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We describe new experiments to examine the buoyancy-induced mixing which results
from the injection of a small constant volume flux of fluid of density ρs at the top
of a long narrow vertical tank with square cross-section which is filled with fluid of
density ρ0 < ρs. The injected fluid vigorously mixes with the less dense fluid which
initially occupies the tank, such that a dense mixed region of turbulent fluid propagates
downwards during the initial mixing phase of the experiment. For an ideal source of
constant buoyancy flux Bs, we show that the height of the mixed region grows as
h ∼ B1/6

s d1/3t1/2 and that the horizontally averaged reduced gravity g′ = g(ρ − ρ0)/ρ0

at the top of tank increases as g′(0) ∼ B5/6
s d−7/3t1/2, where d is the width of the tank.

Once the mixed region reaches the bottom of the tank, the turbulent mixing continues
in an intermediate mixing phase, and we demonstrate that the reduced gravity at each
height increases approximately linearly with time. This suggests that the buoyancy
flux is uniformly distributed over the full height of the tank. The overall density
gradient between the top and bottom of the mixed region is hence time-independent
for both the mixing phases before and after the mixed region has reached the bottom
of the tank. Our results are consistent with previous models developed for the mixing
of an unstable density gradient in a confined geometry, based on Prandtl’s mixing
length theory, which suggest that the turbulent diffusion coefficient and the magnitude
of the local turbulent flux are given by the nonlinear relations κnlT = λ2d2 (∂g′/∂z)

1/2

and Jnl = λ2d2 (∂g′/∂z)
3/2

, respectively. The O(1) constant λ relates the width of the
tank to the characteristic mixing length of the turbulent eddies. Since the mixed
region is characterized by a time-independent overall density gradient, we also tested
the predictions based on a linear model in which the turbulent diffusion coefficient
is approximated by a constant κ l

T . We solve the corresponding nonlinear and linear
turbulent diffusion equations for both mixing phases, and show a good agreement with
experimental profiles measured by a dye attenuation technique, in particular for the
solutions based on the nonlinear model.
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Turbulent buoyant convection in a narrow vertical tank 279

1. Introduction
Buoyancy-induced turbulent mixing is a fundamental process in many industrial and

geophysical flows. Of course, we can distinguish such flows by the extent of spatial
inhomogeneity in the initial or boundary conditions. Two classical archetypes that
involve homogeneous initial or boundary conditions are Rayleigh–Taylor instability
and Rayleigh–Bénard convection (see, for example, Dimonte et al. 2004; Ahlers,
Grossmann & Lohse 2009, respectively). Rayleigh–Taylor instability is driven by
an unstable density difference between two layers of fluid, while Rayleigh–Bénard
convection is driven by a statically unstable temperature, and hence density contrast
imposed on a single layer of fluid. In both cases, the redistribution of buoyancy scales
with the density or imposed temperature contrast. In finite geometries, the flux also
depends on the geometry and aspect ratio of the enclosed box, as studied by Dalziel
et al. (2008) and Weiss & Ahlers (2011).

In the other extreme of strong inhomogeneity in the initial or boundary conditions,
continuous releases of fluid of different density from an isolated ‘source’ in an
enclosed space lead to the rise of a turbulent ‘plume’ entraining and mixing with the
ambient fluid. The behaviour of such plumes is important for a number of industrial
and environmental applications, as recently discussed by Woods (2010). In the limit
where the cross-sectional area of a plume is negligible compared with the cross-
sectional area of the enclosing box, the plume sets up and couples with a developing
ambient stratification, as first investigated by Baines & Turner (1969). However, when
the cross-sectional area of the plume is similar to that of the enclosing box, the
plume dynamics change. Our work focuses on understanding the mixing produced
by an ideal source of buoyancy with zero volume flux released into a long vertical
enclosure of small cross-sectional area. This is relevant for flows in chemical reaction
columns (Thakore & Bhatt 2007), magma flows in confined geophysical geometries
(Ryan 1994) and heat or gas flows in mine shafts (Karmis 2001).

We report on a series of new image-analysis experiments in a narrow vertical
tank with a source of constant buoyancy flux Bs at the top. The related source fluid
vigorously mixes with the less dense fluid that initially occupies the tank, such that
a dense mixed region of turbulent fluid propagates downwards. We focus on the
turbulent flow before and after the mixed region has reached the bottom of the tank. In
analysing our experiments, and in particular in developing a quantitative model of the
evolving density gradient in the mixed region, we draw from a number of laboratory
studies on vertical buoyancy-driven mixing in a long tank with small cross-sectional
area (Barnett 1991; Holmes, Karr & Baird 1991; Baird et al. 1992; Zukoski 1995;
Debacq et al. 2001; Dalziel et al. 2008). In these studies, the turbulent mixing
is modelled as a diffusive process, although different expressions for the turbulent
diffusion coefficient were adopted.

Barnett (1991) analysed the flow and density field produced by the buoyant
convection from a localized plume source (Morton, Taylor & Turner 1956) in a
narrow vertical tank. In particular, he considered in detail the evolution from a
region dominated by plume-like dynamics towards a region dominated by turbulent
convection across the whole width of the tank. Barnett (1991) modelled the evolution
of the horizontally averaged density in the region dominated by turbulent convection,
with a turbulent diffusion coefficient expanded in terms of integer powers of the
density gradient. However, he argued that higher-order terms are negligible for the
considered range of experiments, and so he approximated the turbulent diffusion
coefficient by a constant value. Barnett (1991) successfully tested the predictions
based on this linear model with a constant turbulent diffusion coefficient, although

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2012.158
Downloaded from https:/www.cambridge.org/core. Open University Library, on 19 Jan 2017 at 20:07:23, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2012.158
https:/www.cambridge.org/core
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Holmes et al. (1991) discussed experimental results which actually suggested that the
turbulent diffusion coefficient should depend on the square root of the local density
gradient. An empirical relation for the turbulent diffusion coefficient was derived,
which was later used by Baird et al. (1992) to model the horizontally averaged density
evolution in their experiments. Eventually, Zukoski (1995) suggested that the turbulent
diffusion coefficient is given by the product of a local velocity fluctuation and a
mixing length. With this, he found that the turbulent diffusion coefficient is indeed
predicted to be proportional to the square root of the local density gradient, which is
similar to the empirical relation found by Holmes et al. (1991).

In this paper, we follow Holmes et al. (1991), Baird et al. (1992) and Zukoski
(1995), and apply Prandtl’s mixing length theory to show that the turbulent diffusion
coefficient depends on the square root of the local density gradient. By applying
Prandtl’s mixing length theory, the turbulent diffusion coefficient κT can be written as

κT = uT lT, (1.1)

with lT the characteristic mixing length of the turbulent eddies, and uT the
corresponding characteristic buoyancy-driven speed given by

uT = lT

√
∂g′

∂z
∼
√
1g′lT, (1.2)

where the overline denotes a horizontal average of the reduced gravity g′ =
g(ρ−ρ0)/ρ0 across the width of the tank, g is the acceleration due to gravity, and ρ0 is
an appropriate reference density. The magnitude of the associated nonlinear turbulent
flux of reduced gravity is thus given by

J = κT
∂g′

∂z
= l2

T

(
∂g′

∂z

)3/2

, (1.3)

which, alternatively, may be understood in terms of the characteristic difference in
reduced gravity

1g′ ∼ lT

(
∂g′

∂z

)
, (1.4)

which is transported with speed uT , such that J ∼ 1g′uT . In a confined geometry,
the characteristic mixing length lT may be related to the width of the tank d, by an
empirical O(1) constant lT = λd, such that (1.1) and (1.3) become

κnlT = λ2d2

(
∂g′

∂z

)1/2

→ Jnl = λ2d2

(
∂g′

∂z

)3/2

, (1.5)

where we have used the superscript nl to denote the nonlinear form of the turbulent
diffusion coefficient and the local turbulent flux. (In § 5, following the modelling
approach used in Barnett (1991), we discuss a model in which the turbulent diffusion
coefficient is a constant, the flux is a linear function of the reduced gravity, and so the
reduced gravity satisfies a linear diffusion equation, and compare both the nonlinear
model and this linear model with our experimental measurements.) From (1.5), we
deduce that the nonlinear differential equation for the evolution of the reduced gravity
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is given by

∂g′
nl

∂t
= λ2d2 ∂

∂z

(∂g′
nl

∂z

)3/2
 , (1.6)

in which we denote the solution of the nonlinear turbulent diffusion equation by g′
nl

.
Baird et al. (1992) and later Zukoski (1995) successfully tested the predictions of a

model based on (1.5) with some turbulent exchange flow experiments in a long narrow
vertical tank connected to a reservoir. In particular, Baird et al. (1992) analysed finite
source release experiments and found that λ is close to one, but slightly varied with
the width of the tank and the viscosity of the fluid. This observed dependence strongly
suggests that λ is actually dependent on the Reynolds number, and furthermore that
the actual value of λ decreases towards one with increasing Reynolds number. Dalziel
et al. (2008) performed experiments with an image processing technique to study the
turbulent mixing in a long narrow vertical tank, of width d, in which the lower half is
initially filled with a clear fluid which is less dense than the dyed fluid in the upper
half of the tank, with a buoyancy contrast g′. Using particle image velocimetry (PIV),
they confirmed that the turbulent eddies indeed scale with the width of the tank such
that λ is an O(1) constant. Using calibrated light intensity as a proxy for the line-of-
sight averaged density, they measured the evolving density as a function of the height
and showed that a mixed region develops whose height grows as h ∼ g′1/5d4/5t2/5,
which is consistent with (1.6).

