥ 0. (35)

However, we cannot state that this holds for every
weak solution, and just for the one that was ob-
tained via the Galerkin approximations. Neverthe-
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less, estimate (35) can be proved if we take a suit-
able subset of the set of weak solutions. Namely,
in [Ball, 2000] it is taken only the subset of weak
solutions satisfying the following energy inequality:

V (u (t)) ≤ V (u (s)) , ∀ t ≥ s, a.a. s > 0 and s = 0,
(36)

where

V (u (t)) :=
1

2
‖u (t)‖2

H

+ ν

∫ t

0
‖u (r)‖2

V dr −
∫ t

0
(f (r) , u (r)) dr.

For such solutions (35) holds [Ball, 2000] and then
a bounded absorbing set exists.

However, such a choice of solutions has an-
other problem. If we define the translation uτ (t) =
u (t+ τ), then property (36) fails for u (·) at s = 0.
Thus, property (H2) of the definition of general-
ized semi-flow is not satisifed. Also, for the asso-
ciated multi-valued map G (t, ·) the key property
G (t+ s, x) ⊂ G(t,G (s, x)) fails.

We could try to modify inequality (36) in the
following way:

V (u (t)) ≤ V (u (s)) (37)

holds for all t ≥ s and a.a. s > 0. Then the map
uτ (t) also satisfies this property and a multi-valued
semi-flow can be correctly defined. However, in
such case we cannot prove (35). One can check that
the following holds [Kapustyan et al., 2008; Lemma
5.29]:

‖u (t)‖2 ≤ e−νλ1(t−s)
(

‖u (s)‖2 − 1
ν2λ2

1

‖f‖2
)

+ 1
ν2λ2

1

‖f‖2 , ∀t ≥ s and a.a. s > 0, (38)

but this is not enough to obtain an absorbing set.
Also, we note that in this case the concatenation
of two solutions do not have to satisfy necessarily
(37) and then we cannot state that the semi-flow is
strict. Moreover, property (H3) fails and a gener-
alized semi-flow cannot be defined in this case.

We observe that, without defining a multival-
ued semiflow, the uniform convergence of the weak
solutions starting in a bounded set to the universal
attractor (which consists of points in bounded com-
plete trajectories) is proved in [Foias et. al, 2001].

Finally, a multi-valued semi-flow is
defined in [Kapustyan & Valero, 2007,

Kapustyan et al., 2008] with solutions satisfy-
ing (37) and having a bounded absorbing set by
restricting the phase space to a ball of radius R
≥ R0, where R2

0 = 1
ν2λ2

1

‖f‖2. Namely, put BR =

{u ∈ H : ‖u‖ ≤ R} and for any R ≥ R0 define the
multi-valued map GR : R+ ×BR → P (BR) as

GR(t, u0) :=







u(t) : u(·) is a globally defined weak solution
with u (0) = u0 such that (37) holds and

‖u(r)‖ ≤ R, for all r ≥ 0.







This map is well defined since at least one
such solution exists [Kapustyan & Valero, 2007,
Kapustyan et al., 2008] and, as the phase space is
bounded, GR has a bounded absorbing set. Then
the existence of a global attractor can be proved
in the space BR endowed with the weak topology
of H. We note that in [Kapustyan & Valero, 2007]
inequality (38) is used also in the definition of GR,
but this is not necessary as (37) implies (38).

4.3(B). The structure and fractal dimension
of attractors of multi-valued dynamical
systems

We have seen so far that a lot of results have been
proved about the existence of global attractors for
different multi-valued dynamical systems. More-
over, some topological properties such as its con-
nectedness has been studied. However, not much is
known about the structure of these attractors and
also about their fractal dimension. Comparing with
the classical single-valued semi-groups these prob-
lems are much more difficult to solve in the multi-
valued case.

Let us consider the simplest structure of a
global attractor. If we consider a continuous classi-
cal semi-group having a global compact connected
attractor and a Lyapunov (also called energy) func-
tion, then, when the set of stationary points is
finite, it is well known that the attractor con-
sists of the set of stationary points and all the
bounded complete trajectories (heteroclinic connec-
tions) joining them [Ladyzhenskaya, 1990]. In par-
ticular applications we need to determine which
connections exist, as this will give us a full descrip-
tion of the attractor. The Chafee-Infante equation
is a very well known model in which this problem
has been solved. In this equation the number of
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stationary points is finite (this number depends on
a parameter) and a global compact connected at-
tractor, together with a Lyapunov function, exist.
Moreover, the set of stationary points is ordered
by the Lyapunov function V . In [Henry, 1985] a
complete description of this attractor is given by
showing that the two stationary points with less
energy are stable, whereas the other ones are un-
stable, and that the necessary and sufficient condi-
tion for the existence of an heteroclinic connection
from a point v to a point u is that V (v) > V (u),
i.e., if the energy of v is greater than the energy
of u. More general and complicated cases can be
found, for example, in [Brunovsky & Fiedler, 1989,
Fiedler & Rocha, 1996].

Can we obtain such results in multi-valued sys-
tems? It is possible, of course, but it is much more
difficult than in the single-valued case. For exam-
ple, if we consider the property of stability of sta-
tionary points, then one can see that the method
of linearization is not applicable, as the non-linear
terms of equation as (6), (12), (19) or (21) are
not differentiable. Hence, one of the main tools
for studying stability in non-linear differential equa-
tions cannot be used in multi-valued systems. Nev-
ertheless, some partial results are known so far.

In [Arrieta et al., 2006] it is studied the follow-
ing differential inclusion



















∂u
∂t

− ∂2u
∂x2 −H0 (u) ∋ 0, on (0, 1) × (0, T ) ,

u (0, t) = u (1, t) = 0,

u (x, 0) = u0 (x) ,
(39)

where

H0 (u) =











−1, if u < 0

[−1, 1] , if u = 0,

1, if u > 0,

is the Heaviside function. This inclusion is a partic-
ular case of (12). First, it was proved that equation
(39) has an infinite, but countable, number of equi-
libria v0 = 0, v±1 , v

±
2 , . . ., v

±
k , . . . ,which can be

ordered using a natural energy (or Lyapunov func-
tion) E (u):

E
(

v+
1

)

= E
(

v−1
)

< E
(

v+
2

)

= E
(

v2
1

)

< ...

... < E
(

v+
k

)

= E
(

v−k
)

< ... < E (v0) .

Then, it is shown that v±1 are asymptotically sta-
ble fixed points, and all the other ones are unsta-
ble. The fixed point v ≡ 0 possesses the following
remarkable property: for any fixed point vk differ-
ent from 0 there exists a solution, u (t), with ini-
tial value u (0) = 0, such that u (t) converges to
vk as t → +∞. We note that the existence of a
Lyapunov function implies in this case, as occurs
for the Chafee-Infante problem, that the global at-
tractor can be described completely by the equilib-
ria and the heteroclinic connections between them.
The natural question is then to establish which con-
nections actually exist.

The global attractor of (39) is approximated
by a sequence of attractors Aεn corresponding to
an approximating sequence of Chafee-Infante prob-
lems, for which, as we have seen, all existing con-
nections are known. The natural conjecture is that
the connections are the same when we pass to the
limit case, that is, that a connection exists from the
fixed point v to the fixed point v∗ if and only if E (v)
> E (v∗). Of course, since the energy is decreasing
along the trajectories, no connections can exist if
E (v) ≤ E (v∗). It is natural to expect that (39)
is equivalent to a Chafee-Infante problem that has
undergo all the typical bifurcation cascade of these
type of problems, and thus all connections should
be present. In [Arrieta et al., 2006] some of these
connections are established, but the complete de-
scription of the attractor remains an open problem.

On the other hand, in [D́ıaz et al., 1997,
D́ıaz et al., 2002] the authors show that equation
(16) also has an infinite, but countable, number of
equilibria. Probably, the structure of the attractor
of this equation is the same as for (39).

For other problems like (6), (19) or (21) nothing
is known in this direction.

Finally, let us consider the problem of obtaining
estimates of the fractal and Hausdorff dimensions of
the global attractor. This question has been stud-
ied fruitfully and widely for nonlinear single-valued
semi-groups and in this way deep results have been
proved in a lot of papers. To mention some of
them, for example, estimates of the fractal and
Hausdorff dimensions depending on the physical pa-
rameter of the equation were proved for the two-
dimensional Navier-Stokes system, for reaction-
diffusion systems and for the wave equation (see
e.g. [Ladyzhenskaya, 1982, Temam, 1988]).
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In the multi-valued case almost nothing has
been done in this direction. Some abstract the-
orems concerning the fractal dimension of multi-
valued semi-flows can be found in [Melnik, 1998]
(see also [Kapustyan et al., 2008]), a result which
was applied in [Valero, 2000] to a differential in-
clusion. However, the conditions imposed in
[Melnik, 1998] are too strong and, in fact, in the
application given in [Valero, 2000] the multi-valued
semi-flow is single-valued when we restrict it to
the global attractor. The main difficulty in the
multi-valued case is that the technique used in the
single-valued one is not suitable due to the fact
that either a Lipschitz property of the semi-group
[Ladyzhenskaya, 1982, Ladyzhenskaya, 1990] or a
strong differentiability property [Temam, 1988] is
required. In particular, such properties do not hold
for multi-valued semi-flows.

Nevertheless, from our point of view there is
not an objective reason to think that the global at-
tractors of problems like (6), (19) or (21), for exam-
ple, do not satisfy similar estimates of the fractal
dimension as in the case of uniqueness. Thus, we
are convinced that we need just a new technique
in which the semi-flow would not need to be either
Lipschitz or differentiable.

On the other hand, there are multi-valued prob-
lems in which we could expect to have an infinite
dimensional global attractor. An example is given
in [Valero, 2000] for a differential inclusion. Also,
we think that, probably, this is true also for the at-
tractor of equation (39). The heuristic reason is the
following: we have seen that for any fixed point vk
different from 0 there exists a solution, u (t), with
initial value u (0) = 0, such that u (t) converges to
vk as t → +∞, and in some sense this means (as
the number of fixed points vk is infinite) that the
unstable manifold of 0 (if it exists, of course) is
infinite-dimensional. Also, we note that the global
attractor of (39) is approximated by a sequence of
attractors of Chafee-Infante problems with growing
dimension. The same could be true for equation
(16).

In conclusion, we state the following relevant
open problems in the theory of multi-valued dy-
namical systems:

1. Obtain the existence of a global compact
attractor for the three-dimensional Navier-

Stokes system (4) in the phase space H for
an arbitrary external force f ∈ H.

