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RÉSUME 

L‟étude des mécanismes de transfert de masse des ions dans le bain électrolytique dans une 

cellule d‟électrolyse d‟aluminium se heurte aux conditions sévères qui y sont rencontrées: haute 

température, milieu corrosif, etc.. Cependant, il est important de connaitre ces mécanismes de 

transfert en raison de leurs grands impacts sur les paramètres indicatifs du procédé d‟électrolyse, 

par exemple l‟efficacité du courant. Le calcul numérique est une façon de surmonter ces 

difficultés et d‟éclairer les aspects moins connus du procédé de production d‟aluminium. 

L‟électrolyte utilisé pour l‟électrolyse est composé par différents ions qui se déplacent dans un 

champ électromagnétique. Ce dernier est généré par le courant électrique intense qui passe par la 

couche d‟aluminium et le bain. Le comportement dynamique des ions est sujet à leur gradient de 

concentration (la diffusion), à l‟écoulement du bain (la convection) et au champ électrique (la 

migration). Dans le cadre de cette étude, le mouvement des ions est analysé et l‟importance 

relative de la diffusion et de la migration est comparée en régime transitoire pour deux classes 

d‟espèces électroactives et non-électroactives. Pour ces deux types d‟espèces, on observe que la 

migration est le mécanisme dominant de transfert de masse dès les premières phases de 

l‟électrolyse. Cependant, la diffusion devient graduellement le mécanisme le plus important aux 

électrodes pour des espèces électroactives comme Al2OF6
-2

 et AlF4
-
. Le champ électrique et le 

champ de concentration ont été simulés à partir d‟un modèle 2-D. Les résultats montrent qu‟il y a 

un gradient de concentration entre l‟espace inter-électrodes et la région proche de la couche de 

gelée. Par conséquent, il y a diffusion des espèces entre ces deux régions qui vient diminuer le 

gradient de concentration et ainsi éviter l‟épuisement des ions Al2OF6
-2

 ou la surconcentration des 

ions AlF4
-
. En outre, un code libre a été développé et implémenté sur OpenFOAM (une 

plateforme libre de librairies C++). Ce code est capable de résoudre simultanément les équations 

du champ électrique, du transfert de masse et de Navier-Stokes. Les principaux apports de cette 

thèse, tel que les modèles et résultats obtenus, peuvent éclairer les mécanismes de transfert de 

masse dans le bain et aux électrodes et ainsi améliorer leur compréhension. 

Mots clés : Aluminium, électrolyse, transfert de masse, études numériques 
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ABSTRACT 

The harsh conditions of electrolytic bath in aluminium electrolysis cell have been an obstacle 

against the understanding of mass transfer that is at the origin of the aluminium production 

process. This knowledge is of great importance due to the impact that it could have on the 

functional parameters of the cell like current efficiency. Numerical modelling is a way to 

overcome the difficulties and to shed light over the hidden aspects of the electrochemical process. 

The electrolyte typically used in an aluminum electrolysis cell is composed of different ions 

moving in the electromagnetic field generated by the high intensity current needed for this 

industrial application. The behaviour of these ions is under the influence of concentration 

gradients (diffusion) and depends also on other phenomena in the cell like bath flow (convection) 

and electric field (migration). In this study, the coupling between these fields is treated for 1D 

and 2D models of the cell. The relative importance of migration and diffusion are compared for 

two different categories of electroactive and electroinactive ions in a transient model. For both 

categories of ions, migration is the dominant form of mass transfer in the very first stages of 

electrochemical process. However, diffusion becomes the dominant mechanism of mass transfer 

for electroactive ions in developed boundary layers. In 2D model, there is a concentration 

gradient between interelectrode and near sidewalls region. Consequently, there is a diffusion of 

ions in and out of the interelectrode space to diminish the depletion or overconcentration of 

certain electroactive ions like Al2OF6
-2

 and AlF4
-
 at the electrodes. Furthermore, the impact of 

convection and bath equilibrium in addition to a more suitable mass transfer model has been 

studied on a parallel plate electrodes reactor. Finally, an open source library is developed and 

built on OpenFoam ( an open source C++ CFD platform) that is capable of solving mass transfer 

equations for different models. The description and findings of this thesis will shed light on the 

mass transfer mechanisms in both bulk region and boundary layers, and can be used for further 

studies in this field. 

Key words: aluminium, electrolysis, mass transfer, numerical simulation 
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1. INTRODUCTION 

1.1 Production of aluminium 

Aluminum has become one of the most important metals used in many aspects and 

different fields. The special particularities of aluminum and its alloys like its low density, 

flexibility, thermal, and electrical conductivity have made it one of the most appealing 

metals. Due to increasing demand for aluminium in various fields, the aluminium 

production industry has become an outstanding industry.  

The most developed method, and still the only industrial process in operation, to produce 

aluminium is through the electrolysis of the aluminium oxide, alumina, in a cell 

containing a molten salt called bath between two electrodes. This process is called the 

Hall-Héroult process. There are generally two major industrial electrolysis cells that use 

this process, the Söderberg cells and the Hall-Héroult cells. Söderberg cells use a 

continuous anode created by addition of pitch continuously to the top of the submerged 

anode. In contrary to Söderberg cells, Hall-Héroult cells use prebaked anodes which lead 

to better product quality and less environmental effects [1]. Nowadays, the prebaked cells 

are more developed and more common. In this study, the general term of electrolysis cell 

refers to prebaked Hall-Héroult cell, and Söderberg cells are not included in this study. 

1.2 Aluminium electrolysis cell 

Hall-Héroult cell is the industrially scaled aluminium production cell, and is composed of 

two electrodes and a molten solution between them. The Hall-Héroult process uses the 

electrical energy to reduce alumina (Al2O3) to the pure aluminium by means of reactions 

taking place at the electrodes. This process occurs at high temperature ( 965   C) and the 

solid alumina is injected and dissolved into the molten bath for the continuity of the 

process. Figure 1.1 shows schematically the prebaked aluminium electrolysis cell.  

http://en.wikipedia.org/wiki/Anode
http://en.wikipedia.org/wiki/Pitch_%28resin%29
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Figure 1.1Schematic of modern aluminium reduction cell [2] 

1.2.1 Bath 

Electrolytic bath or more briefly bath is the technical term that is used for the solution of 

alumina into cryolite (Na3AlF6) in addition to other additives. The purpose of adding 

these additives like AlF3, CaF2, MgF2 and LiF into bath is to control thermophysical 

properties of the bath in the favorable range [3]. 

Aluminium is produced from alumina that is fed into the bath each 3 to 5 minutes to keep 

alumina concentration in favorable range. As it is given in reaction 1.1, carbon dioxide is 

the other product of the cell reaction. 

       (         )   ( )    ( )     ( ) 
1.1 

 

The above reaction presents the simplified overall reaction that leads to aluminium 

production. However, the production of aluminium and carbon dioxide are the last steps 

of a series of homogeneous and heterogeneous reactions that takes place in the bath and 

at both electrodes, respectively [1]. In other words, the dissolution of alumina in the 

molten bath results in different ions and complexes. These ions need to be transferred to 
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the electrodes in order to participate in electrochemical reactions. These electrochemical 

reactions produce aluminium and carbon dioxide and other ions that affect the initial 

composition of the cell [1]. However, the alumina is injected into the bath continuously to 

prevent the bath of being depleted of alumina and to keep the bath composition almost 

uniform. This leads to keep the electrochemical and thermophysical properties of the cell 

constant and helps to prevent the probable instabilities in the cell. 

The movement of these ions and species in the bath is at the origin of macroscopic 

transport phenomena in the cell like electrical current and bubble flows. Generally 

speaking, the transport phenomena in the cell can be classified into four major categories 

of: 

1. Mass transfer (ion transfer in bath) 

2. Momentum transfer (bath and metal flow) 

3. Heat transfer (energy balance) 

4. Charge transfer (electric current) 

In spite of the fact that each of the four transport phenomena refers to a particular 

physical phenomena, they are highly coupled to each other. In other words, the profile of 

concentration, velocity, temperature and current density in the cell affects the other fields 

and is affected by any change in other fields. Figure 1.2 illustrates schematically the 

mutual interaction of these four fields in the high temperature electrolysis cell of 

aluminium. 
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Figure 1.2 The fields and their mutual couplings in aluminium electrolysis cell 

The electric current that passes through the bath is the source of the energy and cause of 

electrochemical reactions in the cell. The high amperage electric current which enters 

from anode and passes through electrically resistive bath generates the main heat source 

in the cell by Joule heating. This heat source provides the enthalpy of fusion of molten 

electrolytic bath. The electric current through molten salt is conducted by the movement 

of ions and is called ionic conductivity [4, 5]. Unlike the conductivity in solids, the 

importance of free electron in bath conductivity is limited and negligible for many cases 

[6, 7]. 

The other aspect of the cell is the flow of the bath in the inter-electrodes space. The 

current passes through aluminium layer after leaving the bath. The aluminium layer is 

formed by the produced aluminium at cathode that is sedimented under the bath due to its 

higher density. The electric current flow through this highly conductive layer in addition 

to the magnetic field generates the so-called Lorentz force. Lorentz force is the source of 

hydrodynamic flow in the aluminium layer which is transferred to the bath, and is one of 

the sources of momentum in bath. This interaction between electromagnetic field and 
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velocity field is called magnetohydrodynamic effect (MHD). MHD is one source of 

hydrodynamic instability in the cells and is a limiting parameter in the design of the cells 

[8]. 

There are other sources that affect flow pattern in the bath. The bubbly flow under the 

anode and Marangoni effect are two other sources of momentum transfer in the bath. As 

mentioned previously, CO2 and Al are two major products of electrolysis cell. The CO2 is 

produced at the anode by oxidation of carbonaceous anode. The rate of production of this 

species in gaseous state is high enough to be followed by CO2 nucleation, the bubble 

growth, and finally the detachment of the bubble from anode surface. Although the first 

two stages are affecting the convection scheme of the very near anode region slightly, the 

latter that is ignited by the momentum of turbulent flow in the cell is accelerated until the 

bubble release, and is an important local momentum source [9, 10]. Moreover, like other 

bubble generating reactions, the bubble nucleation on the lower anode surface has a 

limiting effect on the reaction source. In other words, the CO2 bubbles or film (depending 

on the level of turbulence in the cell) is a resistive film for electric current flow and also 

for the ions heading to anode to participate in anodic reactions. 

The closing ring of the chain of phenomena in the cell is mass transfer in the cell that 

takes place in the ionic form due to high temperature liquid electrolyte. The ion transfer 

in the cell is at the origin of bath conductivity [5]. The major charge carrying ion in the 

bath is Na
+
 ions moving from anode to cathode. The other ions have minor role in 

carrying charges across the bath [11]. 

Based on the described coupled fields, solving mass transfer problem requires focusing 

on four other preliminary problems. These problems include: 

1- thermodynamic, reactions and kinetics of the cell, 

2- the current density profile in the electrolyte and on the electrodes, 

3- temperature profile and heat transfer effects,  

4- and the velocity of the bath. 
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The assumption of an isothermal cell will reduce the problem to three problems of mass 

transport of the cell, electric field, and velocity field. The simultaneous or segregated 

consideration of these aspects of the cell indicates the level of complexity and 

nonlinearity of the mass transfer analysis in the cell. 

The thermodynamic, homogeneous and heterogeneous kinetics of the cell also need to be 

taken into account because they are closely linked to mass transfer in the cell. The 

homogenous reactions in the cell are the reactions that occur when alumina is dissolved 

in the bath. The alumina dissolution in the bath forms the different ions and complexes in 

the cell. However, there is still controversy over the reactions and the produced ions after 

these reactions [1]. The heterogeneous reactions are the electrochemical reactions at the 

cathode and at the anode. These reactions are the electrochemical reactions responsible to 

produce aluminium over the cathode surface and carbon dioxide on the anode surface. 

Nevertheless, the details of these electrode reactions are not clear and several models 

have been proposed for these reactions. One reason for the importance of mass transfer in 

this analysis is that electrode reactions are mostly mass transfer controlled, and the lack 

of mass transfer or the lack of one of the mechanism of mass transfer can lead to 

depletion of this species near the corresponding electrode [3]. Therefore, the favorable 

reaction of oxidation or reduction will be replaced by other side reactions which are 

undesirable or less favorable for current efficiency of the cell. 

Such undesirable reactions in the cell are called back reactions which are responsible for 

the efficiency loss in the cell. As an example of this, take the aluminium already 

produced in the cathode that migrates to anode and that is oxidized to become alumina. It 

is believed that this reaction is caused by the migration of Al from cathode to anode [3]. 

The term migration indicates that Al dissolution in bath forms aluminium fluoride anions 

which are negatively charged. So, the electric field forces these negatively charged ions 

to move toward the anode where their oxidation produces alumina. This indicates another 

important aspect of mass transfer of ions on the functional parameters of the cell like 

current efficiency and the amount of produced aluminium. 
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1.3 Research project description 

Briefly, the analysis of the mass transfer in high temperature aluminium electrolysis cell 

provides important information about the mutual interaction of different fields which can 

be used later on to predict, to control, and to optimize the functionality of aluminium 

electrolysis process. The harsh and corrosive ambience of the bath has been an important 

obstacle to study experimentally the bath mass transfer patterns to the extent that even 

our knowledge on the kinetics of reactions and of the ionic composition of the bath is 

limited. Based on this brief description, the basic question of the research project is: „By 

using numerical simulation, is it possible to analyze the transient behavior of ionic mass 

transfer in the bath by considering the impacts of other coupled thermophysical problems 

like current density, reactions and kinetics, and flow? ‟. 

As mentioned earlier, the focus of this study will be on the mass transfer in the bath. 

Consequently, the diffusion or penetration of bath in lower surfaces like cathode block or 

cast iron is not of the interests of this study. In fact, the domain of study will be limited 

by anode on the top, cathode on the bottom, sidewalls on sides of the cell and bath in the 

middle of these boundaries.  

1.4 Research project objectives 

1.4.1 Principal objectives 

The principal objective of this study is to develop a numerical model representing the 

mass transfer patterns for different ions in the bath and to use it to study the transient 

behavior of ions in an aluminium electrolysis cell. This study will take into account the 

possible mechanisms of mass transfer and compares the importance of each mechanism 

for each ion in each stage of electrolysis process. 
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1.4.2 Specific objectives 

To reach the principal objective of this study, it is necessary to fulfill certain specific 

objectives: 

1. To provide the cell with an integrated ionic model, which can be applicable to the 

proposed electrode reactions and existing transport equations and parameters. 

2. To study one dimensional mass transfer for different ions in between two 

electrodes. This model will take into account the migration and diffusion in the 

bath on the interelectrode line. 

3. To study the electric current distribution in two dimensional cell considering the 

electrode reactions kinetics at both electrodes. 

4. To study transient mass transfer of different ions in the bath for the 2D 

electrolysis cell. This objective is coupled with the third objective as the current 

density predicted at the previous objective will affect the ions movement in the 

cell. 

5. To solve Maxwell-Stefan equation for mass transfer of the ions in the 

concentrated molten salt by implementing new libraries and solvers in open 

source software called OpenFOAM (Open source Field Operation And 

Manipulation). This code can be used for further studies on numerical simulation 

of coupled fields in electrochemical systems. 

1.5 Contribution, originality of this study 

As discussed earlier, the corrosiveness and high temperature functioning condition of the 

cell are major obstacles which make the analysis of the cell very difficult. These 

limitations are to the extent that even the chemical composition of the bath and also 

electrochemical reactions over electrodes are controversial subjects. Furthermore, the 

tight coupling between reaction kinetics, electromagnetic, hydrodynamic and chemical 

phenomena in the bath makes the numerical simulation of the mass a complex nonlinear, 



23 

 

highly coupled, time-consuming mathematical problem. Accordingly, there have been 

limited numbers of studies about the mass transfer analysis in the bath [12-14]. 

In spite of the complexity of the mass transfer problem in aluminium electrolysis cell, the 

importance and necessity of this study cannot be denied. The core of this important 

problem is based on the fact that most of reactions at electrodes are mass transfer 

controlled. In other words, mass transfer mechanisms are responsible to provide 

electrodes with the needed electroactive species. The lack of these species at the 

electrodes leads to other reactions, which are not desirable, and reduces the current 

efficiency of the cell. The other important aspect of the mass transfer analysis is its 

effects on the other fields like bubble evolution pattern under the anode surface, joule 

effect and temperature profile in the bath and finally hydrodynamic stability of the cell. 

Although considering all of these mutual effects of different fields demands a 

complicated numerical simulation, even the simplified decoupled models for mass 

transfer can provide us with valuable information that can be used to develop more 

complicated multi-field models. 

Considering the importance, difficulties and limitations related to this subject, the 

contributions of this study are: 

 Modeling one dimensional transient behavior of ions in the interelectrode space 

between anode and cathode considering the migration and diffusion as major 

mechanisms of mass transfer and turbulent diffusion to introduce the impact of 

turbulence in the system.  

 Modeling the 2D current density distribution in the cell by considering the 

kinetics of electrode reactions at the anode and at the cathode and also the effect 

of bubble coverage under the anode area. 

 Modeling the effect of turbulent diffusion through a mathematical model based on 

two dimensional geometry of the cell. 
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  Modeling the transient behavior of ions movement in the cell under the impact of 

electric and velocity fields. 

 Development of an open source code which can be used and developed to model 

coupled phenomena in electrochemical systems. 

The originality of this study can be summarized in these major aspects: 

 I developed the first model to treat the mass transfer problem in the bath for NaF-

AlF3-Al2O3 system. This study includes the mass transfer analysis at both 

electrodes and inside the interelectrode space. 

 The mass transfer model developed considers the migration of each species in the 

cell based on electric current density profile. 

