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Statistical similarity between the compression of a porous material and earthquakes
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2Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, E-08193 Bellaterra, Spain.

3Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK.
4Faculty of Physics, University of Viena, Boltzmanngasse 5, Vienna A-1090, Austria.

5División de Materiales Avanzados, IPICYT, Camino a la Presa San José 2055, San Lúıs Potośı, México

It has been long stated that there are profound analogies between fracture experiments and earth-
quakes; however, few works attempt a complete characterization of the parallelisms between these
so separate phenomena. We study the Acoustic Emission events produced during the compression
of Vycor (SiO2). The Gutenberg-Richter law, the modified Omori’s law, and the law of aftershock
productivity hold for a minimum of 5 decades, are independent of the compression rate, and keep
stationary for all the duration of the experiments. The waiting-time distribution fulfills a unified
scaling law with a power-law exponent close to 2.45 for long times, which is explained in terms of
the temporal variations of the activity rate.

PACS numbers: 05.65.+b, 89.75.Da, 62.20.mm, 91.30.Dk

Mechanical failure of materials is a complex phe-
nomenon underlying many accidents and natural disas-
ters ranging from the fracture of small devices under
fatigue to earthquakes. Despite the vast separation of
spatial, temporal, energy, and strain-rate scales [1, 2],
and the differences in geometry, boundary conditions,
loading, structure of the medium, and interactions, it
has been proposed that laboratory experiments on brit-
tle fracture in heterogeneous materials can be a model
for earthquake occurrence [3–5]. As the main stresses on
Earth’s crust are compressive [2], experiments of materi-
als loaded under compression seem the most suitable to
draw analogies with seismicity. But due to the fact that
compression stabilizes crack propagation, traditional as-
sumptions applied to samples loaded under tension are
not valid in compression, making the compression prob-
lem much more challenging conceptually [6].

Some fundamental findings of statistical seismology
have also been reported in compressive-failure experi-
ments. First, the Gutenberg-Richter law [7] states that
the number of earthquakes as a function of their radi-
ated energy E decreases as a power law, i.e., p(E)dE ∝
E−ǫdE (with ǫ = 1 + 2b/3 and b close to 1). Numer-
ous experiments on compressive failure report power-law
distributions in some measure of the size of the events
[2, 3, 8, 9]; however, there is considerable scatter in the
power-law exponents, which in addition can either de-
crease with the evolution of the damage [8], or show not
so simple variations [2]. In general, there is a strong influ-
ence of the external variables of the experiment, mainly
on applied stress [2]. Nevertheless, it is possible that
some of the early results are artifacts due to low counts
and poor statistical analysis.

The existence of power-law distributions and therefore
of scale invariance has led some authors to relate fracture

with a second-order phase transition [5, 6, 8], although
others point towards a first-order transition [8, 10], a de-
bate that replicates in earthquakes [1, 10–12]. In any
case, the broad range of responses triggered by the usual
slow perturbation is the signature of crackling noise [13]
(a characterization that does not depend on the under-
lying mechanisms generating the output of the system).

The (modified) Omori’s law [14] accounts for the fact
that the number of earthquakes per unit time decreases as
a power law since the sudden rise of activity provoked by
a “mainshock”, with an exponent p around 1. The coun-
terparts of this law in fracture have some problems of
interpretation (whole rupture of the sample is the main-
shock [4] versus similarity should hold also for microfrac-
turing bursts [15]). Further, sometimes it is not possi-
ble to distinguish the decay from an exponential form
[3, 15], or the resulting p is far from 1, although it has
been claimed that the p−exponent decreases as the ex-
periment progresses [15].

Time between consecutive events, or waiting times,
have also been measured in experiments under compres-
sion [3, 8]. The Omori’s law implies that the probability
density of these times should also follow a power-law de-
cay with an exponent close to 1 [16]. However, the recip-
rocal is not true, since power-law waiting times do not
necessarily imply an underlying Omori’s law and there-
fore they are not a proof of the fulfillment of this law.

