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Abstract

Symmetries of a partial Latin square are primarily determined by its auto-
topism group. Analogously to the case of Latin squares, given an isotopism Θ,
the cardinality of the set PLSΘ of partial Latin squares which are invariant
under Θ only depends on the conjugacy class of the latter, or, equivalently,
on its cycle structure. In the current paper, the cycle structures of the set
of autotopisms of partial Latin squares are characterized and several related
properties studied. It is also seen that the cycle structure of Θ determines the
possible sizes of the elements of PLSΘ and the number of those partial Latin
squares of this set with a given size. Finally, it is generalized the traditional
notion of partial Latin square completable to a Latin square.
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1. Introduction.

Every permutation π of the symmetric group Sn can be uniquely decom-
posed into product of disjoint cycles. Let nπ be the number of these cycles.
The numbers λπ

i of cycles of length i in this decomposition determine its cycle
structure as the expression zπ = nλπ

n · . . . · 1λπ
1 , where any term of the form i0

is omitted and any term of the form i1 is replaced by i. The cardinality of
the set CSn of possible cycle structures of Sn is equal to the number p(n) of
partitions of n. Two permutations are conjugate if and only if they have the
same cycle structure. Given π ∈ Sn, let λπ and π∞ be respectively its length
and the union of its 1-cycles written in natural order. Hereafter, we suppose
π to be represented by following its decomposition into a product π1 . . . πnπ

of disjoint cycles in order of decreasing length, where each cycle πi is written
as (pi,1 . . . pi,λπi

), with pi,1 = minj{pi,j} and where pi,1 < pj,1 whenever i < j
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and λπi
= λπj

. Finally, given a ∈ [n] = {1, . . . , n}, we write a ∈ πi if there
exists j ∈ [λπi

] such that a = pi,j. Analogously, a ∈ π∞ means π(a) = a.
A Latin square of order n is an n × n array with elements chosen from

a set of n distinct symbols such that each symbol occurs precisely once
in each row and each column. Hereafter, [n] is assumed to be this set
of symbols and LSn denotes the set of Latin squares of order n. Given
L = (lrc) ∈ LSn, its orthogonal representation O(L) is the set of n2 triples
{(r, c, lrc) : r, c ∈ [n]} defined by the rows r, columns c and symbols lrc of
L. This set satisfies the Latin square condition, that is, given two triples
of O(L) which coincide in two components, then the third component is
also the same. Given π ∈ S3, it is defined the Latin square Lπ such that
O(Lπ) = {(lπ(1), lπ(2), lπ(3)) : (l1, l2, l3) ∈ O(L)}, which is said to be paras-
trophic to L. Permutations of rows, columns and symbols also give rise to new
Latin squares. Specifically, given three permutations α, β, γ of the symmetric
group Sn, the triple Θ = (α, β, γ) ∈ In = S3

n is called an isotopism and LΘ is
said to be isotopic to L, where O(LΘ) = {(α(r), β(c), γ(s)) : (r, c, s) ∈ O(L)}.
To be isotopic is an equivalence relation, which will be denoted by ∼, and
the set of Latin squares isotopic to L is its isotopism class [L]. The number
of Latin squares and isotopism classes of LSn are known for n ≤ 11 [24, 18].
A list of representatives of isotopism classes for n ≤ 8 is given in [25]. The
cycle structure of Θ is the triple zΘ = (zα, zβ, zγ). Hereafter, given a subset
S ⊆ In, CSS denotes the set of cycle structures of the elements of S. Given
z = (z1, z2, z3) ∈ CSS, where zi = nzin · . . . · 1zi1 , then nzi denotes the number
of cycles of zi, that is, nzi =

∑
j∈[n] zij. Finally, the parastrophic class of z is

the set [z] = {zπ = (zπ(1), zπ(2), zπ(3)) : π ∈ S3}.
If LΘ = L, then Θ is said to be an autotopism of L. If α = β = γ, then

Θ is an automorphism of L and Θ = α is written instead of (α, α, α). Let
LSΘ,∆(Θ), An and An denote respectively the set of Latin squares which
have Θ as an autotopism, its cardinality and the sets of autotopisms and
automorphisms of at least one Latin square of order n. Necessary conditions
for an isotopism to be an autotopism were given in [26, 24, 10, 29] and An

was studied in [32, 1, 19, 20, 29]. If π ∈ S3 and L ∈ LSΘ, then Lπ ∈ LSΘπ ,
so permutations on the components of Θ preserve ∆(Θ). Moreover, this
cardinality only depends on the conjugacy class of Θ [10] or, equivalently, on
its cycle structure, so we also denote it by ∆(zΘ). A classification of CSAn is
known for all n ≤ 17 [10, 29]. Given z ∈ CSAn, let Iz = {Θ ∈ In : zΘ = z}
and LSz =

∪
Θ∈Iz LSΘ.

2



An incidence structure is a triple (P,B, I), where P and B respectively
are finite sets of points and blocks and I ⊆ P×B is an incidence relation. It is
r-uniform if every block contains exactly r points and it is s-regular if every
point is in exactly s blocks. Two blocks are equivalent if they contain the same
set of points and the multiplicity of a block is the size of its equivalence class.
In the study of Latin squares, it can be defined a natural incidence relation
In between LSn and In, where, given L ∈ LSn and Θ ∈ In, then (L,Θ) ∈ In
if and only if L ∈ LSΘ. Hence, given z ∈ CSAn, the triple (LSz, Iz, In)
is a ∆(z)-uniform incidence structure such that every block have the same
multiplicity [9]. Moreover, given L ∈ LSn, the triple ([L], Iz, In) is a uniform
and regular incidence structure, where every block contains ∆[L](z) elements,
whose exact value is known for order up to 6.

Although a general expression for the values of ∆(z) and ∆[L](z) re-
mains unknown, some general and explicit formulas were given for the former
[22, 23, 7, 27] and Gröbner bases were used to know its exact value for all au-
totopisms of Latin squares of order up to 7 [12]. For higher orders, Gröbner
bases have problem with the exponential growth of data storage and the time
of computation, for which the use of new combinatorial tools seems to be the
key. Thus, for example, given Θ = (α, β, γ) ∈ Iz, Gröbner bases were used
in [13] to obtain the value of ∆(z) for the majority of the cycle structures
of autotopisms of A8 and A9, by solving the linear equation system formed
after adding the constraints xrcs = xα(r)β(c)γ(s), for all r, c, s ∈ [n], to those
related to the planar 3-index assignment problem [6]:

min
∑

r,c,s∈[n]wrcs · xrcs,

subject to
∑

r∈[n] xrcs = 1, ∀c, s ∈ [n],∑
c∈[n] xrcs = 1, ∀r, s ∈ [n],∑
s∈[n] xrcs = 1,∀r, c ∈ [n],

xrcs ∈ {0, 1}, ∀r, c, s ∈ [n],

(3PAPn)

where wrcs are real weights for all r, c, s ∈ [n] and whose set of feasible
solutions are in 1− 1 correspondence with LSn if we define the Latin square
L = (lrc) such that lrc = s if and only if xrcs = 1.