In the present experiments, we expect the mixing to be controlled by the constant
buoyancy flux Bs and the width of the tank d. As the dense mixed region of turbulent
fluid deepens, there is no independent length scale controlling the extent of the mixed
region, which suggests that the mixing may be self-similar. However, the flux law (1.5)
suggests that the turbulent flux at the top of the tank depends on the gradient of the
reduced gravity. Therefore, from dimensional analysis, we expect that the height of the
mixed region h should increase as

h∼ B1/6
s d1/3t1/2 = hT, (1.7)

and that the reduced gravity at the top of the tank should grow as

g′(0)∼ B5/6
s d−7/3t1/2 = g′T(0). (1.8)

This ensures that the overall gradient of the reduced gravity between the top and
bottom of the mixed region is time-independent, and that the total amount of buoyancy
is conserved. It follows that the arrival time tA of the mixed region at the bottom of
the tank with height H has a characteristic scale tAA, which depends on B, d and H
according to (1.7):

tA ∼ H2B−1/3
s d−2/3 = tAA. (1.9)

The constant buoyancy flux continues after the mixed region has reached the bottom
of the tank, and we expect that the density gradient will then adjust so that the
buoyancy flux becomes uniformly distributed over the full height of the tank with the
density at each height increasing linearly with time.

To test this picture of the flow evolution, the paper is organized as follows. In
§ 2, we describe the experimental technique and discuss observations of the turbulent
flow before and after the mixed region has reached the bottom of the tank. In § 3,
we confirm the new scaling laws (1.7) and (1.8), and solve the nonlinear differential
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equation (1.6) to predict the horizontally averaged reduced gravity distribution during
this ‘initial mixing phase’, which we successfully compare with experimental results.
The end of this initial mixing phase is defined by an effective arrival time of
the mixed region at the bottom of the tank, tEA ∼ tAA, deduced from experimental
results, and is shown to be in good agreement with our model. We then focus on
the evolution of the mixed region after it has reached the bottom of the tank in
§ 4. For this ‘intermediate mixing phase’, we demonstrate that the reduced gravity
at every height increases approximately linearly with time, and that the constant
buoyancy flux is thus essentially uniformly distributed over the full height of the
tank. We solve the nonlinear differential equation (1.6), and we show again a good
agreement with experimental results. In § 5, we discuss a linear model in which the
turbulent diffusion equation is approximated by a constant, following Barnett (1991).
We compare solutions based on this linear model with the nonlinear model discussed
above, as well as with experimental data for both the initial and intermediate mixing
phase. In § 6, we identify the limits of validity of our modelling assumptions, in which
the source conditions are of particular interest. We consider the somewhat plume-like
flow in the region near the source, and we examine the significance of our source with
a finite volume flux and a finite density difference between the source fluid and the
fluid initially in the experimental tank. Finally, in § 7, we discuss our conclusions, and
briefly mention some applications of our results.

2. Experiments
2.1. Experimental procedure

We perform experiments in a narrow vertical tank with dimensions d × d × 40d with
d = 5.0 × 10−2 m. Initially, we fill the tank with fresh clear water, of density ρ0, and
a peristaltic pump then provides a constant flux Qs of dyed salty water of density
ρs > ρ0 and reduced gravity g′s = g(ρs − ρ0)/ρ0 > 0, at the top of the tank. A fine
mesh is positioned close to the fluid level, such that the dyed salty water drips into the
fresh clear water at random positions across the cross-sectional area of the tank with
minimal momentum. In all of our experiments, the characteristic dripping frequency
is high enough to approximate a continuous flux of dense fluid which is evenly
distributed over the area of the tank. To conserve volume, we extract an equivalent
volume flux Qs from the bottom of the tank at z = −H = −40d. As discussed in § 6,
this volume flux is sufficiently small so that the turbulent mixing is dominantly driven
by the buoyancy flux given by

Bs = g′sQs. (2.1)

We define a coordinate system with the origin at the top, left front corner of the
tank, as shown in figure 1(a). The bottom of the tank is thus at z = −40d, the lateral
width extends 0 6 x 6 d, and the line-of-sight width of the tank extends 0 6 y 6 d. In
general, the density distribution in the tank ρ0 6 ρ(x, y, z, t)6 ρs.

We attach Electroluminescent LightTape (Electro-LuminX Lighting Corp.) to the
rear of the tank, which provides highly uniform illumination of cyan hue. We take
photographs every five seconds with a computer-controlled Nikon D90 RGB DSLR-
camera at distance 100d from the front of the tank. The shutter speed is 1/15 s
and we use ISO 800 to take images with a 52 mm (f7.1) lens. This provides a
fast shutter speed to approximate an instantaneous capture of the flow dynamics,
while maintaining a broad range of light intensities which the camera can capture
to distinguish between different clear/dyed fluid mixtures. The experimental tank
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) (a) Schematic overview
of the buoyancy-induced turbulent mixing due to the injection of a small constant volume
flux Qs of dense fluid with reduced gravity g′s at the top of a narrow vertical tank which
has dimensions d × d × 40d. To maintain volume, we extract an equivalent volume flux Qs
from the bottom of the tank at z = −40d. As discussed in § 6, this volume flux is sufficiently
small so that the turbulent mixing is dominantly driven by the source buoyancy flux Bs = g′sQs.
(b) A close-up image of the region near the source −5d 6 z 6 0, in which the colours
and the contrast are adjusted to visualize the turbulent eddies clearly, showing that they
typically grow to size d within a distance O(5d) from the source at z = 0. (c) Evolution of
the line-of-sight averaged reduced gravity distribution 〈g′〉y(x, z, t) from an experiment with
Bs = 5.1× 10−7 m4 s−3 in the initial mixing phase before the dense mixed region of turbulent
fluid has reached the bottom of the tank. On each figure, we show a black contour line where
〈g′〉y = 7.5 × 10−4 m s−2, which is just above the experimental noise level. (d) The evolution
of the mixed region after it has reached the bottom of the tank in the intermediate mixing
phase, again for an experiment with Bs = 5.1 × 10−7 m4 s−3. (e) The horizontally averaged
reduced gravity profiles g′(z, t) for the initial mixing phase (black lines) at the times shown in
(c) and for the intermediate mixing phase (grey lines) at the times shown in (d).

occupies a region of the image of 70 × 3000 pixels. We perform the experiments
in a dark room, whilst ensuring that the only light detected by the camera passes
through the fluid in the tank. Since the source fluid of density ρs is coloured with
red food dye (a ‘Preema’ product) while the initial tank fluid of density ρ0 is
clear, we can infer the line-of-sight averaged density distribution 〈ρ〉y(x, z, t) from
the attenuated light intensity of the images, as is extensively discussed by Cenedese
& Dalziel (1998). Light intensity data is obtained from the green channel, since the
contrast between the red source fluid and the cyan LightTape is the highest in this
channel. While Cenedese & Dalziel (1998) discussed the theoretical derivation of a
calibration function between light intensity and concentration of dyed fluid, due to the
nonlinear response properties of our camera, we utilize a direct calibration approach.
This is carried out by taking calibration images of the tank filled with 15 different
mixtures of source dyed fluid and clear initial tank fluid. To maximize the accuracy
of our experimental measurements, we choose the maximum concentration calibration
differently for each experiment.

