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Experiments are reported on the sustained release of saline and particle-laden fluid
into a long, but relatively narrow, flume, filled with fresh water. The dense fluid rapidly
spread across the flume and flowed away from the source: the motion was then essen-
tially two-dimensional. In the absence of a background flow in the flume, the motion
was symmetric, away from the source. However, in the presence of a background
flow the upstream speed of propagation was slowed and the downstream speed was
increased. Measurements of this motion are reported and, when the excess density was
due to the presence of suspended sediment, the distribution of the deposited particles
was also determined. Alongside this experimental programme, new theoretical models
of the motion were developed. These were based upon multi-layered depth-averaged
shallow-water equations, in which the interfacial drag and mixing processes were
explicitly modelled. While the early stages of the motion are independent of these
interfacial phenomena to leading order, they play an increasingly important dynamical
role as the the flow is slowed, or even arrested. In addition a new integral model is
proposed. This does not resolve the interior dynamics of the flow, but may be readily
integrated and obviates the need for more lengthy numerical calculations. It is shown
that the predictions from both the shallow-layer and integral models are in close
agreement with the experimental observations.

1. Introduction
Owing to their wide application to physical systems as diverse as coastal sea

breezes, sediment-transporting currents in the deep ocean, volcanic ash clouds and
estuarine flows, gravity currents and their dynamics have been extensively researched
during recent years. In essence all of these phenomena are driven by the gravitational
force associated with the density difference between the intruding and surrounding
fluid, which leads to the flow of the denser fluid under the less dense and along the
underlying boundary. In this study we investigate experimentally and theoretically
the motion of gravity currents, driven by sustained sources of saline or particle-laden
fluid, through an ambient fluid, which is independently flowing.
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The interaction between ambient flow and density-driven motion has many applica-
tions. For example within estuaries, oceanic saline water may be arrested by a fresh
riverine flow to form a salt wedge (Schijf & Schönfeld 1953). Alternatively relatively
dense particulate pollutants may be discharged within a river or coastal region and
their dispersion is controlled by the competition between the density-induced motion
and the environmental currents (Hogg & Huppert 2001). Similarly, the dispersion
of dense, toxic gas within the atmosphere arises through a combination of density-
driven spreading and transport by the wind (Rottman, Hunt & Mercer 1985). Finally,
atmospheric cool pools, which are formed by the downdraught of cold air and which
may trigger large-scale convection, spread due to their excess density relative to the
surrounding air and are advected by the background wind, thus altering the rate with
which they are heated (Ross, Tompkins & Parker 2004).

The fundamental dynamics of sustained, relatively dense flow with co- or anti-
flowing ambient fluids have been studied experimentally before. Notably Simpson &
Britter (1980) introduced saline fluid into a co-moving ambient and arrest the advance
of the dense fluid by the use of a moving belt. They deduced empirically that the speed
of the gravity current was a linear combination of the gravity-driven motion and a
constant fraction of the mean flow. In their experimental regime they found that the
motion of the gravity current is by increased a fraction 0.62 of the mean flow. Bühler,
Wright & Kim (1991) studied this type of motion using a different experimental con-
figuration. They injected saline and fresh fluids at one end of a long, narrow flume
and measured the speed of the front of the dense fluid sufficiently downstream of the
inlets so that the initial mixing processes were complete. Their data, which are approxi-
mately compatible with those of Simpson & Britter (1980), are compared with our
results in § 4. This study builds upon these works and importantly we also consider the
sustained flows of particle-laden suspensions. These differ from their saline counter-
parts because the density difference between the intruding suspension and the sur-
rounding fluid is progressively diminished as the particles sediment out of the flow.
In a previous contribution we studied instantaneous releases of dense suspensions in
the presence of a background flow (Hallworth, Hogg & Huppert 1998); this paper
extends our analysis to sustained sources. As will be demonstrated the different source
conditions lead to considerable differences in the observed motion.

Theoretical formulations of varying complexity have been employed to model the
motion of gravity currents. These include numerical simulations of the full equations of
motion (Klemp, Rotunno & Skamarock 1994), depth-averaged models that exploit the
shallowness of the flow (Rottman & Simpson 1983) and ‘integral’, or ‘box’, models that
do not resolve the interior dynamics of the motion but capture the bulk characteristics
(e.g. Huppert & Simpson 1980; Dade & Huppert 1995; Harris, Hogg & Huppert 2001).
Our approach in this study is two-fold. We employ a multi-layered depth-averaged
model that calculates the heights, densities and velocities of the mobile layer and the
ambient fluid as functions of space and time. In addition we formulate a new, integral
model for sustained flows that may be readily integrated to yield predictions that are
very similar to the more complete model. Our approach throughout is one of sim-
plicity; we formulate models that produce theoretical predictions in close agreement
with the experimental measurements, but are relatively free of empirically determined
parameters. Where we are forced to parameterize complex flow phenomena, such as
the drag at the interface between co-moving fluids, we have chosen the very simplest
parameterization, noting that more complex choices could be employed within the
same analytical framework. However, as will be shown below, it does not seem
necessary to facilitate the accurate prediction of our experimental observations.
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As indicated above, there are close connections between the upstream flow of a
gravity current and the arrested salt wedge structures found within estuaries. These
occur provided the intensity of the turbulence and associated mixing processes are
insufficient to mix the salty and fresh waters, leading to a stratified density profile with
the dense saline fluid being over-ridden by the relatively fresh water (Lewis 1997).
A leading-order model of these dynamical features assumes that the saline fluid is
arrested and that the hydrostatic pressure gradient associated with the excess density
is balanced by the interfacial drag between the stationary wedge and the fresh water
flow (Schijf & Schönfeld 1953). Such a model provides a reasonable description of the
motion, although the assumption that the lower layer of dense fluid is stationary is a
significant simplification of the true flow. It has been observed that there is circulation
within the dense layer and mixing between the two water masses, the intensity of
which depends on the local velocity and density gradients (Lewis 1997). Arita & Jirka
(1987a) address this weakness and formulate a model in which both of the layers
flow and they parameterize the mixing and drag between the layers. This approach
was later extended by Sorgard (1991) to form a three-layer model in which the fresh,
salty and mixed layers were modelled separately. The long-term upstream motion
of saline gravity currents shares many dynamical features with arrested salt wedges
in that the effects of interfacial drag progressively slow the advance, alter the depth
profile and eventually halt the progression. In these flows, there is a sustained source
of dense fluid feeding the gravity current and so its motion may only be arrested if
there is recirculation within the dense layer. We show how such a phenomenon may
be captured within a layer-averaged model by developing the model proposed by
Sorgard (1991) to permit the density of the mixed layer to evolve and crucially not to
be assumed constant. We also formulate the first model of an arrested wedge when
the excess density is due to the presence of suspended particles. We shall see that this
gives the motion a rather different character.

This paper is organized as follows. First we describe our experimental procedure and
the new observations of gravity currents driven by compositional differences between
the intruding and ambient fluids or by suspended, relatively heavy particles, in the
presence of a mean flow (§ 2). Here we emphasize the way in which these flows were
generated and the differences between the upstream and downstream propagation.
We then formulate a multi-layered shallow-water model of the flow (§ 3). This builds
on previous models of particle-driven gravity currents (Bonnecaze, Huppert & Lister
1993) and of shallow salt wedges in estuaries (Schijf & Schönfeld 1953; Sorgard 1991).
Comparisons between theory and experiments are given for saline flows in § 4 and
for particle-laden flows in § 5. Additionally we discuss the long-time behaviour and
illustrate the role of our new theoretical models. Finally we summarize our results in
§ 6 and draw some conclusions.

2. Experiments
2.1. Experimental setup

A series of experiments was performed to study the behaviour of buoyancy-driven mo-
tion arising from the input at a constant rate of dense fluid in the presence of a mean
flow. The experimental apparatus was similar to the two-dimensional channel emp-
loyed by Hallworth et al. (1998) modified to deliver a constant flux, rather than a fixed
volume, of dense fluid into the ambient flow and is shown schematically in figure 1.
The experiments were carried out in a Perspex channel of length 9.4 m, width 26 cm
and height 50 cm. The channel was filled with water to a depth of 30 cm and a uniform
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Figure 1. The experimental setup. The valve was used in two configurations I and II. Position
I was used prior to initiating the flow to ensure that particles remained well-mixed throughout
the inner cylinder. Position II was used during the experiment to provide additional mixing
within the reservoir.

ambient flow established by pumping water at a fixed rate in a continuous loop via
a hose connecting inlet and outlet ports at either end of the channel. As described in
Hallworth et al. (1998), the velocity profile within the ambient flow was determined
by use of a Sontek acoustic Doppler velocimeter. The velocity profiles measured
at various distances upstream and downstream from the release point are shown in
figure 4 of Hallworth et al. (1998). In summary, we found that the velocity was approxi-
mately uniform within the interior of the flow, with an average value of 3 cm s−1,
although it decreased sharply within a basal boundary layer of approximate thickness
2 cm. There was a reduction in velocity towards the free surface. The Reynolds
number of the flow, based upon the volume flux per unit width, was approximately
7000, well within the turbulent regime.

The focus of the series of experiments reported here was the evolution of buoyancy-
driven flows resulting from the input of a constant flux of dense fluid. Since we
wished to study the differences between upstream and downstream propagation, we
introduced the dense fluid at the midpoint of the channel. The delivery was provided
by a constant-head gravity feed from a 15 l reservoir, positioned approximately 50 cm
above the free surface of the water in the channel. Rubber tubing connected the base
of the reservoir via a valve to an 8 mm diameter metal nozzle, which was aligned
vertically within the medial plane of the channel with its end just below the free surface
of the water in the underlying channel. The flow rate could be adjusted by means
of a variable control valve. On release from the reservoir, the dense fluid descended
through the ambient and was deflected both upstream and downstream by the pre-
sence of the boundary, delivering approximately equal fluxes of fluid in each direction.
The motion of the ambient fluid within the channel led to some deflection of the de-
scending negatively buoyant jet, but this deflection was negligible in all but the lowest
input fluxes. Of considerable importance, however, was the mixing with the ambient
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fluid which occurred both during the descent and during the deflection by the
underlying boundary. This mixing is discussed below (§ 2.4).

