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1 Introduction

The global financial crisis has called for better understanding of financial market vulner-

abilities and risks. Connections between different segments of markets play an important

role in determining the extent and patterns of these risks. These interconnections can

be studied using the tools of network theory. Network modeling is a novel and rapidly

developing field in social sciences, economics and finance, see e.g., Jackson (2008) and

Allen and Babus (2009).

This paper brings together ideas from network theory, the financial econometric lit-

erature on variance-covariance modeling, and statistical literature on Gaussian graphical

models (GGM). The GGM are widely used for the reconstruction of networks when the

actual network structure is unobservable. A prominent example of this use is the biological

literature on networks of genes, proteins, etc., see, e.g., Rice et al. (2005). These methods

are relatively new for economics and finance.1 We apply the GGM to reconstruct the net-

work of partial correlations between different Australian banks, domestic economic sectors

and international markets. We use network theory to study this network and interpret its

properties.

GGM are developed to visualize the conditional dependences between different ele-

ments of a multivariate random variable by a graph of partial correlations, see Whittaker

(2009) for detailed treatment. Partial correlations capture bi-variate linear dependence

between any two elements of the random variable, conditional on a set of all remaining

elements. As we show, this feature is useful to separate a direct dependence, between a

pair of economic sectors or entities, from indirect effects coming through the remaining

part of the network. The standard GGM literature focuses on the reduction of complexity

of the conditioning set from the constructed graph (so-called Markov properties). Our

primary focus is on the network-based measures used in the theoretical network literature

in the context of the graph of partial correlations.

Recent economic literature provides many examples of how financial data can be de-

scribed from the network perspective.2 The studies illustrate the complexity of relation-

ships between financial entities and discover certain network properties which may be

1See Barigozzi and Brownlees (2013) for another example.
2See Iori et al. (2008) who study the interbank overnight market, Vitali et al. (2011) analyzes the

ownership of transnational corporations, and Sokolov et al. (2012) investigates the Australian interbank
transactions, among many others.
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important for the aggregate properties of the financial system. An intuitive, but not en-

tirely formalized idea is that an edge between nodes represent a channel of transmission

of a shock. Thus, the network approach is useful for studying systemic risk, see review of

early contributions in Chinazzi and Fagiolo (2013) and recent studies of Acemoglu et al.

(2015), Glasserman and Young (2015) and Elliott et al. (2014). Battiston et al. (2012)

introduce the DebtRank which is an example of centrality measure of nodes within the

network of financial entities. High centrality of a node would reflect an importance of the

node in the shock transmission.

This paper is closely related to the recent work of Billio et al. (2012), Dungey et al.

(2013), Barigozzi and Brownlees (2013) and Diebold and Yilmaz (2014). The key differ-

ences is that we are establishing the links between the statistical concepts of correlations,

partial correlations, principal components and various centrality measures from the net-

work theory. Moreover, this is the first work mapping the network of perceived financial

dependencies between the Australian banks, other domestic sectors, and international

markets. We use publicly available information on the share prices and indices of the

corresponding entities to reconstruct the network of partial correlations between their re-

turns. The returns generally represent market perceived changes in the value of these

entities. The reconstructed networks may be a useful tool for better understanding of

the market, dynamic spreading of the shocks and, hence, may be used for policy and

regulatory analysis.

We find that there are strong direct links between the big four Australian banks, which

are connected to the real economy, real estate and financial groups. The Australian market

is strongly connected to the Asian market.

The paper is organized as follows. Section 2 defines the network of partial correlations.

Section 3 discusses key network measures and their relationships to well-established statis-

tical concepts. Section 4 details the estimation procedure. Section 5 applies the network

methods to uncover a perceived network of the Australian banks including connections

to local financial and real sectors and global markets, and demonstrate relevant policy

examples. Section 6 concludes the paper.
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2 Networks of partial correlations

Formally, a graph G = (V,E) is structure consisting of a set of nodes, V, and a set of edges,

E. Every two nodes may or may not be connected by an edge, edges may be directed

or undirected, and weighted or unweighted. Our focus here is on undirected graphs and,

hence, elements of an edge set E are unordered pairs (i, j) of distinct nodes i, j ∈ V. We

are working with weighted graphs when each edge has a non-zero weight wij assigned to

it.

Following the literature on Gaussian graphical models (Whittaker, 2009) we define

the network of partial correlations. Let X denote an n-dimensional multivariate random

variable and the nodes of the graph G correspond to each component of X, i.e., V =

{X1, X2, . . . , Xn}. Let X∗i|V\{Xi,Xj} denote the best linear approximation of variable Xi

based on all the variables except for Xi and Xj for any pair i, j.

Definition. Partial correlation coefficient between Xi and Xj, ρXi,Xj

∣∣ V\{Xi,Xj}
, is defined

as the ordinary correlation coefficient between Xi −X∗i|V\{Xi,Xj} and Xj −X∗j|V\{Xi,Xj}.

In other words, the partial correlation between Xi and Xj is equal to the correlation

between the residuals of the two linear regressions: (1) Xi on a constant and a set of

control variables, which includes all variables in X except for Xi and Xj and (2) Xj on a

constant and the same set of control variables as in the first regression. Hence, the partial

correlation measures linear dependence between any two components of X, Xi and Xj

(for i 6= j) after controlling for linear dependence with all other remaining components

in V\{Xi, Xj}. For brevity, we will use a shorter notation ρij|· for the partial correlation

between Xi and Xj .

The edges of the network of partial correlations correspond to the pairs of random

variables with non-zero partial correlations, E = {(i, j) ∈ V × V | ρi,j|· 6= 0} and the

edge weights to the corresponding partial correlations, wij = ρij|·. Intuitively, the net-

work of partial correlations visualizes linear dependence between any two random variables

conditional on all other variables. When the random variable X is multivariate normal,

zero partial correlation implies conditional independence of the corresponding compo-

nents. This statement holds for a more general case of an arbitrary continuous marginal

distribution for each component of X when the dependence between the components is

characterized by the Gaussian copula (see, e.g., Diks et al., 2010).
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For better intuition behind the concept of partial correlations it is useful to show

connections with linear regression. Project each Xi, 1 ≤ i ≤ n on the space spanned by

the rest of the variables in X as

Xi − µi =
∑
j 6=i

βij(Xj − µj) + εi, (1)

where µi is the unconditional mean of Xi and εi is a zero-mean residual. Denote variance-

covariance matrix of vector of residuals, ε, as Σ. This matrix is not necessary diagonal

as ε’s may be correlated. The diagonal elements of Σ are the conditional variances of

different components of X after conditioning on all the remaining components, Var(εi) =

Var(Xi

∣∣V\{Xi}). The orthogonality condition, E(εiXj) = 0, ∀j 6= i, 1 ≤ i, j ≤ n, implies

that regression coefficients are given by βij = ρij|·
√

Var(εi)/Var(εj) (see Appendix A.1).

It follows that ρij|· = sign(βij)
√
βijβji.

Partial correlations are also related to the (unconditional) variance-covariance matrix

of X, Ω = Cov(X). Define a concentration or precision matrix as the inverse of a non-

singular variance-covariance matrix, K ≡ Ω−1. The partial correlations can be expressed

as

ρij|· =
−kij√
kiikjj

, (2)

where kij is the (i, j) entry of K, see Appendix A.2. Furthermore, each diagonal element

of K is the reciprocal of a conditional variance, i.e., kii = 1/Var(εi), where εi are defined

in Eq. (E).