 The importance of each mechanism of mass transfer like diffusion and migration 

has been studied over the period during which the concentration profiles are 

evolving near the electrodes. 

 The effect of turbulent diffusion has been added to the mass transfer equations 

through the wall distance mathematical model for 2D geometry of the cell. 

1.6 Thesis plan 

The thesis is to be presented in 6 chapters. 

Firstly, the purpose of present chapter is to introduce the motivations, objectives, 

originalities and contributions of this study. In this chapter the general overview of 

research project and the problem to be face is described. 

However, the details of the problem to be solved are given in the second chapter, state of 

art. The originality of the research objectives and its contributions in scientific and 

industrial fields are discussed in details in this chapter after having presented a review of 

other related studies in this field. The purpose of this chapter is to define the scientific 

frontier of known-unknown and done-undone around the subject of mass transfer in 



25 

 

aluminium electrolysis cell. As stated previously, the coupling between different fields 

makes the area of research a vast area including different subjects like: 

 The electrochemical kinetic of reactions over the electrodes and current density 

distribution over the electrodes and in the electrolytic bath. 

 The reaction and thermodynamic in the bath, the physicochemical properties of 

the ions in the bath and also the bath as the composition of these ions. 

 The mechanisms of ion transfer in the bath and mass transfer problem in molten 

salt electrolytes. 

The third chapter concentrates on the mass transfer in the interelectrode one dimensional 

distance. The purpose of this chapter is to analyze the concentration profiles formed at 

electrodes after the electrochemical reactions and also the diffusion and migration fluxes 

for each electroactive and electroinactive ions moving in the bath. The results and 

discussion of 1D modeling is also presented in this chapter. The model presented in 

Chapter 3 does not take into account the homogeneous reactions in the bath.  

In one dimensional analysis of mass transfer in the cell, the current density is constant 

and the effect of current density distribution on migration flux is neglected. Therefore, 

there is a need for two dimensional analyses which can add the force of electric field on 

the ions. Chapter 4 presents a two-dimension model for electric current distribution in the 

bath. The mass transfer equations are solved by using the results obtained for current 

density distribution from the first model. This analysis generalizes the mass transfer 

pattern for two categories of electroactive and electroinactive ions in the cell and 

considers the evolution of diffusion and migration flux vectors, which are not necessarily 

in normal interelectrode direction. The simulation is done inside a finite element package, 

COMSOL Multiphysics and the results and discussion of the results are presented in the 

same chapter. However, homogenous reactions in the bath are considered only to 

calculate the initial concentration of species. Moreover, the model used to calculate the 
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concentration equations are mixture averaged Maxwell-Stefan equations, that are 

simplified form of Maxwell-Stefan equation. 

In Chapter 5, a new C++ is developed to model transport phenomena in electrochemical 

systems. This code is built on OpenFOAM, an open source C++ platform that is capable 

of treating multiphysics structure of electrochemical cells. In chapter 5, the homogeneous 

reactions and also Maxwell-Stefan equations are implemented into codes and are solved 

for a parallel-plate electrolysis cell. The results and discussions are presented in the same 

chapter. 

The final chapter concludes the final overview of this research project, the original 

findings of this study which can contribute to scientific and industrial purposes. Finally, 

the perspectives of this research project that can be proposed to continue this study in 

future works are illustrated. 
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2 STATE OF ART 

This chapter draws a picture over the different studies on the mass transfer analysis in the 

cell. This literature review aims to distinguish the originalities of the present study 

compared to the previous studies in this field. As illustrated in previous chapter, the mass 

transfer analysis cannot be studied without considering different transport phenomena in 

the cell. Mass transfer in electrolytic solutions covers the description of ions movement 

and dynamics, material balances, electric current distribution, and fluid mechanics [15]. 

The general form of the problem is a nonlinear multiphysics problem. The consideration 

of the coupling between these different transport phenomena defines the complexity of 

mathematical model to be solved. 

Most of the studies that have been done on the transport phenomena in the cell simplify 

the coupled nonlinear high-temperature turbulent physics of the electrolyte to a simpler 

decoupled or weakly coupled linear mathematical problem [12-14]. In this chapter, we try 

to illustrate the models related to various aspects of mass transfer in the cell with special 

focus on the studies over electric current density and mass transfer patterns in the cell. 

2.1 Current density distribution and electric potential field 

The current density distribution in aluminium electrolysis cell has been studied 

extensively through experimental and numerical methods [16-20]. There are three major 

mathematical models for simulation of electric current distribution in the electrochemical 

cell. These three models are known as primary, secondary, and tertiary current 

distributions in the cell. The source of difference between the different models lies on the 

consideration of the interaction between electrode reaction current and electrode kinetics 

and species concentration [15] . 
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The application of primary current distribution to the aluminium electrolysis cell sets the 

overpotential to be constant for any current density [21]. This makes the numerical 

calculation of the system easier by simplifying the Newman boundary conditions for 

electric potential to Dirichlet boundary condition. This model is suitable for the 

applications in which the effect of electrode kinetics can be neglected. The advantage of 

this assumption is that it is possible to solve it through many commercial codes [22]. 

Secondary current distribution considers the limiting impact of electrode overpotential on 

the current. This model is applied to aluminium electrolysis cell in different studies with 

different models for electrode reaction kinetics. Based on this model, overpotential varies 

with electrode current density and the correlation between current density and 

overpotential is typically exponentially nonlinear (Butler-Volmer general form) or 

linearized form of Butler-Volmer equation [20]. The linear or nonlinear form of Butler-

Volmer correlation can be a limiting criterion for the use of software package tools 

capable of solving secondary current distribution in the cell. 

Finally, tertiary current distribution assumption is used to treat transport phenomena by 

considering the effect of mass transfer on the current density profile. Generally, this 

model couples the charge transfer and mass transfer equations. Solving of the coupled 

equations demands highly robust programming methods and high computing capacity 

clusters. To the author‟s knowledge, there has not been any study using this method to 

model mass transfer and current density in aluminium electrolysis cell. 

2.2 Mass transfer in aluminium electrolysis cell 

As stated before, there is still controversy over the homogeneous (bath) and 

heterogeneous (electrode) reactions and consequently over the ionic composition of the 

electrolytic bath [1, 3]. Therefore, the studies that have been done on the mass transfer of 

these species are limited. The harsh and corrosive ambiance of bath is the reason of the 

lack of sufficient data on the kinetics of reactions, thermophysical properties of species, 
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and consequently the limited number of studies on the mass transfer of the cell. The 

studies on mass transfer include the studies over: 

 Transport properties of the ions in the bath (dynamics of species in the bath) 

 Studies over the non-ionic and ionic mass transfer in the bath 

These two aspects of the mass transfer are related and will be discussed in details in the 

following sections. 

2.2.1 Dynamic properties of the ions 

The study of transport properties in high temperature salts is always a challenge because 

of the problem of high temperature and the corrosiveness that increases dramatically at 

high temperature. This difficult condition can be less important for the measurement of 

some thermophysical parameters like conductivity, density, and viscosity. However, the 

determination of dynamic properties of ions like diffusion and mobility in molten salts is 

more complicated compared to the above properties [23]. Nonetheless, there are some 

studies over the dynamics of species and ions in the electrolytic bath with special focus 

on the mobility of these ions in electrolytic bath. The percentage of the current that is 

transferred by each ion in the bath is called transference number [24]. The main charge 

carrier in the bath is the focus of many studies in the dynamics of ions in the bath. It has 

been found that Na
+
 carries the largest fraction of charge through the bath [25]. In most 

of studies, the main charge carrier in the bath is Na
+
 ions, to the extent that the 

transference number of Na
+
 is proposed to be 0.99. The high transference number of Na

+
 

and F
- 

ions is justified by the fact that their size is smaller than fluoro-aluminate 

complexes in the bath and there is less friction against their movement [5, 11]. However, 

it should be noted that transference number is varying with the composition of the bath 

[24]. For example, the transference number of Na
+
 reduces to 0.74 by adding AlF3 to 

Na3AlF6 melt [6, 26]. 
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2.2.2  Non-ionic and ionic mass transfer in aluminium electrolysis cell 

The mass transfer in aluminium electrolysis cell can point out to several different 

phenomena in the cell. The microconvection near anode surface which points to 

nucleation, growth, and detachment of CO2 bubbles that is followed by the diffusion of 

CO2 in the bath [27-29]. Another important aspect of mass transfer concerns the alumina 

injection to the cell and its dissolution in molten bath. Alumina is added to the bath each 

3 to 5 minutes. The rate of dissolution and diffusion of the resulting complexes is 

important to prevent the depletion of electroactive species over both electrodes. 

While the diffusion of CO2 and solid alumina in the bath are known as the two-phase 

diffusions or two-phase flow, the molecular mass transfer of ionic compounds can be 

classified as another type of phenomena that takes place in the cell. As stated previously, 

the number of studies that have been done on the latter are conducted to fulfill different 

objectives. These objectives includes different phenomena in the cell like degradation of 

cathodic block, diffusion of bath in cathodic block, crystallization of bath on the cathode 

surface, and current density distribution near the cathode[12-14]. The difficulties of 

measurement in the harsh condition prevailing in the bath make any of these studies a 

valuable work for better understanding of ions and complexes behaviour in the cell. 

However, the literature suffers from the lack of enough knowledge and data on 

thermophysical properties due to these limitations [1, 3]. Consequently, this makes the 

simulation of the cell more difficult than expected for conventional electrochemical 

systems. 

By classifying the different aspects of mass transfer modelling of the cell, it can be said 

that there are three major steps to pass to model mass transfer inside electrochemical cell. 

These steps are: 

 Reactions and chemical composition of the cell 

 Mechanisms of mass transfer in aluminium electrolysis cell (migration and 

convection) 
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 Diffusion modelsfor dilute solution and concentrated solution theories 

2.2.3 Reactions and chemical composition of the cell 

The first step in the study of mass transfer in the cell is to define the reaction and the 

species participating in these reactions. The species and also the reaction mechanisms in 

the bath are still controversial subjects. Consequently, there are many models that have 

been proposed for the reactions and for the resulting ions in the cell. Furthermore, these 

different models are for different electrolyte systems with different additives and 

different cryolite ratio (CR) [3]. These models include NaF-AlF3 and NaF-AlF3-Al2O3 

systems and also the systems that consider other minor additives like CaF2, MgF2 and 

LiF. These chemical models for the dissolution of alumina and other additives in the bath 

do not necessarily propose the electrochemical models for the reactions at electrodes. 

Therefore, one challenge is to find a chemical model that is consistent with existing 

electrochemical models. One way to overcome this problem is to consider simple models 

that have been proposed for the ionic composition of the cell, in order to be able to make 

it compatible to the electrochemical reactions. The NaF-AlF3 system is one of those 

studies that is used in the few conducted studies on mass transfer of ions near the cathode 

[12-14]. This model is composed of ions of form AlFx
-y

 like AlF4
-
 and AlF6

-
. These two 

latter ions are known to be the species that react at the cathode to produce aluminium [1, 

3, 30]. Therefore, NaF-AlF3 presentation of the chemical composition of the cell makes it 

possible to take into account reduction of species at the cathode and to study mass 

transfer in the cathode diffusion boundary layer. Nonetheless, the weakness of this model 

is its incapability to consider alumina dissolution in bath and its effect on mass transfer. 

Moreover, the ions participating in anode reaction are found to be in form of AlxOyFz
n-

 

that are products of alumina dissolution in the bath. Considering the reactions over anode 

are important since this can affect the concentration profiles in bulk and also in cathode 

diffusion layers. In other words, according to some studies, the species produced at the 

anode, AlF4
-
, will be reduced at cathode to produce aluminium. Consequently, 

considering the models that include anode and cathode reactions at the same time are 
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describing the real cell problem more realistically compared to those that consider only 

the reduction reaction at cathode. Therefore, for the simulation of mass transfer in the 

whole cell model, NaF-AlF3-Al2O3 system is preferable compared to NaF-AlF3 system.  

Having defined the ionic composition of the system, the ions move from anode or 

cathode diffusion layer under the influence of electric field and bath flow. The major 

mechanisms of mass transfer in electrochemical cells are diffusion, migration, and 

convection [15]. However, not all of the mechanisms are necessarily included in the 

studies due to the physics of the cell, the region of study and the assumptions that are 

made. In the next sections, the importance and application of mass transfer mechanisms 

in previous studies for aluminium electrolysis cell will be discussed thoroughly. 

2.2.4 Migration of ions in the electrolytic bath 

Migration is the force exerted to charged species capable of moving in the sea of other 

ions. It is dependent on the ion charge and size [31]. Therefore, the studies that consider 

cell composition as a compound of uncharged complexes may neglect the migration 

flux[13]. Moreover, the migration might be neglected partially (for certain species) due to 

the transference number attributed to the ions [14]. For example, as illustrated in detail in 

section 2.2.1, the mobility of Na
+
 ions is higher than that of the other ions in the cell. So, 

considering Na
+
 as the only species with migration flux leads to neglect the migration 

flux for other ions [14] . In a more inclusive approach, Gagnon et al. has considered the 

1-D migration flux of anions in cathode pores and in the cathode diffusion boundary layer 

for AlF3-NaF system by using the Nernst-Einstein equation to calculate mobility of ions 

[12, 15]. It should be noted that the magnitude of migration flux vector is proportional to 

current density vector magnitude, and its direction is tangent to current density 

streamlines. Therefor, 1-D simulation of migration flux does not take into account the 

variation in direction and magnitude of current density vectors.  

A more complete analysis can be done by finding the current density distribution and 

electric potential profile for a two-dimensional geometry of the cell. This electric model 
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can take into account the kinetics of reactions at both electrodes. Then, the migration flux 

for all charged species in the bath can be calculated in the mass transfer model based on 

the results obtained for electric field as it is already done for simpler dilute solutions [32-

36]. Moreover, the electric conductivity is a function of ionic conductivities (function of 

concentration) of ions and can be calculated from the concentrations of mass transfer 

model. According to Gagnon et al, the electrical conductivity is almost constant in the 

aluminium cell bath, although it varies in the porous electrodes space [12]. 

2.2.5 Effect of convection on mass transfer in the electrolytic bath 

Another important mechanism of mass transfer is the movement of the bulk of fluid by 

the momentum transfer. This mechanism establishes the impact of velocity field on the 

concentration field. There have been many studies on the modelling and controlling of 

velocity field in aluminium electrolysis cell. It is well-known that magnetohydrodynamic 

force and bubbly flow under the anode surface are the main two sources of momentum in 

the cell. In most of the mentioned studies that have been done on modeling the mass 

transfer in the bath, the bulk is considered as a well-mixed zero-gradient concentration 

solution whereas there is a diffusion boundary layer near the electrodes especially for 

electroactive ions[14]. This is explained by the fact that the flow is turbulent and the 

convection plays a very important role in the mass transfer of ions in the bulk far from 

the sidewalls and electrodes. To analyze the effect of convection on the concentration 

profile of the species in the bath, the systematic method would be to couple the Navier-

Stokes equations with mass transfer equations and to resolve them simultaneously. 

Although this method is feasible for conventional electrochemical cells [34, 37, 38], its 

application on the aluminium electrolysis cell demands dealing with bubbly flow under 

the anode and MHD effect on the aluminium layer.Multiphase models are needed to be 

applied to take into account the momentum transfer between bath and aluminium and 

bubble layers [29, 39]. Also, the rigorous analysis of MHD calls for the inclusion of all 

geometrical aspects that is influencing the magnetic fields, like steel shells, busbar 

arrangements, etc. In the end, you have to solve a very large numerical problem, 
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involving the construction of a very complex mesh of the cell and its auxiliary 

equipments. It definitely becomes outside of the scope of an academic problem! 

Nevertheless, there have been many studies to simulate MHD and bubbly flow without 

considering mass transfer. 

From one side, aluminium layer is the region where the electromagnetic force acts on the 

fluid. This force transfers from aluminium layer to the bath and influences the bath 

velocity field. The MHD force is a destabilizing factor in the cell, and there have been 

many concerns to control and to stabilize the flow in the cell [40-47]. 

From the other side, CO2 is a product of anode reaction and starts to nucleate on the 

anode surface. The nucleation and growth of bubbles on the anode surface leads to 

microconvection over the anode surface that has been subject of some studies [9, 48]. 

However, the major interaction between bath and bubbles are the next step which is 

bubble detachment of anode surface and its acceleration and release out of the bath [9]. 

The bath momentum forces the ions to leave anode surface after reaching certain contact 

angle to the surface. In the next step, the flow of bubbles accelerates and exerts 

momentum on the bath flow. The modeling of bubbles nucleation, growth, detachment, 

collision, and release is done through Lagrangian approach for bubbles and Eulerian 

Navier-Stokes equation for bath [48]. The effect of MHD force also needs to be added as 

the momentum source or as the force exerted by third phase that is aluminium layer [29, 

41].  

Solving the momentum equations simultaneously with mass transfer and electric field 

that are already coupled through migration term demands a robust solving algorithm and 

high capacity computational systems. Moreover, the next question that could be asked is 

about the efficiency and necessity of treating the mass transfer problem in this way.It is 

reasonable to find a way to consider the effect of turbulent convection in the cell without 

solving the momentum equations. The concept of turbulent diffusion is helpful to have 

the effect of turbulent mixing near the walls. The turbulent diffusion coefficient which is 
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added to the molecular diffusion coefficient is proportional to the length of eddies of the 

turbulent flows and a function of the distance from the wall. This method is introduced by 

Levich and has been adapted to electrochemical turbulent cells by Newman [15, 49]. The 

turbulent diffusion was considered in the cathode diffusion boundary layer of aluminium 

electrolysis cell in previous studies [12, 14]. These studies use a 1-D geometry for the 

cathode zone, so turbulent diffusion coefficient is found easily as a function of distance 

from cathode surface. However, there has been no study for calculating the turbulent 

diffusion coefficient for 2-D geometries of electrochemical cell. In fact, there is a need 

for a geometrical model to calculate the wall distance as a field by taking into account the 

walls and boundaries of a 2-D geometry of the cell. This model has been developed in the 

present study. It should be noted that the wall distance field has been formulated and 

introduced by Fares, and to the author‟s knowledge, the present study is the first 

application of this concept to calculate turbulent diffusion coefficient [50]. 

