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RÉSUMÉ 

Régulation négative de la réponse fibrogénique hépatique par le suppresseur de la 

signalisation de cytokine 1 (SOCS1) 

Par:Rajani Kandhi 

Département de pédiatrie, Service d’immunologie 

 

Mémoire présenté à la Faculté de médecine et des sciences de la santé en vue de l’obtention 

du diplôme de maitresse science (M.Sc.) en Immunogie 

 

Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, 

Québec, Canada, J1H 5N4 

 

Le suppresseur de la signalisation des cytokines 1 (SOCS1) est un régulateur indispensable 

de la signalisation de l'IFN-γ et a été aussi impliqué dans la régulation de la fibrose 

hépatique. Cependant, on ne sait pas si les fonctions anti-fibrotiques sont médiées 

directement dans le foie par SOCS1  ou par la modulation de l'IFN-γ, qui est connu pour 

son effet atténuateur de la fibrose hépatique. En outre, il est possible que SOCS1 contrôle la 

fibrose hépatique par la régulation des cellules stellaires hépatiques (CSH), un acteur clé 

dans la réponse fibrogénique. Alors que les voies d'activation des CSH ont été bien 

caractérisées, les mécanismes de régulation ne sont pas encore clairs. Les buts de cette 

étude étaient de dissocier la régulation de la réponse fibrogénique hépatique médiée par 

SOCS1 et celle dépendante de IFN-γ et d'élucider les fonctions régulatrices de SOCS1 dans 

l'activation des CSH. La fibrose hépatique a été induite chez des souris Socs1-/-Ifng-/- par la 

diméthylnitrosamine ou le tétrachlorure de carbone.Les souris Ifng-/- et C57BL6 ont servi 

comme contrôles. Après les traitements fibrogéniques, les souris Socs1-/-Ifng-/- ont montré 

des niveaux sériques élevés d' alanine aminotransférase (ALT) ainsi que l'augmentation de 

la fibrose du foie par rapport à des souris Ifng-/-. Le dernier groupe a montré des niveaux 

plus élevés d'ALT et de fibrose par rapport aux souris C57BL6 contrôles. Les foies des 

souris déficientes en Socs1 ont montré une fibrose septale, qui a été associée à une 

augmentation de l'accumulation des myofibroblastes et à un dépôt abondant du collagène. 

Les foies déficients en SOCS1 ont montré une expression accrue de gènes codant pour 

l'actine musculaire lisse, le collagène et les enzymes impliquées dans le remodelage de la 

matrice extracellulaire, à savoir les métalloprotéinases de la matrice et l'inhibiteur tissulaire 

des métalloprotéinases. Les CSH primaires de souris déficientes en Socs1 ont montré une 

prolifération accrue en réponse à des facteurs de croissance tels que le HGF, EGF et le 

PDGF. Aussi, les foies fibrotiques de souris déficientes en Socs1 ont montré une expression 

élevée du gène PDGFB. Pris ensemble, ces données indiquent que SOCS1 contrôle la 

fibrose hépatique indépendamment de l'IFN-γ et qu'une partie de cette régulation peut se 

produire en régulant la prolifération des HSC et en limitant la disponibilité des facteurs de 

croissance. 

 

Mots clés : SOCS1, Diméthylnitrosamine, Tétrachlorure de carbone, Cellules stellaires 

hépatiques, PDGF. 



 

 

iv 

iv 

SUMMARY 

 

Negative regulation of the hepatic fibrogenic response by suppressor of cytokine 

signaling 

 

By 

Rajani Kandhi 

Département de pédiatrie, Service d’immunologie 

 

Thesis presented at the Faculty of medicine and health sciences for the obtention of Master 

of Sciences (M.Sc.) in Immunology  

Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, Québec, 

Canada, J1H 5N4 

 

Suppressor of cytokine signaling 1 (SOCS1) is an indispensable regulator of IFN-γ 

signaling and has been implicated in the regulation of liver fibrosis. However, it is not 

known whether SOCS1 mediates its anti-fibrotic functions in the liver directly, or via 

modulating IFN-γ, which has been implicated in attenuating hepatic fibrosis. Additionally, 

it is possible that SOCS1 controls liver fibrosis by regulating hepatic stellate cells (HSC), a 

key player in fibrogenic response. While the activation pathways of HSCs have been well 

characterized, the regulatory mechanisms are not yet clear. The goals of this study were to 

dissociate IFN-γ-dependent and SOCS1-mediated regulation of hepatic fibrogenic 

response, and to elucidate the regulatory functions of SOCS1 in HSC activation. Liver 

fibrosis was induced in Socs1-/-Ifng-/- mice with dimethylnitrosamine or carbon 

tetrachloride. Ifng-/- and C57BL/6 mice served as controls. Following fibrogenic treatments, 

Socs1-/-Ifng-/- mice showed elevated serum ALT levels and increased liver fibrosis com- 

pared to mice Ifng-/-. The latter group showed higher alanine aminotransferase (ALT) levels 

and fibrosis than C57BL/6 controls. The livers of Socs1-deficient mice showed bridging 

fibrosis, which was associated with increased accumulation of myofibroblasts and abundant 

collagen deposition. Socs1-deficient livers showed increased expression of genes coding for 

smooth muscle actin, collagen, and enzymes involved in remodeling the extracellular 

matrix, namely matrix metalloproteinases and tissue inhibitor of metalloproteinases. 

Primary HSCs from Socs1-deficient mice showed increased proliferation in response to 

growth factors such as HGF, EGF and PDGF, and the fibrotic livers of Socs1-deficient 

mice showed increased expression of the Pdgfb gene. Taken together, these data indicate 

that SOCS1 controls liver fibrosis independently of IFN-γ and that part of this regulation 

may occur via regulating HSC proliferation and limiting growth factor availability. 

 

Keywords : SOCS1, Dimethylnitrosamine, Carbon tetrachloride, Hepatic stellate cells 

PDGF. 
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1. INTRODUCTION 

1. 1 The Liver 

The liver is one of the major organs in our body. It is involved in diverse functions such as 

metabolism, synthesis of plasma proteins and storage of vitamins, carbohydrates and fats. 

The Liver as the main detoxifying organ, liver neutralizes toxic metabolites and removes 

toxins that enter portal vein circulation (Taub 2004; Fausto, Campbell, and Riehle 2006). 

The liver has a remarkable capacity to regenerate following physical, biological and toxic 

injuries (Miyajima, Tanaka, and Itoh 2014). 

1.1.1 The Liver cells and functions 

The liver is composed of parenchymal cells and nonparenchymal cells.  The parenchymal 

cells are hepatocytes and cholangiocytes. Hepatocytes constitute about 94% of the total 

liver mass and carry out most functions in the liver (Papoulas and Theocharis 2009; 

Blomhoff R 1990). Cholangiocytes are epithelial cells that are located in intrahepatic and 

extra-hepatic biliary ducts. These are responsible for modification of the bile produced by 

hepatocytes (O’Hara et al. 2013; Alpini, McGill, and Larusso 2002). 

Hepatic non-parenchymal cells include the sinusoidal endothelial cells, Kupffer cells 

(KCs), lymphocytes, hepatic stellate cells (HSCs) and biliary epithelial cells 

(Cholangiocytes)(Lemoinne et al. 2013). Kupffer cells are the liver resident macrophages 

that reside in sinusoids and play important roles in hepatic homeostasis, phagocytosis and 

host defense (M Naito, Hasegawa, and Takahashi 1997; Makoto Naito et al. 2004). These 

cells are derived from circulating monocytes and comprise approximately 20% of hepatic 

non-parenchymal cells (Ruck and Xiao 2002). Hepatic stellate cells (HSC) store retinoids 

and serve as precursors of liver myofibroblasts (Friedman 2008). Myofibroblasts are the 

main fibrogenic effector cells and are absent in the healthy liver. However, following the 

liver damage, HSCs differentiate and start producing extracellular matrix and collagen 

(Lemoinne et al. 2013). The liver sinusoidal endothelial cells (LSEC) line the capillaries 

and sinusoids and differ from the endothelium of big vessels in lacking a basement 

membrane and containing the fenestrae structures. (Bouwens et al. 1992; DeLeve 2013). 
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The liver contains large number of lymphocytes which include natural killer (NK), natural 

killer T cells (NKT), B cells, CD4 and CD8 T cells present around the portal tracts and 

throughout the hepatic parenchyma. NK and NKT cells provide first line immune defense 

against invading pathogens and also involved in recruitment of circulating lymphocytes  

(Racanelli and Rehermann 2006). 

1.1.2 Liver lobule structure 

The liver parenchyma is structurally divided into multiple functional units called lobules, 

which are hexagonal in shape and composed of a labyrinth of interconnected hepatocyte 

plates separated by sinusoidal blood vessels. Each lobule comprises of a central vein from 

where hepatocyte plates radiate out towards the perimeter of the lobule. Each lobule is 

surrounded and separated by connective tissue. (Fig. 1a and b) (Wallace, Burt, and Wright 

2008). 

 

The liver receives both oxygenated and non-oxygenated blood supply. The portal vein 

brings nutrient rich blood from the gut, which is partially oxygenated. About 30% of the 

hepatic blood comes via the hepatic artery. The two types of blood mix up at the edge of 

the portal tracts and circulate towards central vein through sinusoids. The central veins join 

together to form the hepatic vein, which drain into the inferior vena cava. The portal vein, 

hepatic artery and bile duct together are found at the angle of each lobule forming the portal 

triad (Wallace, Burt, and Wright 2008; Miyajima, Tanaka, and Itoh 2014). 
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1.2 Chronic liver diseases (CLD) and Liver fibrosis 

1.2.1 Epidemiology 

The most common chronic liver diseases (CLD) that are accountable for the morbidity and 

mortality in humans are viral hepatitis, alcoholic liver disease, non-alcoholic fatty liver 

disease (NAFLD), cirrhosis and hepatocellular carcinoma. These conditions are responsible 

for more than 95% of all deaths due to liver disease. Globally, more than 400 million 

individuals are chronically infected with hepatitis B virus (HBV), and above 170 millions 

of people are chronically infected with hepatitis C virus (HCV). About 9 to 36.9% of the 

population is affected with NAFLD, which is more prevalent in individuals with obesity 

and diabetes mellitus. Alcoholic liver disease (ALD) is prevalent in people who consume 

alcohol regularly (K. Zhou and Lu 2009). Other causes of CLD include overload of iron or 

copper absorption and autoimmune destruction of hepatocytes or bile duct epithelium 

(Guyot et al. 2006; Y. Liu et al. 2013). 

 

According to Canadian Liver Foundation reports, the incidence of CLD in Canada is 

increasing alarmingly. It is estimated that one in ten Canadians, or approximately more than 

three million people, have some form of liver disease. Around half a million Canadians are 

chronically infected with Hepatitis B or C virus. NAFLD is also a common liver disease 

that afflicts as much as 25% of the Canadian population. Liver cirrhosis is recorded in 

about 5,000 deaths per year. Over 2,000 Canadians are expected to develop primary liver 

cancer and about 1,000 will die of this disease. It is noted that advanced forms of fibrosis 

and cirrhosis develop in about 20–40% of patients affected with CLD (Canadian Liver 

Foundation 2013). In general, progression of CLD takes several years or even decades to 

cause overt illness. For instance, in the case of hepatitis C infection, it takes up to 10 -15 

years from the time of infection to develop fibrosis and cirrhosis (Massimo Pinzani and 

Macias-barragan 2016). 

1.2.2 Liver fibrosis (LF) 

Most chronic liver diseases are associated with liver fibrosis independent of its etiology 

(Massimo Pinzani and Macias-barragan 2016). Fibrosis is a wound healing response to any 

kind of injury to the liver and is characterized by the accumulation of interstitial or ‘‘scar’’ 
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extracellular matrix (ECM) (Guo and Friedman 2007).  

Liver fibrosis is a reversible process.  In normal conditions, there is a balance between liver 

repair and scar formation. During acute injury, changes that occur in the liver are transient 

and reversible. On the other hand, chronic liver injury is associated with recurring 

replacement of hepatic parenchyma with fibrous tissue, which leads to cirrhosis. Cirrhosis 

is the end stage of liver fibrosis characterized by the loss of the lobular architecture and the 

appearance of regenerative nodules of liver parenchyma surrounded by fibrotic septa (U. E. 

Lee, Mstp, and Friedman 2011). The resulting loss of hepatic function is the cause of 

significant morbidity and mortality associated with cirrhosis (Iwaisako, Taura, and Koyama 

2014). In cirrhosis, loss of functional hepatocytes and increased intrahepatic resistance to 

blood flow leads to hepatic insufficiency and portal hypertension, respectively (Tsochatzis, 

Bosch, and Burroughs 2014; D’Amico, Garcia-Tsao, and Pagliaro 2006). To compensate 

for the metabolic needs required by the liver, hepatocytes continuously undergo recurrent 

proliferation in an inflammatory milieu that could lead to the development of dysplastic 

nodules and eventually to hepatocellular carcinoma (HCC) (Kensler et al. 2003; Farazi and 

DePinho 2006). HCC is among the fifth most common cancer in the world, and the third 

leading cause of cancer death (M Pinzani and Rombouts 2004). It has been demonstrated 

that liver fibrosis is strongly associated with HCC, with ninety percent of HCC cases 

occurring in cirrhotic livers (D. Y. Zhang and Friedman 2014). 

 

The ultrastructural pattern of fibrosis varies with the underlying etiology. In HBV or HCV 

infections, liver fibrosis is characterized by the formation of portal–central septa. In 

alcoholic and non-alcoholic steatohepatitis, deposition of the fibrillar matrix is concentrated 

around the sinusoids and around groups of hepatocytes like a chicken-wire pattern 

(Massimo Pinzani and Macias-barragan 2016). In chronic bile obstruction, porto-portal 

septa is observed due to the activation of portal fibroblasts (Guyot et al. 2006). 

 

The development of fibrosis, and particularly cirrhosis, is associated with significant 

morbidity and mortality. Since it is the final common pathological pathway of chronic liver 

disease, regardless of etiology, developing antifibrotic strategies that target this pathway 
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would be an attractive approach to curtail the end stage of developing hepatocellular 

carcinoma. However, because fibrotic liver disease may not present clinically until an 

advanced or cirrhotic stage, development of methods for early detection of fibrosis and its 

reversal are essential issue for successful intervention (Bonis, Friedman, and Kaplan 2001). 

 

1.3 Extra cellular matrix (ECM) in normal liver 

Increased deposition of ECM is the main characteristic of liver fibrosis (Friedman 2010a). 

The main function of ECM is not only to provide structural support to cells, but also to 

regulate many cellular processes such as growth, migration, differentiation, survival, 

homeostasis and morphogenesis (Theocharis et al. 2015). ECM also serves as a reservoir 

for growth factors that are essential for liver regeneration such as the hepatocyte growth 

factor and epidermal growth factor. (Rozario and DeSimone 2010). The compositions of 

ECM vary from tissue to tissue. However, the major constituents of ECMs are fibrous-

forming proteins, such as collagens, elastin, fibronectin (FN), and non–fiber-forming 

(interfibrillar) proteins such as glycoproteins, and proteoglycans (PGs) (Frantz, Stewart, 

and Weaver 2010). 

 

Collagen is the most abundant fibrous protein which not only provides tensile strength but 

also promotes cell adhesion, support, chemotaxis, migration and tissue repair (Rozario and 

DeSimone 2010). To date, 28 types of collagen have been identified in vertebrates. Based 

on their structure and supramolecular organization, they are divided into fibril-forming 

collagens (Type I, II, III, V, XI), fibril-associated collagens (FACIT) (Type IX, XII, XIV, 

XVI, XIX), network-forming collagens (types X and VIII), anchoring fibrils type (VII), 

transmembrane collagens (type XIII, XVII), basement membrane collagens (Type IV) and 

others with unique functions (Gelse 2003). The structural hallmark of all collagens is their 

triple helix. For example, collagen 1 contains three α chains (2 α1, 1 α2) and series of Gly-

X-Y repeats (where X and Y represent any amino acids but are frequently proline and 

hydroxyproline, which facilitate fibril formation (Mouw, Ou, and Weaver 2014). 
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Structurally, collagens are present in the homopolymers or heteropolymers. Type I collagen 

is the major component of ECM and is the product of two genes, COL1A1, and COL1A2. 

Synthesis of collagen type 1 involves a number of post-translational modifications. 

Hydroxylation of proline and lysine residues and glycosylation of lysine occur in the 

endoplasmic reticulum (ER) to form pro-collagen (Gordon and Hahn 2010). Pro-collagens 

are then secreted through the Golgi apparatus into the extracellular space where the N-

terminal and C-terminal pro-peptides are cleaved by metalloproteinase enzymes to form 

collagens (Mouw, Ou, and Weaver 2014).  Lysyl oxidase (LOX) is an enzyme involved in 

cross-linking collagens and elastins (Rodríguez, Rodríguez-Sinovas, and Martínez-

González 2008). 

 

Elastin fibers are formed by cross-linking of tropo-elastin molecules and provide recoil to 

tissues that undergo repeated stretch (Wise and Weiss 2009). Fibronectin is one type of 

fibrillar collagen, which regulates cell migration and adhesion activities through direct 

interactions with cell-surface integrin receptors. (Mao and Schwarzbauer 2005; Theocharis 

et al. 2015). Proteoglycans (PG) are major components of ECM that help in buffering, 

hydration and binding and provide swelling pressure to the tissue to withstand 

compressional forces (Yanagishita 1993; Järveläinen et al. 2009). PGs contain a central 

core protein which binds covalently to several glycosaminoglycan (GAG) chains such as 

hyaluronan, through which they interact with numerous growth factors, cytokines, 

chemokines and cell surface receptors (Kresse and Schönherr 2001). 

 

Laminins are the family of glycoproteins present predominantly in basement membranes. 

They form interactions with cell surface receptors and are involved in various functions 

such as cell adhesion, migration, and differentiation and in wound repair (Malinda and 

Kleinman 1996; Durbeej 2010). 

 

1.4 Cellular Sources of ECM in Liver Fibrosis 

The ECM deposition in fibrosis is caused by the activation of myofibroblasts. 
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Myofibroblasts are usually not present in normal liver, but they are produced by 

transdifferentiation of liver resident cells, such as hepatic stellate cells (HSC) and portal 

fibroblasts (Lotersztajn et al. 2005). Many studies suggested that HSC are the major source 

of myofibroblasts in LF (Iwaisako, Brenner, and Kisseleva 2012). Portal fibroblasts are the 

major source of myofibroblasts in portal fibrosis or in cholestatic liver injury (Guyot et al. 

2006). These hepatic myofibroblasts may also originate from bone marrow-derived 

mesenchymal cells and fibrocytes, which are recruited to the liver and differentiate into 

myofibroblasts. However, these cells make only a small contribution to the myofibroblast 

population in experimental liver fibrosis (Kisseleva et al. 2006; Bellini and Mattoli 2007; J. 

Xu et al. 2015).  

 

It has been proposed that hepatic progenitor cells like hepatocytes, cholangiocytes, and 

hepatic sinusoidal endothelial cells differentiate into myofibroblasts through epithelial or 

endothelial-mesenchymal transition (EMT) and contribute to the progression of LF 

(Zeisberg et al. 2007; Robertson et al. 2007). But, two lineage tracing analysis studies 

showed that myofibroblasts originated from hepatocytes and cholangiocytes via EMT do 

not express any of the mesenchymal markers including α-SMA, FSP-1, Desmin and 

Vimentin in different LF-induced models (Taura et al. 2010; Chu et al. 2011). One recent 

study used Lrat (lecithin-retinol acyltransferase) Cre-transgenic mouse, which marks 99% 

of hepatic stellate cells (HSCs) in the liver, reported that stellate cells give rise to 82–96% 

of myofibroblasts in models of toxic, cholestatic and fatty liver disease (Mederacke et al. 

2013). However, the relative contribution of other cellular sources may depend on the 

underlying etiology and region(s) of injury within the liver. (Friedman 2010b; M Pinzani 

and Rombouts 2004; Iwaisako, Taura, and Koyama 2014; Friedman 2010a). 

 

Although hepatic myofibroblasts are heterogeneous in their origin, they show some similar 

cellular characteristics like the expression of α-SMA, collagen-α1 (J. Xu et al. 2015). 

Specific markers for cellular sources of myofibroblasts in the fibrotic liver are showed in 

Table 1. 
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Quiescent HSC or	

 Activated HSC	

Portal fibroblasts	 Fibrocytes	 Hepatocytes	 Cholangiocytes	

Desmin+ 

CD146+ 

CD105+ 

GFAP+ 

LRAT+ 

P75+ 

IL17RA+ 

Synemin+ 

Synaptophysin+  

CD45- 

CD34- 

Thy1.1- 

Elastin  

Thy1.1+ 

Elastin+ 

Synemin+ 

CD105+ 

CD45- 

CD34- 

CD146- 

Desmin- 

GFAP-		

CD45+ 

CD34+ 

CD11b+ 

Gr1+ or Ly6G+ 

MHCII+ 

ICAM1+ 

CCR2+ 

CCR7+ 

CXCR4+ 

CD80+ 

 CD86+ 

CD45- 

Alb+ 

 FSP1+  

CD45- 

CK19+ 

 FSP1+  

 

 

 

 

Table 1 Sources of liver myofibroblasts and their markers 

 

 

1.5 Hepatic Stellate Cells 

Hepatic stellate cells were first described by von Kupffer in 1876 as liver sternzellen (star-

shaped cells) (Hellerbrand 2013). Ito and Nemoto described them as fat-storing cells, 

Suzuki as “interstitial cells, Bronfenmajer, Schaffner, and Popper as “lipocytes and Wake 

as peri-sinusoidal cells”. To avoid the confusion with these synonyms, a standardized name 

is given to these cells as  “Hepatic Stellate Cells (HSC)”, which refers to the resting 

(quiescent) form of this cell type found in normal liver (Senoo et al. 2010). 