A coherent picture of waiting times in statistical seis-
mology did not start to consolidate until Bak et al. pro-
posed their unified scaling law [17], measuring waiting
times above a minimum energy in different regions to-
gether. All the dependence on the size of the regions
and on the minimum energy turned out to be governed
solely by a unique parameter: the mean seismic activity
rate 〈r〉, in such a way that the waiting time probability
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density fulfills a scaling law, D(δ) = 〈r〉Φ(〈r〉δ), with δ
the waiting time and the scaling function Φ showing a
power-law decay with exponent 1− ν around 1 for small
arguments and another power law with exponent 2 + ξ
above 2 for large arguments [18]. Although the first expo-
nent is a consequence of the Omori’s law, the second one
is genuinely new, related with the distribution of back-
ground seismic rates [16].
Compression experiments have shown good agreement

with a restricted version of this law [9], which considers
the special case of a single spatial region and a regime
of stationary seismicity (eliminating time periods with
Omori-like decay [19]). In this case the scaling function
turns out to be well approximated by a flatter power-law
decay (with 1−ν around 0.3), followed by an exponential
decay [19, 20].
Finally, another fundamental statistical law of seismic

occurrence is the productivity law [21], which establishes
that the rate of earthquakes (i.e., aftershocks) triggered
by a mainshock of energy E is proportional to E2α/3,
with α ≃ 0.8. As far as we know this law has not been
reproduced in brittle fracture experiments but in plastic
deformation [22].
Therefore, there is no single compressive-failure ex-

periment that reproduces simultaneously the above
mentioned fundamental laws of statistical seismicity
(Gutenberg-Richter, Omori, productivity, and the uni-
fied waiting-time scaling law). The situation for tensile
failure and other types of tests is analogous [5, 8, 23, 24],
although the results of Ref. [25] are particularly notable,
including spatial measurements.
In this Letter we report on the failure under compres-

sion of a highly porous material, showing that the four
main laws of statistical seismicity hold, with unprece-
dented statistics, and with robust exponents across dif-
ferent experiments. In contrast to the other laws, the
unified scaling law, which yields the best quantitative
agreement with earthquakes, is not stationary but arises
from the temporal variations of the activity rate.
We perform uniaxial compression experiments of Vy-

cor, a mesoporous silica ceramics (40% porosity), loaded
at a constant compression rate R for three different ex-
periments at R = 0.2, 1.6, and 12.2 kPa/s (considering
that the section of the sample keeps constant). Com-
pression is applied without lateral confinement until the
shrinkage of the samples is above 20%, leading to mul-
tifragmentation. statistics. Simultaneous recording of
Acoustic Emission (AE) is performed by using a detec-
tor coupled to the upper compression plate. The signal
is preamplified (60 dB), band filtered (between 20 kHz
and 2 MHz) and analyzed by means of a PCI-2 acquisi-
tion system from EurophysicalAcoustics (Mistras Group)
working at 1 MSPS. An AE avalanche event starts at the
time ti when the preamplified signal V (t) crosses a fixed
threshold of 26 dB, and finish when the signal remains
below threshold for more than 200 µs. The energy Ei

associated to each event i is computed as the integral of
V 2(t) for the duration of the event divided by a reference
resistance. More details of the experiment can be found
in Ref. [26].
Fig. 1(a) shows an example of the raw results for the

experiment at R = 1.6 kPa/s. The jerky evolution of
the specimen’s height is apparent, as well as the broad
range of values of the event energy detected at the trans-
ducer. Another view of this intermittent dynamics is pro-
vided in Fig. 1(b) by the AE activity rate r(t) (counting
events every 60 s) and the cumulative number of events,

N(t) =
∫ t

0
r(t)dt. Despite an apparent correlation be-

tween the most energetic events and large changes in
height, one observes also regions with high acoustic ac-
tivity not associated with noticeable sample shrinkage.
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FIG. 1: (color online) (a) Example of the outcome of a com-
pression experiment at R = 1.6 kPa/s, showing the change in
the specimen’s height h versus time (proportional to stress)
and the energy of the AE avalanches, in logarithmic scale.
(b) Time evolution of the AE activity rate and of the total
number of events.

