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Abstract  

Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and 

heptadecane can be found even in waters minimally polluted with crude oil. Populations of 

hydrocarbon-degrading bacteria, which are responsible for turnover of these compounds, are 

also found throughout marine systems, including in unpolluted waters. These observations 

suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. 

Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus 

and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 

alkanes, between 0.022 to 0.368% of dry cell weight. Based on global population sizes and 

turnover rates, we estimate that these species have the capacity to produce 2-540 pg 

alkanes/mL/day, which translates into a global ocean yield of approximately 308-771 million 

tonnes of hydrocarbons annually. We also demonstrate that both obligate and facultative 

marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely 

prevents these hydrocarbons from accumulating in the environment. Our findings implicate 

cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon 

cycle within the upper ocean, where alkanes are continually produced and subsequently 

consumed within days. Furthermore we show that cyanobacterial alkane production is likely 

sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can 

rapidly expand upon localized release of crude oil from natural seepage and human activities.  
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Significance  

A number of organisms synthesize hydrocarbons, but the scale at which this occurs in the 

environment is unknown. Here, we provide the first global estimates of hydrocarbon 

production by the two most abundant cyanobacteria on Earth - Prochlorococcus and 

Synechococcus. We suggest that these organisms represent a significant and widespread 

source of hydrocarbons to the world's oceans, which in turn may sustain populations of 

obligate hydrocarbon-degrading bacteria known to be important in consuming anthropogenic 

oil spills. Our study demonstrates the role cyanobacteria play in the ocean ‘hydrocarbon 

cycle’ and reveals the massive scale of this process. The widespread distribution of 

cyanobacteria and hydrocarbon-degrading bacteria in freshwater, marine and terrestrial 

environments suggests the ‘hydrocarbon cycle’ is pervasive in many natural ecosystems. 
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\body 

Hydrocarbons are ubiquitous in the oceans, where natural seepage and human activities are 

estimated to release between 0.4 and 4.0 million tonnes of crude oil into the ocean ecosystem 

annually (1). Even in minimally polluted marine surface waters, alkanes such as pentadecane 

and heptadecane have been found at concentrations ranging from 2 to 130 pg/mL (2, 3), 

although their sources remain unclear. A small proportion, from 1 to 60 fg/mL, are associated 

with particulate matter >0.7 µm in diameter (4). Larger amounts may be associated with 

particulate matter <0.7 µm in diameter, since ocean concentrations are higher than the 

solubility of pentadecane and heptadecane, which is approximately 10 pg/mL and 1 pg/mL, 

respectively (2). Populations of hydrocarbon-degrading bacteria, referred to as 

hydrocarbonoclastic bacteria, including many species that cannot use other carbon sources, 

are present in marine systems and play an important role in turnover of these compounds (5-

9). Since obligate hydrocarbon-degrading bacteria are found in waters without significant 

levels of crude oil pollution, these organisms must use an alternate hydrocarbon source (9-

11).  

 

Here, we investigate the extent to which cyanobacteria may contribute to these marine 

hydrocarbon pools. Cyanobacteria (oxygenic photosynthetic bacteria) can synthesize C15 to 

C19 hydrocarbons via two separate pathways. The first produces alkanes, predominantly 

pentadecane, heptadecane and methyl-heptadecane, in addition to smaller amounts of 

alkenes, via acyl-ACP reductase (FAR) and aldehyde deformylating oxygenase (FAD) 

enzymes (12). The second pathway generates alkenes, primarily nonadecene and 1,14-

nonadecadiene via a polyketide synthase enzyme (Ols) (13). The abundance and ubiquity of 

cyanobacteria in the marine environment suggests hydrocarbon production in the oceans 

could be considerable and broadly distributed geographically (14, 15).  

 

We focused our studies on the two most abundant marine cyanobacteria, Prochlorococcus 

and Synechococcus (16). These genera have estimated global population sizes of 

2.9±0.1x10
27

 and 7.0±0.3x10
26 

cells respectively (14), and are together responsible for 

approximately a quarter of marine net primary production (14). These are also the only 

cyanobacterial genera for which global population size estimates have been compiled (14). 

Whilst the distribution patterns of both genera overlap (14, 17), Prochlorococcus cells 

dominate low-nutrient open-ocean areas between 40°N and 40°S and can be found at depths 
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up to 200 meters (16, 18). Synechococcus are more numerous in coastal and temperate 

regions where conditions and nutrient levels are more variable (14, 16), but are still widely 

distributed in high abundance.  

Results and discussion 

Marine cyanobacteria encode alkane biosynthetic pathways. We first examined the 

genetic capability for hydrocarbon production in marine cyanobacterial genomes. Previous 

studies have demonstrated that hydrocarbon biosynthetic pathways are conserved in 

sequenced cyanobacteria, encompassing isolates from marine, freshwater and terrestrial 

environments (19). This suggests that hydrocarbons have a key, as yet unidentified function 

in cyanobacteria which is independent of the ecosystem these organisms inhabit. We 

extended this work by including newly sequenced Prochlorococcus strains, isolated from 

diverse regions of the ocean (20). All 36 Prochlorococcus and 15 marine Synechococcus 

strains examined have the predicted capacity to synthesize alkanes via FAR/FAD enzymes 

(Table S1). With the exception of Leptolyngbya sp. PCC7376 and Moorea producens 3L, 

which encode Ols homologues, all of the other marine cyanobacteria including Cyanobium, 

Acaryochloris, Crocosphaera, Trichodesmium, Lyngbya, Oscillatoria, Nodularia and 

Microcoleus species encode FAR/FAD homologues (15, 19). Thus it is likely that alkanes are 

the predominant hydrocarbons released by cyanobacteria into the marine environment. 

Homologues of FAR/FAD and Ols were not identified in any other bacterial, plant or algal 

species, suggesting that these pathways for hydrocarbon production are unique to 

cyanobacteria.  

