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We present computer simulations of previously unknown polarization singularities (vortexes)

inside polar SrTiO3 twin boundaries. Usually polarity in twin walls is ferri-electric, whereas vortex

excitations lead to true ferroelectricity on a very local scale. As a result, in-plane electric fields can

selectively stabilize one of the vortex polarization states and enhance the ability of the walls to

move. This behavior can explain the well-known and uniquely high, mobility of twin boundaries in

SrTiO3. For nanoscale ferroelectric memory devices, we envisage a precisely controllable

device, where a desired domain wall pattern is manipulated by shifting the vortex position

electrically. VC 2014 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4866859]

As devices become smaller and smaller, their functional-

ity will be constrained to ever smaller dimensions.1,2 The

future goal will be to produce multifunctional elements (such

as memory devices) with a length scale of 1–10 nm, rather

than the currently available 500 nm. The most promising way

forward is to use, as a host, a ferroelastic material which will

produce very high densities of functional twin boundaries.

Typical examples are superconducting domain boundaries in

insulating materials,3,4 twin boundaries with high defect

mobilities,5–7 two-dimensional electron gases at interfaces,8–10

unusual vortices near twin boundaries,11–13 or multiferroicity

and chirality at domain boundaries.14–16 The design and the

development of such interfaces is at the heart of “domain

boundary engineering”17,18 and this paper is probably one of

the biggest advances in multiferroic material design: We show

that twin boundaries in SrTiO3 have exactly the required func-

tionalities for ferroelectric nanodevices.

Functional ferroelectric twin boundaries can be polar

with dipole moments aligned in direction of the apex of the

twin wall.19 This is not the only solution, however, and, as

we show in this letter, some segments of a polar wall in

SrTiO3 have dipole moments pointing towards the twin-apex,

while other segments have dipole moments pointing in the

opposite direction. Both solutions are compatible with the

symmetry of the twin boundary. A unique structural element

is that a vortex connects these two segments. The vortex

rotates the dipole moment out of the twin wall and hence

breaks the symmetry. Moreover, this rotation generates

another degree of freedom: A vortex can rotate clockwise or

counterclockwise, therefore, the resulting symmetry breaking

dipoles can enhance or compensate for other vortexes.

Twin boundaries in SrTiO3 are indeed polar, with dipole

moments in the twin plane. This alone is not sufficient, how-

ever, because it only implies ferri-electricity (as previously

found in CaTiO3 (Ref. 20)). In the present work, we detected

an unusual feature: the dipoles frequently reverse direction

inside the wall. The switching behavior is not like an Ising

wall, but instead follows the trajectory of a Bloch wall: the

dipole rotates out of the twin plane. During the rotation,

dipoles point in a direction perpendicular to the wall and

hence become switchable! Due to improved functionality

offered by this process, the vortexes of the rotating dipoles

become the more suitable functional elements, rather than

the polarity of the walls, as previously anticipated. The most

spectacular consequence is that the twin walls have a lower

symmetry than the bulk (P1). Thus, the asymmetry of the

atomic positions in the walls may promote superconductivity

and we may speculate that the unexplained superconductiv-

ity in SrTiO3 indeed has its origin in the mixing of spin sin-

glet and triplet states when the inversion symmetry is

broken.21 Moreover, the optical phonon density of states

available for Cooper pairs will be substantially increased.

This scenario could follow the path of wall related supercon-

ductivity as found in another perovskite crystal.3

Research during recent years has shown that the discov-

ery of interfacial ferroic properties is often triggered by com-

puter simulations and theoretical exploration of extreme

physical properties in materials design. The first and main

report of polar interfaces in non-polar materials was in

CaTiO3: A large spontaneous polarization was predicted in

{100} twin walls of CaTiO3, a definitely non-polar mate-

rial.20 Subsequent experimental studies using transmission

electron microscopy22 and second harmonic generation

(SHG) confirmed such wall polarity.23,24 Similar behavior

was attributed to multidomain boundaries with distinct polar

and oxygen octahedral tilting in BiFeO3 ab initio
simulations.25

The latest experimental advance was reported26 in reso-

nant piezoelectric spectroscopy (RPS) experiments for stron-

tium titanate at cryogenic temperatures, well below the

ferroelastic transition (105 K). The signals were too weak to

be related to bulk piezoelectricity. Instead it was argued that

standing mechanical waves were excited by the shift of twin

boundaries in an oscillating electric field. Together with pre-

vious work showing that elastic resonances in SrTiO3 are

heavily influenced by moving twin boundaries with a dra-

matic change of the pinning behavior below 50 K,27 it consti-

tutes a direct evidence of twin boundary polarity in SrTiO3,

but the physical mechanism for the field effect is still

unknown.

In this paper, we show that polar twin boundaries do

indeed spontaneously form at low temperatures without any
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subsidiary help from defects or external strain fields, and can

be moved by electric fields. SrTiO3 has a non-polar bulk

structure.28,29 Wall polarity requires coupling between the

local lattice deformation (as expressed by the ferroelastic

order parameter Q) and a dipole moment P. If symmetry

allowed, coupling kQ2P2 is mainly repulsive (k> 0),14 or if

suitable gradient couplings occur,30 the polarization is sup-

pressed inside the bulk but not in the domain walls. This

effect localizes P to the wall. The open question is then how

specific coupling schemes of this type follow from the local

interatomic interactions.

