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Grid Connected Photovoltaic Generation Plants. 
Components and Operation 

 
E. Romero-Cadaval, G. Spagnuolo, L. Franquelo, C. Ramos-Paja, T. Suntio, W. Xiao 

Abstract— The main design objectives of photovoltaic (PV) systems have been for 

a long time to extract the maximum power from the PV array and to inject it into 

the AC grid. Therefore, the maximum power point tracking of a uniformly 

irradiated PV array and the maximization of the conversion efficiency have been 

the main design issues. But also, when the PV plant is connected to the grid, special 

attention has to be paid to the reliability of the system, the power quality and the 

implementation of protection and grid synchronization functions. Modern power 

plants are required to maximize their energy production requiring suitable control 

strategies to solve the problems related to the partial shading phenomena and 

different orientation of the PV modules towards the Sun. Moreover, the new policy 

concerning the injection of reactive power into the grid makes the development of 

suitable topologies and control algorithms mandatory. A general view of actual 

solutions for applications of the PV energy systems is presented. The paper covers 

some important issues such as the most reliable models used for simulation that 

are useful in the design of control systems, and the maximum power point tracking 

function, especially in distributed applications. The main topologies used in the PV 

power processing system and, finally, grid connection aspects are discussed, 

especially as far as synchronization, protections and integration are concerned. 

Keywords: Photovoltaic, Renewable energies grid integration, Smart Grids. 

I. INTRODUCTION 

Governments and public organizations are nowadays concerned about the 

production of energy with technologies as clean as possible. As a consequence, the 
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guidelines for future energy production are established according to the Kyoto 

protocol [1], which for European countries inspires the “20-20-20” target [2]. The 

energy production technologies based on hydro, wind, photovoltaic and 

geothermal energies can be considered to be clean and renewable alternatives to 

the non-clean conventional technologies based on fossil fuels and nuclear fission. 

Among the clean technologies, photovoltaic (PV) is the one that has experienced a 

great growth in the last years, close to 60% in Europe. 

 

Fig. 1 All-In Module Cost (US dollars/W) and Plant Capacity evolution [3]. 

PV installations are no longer isolated from the grid, but connected to it, 

aiming to become part of the electric generation mix. In this context the cost (in US 

dollars) per watt of these plants has decreased from 1.5$/W in 2009 to 0.6$/W in 

2013 (Fig. 1, [3]) and this decreasing tendency will continue. These plants are 

economically viable even without government subsidies, and the PV plant capacity 

is increasing significantly (Fig. 1). Therefore, the power generation of grid-
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connected PV plants is increasing continuously all over the world reaching values 

of hundreds of megawatts (Fig. 2, [4]), thus making these plants a crucial part of 

the future electric energy system and Smart Grids. 

 

TOP 5 BY POWER 

Power Description and Location Commissioned 

250 MW 
Agua Caliente Solar Project 
USA, Yuma County, AZ 

2012 

214 MW 
Charanka Park, Patan 
district PV power plant 
India, Charanka 

2012 

200 MWp 
Golmud PV power plant 
China, Golmud 

2011 

150 MW 
Mesquite Solar I 
USA, Sonora desert, AZ 

2011 

145 MWp 
Solarpark Neuhardenberg 
Germany, Neuhardenberg 

2012 

128 MW 
Solarpark Templin, 
Germany. 

2012 

115 MW 
Centrale solaire de Toul-
Rosières, France. 

2012 

106 MW 
Perovo I-V PV power plant, 
Ukraine 

2011 

97 MW 
Sarnia PV power plant, 
Canada 

2009 

91 MW Solarpark Briest, Germany 2011 

Fig. 2 Nominal Power (in MW) of Photovoltaic Plants classified by the continent 

where they are installed [4] and top-ten large-scale PV power plants. 

This paper gives a general description for new researchers and industrial 

electronic professionals of the electronic devices needed to connect these plants to 

the grid in an efficient and safe way, describing their components, mainly DC/DC 

converters and DC/AC converters, their structures, control algorithms and 

functions. 

In Section II, the more reliable PV models for simulating mismatched arrays 

are recalled and compared in terms of accuracy and computational burden. These 

models aim to develop simulation models that can be used for testing and 

evaluating the performance of the electronic converter control algorithms. This 

Section also introduces the main problem related with associated PV cells that 

electronic converters have to solve (mismatching effect mainly due to shadowing). 
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Section III presents the main topologies used in the PV power processing 

system, as well as discusses their advantages and drawbacks.  