2. Describe the structure of the global attractor
in some applications.

3. Study the stability of stationary points in
some applications.

4. Develop a new method for obtaining esti-
mates of the fractal and Hausdorff dimen-
sions.

5. Non-autonomous and random dynamical
systems

Undoubtedly, non-autonomous and random sys-
tems are also of great importance and interest as
they appear in many applications to natural sci-
ences. On some occasions, some phenomena are
modeled by nonlinear evolutionary equations which
do not take into account all the relevant informa-
tion of the real systems. Instead some neglected
quantities can be modeled as an external force
which in general becomes time-dependent (some-
times periodic, quasi-periodic or almost periodic
due to seasonal regimes) or even can contain ran-
dom/stochastic features (also called noise).

In the finite-dimensional framework (i.e. for
non-autonomous ordinary differential equations in
RN) the long-time behaviour of non-autonomous
dynamical systems has been widely studied by
means of the theory of skew-product flows (see the
pioneering works [Miller, 1965] and [Sell, 1996]).
However, most of the progress in the infinite-
dimensional context, i.e., for non-autonomous
partial differential equations and specially for
systems appearing in mathematical physics, has
been done during the last two decades.
The first attempts to extend the notion of global
attractor to the non-autonomous case led to the
concept of the so-called uniform attractor (see
[Chepyzhov & Vishik, 1996]). It is remarkable
that the conditions ensuring the existence of the
uniform attractor parallel those for autonomous
systems. To this end, non-autonomous systems
are lifted in [Vishik, 1992] to autonomous ones by
expanding the phase space. Then, the existence
of uniform attractors relies on some compactness
property of the solution operator associated to the
system. However, one disadvantage of this uniform
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attractor is that it needs not be “invariant” unlike
the global attractor for autonomous systems. At
the same time, the theory of pullback (or cocycle)
attractors has been developed for both the non-
autonomous and random dynamical systems (see
[Crauel et al., 1995, Langa & Schmalfuß, 2004,
Kloeden & Siegmund, 2005,
Kloeden & Schmalfuß, 1998, Schmalfuß, 2000]),
and has shown to be very useful in the under-
standing of the dynamics of non-autonomous
dynamical systems. In this case, the concept of
pullback (or cocycle or non-autonomous) attractor
provides a time-dependent (or random in the
stochastic case) family of compact sets which
attracts families of sets in a certain universe
(e.g. the bounded sets in the phase space) and
satisfying an invariance property, what seems to
be a natural set of conditions to be satisfied for an
appropriate extension of the autonomous concept
of attractor. Moreover, this cocycle formulation
allows to handle more general time-dependent
terms in the models not only the periodic, quasi
periodic or almost periodic ones (see, for instance,
[Caraballo & Real, 2004, Caraballo et al., 2004]
for non-autonomous models containing hered-
itary characteristics). Readers can con-
sult the monographs [Carvalho et al., 2010,
Kloeden & Rasmussen, 2010] for more references,
examples and information.

5.1. Motivation of the process and skew-

product flow formalisms

The formulation of an autonomous dynamical sys-
tem as a group or semi–group of mappings depends
on the fact that such systems depend only on the
elapsed time since starting t − t0 and not directly
on the current time t or starting time t0 themselves.
For a non-autonomous system, both the current
time t and starting time t0 are important. The
most natural generalization of a semi–group formal-
ism to non-autonomous dynamical systems includes
both t and t0 instead of only t − t0. This leads to
the two-parameter semi–group or process formalism
of a non-autonomous dynamical system. An alter-
native method includes an autonomous dynamical
system as a driving mechanism which is respon-
sible for, e.g., the temporal change of the vector
field of a non-autonomous dynamical system. This
leads to the skew product flow formalism of a non-

autonomous dynamical system.

5.2. Processes

Consider an initial value problem for a non-
autonomous ordinary differential equation in Rd,

ẋ = f(t, x) , x(t0) = x0 . (40)

In contrast to the autonomous case, the solutions
may now depend separately on the actual time t
and the starting time t0 rather than only on the
elapsed time t− t0 since starting. For example, the
scalar initial value problem

ẋ = −2tx , x(t0) = x0 ,

has the explicit solution

x(t) = x(t, t0, x0) = x0 e
−(t2−t20) ,

where t2 − t20 = (t − t0)
2 + 2(t − t0)t0 cannot be

expressed in terms of t− t0 alone.
Assuming global existence and uniqueness of

solutions in forward time, the solutions form a con-
tinuous mapping (t, t0, x0) 7→ x(t, t0, x0) ∈ Rd for
t ≥ t0 with t, t0 ∈ R and x0 ∈ Rd, with the initial
value and evolution properties

(i) x(t0, t0, x0) = x0 for all t0 ∈ R and x0 ∈ Rd,

(ii) x(t2, t0, x0) = x
(

t2, t1, x(t1, t0, x0)
)

for all
t0 ≤ t1 ≤ t2 and x0 ∈ Rd.

The evolution property (ii) is a consequence of
the causality principle that the solutions are deter-
mined uniquely by their initial values (for the given
differential equation).

5.2(A). Process formulation of non-
autonomous systems

Solution mappings of non-autonomous ordinary dif-
ferential equations are one of the main motivations
for the process formulation [Dafermos, 1971] (see
also [Hale, 1988]) of an abstract non-autonomous
system on a complete metric state space (X, d) and
time set T, where T = R for a continuous time pro-
cess and T = Z for a discrete time process.

Definition 5.1. A process is a continuous map-
ping (t, t0, x0) 7→ φ(t, t0, x0) ∈ X for t ≥ t0 with
t, t0 ∈ T and x0 ∈ X, with the initial value and
evolution properties
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(i) φ(t0, t0, x0) = x0 for all t0 ∈ T and x0 ∈ X,

(ii) φ(t2, t0, x0) = φ
(

t2, t1, φ(t1, t0, x0)
)

for all
t0 ≤ t1 ≤ t2 and x0 ∈ X.

A process is often called a 2-parameter semi–
group on X in contrast with the 1-parameter semi–
group of an autonomous semi–dynamical system
since it depends on both the initial time t0 and the
actual time t rather than just the elapsed time t−t0.

5.2(B). Examples of processes

The solution x(t, t0, x0) of the non-autonomous dif-
ferential equation (40) on Rd defines a continuous
time process under the assumption of global ex-
istence and uniqueness of solutions. Indeed, this
was the motivating example behind the definition
of a process. Similarly, a non-autonomous differ-
ence equation generates a discrete time process.

Example 5.2. Let fn : Rd → Rd be continuous map-
pings for n ∈ Z. Then, the non-autonomous differ-
ence equation

xn+1 = fn(xn) (41)

generates a discrete time process φ which is defined
for all x0 ∈ Rd and n,m ∈ Z with n ≥ m + 1 by
φ(m,m, x0) := x0 and

φ(n,m, x0) := fn−1 ◦ · · · ◦ fm(x0) .

In particular, note that x0 7→ φ(n,m, x0) is contin-
uous as the composition of finitely many continuous
mappings.

There are processes which do not involve either
differential or difference equations.

Example 5.3. Consider a non-homogeneous
Markov chain on a finite state space {1, . . . , N}
with d× d probability transition matrices

P (t0, t) =
(

pi,j(t0, t)
)

i,j=1,...,d

for all t0, t ∈ T with t ≥ t0. Such transition matrices
satisfy P (t0, t0) = 1, the d× d identity matrix, for
all t0 ∈ T. They also satisfy the so-called Chapman-
Kolmogorov property

P (t0, s)P (s, t) = P (t0, t) for all t0 ≤ s ≤ t .

Let Σd denote the subset of Rd consisting of the
N -dimensional probability row vectors, i.e., p =
(p1, · · · , pd) ∈ Σd satisfies

∑d
i=1 pi = 1 with 0 ≤ pi ≤

1 for i = 1, · · · , d. If the states of the Markov chain
at time t0 satisfy the probability vector p(t0) ∈ Σd,
then they are distributed according to a probability
vector p(t) = p(t0)P (t0, t) at time t ≥ t0.

Thus, the mapping φ defined by φ(t, t0, p0) :=
p0P (t0, t) is a process on the state space Σd, which
is in fact linear in the initial state component p0 and
thus continuous in this variable. Continuity in the
time variables is trivial in the discrete time case and
requires the additional assumption of continuity of
the transition matrices in both of their variables
in the continuous time case. The two-parameter
semi-group property follows from the Chapman-
Kolmogorov property.

Finally, all the examples in Section 4 admit
non-autonomous variants which generate processes
in the case of uniqueness of solutions.

5.3. An interesting property of processes

A process can be reformulated as an autonomous
semi–dynamical system, which has some interesting
implications.

The extended phase space will be denoted by
X := T×X, and define a mapping π : T+×X → X
by

π(t, (t0, x0)) :=
(

t+ t0, φ(t+ t0, t0, x0)
)

for all (t, (t0, x0)) ∈ T+×X . Note that the variable
t in π(t, (t0, x0)) is the time which has elapsed since
starting at time t0, while the actual time is t+ t0.

Theorem 5.4. π is an autonomous semi–
dynamical system on X .

Proof. It is obvious that π is continuous in its vari-
ables and satisfies the initial condition

π(0, (t0, x0)) =
(

t0, φ(t0, t0, x0)
)

= (t0, x0) .

It also satisfies the (1-parameter) semi–group prop-
erty

π(s+ t, (t0, x0)) = π
(

s, π(t, (t0, x0))
)

, ∀s, t ∈ T+ ,
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since, by the evolution property (ii) of the process,

π(s+ t, (t0, x0))

=
(

s+ t+ t0, φ(s+ t+ t0, t0, x0)
)

=
(

s+ t+ t0, φ
(

s+ t+ t0, t+ t0, φ(t+ t0, t0, x0)
))

= π
(

s, (t+ t0, φ(t+ t0, t0, x0)
)

= π
(

s, π(t, (t0, x0))
)

.

This finishes the proof of this theorem.

The autonomous semi–dynamical system π on
the extended state space X generated by a process
φ on the state space X has some unusual properties.
In particular, π has no nonempty ω-limit sets and,
indeed, no compact subset of X is π-invariant. This
is a direct consequence of the fact that time is a
component of the state.

This has significant implications and means
that many concepts for autonomous systems need
to be modified appropriately to be of any use in
the non-autonomous context. For example, note
that a π-invariant subset A of X has the form
A =

⋃

t0∈T
(t0, At0), where At0 is a nonempty subset

of X for each t0 ∈ T. Then the invariance property
π(t,A) = A for t ∈ T+ is equivalent to

φ
(

t+t0, t0, At0
)

= At+t0 for all t ∈ T+ and t0 ∈ T .

This will be used later on to motivate the definition
of φ-invariant sets for a process φ.

5.4. Motivation of skew product flows

To motivate the concept of a skew product flow,
first a triangular system of ordinary differential
equations is considered in which the uncoupled
component can be considered as the driving force
in the equation for the other component.

