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Elastic excitations in BaTiO3 single crystals and ceramics: Mobile domain boundaries
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The dynamic properties of elastic domain walls in BaTiO3 were investigated using resonance ultrasonic
spectroscopy (RUS). The sequence of phase transitions is characterized by minima in the temperature dependence
of RUS resonance frequencies and changes in Q factors (resonance damping). Damping is related to the friction
of mobile twin boundaries (90◦ ferroelectric walls) and distorted polar nanoregions (PNRs) in the cubic phase.
Damping is largest in the tetragonal phase of ceramic materials but very low in single crystals. Damping is also
small in the low-temperature phases of the ceramic sample and slightly increases with decreasing temperature in
the single crystal. The phase angle between the real and imaginary part of the dynamic response function changes
drastically in the cubic and tetragonal phases and remains constant in the orthorhombic phase. Other phases show
a moderate dependence of the phase angle on temperature showing systematic changes of twin microstructures.
Mobile twin boundaries (or sections of twin boundaries such as kinks inside twin walls) contribute strongly to
the energy dissipation of the forced oscillation while the reduction in effective modulus due to relaxing twin
domains is weak. Single crystals and ceramics show strong precursor softening in the cubic phase related to
polar nanoregions (PNRs). The effective modulus decreases when the transition point of the cubic-tetragonal
transformation is approached from above. The precursor softening follows temperature dependence very similar
to recent results from Brillouin scattering. Between the Burns temperature (≈586 K) and Tc at 405 K, we found
a good fit of the squared RUS frequency [∼� (C11 − C12)] to a Vogel–Fulcher process with an activation energy
of ∼0.2 eV. Finally, some first-principles-based effective Hamiltonian computations were carried out in BaTiO3

single domains to explain some of these observations in terms of the dynamics of the soft mode and central mode.
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I. INTRODUCTION

The elastic properties and the precursor, relaxor-type
behavior of BaTiO3 have been investigated in great detail over
several decades.1–7 BaTiO3 is a classic ferroelectric and fer-
roelastic material, which undergoes successive structural phase
transitions from cubic (Pm3̄m) to tetragonal (P 4mm) at TC-T ,
tetragonal to orthorhombic (Amm2) at TT -O , and orthorhombic
to rhombohedral (R3m) at TO-R .8 Bulk properties are well
known, but it has been shown more recently that, by careful
preparation of domain structures (domain engineering), one
can obtain very high piezoelectric responses,9–13 which go
well beyond values expected from the bulk. It became also
clear that nanostructured BaTiO3 shows colossal dielectric
responses.14 The interfacial effects, such as grain boundaries
and twin boundaries, were then shown to depend strongly on
the chemical compositions of the samples.15 Finally, twinning
remained visible for nanocrystals of sizes well below 100 nm16

so that it is not possible to correlate the nanoscale behavior
of BaTiO3 simply with the intrinsic bulk behavior modified
by the surfaces17 because mobile twin boundaries persist to
the smallest-known grain size and modify the macroscopic
behavior of the sample significantly.

The question arises, therefore, whether the enhanced polar
properties are solely a matter of engineered domain structures

or whether the increased density of domain boundaries
between domains plays an additional role. This means that
we need to assess the importance of “domain engineering”
compared with “domain boundary engineering”, which at-
tempts to modify domain boundaries sufficiently to lead to
similar enhancement effects.18–28 The direct comparison of
static properties is at the limit of our experimental facilities
(e.g. Ref. 24) and has not previously been undertaken in
BaTiO3. A similar route was taken by Hlinka et al.29 who
used Landau–Ginzburg modeling to explore the properties
of the twin boundaries and compared the results with ex-
perimental observations. The observation of largely enhanced
piezoelectricity by application of electric fields along specific
directions in ferroelectric crystals, which frustrate the move-
ment of twin walls,11 requires that domain structures become
extremely fine. Hlinka et al.29 argued that it might then be
possible to detect intrinsic piezo-effects from the domain walls
themselves. They analyzed the intrinsic domain structure using
a Landau–Ginzburg approach and found some enhancement
of the piezoelectric coefficients for domain thicknesses below
50 nm, although the effect was much smaller than that observed
experimentally.11

Other physical mechanisms that could lead to a high
piezoelectric response include the accumulation of point
defects in domain walls and dynamic features, such as the
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formation of latches and kinks in domain walls, which could
be mobile under electric fields even when the straight segments
of the walls are not. Such effects were seen in other materials24

found by computer simulations.17

It is the purpose of this paper to show, first, results of
dynamic measurements of elastic properties using the resonant
ultrasonic spectroscopy (RUS) technique. This experimental
technique operates at frequencies between 0.05 and 1.2 MHz
and detects only those resonances which are related to
elastic deformations. The low amplitude of the resonance
compared with the more commonly used dynamic mechanical
analysis (DMA) technique excludes influences from large
domain wall movements.24 Local excitations of twin walls
(90◦ boundaries but not 180◦ boundaries in BaTiO3) and
polar nanodomains related to small volume changes are visible
using this technique. We will then show that the RUS results
are compatible with first principles calculations which show
the trends in the temperature evolution of the central mode
(∼Ti flipping mode) to be the source of the changes in phase
angle of the RUS signal.

II. RUS METHODOLOGY

We briefly summarize some of the key points of RUS in
systems with mobile domain boundaries. Resonant ultrasonic
spectroscopy spectra are characterized by three parameters,
namely the resonance frequency, the amplitude, and the phase
shift.30,31 We are less interested in their absolute values but
in the dependence of these parameters on the external control
parameters of the experiment (e.g. temperature, strain, electric
fields). Resonant ultrasonic spectroscopy signals are not local
resonances but represent the vibration of the sample and the
attached RUS equipment (sample rods and transducers). In
an RUS experiment, the driving transducer leads to sustained
vibrations of the sample (the “ringing” of the sample), with
an amplitude which is detected by the receiver transducer.
The complex amplitude is given by a sum of oscillators (or
some other combination reflecting the effective medium of
the sample):

x(ω,t) =
∑ {

AiAexcitation
/[

ω2
i − ω2 + iωiω/Q

]}
× exp(−iωt + ϕ),

where Aexcitation is the amplitude of the forcing excitation, ωi

is the singular frequency at which the sample would ring if
there were no damping (1/Q → 0). The complex amplitude
can be split into the real part and the imaginary part. Both
trajectories are displayed in the complex plane as Cole–Cole
plots (or Nyquist plots),32 whereby each resonance displays a
circle through the origin. The circle is rotated by the phase ϕ