We then subdivide the calibration images of the tank front surface into multi-pixel
cells with sides d/35 in the x-direction and d/10 in the z-direction, and we determine
an average measured light intensity in every one of these cells for each of the 15
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different calibration concentrations. We then determine empirically a calibration curve
for each cell using a sixth-order polynomial fit through the 15 calibration points. In
this way, we use a total of 35 × 400 calibration curves to convert the spatially and
temporally evolving light intensity field into a density distribution. We compensate for
temporal variation in the light intensity of the electroluminescent tape by also imaging
a thin strip of electroluminescent panel down one side of the tank. During processing,
we use a linear mapping to match the measured light intensity of this strip to the
average emitted intensity observed in the calibration procedure, thus compensating for
observed temporal variations of the emitted light intensity, which are typically less
than 1.5 % in any case.

To check the calibration quantitatively, we compare the actual total amount of source
fluid (due to injection at the source) in the tank with the quantity which can be
inferred from the light intensity measurements before the mixed region has reached
the bottom of the tank. The two values for the total amount of source fluid in the
tank typically differ by less than 3 %, a deviation which we believe is mainly due to
parallax effects near both ends of the experimental tank.

Provided that the source volume flux is sufficiently small, the flow may be
characterized by three quantities: the tank width d; the source (specific) buoyancy
flux Bs = g′sQs; and the total tank height H after the mixed region has reached the
bottom of the tank. For both mixing phases, we perform experiments with buoyancy
flux Bs = 1.0, 2.8, 5.1, 10.0 and 14.0 × 10−7 m4 s−3. We can distinguish between an
initial mixing phase (before the mixed region has reached the bottom of the tank) and
an intermediate mixing phase (after the mixed region has reached the bottom of the
tank during which the density in the tank is still significantly smaller than the source
density). We vary the source buoyancy flux by changing Qs while keeping the reduced
gravity of the source fluid constant with g′s = 1.00 ± 0.05 m s−2 for the experiments
in the initial mixing phase before the mixed region reached the bottom of the tank,
and with g′s = 1.55 ± 0.05 m s−2 for the intermediate mixing phase after the mixed
region has reached the bottom of the tank. To obtain the same buoyancy flux, the set
of experiments with a lower reduced gravity of the source fluid g′s involves a higher
volume flux Qs. In practice, a higher volume flux Qs results in a higher frequency
of dense fluid dripping into the tank. This then serves as a better approximation for
a continuous source flux, which is preferred when the mixed region is still growing.
However, a higher reduced gravity of the source g′s is preferred once the mixed region
has reached the bottom of the tank and the reduced gravity in the region starts to
approach that of the source fluid. The density in the tank ultimately converges towards
the density of the source fluid, which suggests that the flow dynamics eventually
change and the intermediate mixing phase is hence finite in duration. In this work,
we only consider the initial and intermediate mixing phase to test our model which
assumes that the source is a source of finite buoyancy alone, i.e. g′s→∞ and Qs→ 0.
We discuss our underlying assumptions in more detail in § 6.

2.2. Experimental observations

We consider the turbulent mixing driven by a buoyancy flux Bs at the top of a narrow
vertical tank with lateral scale d, such that we define the appropriate characteristic
Reynolds number as

ReT = B1/3
s d2/3

ν
, (2.2)
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which has a value 0.6×103 < ReT < 1.6×103 for the range of parameters considered in
our experiments. These Reynolds numbers are found to be high enough for turbulent
mixing to dominate in both the mixing phases. This is in agreement with observations
of Dalziel et al. (2008) in the early, turbulent stage of Rayleigh–Taylor instability
experiments which had similar Reynolds numbers. Their PIV measurements showed
that a given parcel of fluid moves vertically by cascading around many complex
three-dimensional vortical structures with different orientations which may change in
time. Indeed, the turbulent flow is dominated by eddies of the scale d of the width of
the tank, which leads to extremely efficient mixing.

To compare turbulent diffusion with molecular diffusion (of the dye in particular)
we give an estimate of the turbulent diffusion coefficient, i.e. κT , based on Prandtl’s
mixing length theory (1.1) and our experimental parameters Bs and d

κT = B1/3
s (λd)2/3, (2.3)

with λ an O(1) constant. We find that this turbulent diffusion coefficient is
O(10−3) m2 s−1, which is ∼106 larger than that typically for the molecular diffusion of
the dye (Lide 2001).

The turbulent eddies typically grow to the limiting size of the tank’s lateral scale d,
within a distance O(5d) from the source at z = 0, as illustrated in figure 1(b). This
means that the assumption of a single length scale, d, is not valid in the vicinity of the
source and that deviations from our model are to be expected, as discussed in more
detail in § 6.

With the help of the image analysis technique, it is possible to obtain the evolution
of the line-of-sight averaged reduced gravity distribution 〈g′〉y(x, z, t). In figure 1(c),
we show the growth of the mixed region in terms of 〈g′〉y(x, z, t) for an experiment
with Bs = 5.1×10−7 m4 s−3 at times t = 10, 100, 200, 300, 400 and 500 s where t = 0 s
corresponds to the first release of dense fluid and hence the start of the initial mixing
phase. A black contour line at 〈g′〉y = 7.5 × 10−4 m s−2 indicates the first detectable
front of the mixed region. The ‘detection’ arrival time of this detectable ‘first front’
at the bottom of the tank is tDA = 875, 689, 578, 453, 292 s for the experiments with
Bs = 1.0, 2.8, 5.1, 10.0 and 14.0× 10−7 m4 s−3, respectively. Indeed, we expect that the
actual, yet undetected, true first front reaches the bottom of the tank some time before
this. We therefore define (in § 3) an ‘effective’ arrival time tEA as the end of the initial
mixing phase.

Although there is undoubtedly variation in the lateral cross-tank (x) direction, this
occurs typically on the overturning time scale of the eddies and is associated with
the turbulence. Since we are principally interested in the evolution of the flow in the
z-direction, we consider the horizontally averaged reduced gravity distribution g′(z, t).
Profiles of g′(z, t) for the initial mixing phase, at the times shown in figure 1(c), are
presented in figure 1(e) by black lines. The standard deviation across the width of
the tank is typically 2 % of the local reduced gravity, which makes it appropriate to
consider the horizontally averaged reduced gravity distribution. Both the height of the
mixed region h and the reduced gravity at the top of the tank g′(0) clearly increase
with time.

After the ‘first front’ has reached the bottom of the tank, the mixed region continues
to evolve in a turbulent fashion and enters the intermediate mixing phase. Figure 1(d)
shows the evolution of 〈g′〉y(x, z, t) for an experiment with Bs = 5.1 × 10−7 m4 s−3

and at t = 925, 1275, 1625, 1975 and 2325 s. In figure 1(e), we plot (with grey lines)
profiles of g′(z, t) at times that correspond to those shown in figure 1(d). Since the
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profiles are approximately parallel, they suggest that the density increases with time
at the same rate at every height, and so the incoming density is homogeneously
distributed over the entire height of the tank. Equivalently, the overall density gradient
from top to bottom is approximately independent of time in the intermediate mixing
phase, although as we discuss further in § 4, the actual density profile is a nonlinear
function of height.

3. Initial mixing phase: growth of the mixed region
We choose to non-dimensionalize time scales using the source buoyancy flux and

the tank width so that

t̂ = tB1/3
s d−4/3. (3.1)

Using this scaling, the characteristic time scale for the arrival time of the mixed
region at the bottom of the tank, tAA as defined in (1.9), can be expressed in non-
dimensional form as t̂AA = (H/d)2 = 1600 for our tank. For the experiments with
Bs = 1.0, 2.8, 5.1, 10.0 and 14.0× 10−7 m4 s−3 we find that the non-dimensional arrival
time of the detectable ‘first front’ at the bottom of the tank, t̂DA, is given by

t̂DA = 228, 245, 250, 245, 226, (3.2)

respectively. The values for t̂DA are all very similar, suggesting the time scale is
appropriate and collapses the data. The numerical value of the scaled time is smaller
than the scaling t̂AA. This difference is associated with the detailed nonlinear mixing
process; in § 3.2, we solve the underlying nonlinear diffusion equation (1.6) and
show that the equation indeed leads to a different (and substantially smaller than t̂AA)
prediction of the numerical value for the coefficient in the scaling law. Indeed, it is
reasonable to suppose that the actual arrival time of dense fluid at the bottom of
the tank will be somewhat smaller than the detectable ‘first front’ arrival time t̂DA.
Therefore, we define the effective arrival time t̂EA = 200 as a good approximation for
the moment that the mixed region has reached the bottom of the tank, and thus define
0 6 t̂ 6 t̂EA = 200 as the time interval of the initial mixing phase. We show that this
assumption is consistent with the solution of the nonlinear diffusion equation (1.6).