Prochlorococcus and Synechococcus accumulate predominantly heptadecane and 

pentadecane. Next, we measured the hydrocarbon contents of cultured Prochlorococcus and 

marine Synechococcus cells via gas chromatography-mass spectrometry (GC-MS). 

Hydrocarbon content has been quantified in a wide range of freshwater and terrestrial 

cyanobacteria, all of which produced either alkanes or alkenes, ranging between 0.024 to 

0.262% of dry cell weight (19). However the hydrocarbon content of Prochlorococcus and 

marine Synechococcus species has not been quantified. Our analysis included axenic cultures 

of three Prochlorococcus strains: CCMP1986 (MED4) and MIT9312 – both high-light 

adapted strains, representative of the most numerically abundant Prochlorococcus ecotypes 

(21) – and one low-light adapted strain, Prochlorococcus MIT9313. Axenic cultures of three 
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diverse marine Synechococcus strains, WH7803, WH7805 and WH8102 (16) and one 

estuarine strain, WH5701, were also examined. 

In all Prochlorococcus strains examined, pentadecane was the dominant hydrocarbon, 

approximately 96% of the total, with the remainder consisting of heptadecane (Table 1, Fig. 

S1). Pentadecane was previously identified as the dominant hydrocarbon in Prochlorococcus 

CCMP1986, although the presence of heptadecane was not observed (12). Total hydrocarbon 

contents were between 0.350 and 0.711 fg per cell or 0.149 to 0.368% of dry cell weight 

(Table 1). Pentadecane was also the dominant hydrocarbon in Synechococcus sp. WH7803, 

WH7805 and WH8102, ranging between 79 and 92% of total hydrocarbons (Table 1, Fig. 

S1). The remainder consisted of 8-heptadecene. The hydrocarbon composition of 

Prochlorococcus and marine Synechococcus species differs from other alkane producing 

cyanobacteria, where heptadecane was the dominant hydrocarbon (19). The hydrocarbon 

composition of Synechococcus sp. WH5701 was significantly different from the marine 

strains, consisting of 3.7% pentadecane, 45.3% heptadecane and 50.9% 8-heptadecene (Fig. 

S1), which may reflect its evolutionary distance from the other Synechococcus strains 

examined here (22). Total hydrocarbons in Synechococcus were between 0.304 and 2.580 fg 

per cell or 0.022 to 0.138% of dry cell weight (Table 1). With the exception of 

Prochlorococcus CCMP1986, which has the highest hydrocarbon yields so far observed in a 

cyanobacterium, hydrocarbon contents were within the range previously observed for other 

cyanobacteria (19).  

Significant potential for hydrocarbon production by Prochlorococcus and 

Synechococcus in the oceans. Given the average measured abundances of hydrocarbons in 

Prochlorococcus and Synechococcus cells and their population sizes, we estimate that, at any 

given point in time, these cyanobacteria represent a pool of 2.12 million tonnes of alkanes in 

the oceans (Table 1). While total population sizes of Prochlorococcus and Synechococcus 

remain largely stable on an annual timescale, their turnover rates are high. Prochlorococcus 

divide once every 1-2 days (23-25), with cellular losses balancing division in a quasi-steady 

state manner. Cyanobacterial mortality can be mediated by a variety of factors, including 

predation by grazers or viruses, UV-induced lysis or spontaneous cell death (18), resulting in 

release of organic carbon compounds, including alkanes, into the environment. At these 

cellular turnover rates, production rate of alkanes by Prochlorococcus globally is estimated to 

be between 269 and 539 million tonnes per annum (Table 1). Synechococcus maximum 

growth rates are comparable or slighter faster than Prochlorococcus (25, 26), with similar 
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mechanisms of mortality (27, 28). However, estimates of in situ specific growth rates are 

broader, between 1 to 6 days (29, 30), due to the varying environments Synechococcus 

occupies. Therefore total annual production of hydrocarbons by Synechococcus could vary 

between 39 and 232 million tonnes per annum (Table 1). 

Natural oil seepage from within marine sediments is estimated to be between 0.2-2 million 

tonnes per annum and is geographically concentrated at the continental margins (1). An 

equivalent release of hydrocarbons into the ocean is thought to result from human activities 

such as oil leakage from drilling rigs and shipping vessels (1). Localized events such as the 

Deepwater Horizon oil spill, which released approximately 0.435 million tonnes of oil (7), 

can further increase anthropogenic hydrocarbon inputs into the marine environment. In 

contrast, the 308-771 million tonnes of hydrocarbons produced annually by Prochlorococcus 

and Synechococcus significantly exceeds the inputs from these other natural and 

anthropogenic sources and, due to the broad distribution of cyanobacteria across the world’s 

surface oceans, is more widespread (14). As mentioned above, measurements of pentadecane 

and heptadecane in marine surface waters indicate that they are present only at fg/mL – 

pg/mL levels (2, 4, 31).  From our analyses, we estimate that the amounts of hydrocarbons 

produced by marine cyanobacteria to be on the order of 2-540 pg/mL/day (see methods), 

indicating that the majority of pentadecane and heptadecane in surface waters may derive 

from cyanobacteria and that these compounds do not accumulate significantly; hence the 

continuous production of cyanobacterial hydrocarbons must be balanced by degradation or 

loss. Some hydrocarbon exchange occurs between the ocean and the atmosphere (2, 32), but 

not at rates sufficient to balance estimated cyanobacterial production rates. Given that the 

temperature-dependent half life of pentadecane and heptadecane is between 0.8 and 5 days at 

surface ocean temperatures, a significant fraction of the hydrocarbons will likely escape these 

abiotic loss pathways (31). Therefore, biological degradation is likely to be responsible for 

the majority of turnover (31). 

Both obligate and facultative hydrocarbon-degrading bacteria can metabolize 

cyanobacterial alkanes. Alkane degradation pathways have not been identified in grazers of 

cyanobacteria (33). Therefore the majority of cyanobacterially produced hydrocarbons are 

likely to be released into the environment and subsequently degraded by bacteria (34). 