Maximum Power Point Tracking (MPPT) system described in Section IV is a 

basic and main part of the control algorithm. This Section also describes the 

distributed MPPT that tries to improve the energy generation coping with the 

mismatching effect presented in Section II. 

Finally, in Section V, the paper exposes issues related to the operation of 

these plants from the point of view of their smart integration into the grid, 

especially as far as synchronization, protection and integration are concerned. 

II. PHOTOVOLTAIC CELLS AND ASSOCIATIONS 

The main components of a PV plant are the PV cells, that are associated and 

complemented by auxiliary elements to guarantee the power and energy the PV 

plant will produce. The design of the PV field could be done by commercial 

solutions like PVSIST [5] which allow the prediction of solar energy production 

under various irradiance and temperature conditions, taking into account different 

PV technologies or sun tracker systems.  

A reliable and accurate mathematical model that can be used in standard 

simulation packages (as MATLAB/SIMULINK, PSPICE or PSIM) is desired to design 

and test the control algorithms of the electronic devices. 

 

Fig. 3 Equivalent circuits of double-diode (a) and single-diode (b) model. 
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The equivalent circuits of PV generators proposed in prior studies can be 

categorized into two main types, double (DDM) [6-8] and single (SDM) diode 

models [9-13], which are illustrated in Fig. 3. The I-V characteristic for SDM can be 

expressed by (1). For the DDM, an additional current term shall be added to 

represent the second diode. 
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Electrical characteristics at standard test conditions (STC) cannot be usually 

measured. Therefore, PV modeling tends to use current-voltage data and curves 

given by cell or module manufacturers [14]. In this case, four conditions can be 

formulated using equation (1) corresponding to the known values for short circuit 

current Isc, open circuit voltage Voc, operating voltage and current at maximum 

power point (Vm, Im), and the implicit information that the peak of P-V curve occurs 

at the voltage point (Vm) [12]. Although the equations that correspond to the 

application of the four conditions comprise a complex nonlinear equations system, 

they can be solved by using various mathematical approaches or numerical solvers 

[12, 15]. As pointed out in [14, 16], these four equations do not provide enough 

information to solve the five unknown parameters in a SDM including Iph, Is, A, Rs 

and Rsh, which are the photon current, diode saturation current, ideality factor, 

series resistance and shunt resistance, respectively. One possible solution is to fix 

one parameter value, e.g. the ideality factor [12] or the shunt resistance [16], and 

solve the remaining parameters accordingly. An ideal SDM (Rs = 0 and Rsh = ∞), as 

shown in  [14], can be more accurate than the standard SDM parameterization.  

Moreover, the high-order model is very sensitive to the selection of initial 

conditions, and failing in it may lead to the reduction of model accuracy, which 
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supports the use of the SDM. The DDM requires generally more pre-assumed 

parameters and iterative tuning cycles than the SDM parameterization, because if 

the initial condition is not correctly selected, the accuracy of the high-order model 

will be low, resulting in the opposite effect that is desired when using this model. 

Due to the modeling complexity and high computational burden, the DDM 

approach is not as popular as the SDM. Simplified SDM is highly recommended in 

[17] for complex grid-tied systems, real-time applications and long term 

simulations. 

The measure of Normalized Root-Mean-Square Deviation (NRMSD) is 

proposed in [17] to quantify the modeling accuracy, because different solar cells 

can be compared under the same standard even if their power capacities are 

widely different. Usually short circuit current at STC is used as normalizing value, 

for example, to express the deviation between the measured data and the ones 

obtained from the mathematical model [17]. The single cell model can be easily 

aggregated to any size of PV array using the number of cells connected in series 

and parallel [17]. However, the approach cannot mimic partial shading or 

mismatching conditions that are unavoidable in real world applications.  
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Fig. 4 Mismatching conditions and bypass diodes activation. 
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Different PV array topologies have been proposed [18-20] such as series-

parallel, total cross-tied and bridge-linked, but the series-parallel topology, 

depicted in Fig. 4(a), is the most commonly used. It is based on series-connected 

PV modules, known as strings, which are connected in parallel to form the array 

[21]. The number of PV modules required in the string is determined to meet the 

voltage requirements of a grid-connected inverter, and the number of strings in the 

array determines the PV power level. Moreover, the series-parallel configuration 

must have blocking diodes in series with each PV string to avoid current flows 

from one string to another [22]. 