Finally, the partial correlation can also be computed using the inverse of R, the reg-

ular correlation matrix of X, by replacing kij , kii and kjj entries in Eq. (2) with the

corresponding entries of R−1, see Appendix A.3. The ith diagonal element of R−1 is the

ratio of unconditional variance of Xi, Var(Xi), to conditional variance of Xi, Var(εi). The

proportion of variation in Xi explained by all the other components, which can be thought

as endogenous network-induced variation of component i, can be defined similarly to the

regression’s coefficient of determination,

R2
i = 1− Var(εi)

Var(Xi)
, (3)

and deduced from the diagonal elements of R−1.
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A graph with n nodes can be represented by the adjacency matrix of size n×n. When

the graph is undirected and weighted, as in our case, the adjacency matrix is a symmetric

matrix whose (i, j)-entry is not zero only if there is an edge connecting nodes i and j, and

the entry is given by the weight. As we will see in the next Section, adjacency matrix is

a basis for other network-based measures.

Let P denote the adjacency matrix of the graph of partial correlations. The elements

of this matrix are Pi,j = ρij|· for i 6= j and zeros on the diagonal. From (2) we have

P = I−D
−1/2
K KD

−1/2
K , (4)

where I is the identity matrix of size n, K is the concentration matrix, and DK is the

diagonal matrix composed of the diagonal elements of K. The diagonal elements of K are

the inverse of the conditional variances of the components of X. Therefore,

DK = diag
{
k11, . . . , knn

}
= diag

{
1

Var(ε1)
, . . . ,

1

Var(εn)

}
= D−1Σ ,

where DΣ is the diagonal matrix composed of the diagonal elements of Σ.

Next we show how the adjacency matrix P relates to system of linear equation (E).

Introduce matrix B with zeros on the diagonal and βij in the (i, j) off-diagonal entry. Ex-

ploring the relationship between ρij|· and βij defined above, we find that B = D
1/2
Σ PD

−1/2
Σ .

Then Eq. (E) can be rewritten in a matrix form as follows

X − µ = B(X − µ) + ε = D
1/2
Σ PD

−1/2
Σ (X − µ) + ε ,

where µ and ε are the vectors of means of X and residuals, respectively. While we should

be careful about causal interpretation of this equation, it is useful to think about ε’s

as external shocks influencing the system. Because Xi’s may have different conditional

variances, to compare the effects of the shocks, we rescale the residuals in such a way

that all of them would have unit conditional variance, e = D
−1/2
Σ ε. It is important to

emphasize that e’s are not independent (as well as ε’s).

We multiply both sides of the previous equation by D
−1/2
Σ from the left and introduce
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a rescaled variable x = D
−1/2
Σ (X − µ). The equation becomes

x = Px+ e . (5)

Note that the rescaling for X is in terms of the conditional variance as opposed to a

more usual rescaling by the unconditional variance. Intuitively, by using the conditional

variance we remove the effect of the variables endogenous to the network.

Using equation (5) we will now demonstrate the usefulness of the network of partial

correlations for the systemic risk analysis and its connection with the network of correla-

tions.

2.1 Interpretation of Partial Correlation Network

In Section 5 we reconstruct perceived financial networks of the Australian banks, other

sectors of the economy and international markets using publicly available information

on the returns of the corresponding bank shares and indexes. The returns reflect market

perception about the percentage change in the present value of a company, sector or marker

overall. By looking at the correlations of the returns for some entities we may uncover how

the market perceives joint changes in value of these entities including any intermediate

effects. The use of correlations in this sense has been widely used in finance for optimal

portfolio selection (Markowitz, 1952). However, if one wants to understand the structure

of the market and use it for, say, financial stability analysis or optimal policy design, it is

important to turn to partial correlation analysis. Partial correlations can single out the

direct co-movements in relative change of values between the pairs of entities controlling

for all other entities. By reconstructing the network of partial correlations we are may

observe how a unit variance shock may spread through the network. From the perspective

of the regulator this allows identifying the most important relations and focusing policy

on these relations or mitigating possible consequences of any large shocks to these entities.

It is important to emphasize at this point that with partial correlations, it is not

possible to establish the direction of causation. The concept of Granger causality (Granger,

1969) may be used to establish directional relationships, though, the presence of Granger

causality would imply predictability and subsequently, may be incorporated by the market.

Therefore, unless we turn to high frequencies, it is hardly possible to detect stable and
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substantial linear Granger causality in financial returns. Lower frequency cross-sectional

dependencies between the entities are to some degree reflecting aggregations of Granger

causalities at higher frequencies.

With this caution about causality in mind, we propose an observational interpretation

of system (5). The expected steady state value of x is 0. Suppose that we observe a

deviation in x. We will now decompose the total observed deviation into a direct effect

given by unit-variance shock e and an indirect (endogenous to the network) effect. Initial

shock ei which directly hits node Xi, will also affect the immediate neighbors of Xi. For

the network as a whole, the expected effect of shock e on the immediate neighbors is

measured by Pe. We call this a first-order effect. The expected effect on the neighbors of

the neighbors, can be computed as P2e, which we call a second-order effect. Analogously,

we define a kth-order effect as Pke. The total effect of the shock on x will be3

e+ Pe+ P2e+ · · · =
∞∑
k=0

Pke = (I−P)−1e . (6)

Note that the last expression can be obtained directly from Eq. (5). Using Eq. (4), one

can see that (I−P)−1 is equal to

T = D
−1/2
Σ ΩD

−1/2
Σ , (7)

so that the total effect of the shock is given by Te. Matrix T is a variance-covariance matrix

of x, the rescaled X. Eq. (7) shows that it is also the rescaled variance-covariance matrix

Ω. It looks similar to an ordinary correlation matrix, though, instead of unconditional

variances of X, the conditional variances of X are used for rescaling.

We have established that T transforms the initial shock into its total effect on X.

Instead, the matrix of partial correlations P defines how shocks spillover on the immediate

neigbours.

3 Network-based Measures of Centrality

The previous interpretation shows that the network of partial correlations can be used

to separate the direct and higher-order spillover effects of shocks. Understanding and

3The last equality in (6) holds only when all eigenvalues of matrix P are within the unit circle, which
we will assume to be the case. This assumption is satisfied in our application.
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measuring spillovers by means of the partial correlation matrix (as opposed to limiting

attention to the variance-covariance matrix relevant for the total effect of the shock) is

important for a policy aiming to reduce the systemic risk. Some edges of the partial

correlation network (intuitively, those with high weights) and, as a consequence, some

nodes (namely those with many edges with high weights) may play a higher role in these

spillover effects. Network theory uses various measures of centrality to measure a relative

importance of nodes and edges in the graph.

There exist several different centrality measures, and all of them attempt to evaluate

the nodes’ positions in the graph. One of the simplest centrality measures for a graph

is a degree centrality. For a weighted graph, it is defined for each node by adding all

weights of the edges connected to the given node. In our case, for the adjacency matrix

P = (Pi,j)
n
i,j=1 in the partial correlation network, the node’s degree is computed as

di = P · 1 =
n∑

j=1

Pi,j =
n∑

j=1

ρij|· .

where 1 is an n × 1 vector of ones. Intuitively, the nodes with high degree centrality (in

absolute value) are more important for the transmission of the shock due to having many

edges and/or edges with high weights.4

The node whose degree centrality is large will receive more shocks from other nodes

and will also transmit the shocks to the larger number of nodes. But how far can the

shock be transmitted? That obviously depends on how central the nodes directly con-

nected to a central node are. This idea leads to the following self-referential measure of

centrality. Eigenvector centrality is defined simultaneously for all nodes as the eigenvector

u1 corresponding to the largest eigenvalue of the adjacency matrix P. It is easy to show

that this eigenvector is proportional to the limit of the iterative application of operator

P to arbitrary initial vector e0 ∈ Rn. Indeed, symmetric matrix P has the orthonormal

basis {u1, . . . , un} with the real eigenvalues λ1 ≥ · · · ≥ λn. Writing e0 in this basis with