Obligate hydrocarbon-degrading bacteria, including Cycloclasticus, Thalassolituus, 

Oleiphilus, Oleispira, and Alcanivorax species have been isolated from geographically 

diverse coastal and open-ocean regions in all seas, in sediments and both surface and deep 
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waters, including areas with minimal oil pollution (9-11, 35). Alcanivorax species are 

typically amongst the dominant bacteria found metabolizing crude oil during large spill 

events (34-38). Other bacteria, including Marinobacter, Pseudomonas and Acinetobacter 

species, which can utilise hydrocarbons in addition to a broader range of carbon sources, have 

also been detected in oil polluted ocean samples (10, 34).  

To determine whether cyanobacterial alkanes can support the growth of both obligate as well 

as non-obligate hydrocarbon-degrading bacteria, we tested the ability of three axenic and 

well-characterized oil degraders (5, 8) to grow on either heptadecane or crude oil: 

Alcanivorax borkumensis SK2, an obligate hydrocarbon-degrading bacterium (39), and 

Acinetobacter baylyi ADP1 and Marinobacter aquaolei VT8, two strains that can 

facultatively grow on crude oil. We observed that all three strains could grow in media 

containing either oil or heptadecane as the only source of reduced carbon (Fig. 1). These 

findings suggest that diverse groups of marine hydrocarbon degraders may contribute to the 

degradation of the hydrocarbons produced by Prochlorococcus and Synechococcus.  

Cyanobacterial hydrocarbon production can support populations of Alcanivorax 

borkumensis SK2. Alcanivorax borkumensis SK2 has previously been demonstrated to 

utilize a broad range of alkanes, with similar growth rates observed when either pentadecane 

or heptadecane was added as the sole carbon source (40). However, in both this study and the 

previous report (40), an excess of alkanes, similar to concentrations in oil spills, was used 

(41). Whether cyanobacterial alkane production is sufficient to support hydrocarbon-

degrading bacterial populations in minimally polluted seawater has not been determined. 

Information on population sizes of specific hydrocarbon-degraders in the environment is 

limited, with estimates of Alcanivorax varying between 10
1
-5x10

3
 cells/mL (35, 41). 

However, in most studies Alcanivorax cell numbers are below the detection limit (34), as 

assayed via qPCR (5, 6) or in situ hybridization (36), and their population dynamics in the 

oligotrophic ocean are unknown. In order to determine the yield of Alcanivorax borkumensis 

SK2 on cyanobacterial alkanes, cells were grown in ASW medium either without any organic 

carbon, or containing only the minimum amount of heptadecane that could be added to the 

culture. A small increase in cell number was observed in cultures containing heptadecane, 

before declining to the original cell number by day three (Fig. 2). The addition of 

heptadecane to this culture sustained cell numbers for a further three days, although a smaller 

increase in population size was observed compared to the initial growth period, suggesting 
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that some other component of the medium became limiting. Based on these data, we find that 

the yield of Alcanivorax borkumensis SK2 is 0.1 pg dry cell weight/pg heptadecane  (see 

methods) – lower than other yields previously reported for other hydrocarbon degrading 

bacteria, which range from 0.5-1.77 pg/pg hydrocarbon (42). Thus, we expect that a marine 

cyanobacterial hydrocarbon production rate of 2 - 540 pg/mL/day could support a population 

of 1.5x10
1 
- 4.1x10

3
 Alcanivorax borkumensis SK2 cells/mL if used as the only source of 

reduced carbon, comparable to the population of obligate hydrocarbon-degrading bacteria 

observed in natural environments.  

In the cultures to which no heptadecane was added, cell numbers decreased significantly over 

the course of the experiment. This suggests that populations of Alcanivorax, and possibly 

other obligate hydrocarbon-degrading bacteria in the oceans, may be unable to persist for 

long in the absence of a constant hydrocarbon supply. Given the widespread distribution of 

both Prochlorococcus and marine Synechococcus, it is highly likely that hydrocarbon 

production is continuous and therefore hydrocarbon-degrading bacteria are constantly 

supplied with a fresh source of alkanes. While pyruvate is present in the oceans (43, 44), and 

Alcanivorax borkumensis SK2 can utilize it as an energy and carbon source (40), it likely 

faces greater competition from other heterotrophs for pyruvate than for alkanes (43, 44). 

Other compounds, predominantly hydrocarbons but possibly other unidentified substrates, 

may also contribute to the pool available to sustain obligate hydrocarbon-degrading species. 

These include pristane, a C19 saturated terpenoid alkane produced in significant quantities by 

some algal species (45), which Alcanivorax borkumensis SK2 can utilize (10), and a 

branched C21 alkane produced by some algae (45).   

The ocean hydrocarbon cycle. Catabolic degradation of hydrocarbons by marine bacteria 

produces significant amounts of CO2, which can be incorporated back into alkanes within 

cyanobacteria (33). Based on our estimates of cyanobacterial alkane production rates and 

observed concentrations in the ocean, we expect that this ‘short term hydrocarbon cycle’ (46) 

occurs on the order of days (Fig. 3). Given the significant contribution of Prochlorococcus 

and Synechococcus to marine carbon flux, the levels of hydrocarbon production we have 

measured indicate that there must be a notable biogeochemical cycle of these compounds in 

the world’s upper oceans. In terms of annual hydrocarbon fluxes within the ocean, the ‘short 

term hydrocarbon cycle’ occurs at rates several orders of magnitude greater than the ‘long 

term hydrocarbon cycle’, whereby organic matter is converted to oil in sediments over a 
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period of thousands to millions of years before release into the marine environment by natural 

seepage or human activity and subsequent breakdown. 