All the previous concepts can be naturally extended to partial Latin
squares, which are square arrays in which each cell is either empty or con-
tains one element chosen from a set of n symbols, such that each symbol
occurs at most once in each row and in each column. The size of a par-
tial Latin square P is the number of its non-blank cells and is denoted by

3



|P |. Let PLSn and PLSn,s denote respectively the set of non-empty par-
tial Latin squares of order n and its subset of arrays of size s. An upper
bound of the elements of PLSn,s is given in [14]. The orthogonal represen-
tation of P ∈ PLSn is the set O(P ) of |P | triples related to the non-blank
cells of P . Parastrophic partial Latin squares have therefore the same size.
Given Θ = (α, β, γ) ∈ In, it is defined the partial Latin square PΘ such that
O(PΘ) = {(α(r), β(c), γ(s)) : (r, c, s) ∈ O(P )}, which is said to be isotopic
to P and [P ] denotes its isotopism class. Thus, |PΘ| = |P |. Θ is said to be
an autotopism of P if PΘ = P . Let APn and PLSΘ denote respectively the
set of autotopisms of at least one partial Latin square of order n and that of
non-empty partial Latin squares which have Θ as an autotopism. Besides,
given z ∈ CSAPn, PLSz denotes the set

∪
Θ∈Iz PLSΘ.

A partial Latin square P ∈ PLSn can be completed to a Latin square
L ∈ LSn if O(P ) ⊆ O(L). Given Θ ∈ CSAn, the subset of LSΘ of Latin
squares to which P can be completed is denoted by LSΘ,P . The computa-
tion of ∆(z) can be then simplified [12] if a multiplicative factor cP ∈ N is
found such that ∆(z) = cP · |LSΘ,P |. Although this factor, which is called
P -coefficient of symmetry of Θ, becomes crucial in the processing of high
orders, no exhaustive study has been developed in this regard. Indeed, a
comprehensive analysis of APn and PLSΘ has not been properly done until
now.

The present paper deals with this last question. It is organized as fol-
lows: In Section 2, the set CSAPn is characterized and several related results
exposed. In Section 3, given z ∈ CSAPn, it is dealt with the possible sizes of
a partial Latin square P ∈ PLSz. In Section 4, analogously to the case of
Latin squares, it is proven that the number of partial Latin squares related
to an autotopism only depends on the cycle structure of the latter, in such
a way that the elements of PLSn and In can be respectively considered as
points and blocks of incidence structures whose uniformity and regularity are
studied. Moreover, new constraints are imposed to the 3PAPn in order to
obtain the set PLSz,s of partial Latin squares of size s ∈ [n] related to an
autotopism of cycle structure z ∈ CSAPn. Besides, by using Gröbner bases,
its cardinality ∆s(z) is obtained for n ≤ 4. In Section 5, a theoretical ground
for the coefficient of symmetry is exposed. Specifically, given Θ ∈ In, it is
studied the set of partial Latin squares of PLSΘ which can be completed to
Latin squares of LSΘ. Finally, since the current paper has a high dependence
on notation, a glossary of symbols is shown in Appendix A.
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2. The set CSAPn.

Autotopisms of partial Latin squares are uniquely determined by their
cycle structures:

Lemma 2.1. Θ ∈ APn if and only if zΘ ∈ CSAPn.

Proof. The necessary condition holds by definition of CSAPn. Now, if
z ∈ CSAPn, then there must exist Θ0 ∈ Iz and P ∈ PLSΘ0 . Hence, given
Θ ∈ Iz, Θ and Θ0 are conjugate and therefore there exists Θ′ ∈ In such that
Θ = Θ′Θ0Θ

′−1. As a consequence, PΘ′ ∈ PLSΘ and Θ ∈ APn. �

Let us define the set:

LCMn = {(i, j, k) ∈ [n]3 : lcm(i, j) = lcm(i, k) = lcm(j, k) = lcm(i, j, k)}.

The next result characterizes the set CSAPn and can be considered as an
immediate generalization for partial Latin squares of the necessary condition
given by Stones, Vojtěchovský and Wanless in [29] for membership in An:

Lemma 2.2. Given z = (z1, z2, z3) ∈ CSIn, we have z ∈ CSAPn if and only
if there exists (i, j, k) ∈ LCMn such that z1i · z2j · z3k > 0.

Proof. If z ∈ CSAPn, then there must exist Θ = (α, β, γ) ∈ Iz and
P ∈ PLSΘ. Given (r, c, s) ∈ O(P ), let (u, v, w) ∈ [nα]× [nβ]× [nγ] be such
that r ∈ αu, c ∈ βv and s ∈ γw. Since Θ is an autotopism of P , it must
be (αt

u(r), β
t
v(c), γ

t
w(s)) ∈ O(P ), for all t ∈ N. The necessary condition is

then a consequence of the Latin square condition, by considering i, j, k to be,
respectively, the lengths of αu, βv and γw.

To prove the converse, let Θ = (α, β, γ) ∈ Iz and let αu, βv and γw be,
respectively, i-, j- and k-cycles of α, β and γ. Let r, c, s be, respectively,
elements of αu, βv and γw. The set of triples {(αt

u(r), β
t
v(c), γ

t
w(s)) : t ∈

[lcm(i, j, k)]} satisfies the Latin square condition because of being (i, j, k) ∈
LCMn and therefore it is the orthogonal representation of a partial Latin
square P ∈ PLSΘ. �

Given n > 1, Lemma 2.2 implies APn to be a proper subset of In, because,
for instance, (1n, 1n, n1) ̸∈ CSAPn. Analogously, An is a proper subset of APn,
because, for example, (2, 2, 2) ∈ CSAP2

and (2 · 1n−2, 2 · 1n−2, 1n) ∈ CSAPn,
for n > 2, but neither of them are cycle structures of an autotopism of Latin
square. Thus, the next claim is verified:
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Proposition 2.3. An ⊂ APn ⊂ In, ∀n > 1. �

Moreover, APn and In have asymptotically the same size. To see it, it
is enough to assure that the cardinalities of the sets of their cycle structures
coincide in the limit, which is proven in Theorem 2.6. Although CSAPn can
be explicitly obtained for any order n ∈ N by implementing Lemma 2.2
in a computer procedure, a lower bound of its cardinality is determined by
studying the following sets which partition CSn:

CSn,m = {nzn · . . . · 1z1 ∈ CSn : zm > 0 and zi = 0,∀i ∈ [m− 1]},

where m ∈ [n]. The following results hold:

Lemma 2.4. |CSn,m| =


1, if m = n,

0, if m ∈ {⌊n
2
⌋+ 1, . . . , n− 1},

p(n−m)−
∑m−1

i=1 |CSn−m,i|, otherwise.