To test the scaling for the increasing height of the mixed region h and the reduced
gravity at the top of the tank g′(0) as given by (1.7)–(1.8) in the initial mixing phase,
we define the following non-dimensional quantities:

η = z

hT
= Bs

−1/6d−1/3
( z

t1/2

)
; f = g′

g′T(0)
= Bs

−5/6d7/3

(
g′

t1/2

)
; (3.3)

in which hT and g′T(0) represent the proposed scalings for the height of the mixed
region, and the reduced gravity at the top of the tank, as defined by (1.7)–(1.8),
respectively. In (3.3), we define η as the natural similarity variable, and f as a
non-dimensional reduced gravity. Profiles of the dimensional reduced gravity are hence
given by

g′(z, t)= Bs
5/6d−7/3t1/2f (η). (3.4)

3.1. Scaling comparison
If the hypothesized scalings for the height of the mixed region given by (1.7) and
the reduced gravity at the top of the tank given by (1.8) are correct, profiles of f (η)
should be independent of time, the buoyancy flux and the width of the tank. However,
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the necessary accurate measurements of h and g′ required to compare our theoretical
scaling predictions with experiments are difficult due to a combination of factors,
including experimental noise, turbulence intermittency and the growth of turbulent
eddies near the source. Therefore, we consider the integral-based first moment of the
reduced gravity as defined by∫ 0

−H
g′z dz∫ 0

−H
g′ dz

= zm ∼ B1/6
s d−1/3t1/2↔

∫ 0

−ηH

fη dη∫ 0

−ηH

f dη

= ηm, ηH = H

hT
, (3.5)

and the standard deviation around the first moment given by√√√√√√√√
∫ 0

−H
g′ (z− zm)

2 dz∫ 0

−H
g′ dz

= zstd ∼ B1/6
s d−1/3t1/2↔

√√√√√√√√
∫ 0

−ηH

f (η − ηm)
2 dη∫ 0

−ηH

f dη

= ηstd . (3.6)

Our scalings predict that both ηm and ηstd are constant. Figure 2(a,b) show the
evolution of both these quantities throughout the initial mixing phase, where the
non-dimensional time t̂ is defined by (3.1). We find that ηm and ηstd fluctuate around a
constant which is approximately the same for all experiments, and that the scattering
decreases with time as the mixed region evolves. Table 1 shows the values of ηm, the
corresponding fm = f (ηm), and ηstd which are determined by time-averaging over the
interval of the initial mixing phase 0 6 t̂ 6 t̂EA = 200. Since ηm, fm and ηstd only vary
slightly, we believe that the scalings (1.7)–(1.8) are valid.

3.2. Solution of the nonlinear diffusion equation
Given the good agreement between the experimental results and the scalings
(1.7)–(1.8), we substitute the non-dimensional quantities of (3.3) in the nonlinear
turbulent diffusion equation (1.6), such that we find

f nl − η∂f nl

∂η
= 2λ2 ∂

∂η

[(
∂f nl

∂η

)3/2
]
, (3.7)

where we denote f nl as the solution of this nonlinear differential equation. To solve
(3.7), we impose two natural conditions. The first follows from the constant buoyancy
flux located at z = 0, which requires the (boundary) condition (in dimensional and
non-dimensional form, respectively):

d2Jnl |z=0 = λ2d4

(
∂g′

nl

∂z

)3/2
∣∣∣∣∣∣

z=0

= Bs↔ ∂f nl

∂η

∣∣∣∣
η=0

= 1
λ4/3

. (3.8)

The second (global integral) condition follows from the conservation of the total
buoyancy in the entire tank of height H (with H large enough to assume H→∞)

d2

∫ 0

−H
g′

nl
dz= Bst↔

∫ 0

−ηH

f nl dη = 1, (3.9)
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Initial mixing phase
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FIGURE 2. (Colour online) (a) The evolution of the first moment ηm as defined by (3.5);
and (b) the evolution of the standard deviation around the first moment ηstd as defined
by (3.6) throughout the initial mixing phase 0 6 t̂ 6 t̂EA = 200, before the ‘first front’
has reached the bottom of the tank. (c) Profiles of non-dimensional horizontally averaged
reduced gravity distribution f (η) for the five experiments time-averaged over the initial
mixing phase with: Bs = 1.0× 10−7 m4 s−3;Bs = 2.8× 10−7 m4 s−3; Bs = 5.1× 10−7 m4 s−3;
Bs = 10.0× 10−7 m4 s−3; Bs = 14.0× 10−7 m4 s−3 and the numerical solution f nl of (3.7) with
boundary conditions (3.8) and (3.9) and λ= 1 (plotted with a black solid line).

in which we assume that the reduced gravity smoothly converges towards zero, near
the bottom of the mixed region. Equation (3.7), subject to the conditions (3.8) and
(3.9), is solved numerically by a shooting method. We guess a particular value of
f nl(0), and then calculate (3.7) subject to (3.8) until f nl = 0, when we check the
integral constraint (3.9), iterating the whole process by updating the initial guess f nl(0)
until this constraint is satisfied to the required precision. Furthermore, posed in this
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way, we actually can calculate a one-parameter (λ) class of solutions, as both the
governing equation (3.7) and the boundary condition (3.8) depend on λ.

In figure 2(c), we plot with a solid black line a typical solution for f nl(η) as a
function of η, with λ = 1. An important observation is that f nl(η) drops from its
source value (approximately 1.2) to zero at a ‘front’ value of ηnlf = −2.9, such that
f nl = 0 for η 6 ηnlf . This means that the mixed region is of finite extent, and that the
gradient of f nl thus drops from its source value 1/λ4/3 to zero at ηnlf =−2.9, such that
(∂f nl/∂η)= 0 for η 6 ηnlf .

From the definition of η (3.3) and the non-dimensionalization (3.1), we can now
straightforwardly construct a theoretical prediction for the (non-dimensional) arrival
time t̂PA,

t̂PA =
(

H

ηnlf d

)2

= 190, (3.10)

which is indeed in good agreement with our experimental observations and our
definition of the end of the initial mixing phase t̂EA = 200, giving us further confidence
in our modelling approach. Moreover, we show experimental profiles of f (η) that
are averaged over data obtained in the initial-mixing phase before the mixed region
has reached the bottom of the tank, i.e. from the start of the experiment until the
detectable ‘first front’ is O(5d) from the bottom of the tank. The agreement between
the experimental profiles and the model is very good, except for in the immediate
vicinity of the source, i.e. at small values of η. This supports the assumption that the
density distribution evolves in a self-similar fashion, and that the scalings (1.7) and
(1.8) are correct.

The actual structure of the experimentally measured self-similar profile is well-
predicted by our nonlinear model based around the very simple mixing length
parameterization of the turbulent diffusion coefficient (1.1), in which the characteristic
length scale of the turbulent eddies scale with the width of the tank d by an O(1)
constant λ. For our model with λ = 1, we find that ηnlm = −0.63, ηnlstd = 0.50 and
f nlm = 0.66, and we find a good agreement with experimental quantities (see table 1
and the black line in figure 2a). Indeed, as already noted, it is possible to identify the
value of λ which minimizes the least-squares error between the experimental f -profiles
and the theoretical curves obtained in the initial mixing phase. Based on this fitting
procedure, we find that the ‘optimal’ initial mixing phase value of λo1 = 1.08±0.06. In
table 1, we also list the predicted values of ηnlm , ηnlstd and f nlm associated with this value
of λ. It is clear that the values of these quantities change by a very small amount,
as does the value ηnlf = −3.0 where f nl = 0 (using λ = 1.08), thus implying that the
predicted value for the arrival time reduces a little to t̂PA = 178.