The short and long term hydrocarbon cycles are linked in that hydrocarbon-degrading 

bacteria are responsible for removing both cyanobacterial alkanes and crude oil from the 

environment. Upon release of crude oil, a significant increase in hydrocarbon-degrading 

bacteria is observed (5-7, 41). Crude oil is a complex mixture of ~20,000 compounds broadly 

grouped into four categories: saturated hydrocarbons, predominantly C5-C40 alkanes (40-

60%), aromatic hydrocarbons (20-40%), resins (5-20%) and asphaltenes (1-10%) (8, 34). It is 

notable that after release of crude oil into the environment, saturated hydrocarbons are the 

first to be degraded by bacteria (7, 9, 34). This suggests that populations of bacteria, which 

normally degrade cyanobacterial alkanes and other hydrocarbons derived from biological 

sources, quickly acclimate to metabolize crude oil hydrocarbons, followed by rapid 

population expansion to utilize this new energy source. 

Although cyanobacterial hydrocarbons are only a small proportion (0.00032%) of the 

estimated 662 billion tonnes of dissolved organic carbon (DOC) present in the ocean at any 

point in time (47), only a relatively small fraction of this bulk DOC (~0.2 billion tonnes) is 

turned over within days (48). Cyanobacterial hydrocarbons, with an estimated pool of 2.12 

million tonnes, likely belong to the labile subset of rapidly cycled DOC, and constitute a 

notable proportion (~1%) of that bioavailable fraction. The short-term hydrocarbon cycle 

should therefore be considered a component of the ‘microbial loop’ within marine food webs 

(49, 50). 

Conclusions 

This study sets a minimum estimate for the total amount of hydrocarbons produced by 

cyanobacteria in marine environments. Other abundant marine cyanobacteria, notably 

Trichodesmium species (51), may add significantly to hydrocarbon output, as might some 

algae species. Although population sizes of freshwater and terrestrial cyanobacteria are not 

well constrained, given that these organisms are also capable of producing hydrocarbons (19), 

alkane and alkene production is likely to be considerable here as well. The widespread 

distribution of hydrocarbon-degrading bacteria in freshwater, marine and terrestrial 

environments suggests that the ‘short term hydrocarbon cycle’ is pervasive in many natural 

ecosystems (9, 11).  
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Materials and Methods. 

Bioinformatics. FASTA BLAST comparisons (52) were performed using inferred protein 

sequences for Synechocystis sp. PCC6803 sll0209 (FAR), sll0208 (FAD), and Synechococcus 

sp. PCC7002 Syn7002_A1173 (Ols) (WP_012306795) with the 115 completed 

cyanobacterial genomes listed in the NCBI database 

(http://www.ncbi.nlm.nih.gov/genome/browse/) and Biller et al, 2014 (20). Synechococcus 

sp. PCC7002 was not classified as a marine species since it was isolated from mud flats in 

Puerto Rico, is evolutionarily distant from other Synechococcus species (16, 22), and has not 

been detected in the open-ocean. 

Bacterial strains, media and growth conditions. Axenic cultures of Prochlorococcus 

CCMP1986 (MED4), MIT9312 and MIT9313 were used. Cultures were routinely assessed 

for purity by confirming a lack of turbidity after inoculation into three different purity test 

broths (53). Triplicate 2 L cultures of each strain were grown in Pro99 medium (54) prepared 

with 0.2 µm filtered, autoclaved seawater (collected from Vineyard Sound, MA) and 

supplemented with 10 mM filter-sterilized sodium bicarbonate upon inoculation. Cells were 

grown under constant light flux (30 – 40 µmol photons m
-2

 s
-1

 for CCMP1986 and MIT9312; 

10 – 20 µmol photons m
-2

 s
-1

 for MIT9313) at 24 °C, in acid-washed polycarbonate 

containers. Growth was monitored by measuring bulk culture fluorescence using a 10-AU 

fluorometer (Turner Designs).  

All Synechococcus species were grown in ASW medium (55). Synechococcus sp. WH5701 

was cultured in conical flasks at 30°C and 40 µmol photons m
-2

 s
-1

 with shaking at 160 rpm. 

Synechococcus sp. WH7803, WH7805 and WH8102 were cultured in culture flasks at 24°C 

and 40 µmol photons m
-2

 s
-1

 without shaking. Cultures were routinely assessed for purity by 

plating aliquots on ASW solid medium containing 0.8% w/v yeast extract and 1.5% w/v agar. 

All hydrocarbon degrading bacteria were cultured at 30°C with shaking at 160 rpm. 

Acinetobacter baylyi ADP1 (56) was routinely grown in BHI medium. Alcanivorax 

borkumensis SK2 (39) was routinely grown in Alcanivorax borkumensis medium 809 

(DSMZ). Marinobacter aquaolei VT8 (57) was routinely grown in Marinobacter medium 

970 (DSMZ). To test growth on hydrocarbons cultures were grown to stationary phase, 

washed twice with ASW medium before being cultured in 10 mL ASW medium with no 

carbon source or with either 1% (v/v) crude oil (Nigerian bonny light crude oil) or filter 

sterilized, analytical standard (≥99.5%) grade heptadecane (100 µL equivalent to 77.7 mg) 



 12 

(Sigma). Samples of ASW medium, ASW medium and crude oil and ASW medium and 

heptadecane were also set up as negative controls. Growth was determined by measuring the 

optical density at 600 nm, and specific growth rate constants (µ) were calculated during 

exponential phase (21-45 hours for Alcanivorax borkumensis, 21-71 hours for Acinetobacter 

baylyi, and 21-138 hours for Marinobacter aquaolei). Three biological replicates of each 

sample were measured. Cultures were routinely assessed for purity by plating aliquots on 

ASW solid medium containing 0.8% w/v yeast extract and 1.5% w/v agar and on either BHI 

medium, Alcanivorax borkumensis medium 809 or Marinobacter medium 970 with 1.5% w/v 

agar for Acinetobacter baylyi ADP1, Alcanivorax borkumensis SK2 and Marinobacter 

aquaolei VT8 cultures, respectively. 