5.4(A). Triangular autonomous differential
equations

Consider an autonomous system of ordinary differ-
ential equations of the form

dp

dt
= f(p) ,

dx

dt
= g(p, x) , (42)

where p ∈ Rn and x ∈ Rm, i.e., with a triangular
structure.

Assuming global existence and uniqueness of
solutions forwards in time, the system of differen-
tial equations (42) generates an autonomous semi–
dynamical system π on Rn+m which we will write
in component form as

π(t, p0, x0) =
(

p(t, p0), x(t, p0, x0)
)

,

with initial condition π(0, p0, x0) = (p0, x0).
There are two important points to observe here.

Firstly, the p-component of the system is an in-
dependent autonomous system in its own right,
i.e., its solution mapping p = p(t, p0) generates
an autonomous semi–dynamical system on Rn and
amongst other properties satisfies the semi–group
property

p(s+ t, p0) = p(s, p(t, p0)) for all s, t ≥ 0 . (43)

Secondly, the semi–group property for π on Rn+m,
i.e.,

π(s + t, p0, x0) = π(s, π(t, p0, x0)) ,

can be expanded out componentwise as

π(s + t, p0, x0) =
(

p(s+ t, p0), x(s + t, p0, x0)
)

=
(

p(s, p(t, p0)), x(s + t, p0, x0)
)

,

using (43), and

π(s, π(t, p0))

=
(

p(s, p(t, p0)), x(s, p(t, p0), x(t, p0, x0))
)

.

These are identical for all s, t ≥ 0 and all (p0, x0) ∈
Rn+m. Equating for the second components gives

x(s+ t, p0, x0) = x
(

s, p(t, p0), x(t, p0, x0)
)

, (44)

for all s, t ≥ 0, which is a generalization of the semi–
group property and known as the cocycle property.

Given a solution p = p(t, p0) of the p-
component of the triangular system (42), the x-
component becomes a non-autonomous ordinary
differential equation in the x variable on Rm of the
form

dx

dt
= g(p(t, p0), x) where t ≥ 0 and x ∈ Rn .

(45)
Here p = p(t, p0) can be considered as “driving” the
non-autonomous system here, i.e., as being respon-
sible for the changes in the vector field with the
passage of time.
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The solution x(t) = x(t, p0, x0) with initial
value x(0) = x0 (which also depends on the choice
of p0 as a parameter through the driving solution
p(t, p0)) then satisfies the following.

(i) Initial condition:
x(0, p0, x0) = x0.

(ii) Cocycle property :
x(s+ t, p0, x0) = x

(

s, p(t, p0), x(t, p0, x0)
)

.

(iii) Continuity condition:
(t, p0, x0) 7→ x(t, p0, x0) is continuous.

The mapping x : R+×Rn×Rm → Rm is called
a cocycle mapping. It describes the evolution of the
solution of the non-autonomous differential equa-
tion (45) with respect to the driving system. Note
that the variable t here is the time since starting at
the state x0 with the driving system at state p0.

b

b

b

b

b

b

Pp
θs(p)

θs+t(p)

= θs(θt(p))

x φ(s, p)x

φ(s + t, p)

φ(s, p) φ(t, θs(p))

φ(s + t, p, x)

= φ(t, θs(p), φ(s, p)x)

{p} ×X
{θs(p)} ×X {θs+t(p)} ×X

Fig. 1. The cocycle property

As mentioned above, the product system π on
Rn × Rm is an autonomous semi–dynamical sys-
tem and is known as a skew product flow due to
the asymmetrical roles of the two component sys-
tems. This motivates an alternative definition of a
non-autonomous dynamical system, called the skew
product flow formalism, where, for various reasons,
the driving system p is usually taken to be a re-
versible dynamical system, i.e., forming a group
rather than a semi–group. This will happen for
example, if the driving differential equation is re-
stricted to a compact invariant subset of Rn.

The process formulation of a non-autonomous
dynamical system defined by the solution mapping
of a non-autonomous differential equation is quite

intuitive. In contrast, the skew product flow for-
mulation is more abstract, but it contains more in-
formation about how the system evolves in time,
especially when the driving system is on a compact
space P and in the case of a random perturbations,
when P is a probability space.

5.5. Skew product flows

Let (X, dX ) and (P, dP ) be metric spaces. A non-
autonomous dynamical system (θ, ϕ) is defined in
terms of a cocycle mapping ϕ on a state space X
which is driven by an autonomous dynamical sys-
tem θ acting on a base or parameter space P and
the time set T = R or Z.

Specifically, the dynamical system θ on P is a
group of homeomorphisms (θt)t∈T

under composi-
tion on P with the properties that

(i) θ0(p) = p for all p ∈ P ,

(ii) θs+t = θs(θt(p)) for all s, t ∈ T,

(iii) the mapping (t, p) 7→ θt(p) is continuous,

and the cocycle mapping ϕ : T+ × P × X → X
satisfies

(i) ϕ(0, p, x) = x for all (p, x) ∈ P ×X,

(ii) ϕ(s + t, p, x) = ϕ
(

s, θt(p), ϕ(t, p, x)
)

for all
s, t ∈ T+, (p, x) ∈ P ×X,

(iii) the mapping (t, p, x) 7→ ϕ(t, p, x) is continu-
ous.

The mapping π : T+×P ×X → P ×X defined
by

π(t, (p, x)) :=
(

θt(p), ϕ(t, p, x)
)

(46)

forms an autonomous semi–dynamical system on
X = P ×X.

Definition 5.5. The autonomous semi–dynamical
system π on X = P × X defined by (46) is called
the skew product flow associated with the non-
autonomous dynamical system (θ, ϕ).

5.5(A). Examples of skew product flows

Non-autonomous difference equations and differen-
tial equations provide a rich source of examples for
skew product flows.
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Example 5.6. The solution mapping x(t) =
x(t, t0, x0) of a non-autonomous differential equa-
tion (40) with initial value x(t0, t0, x0) = x0 at time
t0 defines a process. Theorem 5.4 shows that such
a process can be reformulated as a skew product
flow with the cocycle mapping ϕ on the state space
X = Rd defined by ϕ(t, t0, x0) := x(t, t0, x0) and
the driving system θ on the base space P = R de-
fined by the shift operators θt(t0) := t − t0. The
disadvantages of this representation were discussed
above.

The advantages of the skew product flow for-
mulation reveals itself, for instance, when the gen-
erating non-autonomous differential equation is pe-
riodic or almost periodic in time, because the base
space is then compact.

Example 5.7. The skew product formulation of a
non-autonomous differential equation (40) is based
on the fact that whenever x(t) is a solution of the
differential equation, then the time-shifted solution
xτ (t) := x(τ + t) (for some fixed τ) satisfies the
non-autonomous differential equation

ẋτ (t) = fτ (t, xτ (t)) := f(τ + t, x(τ + t)) .

Consider the set of functions
{

fτ (·, ·) := f(τ + ·, ·) :
τ ∈ R

}

. Its closure F in an appropriate topol-
ogy is called the hull of the vector field in the
non-autonomous differential equation (40). See
[Sell, 1971] for examples and typical topologies. For
example, F is a compact metric space for periodic
or almost periodic differential equations.

Introduce a group of shift operators θτ : F 7→ F
by θτ (f) := fτ for each τ ∈ R, define X = F × Rd

and write ϕ(t, f, x0) for the solution of (40) with ini-
tial value x0 at initial time t0 = 0. Finally, define π :
R+ ×X → X by π(t, x0, f) :=

(

θt(f), ϕ(t, f, x0)
)

.
Then, π = (θ, ϕ) is a continuous-time skew

product flow on the state space X . To see this, ob-
serve that the second component of the semi–group
identity π(t+s, f, x0) = π(t, π(s, f, x0) expands out
as the cocycle property

ϕ(t+ s, f, x0) = ϕ
(

t, θs(f), ϕ(s, f, x0)
)

.

Non-autonomous difference equations (41) gen-
erate discrete time skew product flows, the simplest
coming from discrete time processes via Theorem
5.4 and have Z as their base space. When more is

known about how the different mappings fn vary
with n ∈ Z, it is often possible to have a compact
base space.

Example 5.8. Suppose that the mappings fn in the
non-autonomous difference equation (41) are chosen
in some way from a finite number of continuous
mappings Ri : Rd → Rd for i ∈ {1, . . . , r}. Then
the difference equation has the form

xn+1 = Rin(xn) , (47)

where the in ∈ {1, . . . , r} for all n ∈ N. It gen-
erates a discrete time skew product flow over the
parameter set P = {1, . . . , r}Z of bi-infinite se-
quences p = (in)n∈Z in {1, . . . , r} with respect to
the group of left shift operators (θm)m∈N, where
θm

(

(in)n∈Z

)

= (in+m)n∈Z. The cocycle mapping
ϕ(n, ·, ·) is defined by

ϕ(0, p, x) := x, ϕ(n, p, x) :=
(

Rin−1
◦ · · · ◦Ri0

)

(x)

for all n ∈ N, x ∈ Rd and p = (in)n∈N ∈ P . The
parameter space P = {1, . . . , r}Z here is a compact
metric space with the metric

d(p, p′) =

∞
∑

n=−∞
(r + 1)−|n| ∣

∣in − i′n
∣

∣ ,

and the mappings p 7→ θn(p) and (p, x) 7→ ϕ(n, p, x)
are continuous for each n ∈ Z+. To see this,
note that d(p, p′) ≤ δ < 1 requires ij = i′j for
j = 0,±1, . . . ,±N(δ). Then take δ small enough
corresponding to a given ε > 0 and fixed n.

More generally, the difference equation may in-
volve a parameter q ∈ Q, which varies from iterate
to iterate, by choice or randomly,

xn+1 = f(xn, qn) . (48)

Example 5.9. Consider the parametrically depen-
dent difference equation (48) with the continuous
mapping f : R × [−1, 1] → R, given by

f(x, q) = fq(x) := νx+ q ,

where ν ∈ [0, 1) and q ∈ [−1, 1]. Let P = [−1, 1]Z

be the space of bi-infinite sequences p = (qn)n∈Z

taking values in [−1, 1], which is a compact metric
space with the metric

d(p, p′) =

∞
∑

n=−∞
2−|n|∣

∣qn − q′n
∣

∣ ,
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and let (θn)n∈Z be the group of the left shift op-
erators on this sequence space (cf. Example 5.8).
Finally, define the mappings ϕ(n, ·, ·) by

ϕ(0, p, x0) := x, ϕ(n, p, x) :=
(

fqn−1
◦ · · · ◦ fq0

)

(x)

for all n ∈ N, x ∈ R and p = (qn)n∈N ∈ P . Specifi-
cally,

ϕ(n, p, x) = νnx+

n−1
∑

j=0

νn−1−jqj

for all n ∈ N.
The mappings p 7→ θn(p) and (p, x) 7→

ϕ(n, p, x) are obviously continuous here for each
n ∈ N. Thus, (θ, ϕ) is a discrete time skew product
flow on R with the compact base space P .

