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1. Introduction

The synchronization of coupled systems is a ubiquitous phenomenon in the biolog-
ical and physical science and is also known to occur in a number of social science
contexts. A descriptive account of its diversity of occurrence can be found in the re-
cent book of Strogatz15, which contains an extensive list of references. In particular,
synchronization provides an explanation for the emergence of spontaneous order in
the dynamical behavior of coupled systems, which in isolation may exhibit chaotic
dynamics.

The synchronization of coupled dissipative systems has been investigated math-
ematically in the case of autonomous systems by Afraimovich and Rodrigues1, Car-
valho et al.7 and Rodrigues14, both for asymptotically stable equilibria and gen-
eral attractors, such as chaotic attractors. Analogous results also hold for nonau-
tonomous systems (Ref.9), but require a new concept of a nonautonomous attractor.
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Caraballo & Kloeden proved in Ref.4 that synchronization persists in the pres-
ence of environmental (i.e., additive) noise provided that appropriate concepts of
random attractors and stochastic stationary solutions are used instead of their de-
terministic counterparts. Very recently, it was shown in Ref.3 that the presence of
additive noise could lead to a strengthening of the synchronization, i.e., at the level
of trajectories rather than attractors, which does not occur in the absence of noise.

In this paper we analyze the synchronization effects produced by linear multi-
plicative noise. To be more precise, we first consider two Stratonovich stochastic
differential equations (SDE) in RN with linear noise, i.e. with linear functions as
the diffusion coefficients. In addition, we assume that the drift coefficients sat-
isfy one-sided dissipative Lipschitz conditions. These SDE are tranformed to ran-
dom differential equations using a transformation which involves the corresponding
Ornstein-Uhlenbeck processes. The resulting random differential systems are then
synchronized by adding suitable coupled synchronizing terms in both systems. In
terms of the original stochastic differential equations, synchronization is obtained
modulo exponential factors involving the Ornstein-Uhlenbeck processes. These fac-
tors reduce to unity when the driving noises are the same in both systems, in which
exact synchronization results. This occurs no matter how large the intensity coeffi-
cients of the noise.

2. The synchronization problem

Suppose we have two autonomous ordinary differential equations in Rd,
dx

dt
= f(x),

dy

dt
= g(y), (2.1)

which are sufficiently regular to ensure the forwards existence and uniqueness of
solutions and satisfy one-sided dissipative Lipschitz conditions

〈x1 − x2, f(x1)− f(x2)〉 ≤ −L|x1 − x2|2,

〈y1 − y2, g(y1)− g(y2)〉 ≤ −L|y1 − y2|2,
(2.2)

on Rd for some L > 0, and thus have unique equilibria x̄ and ȳ, respectively,
which are globally asymptotically stable (cf. Ref.9). Notice that the continuity of f
and g, and the one-sided dissipative Lipschitz conditions (2.2) ensure the forwards
existence and uniqueness of solutions to (2.1).

Consider now the dissipatively coupled system
dx

dt
= f(x) + ν(y − x),

dy

dt
= g(y) + ν(x− y) (2.3)

with ν > 0. It can be shown (see Afraimovich & Rodrigues1, and Carvalho et al.7)
that this also has a unique equilibrium (x̄ν , ȳν), which is globally asymptotically
stable. Moreover, (x̄ν , ȳν)→ (z̄, z̄) as ν →∞, where z̄ is the unique globally asymp-
totically stable equilibrium of the “averaged” system

dz

dt
=

1
2

(f(z) + g(z)) . (2.4)
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This phenomena is known as synchronization. Analogous results hold for more gen-
eral autonomous attractors (cf. Afraimovich & Rodrigues1, Carvalho et al.7) as well
as for nonautonomous systems (Ref.9) with appropriately defined nonautonomous
attractors.

Caraballo & Kloeden4 showed that synchronization persists under additive noise
provided asymptotically stable stochastic stationary solutions are considered rather
than asymptotically stable steady state solutions. Specifically, they considered two
Ito stochastic differential equations in Rd,

dXt = f(Xt) dt+ αdW 1
t , dYt = g(Yt) dt+ β dW 2

t , (2.5)

where α, β ∈ Rd+ are constant vectors with no components equal to zero, W 1
t , W 2

t are
independent two-sided scalar Wiener processes (alternatively, one could take α, β
scalar valued and W 1

t , W 2
t vector valued), and f , g satisfy the one-sided dissipative

Lipschitz conditions (2.2). The synchronized system corresponding to SDEs (2.5)