4Note that some entries of P may have negative value indicating that the sign of the shock will be
reversed for the corresponding nodes. However, in our application we find that the number of edges with
negative partial correlations is small and the numerical values of the negative partial correlations are
negligible. If the node has some edges with positive weights and some edges with negative weights, the
effects will cancel each other, resulting in small overall impact of the node.
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coordinates {b1, . . . , bn} and then recursively applying P we obtain

Pke0 = Pk
n∑

i=1

biui =
n∑

i=1

biP
kui =

n∑
i=1

biλ
k
i ui = λk1

n∑
i=1

bi

(
λi
λ1

)k

ui . (8)

Note that if λi/λ1 < 1 for i > 1, all the terms in the last sum, with exception to the

first, (equal to b1u1) tend to zero. In this case, therefore, the eigenvector of the largest

eigenvalue, u1, gives the asymptotic direction for Pke0 when k → ∞. If we interpret e0

as a vector of shocks as in Section 2.1 affecting the values of nodes in the graph, then the

eigenvector centrality u1 describes the asymptotic impact (k-th order when k → ∞) of

an initial shock on the nodes. The node with the largest component in the vector u1 will

receive the highest asymptotic impact of the shock.

Let us establish a connection between the eigenvector centrality of the nodes in the

partial correlation network and the principle component analysis. To do this, we, first,

generalize the notion of the eigenvector centrality. As we discussed, Eq. (8) implies that

when λ1 > λ2 ≥ · · · ≥ λn, the eigenvector corresponding to λ1 corresponds to the asymp-

totic distribution of the initial shocks over the nodes. The same formula makes clear,

however, that the asymptotic behavior depends on the relative value of λ1 with respect to

the second largest eigenvalue λ2 and, in general, to the whole spectrum.5

For a given integer p < n, we introduce the p-eigenvector centrality space of dimension

p as the space spanned by the p eigenvectors of the adjacency matrix corresponding to

the p largest eigenvalues. Intuitively, it is the subspace of Rn where the shocks to the

system would belong asymptotically in the case when the first p eigenvalues of the partial

correlation matrix are large relative to the remaining eigenvalues. The approach used here

resembles the principle component analysis (PCA) and the following proposition shows

that it is, indeed, equivalent to the PCA applied to the matrix T defined in (7).

Proposition 1. Let λ be an eigenvalue of the adjacency matrix P of the graph of partial

correlations with corresponding eigenvector u. Then 1/(1 − λ) is the eigenvalue of ma-

trix T, the variance-covariance matrix of x, defined in (7), with the same corresponding

eigenvector u.

5For example, if λ1 = λ2 > λ3 the asymptotic shock is in the subspace spanned by u1 and u2. It would
be a mistake to characterize centrality by focusing only on the first eigenvector.
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Proof. The statement follows from the following chain of equivalence relations:

Pu = λu ⇔ u−D
−1/2
K KD

−1/2
K u = λu ⇔

⇔ D
−1/2
K KD

−1/2
K u = (1− λ)u ⇔ D

1/2
Σ Ω−1D

1/2
Σ u = (1− λ)u ⇔

⇔ T−1u = (1− λ)u ⇔ 1

1− λ
u = Tu .

The last Proposition asserts that matrix P has the same eigenvectors as the rescaled

variance-covariance matrix T, and even if their eigenvalues differ, their ordering is not.

Therefore, the space where the first p principle components of T belong to is exactly the

same as the p-eigenvector centrality space of P. In the special case of p = 1, we have that

the usual eigenvector centrality of P coincides with the first principle component of T.

Several generalizations of the eigenvector centrality have been proposed (Newman,

2010). Bonacich centrality measure reflects an idea that central nodes not only have a high

degree centrality but also have neighbors with high degree centralities whose neighbors has

high degree centrality as well and so on. If factor α measures the dampening in importance

of degree centrality of the neighbors, then Bonacich centrality is defined as6

cB(α) = P · 1 + αP2 · 1 + α2P3 · 1 + · · · = (I− αP)−1P · 1 , (9)

where as before 1 is an n× 1 vector of ones and I is the identity matrix of size n. When

α = 0 the Bonacich centrality is simply the degree centrality, i.e, the first-order effect of

the unit shock e = 1. When α = 1 the Bonacich centrality is equal to the cumulative

of the first-, second-, and all higher order effects of the unit shock e = 1. Indeed, from

Eq. (6) which gave the total effect, we have

cB(1) = (I−P)−1 · 1− 1 .

Intermediate values of α are not particularly important in our application.7

6The definition given here is a special case of the measure proposed in Bonacich (1987). There, for the
network with adjacency matrix A the centrality is defined as cB(α, β) = β(I− αA)−1A · 1. The constant
β scales the centralities of all the elements and here we assume β = 1.

7The Bonacich centrality measure was introduced for social networks where the edges are directly
observed and the cumulative effect of the interactions is of interest. Dampening is a reasonable assumption
for this setup. In our case, the network of partial correlations is obtained from the variance-covariance
matrix, which already gives us the cumulative effect. The dampening is already accounted for in matrix
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4 Estimation procedure for time series

In Section 2 we have defined the network of partial correlations for an n-variate random

variable. However, we are interested in using the network of partial correlations to describe

cross-section linear dependence of an n-variate time series process.

Consider a stochastic process {Yt : Ω → Rn}Tt=1, defined on a complete probability

space (Ω,F,P). The information set at time t is defined as Ft = σ(Y ′1 , . . . , Y
′
t )′. Next, we

specify a multivariate conditional dynamic model

Yt = µt(θ1) +
√
Ht(θ)εt, (10)

where

µt(θ1) = (µ1,t(θ1), . . . , µn,t(θ1))
′ = E [Yt|Ft−1]

is a specification of the conditional mean, parametrized by a finite dimensional vector of

parameters θ1, and

Ht(θ) = diag(h1,t(θ), . . . , hn,t(θ)),

where

hi,t(θ) = hi,t(θ1, θ2) = E
[
(Yi,t − µi,t(θ1))2|Ft−1

]
, i = 1, . . . , n,

is the conditional variance of Yi,t given Ft−1, parametrized by a finite-dimensional vector

of parameters θ2, where θ1 and θ2 do not have common elements.

Assuming that the standardized innovations εt = (ε1,t, . . . , εn,t)
′ are independent of

Ft−1, that is, serially independent and identically distributed (i.i.d.), but cross-sectionally

dependent, with constant correlation matrix R, we arrive to the constant conditional

correlations (CCC) model of Bollerslev (1990).8

The correlation matrix can be easily estimated using sample estimator, R̂ = 1
T

∑T
t=1 εtε

′
t.

This estimator is equivalent to the MLE estimator. If the sample size T is small and the

number of considered variables n is large, this sample correlation estimator becomes unsta-

ble. In this case shrinkage or penalized maximum likelihood estimators are handy. Given

P.
8It is also possible to allow for time-varying correlations. One of the popular specification allowing for

this is the dynamical conditional correlations (DCC) model of Engle (2002). We have implemented this
specification as well, but the daily changes in partial correlations were very small relatively to the overall
average level. The estimates we obtained with the DCC model for any given date were very similar to the
CCC model.

12



that our sample size is sufficiently large relatively to the number of entities, we focus on the

sample correlations estimator. As a robustness check we also implement a shrinkage-based

glasso estimator of Peng et al. (2009) and report these results in Appendix E.

After obtaining the estimate of the correlation matrix, R̂ from the CCC model we use

Eq. (2) to obtain an estimate of the matrix of partial correlations.

5 Empirical application

The network setup described above may be applied in many different contexts. In this

Section we use this setup to uncover the perceived network of the Australian banks and in-

dustries. We use the term “perceived” to emphasize that our analysis is based solemnly on

the returns of publicly traded banks and sectors and can reveal the network of connections

implied only by the market-driven return co-movements.