HSC constitute about 1% of the total liver mass and 7% of the total number of liver cells. 

They reside in the space of Disse (sub endothelial space) which is the gap between 

hepatocytes and sinusoidal endothelial cells (Blomhoff R 1990). In the normal liver, stellate 

cells possess spindle-shaped cell bodies with long cytoplasmic processes. These processes 

wrap sinusoids and regulate circulation through the sinusoidal capillaries (Reynaert 2002). 

They also provide contacts with hepatocytes and other stellate cells, which help in the 

intercellular transport of soluble mediators and cytokines. The thorny projections on the 
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processes are involved in “sensing” chemotactic signals (Friedman 2008). 

1.5.1 Retinoid Storage 

In normal livers, HSC store vitamin A (retinoid) in their cytoplasm, which is a prominent 

characteristic feature of stellate cells in a quiescent state. About 80% of the total retinoids 

present in the entire body is stored in HSC of the liver in the form of retinyl esters in their 

lipid droplets (Senoo 2004; Weiskirchen and Tacke 2014). The lipid droplets of the stellate 

cells show intense but rapidly fading blue-green vitamin A autofluorescence when excited 

with the wavelength light of ∼328 nm (Hellerbrand 2013). The number of droplets varies 

with the species and the abundance of vitamin A stores of the organism (Friedman 2008).  

Dietary retinoid intake but not triglyceride intake affects the number and size of HSC lipid 

droplets (Blaner et al. 2009). Dietary retinoids converts to retinol before absorbption in the 

small intestine (enterocytes), where they convert into retinyl esters and packaged into 

chylomicrons for transportation to the lymphatic circulation. Then, they are taken up by 

hepatocytes, where retinoids are hydrolyzed to retinol and bind with retinol-binding protein 

(RBP) to transfer to the HSCs for storage (Iwaisako, Taura, and Koyama 2014; Senoo et al. 

2010). HSCs possess high levels of LRAT (lecithin: retinol acyltransferase) activity that is 

responsible for the esterification of retinol to retinyl ester and lipid droplet formation. It has 

been shown that Lrat−/− mice lack lipid droplets and retinyl esters in these cells but did not 

develop fibrosis suggesting a physiological role of LRAT in HSC (Fomby and Cherlin 

2011; O’Byrne et al. 2005). In response to liver injury, stellate cells become activated 

which is characterized by the loss of their lipid droplets (Friedman 2008). 

Vitamin A-storing cells are also present in other tissues such as pancreas, lungs, kidney, 

spleen, adrenal glands, testis, uterus, lymph nodes, thymus, bone and intestines, where they 

store lipid droplets and synthesize and secrete ECM components in these tissues. These 

cells are considered as extrahepatic stellate cells (Geerts 2001; Senoo et al. 2010). Among 

them, pancreatic stellate cells are similar to HSC in structure, storage of vitamin-A and 

expression of cytoskeletal markers and signaling pathways (Apte et al. 1998; Kordes, 

Sawitza, and Häussinger 2009). 
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1.5.2 Origin and Markers for identification of HSC 

Embryonic origin of HSC is not yet clearly known since they express marker genes of all 

three germ layers. These cells are thought to derive from endoderm due to the expression of 

CD34 and cytokeratin-7/8 in fetal liver. The expression of mesodermal (Wilm’s tumor 

suppressor gene (Wt1) and mesoderm posterior 1 gene (Mesp1)) suggests they have a 

mesodermal origin. Hepatic epithelial cells are thought to transdifferentiate into hepatic 

stellate cells in the injured liver through epithelial-mesenchymal transition (EMT) but, the 

contribution of EMT to the hepatic stellate cell lineage is highly controversial (Yin et al. 

2013; Kordes, Sawitza, and Häussinger 2009). Some studies have suggested that HSC 

could also be derived from neural crest due to expression of neural cell type markers such 

as glial fibrillary acidic protein (GFAP), nestin, expression of neuronal cell adhesion 

molecule (N-CAM), synaptophysin, neurotrophins and neurotrophin receptor (Senoo et al. 

2010). One study using double transgenic mouse line constitutively expressing yellow 

fluorescent protein (YFP) in the neural crest and their derivatives, showed that HSC in 

adult livers of these mice do not express YFP suggesting HSCs do not originate from the 

neural crest (Cassiman et al. 2006). 

Markers to identify HSC are shown in Table1. Desmin has been widely used as a “gold 

standard” for the identification of the stellate cells in rodent liver, but its expression is not 

reliable in humans (Friedman 2008). α-SMA is one of the six actin isoforms which is 

expressed only when HSC are activated (D C Rockey, Boyles, et al. 1992). Other methods 

employed to determine HSC staining of lipid droplets using oil red O, Sudan red, toluidine 

blue or basic fuchsine, but these are not specific to HSC as hepatocytes and Kupffer cells 

also contain fat droplets (Geerts 2001). 

 

1.6 Activation of HSC in liver fibrosis 

Activation of HSC is a pivotal event in liver fibrosis where quiescent HSC transform into 

proliferative, fibrogenic, and contractile ‘‘myofibroblasts’’ (Friedman 2010a). Also, when 

primary HSC are seeded onto plastic plates in culture, they undergo an activation process 

that mimics the fibrogenic response in the liver. Activation of HSC is comprised of two 

phases, the initiation phase and the perpetuation phase (Figure 2). 
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Figure 1 The activation of hepatic stellate cells: The pathways of HSC activation 

consist two phases; one is initiation phase (also referred to as pre-inflammatory) and 

perpetuation (continuous activation). Initiation is provoked by soluble stimuli such as 

oxidative stress (reactive oxygen intermediates), apoptotic bodies, LPS and paracrine 

stimuli from neighboring cell types including hepatocytes, Kupffer cells, sinusoidal 

endothelium and from infiltrating immune cells. In the perpetuation phase, the activated 

cells start expressing their own cytokines and growth factors that can act in autocrine and 

paracrine manner. The perpetuation phase is characterized by a number of specific 

phenotypic changes including proliferation, contractility, fibrogenesis, altered matrix 

degradation, chemotaxis and inflammatory signaling. 
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1.6.1 Initiating Pathways  

The initiation phase consists a sequence of events, which make stellate cell respond to a 

wide range of cytokines and growth factors (Friedman 2010a). Initiating stimuli include 

paracrine signals such as reactive oxygen species (ROS), apoptotic bodies, cytokines 

released from injured liver resident cells and infiltrating inflammatory cells and changes in 

ECM composition (Brenner et al. 2000; Guo and Friedman 2007). 

1.6.1.1 Oxidative stress 

Most of the CLD like HCV infection, ALD and hemochromatosis are associated with 

oxidative stress, which enhances apoptosis or necrosis of hepatocytes, thereby amplifying 

the inflammatory response and fibrosis (Poli 2000). ROS include superoxide, hydrogen 

peroxide, hydroxyl radicals, reactive nitrogen species (RNS) and lipid peroxides derived 

from the damaged hepatocytes as well as partly from activated Kupffer cells and 

neutrophils that contain damaged mitochondria (Parola and Robino 2001; Friedman 2008). 

The activation of cytochrome P450 2E1 in hepatocytes leads to the generation of ROS that 

activates HSC through redox-sensitive intracellular signaling pathways, leading to 

increased collagen production (Kisseleva and Brenner 2007; Friedman 2010a). ROS also 

stimulate the production of profibrogenic mediators from Kupffer cells and other resident 

and circulating inflammatory cells (Sánchez-Valle et al. 2012). 

 

1.6.1.2 Apoptosis of hepatocytes 

Apoptosis is a programmed cell death process usually not associated with inflammation. In 

the case of CLD, continuous damage to hepatocytes leads to the deregulation of the 

apoptotic process, which results in the generation of apoptotic bodies (Canbay, Friedman, 

and Gores 2004). These are cleared by Kupffer cells and HSC by phagocytosis or 

engulfment (Guo and Friedman 2007). Phagocytosis by Kupffer cells leads to expression of 

a death ligand (Fas ligand) and the proinflammatory cytokine TNF-α, which accelerates 

hepatocyte apoptosis and inflammation (Canbay et al. 2003). The engulfment of apoptotic 

bodies by HSC also leads to the release of free radicals, up-regulation of TGF-β1 and 

collagen I expression. Continuous activation of these cells results in enhanced hepatocyte 

apoptosis, inflammation and sustained activation of HSC, ultimately leading to LF (S.-S. 
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Zhan et al. 2006; Guicciardi and Gores 2005). 

 

1.6.1.3 Changes in ECM composition or quality and quantity 

Changes in physical properties and chemical composition of ECM influence HSC 

activation (Friedman 2008).  Increased stiffness caused by edema and inflammation also 

plays an important role in initiating fibrosis (Georges et al. 2007; Friedman 2010b).  

 

Matrix stiffness affects the structure, proliferation, differentiation, motility and survival of 

cells (Wells 2008). Cells that grow on the soft matrices (Matrigel) show less proliferation, 

and are non-invasive and non-fibrogenic, whereas cells growing on stiff matrices (like 

fibrillar collagen) show opposite effects. However, these properties may vary with cell type 

(Wells 2005; Wells 2008). Type I collagen and stimulation of cells with growth factors 

such as PDGF, TGF-β and EGF enhance HSC migration and increased MMP-2 activity 

whereas the basement membrane ECM is inhibitory. These activities are mediated through 

α1β1 and α2β1 integrins, which are heterodimeric cell surface receptors that readily sense 

changes in the ECM composition (C.-Q. Yang et al. 2008). Integrin-linked kinase (ILK) is 

an important multi-domain focal adhesion protein involved in transducing signals from the 

ECM to HSC cytoskeleton. It has been shown that ILK plays an important role in HSC 

activation and LF (Y. Zhang et al. 2006; Shafiei and Rockey 2006). ILK mediates its 

functions through Rho and Gα12/13 signaling (Shafiei, Rockey, and Diseases 2014). 

Changes in ECM composition also lead to the release of growth factors, from reservoirs 

into the extracellular space, that promote cell proliferation and fibrogenesis (D. Schuppan et 

al. 2001; Friedman 2010b). 

 

1.6.2 Perpetuating Pathways 

The second stage of the HSC activation process is the perpetuation phase. Once these cells 

are activated by initiating stimuli, they respond to different cytokines and growth factors 

released from neighboring cells (by paracrine action) and also perpetuate their own 

activation by secreting cytokines, other mediators in an autocrine manner and by 
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upregulating their respective receptors (Moreira 2007). 

The perpetuation phase is characterized by loss of the retinoid stores, enhanced 

proliferation, contractility, fibrogenesis, matrix degradation, chemotaxis and leukocyte 

chemoattraction (proinflammatory signaling), which collectively contribute to scar 

formation (Li and Friedman 1999; Friedman 2008). 

 

1.6.2.1 Retinoid loss 

Activated HSC are marked by loss of the Vitamin-A and lipid droplets in their cytoplasm. 

It has been shown that in vitro HSC cultures treated with retinoic acid (RA) stop 

proliferating and secrete TGF-β (Davis, Kramer, and Davidson 1990). HSC expresses 

nuclear retinoic acid (RAR) and retinoid X receptors (RXR) by which RA modulates 

proliferation and interstitial collagen expression (Hellemans et al. 2004). However, it is not 

yet clearly known whether the retinoid loss is a required for stellate cell activation. 

 

1.6.2.2 Proliferation 

One important feature of activated HSCs is their proliferative phenotype. The most potent 

mitogen of HSC is platelet-derived growth factor (PDGF). Other HSC mitogens include 

VEGF, thrombin, epidermal growth factor (EGF), TGF-α, keratinocyte growth factor and 

basic fibroblast growth factor (Don C Rockey 2006). Main sources of PDGF-β are 

endothelial cells and activated HSC. Quiescent HSC express the PDGF-α receptor subunit, 

but do not express the β-subunit until activation (Alcolado, Arthur, and Iredale 1997). The 

expression of PDGF-β and its receptor expression is enhanced during HSC activation (M 

Pinzani et al. 1994; Wong et al. 1994). PDGF-β over-expression enhances HSC 

proliferation and liver fibrosis without influencing TGF-β expression, indicating a TGF- β -

independent mechanism (Czochra et al. 2006). Phosphatidyl inositol 3 kinase (PI3K), ERK 

and AKT downstream signaling pathways play an important role in mediating HSC 

proliferation and collagen deposition in response to PDGF-β (Bonner 2004). PDGF-β also 

activates NADPH oxidase (NOX) in HSC to produce ROS which further enhances HSC 

proliferation through the phosphorylation of p38 MAPK (Adachi et al., 1997). Besides, 
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PDGF-β mediates HSC proliferation by stimulating Na+/H+ exchanger (Di Sario et al. 

1999). In cholestatic liver injury, PDGF induces a proliferative response in HSC, which 

precedes HSC phenotypic conversion into myofibroblasts (Kinnman et al. 2001). 

 

1.6.2.3 Chemotaxis 

Injury-associated stimuli induce migration of stellate cell towards damaged areas of the 

liver, where they undergo proliferation, synthesize extracellular matrix, and participate in 

tissue repair. These cells undergo apoptosis once injury resolves, but if injury persists; 

stellate cells drive the development of fibrosis and subsequent cirrhosis (Melton and Yee 

2007). This migration of HSC depends on the extracellular matrix integrity, composition 

and cell-matrix interactions. It has been shown that stimulation of HSC with TGF-β1, 

PDGF-β, and collagen 1 results in an increase in their migratory capacity and it is MMP-2 

and integrin dependent (C. Yang et al. 2003). Endothelin-1 (ET-1) and monocyte 

chemotactic protein (MCP-1) also induce chemotaxis of HSC (Ikeda et al. 1999; Marra et 

al. 1999; Ramón Bataller and Brenner 2001). Focal adhesion disassembly is necessary for 

stellate cell chemotaxis in response to PDGF (Melton et al. 2007). Adenosine and DNA 

from damaged hepatocytes that bind to A2 and TLR9 receptors respectively on HSC, 

inhibit PDGF-induced chemotaxis by blocking Ca+2 influx and up-regulating TGF-β and 

collagen I mRNA expression (Hashmi et al. 2007; Watanabe et al. 2007). Collagen type 4 

has also been shown to inhibit HSC migration (C.Q. Yang et al., 2008).  

 

1.6.2.4 Contractility of stellate cells:  

HSC show contractility similar to myofibroblasts, mediated by α-smooth muscle actin (α–

SMA) and myosin. The main factor involved in HSC contraction is endothelin-1, which 

regulates sinusoidal blood flow via ET-1 receptors expressed on HSC in the liver (Housset, 

Rockey, and Bissell 1993). Other molecules that induce contractility of HSCs include 

prostanoids, substance P, angiotensin II and arginine vasopressin (Don C Rockey 2006). 

Besides promoting contractility, ET- 1 and Angiotensin II also promote proliferation of 

HSC (Cho et al. 2000; Manuscript and Target 2009; R Bataller et al. 2000). Contractility of 

HSC is inhibited by vasodilator compounds such as nitric oxide (NO), carbon monoxide 
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(CO), PGE2, lipo-PGE1 and adrenomedullin (Don C. Rockey 2003). ET-1 exerts 

contractility through a Ca2+ dependent protein kinase (that is, PKC) and Rho pathway 

whereas NO exerts relaxation via the cyclic adenosine monophosphate (cAMP) pathway 

(Reynaert et al. 2002). In the normal liver, ET-1 is produced primarily by sinusoidal 

endothelial cells but, after injury, ET-1 is largely derived from HSC, which also up-regulate 

their receptors (Housset, Rockey, and Bissell 1993; Don C. Rockey 2003). Increased 

contractility by HSC contributes to increased intrahepatic resistance and portal pressure in 

cirrhotic livers (D C Rockey and Weisiger 1996). 

 

1.6.2.5 Fibrogenesis 

Transforming growth factor-β (TGF-β) is the major fibrogenic cytokine in many fibrotic 

diseases, including LF (A. M. Gressner 1996). Fibrotic diseases are associated with 

increased levels of TGF-β, which inhibit ECM degradation by down regulating the 

expression of MMP and upregulating the expression of tissue inhibitor of matrix 

metalloprotease-1 (TIMP-1) (K. Jeong 2008; Dooley and Dijke 2012). TGF-β is derived 

from paracrine sources such as sinusoidal endothelial cells and Kupffer cells as well as 

synthesized in an autocrine manner by HSC (Inagaki and Okazaki 2007). 

 

TGF-β plays important roles in embryonic development, tissue remodeling, inflammation, 

angiogenesis, atherosclerosis, fibrosis and carcinogenesis (Mauviel 2005; Inagaki and 

Okazaki 2007). TGF-β is a potent growth inhibitor of hepatocytes and apoptosis of 

epithelial cells. Conversely, it stimulates fibroblasts to proliferate, produce ECM and 

induce a fibrotic response in various tissues in vivo (Leask and Abraham, 2004). In the 

liver, TGF-β enhances the transdifferentiation of HSC into myofibroblasts (A. M. Gressner 

1996). The blockade of TGF-β signaling prevents progression of LF in experimental 

animals (Yata et al. 2002), whereas overexpression of TGF-β in transgenic models 

inhibited HSC apoptosis and induced HSCs to synthesize excessive amounts of matrix 

proteins, such as collagen types I, III, IV and fibronectin (Kanzler et al. 1999). Studies with 

a tetracycline-regulated gene expression system, in which plasma levels of TGF-β can be 

chemically regulated, showed that TGF-β inhibits MMP and up-regulates TIMP-1 
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expression and that progression of LF could be stopped by inhibiting TGF-β production 

(Ueberham et al. 2003). 

 

1.6.2.5.1 TGF-β activation 

TGF-β is a member of a large family of pleiotropic cytokines that includes bone 

morphogenetic proteins (BMPs), activins and other related factors. The TGF-β family 

contains three closely related isoforms (i.e. TGF-β1, TGF-β2, TGF-β3). They are secreted 

as latent precursor molecules (LTGF-β), which contain an N-terminal secretory signal 

sequence, a long precursor segment, i.e. the latency-associated peptide (LAP), and a C-

terminal part corresponding to the mature TGF-β.  The LTGF-β forms a complex with 

latent TGF-β-binding proteins (LTBP), activated by proteolytic cleavage by various 

proteases such as plasmin and thrombin. The biologically active form is a dimer of 25KDa 

in which the two subunits are linked by a disulfide-bridge (A. M. Gressner and 

Weiskirchen 2006; Y. Shi and Massague 2003) (Figure 3). 

 

1.6.2.5.2 TGF- β receptors  

TGF-β isoforms exert their biological effects through a distinct network of TGF-β type I 

(TβRI), type II (TβRII), and type III (TβRIII) cell-surface receptors. TβRI and TβRII are 

serine/threonine kinases that contain a cysteine-rich extracellular domain, a short 

hydrophobic transmembrane region, and a cytoplasmic region harboring the kinase motif. 

Ligand binding induces the assembly of type I and type II receptors into complexes, within 

which, TβRII phosphorylates and activates TβRI. This phosphorylation event is associated 

with activation of TβRI kinase and subsequent downstream signaling (A. M. Gressner and 

Weiskirchen 2006; Y. Shi and Massague 2003). 

 

1.6.2.5.3 TGF-β signaling by Smad proteins 

Signal transduction from activated TβRI to the nucleus is mediated predominantly via 

phosphorylation of cytoplasmic protein mediators Smads. The receptor-associated Smads 

(R-Smads; Smad1, 2, 3, 5 and 8) are recruited to activate TβRI by auxiliary proteins such as 



 

 

19 

19 

Smad Anchor for Receptor Activation (SARA). Upon phosphorylation by activated TβRI 

on two serine residues, activated R-Smads form heteromeric complexes with a co-Smad, 

Smad4, and translocate into the nucleus where they induce the transcription of genes 

directly or indirectly involved in fibrogenesis namely, several fibrillar ECM proteins 

(collagen, fibronectin), matrix-degrading enzymes (MMPs) and some protease inhibitors 

(plasminogen activator inhibitor type 1, TIMP-1). They also induce genes regulating 

epithelial– mesenchymal cell transition, proliferation (cyclin-dependent kinase inhibitor 

p21) and apoptosis (caspases). The inhibitory Smads, Smad6 and Smad7 antagonize 

signaling by competing with R-Smads for binding to activated TβRI and thus inhibit the 

phosphorylation of R-Smads or recruiting E3 ubiquitin ligases to the activated TβRI 

(Verrecchia and Mauviel 2007; Verrecchia et al. 2010).  
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Figure 2: The TGF-β signaling Pathway: TGF-β is generally secreted as a large 

latent precursor molecule that is complexed with latency-associated peptide (LAP) and 

bound to latent-TGF-β-binding protein (LTBP). Latent TGF-β is activated when it 

dissociates from LAP and LTBP. The active TGF-β binds its receptor, initiates Smad-

dependent and independent signaling. The Smad-dependent signaling pathway 

regulates fibrogenic target genes such as α-smooth muscle actin (SMA), collagen, 

connective tissue growth factor (CTGF), tissue inhibitor of metalloprotease (TIMP-1). 