dXt = (f(Xt) + ν(Yt −Xt)) dt+ αdW 1
t ,

dYt = (g(Yt) + ν(Xt − Yt)) dt+ β dW 2
t

(2.6)

has a unique stationary solution (X̄ν
t , Ȳ

ν
t ), which is pathwise globally asymptotically

stable with

(X̄ν
t , Ȳ

ν
t )→ (Z̄∞t , Z̄

∞
t ) as ν →∞,

pathwise on finite time intervals [T1, T2] of R, where Z̄∞t is the unique pathwise
globally asymptotically stable stationary solution of the “averaged” SDE

dZt =
1
2

[f(Zt) + g(Zt)] dt+
1
2
αdW 1

t +
1
2
β dW 2

t . (2.7)

For the proof the SDE were transformed to pathwise random ordinary differen-
tial equations (RODE), for which pathwise estimates are obtained as for determin-
istic systems.

3. Synchronization of systems with multiplicative noise

The aim of this paper is to investigate if synchronization can also occur in systems
with linear noise, i.e. with linear functions as the diffusion coefficients. We consider
two Stratonovich stochastic differential equations in Rd,

dXt = f(Xt) dt+
m∑
i=1

αiXt ◦ dW (i)
t , dYt = g(Yt) dt+

m∑
i=1

βiYt ◦ dW (i)
t , (3.1)

where W (1), . . . ,W (m) are independent two-sided scalar Wiener processes, αi, βi ∈
R for i = 1, . . . ,m and f , g are as above, in particular, satisfying the one-sided
dissipative Lipschitz conditions (2.2).



February 26, 2015 17:4 WSPC/INSTRUCTION FILE 84SDsub

4 T. Caraballo, P.E. Kloeden and A. Neuenkirch

We will apply the theory of Imkeller & Schmalfuß8 to transform it to the path-
wise random ordinary differential equation (RODE)

dx
dt = F (x,O(1)

t (ω)) := e−O
(1)
t (ω)f

(
eO

(1)
t (ω) x

)
+O

(1)
t (ω)x,

dy
dt = G(y,O(2)

t (ω)) := e−O
(2)
t (ω)g

(
eO

(2)
t (ω) y

)
+O

(2)
t (ω)y,

(3.2)

using the transformation x(t, ω) = e−O
(1)
t (ω)Xt(ω) and y(t, ω) = e−O

(2)
t (ω)Yt(ω),

where

O
(1)
t =

m∑
i=1

αie
−t
∫ t

−∞
eτdW (i)

τ , O
(2)
t =

m∑
i=1

βie
−t
∫ t

−∞
eτdW (i)

τ , t ∈ R,

are two stationary Ornstein-Uhlenbeck processes.
We will show in the next section that each of the stochastic systems in (3.1) has

a pathwise asymptotically stable random attractor consisting of single stationary
stochastic process. For this, the use of the stationary Ornstein-Uhlenbeck process
in the transformation will be essential. Then we will study their behaviour after
synchronization by linear cross coupling, i.e. we will consider the coupled RODE

dx
dt = F (x,O(1)

t (ω)) + ν(y − x),

dy
dt = G(y,O(2)

t (ω)) + ν(x− y),
(3.3)

which we will show also has a pathwise asymptotically stable random attractor
consisting of a single stationary stochastic process (x̄ν(ω), ȳν(ω)). In particular,

(x̄ν(ω), ȳν(ω))→ (z̄(ω), z̄(ω)) as ν →∞,

where z̄(ω) is the pathwise asymptotically stable solution of the averaged RODE

dz

dt
=

1
2

[
F (z,O(1)

t ) +G(z,O(2)
t )
]

(3.4)

that is,

dz

dt
=

1
2

[
e−O

(1)
t (ω)f

(
eO

(1)
t (ω) z

)
+ e−O

(2)
t (ω)g

(
eO

(2)
t (ω) z

)
+
(
O

(1)
t (ω) +O

(2)
t (ω)

)
z
]

or the equivalent Stratonovich SDE

dZt =
1
2
[
e−ηtf(eηtZt) + eηtg(e−ηtZt)

]
dt+

1
2

m∑
i=1

(αi + βi)Zt ◦ dW (i)
t

where

ηt =
1
2

(
O

(1)
t −O

(2)
t

)
.
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3.1. Direct synchronization of the SDE

In terms of the original system of SDEs (3.1), the coupled RODE has the form

dXt =
(
f(Xt) + ν

(
e2ηt Yt −Xt

))
dt+

∑m
i=1 αiXt ◦ dW (i)

t ,

dYt =
(
g(Yt) + ν

(
e−2ηtXt − Yt

))
dt+

∑m
i=1 βiYt ◦ dW

(i)
t .