Our sample spans the period from 6/11/2000 to 22/08/2014 and was obtained from

Datastream with 3, 600 daily observations in total. We have identified 8 publicly traded

banks in the most recent period: the “big four” (ANZ, CBA, NAB, Westpac), two re-

gional banks (Bank of Queensland and Bendigo and Adelaide bank) and two large financial

groups providing banking services among others (Suncorp and Macquarie group). Next

we look at the index returns of two other major financial sub-sectors other then banking:

Insurance and Real Estate. In addition we include sectors of the real economy, Basic mate-

rials, Industrials and others. The sectoral classification is based on Industry Classification

Benchmark and is provided by Datastream (see Appendix B for details). We also include

the Asian market given its close links with the Australian economy.

We estimated the most typical specification in the CCC model assuming Gaussian

innovations, an ARMA(1,1) model for conditional mean equations and GARCH (1,1) for

conditional variance equations.

Initially the CCC model was estimated using the full 2000−2014 sample of 3, 600 days

and later we divided the sample into two subsamples of roughly equal lengths: “pre 2008”

covering 2000-2007 with 1868 observations and “post 2008” covering 2008–2014 with 1732

observations. These may be thought as pre-crises and post-crises subsamples, respectively.

We report the full matrix of correlations, R, and partial correlations, P, in Appendix C.

There are multiple instances when two entities with relatively high correlation have low
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Figure 1: Network of partial correlations of the Australian banks and other sectors. Full
sample of 3, 600 days was used for estimation.
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Figure 2: Evolution of the network of the partial correlations of the Australian banks and
other sectors.

partial correlation. For example, the correlation between NAB and Westpac is 0.65,

whereas the partial correlation is only 0.1. This is an indication that NAB and West-

pac have relatively strong indirect connections.

Figure 1 shows the reconstructed network of partial correlations. The thickness of the

edges corresponds to the strength of the partial correlations. For improved visibility we

do not show edges corresponding to partial correlations smaller then 0.075. The banks

and other financials are collected in the lower part of the graph. We notice strong partial

correlations between the big four banks and their links with other banks, financial and

eal sector. Interestingly, Macquarie group links the banking sector with the real economy

and Asia. ANZ and Bank of Queensland have direct strong links with the Real Estate

subsector. The regional banks, Bank of Queensland and the Bendigo and Adelaide bank

are strongly linked directly, the former also has a link with NAB, while the latter has

a strong link with the Macquarie group and Suncorp. Industrials and Consumer Svs

sectors seems to be in the center of the Australian economy. Asian market influences the

Australian economy primarily through the Basic materials and Oil & Gas and Consumer

Svs.9

9We also considered other major international markets European and North American market. However,
the trading hours of the Australian market do not overlap with these markets. The impact of Australian
market on these markets was transmitted via the Asian market. When we considered the impact of the
North American and European markets on the Australian market again the transmission was mainly
coming through the Asian market, the Basic material were effected directly.
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Figure 2 shows the networks of partial correlations for pre 2008 and post 2008 sub-

samples. For convenience we kept the locations of the nodes fixed. We notice that some

connections have changed substantially pre and post 2008. Note that the estimates for

subsamples are subject to higher estimation noise due to smaller sample size compared

to the full sample. Interestingly, the interbank connections and connections between the

banks and other sectors have increased post 2008. At the same time we note a decrease

in the central role of mining sector post 2008 and increased central role of the industrials.

In addition to graphical representations, we compute various network-based centrality

measures which help to identify the most important nodes. Table 1 reports these measures

for all economic entities. The first measure is R2 as defined in (3), which is the proportion

of variation in the returns explained by the returns of all other components in the network.

The remaining measures are the degrees centrality, the eigenvector centrality and the

Bonacich α-centrality with α = 1, discussed in Section 3. Next to the measure we report

its ranking in the descending order. All measures are reported for the full sample and

for Bonacich centrality we additionally report the values for pre and post 2008 samples

(the other measures for these periods are reported in Appendix D). The overall ordering

Table 1: Centrality Measures for the Network of Partial Correlations

Measure R2 Degree Eigenvec. Bonacich Bonacich Bonacich
Sample full full full full pre 2008 post 2008

ANZ 0.660 1 1.074 4 1.000 1 23.481 1 13.212 2 32.294 3
Westpac 0.646 2 1.056 6 0.968 2 22.759 3 12.454 4 31.993 4
Industrials 0.621 4 1.363 1 0.967 3 23.478 2 12.111 7 40.957 1
NAB 0.618 5 1.063 5 0.932 4 21.993 4 11.319 10 31.947 5
CBA 0.609 6 0.995 8 0.906 5 21.333 5 12.362 6 29.240 6
Basic Materials 0.623 3 1.121 3 0.877 6 21.189 6 15.276 1 28.138 8
Consumer Svs 0.557 8 1.221 2 0.831 7 20.258 7 11.858 8 34.707 2
Oil & Gas 0.578 7 0.971 9 0.795 8 19.204 8 11.484 9 28.156 7
Insurance 0.490 9 1.010 7 0.743 9 17.975 9 12.494 3 23.976 10
Macquarie 0.469 10 0.851 10 0.713 10 17.031 10 10.238 11 23.117 11
Asia Market 0.451 11 0.793 13 0.665 11 15.993 11 9.161 13 24.890 9
Real Estate 0.395 12 0.813 11 0.615 12 14.818 12 9.679 12 19.196 15
Suncorp 0.377 13 0.740 17 0.591 13 14.135 13 8.888 14 18.485 16
Bank of Qlnd. 0.365 14 0.741 16 0.570 14 13.676 14 7.164 15 19.419 14
Bend&Ad.Bank 0.365 15 0.799 12 0.564 15 13.597 15 6.801 16 20.748 13
Utilities 0.350 17 0.766 15 0.543 16 13.210 16 6.680 17 21.128 12
Health Care 0.351 16 0.787 14 0.526 17 12.874 17 12.373 5 14.632 18
Consumer Gds 0.217 18 0.504 18 0.363 18 8.888 18 6.168 18 17.513 17
Technology 0.159 20 0.432 20 0.306 19 7.472 19 4.711 20 11.205 19
Telecom 0.167 19 0.464 19 0.304 20 7.453 20 5.472 19 9.764 20
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is based on eigenvector centrality for the full sample. We notice that the ranking for the

full sample is similar for all the considered measures. The eigenvector centrality and the

Bonacich centrality measures have the closest ranking similarity with only one different

entry. Using all four measures ANZ seems to have the most central position. The big four

banks together with Industrials have the highest centrality using the full sample. This

indicates the importance of the banking sector in shock transmission. When we compare

the pre and post 2008 periods we notice a significant increase in the network effects. The

average R2 of all entities increased from 0.34 pre 2008 to 0.54 post 2008. Similarly the

average Bonacich centrality increased from 10 to 24. Interestingly, Basic materials showed

the highest centrality pre 2008, and Industrials became the most central post 2008. The

big four banks remained relatively highly central in both periods, however the levels of

Bonacich centrality increased dramatically post 2008 indicating higher network effects of

the banks.

Finally, let us briefly discuss the results based on glasso method of Peng et al. (2009)

reported in Appendix E. Due to shrinkage we notice substantially lower values of corre-

lations and somewhat reduced partial-correlations in comparison to the baseline case of

sample correlations estimator. However, the centrality-based ranking are very similar to

the baseline case. We conclude that while we may overestimate the effect of the partial

correlations using the sample correlations estimates, the centrality ranking will not be

strongly effected.