2.2.6 Diffusion and dynamics of ions in the electrolytic bath 

The electrode reactions of electroactive species, migration flux of charged ions, and 

convective flow of bulk of fluid affect the initial composition of the bath and form 

concentration gradients. The dynamics of mobile ions in solution tends to smooth the 

concentration gradient through diffusion of ions. The models to describe the dynamics of 

ions is different for different type of solutions.[15]. There are two major assumptions for 

the dynamics of the cell: dilute solution theory and concentrated solution theory.The 

dilute solution theory describes the flux of each ion to be a function of the same ion 

concentration gradient and independent of other ion concentration profiles. This theory is 

applicable to binary or dilute solutions. There have been many studies about modelling 

the mass transfer inside different electrolysis cell using dilute solution theory [32-34, 36, 

51]. Generally, this method cannot be applied to multicomponent concentrated solutions 

since the flux of each ion is dependent on the friction force between these ions and the 

other ions [15]. In other words, the concentrated solution theory takes into account the 

interaction of each two ions and sum up the effects. 
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Molten salts are classified as concentrated solutions, and the theory of concentrated 

solution is valid for the molten salts. However, the difficulties in calculating the binary 

diffusion coefficient and other thermochemical properties of ions due to high temperature 

of molten salts make it a difficult task to apply the concentrated solution theory to the 

molten salts. Therefore, the other possible approach is to modify the dilute solution 

formulation for the multicomponent mixtures. This alternative approach uses the mixture 

average properties instead of binary properties of multicomponent mixtures for each 

species [52]. 

In case of aluminium electrolysis cell, there have been different approaches to model the 

mass transfer of ions and complexes in the cell. Gagnon et al. considers the dilute 

solution theory (Nernst-Planck equation) to model the dynamics of ions in the 1-D 

cathode pores and cathode diffusion layer [12]. Solheim applies the binary fluxes 

(simplified Maxwell-Stefan equations) for the dynamics of the species in the cell with 

simplifying the flux of each ion [14]. These two works are the main studies that have 

been done on modeling the mass transfer analysis for 1-D cathode diffusion boundary 

layer. To the author‟s knowledge, there has been no study on the mass transfer in whole 

cell that is cathode diffusion boundary, anode diffusion boundary layer and bulk of the 

bath. Moreover, mass transfer analyses that are limited to 1-D studies do not consider the 

current density streamlines in bath and its distribution over the electrodes. 

Based on what is stated about the different studies on the mass transfer analysis of 

aluminium electrolysis cell, the originalities of the present study in each of the mentioned 

sections can be summarized as below: 

Current density distribution and electric potential field: 

 2D whole cell model 

 Bubble hyperpolarisation 

 Butler-Volmer model 



37 

 

Reactions and chemical composition of the cell 

 NaF-AlF3-Al2O3 system 

 Dissolution of alumina modeling 

 Anode and cathode reactions 

Migration of ions in the electrolytic bath 

 2D current density and migration vector field in the bath 

Effect of convection on mass transfer in the electrolytic bath 

 Applying 2D geometrical model to include the impact of turbulence in mass 

transfer 

Mass transfer models 

 Using mixture averaged mass transfer method 

 Using Maxwell-Stefan‟s equation for 1D model 

In next chapters, the mathematical models, the obtained results and required discussions 

will be done, and the conclusions will be presented in last chapter. 

  



38 

 

CHAPITRE 3 : AVANT-PROPOS 

Auteurs et affiliation: 

 Mohsen Ariana: étudiant au doctorat, Université de Sherbrooke, Faculté de génie, 

Département de génie mécanique. 

 Martin Désilets : professeur, Université de Sherbrooke, Faculté de génie, 

Département de génie chimique et de génie biotechnologique. 

 Pierre Proulx : professeur, Université de Sherbrooke, Faculté de génie, 

Département de génie chimique et de génie biotechnologique. 

Date d’acceptation: 5 mars 2013 

État de l’acceptation: version finale publiée 

Revue: Proceedings of Light Metals 2013, 2013 TMS Annual Meeting & Exhibition 

Référence: [53]  

Titre français: Une étude numérique du transfert de masse des ions dans le bain 

électrolytique d‟une cellule d‟électrolyse d‟aluminium 

Contribution au document: Cet article contribue à la thèse en élaborant une simulation 

1-D du transfert de mass des ions dans les couches limites de l‟anode et de la cathode et 

dans le bain afin de pouvoir comparer les différents mécanismes de transfert de masse. 

Résumé français : Le bain électrolytique est la solution fondue à haute température de la 

cryolite et de l‟alumine. Comme tous les bains de sel fondus, il est composé des ions se 

déplaçant sous l‟effet de la migration et de la convection. Le mouvement et la 

concentration des ions ont un impact considérable sur les paramètres fonctionnels du 
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réactions hétérogènes aux électrodes en utilisant la simulation par éléments finis. Pour les 

ions électroactifs, les résultats montrent que la migration est le mécanisme de transport le 

plus important au début de la simulation. Toutefois, le régime permanent atteint, c‟est la 

diffusion qui devient prépondérante pour le transport des ions proche des électrodes. Pour 

les ions non-électroactifs, la migration reste majoritaire et le rapport des flux de diffusion 

et de migration s‟approche au maximum de l‟unité en régime permanent. 
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3 NUMERICAL ANALYSIS OF IONIC MASS 

TRANSFER IN THE ELECTROLYTIC BATH 

OF AN ALUMINIUM REDUCTION CELL 

3.1 Abstract 

In the Hall-Héroult process, the electrolytic bath is a molten solution of cryolite and 

alumina. Like all other molten salts, it ends up in different moving ions driven by 

mechanisms such as convection, diffusion and migration. The motion of these ions and 

their concentration distribution are important because they determine many functional 

macroscopic parameters of the electrolytic cell like current density distribution, heat 

generation, back reactions, current efficiency, and mass-transfer controlled reactions at 

the electrodes. In this study, a numerical model for the fluxes of most important ions in a 

NaF-AlF3-Al2O3 system has been proposed. The reactions in the bath and the resulted 

ions have been added to the reactions that take place at the cathode and anode, and a 

finite element model has been presented for the electrolyte portion of the aluminium 

reduction cell. The transient motion of the different ions under the migration and 

diffusion mechanisms have been modelled based on the classical mass transfer equations. 

The results illustrate the significant role of the migration in the early stages of 

electrochemical process. This mechanism is also the dominating effect in the motion of 

electroinactive species. For larger time scales, because of the depletion of the consumed 

species and accumulation of the produced species near the electrodes, the mass transfer is 

dominated by the diffusion. 

3.2 Introduction 

In the Hall-Héroult production process, alumina is dissolved in molten cryolite at high 

temperature. This molten solution, called the bath, is composed of different charged ions 
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moving in an electric field, a few of them being involved in the reactions at electrodes. 

Most of them can be considered as rapid reactions due to the high temperature prevailing 

inside the cells. However, the flux of ions has an important impact on the electrochemical 

reactions since the motion of these ions is at the origin of the mass transfer controlled 

reactions. Also, another important functional parameter of the cell, the current efficiency, 

is greatly influenced by the species mass transfer. It is well known that current efficiency 

is inversely proportional to the rate of back reaction [3] . The source of the back reaction 

is the chemical dissolution of aluminium in the bath, its mass transfer toward the anode 

and finally its oxidation by CO2 [3] . From this point of view, defining the mass transfer 

mechanisms can be viewed as the fundamental analysis of the loss of current efficiency in 

the bath. 

Despite the importance of the current density and the mass transfer controlled reaction at 

the anode and cathode, the experimental measurement of the flux or concentration of 

these ions is very difficult due to high temperature and harsh conditions inside the 

electrolysis cell [1, 3] . The driving forces for the different mechanisms of ionic mass 

transfer are either the electric field or the concentration gradient of each ion in the bath. 

The convection also plays an important role in the mixing of these ions.  

Modeling of the mass transfer in the cell thus couples four different fields: electric, 

concentration, velocity and temperature fields. There have been many modeling studies 

dedicated to the analysis of several of these fields. Zoric et al. [20, 54, 55] modeled the 

electric potential and current densities in the cell by applying the secondary current 

distribution assumption for a two dimensional cell. More recently, Solheim [13]predicted 

the mass fractions of NaF, AlF3, Al2O3, and CaF2 in order to analyze the rate of cryolite 

crystallization. His model is based on the resolution of the Maxwell-Stefan diffusion 

equation for different ions in the bath near the cathode [14] . Gagnon et al. solved the 

coupled Nernst-Planck and Poisson‟s equations to simulate the ions concentration near 

the cathode for a NaF-AlF3 electrolyte [12] . These two latter studies are the most recent 

works on mass transfer modeling in an aluminium reduction cell. There have been other 
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studies focusing on the convection and mass transfer in the cell, however, these studies 

are not considering ions in the cell nor the motion of these ions based on migration or 

diffusion mechanisms [27-29] . 

For the first time in this study, the mass transfer of charged ions in a NaF-AlF3-Al2O3 

mixture is predicted by considering diffusion, migration, and electrochemical reactions at 

both electrodes in a full cell model. 

3.3 Model 

The ionic composition of bath is a controversial subject. In fact, the ions and complexes 

in the bath are not completely defined yet and different ionic equilibriums have been 

proposed. In addition, the reactions that take place at the electrodes are not well defined 

[1, 3] . This situation certainly explains some of the difficulties inherent to the 

development of a whole-cell mass transfer model.  

3.3.1 Homogeneous reactions 

The initial composition of bath is based on the dissolution of alumina in cryolite, as 

modeled by Zhang and Rapp (9). These authors consider five simultaneous reactions and 

five products, as it is shown below: 
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The molar fractions of the above species are calculated by considering the activities of 

Al2O3, AlF3, and NaF given by the following relations: 
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3.2 

Where Ki are the equilibrium constants, and ɑNaF, ɑAlF3, and ɑAl2O3 are the activities of 

NaF, AlF3, and Al2O3, respectively. Moreover, the value of activities and equilibrium 

constants are functions of temperature and cryolite ratio, as given by Zhang and Rapp 

[56] . It should be noted that bath is assumed to be saturated in alumina. In consequence, 

the activity of alumina is equal to unity [57] . 

It is well known that the only cation in the system is Na
+
, in such amount that it 

surrounds all other anions [3] . Therefore, in this study, it is assumed that the complexes 

on the right hand side of above reactions directly dissociate into Na+ ions and its 

corresponding anion.  

3.3.2 Heterogeneous reactions 

There have been several mechanisms proposed for reactions that take place at the 

electrodes [1, 3] . In this study, a single one step global reaction is assumed at both 

electrodes.The global anodic reaction is given as: 

        
              

         3.3 

For the cathode, the global reaction can be expressed as: 
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            3.4 

In other words,       
   is consumed at the anode, where     

  
is produced. This last 

species will then move to the cathode by diffusion, where it will react to produce 

aluminium. The F
-
 ions produced as a result of electrochemical reactions diffuse and 

migrate to the anode. Globally, there will be two products, CO2 and Al. It is assumed in 

this study that they leave the system immediately without affecting the mass transfer of 

all other components. 

3.3.3 Reaction kinetics 

As stated before, electric forces and concentration gradients are the two mechanisms of 

the ionic mass transfer considered. To evaluate the electric field and consequently the 

current density, Poisson‟s equation should be solved in the electrolyte: 

      
  
   

 3.5 

Where φ is the electric potential, ρE the electric charge density (C.m
-3

), ε0 is the electric 

permittivity of vacuum, and ε is the static dielectric constant (or relative electric 

permittivity). 

The boundary condition on each electrode is defined with the electric potential as a 

function of the current density, based on the corresponding reaction kinetics.  

For the anodic reaction, a Tafel equation, which is a logarithmic approximation of the 

Butler-Volmer equation, is proposed [22] : 

                         ( ) 3.6 
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Where Erev,A is equal to 1.23 V;    and bA are the Tafel parameters, taken as 0.5 V and 

0.25 V.decade
-1

 respectively. j finally represents the current density. 

For the cathode reaction, a linearized Butler-Volmer equation is applicable: 

              | | 3.7 

Where Erev,C is equal to zero for cathodic reaction and bC is taken as 0.008 Ω.cm
2
. 

3.4 Mass transfer model 

The prediction of the mass transfer of different ions is based on classical mass 

conservation equation for each species, as given below: 

  (   )

  
          

3.8 

Where wi, Ni and Ri represent mass fraction, mass flux, and the reaction rate for species i, 

respectively. The flux of species for a concentrated solution is driven by the electric 

forces acting on charged species and also by the concentration gradients, as given by the 

following equation: 

 
    (            

   
  

          ) 
3.9 

Where ρi, Di, Mn, zi, and ui are the density, mass diffusivity, mean molar mass fraction, 

charge number, and mobility, respectively.  

The boundary conditions for this equation can be given for two categories of ions at each 

electrode: 

For electroinactive ions: 
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3.10 

And for electroactive ions: 

 
   

  
  
 ( )   (            

   
  

          ) 
3.11 

Where n is the number of electron transferred in the reaction, νi is the stoichiometric 

coefficients of species i in the corresponding reaction, and F the Faraday‟s constant. 

Additional mass transfer due to turbulence is considered through the use of a total 

diffusion coefficient, which is the sum of the molecular and turbulent contributions: 

           3.12 

Where DMi and Dt are molecular and turbulent diffusion coefficients, respectively. The 

value for the turbulent diffusion is proportional to the distance from the electrodes [13] 

and is given by the following relation: 

      
  3.13 

The mobility of the ions is given by the Nernst-Einstein equation. 

 
   

   
  

 
3.14 

3.5 Properties of the system and solver 

A 1-D domain has been assumed, representing the space between the two electrodes, 

considered as 0.05 m in this study. In the presented results, the cathode and anode are at a 
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location of x=0[m] and x=0.05[m], respectively. The other properties of the system are 

given in the table below: 

Table 3.1 Properties of the cell 

Properties value 

Temperature, T 1240 K 

Cryolite ratio, CR 1.5 

Bath electric conductivity, 

Ω [58] 

2.4 Ω
-1

.cm
-1

 

Bath density, ρ [3] 2.059 g.cm
-3

 

Current density, j 7500 A/m
2
 

The sets of equations and boundary conditions are discretized and solved by the finite 

element method software, COMSOL Multiphysics. The maximum mesh size is 0.01 mm 

and the number of degrees of freedom solved is 35008.  

3.6 Results and discussion 

The results are presented for the behavior of different ions during the first 1000 seconds 

after the startup of the electrolysis process. The initial condition that prevails in the bath 

is such that the equilibrium condition can be considered. The concentration and flux of 

ions will be presented in order to illustrate the motion of these ions and the progression of 

their concentration with time. 
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Figure 3.1 illustrates the mass fraction of F
-
 ions near the cathode and the anode, 

respectively. As shown, the mass fraction of this ion near the cathode is increasing with 

time because of the production of F
-
 in the cathodic reaction. Once produced, this 

negatively charged ion is migrated and diffused away to the anode. Based on the 

concentration increase with time, it can be concluded that the production rate exceed the 

migration and diffusion fluxes. However, this tendency levels off as the concentration 

gradient of F
-
 ions becomes larger. 

As expected, the concentration of F
-
 near the anode is lower than the bulk value because 

of its participation in the anodic reaction. It also shows that the consumption rate is 

dominant compared to migration and diffusion mass fluxes of this ion. As a result of the 

cathodic reaction and migration, the bulk value of the F
-
 becomes larger with time, 

creating larger concentration gradients near the anode and explaining the increase in the 

mass fraction of this ion between 500 s and 1000 s. 
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Figure 3.1: Mass fraction profile of F
- 
near the cathode (above) and the anode (below) for 

the first 1000 s. 

While Al2OF6
2-

 is participating in the anodic reaction, it is considered as an 

electroinactive ion at the cathode where only diffusion and migration takes place. The 

variation of concentration of this ion close to the cathode and anode is shown in Figure 

3.2. As it is negatively charged, the electric field forces this ion away from cathode while 

diffusion acts in the opposite direction. This is why Al2OF6
2- 

is found at such a low 

concentration near the cathode. On the other side of the cell, two mechanisms are 

opposed. Migration and diffusion brings this ion toward the anode but it is consumed 

through the anode reaction. The consumption rate being higher than the migration and 

diffusion flux, there is depletion of this ion near the anode with time.  
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Figure 3.2: Mass fraction profile of Al2OF6
2-

 near the cathode (above) and the anode 

(below) for the first 1000 s. 

It should be noted that the effects of moving CO2 bubbles and micro-convection below 

the anode has been neglected in this study. In reality, these phenomena will add 

additional movement of bulk, which would most probably prevent the depletion of 

Al2OF6
2-

 near the anode, when the alumina concentration in the bulk is sufficient enough 

to sustain the production of aluminium. 

AlF4
-
 is participating in both anodic and cathodic reactions. At the cathode, the 

consumption and also the migration of this ion decrease its mass fraction. Near the anode, 

both the reaction and migration increase its concentration while diffusion acts in the 
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opposite direction. It is clear from Figure 3.3 that bulk value of AlF4
-
 mass fraction 

increases with time. This is because of the stoichiometry of the reactions. In other words, 

its production rate is higher at the anode that its consumption rate at the cathode.  