4. Intermediate mixing phase
As already noted in § 2.2, experimental observations in the intermediate mixing

phase suggest that the source buoyancy flux is homogeneously distributed over the
height of the tank, such that the overall density gradient from top to bottom of the
tank is time-independent (although as we show below the vertical structure in density
gradient at any particular time is nonlinear) as the density at the top and bottom of the
tank increases at the same rate. Indeed, there is a (constant) linear increase in reduced
gravity at all heights with time, and so the governing turbulent diffusion equation (1.6)
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for the (dimensional) reduced gravity becomes

R = λ2d2 ∂

∂z

(∂g′
nl

∂z

)3/2
 , (4.1)

where R is the constant (dimensional) rate at which the horizontally averaged reduced
gravity is increasing. Under the assumption that the flux of density out of the lower
opening is sufficiently small to be insignificant, the requirement that the source
buoyancy flux Bs is uniformly distributed across the entire volume of the experimental
tank implies that

R = Bs

Hd2
. (4.2)

Using the following non-dimensionalization (analogously to (3.1) based around the
tank width d and the source buoyancy flux Bs)

ẑ= zd−1; ĝ= g′Bs
−2/3d5/3, (4.3)

we find that the total scaled reduced gravity in the tank increases as∫ 0

z=−H
g′

nl
d2 dz= Bst↔

∫ 0

ẑ=−Ĥ
ĝnl dẑ= t̂, (4.4)

and that the non-dimensional reduced gravity at the bottom of the tank z=−H should
be

g′
nl
(−H, t)= Bs

Hd2
(t − t1)↔ ĝnl(−Ĥ, t̂)= t̂ − t̂1

Ĥ
, (4.5)

where t̂1 is the notional time origin at which ĝ(−Ĥ, t̂) = 0. Owing to the initially
non-uniform (with height) temporal increase in reduced gravity in the tank, there is an
(inevitable) period of adjustment before the intermediate mixing phase model applies.
The notional time t̂1 is therefore typically different from and larger than the actual
effective arrival time t̂EA of the ‘first front’ of the mixed region at the bottom of the
tank.

4.1. Scaling comparison
In figure 3(a), we plot the non-dimensional reduced gravity at several heights in the
tank as a function of t̂ − t̂1 for each of the experiments performed in the intermediate
mixing phase. The value for t̂1 is chosen for each experiment to minimize the
difference between the experimental data ĝ(−Ĥ, t̂) and the straight line ( t̂ − t̂1)/Ĥ
plotted with a black thick line. In this procedure, we only include experimental
data with 2 < ĝ(−Ĥ, t̂) < 15 to ignore the apparent initial adjustment period and to
ensure that the typical reduced gravity within the tank is significantly smaller than
the reduced gravity of the source. The implied value of t̂1 = 370, 324, 374, 370 and
380 for Bs = 1.0, 2.8, 5.1, 10.0 and 14.0×10−7 m4 s−3 respectively, varies only slightly
between the different experiments, and is typically larger than the value of t̂EA = 200,
and we define the intermediate mixing phase by 100 6 t̂ − t̂1 6 600. The period of
adjustment from the initial (unbounded) mixing phase to the intermediate (bounded)
mixing phase is of the same order as the arrival time, since this provides the time scale
required for the density profile to adjust along the whole tube.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2012.158
Downloaded from https:/www.cambridge.org/core. Open University Library, on 19 Jan 2017 at 20:07:23, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2012.158
https:/www.cambridge.org/core


292 D. D. J. A. van Sommeren, C. P. Caulfield and A. W. Woods

The inset of figure 3(a) shows the total scaled reduced gravity plotted against
non-dimensional time t̂ − t̂1. The total scaled reduced gravity increases approximately
linearly as ∼t̂, which corresponds to the constant buoyancy flux condition in non-
dimensional form given by (4.4) and the black thick line plotted with a slope of one.
Moreover, from figure 3(a), it is apparent that to a very good approximation, the
reduced gravity increases homogeneously throughout the tank and linearly with time
for each experiment. Unsurprisingly, there is a slight offset after the arrival of the
first dense parcels of fluid at the bottom of the tank before this linear increase in the
reduced gravity occurs, but eventually all experiments show the same rate of linear
increase. The rate of increase, or equivalently the slope of the plotted lines for each
of the heights, is also quantitatively consistent with the assumption of uniform spatial
distribution of source buoyancy flux, as given by (4.5). We thus demonstrate a very
good quantitative agreement with our central assumption for the intermediate mixing
phase, as defined by (4.1).

4.2. Solution of the nonlinear diffusion equation

Using the assumption that the source buoyancy flux Bs is uniformly distributed across
the entire volume of the experimental tank, it is actually possible to construct the
vertical distribution of the horizontally averaged reduced gravity in the intermediate
mixing phase. Substituting (4.2) into (4.1) and integrating once, we obtain

∂g′
nl

∂z
=
(

Bs

λ2d4

)2/3

(z/H + 1)2/3, (4.6)

where we have assumed that the natural no-flux condition at the bottom of the tank
(∂g′/∂z)|z=−H = 0 is not significantly affected by the buoyancy flux out of the tank
through the opening at the bottom.

Integrating again, and remembering the (equivalent) definitions for R (4.1)–(4.2),
the predicted reduced gravity distribution at intermediate times is (using (4.3) to scale
the non-dimensional form)

g′
nl = 3

5

(
Bs

λ2Hd4

)2/3

(z+ H)5/3+ Bs

Hd2
(t − t1), (4.7)

ĝnl = 3

5λ4/3Ĥ2/3
(ẑ+ Ĥ)

5/3+( t̂ − t̂1)

Ĥ
, (4.8)

where t1 is the (notional) latest time at which g′(−H, t) = 0 determined from a
least-squares fitting procedure with data shown in figure 3(a). In figure 3(b), we
plot against non-dimensional height the experimentally measured scaled and shifted
reduced gravity profile ĝ − ( t̂ − t̂1)/Ĥ, averaged over the intermediate mixing phase
100 6 t̂ − t̂1 6 600. We also plot the theoretical prediction for the (strongly nonlinear
with height) reduced gravity distribution given in (4.8) with a solid black line with
the choice λ= 1, which shows a good agreement with the experimental measurements,
except, once again, in the immediate vicinity of the top of the tank. Indeed, repeating
a least-squares calculation to minimize the difference between the experimental
profiles of ĝ − ( t̂ − t̂1)/Ĥ and the theoretical model across all choices of λ, we
find that the ‘optimal’ choice for the intermediate mixing phase experiments is
λo2 = 1.02± 0.01.
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FIGURE 3. (Colour online) For the five experiments with Bs = 1.0 × 10−7 m4 s−3; Bs =
2.8×10−7 m4 s−3; Bs = 5.1×10−7 m4 s−3; Bs = 10.0×10−7 m4 s−3; Bs = 14.0×10−7 m4 s−3 in
the intermediate mixing phase 100 6 t̂ − t̂1 6 600: (a) Variation of the scaled reduced gravity
at ẑ=−40,−30,−20,−10 and 0, with time t̂ − t̂1, where t̂1 is determined by minimizing the
difference between the experimental data ĝ(−Ĥ, t̂) and the straight line ( t̂ − t̂1)/Ĥ (plotted
with a black line), the inset showing the evolution of the scaled total reduced gravity in the
tank

∫
ĝ dẑ with time t̂− t̂1, together with a black line having a slope of one, which is based on

the constant buoyancy flux condition in non-dimensional form given by (4.4). (b) Profiles of
ĝ − ( t̂ − t̂1)/Ĥ, averaged over the intermediate mixing phase, and the model prediction given
by (4.8) with λ= 1 (plotted with a black line).

5. Linear model with constant turbulent diffusion coefficient

We have discussed a model based on Prandtl’s mixing length theory, and found
solutions of the nonlinear turbulent diffusion equation for both the initial and
intermediate mixing phases. For the initial mixing phase, we have found that the
profiles of the reduced gravity are of the self-similar form (3.4). The gradient of the
reduced gravity is hence given by

∂

∂z
g′

nl
(z, t)= Bs

2/3d−8/3 ∂

∂η
f nl(η); η = z

hT
= Bs

−1/6d−1/3
( z

t1/2

)
. (5.1)
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For the intermediate mixing phase, we have derived an analytical solution for the
profile of the reduced gravity (4.8). The gradient of this solution is given by

∂

∂z
g′

nl
(z, t)= Bs

2/3d−8/3 1
λ4/3

(
z

hT
+ 1
)2/3

; hT = H. (5.2)

We can thus generalize (5.1)–(5.2) into the self-similar form

∂

∂z
g′

nl
(z, t)= B2/3

s d−8/3Fnl(z/hT), (5.3)

which implies that the gradient of the reduced gravity is given by a constant,
determined by the experimental parameters Bs and d, multiplied by a shape function
Fnl(z/hT), with z/hT the relative position in the mixed region. The actual shape of Fnl

is different for each mixing phase, but they have in common that Fnl(0) = 1/λ4/3 due
to the constant flux boundary condition at the top of the tank at z= 0 (see (3.8)).