(3.5)

Then this system has a unique stationary stochastic solution (X̄ν ◦θt, Ȳν ◦θt), which
is pathwise globally asymptotically stable with

(X̄ν(θtω), Ȳν(θtω))→
(
z̄(θtω)e−O

(1)
t (ω), z̄(θtω)e−O

(2)
t (ω)

)
as ν →∞,

pathwise on finite time intervals [T1, T2] of R. If αi = βi for all i = 1, . . . ,m, i.e. the
driving noises are the same, this yields synchronization of the coupled SDE

dXt = (f(Xt) + ν (Yt −Xt)) dt+
∑m
i=1 αiXt ◦ dW (i)

t ,

dYt = (g(Yt) + ν (Xt − Yt)) dt+
∑m
i=1 αi Yt ◦ dW

(i)
t

(3.6)

4. Random dynamical system

Let (Ω,F ,P) be a probability space.

Following Arnold2 a random dynamical system (RDS) (θ, φ) on Ω×Rd consists
of a metric dynamical system θ on Ω and a cocycle mapping φ : R+ × Ω × Rd →
Rd. Essentially (and sufficient for our purposes here), θ represents the driving noise
process and φ the state space evolution of the system. For example, for a stochastic
differential equation on Rd with a two-sided m-dimensional Wiener process Wt, i.e.
defined for all t ∈ R, θ is defined by θtω(·) = ω(t+ ·)− ω(t) on a canonical sample
space Ω = C0(R,Rm) where, by definition, Wt(ω) := ω(t), t ∈ R, and φ is defined
by φ(t, ω, x0) = Xx0

t (ω), the solution of the SDE starting at Xx0
0 (ω) = x0. See the

expositions in Arnold2 and Kloeden et al.11 for more details.
A family Â = {A(ω), ω ∈ Ω} of nonempty measurable compact subsets A(ω)

of Rd is called φ-invariant if φ(t, ω,A(ω)) = A(θtω) for all t ≥ 0 and is called a
random attractor if in addition it is pathwise pullback attracting in the sense that

H∗d (φ(t, θ−tω,D(θ−tω)), A(ω))→ 0 as t→ −∞

for all suitable (i.e. in a given attracting universe as, for instance, in Kloeden et al.
(1999)) families of D̂ = {D(ω), ω ∈ Ω} of nonempty measurable bounded subsets
D(ω) of Rd. Here H∗d is the Hausdorff semi-distance on Rd. The following result (cf.
Arnold2, Kloeden et al.11) ensures the existence of a random attractor.

Theorem 4.1. Let (θ, φ) be an RDS on Ω × Rd. If there exists a family B̂ =
{B(ω), ω ∈ Ω} of nonempty measurable compact subsets B(ω) of Rd and a T bD,ω ≥
0 such that

φ(t, θ−tω,D(θ−tω)) ⊂ B(ω), ∀t ≥ T bD,ω



February 26, 2015 17:4 WSPC/INSTRUCTION FILE 84SDsub

6 T. Caraballo, P.E. Kloeden and A. Neuenkirch

for all families D̂ = {D(ω), ω ∈ Ω} in the given attracting universe, then the RDS
(θ, φ) has a random attractor Â = {A(ω), ω ∈ Ω} with the component subsets defined
for each ω ∈ Ω by

A(ω) =
⋂
s>0

⋃
t≥s

φ(t, θ−tω,B(θ−tω)).

If the random attractor consists of singleton sets, i.e A(ω) = {X∗(ω)} for some
random variable X∗, then X∗t (ω) := X∗(θtω) is a stationary stochastic process, if
the driving system θt is a stationary process.

We will need the following Lemma, which can be found in Caraballo et al.6.

Lemma 4.1. There exists a {θt}t∈R invariant subset Ω ∈ F of Ω = C0(R,Rm) of
full measure such that

lim
t→±∞

1
t
‖ω(t)‖ = 0 for ω ∈ Ω,

and there exist random variables O
(1)

and O
(2)

such that

O
(1)

(θtω) = O
(1)
t (ω) and O

(2)
(θtω) = O

(2)
t (ω) for ω ∈ Ω.

Moreover, we have

lim
t→±∞

1
t

∫ t

0

O
(1)

(θτω) dτ = lim
t→±∞

1
t

∫ t

0

O
(2)

(θτω) dτ = 0 for ω ∈ Ω.

In what follows, we consider θ defined on Ω instead of Ω. This mapping has
the same properties as the original one if we choose for F the trace σ-algebra with
respect to Ω.