As an example, consider the case illustrated in Fig. 4, where an array 

composed of two strings of two modules each are shown, where each string has its 

corresponding blocking diode (Fig. 4(a)). Due to shading, construction tolerances, 

or even to different orientations, some of the PV modules in an array could 

experience different operating conditions, generating the mismatching 

phenomenon [21-23]. In such a condition the string current is limited by the 

lowest PV module current, degrading the power output of the PV modules with 

higher current. Bypass diodes are placed in anti-parallel with the modules as 

described in Fig. 4(a) to protect them by providing a path for the exceeding current 

to flow through [23-25]. In mismatching conditions, a bypass diode becomes active 

when the string current is higher than the current of the shaded PV module. For 

example, Fig. 4(a) represents a situation where the bottom PV module of the first 

string receives half the irradiance that the first module receives. 

Fig. 4(b) shows the corresponding I-V and P-V curves (red traces I1 and P1) 

of such a string. Because the string current is higher than the short-circuit current 

of the second module (2.5 A), the associated bypass diode D3 becomes active 
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providing an alternative path through which the current exceeding the shaded 

module current can flow. Otherwise, if the string currents is lower than the short-

circuit module current (2.5 A), the bypass diode D3 is not active. 

The shading affects the string current and power curves via the bypass 

diodes leading to the appearance of multiple maximum power points within the 

string [21, 26-28]. Fig. 4(b) shows the inflection point exhibited by the first string 

current, which also affects the array electrical characteristics. In contrast the 

second string, that operates at the uniform irradiation conditions, has a single 

maximum power point. 

To predict solar energy production under mismatching conditions, the 

effect of the bypass diodes was studied in [19,20,23,25-27]. A mathematical model 

is proposed in [21], where each PV module is represented by a SDM and bypass 

diodes by Shockley equations. Such a model provides an accurate representation of 

the PV array by means of (N+1) non-linear equations with (N+1) unknowns (N PV 

voltages and blocking diode voltage) depending on the Lambert-W function. A 

different approach was proposed in [28], where the bypass diodes are modeled by 

ideal switches to calculate the inflection-point current and voltage. This approach 

allows the reduction of the computation effort required to predict the array 

current and power, because an array voltage lower than a given number of 

inflection voltages, e.g. K inflection voltages, implies (N-K) bypass diodes are active, 

where the associated PV modules have almost zero voltage and negligible power 

production. Therefore, the number of non-linear equations and unknown variables 

is reduced by K, requiring shorter computation time. 

III. STRUCTURE AND TOPOLOGIES OF GRID-CONNECTED PV SYSTEMS 
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As shown previously, PV panels can be arranged in different configurations 

that affect directly the structure and topology of the electronic device. Usually this 

device includes a DC/DC converter and, as the PV plant is connected to the grid, it 

also needs a DC/AC converter. The combination of both types of elements, panels 

and converters, determines the cost, operation and efficiency of the whole PV 

system. Fig. 5 shows the schematic representation of the most common PV 

configurations following the classification established in [29]: 

 

Fig. 5 PV system configurations. 

• Centralized configuration. This configuration is mainly used in PV plants that 

have nominal power higher than 10 kWp, where a high number of PV panels 
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are connected in series-parallel configuration (array). Each string has a 

blocking diode to prevent the energy reversion produced by the strings 

operating at different irradiance conditions, and by the existence of energy 

storage systems that operate during the night. 

• String configuration. It is a simplified version of the centralized configuration, 

where each string is connected to one DC/AC converter. If the string voltage 

does not have the appropriate value, a boost DC/DC converter or a step-up 

transformer (that is usually placed in the AC side) is needed. 

• Multi-string configuration. It is an evolution of the string configuration that 

unites the advantages of string and centralized configurations. Each DC/DC 

converter implements the Maximum Power Point (MPP) Tracking (MPPT) for 

the string. This configuration has a flexible design and improves overall PV 

plant efficiency. 

• AC modules. In this configuration, each PV module incorporates a DC/AC 

converter that implements an “Automatic Control” that performs the MPPT 

control at module level. This topology operates like a Plug-and-Play system, 

having a PV-module-integrated converter. This configuration is more expensive 

and difficult to maintain, compared with other configurations, when the power 

of the plant increases. 