For growth of Alcanivorax borkumensis SK2 in 40 µg/mL heptadecane, 4x10
7
 cells per mL 

were inoculated so that hydrocarbon amounts were equivalent to 1 pg of heptadecane per cell 

at the time of inoculation.  This was necessary because a heptadecane concentration of 40 

µg/mL, equivalent to 0.5 µL per 10 mL, was the minimum amount that could be used in this 

experiment, without diluting heptadecane in another similar solvent. These could be either 

utilized by Alcanivorax borkumensis SK2 as an energy and carbon source or demonstrate 

high cellular toxicity or growth inhibition, which has been shown with alkanols (40). The 

higher inoculum population size was also essential to accurately count cell numbers using a 

Beckman Coulter 2Z particle counter. Three biological replicates of each sample were 

measured.  

The dry cell weight of Alcanivorax borkumensis SK2 was determined by culturing three 

biological replicates in ASW medium and heptadecane (100 µL in 10 mL) to late exponential 

phase. Samples were washed three times with water and cell counts per mL determined using 

a Beckman Coulter 2Z particle counter. The dry cell weight was determined by first washing 

10 mL of culture three times with water, filtering the solution via Whatman glass microfiber 

filters (GE Healthcare) and drying the samples prior to measurement. Dry cell weights were 

recorded using an Adam PW 214 analytical balance. A mass of 0.39 ± 0.042 pg per 

Alcanivorax borkumensis SK2 cell was calculated via dividing the dry cell weight by the cell 

count. In order to calculate the growth yield the increase in cell population of 1.01x10
7
 

observed in the first two days in media containing 40 µg/mL of heptadecane was multiplied 

by the average mass of a cell. This amount was then divided by the mass of heptadecane per 

mL, resulting in a growth yield of 0.1 pg dry cell weight/pg of heptadecane. 
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Cell counting and sample preparation for GC-MS analysis. Prochlorococcus cultures 

were harvested in exponential phase by centrifugation at 15,000 x g for 15 minutes in a JLA-

8.1000 rotor (Beckman Coulter) at 4 °C. Pellets were resuspended in fresh Pro99 medium 

and transferred into tared glass vials and lyophilized for 48 hours. Total Prochlorococcus 

cells in each sample were enumerated by flow cytometry using an Influx Cell Sorter (BD 

Biosciences) as previously described (58, 59). 

Synechococcus samples were harvested in exponential phase (Table S1). An aliquot was 

removed and cells counted by flow cytometry using a BD FACScan. Cell counting was 

performed by running 12 µL of sample per minute through the FACS device until 100,000 

particles were counted. The background particle count from the media (~200 counts per 

second) was subtracted from the total count. Cell counts were performed in triplicate for each 

sample. 15 mL of each sample was centrifuged at 5000 rpm, washed twice with water and 

freeze dried using a ScanVac CoolSafe Freeze Dryer. Dry cell weights were recorded using 

an Adam PW 214 analytical balance. 

Extraction and analysis of total hydrocarbons. All chemicals were purchased from Sigma 

chemicals. To extract total hydrocarbons, dichloromethane (1.5 mL for Prochlorococcus and 

1 mL for Synechococcus) was added to pelleted dried cells in glass vials.  Samples were 

placed in a sonicator bath for 30 minutes, then centrifuged (GeneVac EZ-2, SP Scientific, 

Ipswich, UK) for 10 minutes (2150 rpm) to pellet any remaining material.  The supernatant 

was transferred to a glass GC sample vial and stored at -80ºC.  The pellets were extracted 

twice more in dichloromethane as above to ensure complete extraction of hydrocarbons (80-

90% of hydrocarbons were extracted in the first extraction). For negative controls, extraction 

blanks were carried out on growth media without cyanobacteria and positive controls 

consisted of adding 1 mg/mL standard alkane mix (Sigma C8-C20 Alkane mix) to the 

extraction procedure. Three biological replicates of each sample were analyzed. 

Identification and quantification of hydrocarbons. Hydrocarbons were identified by GC-

MS (Thermo Scientific Trace GC 1310 – ISQ LT Single Quadruple EI MS, A1-1310 Auto 

sampler) with a Thermo TG-SQC GC column (15 m x 0.25 mm, 0.25 µm film thickness).  

The injection volume was 1 µL with a 10:1 split ratio with an injector temperature of 230 °C, 

using helium as a carrier gas at a constant flow of 1.2 mL min
-1

.  The following gradient was 

used: initial oven temperature 30 °C, 2 min; 150 °C at 15 °C min
-1

; 230 °C at 3.4 °C min
-1

. A 

transfer line temperature of 240 °C was used. The mass spectrometry conditions in the 
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positive mode were: ion source, 250 ºC; mass range 45-650 Da; scan time of 0.35 seconds. 

Pentadecane and heptadecane were identified by co-retention with standards and NIST mass 

spectral search libraries (National Institute of Standards and Technology NIST v2.0); two 

peaks were identified as 8-heptadecene using the NIST library alone. Pentadecane and 

heptadecane were quantified using standard curves derived from peak areas of pentadecane 

and heptadecane alkane standards (0.06 - 31 µg/mL), 8-heptadecene was quantified using 

peak areas derived from heptadecane standards (0.06 - 31 µg/mL). Any background signal in 

the extraction blank was subtracted when determining hydrocarbon amounts.  

Calculations. Amounts of hydrocarbons produced by Prochlorococcus and Synechococcus 

per mL of seawater were calculated by multiplying the numbers in the ocean, which range 

from 3x10
3
 to 1x10

6
 cells/mL and 3x10

3
 to 5x10

4
 cells/mL, respectively (14), at the sea 

surface, by the average amount of hydrocarbons per cell (Table 1). This equates to 1.5-509 

pg/mL of hydrocarbons produced every 1-2 days by Prochlorococcus and 1.9-31.7 pg/mL of 

hydrocarbons produced every 1-6 days by Synechococcus. 
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Figures 

 

Fig. 1: Hydrocarbon degrading bacteria can grow on both oil and heptadecane. Growth of (A) 

Alcanivorax borkumensis SK2, (B) Acinetobacter baylyi ADP1 and (C) Marinobacter 

aquaolei VT8 in ASW medium (open triangles), ASW medium with heptadecane (7.77 

mg/mL) (open squares), and ASW medium with oil (open circles). Values represent the mean 

and SD from three biological replicates. The growth rate constants (µ) on oil and heptadecane 

were, respectively, 0.12 and 0.12 hr
-1

 for Alcanivorax, 0.019 and 0.006 hr
-1

 for Acinetobacter, 

and  0.010 and 0.004 hr
-1 

for Marinobacter. 