TGF-β can also induce a number of Smad-independent pathways mediated by Ras, 

JNK, TGF-β-activated kinase (TAK), and phosphatidylinositol-3-kinase (PI3K) that 

promote EMT, apoptosis and fibrotic responses. 
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1.6.2.5.4 Differential Roles of Smads in liver fibrosis 

Even though the structure of Smad proteins is similar, they show functional diversity (F. 

Xu et al. 2016). Smad2 and Smad3 are strongly activated in liver fibrosis, but smad3 is 

essential for the pathogenic process. TGF-β mediates activation of Smad2 primarily in in 

quiescent and intermediate cells, whereas Smad3 activation occurs primarily in 

transdifferentiated cells. (C. Liu et al. 2003). In activated HSC, TGF-β also regulates 

cytoskeletal organization via phosphorylation of Smad3 (Uemura et al. 2005), suggesting 

that the two Smads have distinct roles in the process of HSC activation. Consistently with 

this, Smad3−/− mice are much less susceptible to liver fibrosis than wild type mice 

indicating Smad3 is a main “fibrogenic mediator” in HSC (Latella et al. 2009; Cong et al. 

2012b). Smad3 is also involved in the EMT process and generation of myofibroblasts 

(Masszi and Kapus 2011). Transient overexpression of Smad7 inhibits HSC 

transdifferentiation and experimental fibrosis. However, blockade of TGF-β signaling by 

Smad7 does not decrease α-SMA expression in cultured HSC (Dooley et al. 2003). TGF-β 

also induces the expression of connective tissue growth factor (CTGF), which stimulates 

ECM production by fibroblasts, via a functional Smad3 binding site in the CTGF promoter 

(Branton and Kopp 1999; Verrecchia et al. 2010; U. E. Lee, Mstp, and Friedman 2011). 

 

TGF-β also mediates signaling by non-canonical, “non-Smad” signaling pathways via 

activation of mitogen-activated protein kinase (MAPK), Rho-like GTPase, p38 and c-Jun 

N-terminal kinases (JNKs) and phosphatidylinositol-3-kinase/AKT pathways. These 

pathways regulate EMT, apoptosis and other fibrogenic processes (Cong et al. 2012a; Y. E. 

Zhang 2009; Moustakas and Heldin 2005). 

 

IFN-γ is a well-known anti-fibrotic cytokine that inhibits collagen synthesis (Granstein, 

Flotte, and Amento 1990). Smad7 induction by IFN-γ, blocks TGF-β/Smad signaling 

pathway through Jak1 and Stat1, and prevents the interaction of Smad3 with the TGF-β 

receptor (Ulloa, Doody, and Massagué 1999). IFN-γ promotes direct interaction of Y-box-

binding protein (YB-1) with Smad3 and thus inhibits TGF-β–induced COL1A2 

transcription (Higashi et al. 2003). 
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1.6.2.6 Inflammatory signaling 

Diverse types of immune cells are implicated in the pathogenesis of LF as well as its 

resolution (Friedman 2010a).  

(1) Infiltrating neutrophils do not have or have a minimal role in LF (J. M. Saito et al. 

2003). Similarly, mast cells also have no role in the development of LF (Sugihara et al. 

1999). 

(2) HSC, like kupffer cells, express Toll-like receptors (TLR) on their surface. Activation 

by LPS upregulates IL-8 and MCP-1 gene expression and cell surface expression of ICAM-

1 and VCAM-1 via a NF-kβ-dependent pathway (Paik et al. 2003). Exposure to bacterial 

products enhances a strong inflammatory response in HSC, characterized by IL-6 and 

MCP-1 secretion, which results in the recruitment of Kupffer cells (Brun et al. 2005). The 

TGF-β pseudo-receptor BMP and the activin membrane-bound inhibitor (Bambi) is a 

transmembrane glycoprotein induced by BMP (Bone morphogenetic protein) signaling and 

functions as a negative regulator of TGF-β signaling. TLR4 signaling in HSCs 

downregulates Bambi on quiescent HSC to enhance TGF-β signaling and LF (Seki et al. 

2007; Guo et al. 2009). 

 

(3) HSC also act as antigen-presenting cells (APC) as they express molecules for antigen 

presentation (MHC-I and MHC-II) and lipid-presenting molecules CD1b and CD1c. They 

internalize macromolecules and express molecules that modulate T-lymphocyte 

proliferation (CD40 and CD80) (Viñas et al, 2003). HSC process and present antigen to 

CD8+ and CD4+ T cells and CD1-restricted natural killer T (NKT) cells (Winau et al, 

2007).  

 

(4) Kupffer cells (KC) are liver resident macrophages derived from circulating monocytes 

(R. Xu, Zhang, & Wang, 2012). KCs are involved in LF by promoting HSC activation by 

secreting TGF-β and TNF-α. In mice, depletion of macrophages or inhibition of their 

recruitment to the liver by ablation of Ccr2 inhibited LF, suggesting that macrophage 
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recruitment to the liver via CCR2 and activation of HSC are crucial for inducing LF 

(Duffield et al. 2005; Imamura et al. 2005; Seki et al. 2009; Miura et al. 2012). KCs elicit 

divergent effects on LF by promoting HSC activation during progression (mediated by 

TGF-β secretion) and by inducing HSC apoptosis via TRAIL during regression of LF 

(Friedman 2005). 

 

 (5) NK cells inhibit LF by killing activated HSC in NKG2D-dependent, tumor necrosis 

factor–related apoptosis-inducing ligand (TRAIL)-dependent mechanisms and by 

producing IFN-γ (Gao, Radaeva, and Park 2009; Radaeva et al. 2006; Notas, Kisseleva, and 

Brenner 2009; Guo and Friedman 2007). HSCs express the CXCR3 chemokine receptor, 

whose ligand CXCL10 acts as pro-fibrotic factor by preventing NK cell activity 

(Hintermann et al. 2010). NKT cells display complex roles in liver injury, inflammation 

and fibrosis (Notas, Kisseleva, and Brenner 2009). Hepatic iNKT cells show inhibitory 

activity during early stage of LF but not at the later stages (Park et al. 2009; Gao, Radaeva, 

and Park 2009). 

 

(6) CD8+ T lymphocytes promote fibrogenic activity of HSCs, whereas CD4+ T cells exert 

antifibrotic activity by stimulating NK cells via IL-2 mediated up-regulation of NKG2D 

(Safadi et al. 2004; Glässner et al. 2013). Regulatory T cells (Tregs) attenuate the anti-

fibrotic activity of NK cells against HSC via both direct cell-contact-dependent inhibition 

and by down-regulating the NK cell activating ligands on HSCs (Langhans et al. 2015). B 

lymphocytes influence the development of LF in an antibody and T-cell-independent 

manner (Novobrantseva et al. 2005). 

 

1.6.2.7 Altered matrix degradation or (MMPs and TIMPs imbalance) 

Matrix metalloproteinases (MMPs) comprise a family of 25 zinc-dependent endopeptidases 

capable of degrading components of the ECM. MMPs also act on non-ECM substrates such 

as cytokines, chemokines and play regulatory functions in inflammation and immunity 

(Giannandrea and Parks 2014). MMPs are generally secreted into the extracellular 
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environment or tethered to the cell membranes (Duarte et al. 2015). MMPs are categorized 

into different groups according to their ECM substrate specificity: collagenases, 

gelatinases, membrane-type, stromelysins and matrilysins and others (Hemmann, 

Roderfeld, and Roeb 2007). MMPs are again subdivided into groups on the basis of 

differences in domain composition (Table2).  

 

 

 

Table 2: MMPs nomenclature, their specific substrates 
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MMPs are synthesized by a wide range of cell types such as hepatocytes, HSC, Kupffer 

cells, neutrophils and recruited hepatic macrophages, and are secreted into the extracellular 

space in an inactive form called zymogen or pro-MMP (Page-mccaw, Ewald, and Werb 

2007). MMP synthesis is induced by numerous mediators, which modulate their gene 

expression. The two key regulators of MMP production are IL-1 and TGF-β (Bruschi and 

Pinto 2013). The proteolytic activation of the pro-enzyme is controlled by other MMPs and 

serine proteinases such as plasmin (Hersznyi et al. 2012).  

 

1.6.2.7.1 Tissue inhibitors of metalloproteinases (TIMPs)  

The enzymatic activities of MMPs are controlled by endogenous tissue specific inhibitors 

called tissue inhibitors of metalloproteinases (TIMPs), which are secreted proteins. Four 

types of TIMPs (TIMP-1, 2, 3 and 4) inhibit MMP activity by binding reversibly to the 

catalytic site of MMPs in a 1:1 stoichiometric ratio (Manicone and McGuire 2008). Even 

though, TIMPs are capable of inhibiting all known MMPs, they differ in their affinity for 

specific MMPs (Arpino, Brock, and Gill 2015). Alterations in the MMP–TIMP balance 

lead to different pathologies such as delayed wound healing, tissue fibrosis, angiogenesis 

and tumor invasion (Duarte et al. 2015). 

 

In the human liver, MMP-1 is the major interstitial collagenase. Until 2001, a homolog of 

MMP-1 had not been identified in rodents, MMP-13 was considered as the major 

interstitial collagenase in rodents, as it is capable of degrading type 1 collagen (Henriet, 

Rousseau, and Eeckhout 1992; Krane et al. 1996). Mmp1a, the true homolog of human 

MMP-1, discovered in 2001, demonstrates collagenase activity (Balbín et al. 2001). Several 

studies have shown that its expression is relatively low in healthy tissues but it is 

upregulated during pathological conditions (Foley and Kuliopulos 2014).  Mmp1a is 

implicated in tumorigenesis and metastasis as shown by Mmp1a knockout mice and cancer 

cell lines (Foley et al. 2012). The activation of pro MMP-1 to active MMP-1 is a two-step 

reaction, which requires initial cleavage by plasmin and second cleavage by stromelysin. 

The profibrogenic cytokine TGF-β inhibits this cleavage process thereby inhibits ECM 

degradation, leading to its accumulation (Nagase et al. 1991). 
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In the early primary culture (days 0–3), HSCs express MMP-3 (stromelysin), MMP-1, 

MMP-13 (rat) and but not TIMP-1 and TIMP-2. The expression of MMPs during the early 

phase is affected by the method of HSC isolation, serum components and the culture 

substratum (Benyon and Arthur 2001). The pattern of expression of MMPs and TIMPs 

changes with the duration of culture: stromelysin and MMP-1/MMP-13 expression are 

downregulated with a marked increase in expression of both TIMP-1 and TIMP-2 (J. 

Iredale et al. 1996).  

MMP-13 is expressed by macrophages and HSC; its expression in macrophages is 

relatively constant regardless of the stage or stimulus for activation in models of liver 

injury (John P. Iredale, Thompson, and Henderson 2013). MT1-MMP is involved in the 

conversion of pro MMP-2 to active MMP-2, and its activity is inhibited by excess TIMP-2 

(Kinoshita et al. 1998). Fibrotic livers and cultured HSC show increased expression of 

MMP-2. Collagen-I enhances MMP-2 activation but not collagen-VI (Takahara et al. 1995; 

Théret et al. 1999). Collagen-I is the ligand for descoidin domain receptor 2 (DDR2) 

expressed on activated HSC, and this interaction upregulates MMP-2 expression. In 

fibrosis, a positive feedback mechanism between MMP-2 and collagen -1 enhances the 

pathogenic process (Olaso et al. 2001). TGF-β1 differentially affect MMP expression by 

downregulating interstitial collagenase expression and upregulating expression of 

gelatinase A, TIMP-1, and collagen-I (J P Iredale 1997). 

 

1.7 Reversal of fibrosis 

It has been shown in human and animal models that LF can be reversible. The mechanisms 

of regression of LF have been extensively studied in animal models and potential targets 

for antifibrotic therapy are being defined (Ramón Bataller and Brenner, 2001). There are 

different pathways, which explain the molecular and cellular mechanisms of LF regression 

such as: 

 

Pathway 1: Cessation of underlying liver injury: In patients, reversal of liver fibrosis is 
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usually achieved by removing underlying etiology factors such as viral agents (hepatitis C 

and B), alcohol, toxins and medication, or by treating the underlying disease. Treatment of 

the HBV or HCV infected patients with interferon-α or ribavirin and lamuvidines 

significantly reduces LF (Poynard et al. 2002; Alaluf and Shlomai 2016). 

 

 

Pathway 2: Transition of the intrahepatic balance from inflammation to restoration 

Recovering hepatocytes and their neighboring non-parenchymal cells alter the 

microenvironment from a pro-inflammatory milieu to resolution, so that restorative and 

anti-inflammatory mediators become dominant. During resolution, macrophages show a 

restorative phenotypic switch characterized by low expression of Ly6C in mice and high 

expression of Mmp-9, Mmp-12, growth factors (favoring hepatocyte recovery) and 

phagocytosis-related receptors (Ramachandran et al. 2012; Hammerich et al. 2014). NK 

cells induce apoptosis of activated and senescent myofibroblasts via NKG2D and TRAIL 

(Langhans et al. 2015; Notas, Kisseleva, and Brenner 2009). During chronic injury, γδ T 

cells recruited to the liver by CCR6 activation, prevent excessive inflammation and fibrosis 

by inhibiting HSCs (Hammerich et al. 2014). 

 

Pathway 3: Elimination of myofibroblasts or enhancing HSC apoptosis: Since HSC are 

the main source of ECM synthesis and the matrix degrading enzymes and their inhibitors in 

the liver, deactivation of myofibroblasts is key to fibrosis regression, which is achieved by 

senescence, apoptosis, and inactivation (Guo and Friedman 2007). 

 

Senescent, activated HSC show activation of endogenous p53, reduced secretion of ECM 

components, enhanced secretion of degrading enzymes and increased susceptibility to NK 

cell-mediated apoptosis (Krizhanovsky et al. 2008). Activated myofibroblasts are able to 

return to a quiescent phenotype (Kisseleva et al. 2012), but these cells can be re-activated to 

myofibroblasts in response to fibrogenic stimuli and contribute to LF albeit less efficiently 

(Troeger et al. 2012; Mallat and Lotersztajn 2013). 
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Integrins are important for HSC survival. Inhibiting their adhesions with either a specific 

antibody or integrin antagonizing peptide results in HSC apoptosis associated with a 

reduction in the Bcl-2/Bax ratio as well as an increase in caspase 3 activity (X. Zhou et al. 

2004; Iwamoto et al. 1999). TIMP-1 protects HSCs from apoptosis and inhibits MMP 

activity thereby favoring progression of LF (Hitoshi Yoshiji et al. 2002). Studies have 

shown that downregulation of TIMP production and administration of anti-TIMP-1 

antibody increases ECM degradation and apoptosis of HSC (Murphy et al. 2002b; Parsons 

et al. 2004). TNF-α also exerts an anti-proliferative effect on HSC and induces HSC 

apoptosis in the presence of cycloheximide, an inhibitor of protein synthesis (Kisseleva and 

Brenner 2006). Activated HSC are more susceptible to TRAIL, since these cells express 

activation-dependent TRAIL-R2/DR5 receptors (Taimr et al. 2003). INFγ also induces 

HSC apoptosis (Saile et al. 2004). NF-kβ enhances survival of HSC, inhibition of NF-kβ or 

inhibition of the inhibitor of κβ kinase (Iκβ) with sulfasalazine or the fungal toxin gliotoxin 

promotes apoptosis of HSC (Oakley et al. 2005; Wright et al. 2001). 

 

Pathway 4: Enhancing extracellular matrix degradation. Another approach for 

achieving reversibility of fibrosis is promoting the degradation of excess ECM. MMP-9 

enhances apoptosis of HSC and inhibition of this protease resulted in increased HSC 

survival (X. Zhou et al. 2004). Collagen-I also provides a survival signal for activated 

HSCs, whereas enhanced activity of collagenase and degradation of collagen-I promotes 

the recovery from LF (Issa et al. 2003; J P Iredale et al. 1998; Tacke and Trautwein 2015). 

 

1.8 Diagnosis of fibrosis 

 

Accurate assessment of LF progression is essential for treatment of the disease. The 

different diagnostic approaches currently available to assess fibrosis progression are 

discussed below. 
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1.8.1 The Liver biopsy 

The liver biopsy remains the “gold standard” method because it provides useful 

information on the current clinical status of the liver injury, allows to take a decision on 

type of therapy, and it reveals the stage of fibrosis that necessitates surveillance for 

hepatocellular carcinoma (HCC) and/or screening for viruses.  

 

This biopsy is assessed for stage and grade of the liver injury. The staging refers to the 

extent of fibrosis and the presence of cirrhosis, whereas grading defines the extent of 

necroinflammatory activity (Goodman 2007). The main determinants of inflammatory 

activity are lymphocytic piecemeal necrosis, lobular necroinflammation and portal 

inflammation, which are graded from 0 to 4 in most classification systems. The main 

determinants of fibrosis are the length in the expansion of fibrotic areas between portal 

tracts and these changes are staged as 0 to 4 in the classification systems (Calculators 2014; 

Standish et al. 2006). Even though several scoring systems are available, the most 

commonly used are French METAVIR, the Batts-Ludwig, the International Association for 

the Study of the Liver (IASL) and the Ishak Scoring systems (Afdhal and Nunes 2004). 

However, in large clinical trials the METAVIR score is more commonly used. 

 

Liver biopsy is direct, quick and has well-established staging systems (Ferrell 2013; 

Goodman 2007). It has some disadvantages such as sampling error and inter-observer 

variation among pathologists, with an average 20% error rate in assessment of fibrosis 

stage. Moreover, these diagnostic methods require frequent samplings, are expensive and 

are more fatal when compared to other  noninvasive diagnostic methods (Regev et al. 

2002). 

 

1.8.2 Noninvasive methods 

Over the past years, various non-invasive methods have become available to assess the 

severity of liver fibrosis. These are routine clinical parameters, such as physical 

examination findings, laboratory tests, radiographic tests, combinations of laboratory tests 

and specific serum markers. These methods can be divided into direct markers, indirect 

markers and imaging techniques. 
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1.8.2.1 Direct markers 

The protein products of extracellular matrix synthesis or degradation are used as direct 

markers, which reflects the activity of the fibrotic process.  

Markers of matrix deposition include procollagen I C-terminal fragment, procollagen III N-

terminal fragment, tenascin, tissue inhibitor of metalloproteinase TIMP and TGF-β. On the 

other hand, markers of matrix removal include procollagen IV C-peptide, Procollagen IV 

N-peptide (7-S collagen), collagen IV, undulin, metalloproteinase MMP, urinary desmosine 

and hydroxylysylpyridinoline. Other non-specific, direct markers are hyaluronan, laminin, 

YKL-40 (O. A. Gressner, Weiskirchen, and Gressner 2007; Afdhal and Nunes 2004). 

The FIBROSpect II is a commercially available test that combines hyaluronic acid, tissue 

inhibitor of a metalloproteinase-1 (TIMP-1), and alpha-2-macroglobulin in a predictive 

algorithm to determine the presence or absence of significant fibrosis. (Strauss 2010). 

 

1.8.2.2 Indirect markers 

Indirect markers are usually represented by algorithms, based on biochemical tests for 

markers that are commonly altered in CLD (Don C Rockey 2008). These include (1) 

Aspartate Aminotransferase-to-Platelet ratio index (APRI), (2) Forns index (combination of 

three biochemical markers AST, platelet count, and gamma globulin), (3) FT/FS (include 

age, gamma-glutamyltransferase (GGT), cholesterol, and platelet count) and (4) FibroTest 

(include patient age, gender and group of six biochemical markers associated with liver 

fibrosis: alpha-2-macroglobulin, haptoglobulin, GGT, apolipoprotein A1, total bilirubin, 

and ALT) (Denzer and Lüth 2009; Guidelines 2015; Calculators 2014). 

 

These indirect markers are safe, convenient, inexpensive, non-invasive, reflect the status of 

the entire liver and can assess severity of fibrosis. These markers are also being used in 

combination with radiological tests to increase accuracy. However, these indirect tests are 

unable to discriminate between intermediate stages of fibrosis, staging scales vary between 

studies and cost varies with combinations (Winau et al. 2007; Das and Vasudevan 2008). 
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1.8.2.3 Imaging techniques 

Imaging techniques are used to detect advanced CLD by recognizing surrogate markers of 

portal hypertension and structural changes in the liver. These are ultrasound, computed 

tomography, magnetic resonance imaging and transient elastography. They have high 

degree of sensitivity and specificity but are unable to diagnose and differentiate early stages 

of fibrosis.  