Proof. The cases m ≥ ⌊n
2
⌋+1 are straightforward verified. Let m ≤ ⌊n

2
⌋.

Given z ∈ CSn,m, it is zm > 0 and therefore it must be zn−m+i = 0, for
all i ∈ [m]. Hence, we can define z′ ∈ CSn−m such that z′i = z, for all
i ∈ [n−m]−{m} and z′m = zm− 1. Specifically, since z ∈ CSn,m, it must be
z′i = 0, for all i ∈ [m−1]. Thus, z′ ∈

∪n−m
i=m CSn−m,i = CSn−m−

∪m−1
i=1 CSn−m,i

and the claim is verified. �

Proposition 2.5. |CSAPn| ≥
∑

(i,j,k)∈LCMn
|CSn,i| · |CSn,j| · |CSn,k|.

Proof. Since the sets CSn,m constitute a partition of CSn, the result is
consequence of Lemma 2.2. �

Theorem 2.6. limn→∞
|CSAP n

|
|CSIn|

= 1.

Proof. Since (1, 1, 1) ∈ LCMn, Proposition 2.5 implies that |CSAPn| ≥
|CSn,1|3 and thus, from Lemma 2.4, |CSAPn| ≥ p(n− 1)3. Now, since p(n) is

equivalent to eπ
√

2n/3

4n
√
3

when n tends to infinity [17] and |CSAPn| ≤ |CSIn| =
p(n)3, it is verified that:
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n |CSAn|
|CSn,m|

|CSAPn| |[CSAPn]|m
1 2 3 4 5 6 7 8

1 1 1 1
2 4 1 5 3
3 6 2 15 7
4 19 3 1 65 22
5 8 5 1 223 60
6 45 7 2 1 869 197
7 12 11 2 1 2535 526
8 87 15 4 1 1 7663 1492
9 43 22 4 2 1 21156 3937
10 89 30 7 2 1 1 60264 10850
11 21 42 8 3 1 1 150953 26628
12 407 56 12 4 2 1 1 385538 66984
13 27 77 14 5 2 1 1 915452 157398
14 141 101 21 6 3 1 1 1 2193225 374127
15 150 135 24 9 3 2 1 1 4928696 836154
16 503 176 34 10 5 2 1 1 1 11209311 1893607
17 40 231 41 13 5 3 1 1 1 24406191 4110132

Table 1: Cardinality of the sets of cycle structures, for n ≤ 17 and m ≤ ⌊n
2 ⌋.

1 ≥ lim
n→∞

|CSAPn|
|CSIn|

≥ lim
n→∞

p(n− 1)3

p(n)3
= 1.

�

For n ≤ 17, Table 1 shows the values |CSn,m| and |CSAPn|, where m ≤
⌊n
2
⌋, in comparison with those of |CSAn|, which can be obtained by using the

classification given in [10, 29]. The number |[CSAPn]| of parastrophic classes
of CSAPn is also shown.
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3. The size of a partial Latin square related to an autotopism.

Given z = (z1, z2, z3) ∈ CSAPn and Θ = (α, β, γ) ∈ Iz, any partial Latin
square P ∈ PLSΘ can be decomposed into nz1 ·nz2 blocks Pij whose rows and
columns are respectively determined by the elements of the cycle αi of α and
the cycle βj of β, that is, O(Pij) = {(r, c, s) ∈ O(P ) : r ∈ αi and c ∈ βj}. It
will be called the Θ-decomposition of P . Specifically, z determines not only
the number of these blocks, but also their possible sizes and, consequently, a
pair of bounds for the size of P . To see it, let us define the set:

LCMz = {(i, j) ∈ [n]2 : ∃k ∈ [n] s.t. (i, j, k) ∈ LCMn and z1i · z2j · z3k > 0}.

The following results hold:

Lemma 3.1. Given z ∈ CSAPn, Θ ∈ Iz, P ∈ PLSΘ and an i × j-block B
of the Θ-decomposition of P , there exists ωB ∈ [gcd(i, j)] ∪ {0} such that
|B| = ωB · lcm(i, j). Furthermore, ωB = 0 if (i, j) ̸∈ LCMz.

Proof. Analogously to the proof of Lemma 2.2, the Latin square condi-
tion implies |B| = 0, whenever (i, j) ̸∈ LCMz. Besides, given (r, c, s) ∈ O(B),
its orbit by the action of the group generated by Θ = (α, β, γ) is the set of
triples (αt(r), βt(c), γt(s)) ∈ O(B), for all t ∈ [lcm(i, j)]. Thus, the Latin
square condition implies |B| to be a multiple of lcm(i, j). Finally, since there
are i · j cells in B, the multiplicative factor must be at most gcd(i, j). �

Proposition 3.2. Given z = (z1, z2, z3) ∈ CSAPn, let z
(23) = (z1, z3, z2) and

z(13) = (z3, z2, z1). Then, given P ∈ PLSz, it is lz ≤ |P | ≤ uz, where:

lz = min
(i,j)∈LCMz

{lcm(i, j)},

uz = min{
∑

(i,j)∈LCMz

z1i ·z2j ·i·j,
∑

(i,k)∈LCM
z(23)

z1i ·z3k ·i·k,
∑

(k,j)∈LCM
z(13)

z2j ·z3k ·j ·k}.

Proof. Let Θ ∈ Iz be such that P ∈ PLSΘ and let B be a block of
the Θ-decomposition of P such that |B| > 0. From Lemma 3.1, if B is
an i × j-block, where (i, j) ∈ LCMz, then lcm(i, j) ≤ |B| ≤ i · j and thus
lz ≤ |P | ≤

∑
(i,j)∈LCMz

z1i · z2j · i · j. Since the size of a partial Latin square
is invariant by parastrophism and P π ∈ PLSΘπ for all π ∈ S3, the number
uz is an upper bound of |P |. �
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From the previous results, it is deduced that the possible sizes of the
elements of PLSz must be in the set:

Sizes(z) =

 ∑
(i,j)∈LCMz

ωij · lcm(i, j) ≤ uz : ωij ∈ [z1i · z2j · gcd(i, j)]

 .