5. The uncoupled system with linear noise

We consider the first of the uncoupled equations in (3.1),

dXt = f(Xt) dt+
m∑
i=1

αiXt ◦ dW (i)
t . (5.1)

Its solution paths are generally not differentiable, so in order to use the one-sided
dissipative Lipschitz condition (2.2) we will use the approach of Imkeller & Schmal-
fuß (2001). We first rewrite (5.1) as

dXt =
[
f(Xt) +O

(1)
t Xt

]
dt+Xt ◦ dO(1)

t , (5.2)

where the O(1)
t , t ∈ R, is the stationary solution of

dO
(1)
t = −O(1)

t dt+
m∑
i=1

αidW
(i)
t ,



February 26, 2015 17:4 WSPC/INSTRUCTION FILE 84SDsub

Synchronization of systems with multiplicative noise 7

that is

O
(1)
t =

m∑
i=1

αie
−t
∫ t

−∞
es dW (i)

s , t ∈ R.

Then we transform (5.2) to the pathwise random ordinary differential equation
(RODE)

dx

dt
= F (x,O(1)

t (ω)) := e−O
(1)
t (ω)f

(
eO

(1)
t (ω)(ω)x

)
+O

(1)
t (ω)x, (5.3)

using the transformation x(t, ω) = e−O
(1)
t (ω)Xt(ω).

The vector-field function

F̃ (x, z) = e−zf (ezx)

in the RODE (5.3) satisfies a one-sided Lipschitz condition in its first variable
uniformly in the second with the same constant as the original drift coefficient f ,
since we have:〈

x1 − x2, F̃ (x1, z)− F̃ (x2, z)
〉

=
〈
x1 − x2, e

−z (f(ezx1)− f(ezx2))
〉

= e−2z 〈ezx1 − ezx2, f(ezx1)− f(ezx2)〉

≤ −e−2zL ‖ezx1 − ezx2‖2

≤ −L ‖x1 − x2‖2 .

Thus we obtain that any of two solutions of RODE (5.3) satisfy pathwise the dif-
ferential inequality

d

dt
‖x1(t)− x2(t)‖2 ≤ (−2L+ 2O(1)

t ) ‖x1(t)− x2(t)‖2 , (5.4)

and hence we have

‖x1(t)− x2(t)‖2 ≤ e−2t(L− 1
t

R t
0 O

(1)
τ dτ) ‖x1(0)− x2(0)‖2 .

Thus it follows by Lemma 4.1 that

lim
t→∞

‖x1(t)− x2(t)‖2 = 0,

which means all solutions converge pathwise to each other.

In order to see what they converge to, we first observe that the RODE (5.3)
generates a random dynamical system with φ(t, ω, x0) := x(t, ω), the solution of
the RODE (5.3) with (deterministic) initial value x0 at time t = 0.
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Then we need to show that the RODE (5.3) is asymptotically dissipative and
has a pullback attractor. Omitting ω for brevity, we have pathwise

d

dt
|x|2 = 2

〈
x, F (x,O(1)

t )
〉

(5.5)

= 2
〈
x, e−O

(1)
t f(eO

(1)
t x) +O

(1)
t x

〉
= 2e−O

(1)
t

〈
eO

(1)
t x− 0, f(eO

(1)
t x)− f(0)

〉
+ 2

〈
x, e−O

(1)
t f(0)

〉
+ 2O(1)

t ‖x‖2

≤ (−2L+ 2O(1)
t ) ‖x‖2 + 2‖x‖‖f(0)‖e−O

(1)
t

≤ (−L+ 2O(1)
t ) ‖x‖2 +

e−2O
(1)
t

L
‖f(0)‖2.

Integration yields

‖x(t)‖2 ≤ ‖x(t0)‖2e−L(t−t0)+2
R t
t0
O(1)
τ dτ+

‖f(0)‖2

L

∫ t

t0

e−2O(1)
u e−L(t−u)+2

R t
u
O(1)
τ dτ du.

Moreover, by Lemma 4.1, we have pathwise

lim
s→−∞

1
s

∫ 0

s

O(1)
τ dτ = lim

t→∞

1
t

∫ t

0

O(1)
τ dτ = 0.