 

Transient elastography (Fibroscan) measures the elasticity or stiffness of the liver by using 

ultrasound and low frequency elastic waves and can define the extent of fibrosis without 

the need for liver biopsy. It allows diagnosis of liver cirrhosis and significant fibrosis with 

accuracy (Press 2011; Castera 2011). This cannot be used in presence of ascites, obesity 

and are less accurate in low degree of fibrosis (Denzer and Lüth 2009). 

 

Hepatic venous pressure gradient assessment (HVPG) measures presence and severity of 

portal hypertension. It is invasive and accurate in determining which patients with cirrhosis 

are at risk for decompensation, the stage at which the liver is extensively scarred and unable 

to function properly. People with decompensated cirrhosis develops symptoms like ascites, 

jaundice and complications that can be life threatening. It can be used only in patients with 

relatively advanced disease who are at risk of, or already have, portal hypertension 

(Friedman 2010b). 

 

1.9 Current therapeutic approaches to liver Fibrosis 

The various studies in understanding the cellular and molecular mechanisms involved in 

progression of LF has led to the development of new targets to treat the disease. This 

knowledge is also applicable to fibrosis of other organs such as the lung and kidneys. 

Similarly, advances in understanding the fibrogenic process in other organs are being 

evaluated in liver fibrosis. Some of the anti-fibrotic therapies being tested in experimental 

animals and in clinical trials to evaluate their safety and efficacy are discussed below.  
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Targeting myofibroblasts and the TGF-β pathway: Pirfenidone, (Esbriet and Pirespa) 

inhibits fibroblast proliferation and it is being used as a broad antifibrotic agent for the 

treatment of LF and other fibrotic diseases (King et al. 2014). Anti-TGF-β antibodies are 

being used to treat diseases of the newborn lung (Nakanishi et al. 2007). A Human Anti-

Transforming Growth Factor-Beta (TGF-β) monoclonal antibody (fresolimumab) is also 

being explored by Genzyme (owned by Sanofi-Aventis) as a treatment for patients with 

interstitial pulmonary fibrosis (IPF) and myelofibrosis (Wynn and Ramalingam 2012). A 

humanized monoclonal antibody targeting Lysyl oxidase–like-2, an enzyme that catalyzes 

the cross-linking of collagen, is being explored by Gilead Sciences as a treatment for 

cardiac fibrosis, IPF and liver fibrosis. Bortezomib, a proteasomal inhibitor approved by the 

US Food and Drug Administration, induces apoptosis of hepatic stellate cells (Barry-

Hamilton et al. 2010). 

 

Targeting pro-inflammatory pathways is a valuable approach in situations where sustained 

inflammation is the major driving force in the development of fibrosis. IFN-γ is a well-

known antifibrotic cytokine. Experimental studies and clinical studies suggested that IFN-

γ1b is effective in patients with chronic HBV or HCV infection (H.-L. Weng et al. 2005) 

but a large clinical study showed little efficacy or no effect of IFN-γ in advanced LF 

(Pockros et al. 2007).  

 

Tyrosine kinase inhibitor imatinib mesylate (Gleevec), which inhibits PDGF receptor 

signalling, did not affect survival or lung function in patients with IPF (Daniels et al. 2010), 

while another clinical study with the tyrosine kinase inhibitor, BIBF 1120, a triple 

angiokinase inhibitor (VEGFR, PRGFR, FGFR), showed improvement in lung function in 

patients with IPF (Richeldi et al. 2011).  Ruxolitinib (NCB018424), a selective Janus 

kinase 1 (JAK1) and JAK2 inhibitor, is being used to treat myelofibrosis (Verstovsek et al. 

2010). 

 

Monoclonal antibodies against TNF-α (infliximab and etanarcept), CCL2, IL-1 and various 
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anti-inflammatory mediators, such as IL-10, Arg1, programmed death ligand-2 and Relm-α, 

or corticosteroids, to modulate the immune system, are being tested in clinical trials (Detlef 

Schuppan and Kim 2013; Wynn and Ramalingam 2012). One of the plant alkaloids used 

more commonly as a hepatoprotective agent is Silymarin, a flavonoid antioxidant extracted 

from Silybum marianum. It inhibits collagen deposition in animal models (Boigk et al. 

1997) and some clinical tests reported its positive effect in alcoholic patients with early 

stage cirrhosis (Parés et al. 1998). Anti IL-17A monoclonal antibodies that disrupt IL-17 

signaling have been shown to be beneficial for the treatment of pulmonary fibrosis (Mi et 

al. 2011). Chronic fibrotic diseases are also characterized by the excess production of IL-13 

and increased expression of IL-13–inducible genes (Hershey 2003). Lebrikizumab, a 

humanized monoclonal antibody against IL-13 was shown to be effective in a subset of 

adults with poorly controlled asthma (Scheerens et al. 2014). 

 

2.0. Suppressor of cytokine signaling proteins (SOCS) 

Binding of most cytokines and growth factors to their respective receptors leads to 

activation of several intracellular signaling cascades, which mediate different cellular 

responses, such as proliferation, differentiation, survival and functional activation. Their 

excessive signaling can lead to loss of regulation and can promote a variety of diseases. 

Such unwanted excessive signalling by cytokines is controlled by many cell intrinsic 

mechanisms. One such mechanism involves a group of proteins known as Suppressor Of 

Cytokine Signaling (SOCS), which act in a negative feedback manner (Sullivan et al. 

2007). The expression of SOCS family members induced by cytokines displays a tissue-

specific pattern (Starr, Willson, and Viney 1997; Larsen 2002) and varies with respect to 

the cell line and tissue studied (Walter and Hospital 2001).  

 

2.1 Structure of the SOCS family  

SOCS proteins are relatively small proteins of 20 to 50 kDa (Trengove and Ward 2013). 

There are eight mammalian SOCS proteins: SOCS1 to 7 and Cytokine-inducible SH2-

containing protein (CISH). Within each sub-family, pairs of SOCS proteins have similar 

structure and function: CISH/SOCS2, SOCS1/SOCS3, SOCS4/SOCS5 and SOCS6/SOCS7 
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Figure 3. The structure of SOCS family members. All SOCS family proteins contain 

a central SH2 domain and a conserved C-terminal SOCS box domain. The SH2 domain 

is lengthened by the addition of an extended SH2 sequence (ESS). The SOCS box is 

composed of the BC box and the Cul box sub-domains. The N-terminal domain is 

highly variable among SOCS proteins. SOCS1 and SOCS3 contain a unique kinase 

inhibitory region (KIR) immediately upstream of the central SH2 domain.  SOCS4 and 

SOCS5 harbor an N-terminal conserved region (NTCR).  

 

(Trengove and Ward 2013). Even though SOCS proteins are able to regulate downstream 

signaling of different receptors, studies indicate that CISH and SOCS1-3 mostly regulate 

cytokine receptor signaling (Sullivan et al. 2007) while SOCS4-7 predominantly regulate 

growth factor receptor signaling (Segatto, Anastasi, and Alemà 2011). 

 

SOCS family proteins possess three domains (Figure 4): a central Src-homology 2 (SH2) 

domain, a C- terminal domain known as the SOCS box that is highly conserved among 

SOCS proteins (Impson et al. 1999) and an N-terminal domain that is variable in length and 

sequence among SOCS family members and whose function remains largely unknown. 

SOCS proteins can be subdivided on the basis of a short (50-75 residues in CISH, SOCS1, 

2 and 3) or long N-terminal region (270-385 residues in SOCS4, 5, 6, 7) (Cooney 2002; 

Linossi et al. 2013). SOCS1 and SOCS3 also contain a conserved 12-residue sequence 

called kinase- inhibitory region (KIR) within their N-terminal region, which is responsible 

for inhibition of cytokine receptor-associated Janus kinases (JAKs) (Tamiya et al. 2016; 

Walter and Hospital 2001). SOCS4 and SOCS5 possess a highly conserved region called 

N-terminal conserved region (NTCR) within their N-terminal domain but, the role of this 

sequence is not yet known. The N-terminal domains of SOCS6 and SOCS7 are required for 

their respective nuclear translocation (Cheng, Huang, Ma, Xu, Wang, and Zhang 2016; 

Walter and Hospital 2001) 
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2.2 Functional domains of SOCS proteins 

The two main functional domains of SOCS proteins are the SH2 and the SOCS box 

domains. The central SH2 domain determines the target of each SOCS proteins.  SH2 

domain contains ∼100 amino acids with two α-helixes and seven β-strands arranged in a 

βαβββββαβ order. The SH2 domain can recognize phospo-tyrosine residues via a p-tyrosine 

binding pocket and a specificity determining region, which binds on the C-terminal side of 

the p-tyrosine (Machida and Mayer 2005). 

 

 

One 12-amino-acid stretch N-terminal to the SH2 domain, called the Extended SH2 

Subdomain (ESS), stabilizes the association of SOCS1 with the kinase activation loop of 

JAK2. An additional 12-amino-acid N-terminal segment, termed the Kinase Inhibitory 

Region (KIR), is required to inhibit JAK2 kinase activity (Yasukawa et al. 1999). The 

diversity of SOCS family functions also depends on the specificity of the SH2 domain. 

Even though, SOCS1 and SOCS-3 have a similar domain composition, SOCS1 SH2 binds 

to JAKs, while the SOCS-3 SH2 binds to receptors (Machida and Mayer 2005).  

 

The SOCS box is a 40-amino acid motif with two core interaction sites: the BC-box and the 

Cul-box. Elongin B and Elongin C bind to BC- box (Linossi and Nicholson 2012). The 

SOCS box serves to assemble the ubiquitin ligase complex through interaction with 

Elongins B and C, Cullin-5 or Cullin-2, and Rbx-1 (Kamura et al. 2004; Cheng, Huang, 

Ma, Xu, Wang, and Zhang 2016; Walter and Hospital 2001). This culling Ring Ligase 

called CRLSOCS1 promotes ubiquitination of substrate proteins bound to SOCS via the SH2 

domain or N-terminal sequences, and thereby promotes their degaradation by proteasomes 

(Figure 5). Notable SOCS1 ubiquitination substrates include the JAK kinases, cytokine 

receptor chains, p65 subunit of NF-kB, the MAL signalling adaptor of the LPS signalling 

complex and receptor tyrosine kinases such as MET (Ilangumaran, Ramanathan, and 



 

 

36 

36 

Rottapel 2004; Yirui Gui et al. 2014). 

  

 

2.3 Mechanisms of Action of SOCS proteins 

The members of the Janus Kinase (JAK) family are JAK1, 2, 3 and TYK2. JAKs contain a 

FERM domain that mediates receptor association and regulates catalytic activity (Cheng, 

Huang, Ma, Xu, Wang, Zhang, et al. 2016). Binding of cytokines and growth factors to 

their receptors leads to the activation of receptor-associated Janus kinases (JAKs), which 

undergo transphosphorylation. The activated JAKs phosphorylate tyrosine residues on the 

cytoplasmic side of receptors that serve as docking sites to the SH2 domain of Signal 

Transducer and Activator of Transcription (STAT) proteins (Rawlings, Kristin, and 

Figure 4. Schematic illustration of the SOCS box domain and its function. The SH2 

domain of the SOCS protein recognizes the target protein (substrate) via its phospho-tyrosine 

(pY) residue. The SOCS protein recruits Elongin C/B (BCbox) and Cullin5 (Culin box) to its 

C-terminal SOCS-box domain and the whole complex functions as an E3 ubiquitin ligase 

called CRLSOCS.  This complex binds to RBX2 (RING-finger-domain-only protein-2) leading 

in turn to recruitment of the remaining components of an E3 ubiquitin ligase complex to 

mediate ubiquitination of target proteins and their subsequent proteasomal degradation.  
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Figure 5 JAK-STAT signaling pathway and its negative regulation by SOCS proteins: 

(A). The binding of cytokine to its receptor leads to activation of the receptor. The 

members of JAK family undergo transphosphorylation and phosphorylate the tyrosine 

residues (pY) on the cytoplasmic segment of the receptor that acts as the docking sites for 

STAT proteins. Phosphorylated STAT proteins dimerize and translocate into the nucleus to 

promote transcription of target genes, including members of SOCS family. (B) SOCS 

proteins inhibit signaling by (1) inhibiting JAK activity (2) binding to pY residues via their 

SH2 domain and competitively block the JAK- STAT signalling axis (3) Preventing 

nuclear entry of STAT molecules. (4) By conjugating ubiquitin (Ub) monomers to the 

target receptor and/or JAKs and facilitate their subsequent proteasomal degradation. 

Harrison 2004). 

There are 7 members in the STAT family (Levy and Darnell 2002). STATs are proteins 

containing amino-terminal, coiled-coil, SH2, linker, DNA binding, and transcriptional 

activation domains. The SH2 domain is required for STAT activation to dock the protein to 

tyrosine-phosphorylated receptor subunits to facilitate phosphorylation by JAKs.  STATs 

possess conserved tyrosine residues near their C-terminus, which are phosphorylated by 

JAKs. Once STATs are phosphorylated, they undergo dimerization and translocate into the 

nucleus, where they induce the transcription of their target genes including SOCS proteins 

(Harrison 2012).  

 



 

 

38 

38 

The SOCS proteins can inhibit cytokine signaling using 3 different mechanisms, which 

vary among the SOCS family members (Nicola and Greenhalgh 2000), (Figure 3). First, by 

binding phosphotyrosines on the receptors SOCS physically block the recruitment of signal 

transducers, such as STATs, to the activated receptor. CISH, SOCS2, and SOCS3 also 

inhibit signaling via their ability to bind to phosphotyrosine residues typically on receptors, 

thereby blocking access of other SH2-containing signaling molecules (Trengove and Ward 

2013; Starr, Willson, and Viney 1997). Second, SOCS proteins can bind directly to JAKs to 

specifically inhibit JAK kinase activity. SOCS1 and SOCS3 are able to directly inhibit JAK 

kinases, binding via their KIR domain to the JAK activation loop to inhibit kinase activity 

(Atsuo Sasaki et al. 1999). Third, SOCS interact with the elongin BC complex and promote 

ubiquitination of the SOCS-interacting signalling proteins including JAKs and receptor 

chains. 

 

2.4. Functions of SOCS1 protein 

2.4.1 SOCS1 

Mouse and human SOCS1 proteins share 95–99% amino-acid identity. The mouse SOCS1 

gene encodes a protein of 212 amino acids (Starr, Willson, and Viney 1997), while human 

SOCS1 is 211 amino acids long. The SOCS1 gene lies within a large CpG island spanning 

2.5 kb (Yoshikawa et al. 2001). SOCS1 was also known as SSI-1 and JAB, when it was 

discovered in 1997 by three groups using different experimental approaches: (i) as an IL-6-

induced macrophage differentiation factor in murine monocytic leukemic M1 cells (Starr, 

Willson, and Viney 1997), (ii) as a protein named STAT-induced STAT-inhibitor (SSI), 

recognized by a monoclonal antibody directed against the STAT3 SH2 domain (Naka, 

Narazaki, and Hirata 1997) and (iii) as a protein that bound to the catalytic domain of JAK2 

in a yeast two-hybrid screen that was named JAK-binding protein (JAB) (Endo and 

Masuhara 1997).  

 

SOCS1 negatively regulates downstream signaling pathways of IFNα, IFN-γ, EPO, PRL, 

GH, LIF, TNF-α, IL-2, IL-3, IL-4, IL-6, IL-7, IL-12, IL-15, EPO, TPO, TSLP, Oncostatin 
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M (OSM) and Leptin as well as the receptors for insulin and IGF-1, and the TLRs (Walter 

& Hospital,2001). As discussed earlier, SOCS1 inhibits signaling by binding to JAK1, 

JAK2 and TYK2 and acts as a pseudosubstrate (Naka, Narazaki, and Hirata 1997; Endo 

and Masuhara 1997). Another mechanism is by proteasomal degradation of many signaling 

molecules including JAK1, JAK2, TEL-JAK2 and other substrates like the guanine 

nucleotide exchange factor VAV, insulin receptor substrate (IRS1 or IRS2) and focal 

adhesion kinase (FAK) (Piessevaux et al. 2008). 

 

2.4.1.2 Role of SOCS1 in immunity  

SOCS1 plays an important role in immunity. SOCS1-deficient mice die within 3 weeks of 

age before weaning due to fatty degeneration of the liver and infiltration of mononuclear 

cells in several organs. These mice exhibit decrease in the size of their thymus and loss of 

B lymphocytes in the bone marrow (Sciences 1998). The livers of SOCS1-deficient mice 

also show enhanced STAT1 activity and IFN-γ-inducible genes like iNOS and IRF-1 

(Alexander et al. 1999). Abnormal T cell development and elevated IFN-γ levels are 

observed in SOCS1 deficient mice, suggesting that activated T cells are the source for IFN-

γ. Hyper-responsiveness to IFN-γ signaling is the main cause of perinatal lethality in these 

mice and indicates that SOCS1 is a potent in vivo regulator of IFN-γ and T cell 

differentiation. These phenotypes were significantly reduced in IFN-γ/SOCS1 double 

knockout mice and in SOCS1 knockout mice treated with anti-IFN-γ antibodies or by 

crossing Socs1-deficient mice with RAG2-deficient animals (RAG2, recombinant 

activating gene, is a key gene in lymphoid cell maturation (Marine et al. 1999; Nicola and 

Greenhalgh 2000; Cooney 2002; Alexander et al. 1999)). T cell conditional SOCS1 null 

mice show increased CD8+ differentiation as well as increased FOXP3+ CD4+ regulatory T 

cells in the thymus (Y. Zhan et al. 2009). 

 

SOCS1 and SOCS3 play important regulatory roles in macrophages and dendritic cells 

(DCs) by modulating TLR signalling (Hanada et al. 2003; Nakagawa et al. 2002; Kinjyo et 

al. 2002). SOCS1 negatively regulates not only the JAK/STAT pathway, but also the TLR-
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NFkB pathway (Ryo et al 2003 Molecular Cell; Yoshimura et al. 2004). SOCS1 KO mice 

also show enhanced insulin signaling (Jamieson et al. 2005). SOCS1 deficiency is 

associated with inflammatory pathologies such as arthritis, where exacerbated extent of 

joint destruction and synovial inflammation are observed due to deregulated pro-

inflammatory cytokine signaling (Egan et al. 2003). Idiopathic pulmonary fibrosis is 

associated with enhanced inflammation and fibrosis, which is decreased by adenoviral 

delivery of SOCS1 (Nakashima et al., 2008). However, SOCS1 does not always confer 

protection against inflammatory or immune diseases. It has been shown that SOCS1 

transgenic mice spontaneously develop colitis, with severe intestinal inflammation due to 

impaired expression of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), which is a 

negative regulator of T cell activation (A Sasaki et al. 2006). 

 

2.4.1.2 SOCS1 as a tumor suppressor 

SOCS1 is known as a tumor suppressor protein and is silenced by promoter 

hypermethylation and micro RNAs in various solid and non-solid cancers such as 

hepatocellular carcinoma (HCC), acute myeloid leukemia, glioblastoma multiforme, 

chronic myeloid leukemia (CML), breast cancer, ovarian cancer, cervical carcinogenesis 

and esophageal squamous cell carcinoma (Trengove and Ward 2013).  

Aberrant methylation of CpG islands, which silences transcription of the genes, has been 

shown to be associated with cancer. The incidence of aberrant methylation of SOCS1 was 

found in up to 65% of human primary HCC tumor samples suggesting a tumor suppressor 

role of SOCS1 (Yoshikawa et al. 2001; B. Yang et al. 2003; Nagai et al. 2002). 

Heterozygous deletion of the Socs1 gene in mice has shown enhanced carcinogenesis in a 

chemical (DEN) induced liver cancer model (T. Yoshida 2004) and confirms an antitumor 

role of SOCS1. This was subsequently confirmed in hepatocyte-specific Socs1-deficient 

mice (Yeganeh et al. 2016). Hepatitis C virus (HCV) is one of the causes of liver cancer. 

HCV core protein suppresses the expression of SOCS1 gene in human HCV-positive liver 

tissues. It is also reported that livers of HCV core protein gene transgenic mice and HepG2 

cells expressing this protein down regulate the expression of SOCS1 (Miyoshi et al. 2005). 
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In addition to CpG methylation, micro RNAs have been implicated in downmodulating 

SOCS1 expression in tumors by directly binding to 3’-UTR of SOCS1. In breast cancer, 

miR-155 exerts its oncogenic role by negatively regulating SOCS1 (S. Jiang et al. 2010). 

Similarly, miR-30d is implicated in downregulating SOCS1 expression in prostate cancer 

(Kobayashi et al. 2012). 

 

The molecular mechanisms of tumor suppression by SOCS1 are far from clear. While 

attenuation of JAK-STAT signalling would be the key mechanism in controlling 

hematologic malignancies, other mechanisms may also operate. For instance, SOCS1 

overexpression studies have reported SOCS1-mediated activation of the p53 tumor 

suppressor gene and inhibition of the paradoxical oncogenic functions of the cyclin-

dependent kinase inhibitor 1A (CDKN1A, also known as p21) or by regulating Met 

receptor tyrosine kinase signaling as a tumor suppressor in cancer cells (Mallette et al. 

2009; Warfel and El-deiry 2013; Y Gui et al. 2015; Yeganeh et al. 2016). 