As an example, let us consider z = (6, 3 · 2 · 1, 4 · 2) ∈ CSAP 6 and Θ =
((123456), (123)(45)(6), (1234)(56)) ∈ PLSz. The Θ-decomposition of any
partial Latin square P ∈ PLSΘ is then formed by three blocks, P11, P12 and
P13, whose cells are respectively indicated by the symbols ·, ∗ and ◦ in the
following diagram: 

· · · ∗ ∗ ◦
· · · ∗ ∗ ◦
· · · ∗ ∗ ◦
· · · ∗ ∗ ◦
· · · ∗ ∗ ◦
· · · ∗ ∗ ◦

 .

Besides, LCMz = {(6, 3)}, LCMz(23) = {(6, 2)} and LCMz(13) = {(2, 3)}.
Hence, from Proposition 3.2, it must be 6 ≤ |P | ≤ min{18, 12, 6} = 6. Thus,
Sizes(z) = {6} and |P | = 6. Specifically, there are six possibilities for P :


5 · · · · ·
· 6 · · · ·
· · 5 · · ·
6 · · · · ·
· 5 · · · ·
· · 6 · · ·

 ,


6 · · · · ·
· 5 · · · ·
· · 6 · · ·
5 · · · · ·
· 6 · · · ·
· · 5 · · ·

 ,


· 5 · · · ·
· · 6 · · ·
5 · · · · ·
· 6 · · · ·
· · 5 · · ·
6 · · · · ·

 ,


· 6 · · · ·
· · 5 · · ·
6 · · · · ·
· 5 · · · ·
· · 6 · · ·
5 · · · · ·

 ,


· · 5 · · ·
6 · · · · ·
· 5 · · · ·
· · 6 · · ·
5 · · · · ·
· 6 · · · ·

 ,


· · 6 · · ·
5 · · · · ·
· 6 · · · ·
· · 5 · · ·
6 · · · · ·
· 5 · · · ·

 .

4. The number of partial Latin squares related to an autotopism.

Given z ∈ CSAPn, Θ ∈ Iz, P ∈ PLSΘ and s ∈ [n], let us define the sets:

PLSΘ,[P ] = PLSΘ ∩ [P ], PLSΘ,s = PLSΘ ∩ PLSn,s.

In the current section, given Θ ∈ In, the cardinality of the set PLSΘ

is studied. The following result implies that it only depends on the cycle
structure of Θ:
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Lemma 4.1. The number of isotopic partial Latin squares related to an au-
totopism only depends on the parastrophic class of the cycle structure of the
latter.

Proof. Let Θ1,Θ2 ∈ In and π ∈ S3 be such that zΘ1 = zΘπ
2
and let

P ∈ PLSn. Since Θ1 and Θπ
2 are conjugate, there exists Θ ∈ In such

that Θπ
2 = ΘΘ1Θ

−1. Now, given Q ∈ PLSΘ1,[P ], it is QΘ ∈ PLSΘπ
2 ,[P ]

and therefore
(
QΘ

)π−1

∈ PLSΘ2,[P ]. Thus, |PLSΘ1,[P ]| ≤ |PLSΘ2,[P ]|. The
opposite inequality is similarly proven. �

The relation ∼ between isotopic partial Latin squares can be used in order
to define equivalence classes in PLSΘ. Since the size of a partial Latin square
is preserved by isotopism, Lemma 4.1 implies the following cardinalities to
be well-defined:

∆[P ](z) =
∣∣PLSΘ,[P ]

∣∣ ,
∆s(z) = |PLSΘ,s| =

∑
[Q] ∈ PLSΘ/ ∼

s.t. |Q| = s

∆[Q](z),

∆P(z) = |PLSΘ| =
∑

[Q]∈PLSΘ/∼

∆[Q](z) =
∑

s∈Sizes(z)

∆s(z),

It can be defined a natural incidence relation IPn between PLSn and
In, where, given P ∈ PLSn and Θ ∈ In, then (P,Θ) ∈ IPn if and only if
P ∈ PLSΘ. Besides, let us denote by AP the set of autotopisms of P . The
following results are then proven:

Proposition 4.2. Let P ∈ PLSn and z ∈ CSAPn. The triples ([P ], Iz, IPn),
(PLSn,s, Iz, IPn) and (PLSn, Iz, IPn) are, respectively, ∆[P ](z)-, ∆s(z)- and
∆P(z)-uniform incidence structures and all their blocks have the same mul-
tiplicity. Moreover, the former incidence structure is regular.

Proof. From Lemma 4.1, it is enough to study the uniformity and multi-
plicity of ([P ], Iz, IPn). Indeed, the uniformity is an immediate consequence
of that lemma. Now, in order to see that all the blocks have the same mul-
tiplicity, let Θ1,Θ

′
1 ∈ Iz be such that PLSΘ1,[P ] = PLSΘ′

1,[P ] and let us
consider Θ2 ∈ Iz. Let Θ,Θ′ ∈ In be such that Θ1 = ΘΘ2Θ

−1 and Θ′
1 =

Θ′Θ1Θ
′−1. Then, PLSΘ2,[P ] = PLSΘ−1Θ′Θ,[P ], because Q ∈ PLSΘ2,[P ] ⇔
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QΘ ∈ PLSΘ1,[P ] ⇔ QΘ′Θ ∈ PLSΘ′
1,[P ] = PLSΘ1,[P ] ⇔ QΘ−1Θ′Θ ∈ PLSΘ2,[P ].

Moreover, Θ−1Θ′Θ = Θ2 ⇔ Θ′ = Θ−1Θ2Θ = Θ1 ⇔ Θ′
1 = Θ1. Thus, the

arbitrariness of Θ1,Θ
′
1 and Θ2 implies the claim about the multiplicity.

Finally, in order to see that ([P ], Iz, IPn) is a regular incidence structure,
let us consider Q1, Q2 ∈ [P ] and let Θ ∈ AQ1 ∩ Iz. Since Q1 and Q2 are
isotopic, there must exist Θ′ ∈ In such that QΘ′

1 = Q2. Hence, Θ′ΘΘ′−1 ∈
AQ2 ∩ Iz and therefore |AQ1 ∩Iz| ≤ |AQ2 ∩Iz|. The regularity holds because
the opposite inequality is analogously proven. �

Theorem 4.3. Let P ∈ PLSn. If Q ∈ [P ], then |AQ| = |AP | and it coin-
cides with the cardinality of the set IP,Q of isotopisms from P to Q.