• Modular configuration [30]. It is based on a modular design, with conventional 

DC/DC and DC/AC converters sharing a common DC bus. Each DC/DC 

converter is connected to a string and implements the MPPT algorithm. As 

many DC/AC converters are connected to DC bus and grid as are necessary to 

achieve the desired power level. The system reliability is high and it is easy to 

maintain, because only the damaged converter has to be replaced. 
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The typical structure can be deduced from the above presented PV 

architecture. In any of them, PV systems connected to the grid have to be provided 

with a DC/AC converter adapting PV panels’ DC magnitudes to grid’s AC ones. In 

addition to the DC/AC converter, a DC/DC converter can be used to adjust the DC 

voltage and to implement the MPPT algorithm (as will be discussed in Section IV). 

It is also important to determine if the galvanic isolation is needed, and where to 

place the corresponding transformer: either in the part of the system that operates 

at high frequency (having a high-frequency transformer, HFT), or in the part that 

operates at low frequency (having a low-frequency transformer, LFT, designed for 

50 or 60Hz). Based on these criteria, the conversion topologies can be classified 

into the categories used in Table I [31], which also summarizes their 

characteristics and cited references that address their design and analysis. 

Nowadays, multilevel topologies (Fig. 6(d)) are of interest due to their 

lower harmonic waveform content and to the use of semiconductors in less 

stressing conditions. The number of commercial inverters that use this topology is 

increasing day by day. Also the use of high bandgap devices, mainly SiC and GaN 

[32], in inverters is an area of active research to improve inverter efficiency, but 

the cost of these devices are still high compared to conventional semiconductors.  

Finally, a filter is needed between the DC/AC converter and the grid. L, LC or 

LCL are the most commonly used filter topologies [33,34]. 

Table I – Classification of topologies for grid-connected PV systems [31] 

 
With DC/DC converter Without DC/DC converter 

With isolation Without isolation With isolation Without isolation 

Characteristic 
DC/DC-DC/AC 

with HFT 
DC/DC-DC/AC 

with LFT 
DC/DC-DC/AC 

 
DC/AC 

with LFT 
DC/AC 

Example 
and references 

Fig. 6(a) 
[35,36] 

Fig. 6(b) 
[37,38] 

Fig. 6(c) 
[39,40] 

Fig. 6(d) 
[41-45] 

Fig. 6(e) 
[46-49] 

Isolation Yes Yes 
Leakage current 

through earth has 
to be controlled 

Yes 
Leakage current 

through earth has to 
be controlled 

DC component 
in the injected 

It has to be 
controlled 

It is zero 
It has to be 
controlled 

It is zero 
It has to be 
controlled 
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current 

Design Complex Medium Medium Simple Simple and compact 

MPPT 

Implemented in 
DC/DC 

Converter 

Implemented in 
DC/DC 

converter 

Implemented in 
DC/DC 

converter 

Implemented in 
AC/DC 

converter 

Implemented in 
AC/DC 

converter 

Power range Medium-High High Medium-High High Low 

Efficiency Good Medium Good Good Very good 

Transformer 

Non conventional 
transformer. Low 

weight and 
volume. 

Usual transformer. 
High weight and 

volume. 
No 

Usual transformer. 
High weight and 

volume. 
No 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Fig. 6 Examples of topologies following the classification of Table I [31] 

IV. MAXIMUM POWER POINT TRACKING SYSTEM 

This efficiency maximization of PV power processing system is useless if the 

MPPT control does not ensure that the maximum power is extracted from the PV 

array both at steady state and under varying climatic conditions. In fact, the total 

efficiency of the power processing system is almost the product of the conversion 

efficiencies, which must be maximized by taking into account the extremely 

variable operating conditions throughout the day [50] as well as the MPPT 

efficiency. 

There are multiple MPPT techniques [51] that could be compared using 

different criteria (Table II). The main techniques are dP/dV or dP/dI Feedback 

Control, Incremental Conductance (IncCond) and Hill-climbing (or Perturbation-

Observation, P&O). 

Table II – Major characteristics of MPPT techniques 

MPPT technique 
PV array 

dependent? 

True 

MPPT? 