 

Figure 3.3: Mass fraction profile of AlF4
-
 near the cathode (above) and the anode (below) 

for the first 1000 s. 

The ratio of diffusion to migration fluxes provides valuable information about their 

relative contributions. Such a ratio is shown in Figure 3.4 for electroactive species like 

AlF4-. For such species, in the early stages of electrolysis, the migration flux is 
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dominantin comparison to diffusion, especially in the bulk. Shortly after the startup, the 

concentration gradients near the electrodes are growing, responsible for the increasing 

role of diffusion mass transfer with time. For AlF4-, the ratio of diffusion to migration is 

higher in the anode region because of higher concentration gradients at this location 

 

Figure 3.4: Ratio of diffusion flux to migration flux along the cell for AlF4
- 

The diffusion to migration ratio of the Al2OF6
2-

 is shown in Figure 3.5. Near the cathode, 

this ratio takes values below or near unity, meaning that the migration plays a major role 

for this electroinactive ion. In fact, diffusion is sort of compensating the mass transfer 

initiated by the migration in reaction to the presence of an electric field. On the other side 

of the cell, consumption of Al2OF6
2-

 is at such a level that there is a depletion of this 

species near the anode. This creates a very high concentration gradient and causes the 

ratio of diffusion over migration to be very high in this region. In fact, this ratio is around 

30 near anode for 1000 s which cannot be seen in the Figure 3.5 because of the range of 

the y axis. 



53 

 

 

Figure 3.5: Ratio of diffusion flux to migration flux along the cell for Al2OF6
2-

 

For electroinactive ions, the diffusion to migration ratio is always below one, as shown in 

Figure 3.6 for Al2O2F4
2-

. The mass transfer for these species is essentially driven by 

migration. It then creates a concentration gradient and a diffusion flux, in relation to 

migration.  
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Figure 3.6: Ratio of diffusion flux to migration flux along the cell for Al2O2F4
2-

 

3.7 Conclusion 

The mass transfer of different ions in the NaF-AlF3-Al2O3 molten salt has been analyzed 

considering electrochemical reactions, diffusion and migration as the main mechanisms 

of transport. The results indicate that migration plays an important role for all anions, 

especially for F
-
 and Al2OF6

2-
 that move toward anode to participate in anodic reaction. 

For Al2OF6
2-

, produced by the decomposition of the alumina fed to the cell, diffusion 

becomes the dominant mass transfer mechanism in the region near the anode because of 

the presence of high concentration gradients caused by the reaction. At the cathode, the 

migration of Al2OF6
2-

 is the dominant mechanism of transport. The story is similar for 

other electroactive ions like AlF4
-
. Diffusion has a considerable effect on mass transport 

since electrochemical reactions are responsible for large concentration gradients at both 

electrodes. However, the mass fluxes for nonelectroctive anions are essentially driven by 

the electric field force and diffusion flux is consequently always less or equal to the 

migration flux. This new knowledge of the dominant mechanism of mass transfer for 
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different ions opens up new possibilities as to control the flux of specific ions or to 

prevent the undesirable reactions. 

NOMENCLATURE 

  anode surface[  ] 

   available anode area for the current passage[  ] 

   mixture-averaged diffusion coefficient of species i, [
 

  
] 

     multicomponent diffusion coefficient of species i , [
 

  
] 

   turbulent diffusion coefficient, [
 

  
] 

   wall distance, [m] 

     electrode reaction equilibrium voltage[ ] 

  faraday constant [
 

   
] 

   molar mass of species i, [kg] 

   mean molar mass, [  ] 

  number of species 

   mass rate of production of species I by homogeneous reaction[
  

    
] 

      cell voltage[ ] 

   activity of species i 
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  inverse distance function[
 

 
] 

  current density magnitude [
 

  
] 

  current density vector [
 

  
] 

   mass flux of species i, [
  

    
] 

   turbulent mass flux of species i, [
  

    
] 

  number of electron transfered in electrode reaction 

   mobility of species i 

   molar fraction of species i 

   charge number of species i 

Greek letters 

  factor of convection [
 

   
] 
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Résumé français : Le bain électrolytique de la cellule d‟électrolyse d‟aluminium est 
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le courant électrique intense utilisé pour l‟application industrielle. Le mouvement des 

ions a des effets importants sur les paramètres fonctionnels du procédé comme 

l‟efficacité du courant. Cette étude numérique modélise le mouvement des ions dans le 
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mélange de NaF-AlF3-Al2O3 en utilisant la méthode des éléments finis. L‟équation de 

conservation de la charge électrique dans le bain électrolytique est limitée aux électrodes 

par la cinétique des réactions hétérogènes. Elle est résolue pour obtenir le potentiel 

électrique, la densité de courant et la chaleur générée. Par ailleurs, les équations de la 

conservation de la masse sont résolues pour obtenir la concentration et le flux des ions. 

Les résultats obtenus pour la simulation de 3 minutes de l‟électrolyse montrent les 

gradients abrupts de concentrations sur les électrodes pour les ions électroactifs, comme 

AlF4
-
 et Al2OF6

2-
. Ainsi, la portion de la migration qui est le mécanisme dominant de 

transfert de masse dans les premières phases est diminuée par rapport à la diffusion pour 

les ions électroactifs. Néanmoins, les vecteurs de flux de migration et de diffusion sont du 

même ordre de grandeur pour les ions non-électroactifs. En outre, les résultats montrent 

un transfert de masse entre l‟espace inter-électrodes et la région proche de la couche de 

gelée pour éviter l‟épuisement ou la surconcentration des ions aux électrodes. 
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4 ON THE ANALYSIS OF IONIC MASS 

TRANSFER IN THE ELECTROLYTIC BATH 

OF AN ALUMINUM REDUCTION CELL 

4.1 Abstract 

An electrolyte typically used in an aluminum electrolysis cell is composed of different 

ions moving in the electromagnetic field generated by the high intensity current needed 

for the industrial application. The flux of these ions has an important impact on the 

functional parameters of the cell, like current efficiency. In this study, the transient 

behaviour of these ions in the NaF-AlF3-Al2O3 mixture is modelled using a numerical 

finite element method. The electric potential field equation governed by electrochemical 

reaction kinetics at electrodes is solved to obtain the electric potential field, current 

density, and consequently heat generation in the cell. Subsequently, the concentration 

field is solved for ionic species in the bath. The results indicate formation of a high 

concentration gradient of electroactive ions like Al2OF6
2- 

and AlF4
-
 at the corresponding 

reacting electrodes with time and diffusion as the main mechanism for these ions transfer. 

It is found that from the early stages of the 3 minute simulation of the electrochemical 

process, the difference between bulk concentration and surface concentration of 

electroactive ions remains constant. Moreover, the results indicate that although the flux 

of electroactive species is dominated by diffusion, especially for larger times, migration 

is the controlling mechanism of transport for the electroinactive ions.  

Keywords: modelling, aluminum reduction cell, mass transfer, migration, diffusion 

 



61 

 

4.2 Introduction 

Aluminum is produced through the famous Hall-Héroult process in which the alumina 

dissolved in a molten salt is reduced in order to produce aluminum [1, 14]. Like all 

molten salts, the solution of cryolite, alumina, and other additives, which is called a bath, 

is composed of different species and ionic complexes. The motion of these ionic species 

is at the origin of the current that passes through the bath from the anode to the cathode. 

In other words, an important aspect of ionic flux is its effect on the current transfer 

mechanism and conductivity of the bath. The other aspect that makes the mass transfer in 

the cell so important is its role in providing the electrodes with reactants since, most of 

the time, the reactions of the cell are mass transfer controlled. In addition to these 

reactions, one of the causes of back reactions is said to be the anodic oxidation of the 

migrated dissolved aluminum, probably in the form of AlF
2-

 ions [3]. Back reaction has 

detrimental effects on the current efficiency of the cell [1].  

Mass transfer analysis of an electrolytic bath includes the study of parameters like bath 

ionic conductivity, transference number, mobility, and diffusivity of different ions. In 

addition to these parameters, this analysis also involves the mutual interaction of four 

different fields: concentration, velocity, electric potential, and temperature fields and 

their gradients, all of which can be considered as the source of the mass transfer in the 

cell. The corrosive and high temperature environment of the bath makes it a harsh 

reacting media in which it is nearly impossible to observe the ionic behaviour or to 

measure the properties of the system at the extent that even the existing ions in the cell 

are not well defined yet [3]. In spite of these restrictions, some experimental and 

modelling studies have been conducted on the transport phenomena parameters in the 

Hall-Héroult cell.  

There have been some studies to estimate the ionic conductivity and transference number 

of each ion in the bath [5-7, 11]. Transference number is defined as the fraction of current 

that each ion is carrying in multicomponent electrolytic solutions. In these studies, the 
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mobility of the ions in the cell is also calculated in the absence of concentration gradient 

in the cell. One of the benefits of the analysis of the flux of ions in the cells and in 

boundary layers is that it defines the importance of the mass transfer mechanisms for 

each ion in the electrode regions (diffusion boundary layers) and in the bulk of the system 

where convection plays an important role. 

The analysis of the importance of different mechanisms of mass transfer in the cell needs 

to consider the mutual impact of mentioned fields. For the potential electric field in an 

aluminum electrolysis cell, Zoric et al. solved the secondary current distribution for a 

two-dimensional cell [16, 22, 54, 55]. In addition, they tried to model the effects of 

current density on the shape of the anode [20]. They also studied the role of the side ledge 

on the current density distribution [22]. Later on, Sterten discussed the mechanism of the 

cathodic reaction and migration of the Na
+
 ions to carry the current along with a 

qualitative analysis of the concentration of species like NaF and AlF3 in the AlF3-NaF-Al 

system [30]. In their analysis, the proposed electrode reactions couple the concentration 

and potential fields. Solheim developed a non-ionic mass transfer model based on 

Maxwell-Stefan equations in order to calculate the concentration of species like NaF, 

AlF3, Al2O3, and CaF2 and to define the rate of cryolite crystallization [13]. Other studies 

focussed on the solution of the coupled fields of velocity, electromagnetics, and 

concentration by considering certain assumptions. Addressing the momentum transport, 

Li et al. established an inhomogeneous three-phase model for the calculation of the 

current efficiency of the cell [29]. This finite volume model took into account the flow of 

aluminum, bath, and bubble layers under the anode and their interaction with each other, 

considering the MHD forces as the main momentum source term. In this study, the 

concentration of dissolved Na
+
 is calculated assuming that it has a large effect on the 

current loss. In order to reduce the complexity of the multiphase model to a single-phase 

model, Kuzmin et al. assumed the different regions of the bath as the mixture of 

electrolyte and aluminum with different concentration compositions, and then proposed a 

numerical model for the mass and momentum transfer due to these concentration patterns 

[28].  
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Three recent studies presented new modelling approaches for the ionic diffusion in the 

cell. First, Gagnon et al. modelled a NaF-AlF3 ionic system considering diffusion and 

migration near a porous cathode [12]. Therefore, the model takes into account the 

cathodic reactions and the motion of species near the cathode. Secondly, Solheim 

developed his previous model for the analysis of anion concentration near the cathode by 

solving one-dimensional Maxwell-Stefan diffusion equations [14]. In other words, these 

two studies can be regarded as the numerical models for the concentration and flux of the 

ions in the cathode boundary region. Finally, Ariana et al. modelled one-dimensional 

mass transfer in the anode and the cathode mass transfer boundary layer for a one-

dimensional interelectrode distance [53]. Considering the bath as a concentrated solution 

alongside with the electrode reactions, this study was done for two categories of 

electroactive and electroinactive ions in the bath to obtain the transient movement of 

these ions in the cell [53]. 

In the present study, after having calculated the electric current density and electric 

potential field for a two-dimensional model of whole cell, see Figure 4.1, the 

concentration and flux of the main ions of the NaF-AlF3-Al2O3 system are calculated. It 

should be noted that the kinetics of anode and cathode reactions have been taken into 

account in the calculation. The present study also considers diffusion and migration as the 

two mechanisms of mass transfer in the cell and analyzes the transient behaviour and 

importance of each mechanism for different ions in the bath.  
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Figure 4.1. Two dimensional geometry of an aluminum electrolysis cell. 

4.3 Material and methods 

4.3.1 Homogenous reactions, activities, and initial mass fractions 

It is well known that the bath is a mixture of different ions and ionic complexes. 

However, there is still controversy over the ionic composition of a typical industrial bath, 

and the equilibriums and the electrochemical reactions in the bath and at electrodes [1]. 

Several models are proposed to predict the ionic equilibrium and the electrochemical 

reactions at the electrodes [60-62]. Since the aim of this study is to analyze the mass 

transfer of species in the bath, it is necessary to define an ionic model that is compatible 

with the kinetics of the reactions available in the literature. 

Based on the ionic model proposed by Zhang et al. [57] and Zhang and Rapp [56] for 

dissolution of alumina, the existing complexes in the bath come from the following 

homogeneous reactions:  
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4.1 

Based on the above alumina dissolution reactions, the molar fraction of the complexes are 

calculated by the following correlations [56] :  
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4.2 

 

 

where   ,     , and      are the equilibrium constant of the ith reaction, the activity of 

NaF, and the activity of AlF3, respectively, which are functions of cryolite ratio and 

temperature. Moreover,        is the activity of alumina and is equal to 1 by assuming 

alumina saturation [56]. The values for the equilibrium constants and activities for 

different cryolite ratios and temperatures are tabulated by Zhang and Rapp [56].  
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It is assumed that the produced species are already ionized in the molten salt where an 

instantaneous ionic equilibrium between Na
+
 ions and other anions is established. This 

assumption is supported by the idea that the only cation present in the bath is Na
+
, and all 

other anions are moving in an ocean of Na
+ 

[14]. Based on this assumption, the ionic 

composition of cell is composed of F
-
, Al2OF6

2-
, Al2O2F4

2-
, Al2O2F6

4-
, AlF6

3-
, AlF4

-
, and 

Na
+
 ions. Molar fractions obtained by the above relationships are converted to mass 

fraction and are considered as initial concentrations of the ions in the bath. 

4.3.2 Heterogeneous reactions and chemical kinetics 

In addition to alumina dissolution reactions, there are heterogeneous reactions that take 

place at the surface of electrodes. 

At the anode, the following reaction is proposed [58]:  

        
              

         4.3 

      
  

 is the dissolved form of alumina in the bath and reacts at the anode to 

produce     
 

. The     
 

 produced at the anode then diffuses to the cathode and feeds 

cathodic reaction (see Equation 4.4). It is assumed that the produced aluminum and     

leave the bath immediately after being produced, so the analysis of these two products of 

reactions are neglected. However, the effect of CO2 on the anode overvoltage is 

considered and will be discussed later in this study. 

At the cathode, the following reaction takes place, which leads to the production of 

aluminum [3]:  

     
            4.4 
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It should be noted that some studies considered this reaction as a two-step reaction [58]. 

The two-step model can be important for the analysis of the diffusion and migration of 

the intermediate product, AlF2
-
, to the anode which is said to be the reason of back 

reactions in the cell [3]. However, since the main concern of this study to analyze the 

movement of main electroactive and electroinactive ions, the overall reaction is assumed. 

4.4 Mathematical model 

4.4.1 Electric potential field 

The electric potential and concentration fields are strongly coupled. Indeed, the 

concentration of charged ions is influenced by the electric potential gradient in the 

migration component of the flux of species. On the other side, the flux of ions as the 

charge carriers is at the origin of the bath conductivity. The electric field can be solved by 

using primary, secondary, or tertiary current distribution models [15]. In this study, a 

secondary current distribution is assumed in order to calculate the electrical potential 

field. The secondary current distribution considers the kinetics of reaction occurring at 

electrodes. The potential field is governed by the Poisson‟s equation [15],  

      
  
   

 4.5 

where φ is electric potential, ρE is the electric charge density, ε0 is the electric permittivity 

of vacuum, and ε is relative electric permittivity of bath. The assumption of 

electroneutrality sets the RHS of the above equation to zero. 

4.4.2 Boundary conditions for electric field 

As stated before, based on the existing secondary current distribution models for 

electrode reactions, the boundary conditions for the anode is the electric overpotential at 

the anode, which is given by the following relation[22]: 
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                     4.6 

where   , Ucell, and Erev,A are anode electric potential, cell voltage, and electrode reaction 

equilibrium voltage, respectively. The corresponding values are given in Table 4.1. 

Based on what is proposed in the literature for anodic reaction in an aluminum cell [22], 

the Tafel equation, which is the logarithmic form of the Butler-Volmer equation, is valid 

for the anode reaction: 

            ( ) 4.7 

where    and    are the Tafel parameters. Their values are given in Table 4.1. 

The effect of CO2 bubbles on the electric potential profile at the interface of the anode 

surface and electrolyte can be considered by applying the bubble hyperpolarization 

overvoltage, which is a function of bubble surface coverage over the anode surface [63]. 

 
        (

 

  
) 

4.8 

where A is the anode nominal area, and Ah is the available anode area for the current 

passage. The bubble coverage ratio is a function of local current density. In this study, 

hyperpolarization voltage has been calculated for 35 % of bubble surface coverage 

(A/Ah). The following expression is obtained from the combination of the previous 

expressions for the anode overpotential: 

 
                        ( 

 

  
) 

4.9 
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For the cathode overpotential, a linearized form of Butler-Volmer is proposed [22]:  

              | | 4.10 

where        is the cathode reaction equilibrium voltage. The values for        and    are 

given in Table 4.1.  

The boundary condition for other boundaries of the system is zero current condition. 

4.4.3 Concentration field 

For the concentration field, the conservation of mass for each species is given by 

  (   )

  
           

with 

 

∑  

 

 

   

 

4.11 

 

4.12 

where   , ji, and Ri represent mass fraction, mass flux, and the mass rate of production 

for species i, respectively. 