5.1 Policy examples

Suppose a policy-maker wishes to lower the total effect of a shock to the economic system

in the most effective way. We can measure the total effect of a unit exogenous shock

affecting all entities to any specific entity in the system with the Bonacich centrality

measure. Using the centrality measures in Table 1 it is easy to identify that ANZ is the

most central in the system (based on the full sample). Let assume that a policy-maker

implements a set of measures reducing the partial correlations of all entities connected

with ANZ by 10 percent. We compute that in this case the Bonacich centrality measure of

ANZ will be reduced by 33 percent from about 23 to 15.3. Moreover the average Bonacich

centrality of all big four banks will be reduced by 31 percent from 22.4 to 15.4, while the

average Bonacich centrality of the system will be reduced by 24 percent from 16.5 to 12.5.
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Now, let us check what will happen if a policy maker were to focus on important, but a

less central entity, say Macquarie group and reduced its partial correlations by 10 percent.

The Bonacich centrality of the Macquarie group would reduce by 23 percent, the average

Bonacich centrality of the big four banks would be reduced by 15 percent and the average

Bonacich centrality of the whole system would be reduced by 15 percent, which is smaller

compared to the optimal policy targeting the most central entity. Focusing on the least

central entity such as Telecom sector and reducing all its connections by 10 percent would

reduce the average Bonacich centrality of the system only by 3.5 percent.

It is important to mention that the policy examples considered above are rather stylized

and are given just as an illustration of possible use for the discussed centrality measures.

We have only considered the benefits of the policy. However, costs of reducing the con-

nections of a highly central entity may be substantially higher compared to the cost of

reducing the connections of less central entity. The centrality measures along with the

networks of partial correlations may be used as complimentary indicators guiding policy

makers.

6 Concluding remarks

In this paper we linked various methods for reconstruction of the partial correlations net-

works, established the connections between the theoretical network measures and principal

component analysis and applied the methodology to reconstruct the implied networks of

partial correlations between the relative change in value of the Australian banks, other

domestic sectors and international markets. We investigated the evolution of the networks

over time and computed network-based measures for the considered entities.

We found strong direct links between the big four Australian banks and their con-

nection to the real economy via financial services. We also observed that the Australian

economy links to the international markets via the Asian market.
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APPENDIX

A Properties of Partial Correlations

This Appendix collects the results on partial correlations which are used in this paper;
most of them are mentioned in Section 2. Many results about partial correlations can be
found in Chapter 13 of Bühlmann and Van De Geer (2011), Chapter 17 of Hastie et al.
(2009) and Chapter 5 of Whittaker (2009). We selected here the results we need in this
paper and adopted them to our notation.

First, we reproduce the definition. Let X be the multivariate random variable with
components X1, . . . , Xn. Let X∗ij|· denote the best linear approximation of variable Xi

based on all the variables except for Xi and Xj for any pair i, j.

Definition. The partial correlation coefficient between Xi and Xj denoted by ρij|· is de-
fined as the ordinary correlation coefficient between Xi −X∗ij|· and Xj −X∗ji|·.

Without loss of generality we can assume that all the components of X have zero mean.
For the sake of notation simplicity, the proofs will be focused on random vectors X1

and X2. We denote ε12 = X1 − X∗12|· and ε21 = X2 − X∗21|· the components of X1 and
X2 orthogonal to the space spanned by the remaining random variables X3, . . . , Xn. By
definition the partial correlation coefficient between X1 and X2 is

ρ12|· =
E(ε12ε21)√
E ε212

√
E ε221

.

A.1 Connection with Linear Regression

To get representation (E) we project X1 on all the remaining components of X and also
project X2 on all the remaining components of X (recall that in this appendix the variables
are already transformed to have zero mean):

X1 = β12X2 + β13X3 + · · ·+ β1nXn + ε1

X2 = β21X1 + β23X3 + · · ·+ β2nXn + ε2 .
(11)

We will assume that the components of X are linearly independent and so the projection
errors ε1 and ε2 are not constant. The next result establishes the link between E ε212, the
variance of the projection error when X1 is projected on the space spanned by X3, . . . , Xn,
and E ε21, the variance of the projection error when X1 is projected on the space spanned
by X2, X3, . . . , Xn. The latter is called the conditional variance of X1 in the main text.

Lemma. Assume the orthogonality conditions E(ε1Xi) = 0 for all i 6= 1 and E(ε2Xi) = 0
for all i 6= 2. Then

E ε212 =
E ε21

1− β12β21
.

Proof. Using several times the orthogonality of ε12 to the space spanned by X3, . . . , Xn

and substituting X1 and X2 from (11), we obtain that

E ε212 = E(X1ε12) = E
(
(β12X2 + ε1)ε12

)
= β12 E(X2ε12) + E ε21 =

= β12 E
(
(β21X1 + ε2)ε12

)
+ E ε21 = β12β21 E ε212 + E ε21 .

At the last step we used E(ε2ε12) = 0 which holds due to the orthogonality conditions for
ε2. Note that ε12 = X1 −X∗12|· is a linear combination of X1, X3, . . . , Xn.
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The required result follows now from the equality derived above. Note that β12β21 6= 1,
as otherwise E ε21 = 0. But this would contradict the assumption of linear independence
of X1, . . . , Xn.

Proposition 2. Assume the orthogonality conditions E(ε1Xi) = 0 for all i 6= 1 and
E(ε2Xi) = 0 for all i 6= 2 in (11). Then

β12 = ρ12|·

√
E ε21
E ε21

= ρ12|·

√
Var(ε1)

Var(ε2)

Proof. Let’s compute E(ε1ε21). On the one hand, we can express ε1 from (11) and due to
orthogonality of ε21 to X3, . . . , Xn we get

E(ε1ε21) = E(X1ε21)− β12 E(X2ε21) .

On the other hand, ε21 = X2 − X∗21|· is a linear combination of X2, . . . , Xn and ε1 is

orthogonal to all these vectors. Hence, E(ε1ε21) = 0 and therefore

β12 =
E(X1ε21)

E(X2ε21)
=

E
(
(X∗12|· + ε12)ε21

)
E
(
(X∗21|· + ε21)ε21

) =
E(ε12ε21)

E ε221
= ρ12|·

√
E ε212
E ε221

,

where at the last step we used the definition of the partial correlation. The previous lemma
implies that the ratio of variances of ε12 and ε21 is the same as the ratio of variances of ε1
and ε2. It completes the proof.

From the last Proposition by symmetry we derive that

β12β21 = ρ212|· ⇔ ρ12|· = sign(β12)
√
β12β21

Since correlation coefficient is always between −1 and 1, it follows (see the previous
Lemma) that β12β21 < 1 and that E ε21 < E ε212.

These results hold for any i and j and allow us to establish a link between the ma-
trix of partial correlations, P, and the matrix of linear coefficients in system (E), B.
(Both matrices have zeros on the diagonal.) In the main text we defined the diago-
nal matrix DΣ = diag

{
Var(ε1), . . . ,Var(εn)

}
. The result of Proposition 2 implies that

B = D
1/2
Σ PD

−1/2
Σ . With this result we can directly obtain system (5) which played a

crucial role in our separation of the first-order effect of the shock from the total effect of
the shock.

A.2 Connection with Concentration Matrix

To obtain a useful characterization of partial correlation, we investigate the elements of
the concentration matrix K = Ω−1. Without loss of generality, we will focus only on the
first row and the first column of this matrix.