2.4.1.3 SOCS1 and its role in liver fibrosis (LF) 

Cirrhotic nodules have long been considered to be premalignant lesions receding the 

pathogenesis of HCC. It has been suggested that genetic alterations accumulated during 

continuous regeneration of hepatocytes in an inflammatory milieu might lead to the 

development of HCC.  

SOCS1 gene methylation was observed more frequently in HCC derived from cirrhotic 

livers than in those HCC that were not associated with cirrhosis (Okochi et al. 2003; Ogata 

et al. 2006). Yoshida and his group studied SOCS1 gene methylation in patients with 

chronic liver diseases to determine if SOCS1 genetic alteration is involved in LF 

progression as well as in HCC (Yoshida et al., 2004). This study reported a strong 

correlation between SOCS1 gene methylation and severity of LF. They also reported that 

Socs1+/- mice developed more severe LF than control mice following administration of the 

fibrogenic agent dimethylnitrosamine (DMN) suggesting a role for SOCS1 in controlling 

LF. However, it is not known how SOCS1 regulates the development of LF. 
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THESIS PREMISES 

Liver fibrosis results from chronic damage to the liver characterized by the accumulation of 

ECM proteins, which is a typical feature of most types of chronic liver diseases. 

Continuous damage to the liver leads to the development of cirrhosis, which is associated 

with a significant mortality and morbidity. More than 90% of HCC is observed in cirrhotic 

livers (D. Y. Zhang and Friedman 2014). HCC is the 5th most common and 3rd most lethal 

cancer globally. Currently, there are a very few therapeutic options available to treat cancer.  

LF is reversible and is the final common pathological pathway of CLD regardless of its 

etiology. Therefore, understanding the cellular and molecular mechanisms involved in the 

progression of LF and development of rational antifibrotic strategies are considered the 

most promising approach in the fight against HCC. 

 

Chronic damage to the liver results in the release of various cytokines and growth factors 

from liver resident cells as well as from recruited inflammatory cells, which are 

subsequently involved in the fibrogenic process. Cytokine and growth factor signaling is 

negatively regulated by cell intrinsic endogenous molecules such as the suppressor of 

cytokine signaling (SOCS) family proteins. It has been shown that the SOCS1 gene is 

frequently suppressed in human HCC samples due to CpG methylation of its promoter 

region, suggesting an antitumor role of SOCS1 (Yoshikawa et al. 2001; B. Yang et al. 

2003; Nagai et al. 2002). Yoshida et al observed methylation of SOCS1 gene in patients 

with CLD and found a strong correlation between SOCS1 gene methylation and the 

severity of LF (Takafumi Yoshida et al. 2004). Moreover, they also reported that SOCS1 

haploinsufficient mice developed more severe LF than control mice following 

administration of the fibrogenic agent dimethylnitrosamine (DMN), suggesting a role of 

SOCS1 in the regulation of LF. Increased LF in these haploinsufficient mice was attributed 

to elevated STAT1 phosphorylation and interferon response factor 1 (IRF1) expression 

resulting from the increased IFN-γ signaling in the absence of SOCS1 (T. Yoshida 2004). 

 

SOCS1 is an important regulator of IFN-γ signaling. Several experimental and clinical 

studies have shown that IFN-γ acts as an antifibrotic cytokine, (Czaja, Weiner, and Zern 
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1989; H. L. Weng, Cai, and Liu 2001; Z. Shi, Wakil, and Rockey 1997; Hong et al. 2002; 

W. Il Jeong et al. 2006; W.-I. Jeong, Park, and Gao 2008). However, another study reported 

that IFN-γ induces fibrosis (Knight et al. 2007). Thus, to clearly understand the role of 

SOCS1 and IFN-γ in LF, and whether SOCS1-regulated fibrogenic response is dependent 

on IFN-γ or not, we used Socs1-/-Ifng-/- mice in models of chemical induction of LF.  

 

Activated hepatic stellate cells (HSC) are the prime source for ECM production in the liver 

and play an important role in fibrogenesis (Friedman 2008). Though, activation pathways 

of HSCs have been well characterized, the regulatory mechanisms are not yet known. Thus, 

it is possible that SOCS1 might control LF by regulating HSC activation. In our study, we 

also examined the role of SOCS1 in HSC activation by isolating the primary HSC from  

Socs1-/-Ifng-/-, Ifng-/- and C57BL/6 mice. 



HYPOTHESIS 

SOCS1 is a critical regulator of hepatic fibrogenic response and part of this regulation may 

occur in HSC. 

 

Objective of the study: 

The specific aims of my research project are 

1) To evaluate liver fibrosis in a Socs1-deficient mouse model. 

I. Induction of liver fibrosis with Dimethylnitrosamine (DMN) and Carbon 

tetrachloride (CCL4) 

II. Liver function test   (measure ALT enzymes levels in the serum) 

III. Gross anatomy and histopathological evaluation of the damaged liver    

(collagen deposition and accumulation of ECM) 

IV. Quantitative Measurement of Collagen in the Liver by Hydroxyproline   

Content   

V. Evaluation of inflammatory cytokines, chemokines, and fibrogenic genes 

expression  

VI. Immunohistochemical localization of α-SMA (specific marker of HSC) 

VII. Western blot evaluation of α-SMA (HSC marker), p-SMADs (TGF-β 

signaling), IL-6 and IFN-γ downstream signaling molecules. 

2. To determine the role of SOCS1 in HSC activation in vitro. 

I. Isolation of primary HSC from Socs1-deficient and control mice 

II. Proliferation of HSC cells from Socs1-deficient and control mice by 3H-

(thymidine) incorporation assays. 
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Résumé :  

Le suppresseur de la signalisation des cytokines 1 (SOCS1) est un régulateur indispensable 

de la signalisation de l'IFN-γ et a été aussi impliqué dans la régulation de la fibrose 

hépatique. Cependant, on ne sait pas si les fonctions anti-fibrotiques sont médiées 

directement dans le foie par SOCS1 ou par la modulation de l'IFN-γ, qui est connu pour son 

effet atténuateur de la fibrose hépatique. En outre, il est possible que SOCS1 contrôle la 

fibrose hépatique par la régulation des cellules stellaires hépatiques (CSH), un acteur clé 

dans la réponse fibrogénique. Alors que les voies d'activation des CSH ont été bien 

caractérisées, les mécanismes de régulation ne sont pas encore clairs. Les buts de cette 

étude étaient de dissocier la régulation de la réponse fibrogénique hépatique médiée par 

SOCS1 et celle dépendante de IFN-γ et d'élucider les fonctions régulatrices de SOCS1 dans 

l'activation des CSH. La fibrose hépatique a été induite chez des souris Socs1-/-Ifng-/- par la 

diméthylnitrosamine ou le tétrachlorure de carbone. Les souris Ifng-/- et C57BL6 ont servi 

comme contrôles. Après les traitements fibrogéniques, les souris Socs1-/-Ifng-/- ont montré 

des niveaux sériques élevés d'ALT ainsi que l'augmentation de la fibrose du foie par rapport 

à des souris Ifng-/-. Le dernier groupe a montré des niveaux plus élevés d'ALT et de fibrose 

par rapport aux souris C57BL/6 contrôles. Les foies des souris déficientes en SOCS1 ont 

montré une fibrose septale, qui a été associée à une augmentation de l'accumulation des 

myofibroblastes et à un dépôt abondant du collagène. Les foies déficients en SOCS1 ont 

montré une expression accrue de gènes codant pour l'actine musculaire lisse, le collagène et 

les enzymes impliquées dans le remodelage de la matrice extracellulaire, à savoir les 

métalloprotéinases de la matrice et l'inhibiteur tissulaire des métalloprotéinases. Les CSH 

primaires de souris déficientes en SOCS1 ont montré une prolifération accrue en réponse à 

des facteurs de croissance tels que le HGF, EGF et le PDGF. Aussi, les foies fibrotiques de 

souris déficientes en SOCS1 ont montré une expression élevée du gène Pdgfb. Pris 

ensemble, ces données indiquent que SOCS1 contrôle la fibrose hépatique 

indépendamment de l'IFN γ et qu'une partie de cette régulation peut se produire en régulant 

la prolifération des HSC et en limitant la disponibilité des facteurs de croissance. 

 

Mots clés : SOCS1, Diméthylnitrosamine, Tétrachlorure de carbone, Cellules stellaires 

hépatiques, PDGF. 



Abstract 

Suppressor of cytokine signaling 1 (SOCS1) is an indispensable regulator of IFN signaling 

and has been implicated in the regulation of liver fibrosis. However, it is not known 

whether SOCS1 mediates its anti-fibrotic functions in the liver directly, or via IFN , which 

has been implicated in attenuating hepatic fibrosis. Additionally, it is possible that SOCS1 

controls liver fibrosis by regulating hepatic stellate cells (HSC), a key player in fibrogenic 

response. While the activation pathways of HSCs have been well characterized, the 

regulatory mechanisms are not yet clear. The goals of this study were to dissociate IFN -

dependent and SOCS1-mediated regulation of hepatic fibrogenic response, and to elucidate 

the regulatory functions of SOCS1 in HSC activation.  Liver fibrosis was induced in Socs1-

/-Ifng-/- mice with dimethylnitrosamine or carbon tetrachloride. Ifng-/- and C57BL/6 mice 

served as controls. Following fibrogenic treatments, Socs1-/-Ifng-/- mice showed elevated 

serum ALT levels and increased liver fibrosis compared to Ifng-/- mice. The latter group 

showed higher ALT levels and fibrosis than C57BL/6 controls. The livers of SOCS1-

deficient mice showed bridging fibrosis, which was associated with increased accumulation 

of myofibroblasts and abundant collagen deposition. SOCS1-deficient livers showed 

increased expression of genes coding for smooth muscle actin, collagen, and enzymes 

involved in remodeling the extracellular matrix, namely matrix metalloproteinases and 

tissue inhibitor of metalloproteinases. Primary HSCs from SOCS1-deficient mice showed 

increased proliferation in response to growth factors such as HGF, EGF and PDGF, and the 

fibrotic livers of SOCS1-deficient mice showed increased expression of the Pdgfb gene. 

Taken together, these data indicate that SOCS1 controls liver fibrosis independently of 

IFN and that part of this regulation may occur via regulating HSC proliferation and 

limiting growth factor availability. 

 

Keywords: liver fibrosis; SOCS1; dimethylnitrosamine; carbon tetrachloride; hepatic 

stellate cells; PDGF. 
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Highlights 

 SOCS1 regulates hepatic fibrogenic response independently of IFN γ. 

 SOCS1 modulates the expression of matrix metalloproteinases and their inhibitors in 

the liver. 

 SOCS1 regulates hepatic stellate cell proliferation in response to growth factors. 
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1. Introduction 

Liver fibrosis (LF)1, which results from a deregulated tissue repair process, is a common 

feature of hepatitis virus infections and alcoholic liver disease [1-3]. LF also occurs in 

obesity, an important risk factor for hepatocellular carcinoma (HCC) [4]. These chronic 

inflammatory stimuli induce abnormal deposition of extra-cellular matrix (ECM), 

progressively replacing the liver parenchyma with fibrous scar tissue, leading to the end-

stage disease called cirrhosis [1, 5]. Cirrhotic livers typically harbor regenerative nodules 

wherein hepatocytes undergo compensatory proliferation to restore the declining metabolic 

functions of the liver. The increased rate of hepatocyte proliferation in an inflammatory 

milieu leads to accumulation of genetic aberrations that give rise to hyperplastic and 

dysplastic nodules, and eventually to HCC [6]. Indeed, more than 90% of HCC occurs in 

cirrhotic livers [7]. 

 

Cirrhosis is a major healthcare burden and an important cause of global mortality, while 

HCC ranks as the 5th most common and 3rd most lethal cancer worldwide [8-11].  The 

pathogenesis of HCC spans over decades and the clinical onset is so insidious that very few 

therapeutic options are available to treat HCC [12]. On the other hand, the fibrogenic 

process that precedes cirrhosis is amenable to treatment, although the current therapeutic 

methods have not yet achieved the desired objective [7, 13, 14]. A greater understanding of 

the cellular and molecular underpinnings of liver fibrosis and HCC, and the normal 

regulatory controls of these pathogenic processes will accelerate the efforts to develop 

effective and targeted therapies for LF, cirrhosis and HCC [1, 7, 12, 15-17]. 

 

 

                                                 
1  Abbreviations: ALT, alanine transferase; CCl4, carbon tetrachloride; DMN, 

dimethylnitrosamine; ECM, extra-cellular matrix; GBSS, Gey's Balanced Salt Solution; 

HCC, hepatocellular carcinoma; HSC, hepatic stellate cells; LF, Liver fibrosis; MMP, 

matrix metalloproteinase; NDP, nanazoomer Digital Pathology; RTK, receptor tryrosine 

kinase; SOCS, suppressor of cytokine signaling; SMA, alpha smooth muscle actin; TIMP, 

tissue inhibitors of MMP. 
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Cytokines and growth factors play crucial roles in hepatic fibrogenesis and compensatory 

proliferation of hepatocytes following liver damage [18-20]. An important regulatory 

mechanism of cytokine and growth factor signaling involves feedback inhibition by the 

suppressor of cytokine signaling (SOCS) family proteins [21-24]. The SOCS1 gene is 

frequently repressed by epigenetic CpG methylation in up to 65% of HCC [25, 26], 

suggesting a tumor suppressor role of SOCS1 in the liver. This notion is supported by 

increased susceptibility of Socs1+/- mice to experimental HCC [27] and suppression of the 

SOCS1 gene by hepatitis C virus [28].  

 

SOCS1 is also implicated in controlling LF. Indeed, methylation of the SOCS1 gene 

correlates with fibrosis and cirrhosis in human HCC [27, 29, 30]. Yoshida et al., have 

reported that Socs1+/- mice developed more severe LF than control mice following 

administration of the fibrogenic agent dimethylnitrosamine (DMN) [27]. This study did not 

use Socs1-/- mice as they die within two weeks after birth due to uncontrolled IFN  

signaling in the liver, necrosis of hepatocytes and fatty degeneration of the liver, all of 

which could be prevented by administration of neutralizing anti-IFN  antibody or by 

deleting the Ifng gene [31, 32]. Yoshida et al., correlated the increased liver fibrosis in 

Socs1+/- mice to elevated STAT1 phosphorylation and interferon response factor 1 (IRF1) 

expression [27], presumably resulting from increased IFN  signaling in the absence of 

SOCS1. However, IFN  has also been shown to protect against liver fibrosis and ablation 

of the Ifng gene exacerbates liver fibrosis induced by DMN or carbon tetrachloride (CCl4) 

[33-37]. In agreement, mice lacking STAT1 developed accelerated CCl4-induced liver 

fibrosis, and the protective function of STAT1 was attributed to inhibition of HSC 

proliferation and stimulation NK-cell-mediated killing of HSCs [38]. In contrast to these 

reports, IFN  has been shown to exacerbate liver fibrosis in mice fed with choline-

deficient, ethionine-supplemented diet via enhancing hepatic progenitor cell response [39]. 

 

In the light of the above reports, increased hepatic fibrosis observed in Socs1+/- mice with 

intact Ifng gene is untenable with the protective functions of IFN , which ought to be more 

efficient in these mice. Given that SOCS1 is an indispensable regulator of IFN  signaling 

[31, 32], it is also possible that SOCS1 haplo-insufficiency might have exacerbated the pro-
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fibrogenic role of IFN  [39] in the absence of one Socs1 allele. Alternatively, the 

protective functions of IFN  may be mediated by SOCS1, requiring both alleles for 

efficient control of the fibrogenic response. Lastly, SOCS1 may be induced to exert its anti-

fibrogenic functions independently of IFN , probably by regulating other pro-fibrogenic 

pathways. To test these possibilities, we studied chemical-induced liver fibrosis in the 

absence of both alleles of SOCS1 without the influence IFN  by using Socs1-/-Ifng-/- 

mice in two different liver fibrosis models. As controls, we used Ifng-/- and C57BL/6 mice. 

Our findings show that SOCS1 is a critical regulator of hepatic fibrogenic response and that 

part of this regulation may occur in HSCs. 

 

2. Material and Methods 

2.1. Animals 

Socs1-/-Ifng-/- and Ifng-/- mice in C57BL/6 background have been previously described [40]. 

Only male mice were used to induce HCC due to the protective effects of female sex 

hormones [41]. All experimental protocols on animals were carried out with the approval of 

the Université de Sherbrooke Animal Ethics Committee. 

 

2.2. Induction of liver fibrosis 

Liver fibrosis was induced in 8-10 week-old mice by intra-peritoneal injection of DMN or 

CCl4 following published methods [27, 42] (Fig. 1A). Briefly, DMN (Supelco, Bellefonte, 

PA; Cat #48552) was administered via intra-peritoneal (i.p) route (10 g/g body weight) 

every 2-3 days for three weeks. CCl4 (Sigma-Aldrich, Oakville, ON; 0.5 l/g body weight) 

was diluted in corn oil (1:2) and injected i.p. twice a week for five weeks.  Treated mice 

were sacrificed three or four days after the last treatment.  Serum samples and liver tissues 

were collected. Parts of the livers were fixed in buffered formalin or snap frozen and stored 

at -80oC until use.  
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2.3. Gene expression analysis 

RNA was extracted using RiboZol™ (AMRESCO, Solon, OH) and reverse transcribed 

using QuantiTect Kit (Qiagen).  RNA purity was evaluated by UV absorption and RNA 

quality was tested by denaturing formaldehyde-agarose gel electrophoresis. The first 

complementary strand was made from 1µg total RNA using QuantiTect® reverse 

transcription kit (Qiagen). The primers for gene expression analysis (Supplementary Table 

1) showed 90-100% efficiency and a single melting curve in the MyQi5® cycler (Bio-Rad, 

Mississauga, ON). Expression levels of the housekeeping gene Gapdh was used to 

calculate fold induction of the specific genes modulated by the presence or absence of 

SOCS1. 

 

2.4. Histology and immunohistochemistry 

Liver tissues were fixed in 10% buffered formalin and embedded in paraffin. 5µM thick 

liver sections were deparaffinized, rehydrated, and stained with hematoxylin and eosin 

(H&E), Sirius red or Mason’s trichrome stains following standard histochemical protocols. 

For immunohistochemistry of alpha smooth muscle actin (SMA), rehydrated liver sections 

were immersed in citrate buffer (pH 6.0) and microwaved intermittently for 10 min to 

retrieve antigenic epitopes. Slides were incubated in 3% hydrogen peroxide for 10min to 

eliminate endogenous peroxidase activity. After blocking with 5% BSA in Tris-buffered 

saline (TBS) containing 20% Tween-20 (TBS-T), the slides were incubated with mouse 

anti-SMA Ab (Abcam) at 4˚C overnight before applying horseradish peroxidase (HRP)-

conjugated secondary Ab for 1h and developed with 3, 3’-diaminobenzidine (Sigma-

Aldrich). The sections were counterstained with hematoxylin and mounted with a coverslip. 

Digital images of the stained sections were acquired using a Nanozoomer Slide Scanner 

and analyzed by the Nanozoomer Digital Pathology software (Hamamatsu Photonics, 

Japan). The NIH ImageJ software was used to quantify Sirius red staining and the SMA-

positive areas.  
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2.5. Hydroxyproline assay 

Hydroxyproline content was measured following published methods with slight 

modifications [43, 44]. Approximately 10 mg of liver tissue was homogenized in 1ml of 6N 

HCl using the bead mill MM 400 (Retsch, Hann, Germany), transferred to screw-capped 

glass tubes and topped up with 2ml of 6N HCl.  The tubes were kept on a heat block at 

110oC for 16 hours in a fume hood to hydrolyze proteins into amino acids. The hydrolysate 

was filtered through Whatman #1 filter paper, aliquots were evaporated on the heat block 

and the pellet was dissolved in 50% 2-propanol. Samples and hydroxyproline standards 

were distributed in a 96-well microtiter plate, and oxidized by adding chloramine T reagent 

(Sigma-Aldrich; dissolved in 50% isopropanol and adjusted to pH 6.5 with acetate/citrate 

buffer) and incubating for 25min at room temperature. Following the addition of Ehrlich 

reagent (p-dimethylaminobenzaldehyde dissolved in n-propanol/perchloric acid (2:1)), the 

chromophore was developed by incubating the samples at 50oC for 10min. Absorbance was 

read at 550nm using a spectrophotometer and the results were expressed as micrograms of 

hydroxyproline per gram of liver tissue. 

 

2.6. Serum ALT level and ELISA 

Serum alanine transferase (ALT) levels were measured using a kinetic assay (Pointe 

Scientific Inc, Brussels, Belgium). Serum IL-6 and TNF-α levels were measured by 

sandwich ELISA, using capture and detection Ab from BD Pharmingen Biosciences (San 

Diego, CA). 