The dense fluids delivered into the channel were either saline solutions (§ 2.2) or
well-mixed suspensions of silicon carbide particles (§ 2.3). For both of these we endeav-
oured to deliver the fluid at a constant rate and for the particle suspensions we also
kept the reservoir well-mixed in order to maintain a constant concentration of parti-
culate matter.

To maintain a constant input rate over a period of several minutes, the dense fluid
was drained from the base of a constant-head inner cylinder installed within the
reservoir, as depicted in figure 1. The cylinder was continually replenished by a pump
drawing fluid from the base of the main body of the reservoir at a rate much faster
than the nozzle outflow rate. The cylinder was thus continually overflowing into the
main body of the reservoir, thereby sustaining a constant pressure head which implied
a constant flux. The inner cylinder was of narrow bore (5.7 cm) and tapered towards
the outlet to eliminate recirculation regions within which sediment could become
trapped. The replenishment tube was aligned with the vertical axis of the cylinder
and was punctured along its submerged length by small (1 mm) holes through which
the dense fluid was pumped as high-velocity jets.

This arrangement permitted the delivery of fluid at a constant rate and avoided the
loss of particles within the constant-head cylinder. However, to ensure that the fluid
had a constant volume fraction of particles and to prevent sedimentation within the
exit valve and tubing, two further procedures were implemented. First, a mechanical
stirrer was installed to induce vigorous turbulence and fluid circulation within the
reservoir and which maintained a well-mixed distribution of particles. Second, we
installed an additional pump. It was first used to back-flush the inner cylinder and
outlet valve prior to the start of each experiment (valve configuration I: figure 1).
Thereafter it was switched to recirculating the main body of the reservoir (valve
configuration II: figure 1), thus supplementing the fluid turbulence and the vertical
mixing processes within the reservoir.

It should be emphasized that the design of the flow delivery system evolved to the
configuration described above as a result of extensive tests which revealed that any less
effort applied to the mixing of the suspension was insufficient to maintain a constant
volume fraction of particles. These tests involved collecting a series of samples,
delivered from the apparatus, over known periods of time, weighing the mass of the
collected suspension and then decanting the excess fluid, and drying and weighing
the particle content. We were thus able to assess the behaviour of the apparatus over
periods of approximately 10 minutes. In the experiments reported below we employed
volumetric flow rates in the range 25–100 cm3 s−1 and volumetric concentrations of
particles in the range 0.8 %–3.2 %. We tested the device with a variety of particle sizes
and found the concentration was approximately constant for silicon carbide particles
with a mean diameter of 37 µm, or less. However the concentration of particles progres-
sively reduced by approximately 15 % throughout the duration of the test when larger,
53 µm diameter, particles were used. This may be ascribed to there being a slight
vertical distribution of concentration in the reservoir – and since fluid is withdrawn
from the base of the reservoir, the concentration of particles delivered will progres-
sively decrease. Elementary scaling suggests that the downward flux of particles scales
as vsφ, where vs the settling velocity of the particles and φ the volumetric concentra-
tion, while the upward flux, modelled by an eddy diffusivity scales as a2ωφ/hr , where
hr is the height of the reservoir, a the dimension of the mechanical stirrer and ω its rate
of rotation. Thus the magnitude of the ratio Γ = hrvs/a

2ω will distinguish between
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Experiment Volume flux Reduced gravity Duration Ambient flow
number Q (cm3 s−1) g′ (cm s−2) D (s) speed u (cm s−1)

1 51.7 64.5 120 2.9
2 51.7 64.5 120 2.9
3 51.7 121.1 105 2.9
4 51.7 33.5 150 2.9
5 51.5 33.5 165 0
6 51.7 17.1 150 2.9
7 51.8 17.1 172 0
8 51.6 121.1 105 0
9 52.1 64.5 120 0

14 24.4 8.5 380 0
15 25.2 17.1 276 0
16 26.2 34.1 204 0
17 25.9 63.2 171 0
18 103.3 8.3 90 0
19 100.6 16.4 90 0
20 101.3 32.4 90 0
21 102.3 63.2 90 0
22 101.5 18.2 143 2.9
23 103.4 62.1 91 2.9
24 103.5 8.7 126 2.9
25 103.0 33.1 90 2.9
26 26.3 8.3 135 2.9
27 25.3 32.0 120 2.9
28 25.6 18.2 135 2.9
29 25.4 62.5 120 2.9

Table 1. The experimental conditions for gravity currents generated by a sustained
source of saline fluid.

those situations where the particles are vertically well-mixed and those where there
exists a significant stratification. Thus, increasing the average diameter of the particles
without increasing the rate of stirring indicates that it will be more difficult to maintain
a well-mixed reservoir. This interpretation is fully in accord with our observations.

As a final check on the volume fraction of particles within the fluid, we drained the
reservoir at the end of each experiment and weighed the unused suspension. We were
thus able to calculate the mass of the suspension delivered throughout the known
duration of each experiment. We also determined the concentration of particles within
the remaining suspension. In all of the experiments reported here and listed in tables 1
and 2, apart from Experiments 12 and 34, this residual concentration was within 5 %
of the initial bulk concentration (and for Numbers 12 and 34 the final concentration
was within 10 % of the initial concentration). The average flow rate was generally
well within 5 % of its initial value, apart from those runs with the lowest initial
flows rates (Q ≈ 25 cm3 s−1, Experiments 13, 34, 30, 42), for which a somewhat larger
deviation was noted.

During each of the experimental runs, measurements were made of the horizontal
distance of the extremities of the current from the release point in both the downstream
(Xd) and upstream (Yu) directions as functions of time by marking the position of
the nose of the current at 3 s intervals. In the case of particle-driven gravity currents,
the final distribution of the sedimented particles was also measured by recovering the
mass of particles within a 5 cm wide strip across the width of the tank at various
distances from the release point.
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Experiment Volume flux Reduced gravity Settling velocity Duration Ambient flow
number Q (cm3 s−1) g′ (cm s−2) vs (cm s−1) D (s) speed U (cm s−1)

10 52.5 33.3 0.123 240 0
11 50.8 33.3 0.123 240 2.9
12 103.9 33.3 0.123 164 2.9
13 25.6 33.3 0.123 510 2.9
30 24.6 16.8 0.123 270 2.9
31 50 16.8 0.123 240 2.9
32 104.1 16.8 0.123 165 2.9
33 49 65.6 0.123 225 2.9
34 27.5 65.6 0.123 315 2.9
35 49.1 33.3 0.056 225 0
36 49.2 33.3 0.056 240 2.9
37 48.9 33.3 0.308 240 2.9
38 51.2 33.3 0.035 225 2.9
39 103.9 33.3 0.123 240 0
40 51.4 16.8 0.123 225 0
41 49.9 65.6 0.123 225 0
42 24.5 33.3 0.123 330 0
43 50 33.3 0.308 225 0

Table 2. The experimental conditions for gravity currents generated by a sustained
source of particle-laden fluid.

The complete list of the experimental conditions undertaken during this study is
given in tables 1 and 2. In the following subsections, and throughout the rest of the
paper, we describe the motion of those currents driven by salinity differences separa-
tely from those driven by suspended particles. Observations of both types of gravity
current reveal that their dynamics have many common aspects. The main difference,
however, is that particle settling progressively reduces the density difference between
the intruding and surrounding fluids and exerts a significant control on the motion.

2.2. Compositionally driven currents

Compositionally driven currents of different initial densities were released from the
reservoir into the ambient flow at rates in the range 25–100 cm3 s−1, the density of
the intruding fluid being generated by dissolving a known mass of salt (150–2400 g)
into 12 l of water. (This resulted in initial values of the reduced gravity, g1 ≡ �ρg/ρa ,
where g denotes gravitational acceleration, ρa the density of water in the Flume and
�ρ the density difference between the intruding and ambient fluids, ranging from 8.3
to 64.5 cm s−2.) Solutions of each concentration were also released into a quiescent
ambient for comparison. Measurements of the upstream and downstream position of
the front, as functions of time, are presented in figure 2.

In figure 2(a, b) we observe that in the absence of an ambient flow, the dense, saline
fluid spreads symmetrically away from the point of release with an approximately
constant speed of propagation. The rate of spreading increased as both the initial
density of the intruding fluid (figure 2a) and the rate at which it was delivered to the
flume (figure 2b) were increased. Whilst the motion around the head of the gravity
current was unsteady with coherent billowing flow structures, similar to those reported
by many previous investigators (see, for example, Simpson 1997), the bulk of the flow
behind the front, but away from the source, formed a intruding layer with an approxi-
mately constant depth along the flow.
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Figure 2. The position of the front of the saline current as a function of time: (a) no ambient
flow, constant volume flux, varying reduced gravity; (b) no ambient flow, constant reduced
gravity, varying volume flux; (c) ambient flow, constant volume flux, varying reduced gravity;
and (d) ambient flow, constant reduced gravity, varying volume flux.

In the presence of an ambient flow, the gravity currents still spread at constant rates
away from the source, although the downstream and upstream speeds are different.
The nature of interface between the two fluids is rather different upstream and down-
stream. Downstream of the source the dense fluid deepens and maintains a character-
istic head structure. In contrast, the upstream-advancing part of the current develops
a wedge-like shape that is intermittently eroded by the action of interfacial eddies.
Although there was some evidence of mixing between the two fluids of differing densi-
ties, the dense fluid was not vertically mixed throughout the entire water column.