around the origin. More complex trajectories, including the su-
perposition of several circles, relate to interacting resonances.
The initial phase factor of an RUS resonance depends on the
geometrical coupling between the transducers and the sample.
When the control parameter is changed, resonances and
excitations in the RUS frequency range will change the phase
factor, which is seen as a rotation of the resonance circle around
the origin. If several resonances couple, the phase factors also
couple and lead to a complex spiral web of curves which cannot
be allocated to single-mode excitations of the sample. The

change of phase with the control parameter has a real physical
meaning such as nonlinear damping of the oscillation or a
multitude of resonance modes, which are spatially separated
but very similar in frequency. Another mechanism relates to
threshold behavior of domain movement, e.g. when the driving
force needs to exceed a value to produce a sudden advance of
the domain boundary.18,33 One expects no change of the RUS
phase if a sample has a stable microstructure, which does
not depend on the control parameter.34–37 This is born out
in quartz where RUS phase angles are virtually independent
of temperature.38 In BaTiO3, we find the same situation in
the orthorhombic phase. If dynamic microstructures, such as
jerky propagation occur, they will change the phase angle if
the time delay and the resonance frequency are of similar order
of magnitude.17 Changing viscous behavior will influence the
phase angle even if the effect on Q is too small to be observed.

In this paper, we are not interested in the absolute values of
the elastic moduli (see Ref. 34). Instead, we wish to determine
their relative changes due to phase transitions. The scaling of
the moduli is related to the resonance frequency

�f 2 ∼ C∗,

where C∗ is the relevant effective elastic modulus or combina-
tion of moduli of the sample. The modulus will change during
the phase transition whereby the intrinsic change is irrespective
of the domain formation.35 Twin boundaries have two effects
on C∗ (e.g. Ref. 29). First, any twin boundary leads to a shear
of the adjacent domains so that the projection of the elastic
modulus along the wave vector of the vibration is generally
changed. Twin angles ω are small so that the effect of the
domain shear is also small [cos2(ω) � 1]. The second effect
occurs when domain boundaries are mobile. They reduce the
effective modulus of the sample, and their friction increases
the damping of the RUS resonance.36 This effect is the same,
albeit at higher frequencies, as in DMA experiments, and we
refer the reader to DMA literature for further analysis of the
moving twin walls on the resonance frequency.36 The effect is
sometimes referred to as “visco-elastic” because the response
is no longer purely elastic.

The damping is described by reductions of the quality
factor Q and is directly related to the energy loss, e.g. due
to friction of the moving walls. Friction relates to the effective
medium behavior of the sample and is not directly related to an
individual wall movement. In particular, wall friction does not
necessarily reflect the propagation of walls with constant wave
number but will often refer to jerky (or stepwise) propagation,
which is perceived over larger time scales as “smooth”
movement.17 It is not possible to distinguish between these
very different mechanisms by measurements of Q(ω). A sim-
ple model to understand the effect of visco-elasticity is to con-
sider a visco-elastic layer attached to a loss-free resonator.37

The phase angle generally changes with decreasing Q. The
line shape of the resonance function is also modified. Explicit
calculations of the change in thickness vibrations of quartz
and BaTiO3 for viscoelastic impurities38 have found Q values
of BaTiO3 near 103, a value much smaller than quartz but still
much larger than the value we will report in this paper for
moving twin walls. The effect of microstructural relaxations
over long time spans was reported in Ref. 39.
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FIG. 1. (Color online) Microstructure of a heavily twinned
BaTiO3 ceramic at room temperature.

III. EXPERIMENTAL

Two samples of BaTiO3 were analyzed using RUS
equipment described elsewhere.40 In the He flow cryostat,
the samples were mounted across faces directly between
the transducers. In the high-temperature system, they were
mounted across pairs of corners between the tips of alumina
rods, which protruded into a resistance furnace. In this
case, the transducers were at the other ends of the rods,
outside the furnace. The single crystal was in the form of
an imperfect rectangular parallelepiped with mass 0.5649 g
and dimensions ∼7.040 × 4.089 × 3.457 mm3. The ceramic
sample41 was a rectangular parallelepiped with mass 0.3105 g
and dimensions 4.193 × 3.777 × 3.287 mm3. Each spectrum,
between 0.1 and 1.2 MHz, contained 65 000 data points, with
the exception of high-temperature spectra from the ceramic
sample, which contained 50 000 data points. Each grain in
this sample is heavily twinned (Fig. 1). Data were collected
in heating and cooling sequences, as set out in Table I, with
a settle time of 15 mines to allow thermal equilibration at
each temperature. Spectra were analyzed using the IGOR
(WaveMetrics) software package. In particular, the data were
analyzed for the frequency shift of selected sharp lines with
little overlap with adjacent resonances. The Nyquist plots were
restricted to small frequency intervals near the resonance to
that each resonance allowed one circle with little overlap with
other resonances.

TABLE I. Experimental conditions for RU measurements. For
single crystals, low-T data were collected before the high-T data.
For ceramics, the high-T data were collected first.

LT sequences Step HT sequences Step
(K) (K) (K) (K)

Single crystal 305–270 1 295–480 5
270–210 5 480–640 20
210–180 1 640–480 20
180–10 5 480–295 5
180–210 1

Ceramic 280–10 30 293–693 30
10–250 5 693–293 5

250–310 2
310–250 2

FIG. 2. (Color online) Stack of RUS spectra for a single crystal
of BaTiO3 collected during heating and cooling from 295 to 640 K.
The y axis is amplitude. The individual spectra have been displaced
in proportion to the temperature at which they were collected, and the
axis label is shown as temperature. Weak peaks, which do not vary
with temperature, are from alumina rods of the high-temperature
instrument.