As discussed in § 1, Barnett (1991) performed constant buoyancy flux experiments
using an isolated plume source in a narrow vertical tank, and distinguished a region
dominated by plume-like dynamics, a region in which the fluid is homogeneously
mixed, and a region dominated by turbulent convection. For the region dominated by
turbulent convection (a region corresponding to the vast majority of the flow in our
experiments presented above), he applied a linear turbulent diffusion model in which
the turbulent diffusion coefficient was approximated by a constant. For our constant
buoyancy flux experiments, we have shown in (5.3) that the density gradient between
the top and the bottom of the mixed region is independent of time for both the initial
and intermediate mixing phases. The mixed region can thus be characterized by a
‘typical’ gradient of the reduced gravity, such that we can identify a ‘typical’ turbulent
diffusion coefficient, which is then also independent of time and space.

Following Barnett (1991), we examine how well such a linear model with a constant
turbulent diffusion coefficient predicts our experimental results. From dimensional
analysis we find that a constant turbulent diffusion coefficient κT , and the magnitude of
the associated turbulent flux of dense fluid J, should satisfy

κ l
T = γB1/3

s d2/3→ Jl = γB1/3
s d2/3 ∂g′

∂z
, (5.4)

with γ an O(1) constant and the superscript l denoting the (assumed) underlying linear
model. Indeed, the turbulent diffusion equation then takes a simple linear form

∂g′
l

∂t
= γB1/3

s d2/3 ∂
2g′

l

∂z2
, (5.5)

in which we denote the solution of this linear differential equation by g′
l
. This linear

turbulent diffusion equation (5.5) can be solved analytically for both the initial and
intermediate mixing phase.

5.1. Initial mixing phase
From (5.4) and the requirement of a constant buoyancy flux at z = 0, we find that the
gradient of the reduced gravity at the top of the tank is independent of time while the
total amount of buoyancy in the tank increases linearly with time. Since the mixing is
believed to be self-similar, we expect that both the height of the mixed region and the
reduced gravity at the top of the tank increase with the square root of time, a similar
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FIGURE 4. (Colour online) (a) Profiles against η of the theoretical solution to (3.7) f nl based
on a model with turbulent diffusion coefficient given by (1.5) with λo1 = 1.08 (plotted with a
black line), the theoretical solution (5.10) f l based on a linear model with a constant turbulent
diffusion coefficient given by (5.4) with γo1 = 0.93 (grey line) and the average f e (dashed red
line) of the experimentally obtained f -profiles shown in figure 2(c). (b) Profiles against η of
the differences f nl − f e (plotted with a black line) and f l − f e (grey line) between the average
of the experimentally obtained f -profiles f e and the ‘optimized’ theoretical solutions f nl with
λo1 = 1.08 and f l with γo1 = 0.93. The grey band indicates the variation with η of the standard
deviation in f e.

scaling to that given by (1.7)–(1.8). Making use of the scalings (3.3), we find that the
non-dimensional linear turbulent diffusion equation (5.5) is given by

2γ
∂2f l

∂η2
+ η∂f l

∂η
− f l = 0, (5.6)

in which f l denotes the solution of this linear differential equation. This equation is
equivalent to

2γ η
∂2

∂η2

(
f l

η

)
+ (4γ + η2)

∂

∂η

(
f l

η

)
= 0. (5.7)

To solve the linear non-dimensional turbulent diffusion equation (5.7), we apply two
natural conditions, which are equivalent to those discussed in § 3.2. The first follows
from the constant buoyancy flux located at z = 0, which requires the (boundary)
condition (in dimensional and non-dimensional form, respectively):

d2Jl|z=0 = γB1/3
s d8/3 ∂g′

l

∂z

∣∣∣∣∣
z=0

= Bs↔ ∂f l

∂η

∣∣∣∣
η=0

= 1
γ
. (5.8)

The second (global integral) condition follows from the conservation of the total
buoyancy in the entire tank of height H (with H large enough to assume H→∞)

d2

∫ 0

−H
g′

l
dz= Bst↔

∫ 0

−ηH

f l dη = 1, (5.9)

in which we assume that the reduced gravity smoothly converges towards zero, near
the bottom of the mixed region. The boundary condition (5.8) and the integral
condition (5.9) are equivalent to those discussed for the nonlinear model, given by
(3.8) and (3.9), respectively. The solution of (5.7) subject to the conditions (5.8) and
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(5.9) is then given by

f l =
√

4
γπ

exp(−η2/4γ )+ (η/γ ) erfc(
√
η2/4γ ). (5.10)

Interestingly, the solution f l converges from its source value f l(0) = √4/γπ towards
zero for η→−∞, while f nl drops from its source value (approximately 1.15) to zero
at a ‘front’ value of ηnlf =−3.0 (for λo1 =1.08), such that f nl = 0 for η 6 ηnlf .

To compare the experimental data with the solutions (to (3.7)) f nl based on the
nonlinear model and f l (given by (5.10)) based on the linear model, we determine the
average f e of the experimental f -profiles which are shown individually in figure 2(c).
With a least-squares fitting procedure, which minimizes the deviation between the
averaged experimental profile f e and the theoretical curve f l, we find that the ‘optimal’
value for γ , as defined implicitly in (5.10), is given by γo1 = 0.93. In figure 4(a), we
plot f e (with a red dashed line) together with the ‘optimal’ solutions f l with γo1 = 0.93
(grey line) and f nl with λo1 = 1.08 (black line; see § 3.2). In figure 4(b), we show the
spatial variation of the difference between these ‘optimized’ theoretical solutions and
the averaged experimentally obtained f -profiles, i.e. (f nl − f e) with a black line and
(f l − f e) with a grey line. The grey band shows the spatial variation in the standard
deviation for the averaged experimental profile f e.

A normalized integral measure for the differences (f − f e) (for f = f nl or f = f l) is
given by

εf =

∫ 0

η=−∞

√
(f − f e)2 dη∫ 0

η=−∞
f e dη

, (5.11)

in which the denominator is equal to one by the definition (3.9). We find that
εnlf = 0.05 for the nonlinear model in which the turbulent diffusion coefficient depends
on the square root of the local gradient of the reduced gravity, while ε l

f = 0.11 for the
linear model in which the turbulent diffusion coefficient is approximated by a constant.

5.2. Intermediate mixing phase
In the intermediate mixing phase, the mixed region has reached the bottom of the tank
while the constant buoyancy flux at z = 0 continues. From (5.4), we thus require that
the gradient of the reduced gravity at the top of the tank is independent of time. With
the ongoing turbulent mixing, we believe that the buoyancy flux becomes uniformly
distributed over the full height of the tank and that the density at each height increases
linearly with time, similarly to the situation discussed in § 4 for the nonlinear model.

The turbulent diffusion equation (5.5) is made non-dimensional by making use of
(4.3), such that

∂ ĝl

∂ t̂
= γ ∂

2ĝl

∂ ẑ2
, (5.12)

in which we denote the solution of this linear differential equation by ĝl. Owing to
the assumption that the density increases linearly with time at all heights, the left-hand
side of (5.12) is a constant, and so integrating (5.12) twice and applying the same
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FIGURE 5. (Colour online) (a) Profiles against η of the theoretical solution (4.8) ĝnl based
on a model with turbulent diffusion coefficient given by (1.5) with λo2 = 1.02 (plotted with a
black line), the theoretical solution (5.13) ĝl based on a linear model with a constant turbulent
diffusion coefficient given by (5.4) with γo2 = 0.83 (grey line) and the average ĝe (dashed red
line) of the experimentally obtained ĝ-profiles shown in figure 3(c). (b) Profiles against η of
the differences ĝnl − ĝe (plotted with a black line) and ĝl − ĝe (grey line) between the average
of the experimentally obtained ĝ-profiles ĝe and the ‘optimized’ theoretical solutions ĝnl with
λo2 = 1.02 and ĝl with γo2 = 0.83. The grey band indicates the variation with η of the standard
deviation in ĝe.

boundary conditions as discussed in § 4.2 gives

ĝl = 1

2γ Ĥ
(ẑ+ Ĥ)

2+( t̂ − t̂1)

Ĥ
. (5.13)