2.3. Particle-driven currents

The particle-driven currents were generated by releasing suspensions of silicon carbide
particles into the ambient flow at rates in the range 25–100 cm3 s−1. The silicon carbide
particles have a density ρp = 3.2 g cm−3 and we employed samples which were relatively
monodisperse with mean diameters of 17, 23, 37 and 53 µm. To each suspension we
added a small quantity of Calgon to prevent particle agglomeration. The initial volume
concentration of particles was in the range 0.8 %–3 %, which yielded initial values of
the reduced gravity, g′, in the range 16–65 cm s−2. Upon release, the particle-driven
gravity currents propagated with decreasing velocity in both the upstream and down-
stream directions, simultaneously depositing a sediment layer over the floor of the
channel. Apart from directly under the source, where the dense plume impinged upon
the base of the channel, this deposit was not changed by the subsequent flow. Figure 3
is a photographic image of a typical experiment with a particle-driven gravity current.
The photograph shows the initial phases of the motion during which the dense fluid
impinges upon the channel boundary and begins to propagate both upstream and
downstream.

Measurements of the upstream and downstream position of the front, as a func-
tion of time, are presented in figure 4(a–f ). When there is no mean flow in the
ambient fluid, the particle-laden currents spread symmetrically away from the source
(figure 4a–c). However in contrast to the flows of saline fluid, the speed of the propa-
gation progressively diminishes as the particles settle out of suspension and reduce the
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Gravity currents driven by saline or particle-laden fluid 357

Figure 3. Photograph of the initial devlopment of a particle-driven gravity current in the
presence of a mean flow. In this photograph the dense fluid has just impinged upon the base
of the channel and started to spread up- and downstream. The mean flow is from right to left
and the grid comprises squares with sides of length 10 cm.

density difference that drives the motion. Increasing the initial flux of fluid (figure 4a)
or the initial concentration of suspended particles (figure 4b) increases the speed of
the motion. Varying the size of the particles in suspension (and consequently varying
their settling velocity) while maintaining the same initial concentration and volume
flux, does not affect the rate of spreading initially (figure 4c). At later times though,
a greater proportion of the larger particles have settled out of the flow and thus the
density and speed are reduced more rapidly.

Similar systematic variations with the initial volume flux (figure 4d), the initial con-
centration of particles (figure 4e) and the settling velocity of the particles (figure 4f )
are found when there is a mean flow in the ambient. All of these results indicate a
substantial asymmetry in the upstream and downstream propagation of the flow. As
with compositional currents, the visual appearance of the two branches is rather dif-
ferent: the downstream branch is somewhat diffuse, while the upstream branch forms
a wedge shape, which in some runs was almost arrested by the ambient flow. There is
also some evidence of mixing between the ambient and the particle-laden fluids, but
this is of insufficient strength to mix the particles throughout the entire water depth.

Once the experiment was finished, the channel was partially drained and the basal
deposit was sampled to determine its distribution. This was carried out by vacuuming
up the sediment through a siphon tube within a 5 cm × 25 cm pastry cutter placed
over the bed at specific intervals. The mixture collected was then decanted and the
particles dried and weighed to calculate the mass of deposit per unit area. Examples
of these distributions are discussed in detail later in this paper and are plotted in
figures 15 and 17. The total mass delivered during the experiment was calculated by
integrating the area under these profiles of the deposit and then multiplying by the
width of the channel. In each case this value was within 2 % of the measured net
mass of particles delivered from the reservoir into the flume. Given the duration of
each experiment and the rate at which the dense fluid enters the channel, we could
also determine the average volume fraction of particles, which in each case compared
favorably with the initial volume fraction.
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Figure 4. The position of the front of the particle-driven currents as a function of time. (a)
No ambient flow, constant volume flux and settling velocity, varying initial concentration of
particles. (b) No ambient flow, constant initial concentration of particles and settling velocity,
varying volume flux. (c) No ambient flow, constant initial concentration of particles and volume
flux, varying settling velocity. (d) Ambient flow, constant volume flux and settling velocity,
varying initial concentration of particles. (e) Ambient flow, constant initial concentration
of particles and settling velocity, varying volume flux. (f ) Ambient flow, constant initial
concentration of particles and volume flux, varying settling velocity.

A noteworthy sedimentological feature of these experimental results was the forma-
tion of ring-like structures within the deposited sediment, centred directly beneath
the source where the particle-laden fluid impinges upon the underlying boundary.
Typically there were two concentric ridges of sediment raised above the surrounding
and relatively flat deposit. Such structures were formed in both quiescent conditions
and in the presence of a mean flow. In the former case, the ridges were approximately
circular. (For an input flux of 52 cm3 s−1 and initial volume fraction of 4.7 %, the
diameter of the inner ring was 13 cm and the outer ring 17 cm.) In the presence of a
mean flow the rings were extended downstream and were elliptical.

2.4. Entry conditions and initial mixing

The dense fluid flowed from the elevated reservoir through a pipe of cross-sectional
area A= 0.50 cm2, which was held 5 mm under the free surface of the ambient fluid.
Thereafter it descended through the ambient, where it entrained fluid and was then
deflected by the bottom of the channel so that the dense fluid propagated both up-
and downstream with approximately equal fluxes of fluid supplied in each direction.

During the descent phase, the motion of dense fluid was dynamically intermediate
between jet- and plume-like behaviour and was strongly modified by the presence of
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the underlying boundary and the sidewalls of the flume. Previous investigations of
this type of flow include Linden & Simpson (1990, 1994), Gilmour & Woods (1994)
and Cavalletti & Davies (2003). While the experimental configuration in each of these
studies is different from that employed here, we also measure the degree of dilution of
the source fluid (the mixing with the ambient) as a function of the ratio of the depth
of the ambient to the jet length of the input fluid. Importantly we note that provided
there is only negligible particle settling during this interaction then the buoyancy of
the flow is conserved under mixing.

The initial specific momentum flux of the plume, M0, has dimensions L4T −2, while
the initial specific buoyancy flux, B0 has dimensions L4T −3. Hence the lengthscale
constructed from these two, known as the jet length, is given by M

3/4
0 B

−1/2
0 . Relating

these to the initial volume flux, Q0, the reduced gravity at the source, g′, and the
cross-sectional area of the source, A we find that the jet length is proportional to
Q0g

′−1/2A−3/4. Finally, the volume flux per unit width is given by qp = Q0/w, where
w is the width of the channel. Thus in this series of experiments for which both w

and A remain constant, the jet length is proportional to the buoyancy lengthscale
hb = (q2

p/g′)1/3.
In an unbounded fluid, it is possible to employ simple dimensional reasoning to

show that at a distance z from the source, the volume flux is proportional to M
1/2
0 z,

when z is much less than the jet length, and to B
1/3
0 z5/3, when z is much greater than

the jet length (Morton, Taylor & Turner 1956; Turner 1973). Thus we expect that
the increase in the volume flux relative to its initial value, Q/Q0, to be proportional
to H/A1/2 when H � hb and to H 5/3/[hbw

2/3], when H � hb. We develop below an
empirical expression for the volume flux generated by the method of dense fluid
release employed in these experiment. This expression is constrained to be consistent
with this dimensional reasoning when the depth of the fluid, H , is either much smaller,
or much greater, than the buoyancy lengthscale, hb.

We performed a series of experiments (see § 2.2) in which solutions of dense saline
fluid were released into the channel in the absence of an ambient flow. The dense fluid
spread along the underlying channel boundary at a constant speed, u, and formed a
moving layer of constant depth, h. From the velocity and density profiles of flowing
gravity currents, measured by Ellison & Turner (1959), Buckee, Kneller & Peakall
(2001), Kneller, Bennett & McCaffrey (1999), Altinakar, Graf & Hopfinger (1996) and
calculated by Simpson & Britter (1979) and Felix (2002), we estimate that the volume
flux carried by this flowing layer is given by Qi = 0.6uhw. We henceforth seek an
empirical relationship between this volume flux, measured in our experiments relative
to the volume flux at the source and the ratio of the fluid depth H to the buoyancy
lengthscale hb (figure 5). We note that the proposed linear relationship has the correct
form in the regimes H/hb � 1 and H/hb � 1 and that the best-fit curve is given by

Qi/Q0 = 0.048
H

hb

+ 6.8. (2.1)

We also empirically find that

h/H = 10.0
hb

H
+ 0.041. (2.2)

This form is consistent with the expression for the flux (2.1) if the velocity, u, is propor-
tional to (g′qp)1/3.

In the absence of particle settling, the buoyancy flux is conserved under mixing
and thus (2.1) provides a means for calculating the reduced gravity of the flow. For
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Figure 5. The increase in the volume flux relative to the initial volume flux, Qi/Q0,
measured as a function of H/hb .

compositionally driven currents, it will be established below that the velocity depends
only on the buoyancy flux per unit width and thus there is no need to employ this
empirical expression for the mixing. However, for particle-driven flows it will be
shown that it is necessary to calculate both the initial concentration of particles and
volume flux. For these flows the measured speed of the current and the distribution of
the deposited particles form an independent verification of the empirical expression
for the dilution.

3. Shallow-water models
Shallow-water models of hydraulics phenomena are formulated on the assumption

that the horizontal lengthscale of the motion far exceeds the vertical lengthscale so that
vertical accelerations are negligible and the pressure is hydrostatic to leading order
(see, for example, Whitham 1974). This class of model has been widely used in contexts
as diverse as coastal dynamics (Peregrine 1972), river and estuarine mechanics (Parker
1976), debris flows (Iverson 1997) and avalanches (Hopfinger 1983). Furthermore a
number of recent studies have employed this framework to analyse the propagation
of gravity currents and have demonstrated that the depth-averaged equations may
be used to provide accurate predictions of the motion (see, for example Rottman &
Simpson 1983; Bonnecaze et al. 1993 and Hallworth et al. 1998).