 

 

Fig. 2: Marine heptadecane concentrations support the growth of Alcanivorax borkumensis 

SK2. Growth of Alcanivorax borkumensis SK2 was quantified in ASW medium (open 

triangles) or ASW medium supplemented with 40 µg/mL heptadecane (open squares, open 

circles). The cultures containing heptadecane were split and an additional 40 µg/mL 

heptadecane added to one set at day 3 (open squares). Results are from three biological 

replicates. SD is indicated. Control cultures containing only ASW medium or ASW medium 

and heptadecane (i.e. without added bacteria) showed no evidence of cell contamination. 
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Fig. 3: The hydrocarbon cycle. A schematic representation of the ‘short term hydrocarbon 

cycle’, which occurs over days, and the ‘long term hydrocarbon cycle’ which takes place over 

thousands to millions of years. A simplified process showing the conversion of CO2 to 

alkanes using energy derived from photosynthesis is detailed in the enlarged cyanobacterial 

cell on the left. A simplified process showing the metabolism of alkanes is detailed in the 

enlarged hydrocarbon degrading bacterial cell on the right. 
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Table 1. Hydrocarbon production by Prochlorococcus and Synechococcus. 

Strain Penta-decane 

(fg per cell) 

Hepta-decane 

(fg per cell) 

8-Hepta-

decene (fg per 

cell) 

Total 

hydrocarbons (fg 

per cell) 

Total 

hydrocarbons 

(%DCW)  

Hydrocarbons in 

global cellular 

population 

(million tonnes) 

Hydrocarbon 

production (million 

tonnes per year) 

Prochlorococcus str. 

CCMP1986 

0.448 ± 0.223 0.018 ± 0.009 n.d. 0.466 ± 0.232 0.368 ± 0.126   

Prochlorococcus str. 

MIT9312 

 

0.337 ± 0.343 

 

0.013 ± 0.012 

 

n.d. 

 

0.350 ± 0.355 

 

0.181 ± 0.187 

 

 

 

 

Prochlorococcus str. 

MIT9313 

 

0.685 ± 0.548 

 

0.026 ± 0.014 

 

n.d. 

 

0.711 ± 0.562 

 

0.149 ± 0.080 

 

 

 

 

MEAN Prochlorococcus    0.509 ± 0.383  1.48 269-539 

Synechococcus sp. WH5701 

 

0.096 ± 0.018 

 

1.170 ± 0.211 

 

1.314 ± 0.225 

 

2.580 ± 0.454 

 

0.138 ± 0.009 

 

 

 

 

Synechococcus sp. WH7803 

 

0.396 ± 0.136 

 

n.d. 

 

0.035 ± 0.001 

 

0.431 ± 0.137 

 

0.033 ± 0.008 

  

Synechococcus sp. WH7805 

 

0.248 ± 0.065 

 

n.d. 

 

0.065 ± 0.009 

 

0.313 ± 0.074 

 

0.024 ± 0.005 

  

Synechococcus sp. WH8102 

 

0.261 ± 0.047 

 

n.d. 

 

0.043 ± 0.005 

 

0.304 ± 0.052 

 

0.022 ± 0.002 

  

MEAN Synechococcus 

   0.907 ± 0.179   

0.635 

 

39-232 

 

Cellular hydrocarbon amounts were quantified by GC-MS. Measurements are from three 

biological replicates. S.d. is indicated. n.d.- not detected. Total hydrocarbons per cell were 

quantified by dividing the total hydrocarbon mass by the total number of cells in the pellet 

(Table S2). The amount of hydrocarbons as a percentage of dry cell weight was quantified by 

dividing the total hydrocarbon mass by the pellet cell mass (Table S2). The average mass of 

hydrocarbons per cell was used to quantify hydrocarbon amounts in global ocean cell 

populations given global population size estimates of 2.9±0.1x10
27

 Prochlorococcus and 

7.0±0.3x10
26 

Synechococcus cells (14). This total and the turnover rate were used to quantify 

the annual production amount. 
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Supplementary information 

 

 

Fig. S1. Chromatograms showing separation of hydrocarbons extracted from Synechococcus 

species (WH8103, WH7803, WH7805, WH5701) and Prochlorococcus species (CCMP1986, 
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MIT9312, MIT9313) by gas chromatography – mass spectrometry (Thermo Scientific Trace 

GC 1310 – ISQ LT Single Quadruple EI MS, A1-1310 Autosampler) using a Thermo TG-

SQC GC column (15 m x 0.25 mm, 0.25 µm film thickness).  Peaks were identified as A 

(10.25 minutes) pentadecane; B, (12.16 minutes) 8-heptadecene; C, (12.26 minutes) 8-

heptadecene and D, (12.45 minutes) heptadecane. Samples are shown from a single replicate. 

The chemical identity of the peak at 11.22 minutes in the Synechococcus species could not be 

resolved by mass spectrometry so was excluded from further analysis. 
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Table S1. Hydrocarbon pathways in sequenced cyanobacterial strains. The Synechocystis 

sp. PCC 6803 Fad/Far and Synechococcus sp. PCC 7002 Ols genes were subjected to BLAST 

analysis against 115 sequenced cyanobacterial genomes. The positive values of these BLAST 

results are listed. Only matches greater than 30% identity over the length of the query 

sequence are shown. 