To compare our experimental data with the solutions ĝnl based on the nonlinear
model, and ĝl based on the linear model, we determine the average of the experimental
ĝ-profiles which are shown individually in figure 3(c). Again, we apply a least-squares
fitting procedure to minimize the deviation between the theoretical curve ĝl and the
averaged experimental profile ĝe. We find that the ‘optimal’ value for γ is given
by γo2 = 0.83. In figure 5(a), we plot ĝe (with a dashed red line) together with the
‘optimal’ solutions ĝl with γo2 = 0.83 (grey line) and ĝnl with λo2 = 1.02 (black line;
see § 4.2). In figure 5(b), we show the spatial variation of the difference between these
‘optimized’ theoretical solutions and the averaged experimentally obtained ĝ-profiles,
i.e. (ĝnl − ĝe) with a black line, and (ĝl − ĝe) with a grey line. The grey band shows
the spatial variation in the standard deviation for the averaged experimental profile
ĝe. In contrast to ĝl, we find that the predicted ĝnl is almost completely within the
experimental error, i.e. the standard deviation in ĝe. A normalized integral measure for
the differences (ĝ− ĝe) (for ĝ= ĝnl or ĝ= ĝl) is given by

εg =

∫ 0

ẑ=−Ĥ

√
(ĝ− ĝe)

2 dẑ∫ 0

ẑ=−Ĥ
ĝe dẑ

, (5.14)

in which the denominator is found to be equal to 345. We find that εnlg = 0.017 for the
nonlinear model in which the turbulent diffusion coefficient depends on the square root
of the local gradient of the reduced gravity, while ε l

g = 0.097 for the linear model in
which the turbulent diffusion coefficient is approximated by a constant.
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For both the initial and intermediate mixing phase, we find that the two ‘optimized’
models overpredict the experimental data near the top of the mixed region, i.e.
−0.3 . η < 0 for the initial mixing phase and −5 . ẑ < 0 for the intermediate mixing
phase, as is apparent in figures 4(a) and 5(b). We believe that this mismatch is caused
by the local source dynamics, where the characteristic scales of the turbulent flow still
grow towards the full extent of the tank. A more detailed discussion of this topic is
given in the next section.

6. Assumption validity
There are two important assumptions implicit in our nonlinear model of the

experiments. First, we assume that the buoyancy-driven turbulence extends the whole
distance across the tank, and thus has a single characteristic length scale (d). As is
apparent from the structure of the reduced gravity profiles shown in figures 4(b) and
5(b), there is clearly different behaviour in the immediate vicinity of the source, i.e.
over length scales z ∼ O(d). Although we attempt to spread the source of dense fluid
across the whole cross-sectional area of the tank through the use of a fine mesh, near
the source there is inevitably a tendency for a ‘plume’ of dense fluid to descend. This
descending plume entrains and mixes with the fluid in the tank, until the descending
fluid becomes affected by the tank walls, thus leading to the turbulent flow extending
across the whole tank.

A conservative estimate for the width of this plume at a distance z from the source
can be constructed from the assumption that the plume behaves like the classical
similarity solution first considered by Morton et al. (1956) and so the half-width b(z)
depends linearly on z like

b' 6αz

5
, α ' 0.1, (6.1)

where α is the so-called ‘entrainment constant’. Therefore, we expect the plume to be
strongly affected by the walls of the tank at the furthest by b' d/2, i.e.

z∼ 50
12

d ∼ 4d, (6.2)

and so we expect the turbulence to extend across the entire tank when z > 5d, which
is entirely consistent with the region of adjustment shown in figures 2(c) and 3(b).
This is actually also consistent with the results of the deliberately localized plume
experiments performed by Barnett (1991), suggesting that our source is still somewhat
plume-like in its behaviour, or that the flow itself organizes into a ‘plume’ at least very
close to the top of the tank.

The second assumption is that the source of buoyancy has negligible mass flux; this
corresponds to the limit in which Bs is finite, g′s→∞ and Qs→ 0. However, in the
actual experiments, both Qs and gs are non-zero and finite. In the initial mixing phase,
when the mixed region is deepening, the reduced gravity of the source fluid is much
larger than the reduced gravity at the top of the tank, provided that g′s� B5/6

s d−7/3t1/2.
The reduced gravity at the top of the tank increases with time, and so in the initial
mixing phase the reduced gravity reaches its largest value when the mixed region
finally extends over the entire height of the tank, i.e. when t ' tPA = (H/ηf )

2 B−1/3
s d−2/3,

using (3.10) and (3.1). It is important to remember that ηf '−3 for λ= 1 is the value
of the similarity variable η at the front of the mixed region during the initial mixing
phase (as discussed in more detail in § 3.2). Therefore, to apply our nonlinear model to
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the initial mixing phase, we require that g′s� (H/|ηf |)B2/3
s d−8/3, equivalent to

φ = B1/3
s d5/3

Qs
� H

|ηf |d . (6.3)

For our experiments H/(|ηf |d ) ' 13, while 55 6 φ 6 315, and so this condition is
satisfied for the initial mixing phase of the experiments.

A similar requirement can be derived for the intermediate mixing phase. We find
that the source reduced gravity is much larger than the reduced gravity at the
top of the tank when g′s � g′(0), with g′(0) given by (4.7). At the end of the
intermediate mixing phase, we find that the reduced gravity at the top of the tank
is 45 % of g′s for the highest buoyancy flux experiments and 7 % of g′s for the
lowest buoyancy flux experiments. Eventually, the reduced gravity within the tank will
converge exponentially, in a final ‘well-mixed’ phase, to the source reduced gravity on
a time scale given by the ‘replacement time scale’ tr defined as

tr = Hd2

Qs
, (6.4)

i.e. the time to fill the tank in the absence of mixing by the inflowing volume flux.
(See Caulfield & Woods (2002) for a detailed discussion of the long-time effect of
finite source volume fluxes on filling box flows.) For our experiments, the replacement
time scale is tr ' 6× 103 s for the highest, and tr ' 7× 104 s for the lowest buoyancy
flux experiments. The ultimate duration of our experiments range between 1.5 × 103

and 2.5 × 103 s for the highest and lowest buoyancy flux experiments, respectively.
We conclude that the assumption that the flow is in the intermediate mixing phase,
and not in the final well-mixed phase is likely to be valid throughout the experiments’
duration for the flows with smaller source buoyancy flux, but is close to being violated
by the flows with larger source buoyancy flux, although it typically appears to take
approximately 5tr for the flow to adjust fully to its well-mixed state, as discussed in
Caulfield & Woods (2002).

Another aspect of the flow which is associated with the finite source volume flux
is that there is a net flow through the tank due to the outflow opening at the bottom
of the tank. In the intermediate mixing phase, when the mixed region has reached the
bottom, there is thus a non-zero buoyancy flux leaving the tank through the outflow
opening. The net buoyancy flux in the tank is therefore given by the constant buoyancy
flux at the top minus the buoyancy flux leaving the tank at the bottom, i.e.

Bns = [g′s − g′(−H)]Qs. (6.5)

Our modelling assumption of a net constant buoyancy flux is valid provided that
Bns ≈ Bs, or equivalently g′(−H)� g′s. At the end of the period we are considering
experimentally the intermediate mixing phase, we find that the net buoyancy flux
is Bns ' 0.82Bs for the highest buoyancy flux experiments and Bns ' 0.97Bs for the
lowest buoyancy flux experiments. The discrepancy from a constant net buoyancy flux
of Bs is non-trivial, especially for the highest buoyancy flux experiments. This is
entirely consistent with the fact that the duration of the experiment is smaller, but
of the same order as the replacement time scale tr as defined in (6.4). However, a
least-squares fitting procedure that minimizes the error between a straight line and
the total scaled reduced gravity, as shown in the inset of figure 3(a), reveals that
the average of the net buoyancy flux throughout the intermediate mixing phase of
the highest buoyancy flux experiments flux is still Bns = 0.96Bs. We hence believe
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that the modelling assumption of a constant net buoyancy flux Bs is reasonably
valid throughout the intermediate mixing phase, even for the highest buoyancy flux
experiments.

Finally, the net flow through the tank also has implications for the flow dynamics.
The net flow has a characteristic velocity vn = Qs/d2, and we assume that this velocity
is much smaller in magnitude than the characteristic buoyancy-driven velocity scale in
both mixing phases, i.e.

vn� vb =
(

Bs

d

)1/3

→ Qs� B1/3
s d5/3↔ φ� 1. (6.6)

This condition is once again less stringent than that given by (6.3), and so during our
experiments, we believe that our underlying assumptions are adequately valid for our
models to be applicable.