5.5(B). Entire solutions and invariant sets

The definition of an entire solution of a non-
autonomous dynamical system is an obvious gen-
eralization of the autonomous case.

Definition 5.10. An entire solution of a process
φ on a metric space (X, d) with time set T is a
mapping ξ : T → X such that

ξ(t) = φ(t, t0, ξ(t0)) for all t, t0 ∈ T with t ≥ t0 .

The discussion following Theorem 5.4, in which
a process φ on X was formulated as a skew product
flow on the extended state space R × X, suggests
that it is more appropriate to consider the invari-
ance of a family of time-dependent subsets rather
than of a single set. This motivates the following
definition.

Definition 5.11. Let φ be a process on a metric
space (X, d). A family A = (At)t∈T of nonempty
subsets of X is said to be invariant with respect to
φ, or φ-invariant, if

φ (t, t0, At0) = At for all t ≥ t0 . (49)

A simple example of a φ-invariant family A =
(At)t∈T is given by an entire solution of φ, i.e., hav-
ing the singleton subsets At = {ξ(t)} for each t ∈ T.
In fact, φ-invariant families consist of entire solu-
tions.

Lemma 5.12. Let A = (At)t∈T be a nonempty φ-
invariant family of subsets of X of a process φ.

Then for any t0 ∈ T and a0 ∈ At0 , there exists
an entire solution ξ through a0 which is contained
in A, i.e., with ξ(t0) = a0 and ξ(t) ∈ At for all
t ∈ T.

When the subsets in a φ-invariant family are
compact, it follows from the continuity of a con-
tinuous time process that the set-valued mapping
t 7→ At is continuous in t ∈ R with respect to the
Hausdorff metric h, since

h(At, At0) = h
(

φ(t, t0, At0), φ(t0, t0, At0)
)

→ 0

as t → t0 by the continuity of the process φ in its
first variable.

Similar definitions hold for positive and nega-
tive invariant families of sets.

Definition 5.13. Let φ be a process on a metric
space (X, d). A family A = (At)t∈T of nonempty
subsets of X is said to be positive invariant with
respect to φ, or φ-positive invariant, if

φ (t, t0, At0) ⊂ At for all t ≥ t0 ,

and negative invariant with respect to φ, or φ-
negative invariant, if this holds with ⊃ instead of
⊂.

Analogous definitions hold for skew product
flows.

Definition 5.14. An entire solution of a skew
product flow (θ, ϕ) on a metric phase space (X, d)
and a base set P with time set T is a mapping
ξ : P → X such that

ξ(θt(p)) = ϕ(t− s, θs(p), ξ(θs(p))

for all p ∈ P and s, t ∈ T with s ≤ t .

Definition 5.15. Let (θ, ϕ) be a skew product flow
on a metric phase space (X, d) and a base set P . A
family A = (Ap)p∈P of nonempty sets ofX is said to
be invariant with respect to (θ, ϕ), or ϕ-invariant,
if

ϕ(t, p,Ap) = Aθt(p) for all t ≥ 0 and p ∈ P .

For positive and negative invariant families, replace
= here by ⊂ or ⊃, respectively.
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The compact set-valued mapping t 7→ Aθt(p)

induced by a ϕ-invariant family (Ap)p∈P of compact
subsets is continuous in t ∈ R with respect to the
Hausdorff metric for each fixed p ∈ P .

5.6. Attractors for non-autonomous and

random dynamical systems

Simple generalizations of concepts for autonomous
dynamical systems to non-autonomous dynamical
systems are not always adequate or appropriate. It
was previously seen that, for non-autonomous dy-
namical systems, it is often too restrictive to con-
sider the invariance of just a single set and that
instead a family of subsets is more appropriate. A
similar situation also applies to attractors, which
are the most important examples of invariant sets.

Attractors of autonomous dynamical systems
are ω-limit sets, which are invariant sets. Since the
solution of a process ϕ depends both on initial time
t0 and initial value x0, ω-limit set for a process will
also depend on both of these two parameters, specif-
ically

ω(t0, x0) =
{

x ∈ X : lim
n→∞

ϕ(tn, t0, x0) = x

for some sequence tn → ∞} .
As in the autonomous case, one can show that
ω(t0, x0) is a nonempty compact set when, for ex-
ample, the forward trajectory ∪t≥t0{ϕ(t, t0, x0)} is
precompact. However, unlike its autonomous coun-
terpart, a non-autonomous ω-limit set ω(t0, x0) may
not be invariant for the process.

As an example, consider the non-autonomous
scalar differential equation

ẋ = −x+ e−t ,

which can be solved with the variation of constants
formula to give the explicit solution

x(t, t0, x0) = e−(t−t0)x0 + (t− t0) e
−t .

This implies that

lim
t→∞

x(t, t0, x0) = 0 for all (t0, x0) ∈ R × R ,

so the non-autonomous ω-limit set is given by

ω(t0, x0) = {0} for all (t0, x0) ∈ R × R .

However, x(t, t0, 0) = (t− t0) e
−t 6= 0 for all t > t0,

i.e., the ω-limit set here is not invariant in the sense
of autonomous systems.

5.6(A). Non-autonomous sets

Let φ be a process on a metric space (X, d), and
consider a family M̃ = (Mt)t∈T of subsets of X.
For a more compact and elegant formulation, such
families M̃ will henceforth be viewed equivalently
as subsets of the extended phase space T ×X, and
the translation is as follows. The family M̃ induces
a subset M ⊂ T ×X, defined by

M :=
{

(t, x) : x ∈Mt

}

and, conversely, a subset M of the extended phase
space T × X leads to a family M̃ = (Mt)t∈T of
subsets of X with

Mt :=
{

x ∈ X : (t, x) ∈ M
}

for all t ∈ T .

The advantage of the new formulation is that M is
a set, which makes the direct use of set-valued op-
erations possible, and the notation becomes easier
to read. Such sets M are called non-autonomous
sets in the following. It will become clear soon that
all interesting objects in the non-autonomous con-
text are non-autonomous sets, i.e., subsets of the
extended phase space, whereas the main interest
focusses on subsets of the phase space in an au-
tonomous setting. The precise definition of a non-
autonomous set is:

Definition 5.16. Let φ be a process on a metric
space (X, d). A subset M of the extended phase
space T×X is called a non-autonomous set and for
each t ∈ T the set

Mt := {x ∈ X : (t, x) ∈ M}
is called the t-fiber of M. A non-autonomous set
M is said to be invariant if φ(t, t0,Mt0) = Mt for
all t ≥ t0.

An analogous notion of a non-autonomous set
is also used for skew product flows.

Definition 5.17. Let (θ, ϕ) be a skew product flow
on a base set P and a metric phase space (X, d). A
subset M of the extended phase space P × X is
called a non-autonomous set and for each p ∈ P
the set

Mp := {x ∈ X : (p, x) ∈ M}
is called p-fiber of M. A non-autonomous set M is
said to be invariant if ϕ(t, p,Mp) = Mθt(p) for all
t ≥ 0 and p ∈ P .
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In general, a non-autonomous set M is said to
have a topological property (such as compactness
or closedness) if each fiber of M has this property.

5.6(B). Attractors of processes

There are basically two ways to define attraction
of a compact and invariant non-autonomous set A
for a process φ on a metric space (X, d) with time
set T. The first, and perhaps more obvious, cor-
responds to the attraction in Lyapunov asymptotic
stability, is called forward attraction and involves
a moving target, while the latter, called pullback
attraction, involves a fixed target set with progres-
sively earlier starting time. In general, these two
types of attraction are independent concepts, while
for the autonomous case, they are equivalent.

Definition 5.18. Let φ be a process. A nonempty,
compact and invariant non-autonomous set A is
said to be

(i) forward attracting if

lim
t→∞

dist
(

φ(t, t0, x0), At
)

= 0

for all x0 ∈ X and t0 ∈ T ,

(ii) and pullback attracting if

lim
t0→−∞

dist
(

φ(t, t0, x0), At
)

= 0

for all x0 ∈ X and t ∈ T .

Moreover, if the forward attraction in (i) is uniform
with respect to t0 ∈ T, or equivalently, if the pull-
back attraction in (ii) is uniform with respect to
t ∈ T, then A is called uniformly attracting.

Figures 5.6(B) and 5.6(B) illustrate forward
and pullback attraction, respectively, of a non-
autonomous set with singleton sets as fibers At =
{ρ(t)}, i.e., an entire solution of the process.

In an autonomous system, the solutions depend
only on the elapsed time t− t0. Moreover, t− t0 →
∞ when either t→ ∞ with t0 fixed or as t0 → −∞
with t fixed, so pullback and forward convergence
are equivalent for an autonomous system.

Two types of non-autonomous attractors for
processes are possible, depending which of the
above types of attraction is used. It is required
that the component subsets of such attractors are

t

x

t0

x(·, t0, x0)
ϕ̄

Fig. 2. Forward attraction

t

x0

t0 t0 t0

x(·, t0, x0)
ϕ̄

Fig. 3. Pullback Attraction

compact and that they attract bounded subsets D
of initial values in X (rather than just individual
points), in the sense that

dist
(

φ(t, t0,D), At
)

→ 0,

either as t → ∞ with t0 fixed (forward case), or as
t0 → −∞ with t fixed (pullback case).

Definition 5.19. Let φ be a process. A nonempty
and invariant non-autonomous set A is called

(i) a forward attractor if it forward attracts
bounded subsets of X,

(ii) a pullback attractor if it pullback attracts
bounded subsets of X, and

(iii) a uniform attractor if it uniformly attracts
bounded subsets of X.

Forward and pullback attractors are indepen-
dent concepts and one can exist without the other.

Example 5.20. The non-autonomous set T × {0},
i.e., the zero solution, is a forward attractor but
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not a pullback attractor of the system

ẋ = −2tx (50)

with the general solution x(t, t0, x0) = x0e
−(t2−t2

0
),

and a pullback attractor but not a forward attractor
of the system

ẋ = 2tx (51)

with the general solution x(t, t0, x0) = x0e
t2−t20 .

This example demonstrates that forward at-
traction can be seen as an attraction concept for
the future of the system, since the coefficient −2t
of (50) is negative for t > 0. On the other hand,
pullback attraction means basically attraction for
the past of the system, see the negativity of 2t for
t < 0 in (51). The concept of a uniform attrac-
tor, however, is concerned with attractivity for the
entire time.

Example 5.21. Consider the non-autonomous
scalar ordinary differential equation

ẋ = −x+ 2 sin t . (52)

If x1(t) and x2(t) are any two solutions, then their
difference z(t) = x1(t)− x2(t) satisfies the homoge-
neous linear differential equation

ż = −z

with the explicit solution z(t) = z(t0)e
−(t−t0), so

∣

∣x1(t) − x2(t)
∣

∣ =
∣

∣x1(t0) − x2(t0)
∣

∣e−(t−t0) → 0

as t → ∞ , from which it follows that all solutions
converge to each other in time. What do they con-
verge to?