IV. RESULTS

A typical stack of spectra from the single crystal is shown in
Fig. 2. The temperature dependence of the squared frequency
(∝ elastic moduli) and the inverse quality factor Q−1 are shown
in Fig. 3. The stability field of the cubic phase is characterized

FIG. 3. (Color online) Squared frequency and inverse quality
factor for a single crystal of BaTiO3. The phase transition points
correspond to local minima of the RUS resonance frequency. The
experimentally observed transition temperatures are 405, 283, and
194 K.
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by very low values of Q−1 and precursor softening as T → TCT

from above. The cubic ↔ tetragonal transition is marked by a
local minimum in f 2 at TCT = 405 ± 1 K. The tetragonal phase
presents the same pattern of softening with falling temperature
and low values of Q−1. It was not possible to obtain good
fits of the resonances between 343 and 380 K because of
noise from alumina rods of the high-temperature instrument
which submerged the sample signal, as shown in Figs. 2
and 3. This does not indicate high damping of the sample,
however. The tetragonal ↔ orthorhombic transition relates to
the softening and then stiffening of the elastic constant with
falling temperature with a minimum at TTO = 283 ± 1 K. A
weak increase of Q−1 in the orthorhombic phase occurs near
TTO. The orthorhombic ↔ rhombohedral transition shows a
minimum in f 2 at TOR = 194 ± 1 K. The elastic constant
stiffened in the rhombohedral phase with falling temperature.
A broad Debye-like peak in Q−1 occurs in the stability field
of the rhombohedral phase with a maximum at 95 K.

The results for the ceramic sample are similar to those of
the single crystal with some systematic deviations (Figs. 4 and
5). In the stability field of the cubic phase, the elastic con-
stants again first stiffened and then softened with decreasing
temperature. The effect is larger than in the single crystal. The
maximum of the resonance frequency occurs near TB = 586 ±
1 K. The values of Q−1 are low, indicating low dissipation. The
cubic → tetragonal transition is then marked by the complete
disappearance of peaks from the resonance spectra at TCT =
405 K as shown in Fig. 5. This is the key difference between the
spectra obtained from single crystals and those of ceramics:

FIG. 4. (Color online) Stack of RUS spectra of BaTiO3 ceram-
ics collected during heating/cooling from 693 to 293 K. The y

axis is amplitude. The individual spectra have been displaced in
proportion to the temperature at which they were collected, and
the axis label is shown as temperature. Weak peaks, which do
not vary with temperature, are from alumina rods of the high-
temperature instrument. Resonance peaks completely disappear at
TCT = 405 K.

FIG. 5. (Color online) Squared frequency and inverse quality
factor of BaTiO3 ceramic. The phase transition points are shown
by local minima of the temperature evolution of the RUS resonance
frequency. The experimentally observed transition temperatures are
405, 297, and 210 K. Note the high values of Q−1 (damping) in the
tetragonal and orthorhombic phases.

The single crystal shows the “normal” temperature behavior of
a resonating tetragonal phase, while the ceramic absorbs most
injected energy and does not ring. At lower temperatures, it was
possible to find resonances in the stability field of the tetragonal
phase, near 300 K, with high damping. These resonances could
be detected because of the much better signal-to-noise ratio of
spectra using the low-temperature instrument. The tetragonal
↔ orthorhombic transition is marked by a stiffening of the
elastic constant with falling temperature at TTO = 290 ± 1 K.
On heating, this transition is shifted to 297 ± 1 K, showing
a thermal hysteresis of 7 K. Near the transition, we find a
steep increase in Q−1 a few Kelvin below the transition point.
The orthorhombic ↔ rhombohedral transition corresponds
to a minimum in f 2 at TOR = 210 ± 1 K. Here, Q−1 is
relatively low (∼0.01) in the stability field of the rhombohedral
phase.

We now compare the Nyquist diagrams of the various
phases. In Fig. 6, we plot the diagrams for the single crystal
and, in Fig. 7, for the ceramic sample. In the ceramic sample,
Nyquist plots in the cubic phase are nearly circular with
secondary resonances near the origin. We find strong damping
in tetragonal and orthorhombic phases. The phase shifts
strongly but systematically in the cubic phase, while the phase
shift in the tetragonal phase appears chaotic. No measurable
phase shift occurs in the orthorhombic phase. Softening in
the stability field of the cubic phase has been fitted to a
Vogel–Fulcher equation f (T ) = A exp(E/(T − Tvf ). Both
single crystals and ceramics present similar activation energies
(∼0.2 eV) and different freezing temperatures Tvf (90 and
146 K; Fig. 8). To test for phonon-driven precursor effects,
we also tested for the expected power law dependence
(� (C11 − C12) ∼ |T − Tc|−K) and found that no such pure
soft-mode model applies for BaTiO3 (Fig. 9).
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FIG. 6. (Color online) Nyquist diagrams for a single crystal of BaTiO3 in the (a) cubic (265 kHz), (b) tetragonal (265 kHz), (c) orthorhombic
(112 kHz), and (d) rhombohedral (112 kHz) phases. All spectra were taken on heating.

V. DISCUSSION

We showed that precursor softening is not a (purely)
displacive phenomenon in BaTiO3. The experimentally de-
termined softening of the elastic constants in the cubic phase
is related to the weakening of C11 − C12, which relates to
o/d processes and, in turn, indicates the appearance of
PNRs (see Ref. 1 for comparison with Brillouin scattering
data, which identified the soft modulus as C11). The PNRs
are either soft themselves or generate the softening by
interfacial slip-slide mechanisms. The latter mechanism can be
excluded because the softening of the effective elastic modulus
� (C11 − C12) is not correlated with increased dissipation,
which we would expect in a slip-slide mechanism.

The temperature evolution of the RUS frequency for the
ceramic (Fig. 2) shows two tendencies. First, we find a weak
hardening of the sample with decreasing temperature above
∼600 K. This tendency is overcompensated by the appearance
of PNRs below the “Burns temperature TB”. This temperature
is not clearly defined;42 we can locate TB below the maximum
of the frequency at 586 K. The onset of the curvature in Fig. 8
shows the deviation from the exponential softening towards a
weaker temperature dependence near 560 K, which we would
then identify with the onset of the nucleation of PNRs in
the single crystal. Therefore, TB = 560 K would be a little
higher than the value previously found by acoustic emission
measurements carried out on a single crystal of BaTiO3:
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FIG. 7. (Color online) Nyquist diagram of BaTiO3 ceramics in the (a) cubic (815 kHz), (b) tetragonal (923 kHz), (c) orthorhombic
(770 kHz), and (d) rhombohedral (994 kHz) phases. All spectra were taken on heating.

TB = 553 K.42 Lowering the temperature further, we find
the PNRs to soften the elastic response further until the phase
transition near 405 K destroys the cubic symmetry. The soft-
ening is not related to phonon soft modes, which would lead to
temperature dependences in the form of power laws.35 Instead,
we find an intrinsic temperature dependence in the form of
Vogel–Fulcher dynamics. The activation energy is ∼0.2 eV,
which is comparable with previous results in LaAlO3.31

Vogel–Fulcher dynamics are indicative of glassy systems, and
it makes sense to envisage the network of the PNRs as a
glassy substructure, which is only weakly coupled with the
soft modes. Our results confirm the observations in Ref. 1 and
match the functional form of the temperature dependence.