7. Conclusion and discussion
In this paper, we consider the turbulent mixing which results from a constant

buoyancy flux Bs at the top of a long narrow vertical tank with square cross-section
d × d and height H = 40d (where d = 5 cm). In our experiments, the source buoyancy
flux corresponds to the injection of a small constant volume flux of dense fluid. The
injected fluid vigorously mixes with the less dense fluid that initially occupies the tank,
such that a dense mixed region of turbulent fluid propagates downwards. We discuss
both the initial mixing phase before and the intermediate mixing phase after the
mixed region has reached the bottom of the tank. For both mixing phases, we restrict
ourselves to the situation where the typical density in the tank is still significantly
smaller than the source density. We show that the turbulent vertical transport of
density may be modelled as a turbulent diffusive process with the turbulent diffusion
coefficient and the magnitude of the local turbulent flux given by κnlT = λ2d2 (∂g′/∂z)

1/2

and Jnl = λ2d2 (∂g′/∂z)
3/2

, respectively. We refer to this as a nonlinear model, as it
naturally leads to a nonlinear diffusion equation for the reduced gravity. The O(1)
constant λ relates the width of the tank to the characteristic mixing length of the
turbulent eddies.

Physically, this dependence implies that mixing properties are dominated by the
present, local values of the density gradient. Using this simple modelling framework in
the case of a constant buoyancy flux, we find that the overall density gradient between
the top and bottom of the mixed region is independent of time. From a physical point
of view, this can be explained by counterflowing eddies which are generated by the
gradient of buoyancy. If the gradient of buoyancy weakens, the flow will slow down
and the gradient will build up, and if it gets too strong the counterflow will speed up
to weaken the gradient.

In the initial mixing phase, we show that the height of the mixed region h,
and the reduced gravity at the top of the tank g′(0) both increase like t1/2. In
particular, we find that the first moment of the density distribution grows as
zm = ηmhT ≈ −0.63Bs

1/6d1/3t1/2, and that the corresponding moment of the reduced
gravity increases as g′m = fmg′T(0) ≈ 0.66Bs

5/6d−7/3t1/2. Our model also yields a
self-similar solution for the structure of the reduced gravity profile within the
deepening mixed region, which we calculate numerically and successfully compare
with experimental measurements based on a dye attenuation technique. We find that
the effective arrival time tEA (estimated to be somewhat less than the experimentally
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measured arrival time of the detectable ‘first front’ tDA) of this mixed region at the
bottom of the tank is also well-predicted by our model.

In the intermediate mixing phase, which onsets after a certain adjustment time after
the end of the initial mixing phase, the height of the mixed region is not able to grow
further while the buoyancy flux, and hence the overall density gradient between the
top and the bottom of the tank, is still constant. This suggests that the buoyancy flux is
uniformly distributed across the entire height of the tank. We show that the assumption
that the density increases approximately linearly with time at all heights is valid during
this intermediate mixing phase. This leads to an analytical description of the density
profile, which is nonlinear (actually cubic) with height and shows good agreement
with experimental results.

In this paper, we use a nonlinear model for the turbulent diffusion coefficient that
was successfully applied by numerous previous studies on buoyancy-driven mixing in
narrow vertical tanks, see Holmes et al. (1991), Baird et al. (1992), Zukoski (1995)
and Dalziel et al. (2008). For our constant buoyancy flux experiments, we show
that the mixed region is characterized by a ‘typical’ density gradient. This means
that we can identify a ‘typical’ turbulent diffusion coefficient that is independent of
both space and time. Therefore, following Barnett (1991), we test the predictions
based on a model in which the turbulent diffusion coefficient is approximated by a
constant. This inherently linear model assumes that the turbulent diffusion coefficient
and the magnitude of the local turbulent flux are given by κ l

T = γB1/3
s d2/3 and

Jl = γB1/3
s d2/3(∂g′/∂z), respectively, with γ an O(1) constant. Interestingly, for the

initial mixing phase, the scalings for the depth of the mixed region and the reduced
gravity at the top of the mixed region are the same for both the linear and the
nonlinear model.

For both mixing phases, we show that the ‘optimized’ solutions (in terms of λ and
γ ) based on the nonlinear and linear model predict the experimental data quite well.
For the initial mixing phase, we find that the normalized integral measure for the
difference between theory and experiment (as defined in (5.11)) is εnlf = 0.05 (with the
‘optimal’ choice of λo1 = 1.08) and ε l

f = 0.11 (with the ‘optimal’ choice of γo1 = 0.93)
for the nonlinear model and linear model, respectively. For the intermediate mixing
phase, we find that the equivalent normalized integral measure for the difference
between theory and experiment (as defined in (5.14)) is εnlg = 0.017 (with the ‘optimal’
choice of λo2 = 1.02) and ε l

g = 0.097 (with the ‘optimal’ choice of γo2 = 0.83) for the
nonlinear model and the linear model, respectively.

The particular values of these normalized integral measures of difference imply that
the experimental data obtained in the intermediate mixing phase is typically better
predicted by the theoretical solutions, compared with that for the experimental data
obtained in the initial mixing phase. This is most likely caused by a longer time-
averaging interval and the flow being more fully developed during the intermediate
mixing phase. Furthermore, both the nonlinear and linear model do not include the
local source dynamics, where the characteristic scales of the turbulent flow still
grow towards the full width of the tank. This means that deviations between the
experimental data and the theoretical solutions are to be expected, in particular during
the early stage of the initial mixing phase, where the mixed region is still relatively
shallow and therefore more affected by the local source dynamics.

The ‘optimized’ solutions based on the nonlinear model are found to have smaller
differences with the experimental data than the ‘optimized’ solutions based on the
linear model. This is especially the case for the intermediate mixing phase, where
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the normalized integral measure for the difference εnlg (λo2 = 1.02) is almost six times
smaller than the corresponding value for the linear model. Furthermore, the difference
between the ‘optimized’ solution ĝnl and the averaged experimental profile ĝe, i.e.
(ĝnl − ĝe), is almost completely within the experimental error in ĝe, as can be seen in
figure 5(b).

We find that the ‘optimal’ values for λ are given by λo1 = 1.08 for the initial
mixing phase and λo2 = 1.02 for the intermediate mixing phase. This is consistent with
Dalziel et al. (2008) who assumed λ = 1 in modelling Rayleigh–Taylor experiments
in a similar tank with d = 5 cm. Furthermore, we find that our optimal value is
within the range described by Baird et al. (1992) who performed finite source
release experiments with water-salt solutions and found that λ= 1.42 for d = 1.48 cm,
λ = 1.26 for d = 1.91 cm and λ = 0.95 for d = 2.63 cm. Different values of d can
be interpreted as corresponding to experiments with different characteristic Reynolds
numbers. Experiments were also performed with fluids which have a viscosity nine
times that of water, and their reported values of λ decrease towards one with
decreasing viscosity. Therefore, it can be deduced that the turbulent mixing length
decreases towards the width of the tank (i.e. λ→ 1+) with increasing Reynolds
number. This is consistent with our high Reynolds number experiments where we
find optimal values of λ very close to one. Furthermore, in § 6, we consider the range
of validity of the key underlying assumptions of our nonlinear model, and thus explain
some observed differences between our experimental measurements and theoretical
predictions.

Finally, it is interesting to consider briefly a real-world application, and so we apply
our initial mixing phase model as a simple model for a mineshaft accident. In the
event of a methane leakage (ρs = 0.7 kg m−3 and Qs = 10−3 m3 s−1) at the bottom
of a vertical mineshaft filled with air (ρ0 = 1.2 kg m−3) and square cross-section
with width d = 1 m, we can estimate the height of the first moment hm of the
vertical methane distribution. Based on our model, we find that hm ≈ 0.63Bs

1/6d1/3t1/2

with g′m ≈ −0.66Bs
5/6d−7/3t1/2, or in terms of the volume concentration cm =

(ρ0 − ρ)/(ρ0 − ρs) ≈ 0.66 g′s
−1Bs

5/6d−7/3t1/2. With g′s = g(ρs − ρ0)/ρ0 = 4.1 ms−2

and Bs = g′sQs = 4.1 × 10−3 m4 s−3, we find that the first moment with volume
concentration 6.6 % reaches 10 m after almost 26.5 minutes and that the first moment
with volume concentration 19.6 % reaches 30 m after almost 4 hours.

Here, we have demonstrated the power of our modelling approach to describe
the turbulent mixing driven by a constant source of buoyancy flux at the top
of a long narrow tank originally filled with quiescent fluid of a different density.
This demonstration naturally suggests some generalizations of interest, particularly
concerning the properties of the fluid within the tank initially. Counterflow within the
tank would be expected to arrest the descent of the dense layer, thus leading to a
steady state, while if the fluid was initially stratified within the tank, the penetrative
entrainment by the descending layer would presumably be modified in a non-trivial
way. We intend to report on the results of our investigation of these and related
phenomena in due course, in particular the connections between this flow and the
various ‘filling box’ flows of isolated plumes in containers.
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