The mixture-average multicomponent diffusion model for concentrated solution is giving 

the mass flux for each ion: 
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    (            

   
  

           ) 
4.13 

where    and    are the charge number and the mobility of species   in the bath, 

respectively.  

The mixture average diffusion coefficient    is given by the Wilke correlation [52]: 

 
   

    

∑
  
   

    
    

 
4.14 

where    is molar fraction of species   and     is the multicomponent diffusion coefficient 

of species   in species  . 

   is the mean molar mass and is calculated by the following relation: 

 
   (∑

  
  
)
  

 
4.15 

The electric potential and current density obtained by solving Poisson‟s equation is used 

to calculate explicitly the electric potential gradient in the migration term of the mass 

transfer equations. In the mixture of   species, the mass conservation equation is solved 

for     species, and the concentration of last species is calculated as excess species by 

Equation 4.12 to respect the sum of mass fractions equals to unity.  
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4.4.4 Physical properties 

4.4.4.1 Transference number and mobility of the ions 

It have been widely discussed in the literature that the transference number of Na
+
 ions is 

almost 1 in the bath melt due to the small size of these ions[24]. The anions have larger 

sizes and thus the friction with other ions is larger for them in comparison to cations like 

Na
+
 and Li

+
. In other words, we can consider that the Na

+ 
ions are the main charge 

carriers in the bath and the transference number of Na
+
 ions is about 1. Moreover, Rolin 

states that this value is near 1 for larger cryolite ratios [5]. However, it is lower for lower 

cryolite ratios or for more acidic melts. Generally, mobility of the ions in bath melt is a 

function of their size. The mobility of smaller ions in the bath, like Na
+
 and F

-
, is higher 

than larger ions like alumina-fluoride anions. Considering Na
+
 and F

-
 as the main charge 

carriers in the cell, Rolin has proposed 0.88×10
-3

 cm/s and 0.098×10
-3

 cm/s for the 

velocity of Na
+
 and F

-
 ions in the cell, respectively [5]. The mobility of aluminum 

oxyfluoride anions is given by their molecular diffusion coefficients through the Nernst-

Einstein equation: 

   
  
  

 
4.16 

4.4.4.2 Molecular diffusion coefficients 

The binary molecular diffusion coefficient for Na
+ 

and F
-
 ions is given by the study of 

Rollet et al. [23]. However, there is still a controversy over the diffusion coefficients of 

aluminum fluoride and aluminum oxyfluoride anions. As long as the identity of the 

species in the bath is still a subject of scientific research, their diffusion coefficients and 

also their mobility are also disputed. However, one can find values that are widely used 

in some studies [14], which are essentially based on the work of Thonstad[64]. 
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Accordingly, the binary diffusion coefficients for aluminum fluoride anion pairs are   

    [
  

 
] while a value of         [    ]is considered for others. 

4.4.4.3 Turbulent diffusion coefficients 

Although the turbulent flow has not been considered in this study, turbulent diffusion 

coefficient is added to the molecular diffusion in order to consider the effect of turbulent 

mixing in the cell. The turbulent mass flux near the electrodes that is caused by the 

fluctuation of concentration and velocity can be modelled as [15]: 

            

 

4.17 

where    is called turbulent diffusion coefficient or eddy diffusivity. Based on the study 

by Levich, this effect is smaller near the electrodes and walls, and larger far away from 

the electrodes [49]. Based on this study, to find the effect of turbulent stirring of solution 

on the rate of ion supply to the electrodes, the turbulent diffusion coefficient is calculated 

as a function of the distance from the wall as given by the following formula [15, 49]:  

     (  )
  4.18 

where    is the distance from electrodes for one-dimensional models, and   is the factor 

of convection that indicates the degree of turbulence in the system. This factor is 

calculated from average mass transfer rate at the wall, and its value is given in Table 

4.1.[14, 60]  

However, for the two dimensional model in this study, the wall distance model is adapted 

based on the approach proposed by Fares[50]. The equation to be solved in order to find a 

distance function for all points in the field is given by 
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(
  

  
)  (

  

  
)     

4.19 

where   is equal to the inverse of distance function,     . The initial condition for g is 

zero. In order to avoid infinite values for   at walls, the distance function,   , is fixed at 

a small no zero value.  

Having solved the above equations, the distance function obtained represents the effect of 

the walls on the flow in the cell. The wall boundary condition is applied to all boundaries 

except at the symmetry line on the left. 

The results for the distance function (and for the turbulent diffusion term) are shown in 

Figure 4.2. 

 

Figure 4.2. Wall distance function,    , in the cell [cm]. 
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The obtained wall distance field presents the effective distance for the assumed geometry 

in order to apply the mixing effect of turbulent flow in the cell. 

4.4.5 Boundary conditions for concentration field 

At the cathode, zero mass fluxes are considered for electroinactive species, whereas the 

mass fluxes for electroactive species are proportional to the current density. 

Thus, for electroactive species, 

 
 (            

   
  

           )  
    
   

 ( ) 
4.20 

for electroinactive species, 

 
 (            

   
  

           )    
4.21 

where    is the stoichiometric coefficient of species i in the corresponding electrode 

reaction, and n is the number of electrons transferred in the corresponding reaction, and F 

is Faraday constant. The values of parameters in mathematical model are gathered in 

Table 4.1.  
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Table 4.1 Properties of the cell 

Properties Value 

Temperature, T 1240 [K] 

Cryolite ratio, CR 1.5 

Bath electric conductivity[58]  2.4 [Ω
-1

.cm
-1

] 

Bath density, ρ[3]  2.059 [g.cm
-3

] 

Cell voltage, Ucell 3 [V] 

       1.23 [V] 

   0.43 [V] 

   0.31 [V.decade
-1

] 

       0 [V] 

        [     ] 

  12000 [       ] 

 



76 

 

4.5 Solver 

The steady state electric potential equation with corresponding Butler-Volmer boundary 

conditions are solved in order to find the electric potential and current density vector in 

the electrolyte. The transient mass conservation equations are solved by taking into 

account the results for electric field. As the species fluxes and concentration gradient are 

larger near electrodes, a thin layer of 0.05 cm thickness is considered normal to the 

electrode surfaces with 15 quadrilateral elements and stretching factor of 1.2, see Figure 

4.3. Totally, there are 21 300 quadrilateral elements in addition to 45 381 triangular 

elements. The number of degrees of freedom to be solved is 358 456. The simulation is 

done by using finite element package, COMSOL Multiphysics.  

 

Figure 4.3. Triangular meshing in the bulk and quadrilateral meshing near the electrode 

surfaces. 
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4.6 Results and discussion 

4.6.1 Electric potential field and current density 

The current density magnitude and normalized vectors are shown in Figure 4.4a and b, 

respectively. The current density between the electrodes is higher in the narrow part of 

the cell (interelectrode space) comparing to the other regions in the cell, with a current 

peak near the edge of the anode. The results are obtained by applying 3 [V] as the cell 

voltage. Considering the cell voltage, the different overvoltages and the bath conductivity 

mentioned above, the average current density is found to be 6225 [A.m
-2

] on the cathode 

and 5495 [A.m
-2

]
 
over the anode surface. The difference comes from the larger area of the 

anode, and the overall current in and out of the cell is equal to zero. It should be noted 

that the anode surface includes the anode lower surface in addition to the side surface.  

The electric potential field for the electrolyte is given in the Figure 4.4c. The values 

shown in this figure are the electric potential values in the bath and do not include the 

electrode voltages. 
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Figure 4.4. a) Current density magnitude [A.cm
-2

]; b) Normalized vector in electrolyte; c) 

Electric potential of the electrolyte [V]; d) Heat generation in the cell [W.m
-3

]. 

The heat generation by joule effect in the electrolyte is shown in Figure 4.4d. Because of 

the assumed constant conductivity of the electrolyte, the heat generation follows the 

pattern of current density. Although the temperature field has not been included in the 

present study, the heat generation could be used as a source term in the energy equation 

models of the bath in further studies. 

The dimensions of the cell in Figure 4.4and all figures in the following sections are given 

in centimeters.  

4.6.2 Mass transfer in the cell 

The mass transfer results in the bath are presented by comparing the transient behaviour 

of migration and diffusion fluxes for three categories of ions: Al2OF6
2-

 and AlF4
-
 as the 
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main electroactive ions, Na
+
 as the only cation in the system, and Al2O2F6

4-
 as one of the 

electroinactive ions. 

4.6.2.1 Migration and diffusion fluxes of Al2OF6
2-

 

Based on the assumptions made in material and methods section, Al2OF6
2-

 can be 

considered as the ionic form of alumina in the bath and is the main electroactive species 

participating in anode reaction. This negatively charged ion is oxidized and consumed in 

the anodic reaction. The flux of this ion to the anode includes the migration and diffusion 

fluxes. The migration flux magnitude and direction after 180 seconds are shown in Figure 

4.5a. As is clear in this figure, the migration flux is a function of the electric potential 

gradient, which is higher in the interelectrode space and especially near the anode edge. 

As shown in Figure 4.5b, the direction of the migration flux is in the opposite direction 

relative to the current density vectors. It should be noted that the migration flux is not a 

strong function of time. 

 

Figure 4.5 Migration flux magnitude [kg.m
-2

.s
-1

] and migration flux normalized vector for 

Al2OF6
2-

. 

However, according to Figure 4.6, the diffusion flux of Al2OF6
2-

 shows a strong time 

dependence due to the fact that diffusion is proportional to the concentration gradient 

caused by two sources. First, the electrochemical reaction that takes place at the anode 

leads to the depletion of Al2OF6
2-

 ions near the anode surface. Second, the migration of 

negatively charged Al2OF6
2- 

towards the anode as the dominant mass transfer mechanism 
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in the early stages of electrochemical process is not as high as the anode reaction rate of 

this ion. This can be explained by the fact that the mobility of large Al2OF6
2- 

ions is not 

high enough to provide the cell with the flux needed to avoid depletion. Therefore, 

although diffusion and migration are of the same order of magnitude in the early stages of 

the electrochemical processes, diffusion becomes more important and even becomes the 

dominant mechanism of mass transfer near the anode as the concentration gradient of this 

species near the anode surface becomes higher, as is shown for 30 [s], 60 [s], 120 [s], and 

180 [s] in Figure 4.6. 

Participation of Al2OF6
2-

 in anodic reaction and the diffusion and migration of this ion 

towards the anode decrease the concentration of the ion between the two electrodes. 

Therefore, the reduction in the concentration of Al2OF6
2-

 in the interelectrode region 

leads to the diffusion from the left part of the cell to the interelectrode region. In other 

words, the left-hand side of the cell acts as a reservoir of reactants that feeds the cell 

through diffusion. 

On the other side, at the cathode, the flux pattern is completely different since Al2OF6
2-

 is 

an electroinactive species. In this zone, only the electric field forces this species away 

from the cathode. The diffusion flux then gets in equilibrium with the migration along the 

cathode where it is far enough from the anode edge high concentration gradient region. 
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Figure 4.6. Diffusion flux magnitude [kg.m
-2

.s
-1

] and normalized diffusion flux vector for 

Al2OF6
2-

 after 30[s], 60[s], 120[s], and 180[s]. 
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The flux patterns mentioned in previous figures are at the origin of the concentration 

profiles near the electrodes, which leads to mass transfer boundary layer near the 

electrodes, as shown in Figure 4.7a. Although the concentration shows a transient 

behaviour in the anode diffusion boundary layer, the difference between the bulk 

concentration and the anode surface concentration becomes quickly constant, as shown in 

Figure 4.7b. Considering this concentration difference between the anode surface and 

bulk value, the mass transfer coefficient over the anode can be found using the following 

equation: 

       (  
       

     ) 4.22 

Therefore, the mass transfer coefficient of Al2OF6
2-

 at the anode is 5.5×10
-5

 [m/s]. 
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Figure 4.7. a) Concentration boundary condition of Al2OF6
2-

 near the anode on the 

section line AA; b) Difference of bulk concentration and the anode surface concentration 

for different time steps near the anode on the section line AA. 
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4.6.2.2 Migration and diffusion fluxes of AlF4
-
 

AlF4
-
 is a species that is electroactive at both electrodes. Indeed, it is produced in the 

anodic reaction, and then reduced at the cathode, thereby producing aluminum. 

The migration flux magnitude and the normalized migration flux vector are shown in 

Figure 4.8a and b, respectively. The migration flux for this negatively charged ion is 

towards the anode surface and is in the same direction as electric potential gradient along 

the electric current streamline. The migration flux changes very slightly with time due to 

its concentration change, but it can be considered in steady state when compared to 

transient behaviour of diffusion flux (see Figure 4.9). 

 

Figure 4.8. a) Migration flux magnitude [kg.m
-2

.s
-1

]; b) migration flux normalized vector 

for AlF4
-
. 

As mentioned earlier, diffusion is driven by the concentration gradient caused by the 

migration of charged ions in the bulk of bath and also by the production or consumption 

of these ions by electrode reactions. 

In the anode concentration boundary layer, the production of AlF4
-
 ions at the anode in 

addition to the migration of these ions towards the anode initially increases the 

concentration of this ion. On the other side of the cell, AlF4
-
 reacts at the cathode, and its 
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concentration becomes smaller than the bulk value. This concentration difference 

between the anode and cathode is the source of the diffusion flux of AlF4
-
 ions across the 

cell. Indeed, in spite of the migration of AlF4
-
 negatively charged ions away from the 

cathode, the high concentration difference between the anode and the bulk and, 

consequently, between bulk and the cathode makes the diffusion the most significant 

mechanism of mass transfer in the system, thereby preventing AlF4
-
 depletion near the 

cathode surface. 

As shown in Figure 4.9, the diffusion flux increases with time as the concentration 

gradients at both electrodes becomes larger. However, after 30 [s], this increase is much 

smaller for AlF4
-
 when compared to the diffusion flux increase of Al2OF6

2-
 already shown 

in Figure 4.6. The difference between the diffusion behaviour of these two species comes 

from the fact that migration of AlF4
-
 ions is in the inverse direction of the needed 

diffusion flux, whereas for the case of Al2OF6
2-

,
 
both migration and diffusion help the ion 

to reach the reaction site. So the diffusion pattern formed from the early stages against 

migration flux is in the same direction as the diffusion flux which will be developed later 

on against depletion or accumulation of ions due to electrode reactions.  

Moreover, by comparing the migration and diffusion fluxes, it is clear that the diffusion 

flux of AlF4
-
 is the dominant mass transfer mechanism from the early stages of the 

electrochemical process in both the anode and cathode boundary layer. 

Considering the development of diffusion flux vectors in Figure 4.9, it can be seen that 

AlF4
-
 diffuses also from the interelectrode space to the left part of the cell. This can be 

explained by the fact that the rate of production of AlF4
-
 at the anode is higher than its 

rate of consumption at the cathode for a specific reaction current, so its concentration 

becomes higher in the interelectrode space, and the left part of the cell works as a 

depository of AlF4
-
 ions.  
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Figure 4.9. Diffusion flux magnitude [kg.m
-2

.s
-1

] and normalized diffusion flux vector for 

AlF4
-
 after 30 [s], 60 [s], 120 [s], and 180 [s]. 
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Figure 4.10a and b present the transient concentration of AlF4
-
 on the section line AA 

(see Figure 4.1), near the cathode and anode region, respectively. The concentration of 

this ion in the anode boundary layer increases constantly with time as a result of the 

anode reaction in the first place and of the migration of AlF4
-
 in the second place. 

However, in the cathode boundary layer, the concentration decreases in the early stages 

of cathode reaction, and, after passing through a minimum, an increase in the 

concentration of this ion is seen. The concentration is lower than the bulk value is for all 

times since AlF4
-
 is an electroactive reactant at the cathode, which is reduced to produce 

aluminum. But the concentration out of the near the cathode layer increases with time due 

to: 

 the production of this ion by the anode reaction; it should be noted that there are 

more AlF4
-
 ions produced at the anode than consumed at the cathode; 

 its diffusion towards the lower concentration regions near the cathode.  

Although the concentration shows a transient behaviour, the difference between the bulk 

concentration and cathode surface concentration becomes quickly constant, as shown in 

Figure 4.10c. In the same manner as illustrated for Al2OF6
2-

, the mass transfer coefficient 

of AlF4
-
 near the cathode is found to be 1.18×10

-4
. As already mentioned, it assumed to 

be a good representation of the steady state behaviour of the diffusion flux in the cell for 

larger times if we assume that regular alumina feeding re-establishes the initial mass 

condition in the electrolyte. 
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Figure 4.10. Mass fraction of AlF4
-
 in a) cathode boundary layer, b) anode boundary 

layer, c) difference of bulk mass fraction and surface mass fraction for AlF4
-
 with time. 
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4.6.2.3 Migration and diffusion fluxes of Na
+
  

It was shown for electroactive ions that high reaction rates produce a high concentration 

gradient for these ions near the electrodes, so that diffusion increases with time due to 

this concentration gradient. Nonetheless, the flow pattern of electroinactive ions, which 

do not participate in any reaction, is the result of equilibrium between migration and 

diffusion fluxes of these ions. As it is shown in Figure 4.11, the migration flux of Na
+
, 

the only cation present in the cell, is in the same direction as current density vectors that 

pass through the bath. 

 

Figure 4.11. Migration flux magnitude [kg.m
-2

.s
-1

] and migration flux normalized vector 

of Na
+
. 