Fig. 2 shows the histograms that estimate the proba-
bility densities of the energies[26, 27], considering time
windows of 3× 103s. All the distributions show a power-
law behavior p(E) ∝ E−ǫ, with an exponent in the range
ǫ = 1.40 ± 0.05, stable for the whole experiment; this
is the signature of a remarkable stationarity in the en-
ergy dissipation, which appears as independent of applied
stress, in contrast to previous works [8] (therefore, the ap-
parent non-stationarity of E in Fig. 1 is due to a much
larger number of events in the central part). The value
of the exponent (obtained by maximum likelihood (ML)
estimation [27]) holds for about 7 decades and is robust
against the thresholding of the data (fitting only values
of E larger than Emin) and quite independent of R, as
shown in the inset of Fig. 2 [26–28]. Although the result-
ing exponent turns out to be below the most accepted
value for earthquakes, ǫ ≃ 1.67, Kagan has noticed that
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this value is inflated due to systematic biases and one
could instead expect ǫ close to 1.5 (i.e., b ≃ 3/4) [29].
Reciprocally, systematic biases of the energy cannot be
completely ruled out in AE experiments [5, 8].
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FIG. 2: (color online) Distribution of avalanche energies dur-
ing the full experiment with R = 1.6 kPa/s and during 7 dif-
ferent subperiods. The line shows the behavior corresponding
to ǫ = 1.39. The inset shows the ML-fitted exponent ǫ as a
function of a lower threshold Emin for the three experiments.

The next step in our analysis has been the computation
of the number of aftershocks (AS) in order to compare
with Omori’s law for earthquakes. We have considered
as mainshocks (MS) all the events with energies in a cer-
tain predefined energy interval. After eachMS we study
the sequence of subsequent events until an event with an
energy larger than the energy of the MS is found, which
finishes the sequence of AS. Then we divide the time line
from the MS towards the future in intervals, for which
we count the number of AS in each of them. Averages
of the different sequences corresponding to all MS in the
same energy range are performed, normalizing each inter-
val by the number of sequences that reached such a time
distance. The results presented in Figs. 3(a-c) show that
the tendency to follow Omori’s law is clear, in some cases
for up to 6 decades, with an exponent p = 0.75 ± 0.10.
(compare with Ref. [30]). Foreshocks, obtained in an
analogous way, show a similar behavior, with a slightly
smaller value of p.
The previous Omori’s plot allows also to estimate the

exponent α of the productivity law, by rescaling the ver-
tical axis with E2α/3, finding the optimum α which leads
to the collapse of the data; i.e., rAS/E

2α/3 should be
only a function of the time since the mainshock. The re-
sults in Fig. 3(d) show that α = 0.5± 0.1. This is again
somewhat smaller than the counterpart for earthquakes,
but the drift is compatible with the one found for the en-
ergy distribution, in other words, the ratio of exponents
(ǫ − 1)/α is the same. Remarkably, a collapse can be
obtained not only for mainshocks of different energies in
the same experiment but also across experiments with
different R, rescaling rAS as rASE

−2α/3/〈rR〉, and the
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FIG. 3: (color online) Number of aftershocks per unit time,
r, as a function of the time distance to the main shock. MS
are defined as the events in the energy range indicated by
the legend. n values indicate the number of sequences ana-
lyzed for each range. The dashed line indicates the Omori’s
behavior with slope −0.75. Rescaled Omori plot showing the
fulfillment of the productivity law, with α ≃ 0.5.

time since the MS, t− tMS , as (t− tMS)〈rR〉, with 〈rR〉
giving the mean number of events per unit time (see the
figure).

These results already suggest that there is a certain
similarity in the correlation between avalanches that ex-
tends from geophysical scales of the order of hundreds
of km to our small samples with cracks much smaller
than the mm scale. To deepen into the comparison we
have proceeded to the analysis of the interevent or wait-
ing times, defined as δj = tj − tj−1, with j labeling
only the events with energy larger than a given Emin.
The estimations of the waiting-time probability densi-
ties, D(δ;Emin), for different Emin and different exper-
iments are shown in Fig. 4(a), displaying a power-law
decay with exponent 1 − ν = 0.93 ± 0.05 for most of
the time range, as implied by the Omori’s law. In order
to compare the shape of the distributions we rescale the
axes as 〈r(Emin)〉δ and D(δ;Emin, R)/〈r(Emin)〉, with
〈r(Emin)〉 giving the mean number of events per unit
time with E ≥ Emin. Fig. 4(b) shows how the dif-
ferent distributions collapse into a single one, signaling
the existence of a scaling law; for a single experiment,
as the activity rate verifies the Gutenberg-Richter law,
the collapse “unifies” this law with the temporal proper-
ties [17]. For different experiments the collapse implies
the similarity versus the compression rate R. Moreover,
the plot also shows that a second power law emerges for
the rightmost tail of the distributions, with an exponent
2 + ξ = 2.45± 0.08 [31].