The depth of a flowing gravity current is often much less than the environment
through which it is propagating and so it is often possible to neglect the motion
induced within the ambient. In this study such an assumption may not be appropriate
since the depth of the currents was in some experiments in excess of a third of the
depth of the ambient. Furthermore we observed that the profile of the current was
dependent upon whether its direction of motion was up- or downstream. We also
noted that at late stages of the motion there was an intermediate layer within which
the gravity current and ambient fluids mixed. This region remained localized and
dense fluid was not observed to be mixed throughout the entire water column.

Multi-layer hydraulic models have received considerable attention during recent
years, being applied to the problem of exchange flows between locks, or reservoirs,
which contain fluids with different densities. The motion between these different fluids
may progress over a sill or through a constriction, and this topography exerts a signi-
ficant control over the possible types of flows. Various techniques have been employed
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Figure 6. The configuration of the theoretical model of the flow.

to analyse the steady exchanges that may occur. These include: the specification of
‘hydraulic control’ in terms of Froude numbers for each layer (Armi & Farmer 1986;
Baines 1988); the derivation of an hydraulic functional within which transitions occur
between different branches of solution (Dalziel 1991); and a variational principle
in which the horizontal flow force is maximal at control points (Benjamin 1981).
Generally these hydraulic models take no account of mixing between the fluid layers
of differing densities, nor of interfacial friction. Notable exceptions include Anati,
Assaf & Thompson (1977) who identified the lengthscale over which frictional effects
may become significant and Zhu & Lawrence (2000) who showed that drag may alter
the position of control points.

Estuarine salt wedges share many dynamical features with saline gravity currents
which propagate against a mean flow. Dynamical models of salt wedges were first
formulated by Schijf & Schönfeld (1953), who studied a two-layer model of a salt
wedge in which the pressure gradient associated with the excess density of the saline
fluid was balanced by the interfacial drag between the arrested basal layer and
over-riding river flow. This approach was generalized by Arita & Jirka (1987a) who
permitted the lower layer to be in motion and accounted for the mixing between the
two fluids. Finally, Sorgard (1991) formulated a three-layer model, consisting of a
dense basal layer, an interfacial layer of intermediate density and an overflowing layer
of relatively low density. In this model there is drag and entrainment at the interface
between each of the layers, although Sorgard (1991) further assumed that the density
of the intermediate layer remains constant and this places a strong constraint on the
magnitude of the entrainment between the layers.

In this study, we formulate a three-layer model of the motion (see figure 6). There
are no topographic constraints, such as sills or constrictions, and we examine the
possibility that at late times of the motion, mixing and drag between the layers may
be of considerable importance. As we demonstrate below, most of the experimental
observations are at time- and lengthscales before drag strongly influences the motion.
However this framework provides a consistent way in which the entire motion can be
modelled. It also emphasizes the dynamic similarities between the intrusion of saline
gravity currents and estuarine salt wedges.
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The configuration of the flow is sketched in figure 6. The upper layer is assumed to
consist of fresh water of density ρ3. The basal layer comprises dense fluid, due either
to compositional differences or to the presence of suspended particles. We denote the
density of this lowest layer by ρ1. If the current is due to compositional differences
then the density of this layer remains unchanged; however if there are suspended
particles then sedimentation reduces the density. In between these two there is a layer
of density between ρ1 and ρ3. This layer, and its density, evolves due to mixing with
the under- and overlying fluids. We assume that the difference in density between
the upper and lower layers is relatively small [(ρ1 − ρ3)/ρ3 � 1], so that the dynamics
may be treated using the Boussinesq approximation. Furthermore we assume that
the Froude number of the background flow is also small, u/

√
gH � 1, where H is

the depth of the ambient fluid, g gravitational acceleration and u the mean ambient
flow speed. This implies that we may assume that the total depth of the fluid remains
constant (the rigid lid approximation). Thus denoting the height of each layer by hi ,

h1 + h2 + h3 = H. (3.1)

In these experiments, (ρ3 − ρ1)/ρ1 ≈ 0.05 and u/
√

gH ≈ 0.02 so that these constraints
are comfortably satisfied. We note though that an equivalent theory could be develo-
ped without these simplifications.

We chose the coordinate axes (x, z) such that z is vertical and x is horizontal down
the channel. The horizontal velocity field within each layer is denoted by ui and, using
the Boussinesq approximation, mass conservation within the channel is given by∫ h1

0

u1 dz +

∫ h1+h2

h1

u2 dz +

∫ H

h1+h2

u3 dz = Hu. (3.2)

We may also account for the mixing between the layers and thus model the evolution
of the volume fluxes carried by each of the layers. We represent this mixing processes
by entrainment at which velocities that are rates per unit area that volumes of gravity
current and ambient fluids are mixed into the intermediate layer from the adjoining
layers. These entrainment velocities for the mixing from the dense gravity current
and from the ambient fluid into the intermediate layer are denoted by we1 and we2,
respectively, and thus we find that

∂h1

∂t
+

∂

∂x

(∫ h1

0

u1 dz

)
= −we1, (3.3)

∂h2

∂t
+

∂

∂x

(∫ h1+h2

h1

u2 dz

)
= we1 + we2. (3.4)

As a consequence of the shallow-water approximation, the pressure, p, adopts
hydrostatic distributions in each of the layers, given by

p =




p0(x) + ρ3g(H − z), h1 + h2 < z � H,

p0(x) + ρ3gh3 + ρ2g(h1 + h2 − z), h1 < z � h1 + h2,

p0(x) + ρ3gh3 + ρ2gh2 + ρ1g(h1 − z), 0 < z � h1,

(3.5)

where p0(x) is the pressure at the surface z = H . Henceforth we measure the density
differences between the layers in terms of the reduced gravity for each layer, given by

g′
i = (ρi − ρ3)g/ρ3 (i = 1, 2). (3.6)

The flow is driven by horizontal pressure gradients arising from the density differences
between the fluids. Therefore the expressions for the depth-integrated horizontal
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momentum for each layer are

∂

∂t

(∫ H

h1+h2

u3 dz

)
+

∂

∂x

(∫ H

h1+h2

u2
3 dz

)
+

∫ H

h1+h2

1

ρ3

∂p

∂x
dz = −F23

ρ3

− we2u3|h1+h2
, (3.7)

∂

∂t

(∫ h1+h2

h1

u2 dz

)
+

∂

∂x

(∫ h1+h2

h1

u2
2 dz

)
+

∫ h1+h2

h1

1

ρ3

∂p

∂x
dz

=
F23 − F12

ρ3

+ we2u2

∣∣
h1+h2

+ we1u2

∣∣
h1

, (3.8)

∂

∂t

(∫ h1

0

u1 dz

)
+

∂

∂x

(∫ h1

0

u2
1 dz

)
+

∫ h1

0

1

ρ3

∂p

∂x
dz =

(F12 − Fb)

ρ3

− we1u1|h1
, (3.9)

where Fij denotes the interfacial shear stress between layers i and j, Fb denotes the
basal shear stress, ui |z denotes the velocity ui(x, z). In (3.7) the shear stress at the free
surface has been assumed to be negligible. Basal drag may substantially modify the
flow of gravity currents (Hogg & Woods 2001). However in this study we assume that
its magnitude is negligible relative to the interfacial drag and henceforth we omit it
from the governing equations.

Finally we express the evolution of the densities of the mixed and basal layers. If
the density is solely due to compositional differences then it may only vary due to mix-
ing processes between the two layers. However if it is due to the presence of suspended
sediment then it will be progressively reduced by particle settling. In this study we have
examined those gravity currents that are either solely driven by the compositional
differences or solely by the suspended particulate. It is thus possible to formulate
expressions that model the evolution of the reduced gravity of each layer; saline
currents may then be treated by imposing a vanishing settling velocity. Therefore the
reduced gravity of each layer evolves according to

∂

∂t

∫ h1

0

g′
1 dz +

∂

∂x

(∫ h1

0

g′
1u1 dz

)
= −vsg

′
1|0 + vsg

′
3|h1

− we1g
′
1|h1

, (3.10)

∂

∂t

∫ h1+h2

h1

g′
2 dz +

∂

∂x

(∫ h1+h2

h1

g′
2u2 dz

)
= −vsg

′
3|h1

+ we1g
′
1|h1

, (3.11)

where g′
i |z ≡ g′

i(x, z). It is assumed that particles which have been deposited from the
flow are not re-entrained. It is further assumed that the turbulence is sufficient to
maintain a uniform suspension throughout the entire fluid layer (Martin & Nokes
1988; Bonnecaze et al. 1993; Hallworth et al. 1998). We return to this issue in § 5.

The depth-integrated model is simplified by assuming that the the velocity
and density fields are piecewise constant within each of the layers. This is an
approximation, which lies at the heart of many ‘hydraulic’ models and most shallow-
layer modelling of gravity currents. Some investigators have assumed instead that the
velocity and density fields have a self-similar form, which permits the evaluation of
these vertical integrals, and yields a series of somewhat arbitrary ‘shape’ factors that
specify the self-similar form. Generally the neglect of these shape factors introduces
little error into the one-dimensional model (although see Hogg & Pritchard (2004),
who show that the theoretical speed of dambreak flow is strongly dependent upon
the magnitude of these shape factors).

Finally, in order to close the model we specify the interfacial stresses and entrain-
ment velocities. These quantities are related and may be expected to be functions of the
velocity and density gradients across the interface, as well as depending strongly upon
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the structure and nature of the turbulent fluctuations. Arita & Jirka (1987a, b) and
Sorgard (1991) discuss possible empirical expressions for these processes and review
of some the laboratory measurements of them. In this study, following Sorgard (1991),
we adopt simple models for the stresses and entrainment fluxes, noting that more
elaborate closures could be readily employed. We write the interfacial stresses as

F23 = CD2ρ3(u3 − u2)|u2 − u3|, F12 = CD1ρ3(u2 − u1)|u2 − u1|, (3.12)

where CD1 and CD2 are constant drag coefficients. Further, the entrainment velocities
are assumed to be given by

we1 = E1|u1 − u2|, we2 = E2|u2 − u3|, (3.13)

where the entrainment coefficients, E1 and E2 are also assumed to be constant. Typical
magnitudes of these entrainment and drag coefficients are 10−2, although they are
functions of the Reynolds and Froude numbers of the flow (Arita & Jirka 1987a).