One of the main differences between Na
+
 and previously discussed anions is that 

diffusion
 
is not the dominant transfer mechanism and ultimately becomes of the same 

order of magnitude as migration for larger times, as shown in Figure 4.12. In other words, 

considering the hypothesis made in this study that this ion is absent in the electrode 

reactions, diffusion can be considered as the resistance of the concentration field against 

the migration caused by the electric field. The second point is that the migration of Na
+
 

ions towards the cathode makes the concentration in the interelectrode space near the 

anode lower than the left part of the cell. This creates a flow of the cations into the 

interelectrode space near the anode.  
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Figure 4.12. Diffusion flux magnitude [kg.m
-2

.s
-1

] and normalized migration flux vector 

for Na
+
 after 30 [s], 60 [s], 120 [s], and 180 [s]. 

Migration and diffusion fluxes of electro-inactive anions 
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For other electroinactive anions, similar mass transfer pattern can be observed as for the 

case of Na
+
. The difference is in the inverse direction of migration flux of negatively 

charged ions, as shown in Figure 4.13. Since negative anions are attracted to the anode, 

the direction of diffusion flux of the ions is in the opposite direction compared to the flux 

of Na
+
. As it was shown in a previous (one-dimensional) work by the authors [53] the 

diffusion magnitude flux starts from zero and becomes equal to the migration flux for 

larger times, so there is equilibrium between migration and diffusion fluxes for these 

electroinactive ions, as seen in Figure 4.14. For the present two-dimensional study, the 

same phenomenon is observed; however, the diffusion flux from left part of the cell to 

interelectrode surface near the cathode is also added to this surface.  

 

Figure 4.13. Migration flux magnitude [kg.m
-2

.s
-1

] and migration flux normalized vector for 

electroinactive anions. 
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Figure 4.14. Diffusion flux magnitude [kg.m
-2

.s
-1

] and normalized diffusion flux vector 

for electroinactive anions after 30 [s], 60 [s], 120 [s], and 180 [s]. 
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4.7 Conclusion 

The electric and concentration fields in the electrolytic bath of an aluminum production 

cell have been modelled considering the kinetics of reactions at both electrodes, and the 

solution of the equations is made using COMSOL. The mass transfer model includes the 

coupled movement of three categories of ions: electroactive anions, electroinactive 

anions, and finally Na
+
 as the only cation. The important contribution of convection has 

been modelled by adding a turbulent diffusion term to the system. The transient migration 

and diffusion as the main mechanisms of mass transfer has been studied at 180 seconds. 

This period is characteristic of the industrial operation of aluminum cells where alumina 

is added to the cell typically every 3 or 4 minutes. 

 Among the electroactive ions, Al2OF6
2-

 and AlF4
-
, migration is the dominant mechanism 

of transport for the very early stages of the electrochemical processes. However, a high 

rate of consumption or production of these ions at the corresponding electrodes forms 

high concentration gradients near the surfaces of these electrodes, which at later times 

leads to high diffusion rates of the species into or out of the corresponding boundary 

layer. This makes diffusion the governing mechanism of ion transfer near the 

electroactive electrodes. For the case of Al2OF6
2-

, which is the ionic form of dissolved 

alumina, the region out of the interelectrode space (at the left of the anode) is depleted 

very slowly, thus acting as an alumina “reservoir”. This causes a diffusion flux from the 

reservoir into the interelectrode space at later stages, when the concentration between the 

two electrodes decreases. On the other hand, since the rate of production of AlF4
-
 at the 

anode is higher than its rate of consumption at the cathode because of stoichiometry, its 

concentration becomes higher in the interelectrode space and a diffusion flux is observed 

from this region to the left part of the cell. For this species, the left part of the cell works 

as a depository. 

For electroinactive ions and Na
+
, the concentration profiles near the electrode are formed 

by migration of these charged ions towards the opposite electrode, so the rate of diffusion 
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flux is much smaller when compared to electroactive anions. Moreover, the migration 

flux of Na
+
 in the bath is the larger than all other anions due to higher mobility of this ion 

as compared to the other larger anions in the cell. 

In further studies, the temperature field will be solved for the electrolytic bath using heat 

generation source terms. Since it has been noted that the turbulent flow of the bath has 

such an important impact on the concentration and temperature fields, the flow fields 

should be included. This is a very important modification to the model since it implies a 

full three-dimensional description of the cell and inclusion of the electromagnetic effects 

on convective fluxes. 
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Nomenclature 

  anode surface[  ] 

   available anode area for the current passage[  ] 

   mixture-averaged diffusion coefficient of species i, [
 

  
] 

     multicomponent diffusion coefficient of species i , [
 

  
] 

   turbulent diffusion coefficient, [
 

  
] 

   wall distance, [m] 

     electrode reaction equilibrium voltage[ ] 

  faraday constant [
 

   
] 
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   molar mass of species i, [kg] 

   mean molar mass, [  ] 

  number of species 

   mass rate of production of species I by homogeneous reaction[
  

    
] 

      cell voltage[ ] 

   activity of species i 

  inverse distance function[
 

 
] 

  current density magnitude [
 

  
] 

  current density vector [
 

  
] 

   mass flux of species i, [
  

    
] 

   turbulent mass flux of species i, [
  

    
] 

  number of electron transfered in electrode reaction 

   mobility of species i 

   molar fraction of species i 

   charge number of species i 

Greek letters 

  factor of convection [
 

   
] 
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  relative permittivity of bath 

   electric permittivity of vacuum [
 

 
] 

  overpotential [V] 

   stoichiometric coefficient of species i 

   mass density of solution[
  

  
] 

   electric charge density[
 

  
] 

  electric potential [ ] 

   mass fraction of species i 

Subscripts 

A anode 

C  cathode 
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5 MASS TRANSFER MODELING FOR 

ELECTROCHEMICAL CELLS USING 

OPENFOAM 

5.1 Abstract 

In this chapter, an open source code is exploited and developed for the purpose of 

numerical simulation of electrochemical cells. This code is built and installed on existing 

open source toolbox, OpenFOAM (Open source Field Operation and Manipulation). The 

developed toolbox has the capacity to solve secondary current distribution for electric 

field, velocity field, and Maxwell-Stefan equations for mass transfer in concentrated 

solutions. In this chapter, the mathematical presentation of mass transfer problem and 

also the numerical algorithm used to develop the code are explained. As an example, the 

case of parallel plate electrodes applied to the electrolysis of aluminum is considered. The 

chemical equilibrium representing the dissolution of alumina in electrolytic bath 

(homogeneous reactions) is also modeled. The flow of electrolytic bath between the 

electrodes (velocity field) and also the transport of chemicals in the cell (concentration 

field) are also solved using transient solvers. The model is also applied to the case 

without considering the homogenous reaction. The results indicate that both systems 

reach the steady state if enough time is let to the system. However, it takes more time for 

the model with chemical equilibrium reactions to reach steady state. The depletion of 

Na2Al2OF6 occurs at the surface of the anode. The chemical equilibrium affects and 

limits NaAlF4 concentration in high concentration region near anode.  

5.2 Introduction 

 As stated in previous chapters, mathematical modeling of the mass transfer inside 

electrochemical cells involves taking into consideration the three mechanisms of mass 
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transport: diffusion, migration and convection. The total mass of each species should be 

conserved when also considering the reactions that take place at the electrodes and in the 

electrolyte. The previous models presented in this study carry three different assumptions 

that were dictated by the limitations of the solving toolbox (COMSOL). Firstly, 

convection was simplified through the use of a turbulent diffusivity and the 

corresponding turbulent diffusive flux. Although the simplified turbulent diffusion model 

was a good way to take into account the effect of eddies on the mass transport, it did not 

consider all effects of convection on mass transport, especially for more complicated 

geometries. Secondly, the chemical equilibrium between cryolite and alumina in the 

solution was only considered at the beginning of the simulation: representing the time 

after cell feeding. The calculation of this equilibrium in each control volume and for each 

time step would give a more realistic description of mass transport in the cell, particularly 

for the electroactive ions showing high concentration gradients. Thirdly, the model 

presented in previous chapters for diffusion was based on modified Fick's law for 

concentrated solution. This model is based on the use of an effective diffusion coefficient 

for each ion, which is locally dependent on the concentration of different ions. However, 

a more rigorous approach to model diffusive fluxes in multicomponent mixtures is 

described by Maxwell-Stefan equations [52]. In contrast to Fick's law, the Maxwell-

Stefan equations describe the binary interfluxes of each pair of species. In other words, 

the application of concentrated solution theory implies that diffusive flux of each species 

relative to the other species can be different and may not be reduced to only one diffusion 

coefficient [15]. The Maxwell-Stefan formulation and solution is discussed in details in 

the coming sections. 

The implementation of convection and chemical reactions demands a robust numerical 

structure, especially for turbulent high temperature flows. Moreover, the application of 

Maxwell-Stefan implies that fluxes are the functions of the binary diffusion coefficients 

and demands that intensive implicit calculation of fluxes from concentrations. Moreover, 

these equations are either not implemented in existing multiphysics codes or their 

numerical solution convergence is difficult because of the high number of species system 
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due to nonlinear coupled nature of the differential equations. These limitations lead us to 

implement the model in a more sophisticated and flexible platform with the capability of 

multiphysics formulation for multi-region geometries. The capabilities to handle the 

hydrodynamic and thermal aspect of the problem are also very important. Moreover, the 

capability to solve partial differential equations for other fields like electric or magnetic 

fields can be also valuable and helpful, see Appendix A. OpenFOAM (Open source Field 

Operation and Manipulation) is a C++ toolbox for the development of customized 

numerical solvers of continuum mechanics problems including Computational Fluid 

Dynamics (CFD). This software has the capability to integrate new solvers and boundary 

conditions designed and developed by the new users into the existing solvers and 

libraries. 

In OpenFOAM, there is no specific solver dedicated to the electrochemical reaction 

kinetic aspects or more generally to the transport phenomena inside electrochemical cells. 

Moreover, the mass transfer solvers already implemented in OpenFOAM are designed for 

combustion cases, with Fick's diffusive fluxes, which are not applicable to concentrated 

solutions and more generally to electrolytic solutions. However, this toolbox provides 

valuable solvers and libraries and also the advanced geometry and meshing tools which 

can be helpful in the simulation of electrochemical processes, all of which representing 

strong benefits. 

This chapter of thesis tries to describe the developments that have been made into 

OpenFOAM to simulate the mass transfer of electrochemical cells. It includes the 

mathematical formulation, the numerical modeling, and an example of its application to 

the simulation of aluminium electrolysis cell. Finally, the results obtained by simulating 

aluminium electrolysis process for parallel plate geometry are to be discussed and 

analyzed.  
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5.3 Transport phenomena modeling and conservation laws  

Transport phenomena in electrochemical cells deal with four major fields: electric 

potential, concentration, velocity, and temperature. Moreover, it should be noted that 

there may be other fields like electromagnetic field, which have very important impact on 

the transport pattern of other fields, especially in large scale cells. The mathematical 

models that describe these fields are conservation laws as applied to momentum, mass 

and electrical charges, each of which being based on continuum mechanics formulation. 

One conservation law is not necessarily decoupled from the other conservation laws. 

Typically, all conservation laws are coupled and their solutions involve a coupled system 

of partial differential equations. All assumptions that can uncouple or limit the strength of 

the coupling without major loss of generality or precision of the study can be helpful in 

the solution of the coupled partial differential equations. For example, the constant 

temperature assumption reduces the mass transfer problem to interaction of concentration 

field with the two other fields left: velocity and electric potential. In fact, coupling 

between these three fields are related to convection and migration flux in species mass 

conservation equations. Poisson‟s equation should be solved to satisfy the electric charge 

continuity, see Appendix A. Navier-Stokes equations are to conserve the mass and 

momentum in the system. The solution of the equations will be explained in the coming 

sections by their application on a simplified aluminium electrolysis cell.  

5.4 Case for mass transfer in aluminium electrolysis cell 

The purpose of this study is to study the effect of convection and bath equilibrium on the 

species concentration using OpenFOAM. This study will take into account the following 

missing parts in previous studies: 

 The effect of chemical equilibrium of the bath is added. 

 The convection flux is added to the diffusive flux. 



101 

 

 The multicomponent diffusion flux is calculated based on Maxwell-Stefan 

formulation. 

In order to reduce the complexity of velocity field, the simpler geometry of two parallel 

electrodes is considered, see Figure 5.1. 

 

Figure 5.1 Parallel-plate electrode model for aluminium cell 

5.4.1 Chemical equilibrium 

The solution of alumina (Al2O3) and cryolite (Na3AlF6) is considered as an ideal solution 

with saturated alumina dissolved in the bath. This will set the activity of alumina to be 

unity in this solution. The species are considered to be the species proposed by Zhang et 

al. with anions surrounded by Na
+
 ions [56, 57]. Consequently, the migration is only 

devoted to Na
+
 ions as it has been already considered in other studies. The electrolytic 

bath is initially at NaF-AlF3-Al2O3 equilibrium. The bath equilibrium is calculated based 

on the chemical model proposed by Zhang et al.: 
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5.1 

Moreover, the flow entering interelectrode distance at the inlet boundary is also at 

equilibrium. 

Two cases are considered for this analysis: one without homogenous reaction and the 

other one with homogenous reaction (bath chemical equilibrium). Homogenous reactions 

are modeled through two forward and back reactions, with the ratio of specific reaction 

rates equal to equilibrium constants, as proposed in previous studies [13, 14]. 

5.4.2 Velocity field 

To obtain the velocity field, Navier-Stokes equations are to be solved for the reactor 

domain for a case of duct transient flow. The solution entering the reactor is assumed to 

have a uniform inlet velocity of      
 

 
 , a value typically found in aluminum electrolysis 

cells[29]. The system is considered to be isothermal at 1240 K, a condition that is closely 

encountered in aluminum electrolysis cells [12-14, 29]. The simulation is done using 

transient PISO solver, as mathematical model and its numerical algorithm is presented in 

following sections. 
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5.4.2.1 Momentum-conservation equations 

The momentum conservation equation for fluids is given by Navier-Stokes equations: 

 

 (  )

  
   (   )          

 

5.2 

Where   is the fluid density,   is the fluid velocity,   is the viscous stress tensor and,   is 

the pressure. This equation is solved with another conservation equation that is mass 

conservation equation or mass continuity equation: 

 ( )

  
   (  )     

 

5.3 

Where   is given by the momentum-conservation equations and    stands for the 

volumetric mass sources. These equations give the velocity as a vector field in the 

computational domain. The algorithm used for solving these equations is explained in 

next section. 

5.4.2.2 Numerical model 

OpenFOAM is basically developed to treat the momentum and heat transfer in fluid 

mechanics. The momentum conservation equations, Equation 5.3, are solved through 

PISO (Pressure Implicit with Splitting of Operators) algorithm. The PISO algorithm was 

originally proposed by Issa[65] and is implemented as a standard solver into OpenFOAM 

by Jasak[66].The algorithm of the solver is shown in Figure 5.2. 
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Figure 5.2 PISO algorithm flowcharts 

5.4.3 Species mass-conservation equation 

The mass conservation for each species is given by the following equation: 

 

 (   )

  
   (    )    (  )      5.4 
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Where   is the fluid density,   is the fluid velocity,    is the mass fraction of species i,    

is the mass diffusion-flux of species i relative to the mass-average velocity, and     

stands for the volumetric sources or sinks of the species i. 

The modeling of the diffusion flux    is depending on the solution of species and the 

medium in which the diffusion takes place. For dilute solutions, Fick‟s diffusion law is 

applicable. For concentrated solutions, the Fick‟s law is modified to be applicable to 

concentrated solutions as it was the case for the diffusion models in the two previous 

chapters. However, a more accurate analysis of the mass transport can be given by 

Maxwell-Stefan (M.S.) equation.  

5.4.3.1 Maxwell-Stefan model 

The Maxwell-Stefan, that relates diffusion mass fluxes to molar fractions, is written 

below: 

    ∑
    

   
(
  

 
 
  
 
)

   

   
   

 

 

5.5 

 

Where    is the mole fraction of species  , and     is the binary diffusion coefficient of 

species   in medium  . As it can be seen in Equation 5.5, the relation between diffusion 

coefficients and fluxes is an implicit relation. However, in order to calculate the diffusive 

mass fluxes    explicitly from concentration matrix, it is possible to sum up all the binary 

diffusion fluxes of a species in other species, see Equation 5.6. 
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5.6 

Where     is different from multicomponent diffusion coefficient    , and is equivalent 

to Fick‟s binary diffusion coefficient in multicomponent mixtures.     is calculated by 

the following correlation which converts the matrix of Maxwell-Stefan diffusion 

coefficients to Fick‟s multicomponent diffusion coefficient matrix. 

 

[ ]  [ ]  [ ] 

 

5.7 

Where the matrixes A and B are given below. 
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Equation 5.7 gives the diffusion flux; the convection and migration fluxed must be added 

to this flux, through calculation of velocity and current density fields. Finally, having 

calculated the fluxes, the mass conservation equation for each species can be solved. 

The boundary conditions for mass transfer are in form of Newman-type boundary 

conditions. 

           

 Therefore, such conditions are derived from generic Newman-type boundary condition 

in OpenFOAM called fixedGradientFvPatchfield. This boundary condition imposes the 

normal gradient on the surface based on the flux which is given from electrode kinetic 

current density (for coupled case with electric field) or from electrode surface reaction 

rate (for uncoupled case or for uniform current density assumption over the electrodes), 

as it is shown below: 

      (  )  
         

    
 

 

5.9 

 

The algorithm, which calculates the diffusivity matrix, the M.S. fluxes, and solves the 

concentration field is shown in Figure 5.3. The code of mass conservation with M.S. 

fluxes is implemented in a library named multiSpeciesTransportModels that is located in 

the OpenFOAM user directory.  
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1. Read the multicomponent diffusivities from DiffusionModel

2. Calculate the diffuvity matrixes

[A], [B], and [D]

For the first N-1 species:

3. Construct the convection and migration objects

4. Construct the source term reaction rate from thermo class

5. Construct fvm matrix for concentrations

6. Solve species concentration

7. calculate the N-1 total fluxes

For Nth soecies:

8.Conserve the total mass 

9.Calcualte the flux for Nth Species

10. Correct

11. update the coefficients

 

Figure 5.3 Mass transfer library: Maxwell-Stefan equation solver 

5.5 Meshing and solution 

The officially implemented tool in OpenFOAM, blockMesh, is used to create geometry 

and to create a structural mesh. The meshes are cubic meshes and include about 5000 

finite volumes for this geometry. 