Analog or 

Digital 

Convergence 

Speed 

Implementation 

Complexity 

Sensed 

parameters 

Hill-climbing / P&O No Yes Both Varies Low 
Voltage, 

Current 

IncCond No Yes Digital Varies Medium 
Voltage, 

Current 

Fractional Voc Yes No Both Medium Low Voltage 

Fractional Isc Yes No Both Medium Medium Current 

Fuzzy Logic Yes Yes Digital Fast High Varies 

Neural Network Yes Yes Digital Fast High Varies 

RCC No Yes Analog Fast Low 
Voltage, 

Current 

Current Sweep Yes Yes Digital Slow High 
Voltage, 

Current 

DC Link Capacitor Droop 
Control 

No No Both Medium Low Voltage 

Load I or V Maximization No No Analog Fast Low 
Voltage, 

Current 

dP/dV or dP/dI Feedback 
Control 

No Yes Digital Fast Medium 
Voltage, 

Current 
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A. MPPT operation and efficiency 

Commercial products typically use perturbative approaches for tracking the 

MPP, determining, instant by instant, the voltage value at which the PV generator 

delivers its maximum power. Perturb & Observe and Incremental Conductance 

methods require an accurate parametric design [21] and usually control the 

reference signal of a feedback-controlled switching converter, generally a DC/DC 

regulator that  matches the PV array voltage with the DC bus one, or that works as 

a battery charger. 

Fig. 7 shows some examples of MPPT operation by employing a DC/DC 

converter: the outermost feedback cannot be taken either from the output-side 

signals without compromising the stability of the interfacing [52,53]. The MPPT 

operation usually acts on the PV voltage because of its logarithmic dependence on 

the irradiance level. Instead, an action based on the PV current would allow having 

a more prompt reaction to the irradiation variation: few examples of this approach 

have been recently proposed in literature [54,55] because of the intrinsic 

instability of the current control when irradiation drops occur. 

Fig. 7 Different ways of implementing the MPPT operation by means of a DC/DC 
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converter: by acting on the duty cycle value (a) or on a reference signal (b). The 

output power can be observed instead of the input one (c). 

The MPPT performances are mainly affected by two types of disturbances: 

an endogenous one, that is the noise unpredictably moving the PV operating point 

away from the MPP, and an exogenous one, that is the inhomogeneous irradiance 

received by the modules of the PV array. The effects of the former source must be 

minimized by a proper control action, e.g. [21], without using any passive filtering 

that could affect the conversion efficiency. The mismatched operation of the PV 

array requires very sophisticated MPPT techniques. Indeed, perturbative methods 

are able to perform a local, not global, maximization of the PV power, thus not 

ensuring that the absolute MPP of the multi-modal PV characteristic resulting from 

the mismatched operation (see Fig. 4(b)) is tracked. Some real time global 

optimization methods have been presented in literature, e.g. [27], but they are 

usually very complicated, so the leading companies operating in the field have 

preferred to offer the possibility of doing a periodical sweep of the PV curve in 

order to discover where the absolute maximum power point really is [56]. 

Needless to say that a frequent sweep analysis improves the power production in 

daylight hours when a shadow affects the PV array, but reduces the power the 

system is able to produce when it works in homogeneous conditions. During the 

last five years, a large number of papers have been dedicated to the so-called 

Distributed MPPT control and to the dynamical reconfiguration of the PV arrays 

[57]; both solutions allow the increase of the power production in presence of 

mismatching effects but, of course, show some drawbacks. 

B. Distributed MPPT Schemes 
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The long PV strings are very sensitive to the partial shading effects caused 

by the nearby obstacles such as buildings, trees, chimneys, flag poles, and even the 

passing of clouds due to the current-source nature of the individual PV cells 

[58,59]. To reduce the detrimental effect of shading on the energy production, the 

PV modules are usually equipped with bypass or shunt diodes (as shown 

previously), but these alone will not give the desired results of maximizing the 

energy output of the PV generator. Other actions are needed such as providing 

each PV module or its submodules with a dedicated MPP-tracking converter [60-

66], so that the detrimental effects of mismatching remain limited to the penalized 

modules and the MPPT algorithms almost operate on single-peak current-voltage 

characteristics. Such arrangements are known as distributed or granular MPP-

tracking schemes. In [63] is estimated that the module-integrated MPP-tracking 

can improve the energy captured in shaded conditions by 16 % compared to 

string-based MPP tracking. If the granularity is extended to cell level, the 

improvement could be as high as 30%. 

The module level distributed MPP-tracking can be basically implemented 

either by connecting the output terminals of the DC/DC converters in parallel, Fig. 