Thus we obtain

e2
R t
s
O(1)
τ dτ ≤ eL2 (t−s)

for s ≤ 0, t ≥ 0 with |t|, |s| > Tω and hence

‖x(t)‖2 ≤ ‖x(t0)‖2e−L(t−t0)/2 +
‖f(0)‖2

L

∫ t

t0

e−2O(1)
τ e−L(t−τ)e2

R t
τ
O(1)
τ du dτ

for t0 ≤ 0, t ≥ 0 with |t|, |t0| > Tω. Now we can use pathwise pullback convergence
(i.e. with t0 → −∞) to show that the closed ball about the origin with random
radius

R2(ω) := 1 +
‖f(0)‖2

L

∫ 0

−∞
eLτ−2O(1)

τ (ω)e2
R 0
τ
O(1)
u (ω) du dτ

is a pullback absorbing set for t > Tω. Note that the integrals on the right hand
sides are well defined by Lemma 4.1.

The theory of RDS then gives us a random attractor {A(ω), ω ∈ Ω}. The fact
that all trajectories converge to each other forwards in time says the sets in this
random attractor are singleton sets, i.e. A(ω) = {a(ω)}.
When we transfer back to the SDE we have the pathwise singleton set attrac-
tor a(θtω)eO

(1)
t (ω), which is a stationary solution of the SDE, since the Ornstein-

Uhlenbeck process is stationary.
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5.1. Example

Consider the scalar Stratonovich SDE

dXt = (−Xt + 1)dt+Xt ◦ dWt,

which is equivalent to

dXt = ((−1 +Ot)Xt + 1) dt+Xt ◦ dOt,

with

Ot = e−t
∫ t

−∞
es dWs, t ∈ R.

Applying the transformation

x(t) = e−OtXt (5.6)

yields the RODE

dx

dt
= (−1 +Ot)x+ e−Ot ,

which has the explicit solution

x(t, ω) = x(t0)e−(t−t0)+
R t
t0
Os(ω) ds +

∫ t

t0

e−Oτ (ω)e−(t−τ)+
R t
τ
Os(ω) ds dτ.

The pullback limit as t0 → −∞ gives a stationary solution of the RODE, which
attracts all others pathwise,

x̄(t, ω) =
∫ t

−∞
e−Oτ (ω)e−(t−τ)+

R t
τ
Os(ω) ds dτ.

Transforming back yields

X̄t = eOt
∫ t

−∞
e−Oτ e−(t−τ)+

R t
τ
Os ds dτ.

Since

Ot −Oτ = −
∫ t

τ

Os ds+Wt −Wτ ,

we have

X̄t = e−t+Wt

∫ t

−∞
eτ−Wτ dτ

in terms of the Wiener process, which is a stationary solution of the SDE, which
attracts all others pathwise. Note that we would have obtained the same process
X̄t, if we had used the Wiener process instead of the Ornstein-Uhlenbeck process
in the transformation (5.6). The previous estimates in this section would have been
easier, but we would not have been able to conclude (a priori) that X̄t is stationary.
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6. Asymptotic behaviour of the coupled RODE system

Now we consider the coupled RODE system (3.2)

dx

dt
= F (x,O(1)

t (ω)) + ν(y − x),

dy

dt
= G(y,O(2)

t (ω)) + ν(x− y),

with

F (x,O(1)
t (ω)) = e−O

(1)
t (ω)f(eO

(1)
t (ω)x) +O

(1)
t (ω)x,

G(y,O(2)
t (ω)) = e−O

(2)
t (ω)g(eO

(2)
t (ω)y) +O

(2)
t (ω)y.

Using the one-sided Lipschitz conditions on f and g we obtain similarly to (5.4)
that
d

dt
‖x1(t)− x2(t)‖2 ≤ (−2L− v + 2O(1)

t )‖x1(t)− x2(t)‖2 + ν‖y1(t)− y2(t)‖2,

d

dt
‖y1(t)− y2(t)‖2 ≤ (−2L− v + 2O(2)

t )‖y1(t)− y2(t)‖2 + ν‖x1(t)− x2(t)‖2.

Now define

Aν(t) =

(
−2L− ν + 2O(1)

t ν

ν −2L− ν + 2O(2)
t

)
, t ∈ R,

and set

x(t) =
(
‖x1(t)− x2(t)‖2
‖y1(t)− y2(t)‖2

)
, t ∈ R.

Thus we can write the above inequalities as

ẋ(t) ≤ Hν(t,x(t)),

componentwise, where

Hν(t,x) = Aν(t)x, x ∈ R2.