 

Strain fad far ols 

Acaryochloris marina MBIC11017 292/337(86%) 191/230(83%)  

Anabaena cylindrica PCC7122 301/338(89%) 197/223(88%)  

Anabaena sp. 90 297/338(87%) 196/223(87%)  

Anabaena variabilis ATCC29413 305/338(90%) 204/230(88%)  

Arthrospira maxima CS-328 295/338(87%) 206/231(89%)  

Arthrospira platensis NIES-39 295/338(87%) 206/231(89%)  

Calothrix sp. PCC6303 298/338(88%) 202/228(88%)  

Calothrix sp. PCC7507 299/338(88%) 202/228(88%)  

Candidatus atelocyanobacterium thalassa 296/338(87%) 198/228(86%)  

Chamaesiphon minutus PCC6605 299/340(87%) 193/230(83%)  

Chroococcidiopsis thermalis PCC7203 301/339(88%) 200/228(87%)  

Coleofasciculus chthonoplastes PCC7420 298/338(88%) 199/230(86%)  

Crinalium epipsammum PCC9333 299/339(88%) 190/225(84%)  

Crocosphaera watsonii WH8501 291/339(85%) 206/231(89%)  

Cyanobacterium aponinum PCC10605 290/340(85%) 193/225(85%)  

Cyanobacterium stanieri PCC7202     1472/2442(60%) 

Cyanobium gracile PCC6307 256/337(75%) 181/220(82%)  

Cyanobium sp. PCC7001 261/334(78%) 182/220(82%)  

Cyanothece sp. ATCC51142 294/339(86%) 206/228(90%)  

Cyanothece sp. CCY0110 301/338(89%) 207/230(90%)  

Cyanothece sp. PCC7424     1862/2796(66%) 

Cyanothece sp. PCC7425 290/338(85%) 196/230(85%)  

Cyanothece sp. PCC7822     1871/2796(66%) 

Cyanothece sp. PCC8801 306/339(90%) 205/230(89%)  
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Cylindrospermopsis raciborskii CS-505 301/338(89%) 191/222(86%)  

Cylindrospermum stagnale PCC7417 299/338(88%) 199/231(86%)  

Dactylococcopsis salina PCC8305 282/338(83%) 199/231(86%)  

Geitlerinema sp. PCC7407 292/339(86%) 204/231(88%)  

Gloeobacter violaceus PCC7421 266/338(78%) 183/221(82%)  

Gloeocapsa sp. PCC7428 299/338(88%) 193/226(85%)  

Halothece sp. PCC7418 287/338(84%) 202/228(88%)  

Leptolyngbya sp. PCC7376     2151/2724(78%) 

Lyngbya sp. PCC8106 296/338(87%) 196/229(85%)  

Microcoleus sp. PCC7113 301/340(88%) 201/230(87%)  

Microcoleus vaginatus FGP-2 297/338(87%) 194/230(84%)  

Microcystis aeruginosa NIES-843 299/338(88%) 207/231(89%)  

Moorea producens 3L     1300/2202(59%) 

Nodularia spumigena CCY9414 302/338(89%) 199/230(86%)  

Nostoc azollae' 0708 299/338(88%) 197/223(88%)  

Nostoc punctiforme PCC73102 298/338(88%) 196/222(88%)  

Nostoc sp. PCC7107 305/338(90%) 195/230(84%)  

Nostoc sp. PCC7120 305/338(90%) 204/230(88%)  

Nostoc sp. PCC7524 303/338(89%) 202/230(87%)  

Oscillatoria acuminata PCC6304 294/338(86%) 202/231(87%)  

Oscillatoria nigro-viridis PCC7112 297/338(87%) 194/230(84%)  

Oscillatoria sp. PCC6506 301/338(89%) 196/230(85%)  

Pleurocapsa sp. PCC7327     1890/2861(66%) 

Prochlorococcus marinus str. AS9601 262/337(77%) 173/214(80%)  

Prochlorococcus marinus str. CCMP1375 263/337(78%) 169/218(77%)  

Prochlorococcus marinus str. CCMP1986 261/337(77%) 173/214(80%)  

Prochlorococcus EQPAC1 261/337(77%) 173/214(81%)  

Prochlorococcus GP2 262/337(78%) 173/214(81%)  

Prochlorococcus LG 263/337(78%) 169/218(78%)  
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Prochlorococcus marinus str. MIT9107 258/337(77%) 171/214(80%)  

Prochlorococcus marinus str. MIT9116 258/337(77%) 171/214(80%)  

Prochlorococcus marinus str. MIT9123 258/337(77%) 171/214(80%)  

Prochlorococcus marinus str. MIT9201 261/337(77%) 172/214(80%)  

Prochlorococcus marinus str. MIT9202 262/337(77%) 148/186(80%)  

Prochlorococcus marinus str. MIT9211 257/334(76%) 171/219(78%)  

Prochlorococcus marinus str. MIT9215 262/337(77%) 171/214(79%)  

Prochlorococcus marinus str. MIT9301 262/337(77%) 173/214(80%)  

Prochlorococcus marinus str. MIT9302 262/337(78%) 173/214(81%)  

Prochlorococcus marinus str. MIT9303 237/303(78%) 183/236(77%)  

Prochlorococcus marinus str. MIT9311 260/337(77%) 174/214(81%)  

Prochlorococcus marinus str. MIT9312 260/337(77%) 174/214(81%)  

Prochlorococcus marinus str. MIT9313 265/337(78%) 178/218(81%)  

Prochlorococcus marinus str. MIT9314 261/337(77%) 172/214(80%)  

Prochlorococcus marinus str. MIT9515 263/337(78%) 169/214(78%)  

Prochlorococcus marinus str. MIT9321 262/337(78%) 173/214(81%)  

Prochlorococcus marinus str. MIT9322 262/337(78%) 173/214(81%)  

Prochlorococcus marinus str. MIT9401 262/337(78%) 173/214(81%)  