To investigate twin walls in SrTiO3, we conducted at-

omistic simulations in tetragonal and cubic samples, com-

prised of 40 000 atoms, exploiting the MD package

LAMMPS.31 Typical geometry was �80 Å� 80 Å� 80 Å

and a timestep of 2 fs was used. We imposed periodic bound-

ary conditions in all three directions, verifying that they have

minimal impact on the twin structure. The global cutoff for

non-Coulombic interactions was chosen to be 12 Å. In iso-

thermal simulations, the temperature was controlled by a

Langevin thermostat32 with damping parameter s¼ 0.2 ps at

initial equilibration and by a Nos�e-Hoover thermostat33 with

s¼ 0.1 ps, at data sampling. In isobaric simulations, the pres-

sure was controlled using a Berendsen34 barostat at equili-

bration and Nos�e-Hoover35 with sP¼ 1 ps at sampling.

The strontium titanate interatomic interactions were

modeled by the Buckingham potential, previously parameter-

ized by Akhtar et al.36 The corresponding lattice constant

was estimated to be within 0.5% of experimentally obtained

3.905 Å37,38 at room temperature. By fixing the lattice param-

eter at the experimental values, we estimated the elastic con-

stants in good correspondence with previous experiments.39

Below 105 K,28,29 the high-symmetry cubic perovskite

structures undergoes a second-order phase transition to a tet-

ragonal structure with symmetry I4/mcm. The tetragonal cell

consists of two pseudocubic cells with the cubic cell face

diagonals as cell vectors and ratio c=a ’ 1:0006 determined

experimentally.37,40–42 As a primary order parameter Q, we

examined bulk rotations of octahedra. For bulk SrTiO3, the

octahedral rotation is 2� in experiments,43 and 8�–10� in sim-

ulations with shell model pair potentials.36 The discrepancy,

caused by polarization terms, between experimental determi-

nation and available classical pair potentials is well known

and described elsewhere.44 Employing standard definitions

of octahedral tilting,7,8,20,45 we found a tilt angle of 9�–11�,
formed around each Ti atom in the annealed bulk tetragonal

system.

A twin boundary was created by merging two supercells

along the diagonal [�101], one with conventional tetragonal

a along x and c along z and the other one with short a along z
and long c along x. The two structures were rotated by a

small angle around the y axis to match the lattice periodicity

of the two pieces. The resulting structure was relaxed using

steepest descent and further equilibrated in canonical ensem-

ble NVT runs for 2 ns at 20 K. The final twin was described

in terms of order parameter Q and an off-centering distance

d across the twin boundary.

After equilibration, the octahedra located far from the

twin boundary were rotated as previously in the bulk sam-

ples, while in the diagonal plane a twin wall appeared,

characterized by zero tilting angles (as shown in Figs. 1 and

4). It remained stable throughout time evolution. Its thick-

ness was measured as 2x¼ 9.4 Å by fitting Q to a wall pro-

file given by a hyperbolic tangent. The atomic displacement

pattern exhibited two kinds of behavior (see Fig. 2). Ti atoms

have a significant correlated repulsive shift from the in-plane

centre of the polarization vortex, but remain randomly dis-

placed beyond the boundary. In the planes directly adjacent

to the twin, Ti atoms move towards the polarization vortex,

while Sr atoms shift away from the vortex. An additional

structural examination around the walls indicates a decrease

by �4.5 pm of Ti-Ti nearest neighbor distances perpendicu-

lar to the walls (similar to the dipole moment 6 pm in

CaTiO3 (Ref. 45)) and an increase by �1.0 pm of Sr-Sr dis-

tances at the wall, as shown in Fig. 3.

In summary, we modelled a phenomenon of switchable

polarity in SrTiO3, occurring due to the fact that opposing

polarities are connected by highly mobile vortexes. In turn,

FIG. 1. A snapshot of the TiO6 octahedral tilts in the vicinity of the twin

wall (vertical red line). Notice the change of the tilting angles across the

boundary.

FIG. 2. In-plane displacements of Ti-atoms with respect to the centre of oxy-

gen octahedra. The twin boundary is characterized by the appearance of a

vortex. All arrows are amplified by factor of 20.
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the twin walls are highly mobile under external strain and

electric fields,26 causing a rapid change of the dipole

moment. An upcoming objective of our research is to model

an electric field in simulations to emulate these conditions. A

possible application could be in controlled nanoscale mem-

ory devices (e.g., non-volatile46 or reversible electronic

switches used in resistive RAM47), where a desired domain

wall pattern is traced by the vortex position between the

electrodes. These vortex structures have many similarities to

the “racetrack” arrangement, where magnetic boundaries are

shifted inside a magnetic nanowire.48 The shift of the vortex

line can then be monitored electrically (an electric dipole

perpendicular to the twin boundary) or magnetically if the

velocity of the vortex allows electromagnetic coupling.

Developing such a nano-device clearly still requires that

some obstacles are overcome, such as the optimization of

wall pinning, but our study elucidates that the fundamental

physical effects exist and that local ferroic vortex switching

will become a realistic possibility in the future.
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