Since the the off-diagonal entries of the matrix Aν(t) are positive and independent
of t ∈ R, the mapping Hν : R × R2 → R2 is quasi-monotone nondecreasing. Thus
we obtain, see e.g. Corollary 1.5.2 in Lakshmikantham & Leela12, that

x(t) ≤ exp
(∫ t

0

Aν(τ) dτ
)

x(0), (6.1)

componentwise. Now, we need the following simple Lemma:

Lemma 6.1. We have∥∥∥∥exp
(∫ t

0

Aν(τ) dτ
)

x
∥∥∥∥ ≤ e−Lt‖x‖, x ∈ R2,
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for t ≥ Tω and all ν ≥ 1.

Proof. First note that the matrix
∫ t
0
Aν(τ)dτ is symmetric. Thus, there exists a

orthonormal basis of eigenvectors u(1)
ν,t , u

(2)
ν,t with eigenvalues λ(1)

ν,t , λ
(2)
ν,t , and we have

exp
(∫ t

0

Aν(τ) dτ
)

x = eλ
(1)
ν,t c

(1)
x,ν,t u

(1)
ν,t + eλ

(2)
ν,t c

(2)
x,ν,t u

(2)
ν,t ,

where

c
(1)
x,ν,t u

(1)
ν,t + c

(2)
x,ν,t u

(2)
ν,t = x.

Since u(1)
ν,t and u

(2)
ν,t are orthogonal, we obtain∥∥∥∥exp

(∫ t

0

Aν(τ) dτ
)

x
∥∥∥∥2

= e2λ
(1)
ν,t‖c(1)x,ν,tu

(1)
ν,t‖2 + e2λ

(2)
ν,t‖c(2)x,ν,tu

(2)
ν,t‖2

≤ e2 max{λ(1)
ν,t,λ

(2)
ν,t}‖x‖2. (6.2)

The eigenvalues of
∫ t
0
Aν(τ)dτ are given by

λ
(1/2)
ν,t = −(2L+ ν)t+

∫ t

0

(
O(1)
τ +O(2)

τ

)
dτ ±

√(∫ t

0

O
(1)
τ −O(2)

τ dτ

)2

+ ν2t2,

hence it follows by Lemma 4.1 that

λ
(1/2)
ν,t ≤ −Lt (6.3)

for |t| > Tω and all ν ≥ 1. Combining now (6.2) and (6.3) yields the assertion.

The above Lemma implies now that

lim
t→∞

‖x1(t)− x2(t)‖2 = lim
t→∞

‖y1(t)− y2(t)‖2 = 0.

Hence all solution of the coupled RODE system converge pathwise to each other
in the future. We use the theory of random dynamical systems to see what they
converge to. Similarly to (5.5) and (6.1) we obtain

d

dt
‖x‖2 ≤ (−L− v + 2O(1)

t ) ‖x‖2 + v‖y‖2 +
e−2O

(1)
t

L
‖f(0)‖2,

d

dt
‖y‖2 ≤ (−L− v + 2O(2)

t ) ‖y‖2 + v‖x‖2 +
e−2O

(2)
t

L
‖g(0)‖2

and, componentwise,

x(t) ≤ exp
(∫ t

t0

Ãν(τ) dτ
)

x(t0)

+
1
L

∫ t

t0

exp
(∫ t

u

Ãν(τ) dτ
)(

e−2O(1)
u ‖f(0)‖2

e−2O(2)
u ‖g(0)‖2

)
du
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with

Ãν(t) =

(
−(L+ ν) + 2O(1)

t ν

ν −(L+ ν) + 2O(2)
t

)
, x(t) =

(
‖x(t)‖2
‖y(t)‖2

)
, t ∈ R.

Analogously to Lemma 6.1 we can show:

Lemma 6.2. Let t0 ≤ 0 and t ≥ 0. We have

∥∥∥∥exp
(∫ t

t0

Ãν(τ)dτ
)

x
∥∥∥∥ ≤ e−L2 (t−t0)‖x‖, x ∈ R2,

for |t0|, |t| ≥ Tω and all ν ≥ 1.

Now set

Cν(ω) :=
1
L

∫ 0

−∞
exp

(∫ 0

u

Ãν(τ) dτ
)(

e−2O(1)
u ‖f(0)‖2

e−2O(2)
u ‖g(0)‖2

)
du

and define

R2
ν(ω) = 1 + ‖Cν(ω)‖2.

Then by pullback techniques and Lemma 6.2 we see that the random balls
Bν(ω) in R2d centered on the origin and with radius Rν(ω) are pullback absorbing.
Moreover note that

d

dν
‖Cν(ω)‖2 = 2

〈
d

dν
Cν(ω), Cν(ω)

〉
= 2

〈(
−1 1

1 −1

)
Cν(ω), Cν(ω)

〉
≤ 0

and consequently Rν(ω) ≤ R1(ω) for ν ≥ 1. The random dynamical system gener-
ated by the coupled RODE (3.2) has a random attractor Aν(ω) in Bν(ω) for each
ω. But we know that all solutions converge to each other pathwise forwards in time.
Thus the Aν(ω) are singleton sets, say Aν(ω) = {(x̄ν(ω), ȳν(ω))}.