 

2.7. Western blot 

Liver tissues were homogenized in a pH8.0 buffer containing 150mM NaCl, 50mM Tris-

HCl, 1mM EDTA and protease and phosphatase inhibitor coctails (Roche, Indianapolis, 

IN) for 2min using the bead mill MM 400 (Retsch, Hann, Germany). Equal volume of the 

same buffer containing the detergents 0.2% SDS, 1% Triton X- 100 and 1% sodium 

deoxycholate was added and the lysates were kept on a shaker at 4oC for 30min. Following 

centrifugation at 15000g for 20min, the supernatant was collected and protein concentration 

determined using the RC-DC Protein Assay Kit (Bio-Rad, Mississauga, ON). Aliquots of 
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30-50µg proteins were analyzed by western blot using Ab listed in Supplementary Table 2.  

Secondary antibodies and enhanced chemiluminescence reagents were from GE Healthcare 

Life Sciences (Pittsburg, PA). Western blot images were captured by the VersaDOC 5000 

imaging system (Bio-Rad). 

 

2.8. Hepatic stellate cell isolation and proliferation assay 

HSCs were isolated following published methods [38, 45].  Briefly, 12-16 week-old mice 

were anesthetized with an i.p. injection of a mixture of Ketaset® (100mg/kg, Wyeth) and 

Xylazine (10mg/kg, Rompun®, Bayer). The liver was first perfused with calcium-free 

Gey's Balanced Salt Solution (GBSS) containing 0.5mM EGTA at the rate of 7ml/min 

through the inferior vena cava. The liver was then digested by perfusion with collagenase 

type IV (100U/ml, Worthington, Lakewood, NJ) in GBSS supplemented with CaCl2 

(1.8mM). The liver was resected into a culture dish, the capsule was removed and minced 

to release the cells into medium. The cell suspension was filtered through 70 m nylon 

mesh and centrifuged at 500rpm (60g) for 5min three times to remove hepatocytes. The 

supernatant was centrifuged at 1600rpm (600g) for 10min at 4oC. After one washing step, 

the pellet was resuspended in 4 ml of 20% of Optiprep, 5ml of 11.5% Optiprep was gently 

overlaid and topped with 2ml of GBSS. The density gradient was centrifuged at 3000rpm 

for 17min without brake and stellate cells that collect at the interface of 11.5% optiprep and 

GBSS were centrifuged at 1600rpm for 10min at 4oC. The cells were washed in DMEM 

containing 20% fetal bovine serum (FBS) and cell number and viability were assessed by 

Tryptan blue exclusion. The cells were plated at a density of 1x105 cells/well in uncoated 6-

well tissue culture dishes and examined by phase contrast microscopy for the presence of 

lipid droplets and by fluorescence microscopy for auto-fluorescence from their vitamin A 

content. 

 

To assess cell proliferation, HSCs were resuspended in serum-free DMEM and plated in 

96-well flat bottom microtiter plates in the presence of the indicated growth factors (PDGF, 

EGF, TGF-β, HGF - 10ng/ml) and cytokines (IL-6, TNF-α - 10ng/ml) purchased from 

R&D systems (Minneapolis, MN) or Peprotech (Ricky Hill, NJ). One Ci of methyl-[3H]-
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thymidine (NEN Life Sciences, Boston, MA) was added during the last 18h of the 72h 

culture period and the incorporated radioactivity measured as described elsewhere [40]. 

 

2.9. Statistical Analysis 

Data were analyzed using the GraphPad Prism (San Diego, CA). Statistical significance 

was calculated by ANOVA or Mann-Whitney test, and p values <0.05 were considered 

significant. 

 

3. Results 

3.1. Fibrogenic treatment induces intrahepatic mononuclear cell infiltration in SOCS1-

deficient mice  

To evaluate the effect of SOCS1 deficiency on hepatic fibrogenic response, we first used 

the DMN-induced liver fibrosis model. Unlike Socs1+/- mice, which showed more than 

50% mortality following DMN injection [27], three weeks of DMN treatment did not cause 

mortality in Socs1-/-Ifng-/- mice. These mice did not show any overt illness, and their serum 

ALT levels were not significantly elevated compared to Ifng-/- and C57BL/6 control mice at 

the end of the treatment regimen (Fig. 1B). However, all groups of mice showed increased 

ALT levels after one week of DMN treatment that subsided after three weeks of exposure. 

Examination of the liver sections at the end of the treatment period by H&E staining did 

not reveal noticeable damage to the micro-architecture in the livers of Socs1-/-Ifng-/- mice 

compared to the control mice (Fig. 1C). However, the SOCS1-deficient livers showed 

marked mononuclear cell infiltration around the portal triads and the central vein, which 

was not observed in the livers of control mice following DMN treatment. 

 

We also examined liver fibrosis induced by CCl4, which has certain advantages over the 

DMN-induced fibrosis model [17]. DMN, which induces hemorrhagic centrilobular 

fibrosis, also displays mutagenic properties that could confound the fibrogenic response. 

This issue is not a concern with CCl4, which induces reversible centrilobular fibrosis. 

Besides, CCl4-induced fibrosis is more reproducible in C57BL/6 mice, which are in 
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general less susceptible to liver fibrosis [34]. In contrast to DMN treatment, serum ALT 

levels at the end of the CCl4 treatment regimen was significantly elevated in all three 

genotypes of the mice examined, and there was no significant difference between SOCS1-

deficient and control mice (Fig. 1B). However, similarly to DMN, CCl4 induced marked 

mononuclear cell infiltration in SOCS1-deficient livers compared to controls, albeit to a 

lesser extent than DMN (Fig. 1C). Collectively, these results indicated that SOCS1 

deficiency exacerbated the inflammatory response in the liver cause by fibrogenic stimuli. 

 

3.2. SOCS1 deficiency increases the expression of inflammatory cytokines and 

chemokines in the liver and the circulating levels of IL-6 and TNF-α 

SOCS1 is an important regulator of macrophage activation by TLR ligands and cytokine-

dependent control of T lymphocyte homeostasis [21, 23]. Therefore, we examined whether 

the mononuclear cell infiltration in the livers of DMN- or CCL4- treated mice is associated 

with an increased inflammatory response. As shown in Fig. 2A, the transcript levels of 

inflammatory cytokines IL-6 and TNF-α were significantly elevated in SOCS1-deficient 

livers following DMN or CCl4 treatment. Accordingly, SOCS1 deficient mice showed 

increased levels of IL-6 and TNF-α in the peripheral circulation (Fig. 2B). Even though the 

induction of Il6 and Tnfa genes in the livers of DMN- or CCl4- treated mice was 

comparable, the circulating levels of IL-6 and TNF-α were markedly elevated in CCl4-

treated mice compared to DMN-treated mice. 

 

CCL-2 (macrophage chemotactic protein 1), a chemokine secreted by HSCs and 

hepatocytes in fibrotic livers, is the principal mediator of monocyte influx into the inflamed 

liver [46]. The Ccl2 gene was strongly induced by both DMN and CCl4, and SOCS1-

deficient livers showed significantly high Ccl2 gene expression compared to control mice 

(Fig. 2A). In contrast to serum ALT levels, which were increased to a comparable extent in 

Socs1-/-Ifng-/- and Ifng-/- mice following CCl4 treatment, hepatic Il6, Tnfa and Ccl2 gene 

expression and circulating IL-6 and TNF  levels were significantly higher in Socs1-/-Ifng-/- 

mice than in Ifng-/- mice. These results indicate that the absence of SOCS1 in the liver 

induces a strong inflammatory response that can occur independently of IFN-α. 
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3.3. SOCS1 deficient mice show increased hepatic fibrosis following chemical injury 

Next, we examined liver sections by Sirius red staining to assess the extent and pattern of 

collagen deposition in the fibrotic livers. As shown in Fig. 3A, livers of Socs1-/-Ifng-/- mice 

showed markedly strong fibrosis compared to Ifng-/- and C57BL/6 mice. Ifng-/- mice 

showed discernibly more fibrosis than C57BL/6 controls. While Socs1-/-Ifng-/- mice showed 

extensive portal fibrosis with the formation of septa around many hepatic lobules, 

resembling the F2 stage fibrosis [47, 48], septal involvement was considerably less in Ifng-/- 

mice. Similar results were obtained following fibrosis induction with CCl4, which induced 

more pronounced fibrosis and produced more consistent results than DMN (Fig. 3A, 

bottom row). Moreover, CCl4 induced extensive septa formation in Socs1-/-Ifng-/- mice, 

resembling the F3 stage fibrosis. Quantification of the Sirius red staining area showed 

significantly more fibrosis in Socs1-/-Ifng-/- mice than in Ifng-/- mice (Fig. 3B). Mason’s 

trichrome staining recapitulated the results of Sirius red staining with similarly high level of 

collagen deposition in Socs1-/-Ifng-/- mice compared to control mice (Fig. 3C). 

 

We quantified total collagen deposition in the liver parenchyma by measuring the 

hydroxyproline content of the fibrotic liver tissues (Fig. 4). Consistent with the 

histochemical staining data, the livers of Ifng-/- mice contained significantly more collagen 

than C57BL/6 mice. These results are in agreement with the anti-fibrotic role of IFN  in 

DMN- or CCl4- induced hepatic fibrosis models [33-37]. However, Socs1-/-Ifng-/- mice 

contained significantly more collagen than the livers of Ifng-/- mice (Fig. 3B). Collectively, 

the above results show that SOCS1 exerts a potent anti-fibrotic role in the liver, 

independently of IFN .  

 

3.4. SOCS1 deficient livers show increased accumulation of myofibroblasts and 

fibrogenic gene expression 

During liver fibrosis, HSCs and other liver-resident and recruited mesenchymal cells 

become activated and differentiate into myofibroblasts that produce ECM [49]. To study 

the collagen-producing myofibroblats, we examined the liver sections of DMN- or CCl4- 
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treated mice by immunohistochemistry for smooth muscle actin (SMA), a marker of 

activated HSCs and myofibroblats. Consistent with the histochemical staining of collagen 

fibers, the livers of Socs1-/-Ifng-/- mice showed more abundant SMA positive cells than the 

livers of Ifng-/- and C57BL/6 mice (Fig. 5A, 5B), indicating an important role for SOCS1 in 

controlling the differentiation and activation of collagen-producing myofibroblats. 

 

To further characterize the SOCS1-dependent control the hepatic fibrogenic response, we 

studied the expression of Acta2, Col1a1, Col3a1 genes coding for SMA and the fibrillar 

collagens I and III, respectively [50]. As shown in Fig. 6A, the expression of Acta2, Col1a1 

and Col3a1 was significantly elevated in the livers of Socs1-/-Ifng-/- mice, showing 2-3-fold 

higher induction than control mice. Induction of these genes was 3-6 fold more pronounced 

in CCl4-induced fibrosis than in DMN-induced fibrosis, in agreement with more severe 

fibrosis in the former model (Fig. 2). The key pro-fibrogenic cytokine gene Tgfb was also 

more strongly induced in the livers of Socs1-/-Ifng-/- mice than in Ifng-/- mice in both DMN 

and CCl4 models. Strikingly, the induction of Acta2, Col1a1, Col3a1 and Tgfb genes was 

only marginally increased in Ifng-/- mice compared to wildtype mice. 

 

3.5. Expression of genes coding for matrix remodeling are differentially regulated by 

SOCS1  

In parallel to assessing the collagen genes, we quantified the expression of genes coding for 

enzymes involved in remodeling the extracellular matrix (ECM), namely, matrix 

metalloproteinases (Mmp1, Mmp2, Mmp3, Mmp9) and tissue inhibitors of MMPs (Timp1 

and Timp2). While TIMP-1 and TIMP-2 play a pro-fibrogenic role, the MMPs may exert 

pro- or anti-fibrotic roles at different stages of fibrosis [51, 52]. The expression of Timp1 

and Timp2 genes was significantly higher in the livers of Socs1-/-Ifng-/- mice than in Ifng-/- 

mice in both DMN and CCl4 models (Fig. 6B). Ifng-/- mice showed only marginal or 

negligible increase in expression of these genes compared to C57BL/6 controls. The 

expression of MMP genes showed profound variability. Mmp1 was expressed at a 

significantly lower level in Socs1-/-Ifng-/- mice than in Ifng-/- mice in both DMN and CCl4 

models. Mmp2 was marginally increased in SOCS1-deficient livers, and this increase was 

significant only in the DMN-induced fibrosis model. Strikingly, the expression of Mmp3 
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and Mmp9 in SOCS1-deficient livers was differentially modulated in the two models (Fig. 

6B), with a significant decrease in the DMN-induced model, but an increase in the CCl4 

model. Similar to the collagen genes, IFN  deficiency alone caused only moderate, non-

significant changes in the expression of the ECM remodeling genes. These results indicated 

that SOCS1 exerts a more critical control over the induction of fibrogenic genes than 

IFN . 

 

3.6. Fibrotic livers of SOCS1 deficient mice show increased phosphorylation of STAT3 

and Smad3  

Increased DMN-induced hepatic fibrosis observed in Socs1 heterozygous mice has been 

correlated to elevated STAT1 phosphorylation, increased IRF-1 expression and decreased 

STAT3 activation [27]. Previously, IFN  was shown to be the key cytokine in inducing 

STAT1 activation in the ConA-induced model of hepatitis [36]. Therefore, we examined 

phosphorylation of STAT1 and STAT3 in Socs1-/-Ifng-/-, Ifng-/- and control mice following 

the DMN and CCl4 regimens. The DMN-treated Socs1-/-Ifng-/- mice did not show elevated 

STAT1 activation in the liver, but showed increased STAT3 phosphorylation compared to 

both Ifng-/- and C57BL/6 controls mice (Fig. 7A).  Ifng-/- mice showed the same level of 

STAT3 phosphorylation in the liver as C57BL/6 control mice, but showed appreciable 

reduction in STAT1 phosphorylation, in agreement with the absence of IFN .  

Phosphorylation of AKT, which occurs downstream of cytokines and growth factors in 

hepatocytes, was not significantly different among the three groups of DMN-treated mice. 

In agreement with increase fibrosis and SMA staining, the livers of SOCS1 deficient mice 

showed increased levels of SMA and showed elevated Smad3 phosphorylation, which is 

the key signaling protein downstream of the fibrogenic cytokine TGF-β.  These results 

indicated that unlike in other models, fibrosis induction in SOCS1-deificient is associated 

with elevated STAT3 activation. 

 

3.7. SOCS1 controls hepatic stellate cell proliferation 

Elevated levels of Tgfb transcripts (Fig. 6A), increased Smad3 phosphorylation (Fig. 7A), 

and increased proportion of SMA-staining cells (Fig. 5) in SOCS1-deficient livers in the 
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two fibrosis models suggested that quantitative increase in HSC numbers and their 

increased responsiveness to fibrogenic cytokines may underlie the severe hepatic fibrosis 

observed in these mice. Pathogenesis of liver fibrosis is associated with HSC proliferation, 

which can occur in response to several growth factors such as PDGF, FGF, EGF, and TGF-

β that signal via receptor tryrosine kinases (RTK) [53, 54]. Cytokines such as IL-6 and IL-4 

may also induce HSC proliferation directly or indirectly. In recent years, several reports 

have shown that several SOCS proteins including SOCS1 regulate not only JAK-STAT 

signaling, but also control signaling via RTKs [24]. We have shown that SOCS1 regulates 

HGF signaling via its receptor c-MET [40, 55]. Therefore, we evaluated proliferation of 

primary HSCs isolated from SOCS1-deficient and control mice in response to growth 

factor and cytokine stimulation. HSCs from both Socs1-/-Ifng-/- and Ifng-/- mice showed 

significantly higher proliferation to PDGF than control cells. SOCS1 deficient HSCs also 

showed increased proliferation to EGF, TGF-β and HGF as well as IL-6.  

 

Next, we examined the induction of PDGF gene expression in the livers following 

the DMN or CCl4 treatment. As shown in Fig. 8B, the livers of Socs1-/-Ifng-/- mice showed 

significantly higher expression of the Pdgfb gene than Ifng-/- and C57Bl/6 mice. Together, 

these results suggest that SOCS1 may regulate hepatic fibrogenic response, at least partly, 

by controlling the proliferation of HSCs and indirectly by limiting the availability of 

growth factors. 

 

Discussion 

Pathogenesis of liver fibrosis involves chronic injury to hepatocytes, release of 

inflammatory mediators and activation of HSCs, Kupffer cells and lymphocytes. Many 

cytokines and growth factors induced during this inflammatory response impact the 

pathogenesis of liver fibrosis in a very complex, inter-connected manner. Specific gene 

knockout mice have shed light on the complex signaling pathways and control mechanisms 

in liver fibrosis. SOCS1 and SOCS3, which are important feedback negative regulators of 

many cytokines and growth factors, are implicated in hepatic fibrogenic response. 

However, the molecular mechanisms by which SOCS proteins control liver fibrosis remain 

unclear. Using two chemically-induced liver fibrosis models, here we show that (i) SOCS1 
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limits liver fibrosis, (ii) SOCS1 deficiency differentially affects the expression of ECM 

remodeling enzymes and (iii) the anti-fibrotic functions of SOCS1 occurs, at least partly, in 

HSCs.  

 

Our results clearly show that SOCS1 deficiency exacerbates the hepatic fibrogenic 

response in an IFN -independent manner. Yoshida et al., correlated the increased 

susceptibility of Socs1+/- to DMN-induced liver fibrosis to STAT1 activation and IRF1 

expression, and reduced STAT3 activation [27]. This idea was supported by an earlier 

study that showed a pathogenic role for STAT1 and a protective role for STAT3 in the 

ConA–induced hepatitis model [36]. This study showed that IFN-γ, produced by CD4+ T 

cells and NKT cells, activated STAT1, induced IRF1 and Bax, and promoted apoptosis of 

hepatocytes, while STAT3 activation downstream of IL-6 induced Bcl-xL and reduced 

hepatocyte injury caused by IFN  [36]. Contrary to these reports, increased liver injury in 

Socs1-/-Ifng-/- mice occurred in the absence of elevated STAT1 activation but in the 

presence of increased Il6 gene expression, elevated serum IL-6 levels and increased STAT3 

phosphorylation in the liver following DMN or CCl4 treatment.  

 

The elevated STAT1 activation reported in the livers of Socs1+/- mice following 

DMN treatment most likely results from deregulated IFN  signaling due to the limited 

availability of SOCS1. Even though DMN or CCl4-induced liver damage does not usually 

result in extensive T cell and NKT cell activation and IFN  production as in the case of 

ConA-induced hepatitis [56], the lack of SOCS1 may exacerbate the basal IFN  signaling 

that may be induced in these mice with intact Ifng alleles. Indeed several studies have 

shown a pro-fibrotic effect of IFN  and STAT1 in DMN or CCl4 –induced fibrosis [33-

38]. Our finding that Socs1-/-Ifng-/- mice develop severe liver fibrosis despite the absence of 

IFN  and an appreciable increase in STAT1 activation highlight the critical requirement of 

SOCS1 to control pro-fibrogenic pathways that can occur independently of IFN  or 

STAT1 activation. Besides, our findings indicate that SOCS3, which is also implicated in 

attenuating liver fibrosis [30], does not compensate for the loss of SOCS1, and that these 

two SOCS proteins may target distinct fibrogenic mechanisms. 
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The roles of STAT1 and STAT3, their main activators IFN-γ and IL-6, and their 

major regulators SOCS1 and SOCS3, respectively, have been extensively studied in the 

context of hepatitis, fibrosis and HCC [reviewed in [56]]. In this work, Gao and colleagues 

highlighted the dichotomous roles of STAT3 activation and IL-6 in liver injury, hepatic 

inflammation and fibrosis, and modulation of their functions in model-, cell-, and context- 

dependent manner. While STAT3 in hepatocytes confers protection against liver injury and 

fibrosis, it may play a pro-fibrogenic role in HSCs by promoting their survival and 

production of TIMP-1, and in Kupffer cells by increasing TGF-β production [57-59]. 

Similarly, while IL-6 protects hepatocytes from injury that may account for its anti-fibrotic 

role reported in some studies, several lines of evidence support a pro-fibrotic role of IL-6 

by promoting HSC survival and proliferation [56]. Given that the livers of Socs1-/-Ifng-/- 

mice show increased expression of Il6, Tgfb and Timp1 genes following DMN or CCl4 

treatment, it is likely that the extensive fibrosis seen in these livers may result from 

increased IL-6-induced STAT3 activity. In agreement with this possibility, increased 

fibrosis in DMN-treated, hepatocyte-specific SOCS3-null mice has been attributed to 

increased STAT3 activation [30]. 

 

The increased expression of Timp1 and Timp2 in the livers of Socs1-/-Ifng-/- mice 

may also contribute to the exacerbated fibrogenic response in these mice. Both Timp-1 and 

Timp-2 promote fibrosis by inhibiting degradation and clearance of the fibrotic matrix 

[reviewed in [60]]. Besides, they may directly contribute to fibrosis by promoting survival 

of HSCs. As in the case of IL-6 and Stat3, Timp-1 seems to exert a dichotomous role in 

liver fibrosis. While an early study using transgenic model showed a pro-fibrogenic role for 

Timp-1, a recent study using Timp1-null mice showed an anti-fibrotic function [61, 62]. 