The explicit solution of the non-autonomous
differential equation (52) with initial value x(t0) =
x0 is

x(t, t0, x0) = x0e
−(t−t0) + 2e−t

∫ t

t0

es sin s ds

=
(

x0 − (sin t0 − cos t0)
)

e−(t−t0)

+ (sin t− cos t) ,

from which it is clear that the forward limit
limt→∞ x(t, t0, x0) does not exist. On the other
hand, the pullback limit does exist for all t and
x0, i.e.,

lim
t0→−∞

x(t, t0, x0) = sin t− cos t =: ρ(t) ,

and is independent of x0, i.e.,

lim
t0→−∞

∣

∣x(t, t0, x0) − ρ(t)
∣

∣ = 0 .

Hence, the non-autonomous set A having the sin-
gleton fibers At := {ρ(t)} is pullback attracting for
the solution process.

Moreover, it is easily shown that ρ(t) is a so-
lution of the non-autonomous differential equation
(52) and since all solutions converge to each other
forward in time, the forward convergence

lim
t→∞

∣

∣x(t, t0, x0) − ρ(t)
∣

∣ = 0

also holds.

Remark 5.22. The non-autonomous set A in Exam-
ple 5.21 is both a pullback and forward attractor of
the non-autonomous differential equation (52). It
is not difficult to find other forward attractors of
(52) which are not pullback attractors.

This fact demonstrates that forward attractors
can be nonunique, and this is quite typical for for-
ward attractors. For pullback attractors, however,
the following uniqueness result can be proved.

Proposition 5.23. Suppose that a process φ has
two pullback attractors A and Ā such that both
⋃

t≤0At and
⋃

t≤0 Āt are bounded. Then A = Ā.

Proof. The boundedness of
⋃

t≤0At implies for all
t ∈ T that

dist
(

At, Āt
)

= lim
t0→−∞

dist
(

φ(t, t0, At0), Āt
)

≤ lim
t0→−∞

dist
(

φ(t, t0,
⋃

τ≤0Aτ ), Āt
)

= 0 .

Analogously, one shows that dist
(

Āt, At
)

= 0,
which finishes the proof, since both the sets At and
Āt are compact.

Exercise 5.24. A φ-invariant family of sets such
as a pullback attractor A = (At)t∈T consists of en-
tire solutions, see Lemma 5.12. Give an example of
a process φ which has entire solutions that are not
contained in the pullback attractor.

5.7. Attractors of skew product flows

Let (θ, ϕ) be a skew product flow on a base space
P and a state space X with time set T = R or Z,
where (P, dP ) and (X, dX ) are metric spaces.



34 Balibrea, Caraballo, Kloeden & Valero

Then π = (θ, ϕ) is an autonomous semi–
dynamical system on the extended state space X :=
P ×X. A global attractor for an autonomous semi–
dynamical system π is, specifically, a nonempty
compact subset A of X which is π-invariant, i.e.,
which satisfies π(t,A) = A for all t ∈ T+ is called
a global attractor of π if

lim
t→∞

distX (π(t,D),A) = 0

for every nonempty bounded subset D of X . Sup-
pose that P is compact and θ-invariant. Then the
global attractor A of π has the form

A =
⋃

p∈P

{

(p, x) : x ∈ Ap
}

,

where Ap is a nonempty compact subset of X for
each p ∈ P , and the π-invariance property π(t,A) =
A for t ∈ T+ is equivalent to the ϕ-invariance prop-
erty ϕ(t, p,Ap) = Aθt(p) for all t ∈ T+ and p ∈ P .

A global attractor of the autonomous system π
is a possible candidate for an attractor for the non-
autonomous dynamical system described by the
skew product flow. A disadvantage of this defini-
tion is that the extended state space X includes
the base space P as a component, which often does
not have the same physical significance as the state
space X.

Other types of attractors consisting of a family
of nonempty compact subsets of the state space X
have also been proposed for a skew product (θ, ϕ).
These are analogues of the forward and pullback
attractors of a process.

Definition 5.25. Let (θ, ϕ) be a skew product
flow. A nonempty, compact and invariant non-
autonomous set A is called a pullback attractor of
(θ, ϕ) if the pullback convergence

lim
t→∞

distX(ϕ(t, θ−t(p),D), Ap) = 0

holds for every nonempty bounded subset D of X
and p ∈ P , and is called a forward attractor if the
forward convergence

lim
t→∞

distX
(

ϕ(t, p,D), Aθt(p)

)

= 0

holds for every nonempty bounded subset D of X
and p ∈ P .

As for processes, the concepts of forward and
pullback attractors for skew products are gener-
ally independent of each other, and one can exist
without the other existing. If the above limit is
replaced by limt→∞ supp∈P distX(·, ·), then the at-
tractors are called uniform pullback and uniform
forward attractors, respectively. If either of the lim-
its is uniform in this sense, then so is the other and
the attractor is both a uniform pullback and a uni-
form forward attractor, so will be called simply a
uniform attractor.

The relationship between these different
kinds of non-autonomous attractors can be seen
in [Cheban et al., 2002] and in the monograph
[Kloeden & Rasmussen, 2010].

Example 5.26. Reconsider the non-autonomous
scalar ordinary differential equation (52), now
writing p(t), a periodic function with period 2π,
instead of sin t,

ẋ = −x+ 2p(t) ,

with the initial condition x(0) = x0. In the spirit of
skew product flows as introduced in Section 5.4, the
general solution of this equation depends on both
p and x0. The initial value problem has thus the
explicit solution x(t) = x(t, p, x0) given by

x(t) = x0e
−t + 2e−t

∫ t

0
esp(s) ds .

We introduce shift operators on the space P =
{

p(t+ ·) : 0 ≤ t ≤ 2π
}

defined by θt(p(·)) = p(t+ ·)
and consider the solution corresponding to the driv-
ing term θ−τ (p(·)) = p(−τ + ·) at time τ , i.e.,

x
(

τ, θ−τ (p(·)), x0

)

= x0e
−τ + 2e−τ

∫ τ

0
esθ−τ (p(s)) ds

= x0e
−τ + 2e−τ

∫ τ

0
esp(s− τ) ds

= x0e
−τ + 2

∫ τ

0
es−τp(s− τ) ds

= x0e
−τ + 2

∫ 0

−τ
etp(t) dt ,

where the substitution t := s − τ has been used.
The pullback limit as τ → ∞ gives

lim
τ→∞

x
(

τ, θ−τ (p(·)), x0

)

= α(p(·)) := 2

∫ 0

−∞
etp(t) dt
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for x0 in an arbitrary bounded subset D. It con-
sists of singleton fibers Ap =

{

α(p(·))
}

, p ∈ P , and
corresponds to the entire solution

ρ(t) := sin t− cos t

in the process version of this differential equation in
Example 5.21, i.e., ρ(t) = α

(

θt(p(·))
)

for all t ∈ R.
The pullback attraction in this example is uni-

form, and the pullback attractor is also a forward
attractor, and hence a uniform attractor. Moreover,
the autonomous semi–dynamical system π = (θ, ϕ)
on the extended state space P × R has a global at-
tractor given by

A =
⋃

p(·)∈P

{(

p(·), α(p(·))
)}

.

Remark 5.27. The analysis of this system as a skew
product flow is somewhat more complicated and
less transparent than its analysis as a process in
Example 5.21. This is typical and is why the pro-
cess formulation will often be used in subsequent
examples (whenever it is possible).

Example 5.28. The difference equation in Exam-
ple 5.9 generates a discrete time skew product flow
with cocycle mapping

ϕ(n, p, x) = νnx+

n−1
∑

j=0

νn−1−jqj for all n ∈ N ,

(53)
on the state space X = R. The base space P =
[−1, 1]Z is the space of bi-infinite sequences p =
(qn)n∈N taking values in [−1, 1] and θ is the left
shift operator on this sequence space.

Replacing p by θ−n(p) in (53) implies

ϕ
(

n, θ−n(p), x
)

= νnx+
n−1
∑

j=0

νn−1−jq−n+j ∀n ∈ N ,

which can be re-indexed as

ϕ
(

n, θ−n(p), x
)

= νnx+

−1
∑

k=−n
ν−k−1qk, ∀n ∈ N .

Taking pullback convergence gives

lim
n→∞

ϕ
(

n, θ−n(p), x
)

= α(p) :=

−1
∑

k=−∞
ν−k−1qk .

The pullback attractor A thus consists of singleton
fibers Ap = {α(p)} for p = (qn)n∈N ∈ P . Since the
pullback convergence here is in fact uniform in p ∈
P , the pullback attractor is also a uniform forward
attractor, and hence a uniform attractor. Moreover,
A is also the global attractor of the autonomous
semi–dynamical system π = (θ, ϕ) on the extended
state space P × R.

5.7(A). Existence of pullback attractors

In order to prove the existence of the attractor (in
both the autonomous and non-autonomous cases)
the simplest, and therefore the strongest, assump-
tion is the compactness of the solution operator as-
sociated with the system, which is usually available
for parabolic systems in bounded domain. How-
ever, this kind of compactness does not hold in
general for parabolic equations in unbounded do-
mains and hyperbolic equations on either bounded
or unbounded domain. Instead we often have some
kind of asymptotic compactness. In this situa-
tion, there are several approaches to prove the ex-
istence of the global (or non-autonomous) attrac-
tor. Roughly speaking, the first one ensures the
existence of the global (resp. non-autonomous) at-
tractor whenever a compact attracting set (resp.
a family of compact attracting sets) exists. The
second method consists in decomposing the solu-
tion operator (resp. the cocycle or two-parameter
semi-group) into two parts: a compact part and
another one which decays to zero as time goes to
infinity. However, as it is not always easy to find
this decomposition, one can use a third approach
which is based on the use of the energy equations
which are in direct connection with the concept of
asymptotic compactness. This third method has
been used fo example in [Moise et al., 1998] and
[Lukaszewicz & Sadowski, 2004] to extend to the
non-autonomous situation the corresponding one in
the autonomous framework (see [Rosa, 1998]), but
related to uniform asymptotic compactness. Our
aim here is to consider the case without uniformity
properties and show how the pullback theory works
in this situation. In this sense, it is worth men-
tioning that the compact case has been treated in
[Flandoli & Schmalfuß, 1996] in the random case,
so our results can be considered as natural com-
plements (as it happens in the deterministic au-
tonomous case).
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There are generalizations of the theorems en-
suring existence of an attractor for autonomous sys-
tems to pullback attractors for processes and skew
product flows. These are also based on the sup-
posed existence of an absorbing set, which is now
absorbing in the pullback sense.