The PNRs in the ceramics are very similar to those of
the single crystal. Our data seem to indicate that the onset
temperature is lower (550 K) than in the single crystal (560 K)
and also low compared with the temperature of the maximum
value of C11 − C12 (586 K; Fig. 9).

The temperature dependence of the phase factor is similar
for both samples. We find rotations of the complex response
function in the Nyquist plots in the cubic phase, which is
indicative of a multitude of competing resonance modes with
different phases. This can be understood if we consider large
changes of the microstructure, which may be directly related
to the PNRs and their effect on the dynamic elastic response of
the sample. The nucleation of the PNRs in various parts of the
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FIG. 8. (Color online) Precursor softening and Vogel–Fulcher
analysis for a single crystal and a ceramic sample. The measured
RUS frequencies follow a thermally activated precursor softening
∼exp[E/(T − TVF)] typical for multivalley structures with glassy
microstructures and order/disorder behavior.

samples could generate these phase rotations well. Rotations
in the tetragonal phase show highly mobile twin boundaries,
while nothing of this kind occurs in the orthorhombic phase.
This phase contains a stable microstructure, probably due to
mutual pinning of the various sets of twin boundaries. This
pinning is much weaker in the rhombohedral phase, where
some changes of the phase angle still occur.

The fundamental difference between the RUS spectra in
single crystals and ceramics of BaTiO3 relates to the damping
of the resonance signal. The single crystal spectra show

FIG. 9. (Color online) Precursor softening and power-law anal-
ysis for a single crystal and a ceramic sample. This softening is
typical for displacive systems. The strong deviation from the power
law proves that the precursor effect in BaTiO3 is not (purely) phonon
driven.

low values of Q−1 (<0.002) in the cubic and tetragonal
phases. At temperatures near the transition points, the damping
increases, which is the common behavior for nucleating
microstructures.25 With decreasing temperature, the damping
increases in the single crystal. This effect has been observed
before in other materials and is attributed to freezing of the twin
wall movements (e.g. Ref. 29). While the single crystal shows
this classic behavior, we find that the ceramic behaves very
differently. The damping in the tetragonal and orthorhombic
phases is much greater than in any of the single crystal phases
(Q−1 ≈ 0.03; Fig. 2). Decreasing the temperature decreases
the damping until it attains values comparable with the single
crystal near 110 K. Here, Q−1 may still decrease at lower
temperatures below the freezing values of the single crystal
(0.02). The key difference between the single crystal and the
ceramic is hence the strong damping of the RUS signal in the
tetragonal phase and, to a lesser extent, in the orthorhombic
phase of the ceramic while the damping in the rhombohedral
and cubic phases is roughly the same in the ceramic and
the single crystal. No domain freezing seems to occur in the
ceramic, while this effect is clearly visible in the single crystal.

We now discuss the increased damping in the tetragonal
phase by a factor ∼30 compared with the cubic phase. As
the damping does not increase in the cubic phase, we can
exclude remaining PNRs in the tetragonal phase as dissipating
objects. Another possibility is that friction in the movement
of intersections between twin walls and a much-enlarged
surface area in the ceramic leads to dissipation. This model
can be ruled out for the following reasons. The surface strain
of twin walls is only weakly sensitive to the symmetry of the
ferroelastic phase.43 The high damping disappears gradually
in the orthorhombic phase, while the twinning is likely to
remain constant, and intersections between orthorhombic and
rhombohedral twin walls and the grain surfaces are expected
not to change with temperature. This leaves the structure of the
tetragonal twins and their twin walls as temperature-dependent
dissipators. Note, however, that, in RUS, the applied strain
is very small (∼10−7),31 which is much smaller than in the
more commonly used DMA technique.30,31 Friction in RUS
is, hence, not related to large distance movement of twin
boundaries but relates to local vibrations of twin walls and
variations of the local wall structures.

We now explore how our RUS data are related to the
dynamics of the polarization. For that, we decided to carry
out molecular dynamics (MD) simulations for BaTiO3 single
crystals, employing the effective Hamiltonian approach of
Ref. 44.

The effective Hamiltonian has been constructed to model
(Ba,Sr)TiO3 (BST) compounds for any Ba composition. The
total energy Etot given in this scheme has the form:

Etot = EVCA({ui},{vi},{ηH }) + Eloc({ui},{vi},{ηloc},{σj }),

where ui denotes the local soft mode centered at the Ti
atom of the unit cell i (i.e. ui is directly proportional to
the electric dipole of that cell); vi are the dimensionless
displacement variables of the cell corners and are used to
calculate inhomogeneous strain tensor components for each
cell i; {ηH } is the homogeneous strain tensor, which allows
the simulation supercell to vary in size and shape;45 σj
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characterizes the atomic configuration, with σj = +1 or −1,
corresponding to the presence of a Ba or Sr atom, respectively,
at the A-lattice site j ; and {ηloc} represents the local strain
resulting from the difference in ionic size between Ba and Sr
atoms,44 which is relatively large (∼2%). Here, EVCA gathers
the energy terms solely involving the local soft mode, strain,
and their mutual couplings resulting from the application
of the virtual crystal approximation (VCA)46,47 to model
(Ba0.5Sr0.5)TiO3 solid solutions. Also, Eloc can be thought
of as a perturbative term due to the fact that BST systems
possess real Ba and Sr atoms on the A-sites rather than virtual,
composition-dependent atoms.