The gravity currents studied in the experiments of § 2 were generated by the impinge-
ment of an initially vertical plume on a horizontal boundary and its subsequent deflec-
tion and propagation away from the source. During this impingement a shallow-water
model of the flow is not appropriate because there is no separation in lengthscales
between the vertical and the horizontal and the pressure is not hydrostatic. However,
at some distance from the source (x = ±∆, where ∆ ≈ 30 cm in the present case),
the flow has become predominantly horizontal and so the mathematical formulation
presented above may be employed. Since the flow is subcritical, as will be shown
empirically below, we need only specify the volume flux per unit width and the
buoyancy flux per unit width. Hence on the assumption that the descending plume
delivers equal fluxes both upstream and downstream, we require that

u1h1 = −q/2, u1g
′
1h1 = −qg′

0/2 at x = −∆, (3.14)

u1h1 = q/2, u1g
′
1h1 = qg′

0/2 at x = ∆, (3.15)

where q is the volume flux per unit width and g′
0 is the initial reduced gravity.

At the front of the current, during the initial propagation the motion is unsteady and
three-dimensional as the dense fluid propagates through and displaces ambient fluid.
Such fluid motion cannot be modelled using the shallow-water equations. Instead we
invoke the Froude number condition (Benjamin 1968; Huppert & Simpson 1980),
supplemented by the uniform flow (Simpson & Britter 1980; Hallworth et al. 1998).
Thus we write

u = U + Fr(g′h)1/2 at x = Xd(t), (3.16)

u = U − Fr(g′h)1/2 at x = −Xu(t), (3.17)

where Xd(t) and Xu(t) are the positions of the front of the current in the downstream
and upstream directions, respectively, u and h are the velocity and depth of the dense
fluid at the front and Fr is the Froude number at the front of the flow. Here the velocity
U is that experienced by the gravity current due to the mean flow. Previous studies
(Simpson & Britter 1980; Bühler, Wright & Kim 1992; Hallworth et al. 1998) have
shown empirically that the speed of the gravity current is equal to the density-driven
speed in the absence of a mean flow, plus a fraction approximately 0.6 of the mean
uniform flow. The Froude number is a function of the depth at the front of the current
relative to the depth of the ambient (see, for example, Huppert & Simpson 1980).
However provided the current is deep relative to the ambient, the Froude number
is approximately constant.
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These conditions at the front of the current are formulated on the assumption that
basal and interfacial drag are negligible. We do not expect that (3.16) and (3.17) will
be appropriate boundary conditions when the flows have become dominated by drag.
Instead, other studies have shown that in such a regime the front of the current is
defined by the position at which the layer height vanishes (Hatcher, Hogg & Woods
2000; Hogg & Woods 2001).

3.1. Non-dimensionalization

We now recast the governing equations derived above in terms of dimensionless
variables. Although there are a number of length- and timescales in this flow, it is
convenient to render the variables dimensionless using the lengthscale (q2/g′

0)
1/3 and

the timescale (q/g′
0
2)1/3 and henceforth, unless stated to the contrary, all variables will

be assumed to be dimensionless. The dimensionless expressions for the total depth of
the fluid and the total flux within the channel are then given by

h1 + h2 + h3 = H, (3.18)

h1u1 + h2u2 + h3u3 = HU, (3.19)

where H = (g′
0/q

2)1/3H and U = u/(g′
0q)1/3. Mass conservation within the lower two

layers is given by

∂h1

∂t
+

∂

∂x
(u1h1) = −E1|u2 − u1|, (3.20)

∂h2

∂t
+

∂

∂x
(u2h2) = E1|u2 − u1| + E2|u3 − u2|. (3.21)

The horizontal momentum equation of each layer is given by

∂u1

∂t
+ u1

∂u1

∂x
+

∂p0

∂x
+

∂

∂x
(g′

2h2) +
h1

2

∂g′
1

∂x
+ g′

1

∂h1

∂x
=

CD1(u2 − u1)|u2 − u1|
h1

, (3.22)

∂u2

∂t
+ u2

∂u2

∂x
+

∂p0

∂x
+

h2

2

∂g′
2

∂x
+ g′

2

∂

∂x
(h1 + h2) =

CD2(u3 − u2)|u3 − u2|
h2

− CD1(u2 − u1)|u2 − u1|
h2

, (3.23)

∂u3

∂t
+ u3

∂u3

∂x
+

∂p0

∂x
=

−CD2(u3 − u2)|u3 − u2|
h3

. (3.24)

Finally the evolution of the buoyancy of the lower two layers is given by

∂g′
1

∂t
+ u1

∂g′
1

∂x
=

Vs(g
′
2 − g′

1)

h1

, (3.25)

∂g′
2

∂t
+ u2

∂g′
2

∂x
= −Vsg

′
2

h2

+
E1|u2 − u1|(g′

1 − g′
2) − E2|u2 − u3|g′

2

h2

, (3.26)

where Vs = vs/(g
′
0q)1/3. In this system of equations there are seven dimensionless

parameters. These are the entrainment coefficients, E1 and E2, the drag coefficients,
CD1 and CD2, the dimensionless total depth of fluid, H, the ratio of the mean flow in
the ambient to velocity of the buoyancy-driven flow, U, and the dimensionless settling
velocity of the particles, Vs .

In the absence of drag and entrainment, this three-layer model is considerably sim-
plified; the mixed layer vanishes (h2 = 0) and the model becomes identical to that used
in previous investigations of saline and particle-laden gravity currents (Rottman &
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Simpson 1983; Bonnecaze et al. 1993; Hallworth et al. 1998). Furthermore, in the
regime (g′

0H
3/q2)1/3 � 1, the dynamics of the lower layer become independent of the

upper layer and thus the model reduces to a single-layer hydraulic model, which is
identical to that used in many studies of the motion of gravity currents.

In subsequent sections of this paper we present solutions to this model and compare
the theoretical predictions and experimental observations. However at this stage we
derive simple estimates of the lengthscale, L, and timescale, T at which drag effects
become significant. Following Hogg & Woods (2001) we estimate that this first occurs
when the inertia and pressure gradient are comparable with the drag forces. On the
assumption that the reduced gravity of the dense layer has not decreased significantly
from its initial value, in dimensional terms this occurs when g′

0h/L ∼ CD1u
2/h, where

h ∼ (q2/g′
0)

1/3 is a typical depth of the dense layer. Thus the lengthscale is given by
L ∼ q(g′

0q)1/3/[CD1u
2] and the timescale by T ∼ q/[CD1u

2]. For length- and timescales
less than these the effects of interfacial drag are weak. For a drag coefficient CD = 10−2,
this lengthscale is approximately 103 cm for these experiments. This corresponds to
the length of the flume in which the experiments were carried out and so for the
compositional currents it is unlikely that significant effects of drag will be noted in the
experimental results presented below; indeed we did not find experimental conditions
in which the upstream propagating branch of a saline current was arrested fully by
the mean flow. However, particle settling may significantly reduce the excess density
of the intruding gravity current, which will shorten the lengthscale over which drag
begins to influence the motion.

4. Compositionally driven gravity currents
In this section we analyse the experimental results for flows in which the density

difference between the intruding and ambient fluids is solely due to differences in
their composition. The density of the lowest layer is constant, therefore, and in terms
of the mathematical model developed above we impose Vs =0. We also note that
for steady flows the buoyancy flux of the lower two layers is constant, irrespective
of mixing processes (i.e. u1g

′
1h1 + u2g

′
2h2 is constant). We first investigate flows for

which the drag is negligible (§ 4.1) and find that this is sufficient to model accurately
most of the experimental observations. In § 4.2 we analyse how the effects of drag and
entrainment modify the motion and we derive a new three-layer model of a steady
saline wedge.

4.1. Drag-free motion

In the absence of an ambient flow (U = 0), we observed that the dense fluid moves away
from the source symmetrically along the bottom of the channel (see § 2.2, figure 2).
It forms layers of approximately constant depth and moves with approximately
a constant speed. In the absence of drag and entrainment, the three-layer model
developed above is considerably simplified and there are simple similarity solutions
for the flow speed and height (Hoult 1972; Gratton & Vigo 1994). If the source is
subcritical then the solution is given by

u1h1 = 1, u1 = Fr
√

h1. (4.1)

However if the source is supercritical then the velocity and height of the current
depend upon the Froude numbers at the source and the front; the flow fields are
no longer constant and may exhibit discontinuities or points of critical transition
(Gratton & Vigo 1994). In these experiments the descending plume delivered the
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Figure 7. The dimensionless rate of growth of the length of the gravity current as a function
of depth relative to the ambient, h/H , for the experimental data (�) and the models of Huppert
& Simpson (1980) (——) and Rottman & Simpson (1983) (– . – . ). Also plotted is the average
value (- - - -).

dense fluid at subcritical conditions and thus the front speeds are given by

dXd

dt
=

dXu

dt
=

(
Fr2

2

)1/3

. (4.2)

We fit straight lines through plots of the length of current, Xu + Xd , against time to
determine empirically the value of the Froude number. In figure 7, we plot this Froude
number as a function of the intrusion depth relative to the depth of the ambient
fluid. We find that although there is some evidence that the measured Froude number
follows the formulae proposed by Huppert & Simpson (1980) and by Rottman &
Simpson (1983), there is sufficient scatter in the data that for the range of conditions
in this experimental series we may take the Froude number to be constant, with value
Fr = 0.81. We note that this is in excellent agreement with the results of Linden &
Simpson (1990) and Gilmour & Woods (1994).