8(a) [64], or in series, Fig. 8(b) [65]. In grid-connected applications, the DC-link 

voltage is in the order of the peak or twice the peak of the grid voltage. Therefore, 

the parallel-connected scheme requires the use of DC/DC converters having 

transformer isolation and quadratic conversion ratio as well as high-voltage-rated 

components [64]. It is assumed that the cascade-connected scheme can be 

implemented by using non-isolated DC/DC converters with low-voltage-rated 

components yielding superior efficiency and reliability performance over the 

parallel-connected scheme. The output-terminal voltage of the cascade-connected 
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converter is highly dependent on the power the converter supplies and the DC-link 

voltage. As a consequence, the buck-boost-type converter has to be utilized for the 

cascaded system to work properly [68]. In addition, the conditions for low voltage 

may not be valid, requiring the use of components with a greater capacity to 

withstand higher voltage [68]. The terminal voltages can be balanced by 

connecting at the output terminals of the converters an additional converter 

known as string-current diverter as explained in detail in [69]. The same 

technology is also the basis for the submodule-integrated distributed MPP-tracking 

schemes. The output-terminal voltages are also prone to disturbances during the 

changes in the irradiation condition [62,65] necessitating the use of feedback 

control for eliminating them [62]. The parallel-connected arrangement does not 

suffer from such disturbances. 

 

Fig. 8 PV module-integrated distributed MPP-tracking arrangement, using parallel-

connected (a) and series-connected (b) DC/DC converters. 

It is well proven that the distributed MPP-tracking arrangement can 

substantially increase the energy capture of a PV generator when subjected to 

severe shading conditions. The parallel-connected arrangement may eventually be 

the best choice even if the series-connected arrangement is commonly assumed to 
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be superior in terms of cost, efficiency, and reliability over the parallel-connected 

arrangement. The feasibility of the submodule-integrated solutions has to be 

studied case-by-case. 

V. GRID CONNECTION 

The operation of inverters when they are connected to the grid, compared 

to inverters that operate in isolated installations, needs the implementation of 

additional functions, such as synchronization and protection functions. The energy 

storage function usually needed in isolated PV installations, is not so important in 

grid-connected systems. However, energy storage is becoming more important 

nowadays for achieving a smart integration into the grid, as a consequence of 

increasing the nominal power of PV plants. 

A. Synchronization 

Most inverters operate as current sources injecting a current that is 

sinusoidal and in phase with the grid voltage, with a power factor equal or very 

close to unity. It is required that the inverter synchronizes with the fundamental 

component of the grid voltage, even in the cases when the grid voltage is distorted 

or unbalanced, or even when the grid frequency varies. 

ELECTRONIC 

CONVERTER

Lf

VInv1 VS

IInv

LS
PCC

VGrid

 

 
(a) (c) 
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(b) (d) 

Fig. 9 Example of waveforms synchronization for achieving a Unity Power Factor 

operation. 

An example of synchronization in steady state for a single-phase system is 

shown in Fig. 9, where it can seen that even when the grid voltage, vGrid, is 

distorted, the synchronization system is able to extract its fundamental and 

positive sequence component, vGrid,1+, which is used for determining the 

fundamental voltage component the inverter has to generate, vInv,1, to ensure that 

the current injected into the grid, iInv, is in phase with the fundamental grid voltage. 

In this way, the active power flowing to the grid can be controlled; this power, 

assuming that the power factor is equal to unity, is given by the following 

expression  

 
,1Grid Gri nd I v

P V I
+

= . (2)  

To obtain the fundamental and positive component of the PCC voltage is not 

a simple task. This voltage could present disturbances, due to harmonics or 

unbalances that exist on the grid or due to the resonance at the switching 

frequency between the passive elements of the inverter and the grid impedance 

(this is the case of the voltage shown in the example of Fig. 9c). Furthermore, the 

synchronization system has to guarantee the required filter with the desired 

dynamic and steady responses. It has to be also taken into account the start-up 
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time that the synchronization system requires for being operative and for the 

inverter to start to inject energy. 

Several techniques have been introduced in the literature for implementing 

the grid synchronization paying attention to the issues described above [70,71], 

that can be classified according to [72] as follows: Zero Crossing Detector (ZCD), 

Phase Locked Oscillator (PLO), Based on Digital Fourier Transformer (DFT), 

Adaptive Notch Filter (ANF), Based on Kalman filters (KF), Weighted Least Squares 

Estimation (WLSE), Artificial Neural Network (ANN), Usual Phase Locked Loop 

(PLL), Enhanced PLL (EPLL), Adaptive PLL (APLL), Synchronous Reference Frame 

PLL (SRF-PLL), and combining SRF-PLL with LPF (SRF-PLL LPF), Moving Average 

Filter (SRF-PLL MAF), DFT (SRF-PLL DFT) or using symmetric components (SRF-

PLL SC). The comparison of these methods is presented in Table III. 