Prochlorococcus marinus str. MIT9515 263/337(78%) 169/214(79%)  

Prochlorococcus marinus str. MIT0601 260/337(77%) 172/214(80%)  

Prochlorococcus marinus str. MIT0602 259/338(77%) 171/218(78%)  

Prochlorococcus marinus str. MIT0603 259/338(77%) 171/218(78%)  

Prochlorococcus marinus str. MIT0604 262/337(78%) 172/214(80%)  

Prochlorococcus marinus str. MIT0701 267/337(80%) 177/220(80%)  

Prochlorococcus marinus str. MIT0702 268/337(80%) 177/220(80%)  

Prochlorococcus marinus str. MIT0703 268/337(80%) 177/220(80%)  

Prochlorococcus marinus str. MIT0801 259/334(78%) 174/222(78%)  

Prochlorococcus marinus str. NATL1A 258/334(77%) 174/222(78%)  

Prochlorococcus marinus str. NATL2A 257/334(76%) 174/222(78%)  
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Prochlorococcus marinus str. PAC1 257/334(77%) 174/222(78%)  

Prochlorococcus marinus str. SB 260/337(77%) 173/214(81%)  

Prochlorococcus marinus str. SS2 263/337(78%) 169/218(78%)  

Prochlorococcus marinus str. SS35 263/337(78%) 169/218(78%)  

Prochlorococcus marinus str. SS51 263/337(78%) 169/218(78%)  

Prochlorococcus marinus str. SS52 263/337(78%) 169/218(78%)  

Prochlorococcus marinus str. UH18301 260/337(77%) 172/214(80%)  

Pseudanabaena sp. PCC 7367 285/339(84%) 201/226(88%)  

Raphidiopsis brookii D9 299/338(88%) 194/221(87%)  

Rivularia sp. PCC 7116 294/338(86%) 194/228(85%)  

Stanieria cyanosphaera PCC7437     1897/2788(68%) 

Synechococcus elongatus  279/337(82%) 195/231(84%)  

Synechococcus sp. BL107 259/337(76%) 172/210(81%)  

Synechococcus sp. CC9311 265/339(78%) 181/219(82%)  

Synechococcus sp. CC9605 266/337(78%) 171/210(81%)  

Synechococcus sp. CC9902 259/337(76%) 172/210(81%)  

Synechococcus sp. JA-2-3B'a(2-13) 268/338(79%) 179/221(80%)  

Synechococcus sp. JA-3-3Ab 268/338(79%) 180/221(81%)  

Synechococcus sp. PCC6312 294/338(86%) 188/221(85%)  

Synechococcus sp. PCC7002     2720/2720(100%) 

Synechococcus sp. PCC7335 285/339(84%) 196/231(84%)  

Synechococcus sp. PCC7502 283/339(83%) 188/222(84%)  

Synechococcus sp. RCC307 265/337(78%) 182/220(82%)  

Synechococcus sp. RS9916 263/337(78%) 173/210(82%)  

Synechococcus sp. RS9917 262/337(77%) 176/210(83%)  

Synechococcus sp. WH5701 264/334(79%) 182/220(82%)  

Synechococcus sp. WH7803 264/337(78%) 180/219(82%)  

Synechococcus sp. WH7805 265/337(78%) 175/210(83%)  

Synechococcus sp. WH8102 263/337(78%) 174/210(82%)  
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Synechococcus sp. WH8109 265/337(78%) 174/210(82%)  

Synechocystis sp. PC6803 340/340(100%) 231/231(100%)  

Thermosynechococcus elongatus BP-1 290/338(85%) 186/221(84%)  

Trichodesmium erythraeum IMS101 297/338(87%) 192/220(87%)  
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Table S2. Hydrocarbon amounts from gas-chromatography-mass spectrometry analysis 

for samples. Also shown are dry cell weights and cell counts for each sample. Values are 

from three biological replicates.  

 

Species Pentadecane 

per pellet 

(µgs) 

Heptadecane 

per pellet 

(µgs) 

8-Heptadecene 

per pellet (µgs) 

Total 

hydrocarbons 

per pellet 

(µgs) 

Dry cell 

weight per 

pellet (mgs) 

Cells per 

pellet  (x109) 

Prochlorococcus 

marinus str. 

CMP1986 

29.042 ± 

13.354 

1.147 ± 0.522 n.d. 30.187 ± 13.876 7.933 ± 1.745 65.383 ± 

13.415 

 

Prochlorococcus 

marinus str. 

MIT9312 

 

15.509 ± 

14.795 

 

0.595 ± 0.508 

 

n.d. 

 

16.104 ± 15.303 

 

9.452 ± 1.899 

 

48.57 ± 

4.045 

 

Prochlorococcus 

marinus str. 

MIT9313 

 

10.339 ± 6.404 

 

0.403 ± 0.162 

 

n.d. 

 

10.742 ± 6.566 

 

7.082 ± 0.811 

 

16.51 ± 

2.923 

 

Synechococcus sp. 

WH5701 

 

0.152 ± 0.036 

 

1.846 ± 0.381 

 

2.073 ± 0.409 

 

4.071 ± 0.826 

 

2.967 ± 0.681 

 

1.573 ± 

0.084 

 

Synechococcus sp. 

WH7803 

 

0.434 ± 0.148 

 

n.d. 

 

0.039 ± 0.002 

 

0.473 ± 0.150 

 

1.433 ± 0.115 

 

1.098 ± 

0.032 

 

Synechococcus sp. 

WH7805 

 

0.394 ± 0.094 

 

n.d. 

 

0.104 ± 0.015 

 

0.498 ± 0.109 

 

2.1 ± 0.1 

 

1.598 ± 

0.042 

 

Synechococcus sp. 

WH8102 

 

0.293 ± 0.052 

 

n.d. 

 

0.048 ± 0.004 

 

0.341 ± 0.056 

 

1.533 ± 0.153 

 

1.123 ± 

0.038 
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