Previous Monte Carlo (MC) simulations performed for
BaTiO3 using this effective Hamiltonian scheme gave the exact
ferroelectric (FE) phase transition sequence.44 Furthermore,
spectroscopic predictions from MD simulations of BaTiO3

substantiated the observed central mode (CM) in THz spec-
troscopic measurements.48,49

Here, MD simulations were performed on a 12 × 12 × 12
supercell of BaTiO3 as follows: The system was equilibrated
at a temperature of interest by running 100 000 MD steps of
NPT (canonical ensemble) simulations, with each time step
being 0.5 fs. Then the system was equilibrated at constant
energy by conducting 40 000 MD steps of NVE (microcanon-
ical ensemble) simulations. A subsequent 16 210 000 NVE
steps were performed to obtain time-dependent properties
of the investigated systems. These simulations predicted FE
transition temperatures of 380, 285, and 230 K for Pm3̄m to
P 4mm, P 4mm to Amm2, and Amm2 to R3m, respectively,
in good agreement with reported data50,51 and current RUS
observations. The complex dielectric response ε(ω) was
then computed from the MD output using the approach of
Refs. 49, 52–55:

εαβ (υ) − 1 = 1

ε0V kBT

[ ∫ tS

0

〈dα(t)dβ(t)〉
tS

dt

+ i2πυ

∫ ∞

0
〈dα(t)dβ(0)〉−i2πυt

θ dt

]
,

where ν is the frequency; α, β are Cartesian components; V

is the volume; T is the temperature; d(t) is the dipole moment
at time t , and angle brackets indicate thermal average. Peaks
of complex dielectric response thus derived were then fitted
using classical damped harmonic oscillators (DHO) of the
form ε(ν) = Sν2

r /(ν2
r − ν2 + iγ ν), where νr , γ , and S are

the resonant frequency, damping constant, and the dielectric
strength, respectively, of the corresponding mode.

Figure 10 shows the highest and lowest resonant frequen-
cies found in the simulations at each investigated temper-
ature down to 240 K (i.e. just above the orthorhombic-to-
rhombohedral transition). The lowest frequency corresponds
to the central mode (CM), while the highest frequency is
the soft mode (SM) in the cubic phase, while being the
A1 component of that soft mode in the tetragonal and
orthorhombic phases. Consistent with Ref. 49, a central mode
appears in the cubic phase for temperatures below 700 K.
We postulate that the fact that the frequency of the central
mode does not follow the same temperature dependency as
the resonant frequency of the soft mode is related to the
temperature dependency of the RUS phase factor.

FIG. 10. (Color online) Temperature dependence of lowest and
highest resonant frequencies, as obtained using DHO fittings of the
MD dielectric spectra of BaTiO3. The lowest resonant frequency
corresponds to the central mode (green), while the highest frequency
corresponds to the soft mode (blue) in cubic (Pm3̄m) phase and the
A1 mode (red) in ferroelectric phases. Vertical lines correspond to
phase transition temperatures.

As a matter of fact, the central mode reflects a flipping
between different orientations of the Ti off-centering,48 and
hence a change of microstructure (or its local precursors) cor-
responds with our experimental RUS observations. Similarly,
the fact that the predicted frequency of the A1 component
of the soft mode is strongly temperature dependent in the
tetragonal phase, while that of the CM is not, is consistent
with the strong temperature dependence of the RUS phase
factor observed for the tetragonal phase. In the same manner,
the simulations indicate that the resonant frequencies of the
A1 component of the soft mode and of the CM are nearly
insensitive to the temperature in the orthorhombic phase,
which bears resemblance with the observed constant RUS
phase factor in this phase.

Several scenarios can be invoked to explain the large
increase of the wall-related damping in ceramic BaTiO3.
First, it is possible that the chemical composition of the twin
boundaries at room temperature is different for the ceramic and
the single crystal. It is possible that the ceramic samples have
a different oxygen concentration inside the twin walls from
the bulk, which would increase the dissipation of any local
movement. This possibility was already evoked in Refs. 28 and
29; oxygen deficiencies inside domain walls were observed in
other perovskite structures (e.g. Ref. 20).

In addition, or alternatively, we may consider that domain
walls are structurally different in the ceramic and the single
crystal. A first indication that this proposition is reasonable
stems from the observation that the thickness of the twin walls
is some 2 nm in single crystals, while ceramics may have
much narrower walls.7 Computer simulations of the evolution
of such thin walls under external strain17 have shown that
the main dissipation mechanism is related to the movement
of kinks inside the walls and the nucleation of side arms
of secondary walls from the original twin wall. In no case
was a large-scale lateral movement of a twin wall observed
which would be likely only for large (DMA-type) strains. The
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movement of kinks and nucleation of additional walls have
very little effect on the RUS resonance frequency. They were
found to increase the damping very significantly, however, so
that this mechanism would indeed explain our observations.
Additional indirect support for this idea stems from the
observation in Ref. 49, where dielectric measurements and
simulations in the cubic phase of BaTiO3 using a simple “toy”
Hamiltonian illustrated that the dynamic excitations show two
low-energy branches. These are the classic soft mode and
a low-frequency excitation, which reflects the double-well
properties of the Ti positions and their flips between these wells
(∼central peak). The consequence of such coupled systems is
a heterogeneous ground state where the interfacial properties
relate to strongly repulsive dynamical interactions (either flip
or small displacement inside an energy minimum) and hence
positive order parameter coupling (λ > 0 in Ref. 56). These
conditions were shown to generate chiral twin walls,56 which
depend sensitively on the boundary conditions of the BaTiO3

grains. This phenomenon may hence explain the observed
difference between RUS signals of the single crystal and the
ceramic sample.

The second difference originates from the precursor soft-
ening. For both samples, we find that the softening is not
an intrinsic soft-mode behavior but relates to the coupling
between the soft mode and the local double-well potentials.
A general theory and simulations of dipolar correlations were
published in Ref. 57. They predict that the temporary structures
(snapshots at a timescale slightly longer than the phonon time)
consist of a tweedlike pattern. The activation energy is given
by the depth of the double-well potential and is the same for
single crystals and ceramics. The Vogel–Fulcher temperature
depends on the topological pathways for relaxations in such
structures and depends on the finer details of the “glassy”
tweed structures. Our results suggest that the ceramic samples

have a lower Vogel–Fulcher temperature than the single
crystal. Here, TVF coincides roughly with the phase transition
temperature in single crystals but is deeply inside the tetragonal
phase in ceramics. This reduction in TVF in the ceramic sample
suggests that glassy relaxations continue more strongly in the
tetragonal phase of the ceramic than the single crystal. This
idea that hopping of Ti as the dominant order/disorder process
is strong in the cubic phase but also persists in the tetragonal
phase agreed with the findings in Ref. 48, where a strong
central peak was still observed in the tetragonal phase.

In this paper, we used the term “PNR” in its broadest
meaning; our experimental results and simulations clearly
show that the precursor effect is dynamic and that elastic
softening is an intrinsic property of the structure. Here, the
recent discussion of Hlinka58 becomes important. Our PNRs
can well be seen as structural states inside a dynamic tweed
structure and have little to do with well-defined, static clusters
in a nonpolar matrix.