Table III – Comparison of main Synchronization methods used in PV systems 

Synchronization 
method 

Distortion 
Immunity 

Adaptation to 
frequency 

Unbalance 
Robustness 

Dynamic 
response 

Computational 
Cost 

Complexity 

S
in

g
le

 p
h

a
se

 1
 

A
M

 

ZCD 
Low, it suffers 
from harmonic 

instability 
Medium - 

Slow, it 
reacts with 

the next cero 
crossing 

Low Low 

O
L

D
M

 

DFT High 

High, with 
variable 

frequency 
platforms 

- Slow High High 

ANF Medium Medium - Very slow High High 

KF - Medium-High - - Very high Very high 

WLSE - Medium-High - - Medium Medium 

ANN - Medium-High - Medium-Fast Low High 

C
L

D
M

 

PLL 
Medium, it 

depends on the 
band width 

Medium, due 
to the 

internal 2nd 
harmonic 

- 

Medium, it 
depends on 

the band 
width 

Low-Medium 

Low, it can be 
linearized to a 
servo transfer 

function 

EPLL High 

High, it 
eliminates 

the internal 
2nd 

harmonic 

- 
Medium-

Slow 
Medium Low-Medium 

APLL Medium Medium-High - Medium-Fast Medium Medium 

SRF-PLL High 

High, they 
can be 

frequency 
adaptive 

- Medium Medium-High Medium-High 

T
h

re
e

 p
h

a
se

 

A
M

 

PLO Medium Medium Medium Variable Medium 

Very high, 
synchronization 

in the control 
loop 

L D LPF High 
Low, very 
sensible 

Low, Clarke 
transformation 

Medium Medium-Low Medium-Low 
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maintains 
inverse 

sequence data 

SVF 
High, if well 

tuned 
Low, sensible 

Low, Clarke 
transformation 

maintains 
inverse 

sequence data 

Medium-
Slow 

High Medium-High 

KF High Medium Medium Medium High High 

WLSE - 
Medium, it is 

slow 
High Fast 

High, it present 
some problems 

Medium 

C
L

D
M

 

SRF-PLL Medium 

Medium, due 
to the 2nd 

harmonic of 
d-q 

components 

Medium, due 
to the 2nd 

harmonic of d-
q components 

Fast Medium 
Low, easy 

linearization 

SRF-PLL LPF Medium-High Medium-High Medium-High Medium Medium Medium-Low 

SRF-PLL MAF 
High, it 

eliminates the 
2nd harmonic 

Medium-High 
High, it 

eliminates the 
2nd harmonic 

Slow Medium Medium 

SRF-PLL DFT 
High, it 

eliminates the 
2nd harmonic 

Medium-High 
High, it 

eliminates the 
2nd harmonic 

Medium-
Slow 

High High 

SRF-PLL SC 
High, it extracts 

the positive 
sequence 

High High Medium 

Medium-High, 
except the ones 
based on neural 

networks 

Medium-High 

AM: Analog Method, OLDM: Open-loop Digital Method, CLDM: Closed-loop Digital Method 

B. Protections 

Most national and international grid codes, that regulate the PV plants 

connected to the grid, require having maximum and minimum voltage and 

frequency protections. If the grid RMS voltage and/or frequency are outside of the 

pre-defined operating range, the PV plant has to be disconnected from the grid. 

Another protection that is commonly implemented in grid-connected 

inverters is the anti-islanding protection, which prevents the inverter from 

continuing to work when the grid is not energized (due to a fault or a maintenance 

activity in the electrical system). There are multiple methods that try to detect the 

absence of grid voltage [24,73-74] and they can be classified in two main groups: 

local, implemented at inverter level, that could be passive, active or hybrid; or 

remote, implemented at grid level or based in communication systems. 

The main characteristics of the most relevant anti-islanding methods are 

summarized in Table IV. These anti-islanding methods are as follows: Reactive 

Power Variation (RPV), Active Frequency Shift (AFS), Slip-Mode frequency Shift 
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(SMS), Active Frequency Drift with Positive Feedback (AFDPF, Sandia Frequency 

Shift), Active Frequency Drift with Pulsating Chopping Factor (AFDPC), General 

Electric Frequency Scheme (GEFS), Grid Impedance Estimation by Harmonic 

Injection (GIEHI), Grid Impedance Estimation using External Switched Capacitors 

(GIEESC), Based on Communication Systems (BCS). 