Definition 5.29. Let φ be a process on a metric
space (X, d). A nonempty compact subset B of
X is called pullback absorbing if for each t ∈ T

and every bounded subset D of X, there exists a
T = T (t,D) > 0 such that

φ(t, t0,D) ⊂ B for all t0 ∈ T with t0 ≤ t− T .

Definition 5.30. Let (θ, φ) be a skew product flow
on a metric space (X, d). A nonempty compact
subset B of X is called pullback absorbing if for
each p ∈ P and every bounded subset D of X,
there exists a T = T (p,D) > 0 such that

ϕ
(

t, θ−t(p),D
)

⊂ B for all t ≥ T .

The existence theorems will be presented here
under basic but restricted assumptions, which can
then be relaxed and generalized.

5.7(B). Existence of pullback attractors for pro-
cesses

The following theorem is a simple generalization of
the corresponding one for attractors of autonomous
semi–dynamical systems.

Theorem 5.31. Let φ be a process on a complete
metric space X with a compact pullback absorbing
set B such that

φ(t, t0, B) ⊂ B for all t ≥ t0 .

Then there exists a pullback attractor A with fibers
in B uniquely determined by

At =
⋂

τ≥0

⋃

t0≤−τ
φ(t, t0, B) for all t ∈ T . (54)

The formula (54) is a kind of a non-autonomous
ω-limit set of the set B. As seen in the in-
troduction of this chapter, a naive definition of
a non-autonomous ω-limit set leads to a set,
which is not positively invariant. However, the

pullback construction used in (54) gives an in-
variant set and can be regarded as a proper
version of a non-autonomous ω-limit set (see
[Crauel & Flandoli, 1994] for details).

Example 5.32. Consider a non-autonomous dy-
namical system in Rd given by

ẋ = f(t, x) , (55)

where f is continuously differentiable and satisfies
the uniform dissipative condition

〈

x, f(t, x)
〉

≤ K − L‖x‖2, ∀x ∈ Rd, t ∈ R (56)

with positive constants K and L. These assump-
tions ensure that the differential equation (55) gen-
erates a process.

Moreover, any solution x(t) of (55) satisfies

d

dt
‖x(t)‖2 = 2

〈

x(t), ẋ(t)
〉

= 2
〈

x(t), f(t, x(t))
〉

≤ K − L‖x(t)‖2 ,

from which, on integrating, it follows that

‖x(t)‖2 ≤ ‖x(t0)‖2e−L(t−t0) +
K

L

(

1 − e−L(t−t0)
)

.

Suppose that for a bounded subset D of Rd with
‖D‖ := supd∈D ‖d‖ > 1, we have x(t0) ∈ D, and
define

T :=
1

L
ln (L‖D‖) .

Then

‖x(t)‖2 ≤ 1

L
+
K

L
=
K + 1

L

for x(t0) ∈ D and t0 ≤ t− T . Thus, the closed ball

Bd
(

0,
√

(K + 1)/L
)

:=
{

x ∈ Rd : ‖x‖2 ≤ (K+1)/L
}

is pullback absorbing and positively invariant.
From Theorem 5.31, it follows that the process

generated by the differential equation (55) has a
pullback attractor in Rd with components subsets
At ⊂ B := Bd

(

0,
√

(K + 1)/L
)

.

5.7(C). Existence of pullback attractors for
skew product flows

The counterpart of Theorem 5.31 for skew prod-
uct flows is the first part of the following theorem.
The second part provides some information about
a form of forwards convergence of the cocycle map-
ping, which is different from that in the definition
of a forward attractor.
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Theorem 5.33. Let (θ, ϕ) be skew product flow on
a complete metric space X with a compact pullback
absorbing set B such that

ϕ(t, p,B) ⊂ B for all t ≥ 0 and p ∈ P . (57)

Then there exists a unique pullback attractor A with
fibers in B uniquely determined by

Ap =
⋂

τ≥0

⋃

t≥τ
ϕ(t, θ−t(p), B) for all p ∈ P . (58)

If, in addition, (P, dP ) is a compact metric space,
then

lim
t→∞

sup
p∈P

dist
(

ϕ(t, p,D), A(P )
)

= 0 (59)

for any bounded subset D of Rd, where A(P ) :=
⋃

p∈P Ap ⊂ B.

5.7(D). A continuous time example

Consider a non-autonomous dynamical system in
Rd given by

ẋ = f(p, x) (60)

with the driving system θ on a compact metric
space (P, dP ). Suppose that f is regular enough to
ensure that the differential equation (60) generates
a skew product flow.

In addition, suppose that f satisfies the uni-
form dissipative condition

〈

x, f(p, x)
〉

≤ K − L‖x‖2, ∀p ∈ P, x ∈ Rd (61)

with positive constants K and L. Then, similarly
to Example 5.32, a solution x(t) satisfies the differ-
ential inequality

d

dt
‖x(t)‖2 ≤ K − L‖x(t)‖2 ,

from which it follows that the closed ball

B := Bd
(

0,
√

(K + 1)/L
)

is pullback absorbing and positively invariant.
From Theorem 5.33, it follows that the skew prod-
uct flow has a pullback attractor in Rd with com-
ponents subsets Ap ⊂ B, p ∈ P .

Suppose instead that the vector field f satisfies
the uniform one-sided dissipative Lipschitz condi-
tions

〈

x1−x2, f(p, x1)−f(p, x2)
〉

≤ −L‖x1−x2‖2 (62)

for all p ∈ P and x1, x2 ∈ Rd with some constant
L > 0. Then f satisfies the uniform dissipative
condition (61) with constants

K ′ =
2

L
sup
p∈P

‖f(0)‖ and L′ =
L

2
,

and the closed ball B′ := Bd
(

0,
√

(K ′ + 1)/L′) is
pullback absorbing and positively invariant. Thus,
the skew product flow has a pullback attractor with
component subsets Ap in this ball.

In fact, the fibers of the pullback attractor are
singleton sets. The proof uses the fact that due to
the uniform one-sided dissipative Lipschitz condi-
tion (62), the system satisfies

‖x1(t) − x2(t)‖ ≤ e−Lt‖x0,1 − x0,2‖ (63)

for any pair of solutions with the same initial value
p ∈ P of the driving system. This follows from

d

dt

∥

∥x1(t) − x2(t)
∥

∥

2

=
d

dt

〈

x1(t) − x2(t), x1(t) − x2(t)
〉

= 2
〈

x1(t) − x2(t), ẋ1(t) − ẋ2(t)
〉

= 2
〈

x1(t) − x2(t), f
(

θtp, x1(t)
)

− f
(

θtp, x2(t)
)〉

≤ −2L
∥

∥x1(t) − x2(t)
∥

∥

2
,

which is integrated to give

‖x1(t) − x2(t)‖2 ≤ e−2Lt‖x0,1 − x0,2‖2.

Taking square roots yields the desired result.

Theorem 5.34. The pullback attractor A of the
skew product flow (θ, ϕ) generated by the differential
equation (60) consists of singleton fibers Ap = {ap}
for each p ∈ P when the vector field f satisfies
the uniform one-sided dissipative Lipschitz condi-
tion (62). Moreover, t 7→ aθt(p), t ∈ R, is an entire
solution of (60) for each p ∈ P .

Proof. Since Ap ⊂ B′ for all p ∈ P , it follows that
‖Ap‖ := maxa∈Ap ‖a‖ ≤ R := (K ′ + 1)/L′ for each
p ∈ P . Now consider a fixed p ∈ P , and suppose
that there exists an ε0 > 0 and points a1, a2 ∈ Ap
such that ‖a1 − a2‖ = ε0. Moreover, choose T > 0
such that 2Re−LT = ε0. The ϕ-invariance of the
pullback attractor gives ϕ

(

T, θ−T (p), Aθ−T (p)

)

=
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Ap, which means that there exist a′1, a
′
2 ∈ Aθ−T p

such that

ϕ
(

T, θ−T (p), a′1
)

= a1 and ϕ
(

T, θ−T (p), a′2
)

= a2 .

Then, from the inequality in (63), it follows that

0 < ε0 = ‖a1 − a2‖
=

∥

∥ϕ
(

T, θ−T (p), a′1
)

− ϕ
(

T, θ−T (p), a′2
)∥

∥

≤ e−LT ‖a′1 − a′2‖ ≤ Re−LT =
1

2
ε0 ,

which is not possible. Hence, a1 = a2.
Finally, from the ϕ-invariance of the pullback

attractor, ϕ(t, p, ap) = aθt(p) for all t ∈ R and p ∈ P ,
so the singleton sets forming the pullback attractor
define an entire solution of the system. It follows
from inequality (63) that this entire solution also
forward attracts all other solutions with the same
initial value of the driving system, so the pullback
attractor is also a forward attractor. (There will
be more than one such entire solution when P is
not a minimal subset for the autonomous dynamical
system θ).

The above theorem generalizes the following
autonomous result in [Stuart & Humphries, 1996].

Corollary 5.35. An autonomous differential
equation with a vector field f which satisfies a
one-sided dissipative Lipschitz condition such as
(62) (i.e., without the p variable) has a unique
globally asymptotically stable equilibrium point.

5.7(E). Pullback attractors for absorbing fami-
lies and attraction universes

To take into account non-uniformities that are
ubiquitous in non-autonomous dynamical systems,
greater generality can be attained in the defini-
tion of a pullback attractor by considering arbitrary
non-autonomous sets B and D instead just a sin-
gle compact absorbing set B and single attracted
bounded set D. This allows local as well as global
attraction to be handled at the same time. The
skew product flows (θ, ϕ) in this subsection are on a
metric state space (X, dX ) with a metric base space
(P, dP ) and a time set T.

Definition 5.36. An attraction universe D of a
skew product flow (θ, ϕ) is a collection of bounded
non-autonomous sets D, which is closed in the sense
that if ∅ ( D′ ⊆ D for some D ∈ D, then D′ ∈ D.

The definitions of pullback convergence and
pullback attractor need to be extended accordingly.

Definition 5.37. Let (θ, ϕ) be a skew product flow
on P×X. A nonempty, compact and invariant non-
autonomous set A is called pullback attractor with
respect to an attraction universe D if the pullback
convergence

lim
t→∞

dist
(

ϕ
(

t, θ−t(p),Dθ−t(p)

)

, Ap
)

= 0

holds for all p ∈ P and D ∈ D.

Exercise 5.38. Show that a pullback attractor is
unique within a given attraction universe D.

The pullback absorbing property now depends
on the attraction universe D under consideration.

Definition 5.39. Let D be an attraction universe
of a skew product flow (θ, ϕ) on P×X. A nonempty
and compact non-autonomous set B ∈ D is called
pullback absorbing with respect to D if for each D ∈
D and p ∈ P , there exists a T = T (p,D) > 0 such
that

ϕ
(

t, θ−t(p),Dθ−t(p)

)

⊂ Bp for all t ≥ T .