ACKNOWLEDGMENTS

EKHS is grateful to the Leverhulme Trust (RG66640) and
EPSRC (EP/K009702/1) for support The RUS facilities in
Cambridge were established through a grant from NERC
(NE/B 505738/1) J.W. and L.B. acknowledge the financial
support of NSF DMR-1066158 and DMR-0701558. They also
acknowledge ONR Grants N00014-11-1-0384 and N00014-
08-1-0915, the Department of Energy, Office of Basic Energy
Sciences, under contract ER-46612, and ARO Grant W911NF-
12-1-0085 for discussions with scientists sponsored by these
grants. Some computations were also made possible thanks to
the MRI Grant 0722625 from NSF, ONR Grant N00014-07-
1-0825 (DURIP), and a Challenge Grant from the Department
of Defense.

*Corresponding author: ekhard@esc.cam.ac.uk
1J. H. Ko, T. H. Kim, K. Roleder, D. Rytz, and S. Kojima, Phys. Rev.
B 84, 094123 (2011); T. H. Kim and J. H Ko, J. Korean Phys. Soc.
59, 2575 (2011).

2S. Wada, T. Suzuki, M. Osada, M. Kakihana, and T. Noma, Jpn. J.
Appl. Phys. 37, 5385 (1998).

3R. Coes, M. Lambert, and A. Gunier, Solid State Commun. 6, 715
(1968).

4K. Namikawa, M. Kishimoto, K. Nasu, E. Matsushita, R. Z. Tai,
K. Sukegawa, H. Yamatani, H. Hasegawa, M. Nishikino, M. Tanaka,
and K. Nagashima, Phys. Rev. Lett. 103, 197401 (2009).

5K. Wieczorek, A. Ziebinska, Z. Ujma, K. Szot, M. Gorney, I. Franke,
J. Koperski, A. Soszynski, and K. Roleder, Ferroelectrics 336, 61
(2006).

6J. P. Sokoloff, L. L. Chase, and D. Rytz, Phys. Rev. B 38, 597
(1988).

7J. H. Ko, S. Kojima, T. Y. Koo, J. H. Jung, C. J. Won, and N. J. Hur,
Appl. Phys. Lett. 93, 102905 (2008).

8F. Jona and G. Shirane, Ferroelectric Crystals (Permagon Press,
Oxford, London, New York, 1962).

9S. Wada, K. Yako, H. Kakemoto, T. Tsurumi, and T. Kiguchi,
J. Appl. Phys. 98, 014109 (2005); M. Zgonik, P. Bernasconi,

M. Duelli, R. Schlesser, P. Gunter, M. H. Garrett, D. Rytz, Y. Zhu,
and X. Wu, Phys. Rev. B 50, 5941 (1994).

10D. Damjanovic, M. Budinir, and M. Davis, J. Mater. Sci. 41, 65
(2006).

11S. Wada and T. Tsurumi, British Ceramic Transactions 103, 93
(2003).

12M. Davis, M. Budimir, M. Damjanovic, and N. Setter, J. Appl.
Phys. 101, 054112 (2007).

13R. Ahluwalia, T. Lookman, A. Saxena, and W. W. Cao, Phys. Rev.
B 72, 014112 (2005).

14Z. Valdez-Nava, C. Tenailleau, S. Guillemet-Fritsch, N. El Horr,
T. Lebay, P. Dufour, B. Durand, and J. Y. Chane-Ching, J. Phys.
Chem. Solids 72, 17 (2011).

15Y. L. Zhu, S. J. Zheng, D. Chen, and X. L. Ma, Thin Solid Films
518, 3669 (2010).

16Y. C. Wu, H. Y. Lu, D. E. McCauley, and M. S. H. Chu,
J. Am. Ceram. Soc. 89, 2702 (2006); E. Hamada, W. S. Cho, and
K. Takayanagi, Philos. Mag. A 77, 1301 (1998).

17E. K. H. Salje, X. Ding, Z. Zhao, T. Lookman, and A. Saxena, Phys.
Rev. B 83, 104109 (2011); E. K. H. Salje, X. Ding, Z. Zhao, and
T. Lookman, Appl. Phys. Lett. 100, 22905 (2012).

18E. K. H. Salje, Chem. Phys. Chem. 11, 940 (2010).

014106-9

http://dx.doi.org/10.1103/PhysRevB.84.094123
http://dx.doi.org/10.1103/PhysRevB.84.094123
http://dx.doi.org/10.3938/jkps.59.2575
http://dx.doi.org/10.3938/jkps.59.2575
http://dx.doi.org/10.1143/JJAP.37.5385
http://dx.doi.org/10.1143/JJAP.37.5385
http://dx.doi.org/10.1016/0038-1098(68)90571-1
http://dx.doi.org/10.1016/0038-1098(68)90571-1
http://dx.doi.org/10.1103/PhysRevLett.103.197401
http://dx.doi.org/10.1080/00150190600695743
http://dx.doi.org/10.1080/00150190600695743
http://dx.doi.org/10.1103/PhysRevB.38.597
http://dx.doi.org/10.1103/PhysRevB.38.597
http://dx.doi.org/10.1063/1.2980444
http://dx.doi.org/10.1063/1.1957130
http://dx.doi.org/10.1103/PhysRevB.50.5941
http://dx.doi.org/10.1007/s10853-005-5925-5
http://dx.doi.org/10.1007/s10853-005-5925-5
http://dx.doi.org/10.1179/096797804225012747
http://dx.doi.org/10.1179/096797804225012747
http://dx.doi.org/10.1063/1.2653925
http://dx.doi.org/10.1063/1.2653925
http://dx.doi.org/10.1103/PhysRevB.72.014112
http://dx.doi.org/10.1103/PhysRevB.72.014112
http://dx.doi.org/10.1016/j.jpcs.2010.10.016
http://dx.doi.org/10.1016/j.jpcs.2010.10.016
http://dx.doi.org/10.1016/j.tsf.2009.09.103
http://dx.doi.org/10.1016/j.tsf.2009.09.103
http://dx.doi.org/10.1080/01418619808214253
http://dx.doi.org/10.1103/PhysRevB.83.104109
http://dx.doi.org/10.1103/PhysRevB.83.104109
http://dx.doi.org/10.1063/1.3676440
http://dx.doi.org/10.1002/cphc.200900943


EKHARD K. H. SALJE et al. PHYSICAL REVIEW B 87, 014106 (2013)

19E. Salje and H. Zhang, Phase Transitions 82, 452 (2009).
20A. Aird and E. K. H. Salje, J. Phys.: Condens. Matter 10, L377

(1998); Y. Kim, M. Alexe, and E. K. H. Salje, Appl. Phys. Lett. 96,
032904 (2010).