Table IV – Characteristics of the most relevant anti-islanding methods 

Anti-
Islanding 
method 

Reliability 
NDZ1 

Power Quality 
PQ 

Multiple inverter integration 
Standardization 

possibilities 

RPV 
High, NDZ could be 

eliminated 
High, without harmonics 

but reduces the PF2 
Low 

Low, due to the parallel 
problems 

AFD 
Medium, Does not 

eliminates NDZ 
Low, it introduces low 

order harmonics 
Low, it cannot manage 
concurrent detections 

Low 

SMS 
Medium, Does not 

eliminates NDZ 
Medium, it affects the PF 

Low, it cannot manage 
concurrent detections 

Low 

AFDPF 
High, NDZ could be 

eliminated 

Medium, PQ could be 
affected by continuous 

shifts 

Medium, it can work with 
parallel inverter, but affects 

the PQ. 
Medium 

AFDPCF 
Medium-High, with 
controlled stability 

High, it introduces 
harmonics but controls 

the THD 
High, but limited 

High, stability and THD 
could be controlled 

GEFS 
Very high. It eliminates 

NDZ and controls 
stability 

Very high, THD changes 
very few 

High, but limited 
High, it does not 

degrades the THD 

GIEHI 
High, NDZ could be 

eliminated 

Medium, it depends on 
the frequency of injected 

harmonics 
Low Low 

GIEESC 
High, NDZ could be 

eliminated 
Low, it introduces low 

order harmonics 
Low Low 

BCS 
Medium-High, if 

communication quality is 
good 

High, it does not 
influence on the PQ 

High, it depends on the 
communication reliability 

High, a large term due 
to cost 

1NDZ: Non-Detection Zone, 2PF: Power Factor 

C. Grid integration 

Several regulations (grid codes) have been established to avoid problems of 

connecting a large number of PV installations into the grid. These problems are 

mainly due to unmanageable behavior (the produced energy cannot be controlled 

because it depends on the weather conditions, mainly irradiation and 

temperature), to the injection of current harmonics and to its operation under 

abnormal grid states [75-79] (usually produced in after-fault or re-connection grid 

scenarios). 
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Some of the existing regulations related to harmonic injection, could equally 

be applied to PV installations (for example, IEC 61000 [78] or IEEE Std 519-1992 

[76]). These norms mainly define limits for the total and individual harmonic 

distortion ratios the injected current can have, depending on the nominal power or 

current of the inverter. 

Another major issue, when connecting photovoltaic installations to the grid, 

is related to the ability to control reactive power in both transient (under 

abnormal situations) and steady conditions. The inverter has to control the phase 

of currents to inject or demand a pre-established reactive power, that is imposed 

by the Electric System Operator (to guarantee the manageable behavior of the 

plant), or that is determined by the inverter itself, depending on the magnitudes 

measured from the grid. 

The association of Energy Storage Systems (ESS) with PV installations is 

also a key factor to be solved in the future. It has to be determined when and how 

to charge and discharge the energy, taking into account the prices of produced and 

consumed energy, as well as the ESS size optimization. It is known as Smart Energy 

Storage and there are some commercial solutions already available on the market 

[80,81]. 

VI. CONCLUSIONS 

Photovoltaic power processing plants connected to the grid are increasing 

both in the number of installations and also in the rated power of each plant, and 

will cover a significant percentage of the electric generation mix. In this paper, a 

comprehensive overview of grid-connected photovoltaic power processing 

systems is presented with the aim of giving the clues for future improvements and 

research activities in the field. 
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There are different techniques and architecture that can reduce the effects 

of control problems related to the non uniform operation of the modules the PV 

array is made of. Some solutions to these problems are related to the structure of 

the array itself and involve the use of block and bypass diodes, and others are 

related to how to apply the MPPT algorithm, covering distributed control and its 

integration in dedicated DC/DC converter. 

The different single-stage and multiple-stage conversion topologies 

proposed in recent literature can be compared in terms of their main issues related 

to the grid connection, determining their pros and cons. Most of these comparisons 

have been done in this paper. 

Finally, it has to be determined the synchronization, power (active and 

reactive) control and protection functions that the inverter has to implement to 

achieve a smart integration into the grid, taking into account their main 

characteristics. 

In the near future, Industrial Electronic Researchers will have to solve the 

emerging problems associated with Smart Grids, as for example, the ones related 

to control of multiple distributed generation plants integrated within the houses, 

and to develop Smart Energy Storage systems. 
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