On the assumption that the Froude number is constant, we plot the dimensionless
length of the current, (Xu + Xd)(q

2
p/g′)−1/3 as a function of dimensionless time

t(qp/g′2)−1/3 (figure 8). Note that these scalings yield a very good collapse of the data.
Further note that we have not had to take account of the mixing with the ambient
which occurs on input to the channel. This is possible because the velocity scale,
(qpg′)1/3, is conserved throughout any mixing. Thus the length- and timescales are
linearly scaled by the same factor when rendered dimensionless. As explained in § 5,
this does not apply for a particle-driven current, because its buoyancy is progressively
reduced.

In the presence of an ambient flow (U > 0), the current no longer propagates sym-
metrically away from the source; rather the downstream speed is increased and the
upstream speed is reduced. However the speed of propagation in either direction
remains approximately constant (see figure 2). In the absence of entrainment and
drag the effects of the mean flow are directly included via the conditions at the fronts
of the current (3.16), (3.17), which introduce an asymmetry in the rates of spreading.
As above we seek a constant solution for the velocity and height, but treat the
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Figure 8. The dimensionless length of the gravity current as a function of dimensionless time.
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Figure 9. The dimensionless speed of the gravity current propagating in the presence of a
mean ambient flow as a function of the dimensionless strength of the ambient flow. �, This
study; ×, data from Bühler et al. (1991).

upstream and downstream branches separately. Thus we write

dXu

dt
= α,

dXd

dt
= β, (4.3)

where α and β satisfy

α = U + Fr(2α)−1/2, β = −U + Fr(2β)−1/2, (4.4)

where we have assumed that the velocity U is equal to the mean flow u. We fit best-fit
lines through the graphs of both Xu(t) and Xd(t) as functions of time to determine
the experimental values of α and β . On the assumption that the Froude number is
constant and equal to 0.81 (as determined above) and that the velocity experienced by
the current is equal to the mean ambient flow, we compare the theoretical predictions
of (4.4) with the experimental measurements (figure 9). We find that the comparison
is reasonably good, apart for those currents which are propagating upstream against
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a relatively strong ambient flow and move slower than predicted. A possible reason
for this difference is that such flows are influenced by the action of interfacial drag
between the slowly moving dense fluid layer and the overlying, relatively rapid,
ambient flow. Also in figure 9, we plot data from the experiments of Bühler et al.
(1991), in which saline solutions were released with a co-flowing ambient.† We note
that the two data sets are consistent and are reasonably well modelled by this the
simple theory.

We evaluate the rates of upstream and downstream propagation in the regime
U � 1 to find that

α =

(
Fr2

2

)1/3

+
2U
3

+ . . . , β =

(
Fr2

2

)1/3

− 2U
3

+ . . . . (4.5)

Thus when the mean flow is much less than the buoyancy velocity scale, we find that
to first order, the speed of the gravity current is equal to the speed of the density-
driven motion in the absence of the mean flow plus 2/3 of the mean flow. This is of a
similar form to the empirical rule proposed by Simpson & Britter (1980). Conversely,
in the regime U � 1, we find that

α = U +
Fr

(2U)1/2
+ . . . , β =

Fr2

2U2
− Fr4

2U5
+ . . . . (4.6)

Thus we note that in this regime of a strong mean flow, the downstream flow speed
becomes asymptotically equal to the mean flow speed, while the upstream flow speed
becomes small O(U−2).

4.2. Drag-affected motion

It was established above that the effects of drag become dominant after the current
has propagated for a sufficient time, given in dimensionl units by t �q/[CD1u

2]. The
experiments were thus in a regime that precluded observation of this transition. In this
subsection we examine theoretically the effects of drag on the upstream propagating
current and calculate some of the predictions of the model derived in § 3. We establish
a new dynamical regime in which the buoyancy forces balance the interfacial drag and
show that the speed is slowed. We also show that by including entrainment between
the three layers, a steady arrested state may be determined.

First we consider motion through a sufficiently deep ambient fluid (h1, h2 � h3) that
the flow speed of the upper layer can be assumed constant and we employ scaling
analysis to assess the magnitudes of the forces on the current. The initial motion
arises from a balance between the pressure gradient associated with the excess density
and the fluid inertia. Thus in the lower layer, u2

1 ∼ h1, and since the current is driven
by a constant flux of dense fluid, u1h1 ∼ 1, we deduce that u1 ∼ 1 and the length of
the current increases as t . Drag forces are of magnitude CD1U2/h1 and are initially
negligible. However when t � 1/[CD1U2], they become non-negligible and balance
the streamwise pressure gradient associated with the difference in density, with the
inertia becoming negligible. An analogous transition in dynamical behaviour was
found for currents affected by basal drag (Hogg & Woods 2001). The thickness of the
intermediate mixed layer is assumed to be small relative to depth of the lower layer,
h2 ∼ E2Ut � h1. Thus in this regime, conservation of mass is given by (3.20) and

† Because the experimental configuration is different from that reported here, we determine the
mean velocity, u, as the total volume flux in the channel divided by the flow depth.
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Figure 10. The dimensionless length of the intrusion, L(t), as a function time for E1 =E2 =
CD1 = CD2 = 10−2 (——). The maximum length of this intrusion is 50. Also plotted is the
dimensionless length as a function of time in the absence of entrainment, E1 = E2 = 0, and
CD1 = 10−2 (– – –).

(3.21), while the reduced equations governing the horizontal momentum are given by

∂h1

∂x
=

CD1(u2 − u1)|u2 − u1|
h1

, (4.7)

CD2(u2 − u1)|u2 − u1| = CD1(u3 − u2)|u3 − u2|. (4.8)

This corresponds to a balance between the streamwise pressure gradient and the
interfacial drag for the lower layer, while for the intermediate layer the drag forces at
the two interfaces balance each other. We further assume that the current has been
sufficiently slowed so that U � |u1| and thus

u2 =
U

1 + Λ
, (4.9)

where Λ = (CD1/CD2)
1/2. Thus we may integrate the governing equations to find

h1 =
[
2CD1u

2
2(L(t) + x)

]1/2
, u1 = −dL

dt
− E1

(2CD1)1/2
(L(t) + x)1/2 (4.10)

where x = −L(t) denotes the upstream length of the current. Then using the source
condition that u1h1 = −1 at x = 0, we find that L(t) is given implicitly by

t +
2(2CD1L(t))1/2

E1

− 2

E1

(
2CD1

E1u2

)1/2

tanh−1
[
(E1u2L(t))1/2

]
= 0. (4.11)

An example of this solution is plotted in figure 10. The height of the mixed layer is
given by

h2 = (E1 + E2Λ)(x + L(t0)), (4.12)

where

x + L(t0) = u2(t − t0). (4.13)

In figure 11, we plot examples of these solutions when E1 = E2 = 10−2, CD1 =CD2 =
10−2 and U = 4. The figure shows the height of the flow at various times as well as
the steady state in which the front of the intruding layer has been arrested.
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Figure 11. The height profiles of (a) the lower layer and (b) the mixed layer as function of
distance at times t = 1, 3, 10, 30, 100, 300 for E1 = E2 = CD1 = CD2 = 10−2. Also plotted are the
steady profiles (– – –).

There are several noteworthy features of the solutions. First the height of the
lower layer decreases towards the front of the current so that the streamwise pressure
gradient may balance the interfacial drag. This nose-down characteristic has been
observed in other studies of gravity currents propagating against some form of
resistance (see, for example, Hogg, Ungarish & Huppert 2000; Hogg & Woods 2001).
In the absence of entrainment between the intermediate and lower layer (E1 = 0), the
length is given by

L(t) =

(
9

8CD1

)1/3

t2/3. (4.14)

Thus the drag has slowed the motion from its initial constant speed, but it does not
lead to the arrest of the layer, because fluid is being continually added to it. However if
E1 > 0 then the maximum length attained is (E1u2)

−1; fluid is now lost by mixing into
the overlying layer and the velocity and height fields evolve towards a steady state.

Stationary salt wedges have been traditionally modelled as two-layer systems in
which the pressure gradient associated with the basal saline layer is balanced by
interfacial drag associated with the over-riding mean flow (see, for example, Schijf &
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Schönfeld 1953). Such models do not include a mixed layer and do not account for
mixing between the saline and fresh fluids. Therefore if the salt wedge is stationary, the
lower layer must carry zero volume flux (q = 0) because, as illustrated by the preceding
solution, without mixing across the interface there is no way of forming a steady
state. There are no such limitations in terms of our new model presented above.

We now calculate the steady, three-layer model of an arrested salt wedge by
integration of the steady governing equations from the point at which the height
and velocity of the lower layer vanish; this corresponds to the foremost point of the
arrested wedge. It is a singular point of the governing equations. Thus to construct the
solution we must determine a series expansion away from this point. For notational
convenience we locate the foremost point at x = 0 and formulate series expansion for
the height, velocity and reduced gravity of each layer in 0 <x � 1. We find that the
height fields are given by

h1 =

(
1 − U2

H

)−1/2 U
√

2CD1

1 + Λ
x1/2 + . . . , h2 = (E1 + E2Λ)x + . . . , h3 = H + . . . .