The system is considered to be isothermal, a condition that is closely encountered in 

aluminum electrolysis cells[13, 14]. The simulation is done using transient PISO solver. 

The system reaches steady state before 120 seconds for the case with homogeneous 

reactions and after 45 seconds for the case without homogeneous reaction. In the next 

section, the results will be discussed. 
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5.6 Results and discussion 

As stated in the previous sections, the initial composition of electrolytic bath between the 

electrodes is at chemical equilibrium. In the same manner, the electrolytic that enters the 

reactor is also in chemical equilibrium. The heterogeneous electrode reactions starts at 

t=0 and forms diffusion boundary layers for electroactive species near the electrodes. 

Among the species present in the cell, Na2Al2OF6 and NaAlF4 are of great importance. In 

fact, the first species (Na2Al2OF6) has the highest concentration at equilibrium in 

electrolytic bath with lower cryolithe ratio (CR). It is represents the concentration of 

alumina dissolved in the bath. The second one (NaAlF4) is the species that is reduced at 

the cathode thereby producing aluminum. NaAlF4 is also a product of the anode reaction. 

In fact, along with NaF, these ions are the main electroactive species in the cell. Being 

electroactive at electrodes, these species form concentration gradients near the active 

electrodes and consequently a diffusion boundary layer is formed near the electrodes. 

 

Figure 5.4 Transient mass fraction of Na2Al2OF6 for different time steps between parallel 

electrodes 
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Figure 5.4 shows the development of concentration profiles and contours of concentration 

for Na2Al2OF6 after 2, 10, 60, and 120 seconds. The system converges to steady sate 

response after 120[s]. As it can be seen in Figure 5.4 , the area near the anode is depleted 

of Na2Al2OF6 species due to high anode reaction rate. Figure 5.5 illustrates the decrease 

of Na2Al2OF6 mass fraction in the centerline of the reactor from 0.35 in the reactor inlet 

to 0.11 for the outlet of the reactor at steady state conditions. 

The difference between the mass fraction of Na2Al2OF6 of entering and leaving fluid can 

be viewed along the outlet boundary, as it is shown in Figure 5.5 B). Na2Al2OF6 is 

depleted over the anode. As it is clear, the concentration of Na2Al2OF6 in the cathode 

region is higher than in the anode region. However, it is still much lower than the inlet 

mass fraction. The decrease in mass fraction of Na2Al2OF6 is the result of fast anode 

reaction that produces NaAlF4 and CO2 at the anode. In this study, it is assumed that all 

CO2 produced leaves the bath and reactor immediately after production and does not 

accumulate in the cell. 

Although the decrease in concentration of Na2Al2OF6 in the cell is observed, the 

concentration of NaAlF4 is increasing in the anode diffusion boundary layer. This will 

create a high concentration difference for this species in the interelectrode direction 

(normal to electrode), as it is shown in Figure 5.6. 
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Figure 5.5 Mass fraction of Na2Al2OF6 in the outlet (left) and in the centerline of the 

reactor (right)           

  

 

 

 

Figure 5.6 Transient mass fraction of NaAlF4 for different time steps between parallel 

electrodes 
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Figure 5.7 Mass fraction of NaAlF4 in the outlet (left) and in the centerline of the reactor 

(right) 

This normal concentration gradient between anode and cathode leads to important 

NaAlF4 molecular diffusion toward cathode region. Although NaAlF4 concentration 

gradient is only in the boundaries diffusion layer in early stages of the electrolysis 

process, this gradient is developed to the bulk region for later times, far from the inlet of 

the cell, as it is shown in Figure 5.6. This will lower the concentration gradient between 

bulk and the electrode region for this ion, as it is clear in Figure 5.7. It should be noted 

that NaAlF4 concentration decreases near cathode and increases near the anode as the 

flow move to outlet region. However, the rate of production is higher than the rate of 

consumption, due to stoichiometric coefficient of two reactions for a constant number of 

electron transfer. This high concentrated area of NaAlF4 in the anode region affects the 

chemical equilibrium of the bath. This will reinforce the reverse effect of chemical 

equilibrium to lower NaAlF4 mass fractions, as it can be understood from Figure 5.8. By 

comparing the two simulations, the first without considering equilibrium and the second 

with equilibrium calculations, it is clear that this will result in considerably lower mass 

fraction of NaAlF4 near the anode (            ) comparing to the case without 

considering chemical equilibrium (           ). 



113 

 

 

Figure 5.8 Concentration of NaAlF4 over the anode for the cases neglecting the chemical 

equilibrium of electrolytic bath (left) and considering the chemical equilibrium of 

electrolytic bath (right) 

5.7 Conclusion 

There have been few studies dedicated to mass transfer analysis in aluminum electrolysis 

cell. High temperature and high corrosiveness of the bath have been major obstacles for 

experimental researches in this field. Numerical modeling of the cell also suffers from the 

lack of data, high nonlinear coupling between different fields. However, the studies done 

in the previous two chapters of the thesis analyze 1-D and 2-D mass transfer in the cell by 

considering the impact of diffusion and migration and turbulent diffusion. These studies 

consider certain assumptions, which are imposed by the limits of the numerical toolbox 

that was used. These assumptions can be described as below: 

 Neglecting the chemical equilibrium in the bath 

 Reducing the impact of convection on mass transfer to turbulent diffusion 

 Using simplified concentrated solution theories for mass transfer instead of 

employing Maxwell-Stefan equations 
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In the study presented in this chapter, an open source code built on an open source 

platform (OpenFOAM) is exploited and developed to be capable of handling transport 

phenomena in the electrochemical reactors. Since OpenFOAM is a code specifically 

developed for computation fluid dynamic (CFD) applications, the developed code uses 

the powerful tools already implemented in OpenFOAM to treat complicated flow patterns 

like turbulence and multi-phase flow and even homogeneous reactions. Moreover, the 

developed code is capable of modeling mass transfer models like Fick‟s and Maxwell-

Stefan equations. Other developments in OpenFOAM include the new boundary 

condition treatments and manipulations for Butler-Volmer kinetics at electrodes. This 

will allow the users to model “Robin type” boundary conditions in the software. 

In addition to the numerical contributions of this study, a convective-diffusive model of 

aluminum electrolysis process between parallel plate electrodes is modeled in 

OpenFOAM. The application of the code to two cases, one with and the other without 

chemical equilibrium in the bath, indicates that the latter reaches steady state faster. The 

reaction has limiting effect on the concentration of ions in diffusion boundary layer, like 

for the NaAlF4 species in the anode diffusion boundary layer. 

For further studies based on the developed code, it is important to analyze the effect of 

velocity on the mass transfer in the cell, since velocity has large impacts on the 

turbulence of the system. Other factors also need to be modified, like the parameters 

defining the geometry of the cell. Considering the capacities of OpenFOAM in 

magnetohydrodynamic modeling, the inlet-outlet flow pattern may be developed to a 

more realistic form of flow, including MHD as one of the main source of momentum. 

The effect of temperature can also become important in special operational conditions. 

To summarize, there are many aspects of transport phenomena in electrochemical 

systems that can be modeled by the developed codes within OpenFOAM toolbox 

platform, all of which can bring new scientific and numerical contributions to this field. 
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6 CONCLUSION 

The research project presented in this thesis is a study that is covering the analysis of 

mass transfer of ions in electrolytic bath of aluminium electrolysis cell. This study 

analyzes mass transfer analysis in both cathode and anode diffusion layer and the bulk of 

the bath. The study should also consider that this field mutually influences and is 

influences by bath velocity field, creation of bubble below anode, current density 

distribution, and electrode reactions.  

The experimental studies on the mass transfer are limited because of the harsh condition 

like high temperature and corrosiveness of the bath to the extent that even determination 

of ions is a controversial subject, and there are many models proposed for 

electrochemical reactions mechanisms at the electrodes. The uncertainties over the basic 

problems in addition to the coupled nonlinear nature of the mass transfer problem are the 

main obstacles that impose the limitations on the progress in this field. 

However, there have been recent studies on the mass transfer of ions in the cathode 

diffusion boundary layers for NaF-AlF3 mixtures by neglecting anode or bath effects on 

the concentration of ions in this region. Furthermore, the preliminary studies are all done 

for 1-D geometry in the cell without considering the current distribution over the 

electrodes and in the bath. In the study presented in this thesis, we try to widen the 

boundaries of mass transfer problem in order to overcome some defects and limitation of 

these studies. 

Firstly, the mass transfer problem in NaF-AlF3-Al2O3 is modelled for 1-D interelectrode 

geometry. Two mechanisms of migration and diffusion are considered as main flux terms 

in mass conservation equation. The effect of convection is added as turbulent diffusion. 

The results indicate major role of diffusion flux for electroactive ions at corresponding 

electrodes when the concentration profiles are fully developed. In the early stages before 

formation of concentration profiles, migration is of greater importance comparing to 



116 

 

diffusion. For electroinactive ions, diffusion is of the same magnitude as migration and 

opposes the concentration gradient created by migration in the early stages. 

The 1-D model does not account for the distribution of current over the electrodes in the 

bath. Moreover, the mass transfer in interelectrode 1-D geometry cannot explain the mass 

transfer between interelectrode space and the regions between sidewall and crust. In the 

second step of this study, the electric current distribution is modelled for typical 2-D 

geometry of the cell. Moreover, mass conservation equations are solved in 2-D cell by 

considering the impact of migration and turbulent diffusion. A geometrical method is 

applied to calculate the wall distance field and turbulent diffusion coefficient. In this 

study, the transient behaviour of ion fluxes is given in different part of the cell. 

The 2-D cell simulation shows other different diffusion fluxes that are resulted from 

concentration gradient between the interelectrode space and the region beside sidewalls 

and farther from electrodes. For example, Al2OF6
-2

 is depleted near the anode so there is 

firstly the diffusion in interelectrode space from cathode to anode. Secondly, the lower 

concentration of Al2OF6
-2

 in interelectrode region compared to region near sidewall 

creates diffusion fluxes from this region into the interelectrode region. 

Although applying a geometrical 2-D model to include turbulent diffusion as the impact 

of convection on mass transfer is a new contribution in this work compared to the 

previous works, it does not take into account the real convective flux in the cell. A more 

rigorous approach is to solve Navier-Stokes equations, Poisson‟s equation of electric 

field, and mass transfer equations simultaneously to obtain the ideally realistic picture of 

the cell. A solver is developed in OpenFOAM, a C++ coding open source CFD platform, 

to include convection and chemical reactions in electrochemical cells. The solver is 

applied to a parallel-plate-electrode aluminium cell. The model solves Maxwell-Stefan 

equations and Navier-Stokes equation simultaneously by considering the bath chemical 

equilibrium at each time step. 



117 

 

The results obtained for a parallel-plate-electrode cell illustrates concentration profile for 

NaAlF4 and Na2Al2OF6 as major electroactive species under convection and by 

considering bath chemical equilibrium. The comparison between two cases of with and 

without bath chemical equilibrium shows that it takes more time for the case with bath 

equilibrium to reach steady state compared to the case without bath chemical equilibrium. 

The main contributions obtained in this study can be summarized as below: 

 Development of mass transfer model for the complete cell including cathode and 

anode diffusion layers in addition to the bulk of the bath. 

 Considering NaF-AlF3-Al2O3 system and alumina-cryolite dissolution 

equilibrium.  

 Development of 2-D model for the ionic fluxes in the cell considering migration 

and turbulent diffusion. This development gives broader view over transient 2-D 

fluxes between different cell regions for two categories of electroactive and 

electroinactive ions. 

 Application of a 2-D geometrical model to calculate the turbulent diffusion for 2-

D geometries. This model can be applied to any 2-D geometry to estimate the 

turbulent diffusion in electrochemical systems. 

 Development of an open source C++ library on OpenFOAM platform to model 

current distribution for nonlinear electrode kinetics. Moreover, there is another 

library that is developed to model mass transfer in dilute and concentrated 

solutions. 

6.1 Future works 

Although this research project brings out mentioned scientific contributions compared to 

limited previous studies in the field of mass transfer in high temperature electrolysis cell, 

it comes with several limitations and defects that can be surpassed or improved in future 
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work. The perspective of future works to improve or to develop the presented study can 

be outlined as: 

  The role of convection is of great importance in the mass transfer of the cell. 

Convective mass transfer, especially near electrodes, is influenced by other 

phenomena. Over the anode, the evolution of bubbles creates a convective 

movement which influences the entire cell. This has a very important role in the 

mass transfer in the anode diffusion layer. On the other side of the cell, MHD 

momentum is transferred to the bath through the movement of the aluminium 

layer. This effect is of great importance in the instability of the cell. On one side, 

adding these two phenomena to the model demands a tightly coupled field 

solution and also a robust numerical toolbox. On the other side, the results bring a 

lot of information of the mass transfer in boundary layers of the cell. 

 The assumption of an isothermal cell is a common assumption in the studies about 

mass transfer in this type of cell. However, this field can have an important 

impact on the geometry of the cell and on convection, the side ledge being 

essentially driven by the heat flux through the side of the cell. The source of heat 

is the Joule effect created by the passage of the electric current through the 

electrolytic bath. Therefore, this coupling can be the closure point for the analysis 

of transport phenomena in the cell. 

 OpenFOAM gives many capabilities to the user to solve multi-physics, multi-

region transport problems. The library that was developed for the mass transfer 

and electrode kinetics is just a starting point. It can be developed further to add 

more flexible convective schemes. MHD and muti-phase solvers of OpenFOAM 

can be very helpful toolboxes if they are coupled to the existing code. 

 There has been several boundary condition treatments developed in this study, for 

linear Robin boundary conditions and also nonlinear Newman boundary 

conditions. However, there is still a need to implement the coupled migration-

diffusion boundary condition of type Robin in OpenFOAM to be able to model 
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the electrochemical fluxes at electrodes and fully model the tertiary current 

distribution situations. 

For conclusion, the analysis of the ion movement is a multiphysic nonlinear problem that 

needs to be treated by multiphysic robust numerical tools. Fulfillment of all aspects 

related to the movements of ions is difficult to be done in one step; however, this study 

can be used as one of the preliminary steps for more robust simulation of this aspect of 

aluminium electrolysis cell and other similar electrochemical systems. 
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APPENDIX A  ELECTRIC FIELD 

MODELING AND ELECTRIC CURRENT 

CONSERVATION 

As discussed in chapter 2, the governing equation for the electric field is Poisson's 

equation, which can be simplified to Laplacian of electric field when considering the 

electroneutrality assumption and constant conductivity in the bath as it is shown in 

below: 

  (   )    A.1 

 

The application of this equation would make the electric current that passes each node or 

each cell in the domain conserved. As for boundaries of the system, there are other 

mathematical models that illustrate the transport phenomena and fluxes like electric 

potential or current on the electrodes and insulated walls. 

A.1 Boundary conditions for the electric field 

The boundary conditions of an electrochemical system can be either a specified electric 

current or a specified electric potential, as it is shown in Figure A.1. However, it is 

essential to impose at least one Dirichlet boundary condition for the electric potential to 

have a reference point for electric potential in the cell, so all cases in Figure A.1 are valid 

except the last pair of boundary conditions that is not acceptable. 



121 

 

 

Figure A.1 Boundary conditions combinations for the electric field 

Generally speaking, the parameters A and B in Figure A.1 depend upon the kinetics of 

electrochemical reactions and the assumptions made to get them. As it was discussed in 

chapter 2, there are three major assumptions to treat electrochemical reactions in the 

boundaries of the system. The first assumption is called the primary current distribution 

(PCD), which considers constant overpotential along the electrodes, so the boundary 

conditions are simply Dirichlet boundary conditions of electric potential, see Figure 

A.1A). 

The secondary current distribution (SCD) assumption takes into account the kinetics at 

the electrode. The kinetics of the reactions correlates the electrode current to the surface 

overpotential through the Butler-Volmer (B.V.) equation. The linear and Tafel equation 

are two especial forms of the B.V. equation, for small and large electrode overpotential, 

respectively. 

The third model is tertiary current distribution (TCD), which adds the effect of mass 

transfer over the electrodes. In addition to the kinetics of reactions, this will again limit 

the electric current over the electrodes.  

Several models have been proposed for the electrode reactions in aluminum electrolysis 

cell. These models present different forms of B.V. equation for anode and cathode 

reactions. The model considered in this study takes into account the Tafel form 
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(exponential) for the anode reaction and the linear form of B.V. for the cathode. For the 

linear B.V. case, electrode current ( or gradient of potential) is equal to a linear function 

of overpotential. For Tafel or more general forms of B.V., the function is exponential and 

nonlinear. 

The existing boundary conditions in OpenFOAM are usually explicitly field-dependent 

either for the field (fixedValue) or for the gradient of the field (fixedGradient). For 

example, these boundary conditions can be used for the insolated walls when there is no 

current that passes through the wall (zeroGradient). It is also possible to use fixedValue 

boundary condition for primary current distribution. The fixedGradient boundary 

condition is capable of applying uniform current flow over the boundary cell 

faces(patches), as it is imposed for infinitely long parallel-plate-electrodes cell. However, 

modeling secondary boundary condition is more difficult because the field and the 

gradient are implicitly combined.  

MixedFvPatchField is the generic form of boundary condition developed in OpenFOAM. 