The latter study proposed that Timp-1 might promote liver fibrosis via stimulating HSC 

survival, while its anti-fibrotic function may occur via attenuating hepatocyte injury. Given 

the increased SMA positive staining (Fig. 5) and the quantity of SMA (Fig. 7) in the livers 

of DMN- or CCl4- treated SOCS1-null livers, it is likely that Timp-1 might have 

contributed to the survival of HSCs and their activation to myofibroblats in these mice, in 

addition to blocking ECM degradation. 
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A collective analysis of the roles of MMPs in liver, lung and kidney fibrosis models 

have clearly shown that MMPs exert both inhibitory and stimulatory activities in tissue 

fibrosis [52].  The physiological roles of MMPs include not only ECM remodeling, but also 

diverse other functions such as generation of bioactive ligands that act in autocrine and 

paracrine manner to module cell survival, proliferation, differentiation and migration [63]. 

In the liver, HSCs are the major source of MMPs [64]. Even though MMPs can cleave 

diverse collagens and other ECM substrates in vitro, whether all such activities occur in 

vivo is not yet clear. The in vivo biological activities of MMPs are influenced by their 

differential expression at different stages of fibrosis progression and resolution, and their 

ability to degrade the normal ECM versus the interstitial, fibrillar collagens that accumulate 

during fibrosis [50, 52, 64, 65]. While MMP-1 and MMP-2 are implicated in anti-fibrotic 

roles, MMP-3 is and MMP-9 (which is related to MMP-2) are implicated in promoting 

fibrosis [52]. While MMP-1 promotes degradation of collagen matrix, MMP-2 is 

implicated suppressing collagen-I expression, both contributing to the resolution of fibrosis 

[52, 60]. Consistent with these functions, Mmp1 expression is drastically diminished in the 

fibrotic livers of SOCS1 deficient mice, while Mmp2 was not significantly altered 

compared to control livers (Fig. 6B). Few studies have addressed the role of MMP-3 and 

MMP-9 in liver fibrosis. MMP-9 is an important mediator of leukocyte recruitment in acute 

liver injury [60]. A recent study showed that induction of miR155, which represses SOCS1, 

increased the expression of MMP-9 in HCC cells lines and increased their invasive 

potential [66]. Intriguingly, MMP-9 is differentially regulated in DMN- and CCl4-induced 

fibrosis in the livers of SOCS1-null mice (Fig. 6B). The significance of this differential 

expression in the two models, both of which initiate the fibrogenic response by inducing 

centrilobular necrosis, remains to be studied. Similarly, understanding the potential 

contribution of SOCS1-dependent modulation of cytokine and growth factor signaling to 

the induction of MMPs in liver fibrosis requires further investigation. 

 

SOCS1 may exert direct control over the survival, proliferation and activation of 

hepatic stellate cells induced by growth factors that signal via RTKs [53, 54]. Even though 

SOCS molecules were originally discovered as feedback regulators of JAK-STAT 

signaling, accumulating evidence has shown their importance in regulating RTKs [24]. In 
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keeping with that, we have shown that SOCS1 attenuates HGF signaling in hepatocytes 

[40, 55]. Increased proliferation of SOCS1 deficient HSCs in response to many growth 

factors that signal via RTKs (PDGF, TGF-β, EGF and HGF), and increased expression of 

Pdgfb gene in the fibrotic livers of SOCS1-deficient mice suggest control of HSC 

proliferation and limiting the availability of growth factors are important mechanisms by 

which SOCS1 exerts its anti-fibrotic function. 

 

Recent studies have shown that Sorafenib, which inhibits the RAF kinase 

downstream of many RTKs as well as their own enzymatic activity, displays a marked anti-

fibrotic effect in vivo and this effect has been correlated to decreased HSC proliferation and 

collagen production [67, 68]. Repression of the SOCS1 gene by promoter methylation 

frequently occurs in human liver fibrosis, and the frequency of methylation correlates 

positively with the severity of disease [27]. Even though various approaches such as DNA 

demethylases, gene therapy, peptide mimics, protein transfer, microRNA are being tested in 

various experimental disease settings, their optimization and use in human trials are still far 

from realization. Given that Sorafenib is an FDA approved drug, and that SOCS deficiency 

promotes HSC proliferation and fibrogenic gene expression in the mouse models, we 

propose that liver fibrosis patients with SOCS1 promoter methylation may benefit from 

Sorafenib therapy. 
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Figure legends 

Figure 1. SOCS1 deficiency does not worsen liver damage caused by chemical injury, but 

promotes mononuclear cell infiltration. (A) Induction of liver fibrosis using 

dimethylnitrosamine (DMN) or carbon tetrachloride (CCl4). (B) Serum ALT levels in 

SOCS1-deficient and control mice following DMN or CCl4 treatment. Data shown are 

mean  standard error of mean (s.e.m). Mann-Whitney test: * p < 0.05. ** p < 0.01.  (C) 

Representative hematoxylin and eosin-stained sections of the livers collected at the end of 

the DMN or CCl4 treatment regimens. Magnified images depict mononuclear cell 

infiltration in SOCS1-deficient livers. Bars are 100 M. 

 

Figure 2. SOCS1 deficiency increases the expression of inflammatory cytokine and 

chemokine genes in the liver and the circulating levels of IL-6 and TNF-α (A) Real-time 

PCR quantification of Il6, Tnfa and Ccl2 transcripts in the livers of SOCS1-deficient and 

control mice following DMN or CCL4 treatment. Fold induction was calculated by 

comparing the level of expression in treated mice versus untreated control mice within the 

same group. Mean  s.e.m values from 6-8 mice per group are shown. (B) Levels of IL-6 

and TNF-α in the peripheral blood of DMN- or CCL4- treated mice at the time of sacrifice. 

Numbers of mice in each group are indicated within parentheses. Data shown are mean  

s.e.m. Mann-Whitney test: * p < 0.05, ** p < 0.01, *** p < 0.005. 

 

Figure 3. SOCS1 deficient mice show increased hepatic fibrosis following chemical 

injury. (A) Representative images of Sirius red-stained sections of the livers from SOCS1-

deficient and control mice at the end of the DMN or CCl4 treatment regimen. (B) 

Quantification of the Sirius red-stained areas of collagen deposition.  Nanozoomer Digital 

Pathology software was used to select 20 random fields from 4 mice in each group, and the 

Sirius red staining area was quantified using the NIH Image J software. Data shown are 

mean  s.e.m. Statistical significant between the groups are shown over the bar graphs. 

Statistical significance between treated and control groups are shown in the right panel. 

Mann-Whitney test: * p < 0.05, ** p < 0.01, *** p < 0.005. (C) Representative images of 
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the liver sections from the above groups of mice following Masson’s trichrome staining of 

collagen fibers. 

 

Figure 4. Increased collagen deposition in SOCS1-deficient mice following the induction 

of fibrogenesis. Liver tissues from control and SOCS1-deficient collected at the end of the 

DMN or CCl4 treatment regimens were hydrolysed in acid and the hydroxyproline content 

was assessed by spectrophotometry. Data shown are mean  s.e.m values from 5-6 mice per 

group. Mann-Whitney test: * p < 0.05, ** p < 0.01, *** p < 0.005. 

 

Figure 5. SOCS1-deficient livers show increased accumulation of myofibroblasts and 

fibrogenic gene expression. (A) Immunohistochemical staining of a-smooth muscle actin 

(SMA)-positive myofibroblasts in liver sections from SOCS1-deficient and control mice 

following DMN or CCl4 treatment. Representative images from four mice per group are 

shown. (B) Quantification of the SMA-staining.  For each group, 20 digital images from 4 

mice were analyzed as detailed in Fig. 3B. Data shown are mean  s.e.m. Statistical 

significant between the groups are shown over the bar graphs. Statistical significance 

between treated and control groups are shown in the right panel. Mann-Whitney test: * p < 

0.05, ** p < 0.01, *** p < 0.005, *** p < 0.0001. 

 

Figure 6. SOCS1 deficiency profoundly modulates the expression of genes involved in 

hepatic fibrogenesis. Induction of genes involved (A) in the fibrogenic response and (B) in 

the modulation of the extracellular matrix, in the livers of SOCS1-deficient and control 

mice following DMN or CCL4 treatment. Fold induction was calculated by comparing the 

level of expression in treated mice versus untreated control mice within the same group. 

Mean  s.e.m values from 6-10 mice per group are shown. Mann-Whitney test: * p < 0.05, 

** p < 0.01, *** p < 0.005, n.s. not significant. 

 

Figure 7. Fibrotic livers of SOCS1 deficient mice show increased phosphorylation of 

STAT3 and Smad3. Total lysate of SOCS1-deficient and control livers following the 

induction of hepatic fibrosis were evaluated for the phosphorylation and expression of the 
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indicated proteins. Results from one untreated control (C) and three treated mice (+) for 

each group are shown. 

 

Figure 8. Hepatic stellate cells from SOCS1 deficient mice show increase proliferation 

in response to growth factor stimulation. (A) Primary hepatic stellate cells isolated from 

SOCS1-deficient and control mice were cultured in the presence of the indicated cytokines 

or growth factors and cell proliferation was evaluated by tritium-labeled thymidine 

incorporation assay. Cumulative data (mean + s.e.m.) from two different experiments 

carried out in triplicates are shown. (B) Expression of the Pdgfb gene was evaluated by 

qRT-PCR in the DMN- or CCl4- treated livers of SOCS1-deficient and control mice. 

Cumulative data from 6-8 mice per group are shown. Mann-Whitney test: * p < 0.05, ** p 

< 0.01, n.s. not significant. 
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Tables 

Supplementary Table 1: List of qRT-PCR primers used in this study. 

Gene 

name 

Gene ID Sense primer Anti-sense primer Amplicon 

 Size 

Acta2 NM_007392.3 AGTAATGGTTGGAATGG GTGTCGGATGCTCTTCAGG 166 

Col1a1 NM_007742.4 CTCCCAGAACATCACCTATC

AC 

ACTGTCTTGCCCCAAGTTCCG 171 

Col3a1 NM_009930.2  AAGTCAAGGAGAAAGTGGT

CG 

CAGTCTCCCCATTCTTTCCAG 158 

Il6 NM_031168.2  AGTCCGGAGAGGAGACTTC

A 

TTGCCATTGCACAACTCTTT  112 

Ccl2 NM_011333.3 CAGGTCCCTGTCATGCTTCT GTGGGGCGTTAACTGCAT  73 

Mmp1a NM_032006.3  TGTTGCTTCTCTGGGCTG                     TCATCTCCTTGCCATTCACG  132 

Mmp2 NM_008610.2 CAAGTTCCCCGGCGATGTC TTCTGGTCAAGGTCACCTGTC 152 

Mmp3 NM_010809 GATGAACGATGGACAGAGG

ATG 

AAACGGGACAAGTCTGTGG 130 

Mmp9 NM_013599.3 GATCCCCAGAGCGTCATTC CCACCTTGTTCACCTCATTTTG 129 

Pdgfb NM_011057.3 CCTGCAAGTGTGAGACAGTA

G 

CTTTCGGTGCTTGCCTTTG 127 

Tgfb1 NM_011577.1 ATACGCCTGAGTGGCTGTCT CTGATCCCGTTGATTTCCA 129 

Timp1 NM_011593.2 TTGCATCTCTGGCATCTGG TGGTCTCGTTGATTTCTGGG 136 

Timp2 NM_011594.3 CAGGAAAGGCAGAAGGAGA

TG 

GATCATGGGACAGCGAGTG 130 

Timp4 NM_080639.3 TTAAAGGGTTCGAGAAGGC

C 

TTCCATCACTGAGAATCTGGC 132 

Tnfa 

Gapdh 

NM_013693.3 

NM_001289726.1  

CGTCGTAGCAAACCACCAA

G 

ATGACATCAAGAAGGTGGT

GAA  

GAGATAGCAAATCGGCTGAC

G 

GTCTTACTCCTTGGAGGCCAT

GT 

190 

246 

 

Gene names 
Acta2, Actin, alpha 2 

Col1a1, Collagen, type 1, alpha 1 

Col3a1, Collagen, type 3, alpha 1 

Il6, Interleukin-6 

Ccl2, Chemokine (C-C motif) Ligand 2 

Mmp1a, Matrix metalloproteinase 1a 

Mmp2, Matrix metalloproteinase 2 

Mmp3, Matrix metalloproteinase 3 

Mmp9, Matrix metalloproteinase 9 

Pdgfb, Platelet-derived growth factor, beta polypeptide 

Tgfb1, Transforming growth factor, beta 1 

Timp1, Tissue inhibitor of matrix metalloproteinase 1 

Timp2, Tissue inhibitor of matrix metalloproteinase 2 

Tnfa, Tumor necrosis factor alpha 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=56118300
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=6755774
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Gapdh, Glycerolaldehyde-3-phosphate dehydrogenase 

Supplementary Table 2: List of antibodies used in this study. 

Molecule Company   Cat. #        

ERK1   Santa Cruz Biotechnology    sc-93 

ERK2   Santa Cruz Biotechnology     sc-153 

p-ERK  Cell Signaling Technology #4695 

α-SMA  Abcam    #7817 

Smad-3 Cell Signaling Technology #9513  

p-Smad-3 Cell Signaling Technology #9520 

Stat1   Santa Cruz Biotechnology sc-592 

p-Stat1 (Y701)Cell Signaling Technology #9171 

Stat3   Santa Cruz Biotechnology sc-483 

p-Stat3 (Y705) Cell Signaling Technology #9131 
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4. DISCUSSION 

Cirrhosis is a pathological condition that results from chronic damage or scarring of the 

liver and is the end stage of liver fibrosis. It leads to cancer and is associated with 

significant morbidity and mortality. Cirrhosis is irreversible whereas fibrosis can be 

reversible, and thus is an important focus of HCC research. Fibrosis is the result of chronic 

inflammation characterized by excess deposition of extracellular matrix rich in collagen, 

produced by activated hepatic stellate cells. Chronic damage to the liver results in 

hepatocyte apoptosis and necrosis, recruitment of inflammatory cells, and release of 

cytokines and growth factors by liver resident and infiltrated cells resulting in activation of 

hepatic stellate cells into fibrogenic myofibroblasts. 

 

Cell intrinsic regulatory molecules such as SOCS1 control cytokine and growth factor 

signaling. It has been extensively documented that the SOCS1 gene is frequently repressed 

or silenced by methylation of the CpG islands on its promoter region in HCC and other 

cancers, suggesting an antitumor role of SOCS1. Besides, in patients with CLD, the SOCS1 

gene is silenced during fibrotic stages and there is a strong correlation between SOCS1 

gene methylation and advancement of liver fibrosis (Takafumi Yoshida et al. 2004). 

Yoshida et al, showed for the first time, the antifibrotic role of SOCS1 by using SOCS1 

heterozygous mice. They suggested that increased fibrosis observed in these mice was due 

to increased IFN-γ signaling and activation of the downstream signaling molecules STAT1 

and IRF1 (T. Yoshida 2004). However, numerous experimental and clinical studies have 

reported that IFN-γ exerts antifibrotic functions (H. Weng et al. 2007; W. Il Jeong et al. 

2006; Bansal et al. 2014; Ancini et al. 1996). Hence, we carried out this study in Socs1-

deficient mice also lacking IFN-γ to clearly understand the mechanism by which SOCS1 

regulates liver fibrosis. 

 

Using two chemically induced liver fibrosis models we showed that 1) SOCS1 is a critical 

regulator of hepatic fibrogenic response that does not necessarily require IFN-γ to exhibit 

its antifibrotic functions. 2) A part of this SOCS1 regulation may be mediated by 
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controlling cytokines and growth factor responses of HSC and 3) SOCS1 differentially 

regulates the expression of ECM remodeling enzymes. 

4.1 SOCS1 deficiency does not facilitate hepatocytes damage, but enhances hepatic 

inflammation 

Alanine transaminase (ALT) is an enzyme present in hepatocytes. Upon damage, it is 

released into the blood, which can be used as an indicator to assess the extent of liver 

damage. Following treatment with DMN and CCl4, we observed increased ALT levels in 

the serum of mice with all three genotypes when compared to that of vehicle-treated mice. 

However, we did not notice any statistical difference between Socs1-deficient mice and 

control groups at the end of the treatment indicating that the absence of SOCS1 does not 

worsen DMN- or CCl4-induced hepatocyte damage. 

 

In contrast, Yoshida et al., have shown that mortality rate and serum ALT levels were 

higher in DMN treated Socs1+⁄- mice and suggested that increased liver damage is observed 

in these mice due to elevated expression of STAT1 and pro-apoptotic factor IRF-1. Other 

studies also demonstrated the same by using hepatocyte-specific Socs1 conditional 

knockout mice (Torisu et al. 2008; T. Yoshida 2004). But, this is not the case in our study, 

suggesting that at least part of the liver damage caused by DMN is mediated by increased 

sensitivity of SOCS1 deficient hepatocytes to IFN-γ, which was absent in our model of 

Socs1-/-Ifng-/- mice. 

 

Histological analysis of H&E-stained liver sections showed that the overall morphology of 

the liver was not affected, but infliltration of inflammatory cells was seen in the livers of 

Socs1-/-Ifng-/- mice following treatment with DMN and CCl4 (Fig.1C). In addition to this, 

Socs1-deficient mice also showed increased mRNA and protein levels of inflammatory 

cytokines like IL-6 and TNF-α, suggesting that SOCS1 deficiency enhances hepatic 

inflammation (Fig 2A, 2B). IL-6 and TNF-α are proinflammatory cytokines that come from 

different cellular sources including macrophages, Kupffer cells, T-cells, endothelial cells, 

fibroblasts, and hepatocytes. These cells could all be the cause of increased inflammatory 
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cytokines levels noticed in Socs1-deficient mice livers. However, the type of cells 

infiltrating into the livers of Socs1-/-Ifng-/- mice following liver damage needs to be further 

characterized by using flow cytometry or by immunohistochemical staining (IHC) for 

Ly6G (neutrophils), CD3 (T cells), CD68 (macrophages) and B220 (B cells). 

 

CCL2 (MCP-1) is a chemokine secreted by hepatocytes, HSC and biliary epithelial cells, 

which has been shown to recruit monocytes, macrophages, neutrophils and T-cells to the 

site of injury (Wasmuth, Tacke, and Trautwein 2010). It has been demonstrated that the 

inhibition of MCP-1 results in reduced infiltration of hepatic macrophages and decreased 

intrahepatic levels of pro-inflammatory cytokines (TNF-α, IFN-γ, and IL-6) in the injured 

liver (Baeck et al. 2012). Moreover, mice with a targeted deletion of its receptor CCR2, 

which is expressed on monocytes/macrophages, HSC and Kupffer cells, displayed reduced 

liver fibrosis in CCl4 and bile duct ligation (BDL) models of liver fibrosis (Miura et al. 

2012; Baeck et al. 2012; Seki et al. 2009). Accordingly, the livers of Socs1-deficient mice 

showed increased Ccl2 (Mcp-1) gene expression compared to those of control mice in both 

models (Fig.2A). This may be the reason for enhanced mononuclear cells infiltration and 

increase in IL-6 and TNF-α levels in the livers of Socs1-/-Ifng-/- mice. From these 

observations, we suggest that the absence of SOCS1 induces a strong inflammatory 

response in the liver. 

 

4.2 SOCS1 regulatory function occurs independently of IFN-γ 

Cytokine signaling is stringently regulated by the SOCS family of proteins. Among them, 

SOCS1 is relatively skewed towards controlling STAT1, whereas SOCS3 towards 

regulating STAT3 (Kinjyo et al. 2002; Croker et al. 2002; Yasukawa et al. 2003). Yoshida 

et al., have reported that increased liver fibrosis observed in Socs1+⁄- mice is due to elevated 

STAT1 and pro-apoptotic factor IRF-1 expression as well as reduced STAT3 activation (T. 

Yoshida 2004). The increased STAT1 activation reported in the livers of Socs1+/- mice 

following treatment with DMN most likely results from deregulated IFN-γ signaling due to 

the limited availability of SOCS1. An earlier study using ConA-induced hepatitis model 
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also demonstrated that IFN-γ produced by CD4+ T-cells and NKT cells increased STAT1 

activation, IRF1, and Bax, which induced apoptosis of hepatocytes, whereas STAT3 

downstream of IL-6, protected hepatocytes from injury by inhibiting IFN-γ signaling and 

by induction of anti-apoptotic protein Bcl-xl (Hong et al. 2002).  

 

In contrast to these reports, several studies have demonstrated that IFN-γ and its 

downstream signaling molecule STAT1 are one of the most important negative regulators 

of liver fibrosis. It has been shown in rodents that IFN-γ inhibits liver fibrosis induced by 

carbon tetrachloride (CCl4) or dimethylnitrosamine by inducing apoptosis of HSC (D C 

Rockey, Maher, et al. 1992; Ancini et al. 1996). IFN-γ also stimulates the cytotoxicity of 

NK cells against activated HSC by increasing the number of NK cells and upregulating 

tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on NK cells (Radaeva et 

al. 2006; W. Il Jeong et al. 2006). Further, clinical studies have shown that IFN-γ treatment 

attenuates liver fibrosis in hepatitis B (HBV) and HCV patients (Muir, Sylvestre, and 

Rockey 2006; H.-L. Weng et al. 2005; H. L. Weng, Cai, and Liu 2001). IFN-γ did not 

suppress HSC activation in Stat1-deficient cells and failed to inhibit liver fibrosis in CCl4-

treated Stat1−/− mice, suggesting that the antifibrogenic effects of IFN-γ are mediated by 

STAT1 (W. Il Jeong et al. 2006). Besides, IFN-γ and STAT1 are reported to inhibit HSC 

activation by inhibiting TGF-β/Smad signaling via increasing expression of Smad7 (Ulloa, 

Doody, and Massagué 1999). Taken together, these studies suggest that IFN-γ exerts its 

antifibrotic functions via STAT1. 