Proof. From Proposition 4.2, it is verified that |AQ| =
∑

z∈CSAP n
|AQ ∩

Iz| =
∑

z∈CSAP n
|AP ∩ Iz| = |AP |. Now, if IP,Q contains exactly m distinct

isotopisms Θ1, . . . ,Θm ∈ In, then the set {Θ1Θ
−1
1 , . . . ,ΘmΘ

−1
1 } is formed

by m distinct autotopisms of Q and therefore |IP,Q| ≤ |AQ|. The opposite
inequality is also verified, because, given Θ ∈ IP,Q, it is Θ

′Θ ∈ IP,Q, for all
Θ′ ∈ AQ. �

Hereafter, we focus our study on the values ∆s(z). The values ∆[P ](z)
needs a comprehensive analysis of the isotopism classes of partial Latin
squares and will be considered in a future study. Firstly, it raises the natural
question of whether it is possible to obtain some general expression which
determines these values for some specific size or cycle structure. Thus, for
instance, it is immediate to see that ∆s((1

n, 1n, 1n)) = |PLSn,s| and, since
PLSn,n2 = LSn, it is also clear that ∆n2(z) = ∆(z). In this regard, let us
study some cases in which a general formula is given:

Proposition 4.4. Let s ∈ [n2]. It is verified that:

∆s((n, n, 1
n)) =

{
n!2

k!·(n−k)!2
, if ∃k ∈ [n] s.t. s = k · n,

0, otherwise.

Proof. Let Θ = (α, β, Id) ∈ I(n,n,1n), where Id denotes the trivial
permutation, and P ∈ PLSΘ,s. Since the Θ-decomposition of P is only
formed by P itself and LCMz = {(n, n)}, Lemma 3.1 implies s = k · n,
for some k ∈ [n]. Consequently, O(P ) is decomposed under the action
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of Θ into k orbits of length n. Specifically, there exist exactly k distinct
columns c1, . . . , ck ∈ [n] and k distinct symbols s1, . . . , sk ∈ [n], such that
(1, ci, si) ∈ O(P ), for all i ∈ [k]. The k orbits of O(P ) under Θ are then the
sets {(αt(1), βt(ci), si) : t ∈ [n]}, with i ∈ [k].

Every element of PLSΘ,k·n is therefore uniquely determined by the choice
of the columns ci and symbols si. Namely, there exist

(
n
k

)
possible ways

of choosing the k columns and, once they have been selected, there exist
n!

(n−k)!
different ways of assigning k symbols to the cells (1, c1), . . . , (1, cn).

Therefore, ∆s(z) =
(
n
k

)
· n!
(n−k)!

= n!2

k!·(n−k)!2
. �

Stones and Wanless defined in [30] a partial orthomorphism of Zn of size
s as an injective map ν : S → Zn such that S is a subset of s elements
of Zn and ν(i) − i ̸≡ ν(j) − j (mod n), for all distinct i, j ∈ S. Another
particular case of interest in our study is then that of a cyclic automorphism
Θ ∈ I(n,n,n), for which, according to the results of Section 3, it must be
Sizes(Θ) = {k · n : k ∈ [n]}. In particular, the next result holds:

Proposition 4.5. Given k ∈ [n], the number ∆k·n((n, n, n)) coincides with
the number of partial orthomorphisms of Zn of size k.

Proof. Let Θ = (1 . . . n) ∈ An ∩ I(n,n,n) and P ∈ PLSΘ,k·n. Analogously
to the case of Proposition 4.4, the set O(P ) is decomposed under the action
of Θ into k orbits of length n in such a way that there exist k non-empty
cells in each row of P . Thus, the set S = {i ∈ Zn : (1, (i (mod n) + 1), s) ∈
O(P ) for some s ∈ [n]} has cardinality k. Given i ∈ S, let si ∈ [n] be
such that (1, (i (mod n) + 1), si) ∈ O(P ). Since P satisfies the Latin square
condition, the map ν : S → Zn defined by ν(i) = si (mod n) is injective.
Moreover, since Θ is an autotopism of P , the Latin square condition also
implies that si ̸≡ sj + i − j (mod n). Hence, ν is a partial orthomorphism
of Zn of size k. It establishes a 1-1 correspondence between partial Latin
squares of PLSΘ,k·n and partial orthomorphisms of Zn of size k. Therefore,
∆k·n(Θ) coincides with the number of such orthomorphisms and the result
follows from Lemma 4.1. �

A general formula for the number of partial orthomorphisms of Zn of a
given size is shown by Stones in [28] (Equation (3.9) on page 81) and is also
to appear in [31]. More specifically, Theorem 3.2.4 and Figure 3.5 of [28]
establish by Proposition 4.5 explicit formulas of ∆k·n((n, n, n)), for k ≤ 5.
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Let us now see a formula for the number of partial Latin squares of
smallest size related to an autotopism:

Theorem 4.6. Given z = (z1, z2, z3) ∈ CSAPn:

∆lz(z) =
∑

(i, j) ∈ LCMz

s.t. lcm(i, j) = lz

z1i · z2j · gcd(i, j) ·
∑
k ∈ [n]

s.t. (i, j, k) ∈ LCMn

k · z3k.

Proof. Given Θ = (α, β, γ) ∈ Iz, let P ∈ PLSΘ be such that |P | = lz.
From Lemma 3.1 and Proposition 3.2, there must exist only one non-empty
block B in the Θ-decomposition of P . Specifically, B must be an i× j-block
of size lcm(i, j) = lz, where (i, j) ∈ LCMz. There exist z1i ·z2j possible blocks
in this way.

Moreover, O(B) must be composed by all the triples of one of the gcd(i, j)
orbits induced on B by the action of Θ. If (r, c, s) ∈ [n]3 is one of these triples,
then the symbol s must be one of the k · z3k elements of a k-cycle of γ such
that (i, j, k) ∈ LCMn. The result follows then by considering all the previous
possibilities. �

Corollary 4.7. Let P ∈ PLSn,1. Given z = (z1, z2, z3) ∈ CSAPn:

∆[P ](z) = ∆1(z) = z11 · z21 · z31.

Proof. Since there exists only one isotopism class of partial Latin squares
of size 1, it is ∆[P ](z) = ∆1(z). Now, if lz > 1, then (1, 1) ̸∈ LCMz. Hence,
z11 · z21 · z31 = 0 and the result holds. Finally, if lz = 1, then it is enough to
observe that it must be (i, j, k) = (1, 1, 1) in the formula of Theorem 4.6. �

The number ∆s(z) can also obviously be obtained if the set PLSΘ,n is
known for some Θ ∈ Iz. In order to determine this set, let us observe that,
analogously to the case of Latin squares [6], PLSn can be identified [21] with
the set SPn of solutions of the equation system:

∑
r∈[n] xrcs ≤ 1,∀c, s ∈ [n],∑
c∈[n] xrcs ≤ 1,∀r, s ∈ [n],∑
s∈[n] xrcs ≤ 1,∀r, c ∈ [n],

xrcs ∈ {0, 1},∀r, c, s ∈ [n].