Let us now estimate the difference of the components of the coupled system. We
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have pathwise

d

dt
|x− y|2 = 2

〈
x− y, dx

dt
− dy

dt

〉

= 2
〈
x− y, e−O

(1)
t f(eO

(1)
t x)− e−O

(2)
t g(eO

(2)
t y)

〉
+2
〈
x− y, 2ν(y − x) +O

(1)
t x−O(2)

t y
〉

≤ −4ν‖x− y‖2

+2‖x− y‖
(
e−O

(1)
t ‖f(eO

(1)
t x)‖+ e−O

(2)
t ‖g(eO

(2)
t y)‖+ ‖O(1)

t x−O(2)
t y‖

)

≤ −ν‖x− y‖2 +
e−2O

(1)
t

ν

∥∥∥f(eO
(1)
t x)

∥∥∥2

+
|O(1)
t |2

ν
‖x‖2

+
e−2O

(2)
t

ν

∥∥∥g(eO
(2)
t y)

∥∥∥2

+
|O(2)
t |2

ν
‖y‖2.

Hence labelling the solutions with ν to indicate this dependence we have

d

dt
‖xν − yν‖2 ≤ −ν‖xν − yν‖2 +

1
ν
Mν
T1,T2,ω

with

Mν
T1,T2,ω = sup

t∈[T1,T2]

(
e−2O

(1)
t

∥∥∥f(eO
(1)
t xν)

∥∥∥2

+ |O(1)
t |2‖xν‖2

)
+ sup
t∈[T1,T2]

(
e−2O

(2)
t

∥∥∥g(eO
(2)
t yν)

∥∥∥2

+ |O(2)
t |2‖yν‖2

)
.

We can restrict ourselves without loss of generality to solutions in the compact
absorbing balls Bν(ω), which are all contained in the common compact ball B1(ω)
for ν ≥ 1. Hence Mν

T1,T2,ω
is uniformly bounded in ν and we have

d

dt
‖xν − yν‖2 ≤ −ν‖xν − yν‖2 +

1
ν
MT1,T2,ω

with

MT1,T2,ω = sup
ν≥1

Mν
T1,T2,ω,

from which we conclude that

‖xν(t)− yν(t)‖2 → 0 as ν →∞,

uniformly in t ∈ [T1, T2] for any bounded T1 and T2.
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7. The synchronized solutions as ν → ∞

Now we can prove the following result:

Theorem 7.1. (x̄νn(t, ω), ȳνn(t, ω)) → (z̄(t, ω), z̄(t, ω)) pathwise uniformly on
bounded time intervals [T1, T2] of R for any sequence νn → ∞, where z̄(ω) is the
attracting stationary solution of the averaged RODE

dz

dt
=

1
2

[
e−O

(1)
t f

(
eO

(1)
t z
)

+ e−O
(2)
t g

(
eO

(2)
t z
)

+ (O(1)
t +O

(2)
t )z

]
. (7.1)

The equivalent Stratonovich SDE is given by

dZt =
1
2
[
e−ηtf(eηtZt) + eηtg(e−ηtZt)

]
dt+

1
2

m∑
i=1

(αi + βi)Zt ◦ dW (i)
t , (7.2)

with ηt = 1
2 (O(1)

t −O
(2)
t ).

Proof. Define

z̄ν(ω) :=
1
2

(x̄ν(ω) + ȳν(ω))

and observe that z̄ν(t, ω) = z̄ν(θtω) satisfies the RODE
dz̄ν
dt

=
1
2

(
e−O

(1)
t f

(
eO

(1)
t x̄ν

)
+ e−O

(2)
t f

(
eO

(2)
t ȳν

)
+O

(1)
t x̄ν +O

(2)
t ȳν

)
.

Thus

sup
t∈[T1,T2]

∣∣∣∣ ddt z̄ν(t, ω)
∣∣∣∣ ≤ MT1,T2,ω <∞

by continuity and the fact that these solutions belong to the common compact ball
B1(ω). We can use the Ascoli Theorem to conclude that there is a subsequence νnj
→ ∞ such that z̄νnj (t, ω) → z̄(t, ω) as nj → ∞.