Let X denote the matrix corresponding to the multivariate random variable X. The
columns of X are the random vectors X1, . . . , Xn. Let X−1 denote the matrix whose
columns are the random vectors X2, . . . , Xn. Consider the first equality in (11), and write
it as X1 = X−1β + ε1, where β = (β12 · · · β1n)T . Using the orthogonality condition, we
obtain from the normal equations that

β = (E(XT
−1X−1))

−1 E(XT
−1X1) . (12)

The next result exploits the block structure of the variance-covariance matrix of X.
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Lemma. Variance-covariance matrix of X can be represented as follows

Ω = E(XTX) =

(
1 βT

0 I

)(
Var(ε1) 0

0 E(XT
−1X−1)

)(
1 0
β I

)
Proof. This can be checked by direct computation. For example, variance of X1 is

E(XT
1 X1) = E

(
(βTXT

−1 + εT1 )(X−1β + ε1)
)

= βT E(XT
−1X−1)β + Var(ε1)

which is exactly the upper left element from the right-hand side of the equality. Also, the
row vector of covariances of X1 with the remaining vectors is

E(XT
1 X−1) = E

(
(βTXT

−1 + εT1 )X−1
)

= E(βTXT
−1X−1)

which coincides with the upper right element of the right-hand side.

Using the decomposition of Ω derived in the previous Lemma we can express the
concentration matrix, K = Ω−1 in the block form as well:

Ω−1 =

(
1 0
β I

)−1( 1
Var(ε1)

0

0
(

E(XT
−1X−1)

)−1
)(

1 βT

0 I

)−1
=

=

(
1 0
−β I

)( 1
Var(ε1)

0

0
(

E(XT
−1X−1)

)−1
)(

1 −βT

0 I

)
=

=

(
1

Var(ε1)
− 1

Var(ε1)
βT

− 1
Var(ε1)

β 1
Var(ε1)

ββT +
(

E(XT
−1X−1)

)−1)

Studying the elements in the first row of this matrix we obtain the following results for
the concentration matrix. The upper left element, k11 = 1/Var(ε1). The second element
in the first row k12 = −β12k11 which using Proposition 2 can be rewritten as

k12 = −β12k11 = −ρ12|·

√
Var(ε1)

Var(ε2)
k11 = −ρ12|·

√
k11k22 .

Expressing the partial correlation from the equation we obtain an instance of (2). In
general, the following holds.

Proposition 3. The on-diagonal elements of the concentration matrix K are given by

kii =
1

Var(εi)
. (13)

The off-diagonal elements of the concentration matrix K are proportional to the negative
of the corresponding partial correlations. Namely, Eq. (2) holds

ρij|· =
−kij√
kiikjj

.

The last result in the matrix form is Eq. (4).

A.3 Connection with the Inverse of Correlation Matrix

We use the matrix notation. Let DΩ be the diagonal matrix composed of the diagonal
elements of Ω. Then, by definition, the correlation matrix of X, denoted as R can be
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written as R = D
−1/2
Ω ΩD

−1/2
Ω . Therefore,

R−1 = D
1/2
Ω KD

1/2
Ω .

Thus, (i, j) element of matrix R−1 is kij
√

Var(Xi)
√

Var(Xj). With such proportionality
to the elements of K, the partial correlations can also be computed if in Eq. (2) the
elements of K are substituted by the elements of R−1. Using (13) we find that the
diagonal elements of R−1 are Var(Xi)/Var(εi).
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B Industry Classification Benchmark

We adopted the following sectoral classification from Datastream which is based on the
Industry Classification Benchmark:

• Oil & Gas
– Oil and Gas Producers
– Oil Equipment, Services and Distribution

• Basic Materials
– Chemicals
– Basic Resources including Mining and Industries Metals

• Industrials
– Construction and Materials
– Industrial Goods and Services including transportation and business support

• Consumer Goods
– Food and Beverages
– Personal and Household Goods including Home Construction

• Health Care
– Health Care Equipment and Services
– Pharmaceuticals and Biotechnology

• Consumer Services
– Retail
– Media
– Travel and Leisure

• Telecommunications
• Utilities

– Electricity
– Gas, Water and Multi-Utilities

• Financials
– Banks
– Insurance
– Real estate including real estate investment and services and trusts
– Financial services including financial groups

• Technology
– Software and Computer Services
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C Correlations and partial correlations

Below we report matrices of correlations and partial correlations for the full sample.

Table 2: Matrix of correlations
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NAB 1 .65 .71 .68 .55 .47 .48 .46 .49 .48 .43 .44 .53 .25 .36 .50 .26 .39 .23 .45
Westpac .65 1 .73 .70 .49 .49 .46 .45 .49 .44 .41 .44 .52 .27 .40 .50 .25 .40 .21 .42
ANZ .71 .73 1 .68 .53 .47 .47 .46 .50 .49 .44 .45 .52 .25 .36 .49 .24 .38 .22 .44
CBA .68 .70 .68 1 .49 .47 .45 .46 .50 .45 .41 .42 .54 .27 .37 .49 .25 .38 .23 .42
Macquarie .55 .49 .53 .49 1 .47 .42 .44 .50 .45 .45 .50 .55 .25 .36 .47 .21 .36 .25 .48
Suncorp .47 .49 .47 .47 .47 1 .37 .40 .48 .37 .39 .39 .48 .27 .34 .44 .22 .33 .21 .38
Bank of Qlnd. .48 .46 .47 .45 .42 .37 1 .46 .42 .42 .37 .39 .46 .25 .31 .42 .19 .34 .23 .36
Bend&Ad.Bank .46 .45 .46 .46 .44 .40 .46 1 .44 .38 .35 .39 .46 .26 .31 .39 .23 .36 .21 .36
Insurance .49 .49 .50 .50 .50 .48 .42 .44 1 .46 .46 .47 .58 .34 .44 .57 .27 .41 .25 .46
Real Estate .48 .44 .49 .45 .45 .37 .42 .38 .46 1 .39 .44 .52 .27 .38 .46 .24 .39 .26 .40
Oil & Gas .43 .41 .44 .41 .45 .39 .37 .35 .46 .39 1 .72 .58 .31 .39 .54 .24 .45 .31 .54
Basic Materials .44 .44 .45 .42 .50 .39 .39 .39 .47 .44 .72 1 .63 .31 .38 .53 .23 .46 .34 .58
Industrials .53 .52 .52 .54 .55 .48 .46 .46 .58 .52 .58 .63 1 .39 .49 .63 .29 .50 .33 .53
Consumer Gds .25 .27 .25 .27 .25 .27 .25 .26 .34 .27 .31 .31 .39 1 .31 .41 .20 .28 .19 .27
Health Care .36 .40 .36 .37 .36 .34 .31 .31 .44 .38 .39 .38 .49 .31 1 .49 .30 .40 .25 .34
Consumer Svs .50 .50 .49 .49 .47 .44 .42 .39 .57 .46 .54 .53 .63 .41 .49 1 .36 .44 .30 .52
Telecom .26 .25 .24 .25 .21 .22 .19 .23 .27 .24 .24 .23 .29 .20 .30 .36 1 .26 .16 .26
Utilities .39 .40 .38 .38 .36 .33 .34 .36 .41 .39 .45 .46 .50 .28 .40 .44 .26 1 .26 .37
Technology .23 .21 .22 .23 .25 .21 .23 .21 .25 .26 .31 .34 .33 .19 .25 .30 .16 .26 1 .26
Asia Market .45 .42 .44 .42 .48 .38 .36 .36 .46 .40 .54 .58 .53 .27 .34 .52 .26 .37 .26 1
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Table 3: Matrix of partial correlations
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NAB 0 .10 .27 .24 .14 .04 .08 .04 -.01 .06 .02 -.02 .02 -.03 -.01 .04 .03 .02 .00 .04
Westpac .10 0 .37 .29 -.01 .11 .05 .02 .00 -.03 -.04 .05 .00 .00 .08 .05 -.01 .05 -.04 .00
ANZ .27 .37 0 .15 .07 .01 .05 .04 .04 .11 .04 .00 .00 -.02 -.03 .00 -.01 -.02 -.01 .03
CBA .24 .29 .15 0 .01 .03 .02 .06 .07 .01 .00 -.03 .07 .01 .00 .03 .02 .01 .01 .00
Macquarie .14 -.01 .07 .01 0 .12 .04 .08 .08 .07 .00 .09 .10 -.02 .02 .01 -.04 -.02 .01 .10
Suncorp .04 .11 .01 .03 .12 0 .02 .08 .12 .01 .04 -.02 .06 .04 .01 .02 .02 .00 .00 .01
Bank of Qlnd. .08 .05 .05 .02 .04 .02 0 .18 .04 .09 .01 .01 .05 .02 -.01 .04 -.02 .02 .04 .00
Bend&Ad.Bank .04 .02 .04 .06 .08 .08 .18 0 .07 .02 -.02 .02 .06 .04 -.01 -.04 .04 .07 .01 .02
Insurance -.01 .00 .04 .07 .08 .12 .04 .07 0 .07 .03 .00 .10 .05 .09 .15 .01 .04 -.01 .06
Real Estate .06 -.03 .11 .01 .07 .01 .09 .02 .07 0 -.03 .05 .10 .01 .07 .04 .03 .07 .04 .03
Oil & Gas .02 -.04 .04 .00 .00 .04 .01 -.02 .03 -.03 0 .46 .07 .01 .05 .09 .00 .08 .03 .12
Basic Materials -.02 .05 .00 -.03 .09 -.02 .01 .02 .00 .05 .46 0 .17 .02 -.03 .03 -.04 .09 .09 .20
Industrials .02 .00 .00 .07 .10 .06 .05 .06 .10 .10 .07 .17 0 .10 .10 .16 .00 .10 .06 .05
Consumer Gds -.03 .00 -.02 .01 -.02 .04 .02 .04 .05 .01 .01 .02 .10 0 .07 .15 .03 .04 .02 -.01
Health Care -.01 .08 -.03 .00 .02 .01 -.01 -.01 .09 .07 .05 -.03 .10 .07 0 .13 .11 .11 .05 -.02
Consumer Svs .04 .05 .00 .03 .01 .02 .04 -.04 .15 .04 .09 .03 .16 .15 .13 0 .14 .02 .04 .13
Telecom .03 -.01 -.01 .02 -.04 .02 -.02 .04 .01 .03 .00 -.04 .00 .03 .11 .14 0 .06 .02 .05
Utilities .02 .05 -.02 .01 -.02 .00 .02 .07 .04 .07 .08 .09 .10 .04 .11 .02 .06 0 .04 -.01
Technology .00 -.04 -.01 .01 .01 .00 .04 .01 -.01 .04 .03 .09 .06 .02 .05 .04 .02 .04 0 .01
Asia Market .04 .00 .03 .00 .10 .01 .00 .02 .06 .03 .12 .20 .05 -.01 -.02 .13 .05 -.01 .01 0
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D Centrality measures of pre and post 2008 samples