(1)
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Specifically, it is enough to define the map φn : PLSn → SPn , such
that, given P ∈ PLSn, it is φn(P ) = (xP

111, . . . , x
P
11n, x

P
121, . . . , x

P
nnn), where,

xP
rcs = 1 if (r, c, s) ∈ O(P ) and 0, otherwise. The restriction of φn to PLSΘ

and PLSΘ,m assures the truthfulness of the following result:

Proposition 4.8. Given Θ = (α, β, γ) ∈ In, there exists a bijection between
PLSΘ and the set of solutions of the equation system which results after
adding to (1) the constraints:

xrcs = xα(r)β(c)γ(s),∀r, c, s ∈ [n].

Moreover, given m ∈ [n2], if the equation:∑
r,c,s∈[n]

xrcs = m

is also added, then there exists a bijection between PLSΘ,m and the set of
solutions of the resulting equation system. �

Proposition 4.8 implies that PLSΘ,m is determined by 2n3 + 3n2 + 1
polynomial equations of degree 1 and 2 in n3 variables:

Corollary 4.9. Given Θ = (α, β, γ) ∈ In and m ∈ [n2], PLSΘ,m is the set
of zeros of the ideal:

I = ⟨ (
∑
r∈[n]

xrcs) · (1−
∑
r∈[n]

xrcs) : c, s ∈ [n] ⟩+ ⟨ (
∑
c∈[n]

xrcs) · (1−
∑
c∈[n]

xrcs) : r, s ∈ [n] ⟩ +

⟨ (
∑
s∈[n]

xrcs) · (1−
∑
s∈[n]

xrcs) : r, c ∈ [n] ⟩+ ⟨xrcs · (1− xrcs) : r, c, s ∈ [n] ⟩ +

⟨xrcs − xα(r)β(c)γ(s) : r, c, s ∈ [n] ⟩+ ⟨m−
∑

r,c,s∈[n]

xrcs ⟩ ⊆ Q[xn] = Q[x111, . . . , xnnn].

�

The ideal I of Corollary 4.9 is zero-dimensional, that is, there exists
only a finite number of solutions of the corresponding system of polynomial
equations. Moreover, I ∩Q[xrcs] = ⟨xrcs · (1− xrcs) ⟩ ⊆ I for all r, c, s ∈ [n]
and, therefore, Proposition 2.7 of [4] implies I to be radical, that is, any
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n z
∆s(z)

∆P(z)s
1 2 3 4 5 6 7 8 9

1 (1, 1, 1) 1 1

2
(2,2,2) 4 0 4
(2, 2, 12) 4 2 6
(12, 12, 12) 8 16 8 2 34

3

(3,3,3) 9 9 3 21
(3,3,2·1) 3 3
(3, 3, 13) 9 18 6 33

(2·1,2·1,2·1) 1 10 10 24 24 20 20 4 4 117
(2·1,2·1,13) 3 6 18 6 18 51
(2·1,13,13) 9 18 6 33
(13, 13, 13) 27 270 1278 3078 3834 2412 756 108 12 11775

Table 2: ∆s(z) and ∆P(z) for each parastrophic class of CSAPn, where n ≤ 3.

polynomial p(xn) belongs to I whenever there exists t ∈ N such that p(xn)
t ∈

I. Since the affine variety defined by I is V (I) = PLSΘ,m, Theorem 2.10 of
[4] assures ∆m(zΘ) = |V (I)| = dimQ(Q[xn]/I), which can be computed from
any Gröbner basis of I, with respect to any term ordering. In this regard, it
has been implemented in Singular [5] a procedure called PLST, which has
been included in the library pls.lib [11] and which has been used in order to
obtain the values of ∆s(z) and ∆P(z) for each parastrophic class of CSAPn,
where n ≤ 4. These values are shown in Tables 2 and 3, where the blank
cells correspond to those s ̸∈ Sizes(z).

5. Θ-completable partial Latin squares.

In the Introduction, given z ∈ CSAPn and Θ ∈ Iz, it has been indi-
cated that a partial Latin square P ∈ PLSΘ can be used in the compu-
tation of ∆(z), if a multiplicative factor (P -coefficient of symmetry of Θ
[12]) cP ∈ N is found such that ∆(z) = cP · |LSΘ,P |. In this regard, let
us finish the present study with a theoretical basis for this concept of co-
efficient of symmetry. To do it, it is necessary to generalize the traditional
concept of completability. Specifically, P will be said to be Θ-completable
if LSΘ,P ̸= ∅. Consequently, the traditional completability corresponds to
the trivial isotopism Θ = (Id, Id, Id). Moreover, if a partial Latin square
is Θ-completable, then it is also completable in the traditional way. Let us
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observe that Θ-completability is a particular case of the F-completability
defined in [8], where F is a set of autotopisms of partial Latin squares. A
specific case of Θ-completability is the cyclically completability studied by
Grüttmüller in [15, 16], where Θ would be a cyclic automorphism. Another
case of Θ-completability is given in [3], where authors study the completion
of Latin rectangles that admit an autotopism (Id, α, β) to a Latin square
related to such an autotopism.

If P is Θ-completable, it is not mandatory for Θ to be an autotopism of
P . Thus, for instance, if Θ = ((12), (12), Id) ∈ A2, the partial Latin square
of orthogonal representation {(1, 1, 1)} is Θ-completable but does not belong
to PLSΘ. Indeed, it can be easily checked that every partial Latin square of
order n ≤ 2 is Θ-completable whenever Θ is non-trivial.

An example of non-trivial isotopism for which there exists a related partial
Latin square which is neither Θ-completable nor traditionally completable is
Θ = ((12)(3), (12)(3), (12)(3)) ∈ A3. A partial Latin square in such condi-
tions is:  3 · 2

· 3 1
2 1 ·

 .

An example where it is possible to observe the difference between both
concepts is given if Θ = ((12)(34), (12)(34), (12)(3)(4)) ∈ A4. In this case,
the following partial Latin square is not Θ-completable, but it is completable
in the traditional way: 

3 4 · ·
4 3 · ·
· · · ·
· · · ·

 .