Now

z̄νnj (t, ω)− ȳνnj (t, ω) =
1
2

(
x̄νnj (t, ω)− ȳνnj (t, ω)

)
→ 0,

z̄νnj (t, ω)− x̄νnj (t, ω) =
1
2

(
ȳνnj (t, ω)− x̄νnj (t, ω)

)
→ 0,

as νnj → ∞, see the previous section, so

x̄νnj (t, ω) = 2z̄νnj (t, ω)− ȳνnj (t, ω)→ z̄(t, ω),

ȳνnj (t, ω) = 2z̄νnj (t, ω)− x̄νnj (t, ω)→ z̄(t, ω)

as νnj → ∞. Moreover, using the integral equation representation

z̄ν(t, ω) = z̄ν(T1, ω) +
1
2

∫ t

T1

O(1)
s (ω)x̄ν(s, ω) +O(2)

s (ω)ȳν(s, ω) ds

+
1
2

∫ t

T1

e−O
(1)
s (ω)f(eO

(1)
s (ω)x̄ν(s, ω)) ds

+
1
2

∫ t

T1

e−O
(2)
s (ω)g(eO

(2)
s (ω)ȳν(s, ω)) ds,
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it follows that the νnj subsequence converges pathwise to

z̄(t, ω) = z̄(T1, ω) +
1
2

∫ t

T1

(O(1)
t (ω) +O

(2)
t (ω))z̄(s, ω) ds

+
1
2

∫ t

T1

e−O
(1)
s (ω)f(eO

(1)
s (ω)z̄(s, ω)) ds

+
1
2

∫ t

T1

e−O
(2)
s (ω)g(eO

(2)
s (ω)z̄(s, ω)) ds

on the interval [T1, T2], so z̄(t, ω) is a solution of the RODE (7.1) for all t ∈ R. By
the same techniques as in the previous sections, it has a random attractor consisting
of a singleton set formed by a single stationary stochastic process which thus must
be equal to z̄(t, ω).

Finally, we note that pathwise all possible subsequences here have the same
limit, so by Lemma 2.2 in Caraballo & Kloeden4 every full sequence z̄ν(t, ω) actu-
ally converges to z̄(t, ω) for the whole sequence νn → ∞. To show that averaged
Stratonovich SDE (7.2) transforms to the averaged RODE (7.1), we apply the trans-
formation

z = e
1
2

“
O

(1)
t +O

(2)
t

”
Z.

As a straightforward consequence of the arguments in the previous proof we
have

Corollary 7.1. (x̄ν(t, ω), ȳν(t, ω)) → (z̄(t, ω), z̄(t, ω)) as ν → ∞ pathwise on any
bounded time interval [T1, T2] of R.

7.1. Example

Consider the scalar Stratonovich SDEs

dXt = (−Xt + 1)dt+Xt ◦ dW (1)
t , dYt = (−Yt + 2)dt+ 2Xt ◦ dW (2)

t .

The corresponding RODEs are

dx

dt
= x(−1 +O

(1)
t ) + e−O

(1)
t ,

dy

dt
= y(−1 +O

(2)
t ) + 2e−O

(2)
t

with

O
(1)
t =

∫ t

−∞
e−(t−s) dW (1)

s , O
(2)
t = 2

∫ t

−∞
e−(t−s) dW (2)

s .

The averaged RODE is

dz

dt
= z

(
−1 +

1
2

(O(1)
t +O

(2)
t )
)

+ e−O
(1)
t + 2e−O

(2)
t
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with the explicit solution

z(t) = e
−(t−t0)+ 1

2

R t
t0

(O(1)
τ +O(2)

τ ) dτ
z0 +

∫ t

t0

e−(t−s)+ 1
2

R t
s
(O(1)
τ +O(2)

τ ) dτ−O(1)
s ds

+2
∫ t

t0

e−(t−s)+ 1
2

R t
s
(O(1)
τ +O(2)

τ ) dτ−O(2)
s ds.

The pullback limit as t0 → −∞ gives a stationary solution

z̄(t) =
∫ t

−∞
e−(t−s)+ 1

2

R t
s
(O(1)
τ +O(2)

τ ) dτ−O(1)
s ds

+2
∫ t

−∞
e−(t−s)+ 1

2

R t
s
(O(1)
τ +O(2)

τ ) dτ−O(2)
s ds,

which corresponds to the SDE

dZt =
(
−Zt +

1
2
e−

1
2 (O

(1)
t −O

(2)
t ) + e

1
2 (O

(1)
t −O

(2)
t )

)
dt+

1
2
Zt ◦ dW (1)

t + Zt ◦ dW (2)
t

and attracts all other solutions pathwise.
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