21J. Seidel, P. Maksymovych, Y. Batra, A. Katan, S. Y. Yang, Q. He,
A. P. Baddorf, S. V. Kalinin, C. H. Yang, J. C. Yang, Y. H. Chu,
E. K. H. Salje, H. Wormeester, M. Salmeron, and R. Ramesh, Phys.
Rev. Lett. 105, 197603 (2010).

22D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy,
N. A. Spaldin, R. Ramesh, and M. Fiebig, Nat. Mater. 11, 284
(2012).

23Y. P. Chiu, Y. T. Chen, B. C. Huang, M. C. Shih, J. C. Yang, Q. He,
C. W. Liang, J. Seidel, J. C. Chen, R. Ramesh, and Y. H. Chu, Adv.
Mater. 23, 1530 (2011).

24S. Van Aert, S. Turner, R. Delville, D. Schryvers, G. Van
Tendeloo, and E. K. H. Salje, Adv. Mater. 24, 523 (2012);
L. Goncalves-Ferreira, S. A. T. Redfern, E. Artacho, and
E. K. H. Salje, Phys. Rev. Lett. 101, 097602 (2008); M. Calleja,
M. T. Dove, and E. K. H. Salje, J. Phys.: Condens. Matter 15, 2301
(2003); 13, 9445 (2001); M. A. Carpenter, A. Buckley, P. A. Taylor,
and T. W. Darling, ibid. 22, 035405 (2010); M. A. Carpenter and Z.
Zhang, Geophys. J. Intern. 186, 279 (2011).

25D. Shilo, H. Drezner, and A. Dorogoy, Phys. Rev. Lett. 100, 035505
(2008).

26A. Gurevich and E. A. Pashitskii, Phys. Rev. B 57, 13878 (1998).
27E. K. H. Salje, H. Zhang, H. Idrissi, D. Schryvers, M. A. Carpenter,

X. Moya, and A. Planes, Phys. Rev. B 80, 134114 (2009).
28V. Stepkova, P. Marton, and J. Hlinka, J. Phys.: Condens. Matter

24, 212201 (2012); P. Marton, I. Rychetsky, and J. Hlinka, Phys.
Rev. B 81, 144125 (2010).

29J. Hlinka, P. Ondreikovic, and P. Marton, Nanotechnology 20,
105709 (2009).

30A. V. Kityk, W. Schranz, P. Sondergeld, D. Havlik, E. K. H.
Salje, and J. F. Scott, Phys. Rev. B 61, 946 (2000); W. Schranz,
P. Sondergeld, A. V. Kityk, and E. K. H. Salje, ibid. 80, 094110
(2009); R. J. Harrison, S. A. T. Redfern, A. Buckley, and E. K. H.
Salje, J. Appl. Phys. 95, 1706 (2004).

31A. Migliori and J. D. Maynard, Rev. Sci. Instrum. 76, 121301
(2005); M. A. Carpenter, E. K. H. Salje, and C. J. Howard, Phys.
Rev. B 85, 224430 (2012); E. K. H. Salje and M. A. Carpenter,
Appl. Phys. Lett. 99, 051907 (2011); J. Phys.: Condens. Matter 23,
112208 (2011).

32F. Kremer and A. Schonhals, Broadband Dielectric
Spectroscopy (Springer, Berlin and Heidelberg, 2002).

33E. K. H. Salje, J. Koppemsteiner, M. Reinecker, W. Schranz, and
A. Planes, Appl. Phys. Lett. 95, 231908 (2009).

34M. Landa, P. Sedlak, H. Seiner, L. Heller, L. Bicanove, P. Sittner,
and V. Novak, Appl. Phys. A 96, 557 (2009).

35M. A. Carpenter and E. K. H. Salje, Eur. J. Mineralogy 10, 693
(1998).

36M. A. Carpenter, E. C. Wiltshire, C. J. Howard, R. I. Thomson,
S. Turczynski, D. A. Pawlak, and T. Lukasiewicz, Phase Transitions
83, 703 (2010); E. K. H. Salje and W. Schranz, Z. Kristallogr. 226,
1 (2011).

37S. J. Martin, H. L. Bandey, R. W. Cernosek, A. R. Hillman, and
M. J. Brown, Anal. Chem. 72, 141 (2000).

38P. C. Y. Lee, N. H. Liu, and A. Ballato, IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 541, 52 (2004).

39A. V. Boiko, V. M. Kulik, B. M. Seoudi, H. H. Chun, and I. Lee,
Int. J. Solids Struct. 47, 374 (2010).

40R. E. A. McKnight, M. A. Carpenter, T. W. Darling, A. Buckley, and
P. A. Taylor, Am. Mineral. 92, 1665 (2007); R. E. A. McKnight,
T. Moxon, A. Buckley, P. A. Taylor, T. W. Darling, and M. A.
Carpenter, J. Phys.: Condens. Matter 20, 075229 (2008).

41G. Picht, H. Kungl, M. Baurer, and M. J. Hoffmann, Funct. Mater.
Lett. 3, 59 (2010).

42E. Dul’kin, J. Petzelt, S. Kamba, E. Mojaev, and M. Roth, Appl.
Phys. Lett. 97, 032903 (2010).

43J. Novak and E. K. H. Salje, J. Phys.: Condens. Matter 10, L359
(1998).

44L. Walizer, S. Lisenkov, and L. Bellaiche, Phys. Rev. B 73, 144105
(2006).

45W. Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev. B 52, 6301
(1995).

46L. Bellaiche and D. Vanderbilt, Phys. Rev. B 61, 7877 (2000).
47N. J. Ramer and A. M. Rappe, J. Phys. Chem. Solids 61, 317

(2000).
48J. Hlinka, T. Ostapchuk, D. Nuzhnyy, J. Petzelt, P. Kuzel, C. Kadlec,

P. Vanek, I. Ponomareva, and L. Bellaiche, Phys. Rev. Lett. 101,
167402 (2008).

49I. Ponomareva, L. Bellaiche, T. Ostapchuk, J. Hlinka, and J. Petzelt,
Phys. Rev. B 77, 012102 (2008).

50C. Menoret, J. M. Kiat, B. Dkhil, M. Dunlop, H. Dammak, and
O. Hernandez, Phys. Rev. B 65, 224104 (2002).