Below we compare centrality measures of pre and post 2008 samples.

Table 4: Centrality Measures for the Network of Partial Correlations based on pre 2008
sample

Measure R2 Degree Eigenvec. Bonacich

Basic Materials 0.553 1 1.377 1 1.000 1 15.276 1
ANZ 0.532 2 1.015 7 0.889 2 13.212 2
Westpac 0.510 3 0.955 8 0.839 3 12.454 4
CBA 0.474 4 1.041 6 0.824 4 12.362 6
Insurance 0.427 8 1.098 3 0.819 5 12.494 3
Health Care 0.431 6 1.109 2 0.807 6 12.373 5
Industrials 0.417 10 1.068 4 0.790 7 12.111 7
Consumer Svs 0.421 9 1.063 5 0.776 8 11.858 8
Oil & Gas 0.435 5 0.849 11 0.761 9 11.484 9
NAB 0.429 7 0.888 9 0.758 10 11.319 10
Macquarie 0.344 11 0.811 12 0.676 11 10.238 11
Real Estate 0.315 12 0.857 10 0.633 12 9.679 12
Asia Market 0.309 13 0.712 14 0.607 13 9.161 13
Suncorp 0.274 14 0.784 13 0.584 14 8.888 14
Bank of Qlnd. 0.203 15 0.661 15 0.467 15 7.164 15
Bend&Ad.Bank 0.193 17 0.639 16 0.442 16 6.801 16
Utilities 0.194 16 0.593 17 0.435 17 6.680 17
Consumer Gds 0.172 18 0.506 18 0.404 18 6.168 18
Telecom 0.151 19 0.505 19 0.357 19 5.472 19
Technology 0.111 20 0.415 20 0.306 20 4.711 20
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Table 5: Centrality Measures for the Network of Partial Correlations based on post 2008
sample

Measure R2 Degree Eigenvec. Bonacich

Industrials 0.776 1 1.618 1 1.000 1 40.957 1
Consumer Svs 0.719 2 1.442 2 0.844 2 34.707 2
ANZ 0.714 3 1.092 4 0.801 3 32.294 3
Westpac 0.709 4 1.059 5 0.793 4 31.993 4
NAB 0.702 5 1.126 3 0.790 5 31.947 5
CBA 0.669 8 0.911 7 0.725 6 29.240 6
Basic Materials 0.685 6 0.886 8 0.693 7 28.138 8
Oil & Gas 0.677 7 0.992 6 0.692 8 28.156 7
Asia Market 0.581 9 0.848 11 0.613 9 24.890 9
Insurance 0.548 10 0.882 9 0.587 10 23.976 10
Macquarie 0.542 11 0.748 13 0.571 11 23.117 11
Utilities 0.502 12 0.822 12 0.514 12 21.128 12
Bend.&Ad.Bank 0.488 13 0.855 10 0.508 13 20.748 13
Bank of Qlnd. 0.450 14 0.691 15 0.477 14 19.419 14
Real Estate 0.436 15 0.714 14 0.470 15 19.196 15
Suncorp 0.425 17 0.658 16 0.455 16 18.485 16
Consumer Gds 0.433 16 0.652 17 0.425 17 17.513 17
Health Care 0.344 18 0.602 18 0.354 18 14.632 18
Technology 0.235 19 0.433 19 0.272 19 11.205 19
Telecom 0.198 20 0.421 20 0.235 20 9.764 20
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E Glasso-based estimates and centrality measures

As a robustness check we estimated the matrices of correlations and partial correlations
using the glasso method of Peng et al. (2009). The glasso method exploits the relation-
ship between partial correlations and the system of regression equations in Eq. shrinking
the parameters towards zero. The methods relies heavily on the choice of regularization
parameter. We rotation information criterion the choice of the latter. The estimation was
implemented in R using package ‘huge’.

Below we report matrices of correlations and partial correlations for the full sample.