To make clear the correspondence with earthquakes
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Fig. 4(b) also includes seismic data for different spatial
windows in Southern California [17, 18]. Although the
previously reported value of ξ for earthquakes [18] is a bit
smaller than for the experiment, the similarity is remark-
able, taking into account that the earthquake measure-
ments are taken over different spatial windows, whereas
for the AE data we do not have access to such degrees of
freedom.
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FIG. 4: (color online) (a) Distribution of waiting times for
different values of Emin and the compression rate R. (b)
The same data under rescaling, including also the results of
the ETAS model and earthquakes from Southern-California
divided into P × P regions [17, 18] for the period Jan 1984 –
Jun 2011.

How can we get then essentially the same behavior in
such different situations? The answer lies in the varia-
tions of the activity rate. Let us consider a single Omori
sequence, for which the waiting-time density depends on
the background activity rate µ through a scaling form
[16],

D(δ|µ) = µ

(µδ)1−ν
f(µδ), (1)

where ν is close to 0 and f can be a decreasing exponen-
tial, or another function showing the same behavior at 0
and ∞. If the background rate is not fixed but evolves
during the experiment, the resulting density will be

D(δ) ∝
∫ µmax

µmin

dµρ(µ)µD(δ|µ), (2)

where ρ(µ) is the density of background rates. Substi-
tuting the previous equation and considering that µ is
distributed between µmin and µmax with ρ(µ) ∝ 1/µ1−ξ

leads to D(δ) ∝ 1/δ1−ν for δ ≪ µ−1
max (because the

rescaled integral goes to zero as δ1+ξ+ν) but D(δ) ∝
1/δ2+ξ for δ ≫ µ−1

max (because the rescaled integral
converges to a constant). This behavior for ρ(r) can

arise from a time evolution of the form µ(t) ∝ t1/ξ, as
ρ(µ) ∝ |dt/dµ(t)| [16]. So, when the background rate
varies across different scales (as in Fig. 1(b)) and this
takes place through a power law, a second power law
arises in D(δ). The experimental outcome suggests then
ξ ≃ 0.5. We have simulated the Epidemic Type After-
shock (ETAS) model [32], defined by the fact that each
earthquake i, with a Gutenberg-Richter energy, triggers
a sequence with a rate equal to KEi

2α/3/(c+ t− ti)
1+θ,

and the overall rate is the linear superposition of these
rates plus a background rate. The “microscopic” expo-
nent 1 + θ corresponds to an observable p = 1 − θ [32].
Using as input the experimental values of ǫ, p, and α,
together with c = 0.001 s, and µ increasing slowly as
µ(t) ∝ 1− cosωt (essentially a power law with ξ = 1/2)
we obtain very good concordance with the previous cal-
culations (see Fig. 4(b)) when the branching ratio (given
by Kb/(θcθ(b− α))) is very close to criticality, i.e. 0.99.
Also, the measurement of r(t), using different time in-
tervals, leads to a distribution with a power-law tail of
the form 1/

√
r for small r (not shown). This explanation

could hold also for Ref. [33].

In summary, we have presented experimental results
on the compression of a highly porous material, obtaining
good fulfillment of some fundamental laws of statistical
seismology. Laws involving the measurement of energy
and the Omori’s law show some bias in the exponent
with respect the earthquake case, whereas for the unified
scaling law the quantitative agreement is much better. As
our experiment does not allow the measurement of the
location of the events, it has been not possible to test
laws regarding spatial properties, which constitute also
an important body of knowledge for the characterization
of seismicity [25]. However, the validity of the unified
scaling law in our experiments is associated to temporal
variations of the background activity rate, rather than to
spatial variations.
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