(4.15)

The velocity of each layer is given by

u1 = − E1√
2CD1

(
1 − U2

H

)1/2

x1/2 + . . . , u2 =
U

1 + Λ
+ . . . , u3 = U + . . . . (4.16)

Finally, the reduced gravities of the lower and intermediate layers and the surface
pressure are given by

g′
1 = 1 g2 =

E2

E1 + E2Λ
+ . . . , p0 =

−U 3
√

2CD1

H(1 + Λ)

(
1 − U2

H

)−1/2

x1/2 + . . . (4.17)

Using these series expansions we may integrate the governing equations numerically
until either we find a position at which the volume flux in the lower layer is equal to
unity (u1h1 = −1), or until we reach a point of hydraulic control. In multi-layer flows,
these correspond to a position at which the speed of one of the internal, small-
amplitude waves becomes stationary (Baines 1988; Lane-Serff 1993). For this three-
layer motion this occurs when

Γ = h1h2h3g
′
1g

′
2

[
F 2

3 F 2
2 + λF 2

3 − λ2 +
(
F 2

1 − 1
)(

F 2
2 + F 2

3 − λ
)]

= 0, (4.18)

where F 2
i = u2

i /[g
′
1hi] and λ= g′

2/g
′
1. We note that in the absence of an intermediate

mixed layer (F 2
2 → ∞), this expression reduces to F 2

3 + F 2
1 = 1, which is the critical com-

posite Froude number for Boussinesq two-layer flows introduced by Armi & Farmer
(1986).

In figure 12 we plot some example solutions for which E1 = E2 = 10−2, CD1 =
CD2 = 10−2, U = 4 and H varies between 30.42 and 200. When H =30.42 we find that
hydraulic control is attained (Γ = 0) when u1h1 = −1. When H exceeds this value the
flux attains −1 before the point of hydraulic control Γ < 0. We note that the velocity
and reduced gravity of the intermediate layer (u2 and g′

2) and are approximately
constant for these parameters and that the solution of the reduced system of equations
presented above provides a reasonably good representation of the dynamics. As with
the classical model of a saline wedge, we note that the gradient of the interfacial
height has singular points both at the foremost edge of the intrusion and at the point
of hydraulic control.
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Figure 12. The height and velocity of the lower layer, h1 and u1 (a, b), the height, velocity
and reduced gravity of the mixed layer, h2, u2, g

′
2 and Γ (c–f ) as functions of distance from

the foremost point. Curve (i) H = 200; (ii) H = 100; (iii) H = 50; and (iv) H = 30.42. The
dashed line denotes the theory for a deep ambient.

5. Particle-driven currents
When the density of the intruding fluid is due to the presence of suspended heavy

particles, the motion shares many features with the compositional currents described
in the previous section. However, and most importantly, particle settling progressively
reduces the buoyancy of the flow and consequently reduces the velocity of the gravity
current. For these flows, driven by a constant flux of dense fluid, a steady state
may be attained in which the spatial gradient of the horizontal flux of particulate is
balanced by settling out of the flow to the underlying boundary (see Bonnecaze et al.
1995; Hogg & Woods 2001). As will be shown below, this is an important feature
of these flows because they evolve towards a state in which the volume fraction of
particles decays exponentially with distance from the source. In dimensional terms
the horizontal lengthscale over which settling occurs is q/vs , while the timescale for
this process is q(g′

0q)−1/3/vs (Hogg et al. 2000).
In this section we first consider single-layer models of the motion. We compute

numerical solutions to the governing equations, derive a simplified ‘integral’ model of
the flow and compare both models with the experimental observations. Thereafter we
analyse the longer term motion and demonstrate how the intrusion may be arrested
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by interfacial drag forces to adopt a wedge-like profile which is analogous to the
saline wedges of § 4.

5.1. Single-layer models

When the depth of the particle-laden fluid is sufficiently shallow relative to the depth
of the ambient, and interfacial drag and mixing between the intruding and ambient
fluid may be neglected, the dimensionless governing equations for the flow are consi-
derably simpler than the full system presented in § 3. The motion may then be studied
by modelling only the lower layer. In terms of the rescaled spatial and temporal
variables, X = Vsx and T = Vs t , the equations that represent conservation of mass
and momentum and the transport of suspended particulate are

∂h1

∂T
+

∂

∂X
(u1h1) = 0, (5.1)

∂

∂T
(u1h1) +

∂

∂X

(
u2

1h1 + 1
2
g′

1h
2
1

)
= 0, (5.2)

∂

∂T
(h1g

′
1) +

∂

∂X
(u1h1g

′
1) = = −g′

1. (5.3)

Note that the dimensionless reduced gravity is equivalent to the volume fraction of
suspended particles normalized by its initial value. The conditions at the source are

g′
1 = 1, u1h1 = 1/2. (5.4)

A further condition specifying the Froude number at the source may be enforced
only if the flow is supercritical; otherwise the Froude number is determined by the
interior motion. At the front of the flow, X = XN (t), we impose the condition

u = U + Fr(g′
1h1)

1/2, (5.5)

where we have established empirically that Fr = 0.81. We may also calculate the
dimensionless rate of deposition, defined by

η(X) =
1

D

∫ D

Ts

g′
1 dT , (5.6)

where XN (Ts) = X and D denotes the dimensionless duration of the experiment. We
note that the distribution of the deposited particles for flows of relatively long duration
(D � 1) is identical to the distribution of suspended sediment.

We numerically integrate these equations using an explicit two-step Lax–Wendroff
scheme, having first reformulated the governing equations in terms of a rescaled
spatial variable ξ = X/XN , so that 0 � ξ � 1. Boundary conditions are enforced by
calculation of the dependent variables along characteristics that point out of the
domain. This method is described in detail in Bonnecaze et al. (1993); for the flows
under consideration in this study, the boundary conditions at the source are different
but are readily imposed. It is necessary to add a minimal amount of artificial viscosity
to maintain numerical stability.

We first consider the motion in an otherwise quiescent ambient fluid U = 0. Profiles
of the height, velocity and reduced gravity at various times for a subcritical source
are plotted in figure 13. We note that after a sufficient period, critical conditions are
established at the source and the profiles begin to adopt a steady distribution. Further-
more, we find that the volume fraction of particles in the current decays approximately
exponentially with distance from the source (g′

1 ∼ exp(−2X)) and that the rate of
deposition, η, also approaches this distribution. The origin of this exponential
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Figure 13. The height, h(X, T ), velocity, u(X, T ), volume fraction of particles, φ(X, T ), deposit,
η(X, T ) of a particle-driven gravity current as a function of the rescaled distance X in the
absence of an ambient flow at rescaled times T = 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6. Also
plotted is the steady distribution of the volume fraction of particles, φ = exp(−2X) (– – –).
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Figure 14. The rescaled length of the particle-driven gravity currents, L, as a function of
rescaled time, T , for all of the experimental data series in the absence of a mean ambient
flow. The theoretical curves are the single-layer shallow-water equations (——) and the integral
model (– – –).

distribution may be readily understood. It emerges from the steady balance between
the divergence of the horizontal flux of particles and the settling flux to the underlying
boundary (∂(u1h1g

′
1)/∂X ∼ −g′

1)
We find that the speed of the flow and the distribution of the deposit may be

reasonably accurately modelled using a simplified ‘integral’ model, akin to the ‘box’
models for instantaneous releases of particle-laden flow (Dade & Huppert 1994;
Hallworth et al. 1998; Harris et al. 2001). This model is formulated in terms of the
height, volume and position of the front, denoted by hN , φN and XN , respectively.
The volume flux at the front is then equated with the volume flux at the source

hN

dXN

dT
=

1

2
, (5.7)

and the Froude number condition is given by

dXN

dT
= Fr(φNhN )1/2. (5.8)

Finally, the sedimentation of particles from the front is given by

dφN

dT
= −φN

hN

. (5.9)

These equation may be integrated to yield φN = exp(−2XN ) and

XN =
3

2
log

(
1 +

(2Fr)2/3T

3

)
. (5.10)

Then, on the further assumption that behind the front of the current, the volume
fraction of particles has adopted a steady, exponentially decaying profile, we find that

η(X) = exp(−2X)
[
1 − ts

D

]
+

, (5.11)

where XN (ts) = X and [. . .]+ denotes the Heaviside step function.
We compare the theoretical predictions for the length of the current as a function

of time, (L = 2XN (T )), with the experimental observations in figure 14. We note
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that adopting the new rescaled dimensionless variables has, with the exception of
one set of experimental conditions, collapsed the data onto a single curve and that
even the exceptional experiment is not far from the same curve. Furthermore there
is good agreement between the experimental results and the predictions of both the
shallow-water and integral models. The shallow-water model and the integral model
only begin to diverge from each other at late stages of the flow. (We find that the
calculated positions of the front are within 6 % of each other when over 95 % of
the particles have settled out of the flow.) The data series that does not fit well with
this model (Experiment 43) was conducted using particles of diameter 53 µm. These
have the largest settling velocity of all those used in this study and have the greatest
tendency to be stratified within the reservoir used to deliver the particles to the flume.
Thus it may be that the volume fraction of suspended sediment was not constant
throughout the experiment.

We also compare in figure 15 the measured distributions of the deposited particles
with the predictions of the integral model. (There are negligible differences between the
predictions of the integral and shallow-water models of this quantity.) We observe that
apart from directly under the source, where the impingement of the plume delivering
the particle-laden fluid upon the underlying boundary inhibits deposition, there is
good agreement between the theoretical predictions and experimental observations.

We numerically integrate the single-layer model of the gravity current motion to
elucidate the effects of an ambient flow. The magnitude of the mean flow compared
to the buoyancy velocity scale (U > 0) is an important new parameter and along with
the Froude number, Fr, are the only remaining dimensionless groups in the governing
equations after adopting the rescaled spatial and temporal scales, X and T . Our
experiments correspond to different values of U in the range 0.59 to 1.2, although
the initial conditions for each run were chosen such that there were essentially four
different values of U, namely 0.59, 0.75, 0.94 and 1.2. The experimental data and the
numerically calculated position of the upstream and downstream fronts of the current
are plotted in figure 16. Again it is evident that for each value of U the rescaled
variables collapse the data onto single curves. Furthermore there is good agreement
between the experimental observations and the theoretical predictions.