51V. V. Lemanov, E. P. Smirnova, P. P. Syrnikov, and E. A. Tarakanov,
Phys. Rev. B 54, 3151 (1996).

52J. M. Caillol, D. Levesque, and J. J. Weis, J. Chem. Phys. 85, 6645
(1986).

53D. Wang, J. Weerasinghe, L. Bellaiche, and J. Hlinka, Phys. Rev. B
83, 020301(R) (2011).

54I. Grinberg, Y. H. Shin, and A. M. Rappe, Phys. Rev. Lett. 103,
197601 (2009).

55J. Weerasinghe, D. Wang, and L. Bellaiche, Phys. Rev. B 85, 014301
(2012).

56S. Conti, S. Muller, A. Poliakovsky, and E. K. H. Salje,
J. Phys.: Condens. Matter 23, 142203 (2011).

57A. M. Bratkovski, A. M. Marais, V. Heine, and E. K. H. Salje, J.
Phys.: Condens. Matter 6, 3679 (1994); K. Parlinski, V. Heine, and
E. K. H. Salje, ibid. 5, 497 (1993).

58J. Hlinka, J. Adv. Dielectrics 2, 1241006 (2012).

014106-10

http://dx.doi.org/10.1080/01411590902936138
http://dx.doi.org/10.1088/0953-8984/10/22/003
http://dx.doi.org/10.1088/0953-8984/10/22/003
http://dx.doi.org/10.1063/1.3292587
http://dx.doi.org/10.1063/1.3292587
http://dx.doi.org/10.1103/PhysRevLett.105.197603
http://dx.doi.org/10.1103/PhysRevLett.105.197603
http://dx.doi.org/10.1038/nmat3249
http://dx.doi.org/10.1038/nmat3249
http://dx.doi.org/10.1002/adma.201004143
http://dx.doi.org/10.1002/adma.201004143
http://dx.doi.org/10.1002/adma.201103717
http://dx.doi.org/10.1103/PhysRevLett.101.097602
http://dx.doi.org/10.1088/0953-8984/15/14/305
http://dx.doi.org/10.1088/0953-8984/15/14/305
http://dx.doi.org/10.1088/0953-8984/13/42/305
http://dx.doi.org/10.1088/0953-8984/22/3/035405
http://dx.doi.org/10.1111/j.1365-246X.2011.05028.x
http://dx.doi.org/10.1103/PhysRevLett.100.035505
http://dx.doi.org/10.1103/PhysRevLett.100.035505
http://dx.doi.org/10.1103/PhysRevB.57.13878
http://dx.doi.org/10.1103/PhysRevB.80.134114
http://dx.doi.org/10.1088/0953-8984/24/21/212201
http://dx.doi.org/10.1088/0953-8984/24/21/212201
http://dx.doi.org/10.1103/PhysRevB.81.144125
http://dx.doi.org/10.1103/PhysRevB.81.144125
http://dx.doi.org/10.1088/0957-4484/20/10/105709
http://dx.doi.org/10.1088/0957-4484/20/10/105709
http://dx.doi.org/10.1103/PhysRevB.61.946
http://dx.doi.org/10.1103/PhysRevB.80.094110
http://dx.doi.org/10.1103/PhysRevB.80.094110
http://dx.doi.org/10.1063/1.1639949
http://dx.doi.org/10.1063/1.2140494
http://dx.doi.org/10.1063/1.2140494
http://dx.doi.org/10.1103/PhysRevB.85.224430
http://dx.doi.org/10.1103/PhysRevB.85.224430
http://dx.doi.org/10.1063/1.3622305
http://dx.doi.org/10.1088/0953-8984/23/11/112208
http://dx.doi.org/10.1088/0953-8984/23/11/112208
http://dx.doi.org/10.1063/1.3269578
http://dx.doi.org/10.1007/s00339-008-5047-4
http://dx.doi.org/10.1080/01411594.2010.491953
http://dx.doi.org/10.1080/01411594.2010.491953
http://dx.doi.org/10.1524/zkri.2011.1253
http://dx.doi.org/10.1524/zkri.2011.1253
http://dx.doi.org/10.1021/ac9908290
http://dx.doi.org/10.1109/TUFFC.2004.1268467
http://dx.doi.org/10.1109/TUFFC.2004.1268467
http://dx.doi.org/10.1016/j.ijsolstr.2009.09.037
http://dx.doi.org/10.2138/am.2007.2568
http://dx.doi.org/10.1088/0953-8984/20/7/075229
http://dx.doi.org/10.1142/S1793604710000889
http://dx.doi.org/10.1142/S1793604710000889
http://dx.doi.org/10.1063/1.3464968
http://dx.doi.org/10.1063/1.3464968
http://dx.doi.org/10.1088/0953-8984/10/21/005
http://dx.doi.org/10.1088/0953-8984/10/21/005
http://dx.doi.org/10.1103/PhysRevB.73.144105
http://dx.doi.org/10.1103/PhysRevB.73.144105
http://dx.doi.org/10.1103/PhysRevB.52.6301
http://dx.doi.org/10.1103/PhysRevB.52.6301
http://dx.doi.org/10.1103/PhysRevB.61.7877
http://dx.doi.org/10.1016/S0022-3697(99)00300-5
http://dx.doi.org/10.1016/S0022-3697(99)00300-5
http://dx.doi.org/10.1103/PhysRevLett.101.167402
http://dx.doi.org/10.1103/PhysRevLett.101.167402
http://dx.doi.org/10.1103/PhysRevB.77.012102
http://dx.doi.org/10.1103/PhysRevB.65.224104
http://dx.doi.org/10.1103/PhysRevB.54.3151
http://dx.doi.org/10.1063/1.451446
http://dx.doi.org/10.1063/1.451446
http://dx.doi.org/10.1103/PhysRevB.83.020301
http://dx.doi.org/10.1103/PhysRevB.83.020301
http://dx.doi.org/10.1103/PhysRevLett.103.197601
http://dx.doi.org/10.1103/PhysRevLett.103.197601
http://dx.doi.org/10.1103/PhysRevB.85.014301
http://dx.doi.org/10.1103/PhysRevB.85.014301
http://dx.doi.org/10.1088/0953-8984/23/14/142203
http://dx.doi.org/10.1088/0953-8984/6/20/008
http://dx.doi.org/10.1088/0953-8984/6/20/008
http://dx.doi.org/10.1088/0953-8984/5/4/018
http://dx.doi.org/10.1142/S2010135X12410068