 

In our study, we observed increased liver damage and fibrosis in Socs1-/- Ifng-/- mice 

without a significant change of STAT1 activation or IFN-γ signaling suggesting that 

SOCS1-mediated hepatoprotection or antifibrogenic response does not require IFN-γ or 

STAT1 activation. Besides, SOCS3, which is also implicated in inhibiting liver fibrosis 

(Ogata et al. 2006) did not compensate for the loss of SOCS1 suggesting that mechanisms 

by which SOCS1 and SOCS3 mediate their hepatoprotective activities are likely different. 

In fact, we observed increased Il6 gene expression, elevated serum IL-6 levels and 

increased STAT3 phosphorylation in Socs1-deficinet mice following DMN or CCl4 
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treatment. While STAT3 in hepatocytes confers protection against liver injury and fibrosis, 

it may play a pro-fibrogenic role in HSCs by promoting their survival and production of 

TIMP-1, and in Kupffer cells by increasing TGF-β production (Cao 2003; J P Iredale et al. 

2010; J. X. Jiang et al. 2009). Therefore, our results clearly indicate that SOCS1 deficiency 

exacerbates the hepatic fibrogenic response in an IFN-γ-independent manner and that it 

may involve other mediators such as IL-6 (discussed in detail below). 

 

4.3 SOCS1 deficiency is associated with enhanced fibrosis 

Infiltrated immune cells and ongoing inflammation sustain the development of fibrosis. 

Since fibrosis is characterized by increased deposition of collagen, we have performed 

Sirius red and Masson's trichrome staining for liver tissue sections and quantified deposited 

collagen. We showed increased collagen deposition in the form of portal fibrosis with few 

septa (referred to as F2 stage) in DMN-treated Socs1-deficient livers, while CCl4 treated 

Socs1-deficient livers exhibited more severe fibrosis characterized by portal bridging 

fibrosis (F3 stage) compared with that of the control mice (Fig 3,4). Further, Socs1- 

deficient mouse livers also showed increased expression of collagen genes (Col1a1 and 

Col3a1) (Fig 6A) and hydroxyproline levels (Fig 4) compared to Ifn-γ-/- and control mice. 

Our results are consistent with a previous study showing that SOCS1 insufficiency is 

associated with fibrotic changes in the liver (Takafumi Yoshida et al. 2004). 

 

Socs1-deficient mouse livers also showed increased activation of myofibroblasts, which are 

the main source of collagen (Fig 5A, 5B). It has been demonstrated that fibroblasts from 

idiopathic pulmonary fibrosis (IPF) patients produce an excess of collagen due to the 

diminished expression of SOCS1, which has also been shown by using Socs1-deficient 

mouse fibroblasts. They also suggested that IFN-γ mediated inhibition of IL-4-induced 

collagen synthesis is mediated partly via SOCS1 (Shoda et al. 2007). The same group 

suggested that SOCS1 inhibits pulmonary inflammation and fibrosis using SOCS1 

heterozygous mice (Nakashima et al. 2008). Similar to their reports, in liver fibrosis, 

cytokine-induced modulation of SOCS1 might regulate the activation of hepatic stellate 

cells or myofibroblasts and their collagen synthesis. 
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4.3.1 IL-6 ⁄ STAT3 and fibrosis 

Several cytokines and growth factors are known to activate myofibroblasts, and deregulate 

collagen gene expression in liver fibrosis. In particular, IL-6 and TGF-β are known to act as 

profibrotic cytokines. However, the role of IL-6 and its downstream signalling mediator 

STAT3 in liver fibrosis is controversial. The function of STAT3 in liver inflammation and 

fibrosis is cell type-specific and model-dependent. STAT3 shows protective and 

proliferative functions in hepatocytes and a protective role in liver fibrosis (Taub 2003; H. 

Wang, Lafdil, Kong, et al. 2011; Deng et al. 2013). In contrast to these reports, other 

studies have demonstrated the opposite (pro-fibrotic) role of STAT3 in HSC. It has been 

shown that inhibition of the STAT3 pathway enhances apoptosis of HSC (J. X. Jiang et al. 

2009) and HSC–specific STAT3 null mice mice are less susceptible to fibrosis (Meng et al. 

2012). Accordingly, leptin and IL-6, the major activators of STAT3 in HSC, increase 

collagen mRNA expression during liver fibrosis (Saxena et al.,2002). IL-6 has also been 

shown to increase the expression of a-SMA and collagen in pancreatic stellate cells (Mews 

et al. 2002).  

 

A recent study has found a correlation between IL-6 levels, p-STAT3 and liver fibrosis in 

HBV patients and demonstrated that Sorafenib shows antifibrotic effect through STAT3 

inhibition in HSC (Su et al. 2015). Consistent with these findings, we also observed 

increased expression of IL-6 mRNA levels and protein levels and p-STAT3 in SOCS1 

deficient livers in both DMN and CCl4 models. We speculate that IL-6 secreted from 

inflammatory cells or HSC themselves leads to hyperactivation of STAT3 in the absence of 

SOCS1 and promotes liver fibrosis by activating HSCs via paracrine and autocrine 

mechanisms. In addition, Socs1-deficient HSC showed increased proliferation in response 

to IL-6 (Fig 8A). In agreement with this possibility, increased fibrosis in DMN-treated 

hepatocyte-specific Socs3-null mice has been attributed to increased STAT3 activation 

(Ogata et al. 2006). The absence of SOCS1 in all cells (resident and recruited) of the liver, 

in our model, might lead to deregulated production of IL-6 from diverse cellular sources 

and activation of IL-6 downstream STAT3 signaling pathway. Although STAT3 signaling 
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can have a cell-dependent positive or negative effect on the development of fibrosis, the 

absence of SOCS1 in all cells might have tilted the net balance towards fibrosis. Further 

studies are required to understand the role of SOCS1 and STAT3 in hepatic stellate cells, 

Kupffer cells, sinusoidal cells, and inflammatory cells in the development of liver fibrosis. 

This can be addressed by using cell-specific Socs1-/- or Stat3-/- mice. Since SOCS1 is a 

negative regulator of IL-6 signaling, the absence of SOCS1 may enhance activation of 

stellate cells and collagen expression through STAT3 pathway. This possibility could be 

addressed by using Socs1-deficient HSC or by inhibiting or silencing STAT3 in HSC. 

 

4.3.2 TGF-β ⁄ Smad3 and fibrosis 

Numerous studies have demonstrated the pathogenic role of TGF-β in fibrotic diseases. 

Fibrotic diseases are often associated with increased levels of TGF-β, which inhibits ECM 

degradation by downregulating the expression of MMP and upregulating the expression of 

TIMP-1 (K. Jeong 2008; Dooley and Dijke 2012) TGF-β is known to be involved in 

proliferation and transdifferentiation of HSC into myofibroblasts in various tissues in vivo 

(Leask and Abraham, n.d.; A. M. Gressner 1996). It has been demonstrated in experimental 

animals that progression of LF can be prevented by the blockade of TGF-β signaling (Yata 

et al. 2002) whereas, the overexpression of TGF-β1 in a transgenic model inhibited HSC 

apoptosis and induced synthesis of excessive amounts of matrix proteins (Kanzler et al. 

1999).  

 

TGF-β mainly mediates its signaling through Smad-dependent and independent pathways. 

It has been shown that Smad3-/- mice are less susceptible to LF than wild type mice 

suggesting that Smad3 is a main “fibrogenic mediator” (Latella et al. 2009; Cong et al. 

2012b). Consistent with these reports, in our study, we have demonstrated that Socs1-

deficient mice showed increased expression of TGF-β, and its downstream signaling 

molecules p-Smad-3, collagen genes, TIMP-1 and fibrosis, compared to control mice. 

Based on these findings, we postulate that SOCS1 may play an essential role in regulating 

TGF-β production by diverse cells of the liver and/or its signalling in HSC. Further studies 

using cell-spcific Socs1 KO mice will elucidate how SOCS1 deficiency contributes to the 
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enhancement of the TGF-β pathway in hepatic fibrosis.  

 

A crosstalk between IL-6 and TGF-β has been demonstrated in various models of fibrosis. 

Importantly, Ogata first revealed that TGF-β is a target gene of STAT3 and STAT3 

enhances hepatic fibrosis through upregulation of TGF-β in hepatocytes and in liver 

fibrosis model in mice (Ogata et al. 2006). It has been reported using primary HSC and 

diethylnitrosamine (DEN)-induced rat fibrosis model that STAT3 enhances liver fibrosis 

through up-regulation of TGF-β and fibrotic product expression, this has also been reported 

in chronic hepatitis B (CHB) patients, (M.-Y. Xu et al. 2014).  

 

Il6-/- mice have decreased levels of TGF-β and reduced fibrosis in models of lung fibrosis 

(F. Saito et al. 2008). IL-6 trans signaling drives a STAT3-dependent pathway that leads to 

hyperactive TGF-β signaling (O’Reilly et al. 2014). However, IL-6 can also mediate 

pulmonary fibrosis independently of Smad3-dependent pathways through hyperactivation 

of STAT3 (O’Donoghue et al. 2012). In keloid scar tissue, and in cultured keloid 

fibroblasts the blockade of JAK2 inhibited phosphorylation of STAT3 and reduced 

collagen levels, cell proliferation and migration suggesting that JAK–STATs play a critical 

role in tissue fibrosis (Lim et al. 2006). It has also been reported that in activated pancreatic 

stellate cells, an autocrine loop exists between IL-6 and TGF-β through ERK and Smad2/3-

dependent pathways (Aoki et al. 2006). 

 

In the light of the above reports, we suggest that TGF-β could be a target gene of STAT3 

and that the absence of SOCS1 may enhance JAK-STAT signaling and fibrosis. The 

crosstalk between IL-6/STAT3 and TGF-β/SMAD3 in HSC during liver fibrogenesis 

remains to be determined. 

 

4.4 SOCS1 deficiency enhances the activity of tissue inhibitors of metalloproteinases 

(TIMPs) 

An imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of 
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metalloproteinases (TIMPs) affects the synthesis and degradation of ECM, which plays an 

important role in the pathogenesis of liver fibrosis. TIMP-1, TIMP-2 participates in tissue 

remodeling by inhibiting various types of MMPs. 

 

Similar to IL-6 and STAT3, TIMP-1 seems to exert a dichotomous role in liver fibrosis. 

The major sources for TIMP-1 are activated HSC, macrophages and hepatocytes. Previous 

studies using TIMP-1-deficient mice have shown that TIMP-1 displays a protective role in 

liver fibrosis (H. Wang, Lafdil, Wang, et al. 2011). However, several other studies 

demonstrated in vitro and in vivo that TIMP-1 exerts profibrotic activity by preventing the 

collagen degradation through inhibition of MMPS and also by inhibiting apoptosis of 

activated HSC (Murphy et al. 2002a; Benyon and Arthur 2001). Similar functions are 

further confirmed in Timp-1 transgenic mice (H Yoshiji 2002). TIMP-1 and procollagen 

mRNA expression is increased during progression of liver disease, while interstitial 

collagenase (MMP-1) mRNA expression remained relatively unchanged (J. Iredale et al. 

1996). Silencing TIMP-2 with siRNA in mice followed by CCl4 injury showed reduced 

HSC activation and collagen deposition, suggesting its pro-fibrotic function of TIMP-2 (X. 

Liu et al. 2006). 

 

We have observed increased mRNA expression of Timp1, Timp2, and Col1a1, Col3a1 in 

the livers of Socs1-/-Ifng-/- mice, indicating that these TIMPs might contribute to the 

increased deposition of collagen in Socs1-deficient mice. Similarly, an increase SMA 

positive staining (Fig. 5), the quantity of SMA (Fig. 7) and Acta2 expression in the livers of 

DMN or CCl4 treated Socs1-null mice, in addition to inhibiting MMP activity, suggests that 

increased Timp-1 activity might have contributed to the survival of HSC and their 

activation to myofibroblasts in the absence of SOCS1. Further studies are needed to 

understand how SOCS1 defciency leads to increased TIMP expression. 

 

4.5 SOCS1 differentially regulates MMPs expression in Liver Fibrosis. 

The biological functions of MMPs are complex because the same MMP can have opposing 
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effects based upon the cell type or tissue in which it is being expressed. Some MMPs are 

anti-fibrotic, whereas others show profibrotic functions. The choice of which MMPs to 

target for therapeutic purposes is still uncertain (Giannandrea and Parks 2014; Duarte et al. 

2015). 

 

We have observed reduced expression of Mmp1 in the fibrotic livers of SOCS1 deficient 

mice in both DMN and CCl4-induced liver fibrosis models. The expression of Mmp2 

increased in DMN model whereas it was not significantly altered in the CCl4 model (Fig. 

6B). MMP-1, also known as collagenase, degrades collagens type 1 and 3. Overexpression 

of human MMP1 gene by adenovirus gene delivery inhibits liver fibrosis in a rat model 

while promoting hepatocyte proliferation (Iimuro et al. 2003). Similar findings have been 

reported in myocardial fibrosis upon over expression of MMP1 (Foronjy et al. 2008). An 

antifibrotic role has been reported for MMP-2 (Gelatinase A or Type 4 collagenase) in both 

chemical and cholestasis induced fibrosis models using MMP-2 deficient mice and in vitro 

silencing of MMP-2 in stellate cells (Onozuka et al. 2011; Radbill et al. 2011). 

 

MMP-3 and MMP-9 can activate latent TGF-β suggesting their profibrotic function 

(Giannandrea and Parks 2014). The role of MMP-9 in the liver is not clearly known. Some 

studies suggest a profibrotic function as it can activate TGF-β whereas some other studies 

attribute it an antifibrotic function (Cabrera et al. 2007; C. G. Lee et al. 2001). It has been 

suggested that MMP-3 promotes pulmonary fibrosis by inducing epithelial cells to undergo 

an epithelial-mesenchymal transition (EMT) to generate cells that are myofibroblast-like in 

function (Yamashita et al. 2011). Interestingly, MMP-3 and 9 expression is increased in 

CCl4-induced fibrosis and decreased in DMN- model in the livers of Socs1 deficient mice 

(Fig. 6B). The significance of this differential expression in the two models, both of which 

initiate the fibrogenic response by inducing centrilobular necrosis, remains to be studied. 

Similarly, understanding the potential contribution of SOCS1-dependent modulation of 

cytokine and growth factor signaling to the induction of MMPs in liver fibrosis requires 

further investigation. 
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4.6 SOCS1 regulates HSC activation or proliferation in response to different cytokines 

and growth factors. 

Liver fibrosis is characterized by increased proliferation of hepatic stellate cells. Several 

lines of evidence suggest that PDGF is the most potent mitogen for HSC. Pinzani et al in 

1989 first reported the effect of growth factors on HSC proliferation. They found that 

PDGF, EGF, TGF-α, and βFGF induced a dose-dependent increase in DNA synthesis with 

a peak effect at 24 h. Among them, PDGF showed the maximum, 18-fold increase in DNA 

synthesis, followed by EGF, TGF-α, and βFGF, over control. PDGFβ and PDGFR mRNA 

expression is increased in the rat liver tissue following treatment with CCl4 and in cirrhotic 

human livers (M Pinzani et al. 1996; M Pinzani et al. 1994). In a condition of chronic 

inflammation of the liver, the sustained release of PDGF by inflammatory cells and 

increased expression of PDGF receptors in activated FSC (earlier synonym for HSC) 

greatly contribute to the expansion of FSC population, and to the progression of 

fibrogenesis. TGF-β did not affect DNA synthesis of fat storing cells (FSC) or HSC but 

TGF-β enhanced the stimulatory effects of both EGF and PDGF (M Pinzani et al. 1989). 

 

SOCS1 not only regulates JAK–STAT signaling but also RTKs signalling (Kazi et al. 

2014). Previous study from our laboratory has shown that SOCS1 regulates HGF (c-Met) 

signaling in hepatocytes (Yirui Gui et al. 2011). To date, there is little evidence linking 

SOCS proteins in HSC with liver fibrosis and no previous report showing the role of 

SOCS1 in HSC. We have shown, for the first time, an increased expression of the Pdgfβ 

gene in fibrotic livers of Socs1-deficient mice and increased SOCS1-deficient HSC 

proliferation in response to PDGFβ and/or to other growth factors (TGF-α, EGF and HGF) 

(Fig. 8A). Our findings suggest that the antifibrotic function of SOCS1 is also mediated by 

regulating the availability of growth factors that promote HSC proliferation and/or by 

regulating growth factor signaling in HSC. Further studies are required to elucidate the 

molecular mechanisms by which SOCS1 regulates HSC proliferation. 

 

The antifibrotic effect of IFN-γ is known to be achieved by directly inhibiting proliferation 

and activation of hepatic stellate cells (Ancini et al. 1996). It has been shown that IFN-γ 
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inhibits HSC proliferation via its downstream signaling molecule STAT1. STAT1-deficient 

HSC showed much greater cell proliferation in the presence of PDGFβ and PDGFβ mRNA 

expression than wild-type HSC, suggesting that STAT1 is a negative regulator for the 

proliferative effect of PDGF on HSC (W. Il Jeong et al. 2006). Given that, in this study, we 

showed that IFN-γ deficient HSCs showed enhanced proliferation in the presence of 

PDGFβ compared to wild type cells suggesting that IFN-γ inhibits PDGFβ induced 

proliferation. It is possible that the simultaneous absence of IFN-γ in SOCS1 deficient mice 

used in our study might relieve the inhibitory effects of IFN-γ –induced STAT1 activation. 

However, PDGFβ has also been shown to activate STAT1, STAT3, and ERK pathways 

(Massimo Pinzani 2002; M Pinzani et al. 1989), and STAT3 has been shown to be 

implicated in cell proliferation in different cell types (hirano, ishihara, & hibi, 2000). The 

increased proliferation of Ifn-γ-/-/Socs1-/- HSC and increased STAT3 activation in SOCS1 

deficient livers indicate that PDGF likely mediates HSC proliferation via STAT3 pathway 

rather than diminished STAT1 activation in the absence of IFN-γ. Further studies using 

HSC-specific Socs1-null cells and mice are required to clarify the role of IFN-γ-induced 

STAT1 activation versus PDGF-induced STAT3 activation in HSC proliferation and liver 

fibrosis.  

 

Sorafenib is a RAF (Rapidly Accelerated Fibrosarcoma) kinase inhibitor, downstream of 

many RTKs and is the only Food and Drug Administration-approved drug for the treatment 

of HCC. Recent studies reported the antifibrotic function of sorafenib, which reduces HSC 

proliferation and ECM synthesis by enhancing HSC apoptosis (Hong et al. 2013; Y. Wang 

et al. 2010). A recent study on the underlying molecular mechanisms of Sorafenib and its 

derivatives showed that their anti-fibrogenic effects are mediated via inhibition of STAT3 

activation, down-regulation of TGF-β/Smad2/Smad3 signaling and downstream signalling 

pathways of PDGFR-β (Su et al. 2015). They also reported that correlation exists between 

p-STAT3 overexpression in HSC of chronic hepatitis B patients with advanced liver 

fibrosis score and high plasma IL-6 levels. In human liver fibrosis, SOCS1 gene is 

frequently suppressed by promoter methylation that correlates with disease severity (T. 

Yoshida 2004). Given that Sorafenib shows the antifibrogenic effect by inhibiting STAT3 

activation and TGF-β and PDGF signalling pathways, and that SOCS1 deficiency increases 
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IL-6, pSTAT3, TGF-β, p-Smad-3 and PDGF expression in mouse models of fibrosis and 

enhances HSC proliferation, we propose that Sorafenib can be used as a therapeutic agent 

for the treatment of liver fibrosis in patients with SOCS1 gene methylation. 

 

 

 

 

 

 



5. CONCLUSIONS 

In conclusion, our results suggest that absence of SOCS1 leads to acceleration of hepatic 

inflammation and fibrosis. SOCS1 regulates different cytokines and growth factors and 

thus inhibits fibrosis by attenuating HSC activation and proliferation. We also conclude that 

SOCS1 regulated fibrogenic response occurs in an IFN-γ independent manner. Further in 

vitro and in vivo studies on molecular mechanisms of SOCS1 in liver fibrosis will provide 

new insight in understanding its function and in predicting the disease progression and help 

in the development of targeted therapeutic strategies in preventing the progression of liver 

fibrosis. 

 

Figure 6 Schematic diagram of SOCS1 role in liver fibrosis. Hypothetical model 

illustrating the different cytokines and growth factors pathways in hepatic stellate cell 

(HSC) activation and fibrogenic response such as proliferation, activation, collagen 

deposition and final event fibrogenic response. Induction of SOCS1 in HSC may 

regulate these cytokines and growth factors signaling and thereby inhibit HSC 

activation and fibrogenic response. 
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