Theorem 5.33 on the existence of a pullback
attractor assuming that of a pullback absorbing set
generalizes to attraction universes and pullback ab-
sorbing families.

Theorem 5.40. Let (θ, ϕ) be a skew product flow
on P × X, and suppose that the compact non-
autonomous set B is pullback absorbing with respect
to an attraction universe D. Then (θ, ϕ) has a pull-
back attractor A with respect to D, where the fibers
Ap are defined for each p ∈ P by

Ap =
⋂

s>0

⋃

t>s

φ(t, θ−t(p), Bθ−t(p)). (64)

The proof is a direct modification of that of
Theorem 5.33. Similar theorems can be found
in [Schmalfuß, 1992, Flandoli & Schmalfuß, 1996,
Kloeden & Schmalfuß, 1996, Kloeden, 1997], see
also [Crauel et al., 1995, Cheban & Fakhih, 1994].

Remark 5.41. The assumption that the absorbing
sets in Theorems 5.33 and 5.40 are compact is no
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restriction in a state space such as Rd, which is
locally compact and thus closed and bounded sub-
sets are equivalently compact. This is not true for
a general state space. In particular, for infinite di-
mensional spaces, compact subsets are “thin” and
it is much easier to determine an absorbing prop-
erty for a closed and bounded subset, such as a unit
ball, rather than a compact subset. Counterparts
of Theorems 5.33 and 5.40 then hold, if the cocycle
mapping is assumed to be compact, i.e., the map-
ping ϕ(t, p, ·) : X → X maps bounded subsets into
precompact subsets for all t > 0 and p ∈ P , or more
generally, asymptotically compact. These general-
izations will be considered in the next section on in-
finite dimensional dynamical systems, i.e., with an
infinite dimensional state spaceX, and dealing with
possibly multi-valued non-autonomous and random
dynamical systems. It is also remarkable that, when
the problem contains some randomness or stochas-
tic features, the parameter space possesses a mea-
surable structure (i.e., is a probability space), and,
consequently, the measurability must appear in the
definitions. This will be highlighted in the next
subsection. In addition, it is also worth mentioning
that not all stochastic differential equation generate
a random dynamical system (see [Arnold, 1998] for
a more detailed exposition on this point). Specif-
ically, in the case of stochastic partial differential
equations, it is only known when the noise possesses
a very particular form (e.g. either additive or linear
multiplicative).

5.8. Existence of pullback and random

attractors for multi-valued non-

autonomous and random dynamical

systems

Although we could have developed our theory for
the existence of pullback attractors for processes or
cocycles directly in the multi-valued case, we have
preferred to first introduce and establish the theory
in the single-valued framework because, in this way,
it may be clearer for a general audience. Now, we
will establish the theory in the more general set-up
of multi-valued dynamical systems generalizing the
theory in Section 4 for non-autonomous/random
dynamical systems (see [Caraballo et al., 2008] for
more details).

A pair (Ω, θ), where Ω is a set and θ = (θt)t∈R

is a flow on Ω, i.e., with θ : R × Ω → Ω satisfying

θ0 = idΩ, θt+τ = θt ◦ θτ =: θtθτ for t, τ ∈ R,

is called a non-autonomous perturbation. As an ex-
ample which describes typical non-autonomous per-
turbations we consider Ω = R and θtτ = t + τ for
τ = ω ∈ Ω, t ∈ R.

Let P := (Ω,F ,P) be a probability space. On
this probability space we consider a measurable
non-autonomous flow θ :

θ : (R × Ω,B(R) ⊗F) → (Ω,F).

In addition, P is supposed to be ergodic with
respect to θ, which means that every θt-invariant set
has measure zero or one, t ∈ R. Hence P is invariant
with respect to θt. The quadruple (Ω,F ,P, θ) which
is the model for a noise is called a metric dynamical
system.

If we replace in the definition of a metric dy-
namical system the probability space P by its com-
pletion Pc := (Ω, F̄ , P̄) the above measurability
property is not true in general, see Appendix A
[Arnold, 1998; Appendix A]. But for fixed t ∈ R

we have that the mapping

θt : (Ω, F̄) → (Ω, F̄)

is measurable.

From now on, let X = (X, dX ) be a Polish
space.

Let D : ω → D(ω) ∈ 2X be a multi-valued
mapping. The set of multi-functions D : ω →
D(ω) ∈ 2X with closed and non-empty images is
denoted by C(X). Let also denote by Pf (X) the
set of all non-empty closed subsets of the space X.
Thus, it is equivalent to write that D is in C(X),
or D : Ω → Pf (X) .

Let D : ω → D(ω) be a multi-valued mapping
in X over P. Such a mapping is called a random
set if

ω → inf
y∈D(ω)

dX(x, y)

is a random variable for every x ∈ X. It is well
known that a mapping is a random set if and only
if for every open set O in X the inverse image
{ω : D(ω) ∩ O 6= ∅} is measurable, i.e., it belongs
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to F (see [Hu & Papageorgiou, 1997; Proposition
2.1.4]).

Clearly, all this is also valid if we replace P
by Pc and F by F . If we do not specify which
probability space we are using (P or Pc), it will
mean that the result is valid for both cases.

It is also evident that if D is a random set with
respect to P, then it is also random with respect to
Pc.

We now introduce multi-valued non-
autonomous and random dynamical systems.

Definition 5.42. A multi-valued map U : R+ ×
Ω × X → Pf (X) is called a multi-valued non-
autonomous dynamical system (MNDS) if

i) U(0, ω, ·) = idX ,

ii) U(t+ τ, ω, x) ⊂ U(t, θτω,U(τ, ω, x)) for all
t, τ ∈ R+, x ∈ X,ω ∈ Ω.

It is called a strict MNDS if

iii) U(t + τ, ω, x) = U(t, θτω,U(τ, ω, x)) for all
t, τ ∈ R+, x ∈ X,ω ∈ Ω.

An MNDS is called a multi-valued random dy-
namical system (MRDS) if the multi-valued map-
ping

(t, ω, x) → U(t, ω, x)

is B(R+) ⊗ F ⊗ B(X) measurable, i.e. {(t, ω, x) :
U(t, ω, x) ∩O 6= ∅} ∈ B(R+) ⊗F ⊗ B(X) for every
open set O of the topological space X.

For the above composition of multi-valued
mappings we use that for any non-empty set V ⊂
X, U(t, ω, V ) is defined by

U(t, ω, V ) =
⋃

x0∈V
U(t, ω, x0).

We also note that the above measurability hypothe-
sis is not standard at least for single-valued random
dynamical system. However, for MRDS it is more
difficult to derive measurability than for single val-
ued systems.

We now introduce some topological properties
of the MNDS U .

Definition 5.43. U(t, ω, ·) is called upper semi-
continuous at x0 if for every neighborhood U of

the set U(t, ω, x0) there exists δ > 0 such that if
dX(x0, y) < δ then

U(t, ω, y) ∈ U .

U(t, ω, ·) is called upper semi-continuous if it is up-
per semi-continuous at every x0 in X.

Remark 5.44. (i) Note that if a mapping U (t, ω, ·)
is upper semi-continuous at x0, then for all ε > 0
there exists δ (ε) > 0 such that

distX(U (t, ω, y) , U (t, ω, x0)) ≤ ε,

for any y satisfying dX(y, x0) ≤ δ (ε).

(ii) The converse is true when U (t, ω, x0) is
compact, see [Aubin & Cellina, 1984].

It is not difficult to extend Definition 5.43 if we
consider the upper-semi-continuity with respect to
all variables assuming that Ω is a Polish space.

We now formulate a general condition ensuring
that an MNDS defines an MRDS. We need the par-
ticular assumption that Ω is a Polish space and F
the associated Borel-σ-algebra.

Lemma 5.45. Let Ω be a Polish space and let F
be the Borel-σ-algebra. Suppose that (t, ω, x) 7→
U (t, ω, x) is upper semi-continuous. Then this
mapping is measurable in the sense of Definition
5.42.

Proof. Thanks to Proposition 1.2.5 in
[Hu & Papageorgiou, 1997], we have that for
each closed subset C ⊂ X, the set

U−1 (C) = {(t, ω, x) : U (t, ω, x) ∩ C 6= ∅}

is closed, and thus is a Borel set in B(R+) ⊗ F ⊗
B(X) = B(R+ × Ω × X). This implies that the
inverse of a closed set is measurable and then, by
Theorem 2.2.4 in [Hu & Papageorgiou, 1997], the
map is measurable.

5.8(A). Non-autonomous and random attrac-
tors for MNDS

In this section we generalize the concept of pullback
and random attractors to the case of an MNDS and
prove a general result for the existence and unique-
ness of attractors.
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As a preparation we need the following defini-
tions.

A multi-valued mapping D is said to be nega-
tively, strictly, or positively invariant for the MNDS
U if

D(θtω)
⊂
=
⊃
U(t, ω,D(ω)) for ω ∈ Ω, t ∈ R+.

Let D be the family of multi-valued mappings
with values in C(X). We say that a family K ∈ D
is pullback D-attracting if for every D ∈ D and all
ω ∈ Ω

lim
t→+∞

distX(U(t, θ−tω,D (θ−tω)),K(ω)) = 0.

B ∈ D is said to be pullback D-absorbing if for every
D ∈ D there exists T = T (ω,D) > 0 such that

U(t, θ−tω,D (θ−tω)) ⊂ B(ω), for all t ≥ T. (65)

The following definition provides the main ob-
jective of this article. We have to introduce a par-
ticular set system (see [Schmalfuß, 2000]): let D be
a set of multi-valued mappings in C(X) satisfying
the inclusion closed property: suppose that D ∈ D
and let D′ be a multi-valued mapping in C(X) such
that D′(ω) ⊂ D(ω) for ω ∈ Ω, then D′ ∈ D.

Definition 5.46. A family A ∈ D is said to be a
global pullback D-attractor for the MNDS U if it
satisfies:

1. A (ω) is compact for any ω ∈ Ω;

2. A is pullback D-attracting;

3. A is negatively invariant.

A is said to be a strict global pullback D-
attractor if the invariance property in the third item
is strict.

A natural modification of this definition for
MRDS is

Definition 5.47. Suppose U is an MRDS and sup-
pose that the properties of Definition 5.46 are sat-
isfied. In addition, we suppose that A is a random
set, with respect to Pc. Then A is called a random
global pullback D-attractor.

Remark 5.48. In contrast to the theory of random
attractors for single valued random dynamical sys-
tems we have weaker assumptions on the measura-
bility of A. Of course, it is desirable to obtain that
A is a random set with respect to P, but usually
we need stronger assumptions in the applications to
obtain this property.