Also plotted in figure 16 are the results from an ‘integral’ model of the flow. The
flux of fluid and the evolution of the volume fraction of particles at the front are still
given by (5.7) and (5.9), but the Froude number condition at the front is now given
by

dXN

dT
= U + Fr(φNhN )1/2. (5.12)

Integrating this system of ordinary differential equations provides a prediction for the
speed of the upstream and downstream fronts that agrees well with the experimental
data (figure 16). The integral and shallow-water models diverge at late times, but by
this stage the volume fraction of particulate is considerably reduced from its initial
value and so the current is transporting very little sediment.

Finally we calculate the distribution of the rate of deposition, η(X), using the
integral model (although we note that the predictions from the shallow-water model
are very similar). We plot the experimental data and theoretical predictions in figure 17
and note that there is reasonable agreement between the two. The largest differences
occur for flows driven by the smallest volume flux of fluid (q ≈ 25 cm2 s−1: Experiments
13, 30, 34). These flows may have begun to be influenced by drag forces, which have
been neglected in these calculations.
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Figure 15. The distribution of the rate of deposition, η(X), as a function of rescaled distance
after the flow has finished, plotting experimental data (�) and theory (——) for (a) Experiment
10 (D = 6.28); (b) Experiment 35 (D =2.65); (c) Experiment 39 (D =4.38); (d) Experiment 40
(D = 4.84); (e) Experiment 41 (D = 6.81); (f ) Experiment 42 (D = 13.47); and (g) Experiment
43 (D = 14.54).

5.2. The effects of drag

Although we have demonstrated that these experiments were largely unaffected by
interfacial drag forces, at least during their initial phases, larger scale flows may be
strongly resisted by the motion of the ambient. In this subsection we analyse the
dynamics of a particle-laden intrusion that is arrested to form a steady, wedge-like
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Figure 16. The position of the upstream and downstream fronts of a particle-driven gravity
current propagating in the presence of a mean flow as function of time for (a) U = 0.59, (b)
U = 0.75, (c) U = 0.94 and (d) U = 1.2. Predictions of single-layer shallow-water theory (——)
and the integral model (– – –) are also plotted.

layer. This is similar to the saline wedge studied in § 4.2, but in this case the excess
density is due solely to the presence of suspended particles. There are important
differences between the saline and particle-laden situations that are revealed by this
analysis. Perhaps most importantly is that in contrast to the compositionally driven
flows, it is not possible to have a stationary lower layer because settling continually
reduces the volume fraction of particles in suspension. Rather, in the steady state the
losses due to sedimentation must be balanced by horizontal transport by the flow.
It is also not possible to use a steady, single-layer model by simply incorporating
an interfacial drag term in the momentum equation (5.2). Such a model, irrespective
of source conditions, evolves towards an interior point at which the flow becomes
critical (u2

1 = g′
1h1) and thereafter only unsteady evolution is possible.

We employ the formulation of § 3 to establish the steady profiles of the height,
velocity and reduced gravity of the lower dense layer, the intermediate mixed layer
and the overlying ambient layer. We account for drag and mixing between the layers
and find that as with the compositionally driven flow, mixing is necessary to establish a
steady, arrested state. However, particle settling introduces some important differences
because the reduced gravity of the lower layer now varies spatially and, as is shown
below, vanishes at the front of the current. We seek steady solutions to (3.18)–(3.26)
such that the volume flux of the lower layers vanishes at the front, which we locate at
x = 0. The equations are singular at this point, but we may construct series expansions
for x � 1 so that the equations may be integrated away from the origin.

First the dominant balance of forces in the momentum equation of the mixed layer
is between the drag forces. Thus we find that

u2 =
u3

1 + Λ
+ . . . for x � 1. (5.13)
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Figure 17(a–h). For caption see facing page.

The volume fluxes of fluid are then given by

u1h1 = −E1u3x

1 + Λ
+ . . . , u2h2 =

(E1 + E2Λ)u3x

1 + Λ
+ . . . , u3h3 = HU + . . . .

(5.14)
This implies that the reduced gravities of the lower two layers take the form

g′
1 = Axα + . . . , g′

2 = ABxα + . . . , (5.15)
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Figure 17. The distribution of the rate of deposition, η(X), as a function of rescaled distance
after the flow has finished, plotting experimental data (�) and theory (——) for (a) Experiment
11 (D = 6.21, U = 0.75); (b) Experiment 12 (D =2.86, U = 0.59); (c) Experiment 13 (D = 15.26,
U = 0.94); (d) Experiment 30 (D = 7.74, U = 1.2); (e) Experiment 31 (D =5.38, U = 0.94); (f )
Experiment 32 (D = 2.44, U = 0.74); (g) Experiment 33 (D = 6.81, U = 0.60); (h) Experiment
34 (D = 8.22, U = 0.73); (i) Experiment 36 (D = 2.84, U = 0.75); (j ) Experiment 37 (D = 15.35,
U = 0.75); and (k) Experiment 38 (D = 1.64, U = 0.74).

where A is an as yet undetermined constant and α and B satisfy

α =
Vs(1 + Λ)

E1u3

(1 − B), (5.16)

αB = −B

(
Vs(1 + Λ)

(E1 + E2Λ)u3

+ 1

)
+

E1

E1 + E2Λ
. (5.17)

These yield two values for α; for these flows the reduced gravity must remain finite
and so α > 0. Thus the reduced gravity of both layers vanishes at the front of the
intrusion. This means that the buoyancy-induced pressure gradient in the lower layer
cannot balance the interfacial drag at the front and the balance of forces at the front
is different from that of the compositionally driven intrusion. Given (5.15) it implies
that the heights of the layers are given by

h1 = h0 + . . . , h2 = (E1 + E2Λ)x + . . . , h3 = H − h0 + . . . , (5.18)

where h0 is a constant. Finally we deduce that

u1 = − E1u3x

(1 + Λ)h0

+ . . . u3 =
u

1 − h0/H + . . . , p0 = −h0A

2
xα + . . . . (5.19)

Using these series we may then integrate numerically until critical conditions (Γ = 0)
are attained (see § 4.2). We plot some illustrative profiles in figure 18.

The form of the solution near the front with g′
1, g

′
2 → 0 as x → 0 arises due to the

model of particle transport in this study. As explained in § 3, the suspension is assumed
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of the lower and intermediate mixed layers as function of distance from the foremost
point. Parameter values are H = 20, E1 =E2 = 10−2, CD1 = CD2 = 10−2, U = 4, h0 = 0.1 and
Vs = 5 × 10−3.

to be vertically well-mixed by the fluid turbulence with sedimentation occurring
through a lower viscous layer. For constant-flux currents this leads to the volume frac-
tion decaying exponentially with distance, which appears to be consistent with the
experimental observations. However when the flow has slowed sufficiently it is unlikely
to generate sufficient turbulence to suspend the particles and thus this model of the
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particles being well-mixed throughout the fluid layer may no longer be appropriate. In
such circumstances it may be more appropriate to demarcate the boundary between
the layers as a kinematic settling front. Such a model has been formulated in the
context of gravity current motion by Ungarish & Huppert (1998). Then the reduced
gravity of the layer is not reduced by settling, because the volume fraction of particles
is maintained; rather the height of the layer is reduced by the sedimentation process.
A change of this nature strongly affects the structure of the solution close to the
arrested front. The reduced gravity of the layers would not vanish and the dominant
forces in the lower layer could be between the drag and the buoyancy-induced pressure
gradient. The representation of this change in the settling behaviour within a depth-
averaged model remains an interesting and potentially important outstanding issue
for future study of these flows.

6. Summary and conclusions
Although high-Reynolds-number gravity currents generated in the laboratory from

sustained sources of saline or particle-laden fluid are turbulent and exhibit compli-
cated, fluctuating flow structures, we have demonstrated that the initial motion in the
presence of a mean flow is primarily determined by the relative magnitudes of three
velocity scales. In dimensional form, these are the mean flow speed, u, the buoyancy-
induced velocity, (g′

0q)1/3, and the settling velocity of the constituent particles, vs .
Compositionally driven flows propagate at a constant speed, whereas because particle
sedimentation progressively reduces the bulk density, particle-driven flows decelerate.
The two effects of buoyancy-driven motion and the mean flow are essentially additive:
downstream flow speeds are supplemented by the mean flow, whereas upstream flow
speeds are reduced.

In this contribution we have quantified experimentally the effects of the ambient
flow upon the density-driven motion and, for particle-laden fluid, we have determined
the distribution of the deposited particles during the entire flow. We found that
considerable practical measures were required to ensure that a homogeneous
suspension was delivered at a constant rate. We have also made several theoretical
advances by identifying the key dimensionless ratios that specify the dynamical regime
of these flows and by formulating shallow-layer and integral models of the motion.
We demonstrated that the predictions of both models are in close agreement with the
experimental observations.

After sufficiently long times and at sufficient distances from the source, the flow be-
comes influenced by additional flow processes. These include drag and mixing between
the fluid layers. Even though our experiments were conducted in a relatively long
flume, these effects remained negligible within the regime we considered. Nevertheless
we have formulated a multi-layered mathematical model of the motion that may be
used at long times. For upstream flows in particular, we have demonstrated that it is
crucial to capture the exchange between layers if an arrested flow state, such as an
estuarine wedge, is to be resolved accurately. Our illustrative calculations are based
upon the simple models of the complex, interfacial flow processes; however the same
analytical framework may be readily employed with different closure assumptions.

Our study, which we believe provides the first investigation of how sustained parti-
culate gravity currents interact with a mean flow, has many applications. Examples
include the dispersion of solid pollutants within an estuary, which is governed by a
competition between density-driven dispersal and advection by the background flow,
and the formation of sediment deposits within the deep ocean by turbidity flows, which
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interact with a mean current. There are number of features of this type of motion
that warrant further investigation. For instance how is the propagation modified if
the dense fluid is introduced from a localized source and allowed to spread laterally as
well as up- and downstream? What controls the interfacial drag and mixing processes
and how may they be modelled mathematically? And finally, how may these results
be applied to models of the wind-driven dispersion of plumes of volcanic ash?
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