Table 6: Matrix of correlations using glasso method
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NAB 1 .54 .59 .56 .45 .37 .38 .36 .39 .38 .34 .35 .43 .19 .28 .40 .17 .29 .16 .35
Westpac .54 1 .62 .58 .39 .39 .36 .35 .39 .34 .33 .34 .42 .19 .31 .40 .16 .30 .15 .32
ANZ .59 .62 1 .56 .42 .37 .37 .36 .40 .39 .34 .35 .42 .19 .28 .39 .16 .29 .16 .34
CBA .56 .58 .56 1 .39 .37 .35 .36 .40 .35 .32 .33 .43 .19 .28 .39 .17 .29 .15 .32
Macquarie .45 .39 .42 .39 1 .37 .32 .34 .39 .35 .35 .39 .44 .19 .26 .37 .15 .27 .16 .37
Suncorp .37 .39 .37 .37 .37 1 .27 .31 .38 .28 .29 .30 .38 .18 .24 .34 .14 .24 .13 .28
Bank of Qlnd. .38 .36 .37 .35 .32 .27 1 .36 .33 .32 .27 .29 .36 .16 .22 .33 .13 .25 .15 .27
Bend&Ad.Bank .36 .35 .36 .36 .34 .31 .36 1 .34 .28 .27 .29 .36 .17 .22 .30 .14 .27 .13 .27
Insurance .39 .39 .40 .40 .39 .38 .33 .34 1 .36 .36 .37 .47 .24 .34 .46 .19 .32 .17 .36
Real Estate .38 .34 .39 .35 .35 .28 .32 .28 .36 1 .31 .34 .42 .18 .29 .36 .16 .30 .17 .31
Oil & Gas .34 .33 .34 .32 .35 .29 .27 .27 .36 .31 1 .60 .47 .22 .30 .43 .16 .35 .22 .44
Basic Materials .35 .34 .35 .33 .39 .30 .29 .29 .37 .34 .60 1 .51 .22 .29 .43 .17 .36 .24 .47
Industrials .43 .42 .42 .43 .44 .38 .36 .36 .47 .42 .47 .51 1 .30 .38 .52 .20 .40 .24 .43
Consumer Gds .19 .19 .19 .19 .19 .18 .16 .17 .24 .18 .22 .22 .30 1 .22 .31 .12 .20 .11 .19
Health Care .28 .31 .28 .28 .26 .24 .22 .22 .34 .29 .30 .29 .38 .22 1 .39 .21 .30 .16 .26
Consumer Svs .40 .40 .39 .39 .37 .34 .33 .30 .46 .36 .43 .43 .52 .31 .39 1 .26 .34 .21 .42
Telecom .17 .16 .16 .17 .15 .14 .13 .14 .19 .16 .16 .17 .20 .12 .21 .26 1 .17 .08 .17
Utilities .29 .30 .29 .29 .27 .24 .25 .27 .32 .30 .35 .36 .40 .20 .30 .34 .17 1 .17 .27
Technology .16 .15 .16 .15 .16 .13 .15 .13 .17 .17 .22 .24 .24 .11 .16 .21 .08 .17 1 .17
Asia Market .35 .32 .34 .32 .37 .28 .27 .27 .36 .31 .44 .47 .43 .19 .26 .42 .17 .27 .17 1

In addition to this we report the centrality measures based on glasso method.
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Table 7: Matrix of partial correlations using glasso method
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NAB 0 .12 .23 .20 .12 .05 .08 .04 .01 .06 .01 .00 .02 .00 .00 .04 .01 .01 .00 .04
Westpac .12 0 .30 .25 .01 .10 .05 .03 .02 .00 .00 .02 .02 .00 .06 .05 .00 .04 .00 .00
ANZ .23 .30 0 .15 .07 .03 .05 .04 .04 .09 .02 .00 .01 .00 .00 .00 .00 .00 .00 .03
CBA .20 .25 .15 0 .02 .04 .03 .06 .06 .02 .00 .00 .06 .00 .00 .03 .01 .01 .00 .00
Macquarie .12 .01 .07 .02 0 .10 .04 .07 .07 .07 .01 .08 .09 .00 .00 .02 .00 .00 .00 .09
Suncorp .05 .10 .03 .04 .10 0 .02 .07 .11 .01 .03 .00 .06 .02 .01 .03 .00 .00 .00 .02
Bank of Qlnd. .08 .05 .05 .03 .04 .02 0 .15 .04 .08 .01 .02 .05 .00 .00 .04 .00 .02 .03 .01
Bend&Ad.Bank .04 .03 .04 .06 .07 .07 .15 0 .06 .03 .00 .02 .05 .02 .00 .00 .02 .06 .00 .01
Insurance .01 .02 .04 .06 .07 .11 .04 .06 0 .07 .03 .01 .10 .04 .09 .13 .02 .04 .00 .05
Real Estate .06 .00 .09 .02 .07 .01 .08 .03 .07 0 .00 .04 .10 .00 .06 .04 .01 .06 .03 .03
Oil & Gas .01 .00 .02 .00 .01 .03 .01 .00 .03 .00 0 .37 .08 .01 .03 .09 .00 .08 .04 .12
Basic Materials .00 .02 .00 .00 .08 .00 .02 .02 .01 .04 .37 0 .15 .02 .00 .04 .00 .08 .08 .18
Industrials .02 .02 .01 .06 .09 .06 .05 .05 .10 .10 .08 .15 0 .09 .09 .14 .01 .10 .06 .06
Consumer Gds .00 .00 .00 .00 .00 .02 .00 .02 .04 .00 .01 .02 .09 0 .06 .13 .01 .03 .00 .00
Health Care .00 .06 .00 .00 .00 .01 .00 .00 .09 .06 .03 .00 .09 .06 0 .12 .09 .09 .04 .00
Consumer Svs .04 .05 .00 .03 .02 .03 .04 .00 .13 .04 .09 .04 .14 .13 .12 0 .12 .03 .04 .11
Telecom .01 .00 .00 .01 .00 .00 .00 .02 .02 .01 .00 .00 .01 .01 .09 .12 0 .04 .00 .03
Utilities .01 .04 .00 .01 .00 .00 .02 .06 .04 .06 .08 .08 .10 .03 .09 .03 .04 0 .03 .00
Technology .00 .00 .00 .00 .00 .00 .03 .00 .00 .03 .04 .08 .06 .00 .04 .04 .00 .03 0 .00
Asia Market .04 .00 .03 .00 .09 .02 .01 .01 .05 .03 .12 .18 .06 .00 .00 .11 .03 .00 .00 0

Table 8: Centrality Measures for the Network of Partial Correlations using glasso method

Measure R2 Degree Eigenvec. Bonacich Bonacich Bonacich
Sample full full full full pre 2008 post 2008

Industrials 0.496 3 1.322 1 1.000 1 14.478 1 7.953 5 21.904 1
ANZ 0.518 1 1.063 4 0.993 2 13.900 2 8.335 2 17.743 4
Westpac 0.504 2 1.034 6 0.963 3 13.490 3 7.789 7 17.587 5
NAB 0.486 4 1.042 5 0.949 4 13.329 4 7.264 10 17.795 3
CBA 0.476 6 0.966 8 0.922 5 12.907 5 7.878 6 16.549 6
Basic Materials 0.479 5 1.083 3 0.876 6 12.622 6 9.864 1 15.523 7
Consumer Svs 0.434 8 1.191 2 0.868 7 12.617 7 7.746 8 19.306 2
Oil & Gas 0.437 7 0.938 9 0.804 8 11.546 8 7.394 9 15.466 8
Insurance 0.375 9 0.986 7 0.787 9 11.317 9 8.219 3 14.250 10
Macquarie 0.355 10 0.871 10 0.756 10 10.744 10 6.689 11 13.730 11
Asia Market 0.338 11 0.783 11 0.698 11 9.978 11 5.895 13 14.558 9
Real Estate 0.289 12 0.781 12 0.652 12 9.328 12 6.264 12 11.500 15
Suncorp 0.275 13 0.709 17 0.624 13 8.862 13 5.689 14 11.105 16
Bank of Qlnd. 0.264 14 0.714 16 0.601 14 8.563 14 4.434 15 11.677 14
Bend&Ad.Bank 0.262 15 0.740 14 0.595 15 8.509 15 4.174 16 12.449 13
Utilities 0.249 16 0.733 15 0.570 16 8.250 16 4.102 17 12.544 12
Health Care 0.247 17 0.742 13 0.552 17 8.035 17 8.105 4 8.754 18
Consumer Gds 0.135 18 0.440 18 0.371 18 5.357 18 3.762 18 10.414 17
Technology 0.090 20 0.352 20 0.299 19 4.310 19 2.611 20 6.653 19
Telecom 0.094 19 0.380 19 0.295 20 4.283 20 3.232 19 5.582 20
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