A consequence of the pullback convergence and
invariance of P is that it reflexes the forward con-
vergence to the attractor

P − lim
t→+∞

distX(U(t, ω,D(ω)), A(θtω)) = 0

for all sets D such that ω → U(t, ω,D(ω)) is mea-
surable for t ≥ 0. Indeed, we have to replace in
the formula for the pullback convergence ω by θtω.
However, this is only true in the weaker conver-
gence in probability. There exist counterexamples
which show that in general the forward convergence
does not hold almost surely (see [Arnold, 1998; page
488]).

The main tool to prove the existence of an
attractor is the pullback-omega-limit set for the
MNDS U . For some multi-valued mappings D
we define a pullback-omega-limit set as an ω-
dependent set Λ(D,ω) given by

Λ (D,ω) =
⋂

s≥0

⋃

t≥s
U (t, θ−tω,D (θ−tω)).

This set is obviously closed, but in general it
can be empty. It is not difficult to prove that
y ∈ Λ (D,ω) if and only if there exist tn →
+∞ and yn ∈ U (tn, θ−tnω,D (θ−tnω)) such that
limn→+∞ yn = y.

We then have the following lemma, which is
a generalization of Theorem 6 and Lemma 8 in
[Caraballo et al., 2003b] to the case in which we
consider the family D instead of the bounded sets
of X.

Lemma 5.49. Suppose that the MNDS U(t, ω, ·) is
upper semi-continuous for t ≥ 0 and ω ∈ Ω. Let B
be a multi-valued mapping such that the MNDS is
asymptotically compact with respect to B, i.e., for
every sequence tn → +∞, ω ∈ Ω every sequence
yn ∈ U(tn, θ−tnω,B(θ−tnω)) is pre-compact.

Then for ω ∈ Ω the pullback-omega-limit set
Λ (B,ω) is non-empty, compact, and

lim
t→+∞

distX(U(t, θ−tω,B (θ−tω)),Λ (B,ω)) = 0,
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Λ (B, θtω) ⊂ U (t, ω,Λ (B,ω)) , for all t ≥ 0.

The main theorem of this section is

Theorem 5.50. Assume the hypotheses in Lemma
5.49. In addition, suppose that B ∈ D is pullback
D-absorbing. Then, the set A given by

A (ω) := Λ (B,ω)

is a pullback D-attractor. Furthermore, A is the
unique element from D with these properties.

In addition, if U is a strict MNDS then A is
strictly invariant.

With respect to the applicability of the mea-
surability of Definition 5.47 in the applications, we
suppose for the next lemma a complete probability
space Pc. However, the result is also valid for the
space P.

Lemma 5.51. Assume that U is a MRDS. Un-
der the assumptions in Theorem 5.50, let ω →
U(t, ω,B(ω)) be a random set for t ≥ 0. Assume
also that U(t, ω,B(ω)) is closed for all t ≥ 0 and
ω ∈ Ω. Then the set A introduced in Theorem 5.50
is measurable, and therefore, it is a random global
pullback D-attractor.

5.8(B). Applications and examples

The autonomous examples considered in Sec-
tion 4 can all be modified to give examples of
non-autonomous multi-valued systems. Some addi-
tional specific references are [Caraballo et al., 2006,
Kloeden & Maŕın-Rubio, 2003,
Kloeden & Schmalfuß, 1998,
Kloeden & Valero, 2005], which also consider
weak attractors, i.e., for which the invariance and
attraction properties hold for at least one (rather
than all) trajectories emanating from each point.
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Caraballo, T., Maŕın-Rubio, P. & J.Valero [2007]
“Attractors for differential equations with un-
bounded delays,” J. Differential Equations 239,
311-342.

Caraballo, T. & Real, J. [2004] “Attractors for 2D-
Navier-Stokes models with delays,” J. Differen-
tial Equations 205, 270-296.

Caraballo, T., Garrido-Atienza, M.J., Schmalfuß,
B. & Valero, J. [2008] “Non-autonomous and
random attractors for delay random semi-linear
equations witout uniqueness,” Discrete Contin.
Dyn. Syst. Series A 21 (2), 415-443.

Caraballo, T., Langa, J. A., Melnik, V. S. &
Valero, J. [2003] “Pullback attractors of non-
autonomous and stochastic multi-valued dynam-
ical systems” Set Valued Anal., 1 (2), 153–201.



Three perspectives 45

Carvalho, A.N. & Gentile, C.B. [2003] “Asymptotic
behavior of non-linear parabolic equations with
monotone principal part,” J. Math. Anal. Appl.
280, 252-272.

Carvalho, A.N., Langa, J.A., & Robinson, J.C.,
[2010] Attractors of Infinite Dimensional non-
autonomous Dynamical Systems (to appear).

Chacón, R. [2001] “Maintenance and suppression of
chaos by weak harmonic perturbations: a unified
view,” Phys. Rev. Lett. 86 (9), 1737-1740.

Cheban, D. [2004] Global Attractors of Non-
autonomous Dissipative Dynamical Systems
(World Scientific, New York).

Cheban, D. & Fakeeh, D. [1994] Global Attractors of
Dynamical Systems without Uniqueness (Sigma,
Kishinev).

Cheban, D.N. & Fakhih, D.S. [1994] The Global At-
tractors of Dynamical Systems without Unique-
ness (Sigma, Kishinev).

Cheban, FD., P.E. Kloeden, P.E., & Schmal-
fuß, B. [2002], “The Relationship between Pull-
back, Forward and Global Attractors of Nonau-
tonomous Dynamical Systems”, Nonlinear Dy-
namics and Systems Theory 2 (2), 125–144.

Cheban, D. & Mammana, C. [2006] “Compact
global attractors of discrete inclusions,” Nonlin-
ear Anal. 65, 1669-1687.

Chepyzhov, V.V., Gatti, S., Grasselli, M., Mi-
ranville, A. & Patta, V. [2006] “Trajectory and
global attractors for evolutions equations with
memory,” Applied Mathematics Letters 19, 87-
96.

Chepyzhov, V.V. & Vishik, M.I. [1996] “Trajectory
attractors for reaction-diffusion systems,” Topo-
logical Methods in Nonlinear Analysis 7, 49-76.

Chepyzhov, V.V. & Vishik, M.I. [1997] “Evolution
equations and their trajectory attractors,” J.
Math. Pure Appl. 76, 913–964.

Chepyzhov, V.V. & Vishik, M.I. [2002a] “Trajec-
tory and global attractors for 3D Navier-Stokes
system,” Mat. Zametki 71, 194–213.

Chepyzhov, V.V. & Vishik, M.I. [2002b] Attractors
for equations of mathematical physics (Ameri-
can Mathematical Society, Providence, Rhode
Island).

Cheskidov, A. [2006] “Global attractors of evolu-
tionary systems,” Archiv: math.DS/0609357.

Cheskidov, A. & Foias, C. [2006] “On global at-
tractors of the 3D Navier-Stokes equations,” J.
Differential Equations 231, 714–754.

Constantin, P. [2007] “On the Euler equations of
incompressible fluids,” Bull. Amer. Math. Soc.
44, 603-621.

Cutland, N.J. [2005] “Global attractors for small
samples and germs of 3D Navier-Stokes equa-
tions,” Nonlinear Anal. 62, 265-281.

Crauel, H. & Flandoli, F. [1994] “Attractors for
random dynamical systems,” Probability Theory
and Related Fields 100 (3), 365–393.

Crauel, H., Debussche, A. & Flandoli, F. [1995]
“Random attractors,” J. Dynamics Differential
Equations 9 (2), 307-341.

Dafermos, C.M. [1971] “An invariance principle for
compact processes”, J. Differential Equations 9,
239–252.

D́ıaz, G., & D́ıaz, J. I. [2002] “On a stochastic
parabolic PDE arising in Climatology,” Rev. R.
Acad. Cien. Serie A Mat. 96, 123-128.

D́ıaz, J.I., Hernández & J., Tello, L. [1997] “On the
multiplicity of equilibrium solutions to a nonlin-
ear diffusion equation on a manifold arising in
Climatology,” J. Math. Anal. Appl. 216, 593-
613.

D́ıaz, J.I., Hernández & J., Tello, L. [2002] “Some
results about multiplicity and bifurcation of sta-
tionary solutions of a reaction diffusion clima-
tological model,” Rev. R. Acad. Cien. Serie A.
Mat 96, 357-366.

Dinaburg, E.I., [1970] “The relation between topo-
logical and metric entropy,” Soviet Math. 11, 13-
16.



46 Balibrea, Caraballo, Kloeden & Valero

Efendiev, M. & Zelik, S. [2001] “The attractor for
a nonlinear reaction-diffusion system in an un-
bounded domain,” Comm. Pure Appl. Math. 54,
625-88.

Efremova, L. & Makhrova, E. [2003] “On the center
of continuous maps on dendrites,” J. Diff. Equa.
Appl. 9 (3/4), 381-392.

Elmounir O. & Simonolar F. [2000] ”Abstracteurs
compacts pur des problèmes d’evolution sans
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and J. Sprekels) (World Scientific, 2000),
684-689.

Segatti, A. [2006] “Global attractor for a class of
doubly nonlinear abstract evolution equations,”
Discrete Contin. Dyn. Systems 14, 801-820.

Segatti, A. [2007] “On the hyperbolic relaxation of
the Cahn-Hilliard equation in 3D: approxima-
tion and long time behaviour,” Math. Models
Methods Appl. Sci. 17, 411-437.

Sell, G.R. [1971] Topological Dynamics and Or-
dinary Differential Equations, (Van Nostrand
Reinhold Mathematical Studies, London).

Sell, G.R. [1996] “Global attractors for the three-
dimensional Navier-Stokes equations,” J. Dy-
namics Differential Equations 8, 1–33.

Sell, G.R. & You, Y. [1995] Dynamics of evolution-
ary equations (Springer, New-York).

Sharkovskii A.N. [1964] “Co-existence of the cycles
of a continuous mappings of the line into itself”
(in Ukrainian), Ukrain. Math. Zh. 16 (1), 64-71.

Sharkovskii, A.N. [1994] “Co-existence of the cycles
of a continuous mappings of the line into itself”
(in Ukrainian), Proceedings of the Conference
”Thirty Years after Sharkovskii’s theorem: New
Perspectives” (Murcia, 1994), Internat. J. Bifur.
Chaos 5 (1995), 1263-1273.

Shi, Y.M. & “Discrete chaos in Banach spaces”, Sci-
ence in China Series A: Mathematics, 34, 595-
609.

Shnirelman, A. [1997] “On the nonuniqueness of
weak solution of the Euler equation,” Comm.
Pure Appl. Math. L, 261-1286.

Simsen, J. & Gentile, C. [2008] “On attractors for
multi-valued semi-groups defined by generalized
semi-flows,” Set-Valued Anal. 16, 105-124.
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