Finally, let us observe that, unlike traditional completability, Θ-com-
pletability is not invariant under isotopism. Thus, for instance, if Θ =
(123)(4)(5)(6) ∈ A6, then it can be checked that the first of the follow-
ing two isotopic partial Latin squares of PLSΘ is Θ-completable, but the
second is not:


· · · · · ·
· · · · · ·
· · · · · ·
· · · 4 · ·
· · · · 5 ·
· · · · · 6

 ,


1 · · · · ·
· 2 · · · ·
· · 3 · · ·
· · · · · ·
· · · · · ·
· · · · · ·

 .
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Let CΘ denote the set of Θ-completable partial Latin squares and let
CΘ,s = CΘ ∩ PLSΘ,s. The cardinalities of these sets only depend on the
parastrophic class of the cycle structure of Θ:

Lemma 5.1. Let Θ1,Θ2 ∈ In be such that [zΘ1 ] = [zΘ2 ]. Then, |CΘ1,s| =
|CΘ2,s|, for all s ∈ [n2]. As a consequence, |CΘ1 | = |CΘ2 |.

Proof. Let π ∈ S3 be such that zΘ1 = zΘπ
2
. Given s ∈ [n2] and P ∈ CΘ1,s,

there exists L ∈ LSΘ1 such that O(P ) ⊆ O(L). Besides, since Θ1 and Θπ
2

are conjugate, then there exists Θ ∈ In such that Θπ
2 = ΘΘ1Θ

−1. Thus,
(PΘ)π

−1 ∈ PLSΘ2 , (L
Θ)π

−1 ∈ LSΘ2 and O((PΘ)π
−1
) ⊆ O((LΘ)π

−1
). Since

|(PΘ)π
−1 | = |P |, it is verified that |CΘ1,s| ≤ |CΘ2,s|. The opposite inequality

is analogously proven and the consequence is immediate, because |CΘ1 | =∑
s∈[n2] |CΘ1,s| =

∑
s∈[n2] |CΘ2,s| = |CΘ2 |. �

From the previous result, it is natural to define the numbers cz and cz,s
as the respective cardinalities of CΘ and CΘ,s, for any Θ ∈ Iz. Specifically,
in the case of cyclic automorphisms, the results of Grüttmüller in [15] imply
that c(n,n,n) = 0 if n is even and c(n,n,n),k·n = ∆k·n((n, n, n)), for all n odd and
k ≤ 2. Although it is not true in general if k ≥ 3 [16], some partial results
have been studied in this regard in [2, 30]. For a general cycle structure, the
following result holds:

Theorem 5.2. Given z ∈ CSAPn and Θ ∈ Iz, let I be the ideal related to
PLSΘ,n2 according to Corollary 4.9. Given P ∈ PLSΘ, it is verified that:

P ∈ CΘ ⇔ dimQ (Q[xn]/(I + ⟨xrcs − 1: (r, c, s) ∈ O(P ) ⟩)) ̸= 0.

Proof. From Corollary 4.9, the affine variety of the ideal I + ⟨ xrcs −
1: (r, c, s) ∈ O(P ) ⟩ coincides with LSΘ,P . This ideal is radical by Proposi-
tion 2.7 of [4], because contains its intersection with Q[xrcs], for all r, c, s ∈
[n]. Specifically, this intersection is either ⟨xrcs − 1 ⟩ if (r, c, s) ∈ O(P ) or
⟨ xrcs · (xrcs − 1) ⟩, otherwise. The result follows from Theorem 2.10 of [4]. �

Gröbner bases have then been used to determine the numbers cz,s and
cz (Table 4) for each non-trivial parastrophic class of CSAn , where n ≤ 4.
Specifically, given Θ ∈ Iz, the procedure PLST of [11] has been applied in
order to obtain the partial Latin squares of PLSΘ,s and the dimension of
each affine variety of Theorem 5.2.
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n z
cz,s

czs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 (1, 1, 1) 1 1
2 (2, 2, 12) 4 2 6

3
(3,3,3) 9 9 3 21
(3, 3, 13) 9 18 6 33

(2·1,2·1,2·1) 1 10 10 24 24 16 16 4 4 109

4

(4,4,22) 16 40 32 8 96
(4,4,2·12) 16 40 32 8 96
(4,4,14) 16 72 96 24 208

(3·1,3·1,3·1) 1 18 18 90 90 90 90 45 45 9 9 505
(22,22,22) 32 352 1408 2144 1792 896 256 32 6912
(22,22,2·12) 32 336 1344 2144 1792 896 256 32 6832
(22,22,14) 32 368 1728 3792 4224 2496 768 96 13504

(2·12,2·12,2·12) 8 24 104 200 528 784 1328 1560 1760 1568 1248 800 448 192 64 16 10632

Table 4: cz,s and cz for each non-trivial parastrophic class of CSAn , where n ≤ 4.

Given z ∈ CSAPn
and Θ ∈ Iz, a set {P1, . . . , Pm} of Θ-completable partial

Latin squares will be said to be a basis of LSΘ if
∪

i∈[m] LSΘ,Pi
= LSΘ and

LSΘ,Pi
∩ LSΘ,Pj

= ∅, whenever i ̸= j. In this case, ∆(z) =
∑

i∈[m] |LSΘ,Pi
|.

Let us observe that, from a computational point of view, it is interesting
to determine a basis of LSΘ such that the sizes of its elements are as great
as it is possible, because then, for each Pi, it would be feasible to add to
the constraints of Proposition 4.8, all those of the form xrcs = 1, whenever
(r, c, s) ∈ O(Pi). The calculus of the corresponding Gröbner basis would be
then more efficient and it would allow to obtain new values ∆(z). The next
result holds:

Lemma 5.3. Let S ⊆ [n]2 and Θ = (α, β, γ) ∈ An. The following sets are
bases of LSΘ:

SRC = {P ∈ CΘ : (r, c, s) ∈ O(P ) ⇔ (r, c) ∈ S},

SRS = {P ∈ CΘ : (r, c, s) ∈ O(P ) ⇔ (r, s) ∈ S},

SCS = {P ∈ CΘ : (r, c, s) ∈ O(P ) ⇔ (c, s) ∈ S}.

Proof. Let us prove that SRC is a basis of LSΘ; the other cases are
similar. Since Θ ∈ An, it must be LSΘ ̸= ∅. Now, given L ∈ LSΘ, let
P ∈ SRC be such that O(P ) = {(r, c, s) ∈ O(L) : (r, c) ∈ S}. Thus, L ∈
LSΘ,P and hence LSΘ =

∪
Q∈SRC

LSΘ,Q. Finally, given two distinct elements
Q and Q′ in SRC , it must exist (r, c) ∈ S and s ∈ [n] such that (r, c, s) ∈
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O(Q) − O(Q′). It implies that LSΘ,Q ∩ LSΘ,Q′ = ∅ and therefore SRC is a
basis of LSΘ. �

A special case appears when |LSΘ,Pi
| = |LSΘ,Pj

|, for all i, j ∈ [m]. Such a
basis will be called homogeneous and it follows that ∆(z) = m·|LSΘ,Pi

|, for all
i ∈ [m]. The cardinality m of the homogeneous basis would be therefore the
Pi-coefficient of symmetry of Θ, for all i ∈ [m]. Although a comprehensive
study should be developed in this regard, let us finish the current paper with
a result with gives a theoretical support to the majority of the coefficients of
symmetry which were used in [12]:

Theorem 5.4. Let z = (z1, z2, z3) ∈ CSAn be such that z11 · z21 · z31 ̸= 0. Let
Θ = (α, β, γ) ∈ Iz and S = {(i, j) ∈ [n]2 : i ∈ α∞, j ∈ β∞}. It is verified
that SRC is an homogeneous basis of LSΘ of cardinality |LSz11|.

Proof. From the hypothesis, it must be z11 = z21 = z31 ([24], Theorem
1). Furthermore, given P ∈ PLSΘ, the corresponding block P∞∞ of the
Θ-decomposition of P is a z11×z11-array, such that each of its non-filled cells
must contain one of the z11 fixed symbols of γ, that is, it is a Latin subsquare
of P of order z11. Thus, since Θ ∈ An, Lemma 5.3 implies the set SRC to be a
basis of LSΘ of |LSz11| elements. Now, let us consider two distinct elements
Q,Q′ ∈ SRC . Given L ∈ LSΘ,Q, let us define the Latin square L′ ∈ LSn such
that O(L′) = {(r, c, s) ∈ [n]3 : (r, c, s) ∈ O(Q′) if (r, c) ∈ S, or (r, c, s) ∈
O(L), otherwise}, that is, the only difference of L′ with respect to L is the
block L′

∞∞, which is Q′ instead of Q. Since L ∈ LSΘ and Q′ ∈ PLSΘ, it
must be L′ ∈ LSΘ. Hence, |LSΘ,Q| ≤ |LSΘ,Q′|. The opposite inequality is
analogously proven and therefore SRC is homogeneous. �

6. Final remarks and further work.

In the current paper, it has been dealt with the set of autotopisms of
partial Latin squares in order to develop further techniques which allow to
improve some results about the set of autotopisms of Latin squares, such as
those related with the obtaining of the values ∆(z). In Section 2, the cardi-
nality of CSAPn was studied and a lower bound was determined. Although it
can be obtained by an exhaustive search once Lemma 2.2 is implemented in a
computer procedure, it raises the question of whether it is possible to obtain
a general formula for |CSAPn|. A similar question appears in Section 4 with
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the values ∆[P ](z), for which a comprehensive study of isotopism classes of
PLSn would be necessary. It would also be useful in order to improve the
computation and increase the order n ≤ 4 which has been used in the exam-
ples of the present paper. Finally, once a theoretical basis has been exposed
in Section 5 for the concept of coefficient of symmetry of an autotopism, it
seems that an exhaustive study in this regard would be necessary to solve
some of the problems of computation related to the calculus of the values
∆(z).
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[16] M. Grüttmüller, Completing partial latin squares with prescribed diag-
onals, Discrete Appl. Math. 138 (2004), no. 1–2, 89–97.

[17] G. H. Hardy, S. and Ramanujan, Asymptotic Formulae in Combinatory
Analysis, Proc. London Math. Soc. 17 (1918), 75–115.

[18] A. Hulpke, P. Kaski and P. R. J. Österg̊ard, The number of Latin squares
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Appendix A. Glossary of symbols.

An Set of automorphisms of at least one Latin square of order n.
An Set of autotopisms of at least one Latin square of order n.
APn Set of autotopisms of at least one partial Latin square of order n.
CSn Cycle structures of Sn.
CSS Cycle structures of S ⊆ In.
CSn,m {nzn · . . . · 1z1 ∈ CSn : zm > 0 and zi = 0,∀i ∈ [m− 1]}.
CΘ Θ-completable partial Latin squares.
CΘ,s CΘ ∩ PLSΘ,s.
cz Cardinality of CΘ, for all Θ ∈ Iz.
cz,s Cardinality of CΘ,s, for all Θ ∈ Iz.
In Isotopisms of n elements.
IP,Q Isotopisms between two partial Latin squares P and Q.
Iz Isotopisms with cycle structure z.
LCMn {(i, j, k) ∈ [n]3 : lcm(i, j) = lcm(i, k) = lcm(j, k) = lcm(i, j, k)}.
LCMz {(i, j) ∈ [n]2 : ∃k ∈ [n] s.t. (i, j, k) ∈ LCMn and z1i · z2j · z3k > 0}.
LSn Latin squares of order n.
LSz Latin squares related to Iz.
LSΘ Latin squares related to Θ ∈ An.
LSΘ,P Latin squares of LSΘ to which P ∈ PLSn can be completed.
lz Lower bound of the size of any P ∈ PLSz (Proposition 3.2).
[n] {1,. . . ,n}.
nz Number of cycles of z ∈ CSn.
nπ Number of cycles of π ∈ Sn.
O(P ) Orthogonal representation of P ∈ PLSn.
|P | Size of P ∈ PLSn.
[P ] Isotopism class of P ∈ PLSn.
p(n) Number of partitions of n.
P π Parastrophic partial Latin square of P ∈ PLSn w.r.t. π ∈ S3.
PΘ Isotopic partial Latin square of P ∈ PLSn w.r.t. Θ ∈ In.
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PLSn Non-empty partial Latin squares of order n.
PLSn,s Partial Latin squares of order n and size s.
PLSz Partial Latin squares related to Iz.
PLSΘ Partial Latin squares related to Θ ∈ An.
PLSΘ,[P ] PLSΘ ∩ [P ].
PLSΘ,s PLSΘ ∩ PLSn,s, where Θ ∈ In.
Sn Symmetric group of n elements.
uz Upper bound of the size of any P ∈ PLSz (Proposition 3.2).
zΘ Cycle structure of Θ ∈ In.
[zΘ] Parastrophic class of the cycle structure of Θ ∈ In.
∆(z) |LSΘ|, for any Θ ∈ Iz.
∆[P ](z) |PLSΘ,[P ]|, for any Θ ∈ Iz.
∆s(z) |PLSΘ,s|, for any Θ ∈ Iz.
∆P(z) |PLSΘ|, for any Θ ∈ Iz.
π∞ Union of 1-cycles of π ∈ Sn written in natural order.
∼ Equivalence relation between isotopic partial Latin squares.
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