It can be used to model the linearized combination of a field and its gradient. This 

boundary condition is simplifying to fixedValue and to fixedGradient boundary 

conditions when the fraction factor, α, is equal to one and zero, respectively. 

                        (   )(                        ) 

 

A.2 

 

Where the subscripts      and        show the values at face (patch) and cell center, 

respectively;   is the distance between cell center and face center in each cell. The linear 

form of Butler-Volmer is derived as LinearBVFvPatchField, in which                 

and                are calculated as a function of conductivity, exchange current 

density, temperature and other Butler-Volmer kinetic parameters. 
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However, this approach cannot take into account other nonlinear forms of Butler-Volmer 

like Tafel equation, since the field and the gradient of the field are not linearly coupled. 

Therefore, there is a need for the manipulation of the electric field matrix in order to 

apply the nonlinear boundary conditions on the electrodes. This is done through the 

manipulation of the finite volume method (fvm) matrixes. The flow chart of the iterative 

algorithm used in the electric field solution and patch (boundary) fvm matrix member 

manipulation is given below, in Figure A.2. 

The algorithm starts by imposing primary current distribution over both electrodes. Then, 

the boundary faces (patches) are selected and the gradient of electric field is calculated 

over the patches. This gradient is the used to modify the values that are assigned as 

fixedValue boundary conditions for the next round of primary current distribution 

calculation iteration. The loop is stopped when the convergence criteria obtained for the 

electric potential field are met. 
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time++

Read 
boundary 
conditions

1. Find all patches named anode and cathode

2. Calculate surface gradient and current

3. Calculate overpotentials ηA and ηB  based on corresponding 
B.V. 

4. Recalculate the potential values over the patches

Resolve 
electric Field

Convergence 

No
end

yes

 

Figure A.2 Solution algorithm in OpenFOAM for secondary current distribution 

assumption  

 



125 

 

A.2 The numerical simulation and software structure 

As it was discussed in the introduction section of this chapter, open source codes have 

this advantage to provide users with a collaborative platform for developing new ideas 

and applications based on the features of the source code. The work presented in this 

chapter is conducted on the OpenFOAM
®
 platform. The code is developed to solve the 

current, momentum and mass conservation equations. The structure of the libraries 

developed to solve these field equations is given in Figure A.3. 

 

Figure A.3 Structure of mass transfer library in OpenFOAM 

There are three subsections in the mass transfer library to treat different aspects of mass 

transfer. However, the mass transfer code has also access to other libraries implemented 

electroKineticModels 

ElectricFieldSolver 

electrodeKineticCorrection 

multiSpeciesTransportModels 

Fick 

Maxwell-Stefan 

DustyGas 

diffusivityModels 

Constant 

Fuller-Schettler-
Giddings 

Chapman-Enskog 

Wilke-Lee 

Knudsen 
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in OpenFOAM, through the objects that are created from classes like turbulenceModels 

and thermoClass, in order to treat the velocity, eddy diffusion and reactions, respectively. 

Looking back at mass transfer library, the first part of the library is designed to solve the 

electric field. For constant electric conductivity, the electric field is decoupled from the 

concentration field (primary and secondary current distributions). In such cases, the 

Poisson‟s equation can be easily solved. The third block calculates diffusivities based on 

different models for gases and liquids. The mass conservation equation based on different 

flux models is implemented in the central library of multiSpeciesTransportModels. 

A.2.1 File structure of solver cases in OpenFOAM 

The libraries and solvers form the main part of the computational code in OpenFOAM. 

However, the geometry, meshing, initial values for the fields to be solved and the 

selection of the methods for discretization or solution are gathered in the case directory. 

The structure of the case directory in OpenFOAM is shown in Figure A.4. Generally 

speaking, the runtime control parameters like startTime, endTime, and timeSteps are set 

in the controlDict file. Discretization schemes are located in fvSchemes file. The equation 

solvers, tolerances and other algorithm controls are set for the run in fvSolution file. 
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Figure A.4 File structure of OpenFOAM cases 

 

The reactions, constants and transport properties, thermodynamic and thermophysical 

parameters are all given in constant directory. Geometry and meshing tool are also 

located in polymesh/blockMesh files, which is located in constant properties. 

Finally, the last directory in case is the 0 directory, which is for initial values of the 

fields. The other time directories are added and save in case directory when each run time 

is completed. 

 

 

 

 



128 

 

REFERENCES 

 

[1] K. Grjotheim et H. Kvande (1993). Introduction to Aluminium Electrolysis: 

Understanding the Hall-Héroult Process, 2nd edition édition. Aluminium-Verlag, 

Dusseldorf, 260 p.  

[2] Blais, M., Désilets, M. et Lacroix, M. (2013). Optimization of the cathode block 

shape of an aluminum electrolysis cell. Applied Thermal Engineering, volume 58, 

numéro 1-2, p. 439-446.  

[3] Thonstad, J., Fellner, P., Haarberg, G. M., Híveš, J., Kvande, H. et and Sterten, A. 

(2001). Aluminium Electrolysis. Fundamentals of the Hall_Héroult Process. 

Aluminium-Verlag, Dusseldorf,  

[4] Tual, A. et Rolin, M. (1972). Etude des nombres de transport ioniques dans les 

mélanges cryolithe-alumine selon le principe de la methode de Hittorf-I. mise en 

oeuvre de la methode. Electrochimica Acta, volume 17, numéro 11, p. 1945-1954.  

[5] Rolin, M. (1972). Conductivite electrique des melanges a base de cryolithe fondue: 

Systemes NaFAlF3, AlF6Na3Al2O3 et AlF6Na3CaF2. Electrochimica Acta, volume 

17, numéro 12, p. 2293-2307.  

[6] Híveš, J., Fellner, P. et Thonstad, J. (2013). Transport numbers in the molten system 

NaF-KF-AlF3-Al2O3. Ionics, volume 19, numéro 2, p. 315-319.  

[7] Sokhanvaran, S., Thomas, S. et Barati, M. (2012). Charge transport properties of 

cryolite-silica melts. Electrochimica Acta, volume 66, p. 239-244.  



129 

 

[8] Boissonneau, P. et Byrne, P. (2000). Experimental investigation of bubble-induced 

free convection in a small electrochemical cell. Journal of Applied Electrochemistry, 

volume 30, numéro 7, p. 767-775.  

[9] Kiss, L. I., Poncsák, S., Toulouse, D., Perron, A., Liedtke, A. et Mackowiak, V. 

(2004). Detachment of bubbles from their nucleation sites. Dans Multiphase 

Phenomena and CFD Modeling and Simulationin Materials Processesp. 159-168.  

[10] Perron, A., Kiss, L. I. et Poncsák, S. (2006). An experimental investigation of the 

motion of single bubbles under a slightly inclined surface. International Journal of 

Multiphase Flow, volume 32, numéro 5, p. 606-622.  

[11] Tual, A. et Rolin, M. (1972). Etude des nombres de transport ioniques dans les 

melanges cryolithe-alumine fondus selon le principe de la methode de hittorf-II. 

Resultats. Electrochimica Acta, volume 17, numéro 12, p. 2277-2291.  

[12] Gagnon, F., Ziegler, D. et Fafard, M. (2011). A preliminary finite element 

electrochemical model for modelling ionic species transport in the cathode block of a 

Hall-Héroult cell. Dans TMS Light Metalsp. 537-542.  

[13] Solheim, A. (2002). Crystallization of cryolite and alumina at the metal-bath 

interface in aluminium reduction cells. Dans Light Metals: Proceedings of Sessions, 

TMS Annual Meeting (Warrendale, Pennsylvania)p. 225-230.  

[14] Solheim, A. (2012). Concentration gradients of individual anion species in the 

cathode boundary layer of aluminium reduction cells. Dans TMS Light Metalsp. 665-

670.  

[15] Newman, J. S. (1991). Electrochemical systems, second edition édition. Prentice-

Hall, New Jersey, 560 p.  



130 

 

[16] Zoric, J., Rousar, I., Kuang, Z. et Thonstad, J. (1996). Current distribution in 

aluminium electrolysis cells with Søderberg anodes part II: Mathematical modelling. 

Journal of Applied Electrochemistry, volume 26, numéro 8, p. 795-802.  

[17] Hyland, W. W. (1984). Light Metals 1984, p. 711-720.  

[18] Ziegler, D. (1991). Current distribution modeling for novel alumina electrolysis. 

Dans Light Metals 1991p. 363-374.  

[19] Solli, P. A., Haarberg, T., Eggen, T., Skybakmoen, E. et Sterten, A. (1994). Light 

Metals 1994, p. 195-203.  

[20] Zoric, J., Roušar, I. et Thonstad, J. (1997). Mathematical modelling of industrial 

aluminium cells with prebaked anodes Part I: Current distribution and anode shape. 

Journal of Applied Electrochemistry, volume 27, numéro 8, p. 916-927.  

[21] Fraser, K. J., Billinghurst, D., Chen, K. L. et Keniry, J. T. (1989). Some applications 

of mathematical modelling of electric current distributions in Hall Heroult cells. 

Dans Light Metals: Proceedings of Sessions, AIME Annual Meeting (Warrendale, 

Pennsylvania)p. 219-226.  

[22] Zoric, J., Roušar, I., Thonstad, J. et Haarberg, T. (1997). Mathematical modelling of 

aluminium cells with prebaked anodes Part II: Current distribution and influence of 

sideledge. Journal of Applied Electrochemistry, volume 27, numéro 8, p. 928-938.  

[23] Rollet, A., Sarou-Kanian, V. et Bessada, C. (2010). Self-diffusion coefficient 

measurements at high temperature by PFG NMR. Comptes Rendus Chimie, volume 

13, numéro 4, p. 399-404.  

[24] Ratkje, S. K., Rajabu, H. et Førland, T. (1993). Transference coefficients and 

transference numbers in salt mixtures relevant for the aluminium electrolysis. 

Electrochimica Acta, volume 38, numéro 2-3, p. 415-423.  



131 

 

[25] Frank, W. B. et Foster, L. M. (1957). Investigation of transport phenomena in the 

cryolite-alumina system by means of radioactive tracers. Journal of Physical 

Chemistry, volume 61, numéro 11, p. 1531-1536.  

[26] Fellner, P., Híveš, J. et Thonstad, J. (2011). Transport numbers in the molten system 

NaF-KF-AlF 3-Al 2O 3. Dans TMS Light Metalsp. 513-516.  

[27] Kuzmin, R. N., Savenkova, N. P. et Shobukhov, A. V. (2009). Mathematical 

modeling of aluminum electrolysis over a long interval of time. Moscow University 

Physics Bulletin, volume 64, numéro 3, p. 294-298.  

[28] Kuzmin, R. N., Provorova, O. G., Savenkova, N. P. et Shobukhov, A. V. (2009). 

Mathematical modelling of electrochemical reactions in aluminium reduction cells. 

Dans WIT Transactions on Engineering Sciences, volume 65p. 141-149.  

[29] Li, J., Xu, Y., Zhang, H. et Lai, Y. (2010). An inhomogeneous three-phase model for 

the flow in aluminium reduction cells. International Journal of Multiphase Flow,  

[30] Sterten, Å (1988). Current efficiency in aluminium reduction cells. Journal of 

Applied Electrochemistry, volume 18, numéro 3, p. 473-483.  

[31] J.A. Wesselingh, R. K. (2000). Mass transfer in multicomponent mixtures, 1st. ed. 

éditionDelft, Netherland,  

[32] Bortels, L., Deconinck, J. et Van Den Bossche, B. (1996). The multi-dimensional 

upwinding method as a new simulation tool for the analysis of multi-ion electrolytes 

controlled by diffusion, convection and migration. Part 1. Steady state analysis of a 

parallel plane flow channel. Journal of Electroanalytical Chemistry, volume 404, 

numéro 1, p. 15-26.  



132 

 

[33] Byrne, P., Fontes, E., Parhammar, O. et Lindbergh, G. (2001). A Simulation of the 

Tertiary Current Density Distribution from a Chlorate Cell: I. Mathematical Model. 

Journal of the Electrochemical Society, volume 148, numéro 10, p. D125-D132.  

[34] Dahlkild, A. A. (2001). Modelling the two-phase flow and current distribution along 

a vertical gas-evolving electrode. Journal of Fluid Mechanics, volume 428, p. 249-

272.  

[35] Vogt, H. (1980). On the supersaturation of gas in the concentration boundary layer 

of gas evolving electrodes. Electrochimica Acta, volume 25, numéro 5, p. 527-531.  

[36] Wallgren, C. F., Bark, F. H. et Andersson, B. -. (1996). Electrolysis of a binary 

electrolyte in two-dimensional channel flow. Electrochimica Acta, volume 41, 

numéro 18, p. 2909-2916.  

[37] Aldas, K. (2004). Application of a two-phase flow model for hydrogen evolution in 

an electrochemical cell. Applied Mathematics and Computation, volume 154, 

numéro 2, p. 507-519.  

[38] Pillay, B. et Newman, J. (1993). Modeling diffusion and migration in dilute 

electrochemical systems using the quasi-potential transformation. Journal of the 

Electrochemical Society, volume 140, numéro 2, p. 414-420.  

[39] Gerbeau, J., Le Bris, C. et Lelièvre, T. (2006). Mathematical Methods for the 

Magnetohydrodynamics of Liquid Metals.  

[40] Descloux, J., Flueck, M. et Romerio, M. V. (1994). Stability in aluminum reduction 

cells: a spectral problem solved by an iterative procedure. Dans Light Metals: 

Proceedings of Sessions, TMS Annual Meeting (Warrendale, Pennsylvania)p. 275-

281.  



133 

 

[41] Gerbeau, J. -., Lelièvre, T. et Le Bris, C. (2003). Simulations of MHD flows with 

moving interfaces. Journal of Computational Physics, volume 184, numéro 1, p. 

163-191.  

[42] Kadkhodabeigi, M. (2008). Two-dimensional model of melt flows and interface 

instability in aluminum reduction cells. Dans TMS Light Metalsp. 443-448.  

[43] Kohno, H. et Molokov, S. (2007). Finite element analysis of interfacial instability in 

aluminium reduction cells in a uniform, vertical magnetic field. International 

Journal of Engineering Science, volume 45, numéro 2-8, p. 644-659.  

[44] Morris, S. J. S. et Davidson, P. A. (2003). Hydromagnetic edge waves and instability 

in reduction cells. Journal of Fluid Mechanics, numéro 493, p. 121-130.  

[45] Sele, T. (1977). Instabilities of the metal surface in electrolytic alumina reduction 

cells. Metallurgical Transactions B, volume 8, numéro 4, p. 613-618.  

[46] Segatz, M. et Droste, C. (1994). Analysis of magnetohydrodynamic instabilities in 

aluminum reduction cells. Dans Light Metals: Proceedings of Sessions, TMS Annual 

Meeting (Warrendale, Pennsylvania)p. 313-322.  

[47] Ziegler, D. P. (2010). Hall cell MHD instability: Recent theoretical analyses and 

experimental support. Dans TMS Annual Meetingp. 401-414.  

[48] Kiss, L. I. et Vékony, K. (2008). Dynamics of the gas emission from aluminum 

electrolysis cells. Dans TMS Light Metalsp. 425-429.  

[49] Levich, B. (1942). The theory of concentration polarisation. Acta Phys. Chim., 

volume 17, p. 257-307.  



134 

 

[50] Fares, E. et Schröder, W. (2002). A differential equation for approximate wall 

distance. International Journal for Numerical Methods in Fluids, volume 39, 

numéro 8, p. 743-762.  

[51] Chung, M. -. (2000). Numerical method for analysis of tertiary current distribution 

in unsteady natural convection multi-ion electrodeposition. Electrochimica Acta, 

volume 45, numéro 24, p. 3959-3972.  

[52] Kee, R. J., Coltrin, M. E. et Glarborg, P. (2003). Chemically Reacting Flow: Theory 

and Practice. Wiley Hoboken, NJ,  

[53] Ariana, M., Désilets, M. et Proulx, P. (2013). Numerical analysis of ionic mass 

transfer in the electrolytic bath of an aluminium reduction cell. Dans TMS Light 

Metalsp. 695-699.  

[54] Zoric, J., Thonstad, J. et Haarberg, T. (1998). Influence on current distribution by the 

initial shape and position of an anode and by the curvature of the aluminum in 

prebake aluminum cells. Dans Light Metals: Proceedings of Sessions, TMS Annual 

Meeting (Warrendale, Pennsylvania)p. 445-453.  

[55] Zoric, J., Thonstad, J. et Haarberg, T. (1999). Influence of the initial shape and 

position of an anode and the curvature of the aluminum on the current distribution in 

prebaked aluminum cells. Metallurgical and Materials Transactions B: Process 

Metallurgy and Materials Processing Science, volume 30, numéro 2, p. 341-348.  

[56] Zhang, Y. et Rapp, R. A. (2004). Modeling the dependence of alumina solubility on 

temperature and melt composition in cryolite-based melts. Metallurgical and 

Materials Transactions B: Process Metallurgy and Materials Processing Science, 

volume 35, numéro 3, p. 509-515.  



135 

 

[57] Zhang, Y., Wu, X. et Rapp, R. A. (2003). Solubility of alumina in cryolite melts: 

Measurements and modeling at 1300 K. Metallurgical and Materials Transactions 

B: Process Metallurgy and Materials Processing Science, volume 34, numéro 2, p. 

235-242.  

[58] Hiv eš, J., Thonstad, J., Sterten,   et Fellner, P. (1996). Electrical conductivity of 

molten cryolite-based mixtures obtained with a tube-type cell made of pyrolytic 

boron nitride. Metallurgical and Materials Transactions B: Process Metallurgy and 

Materials Processing Science, volume 27, numéro 2, p. 255-261.  

[59] Ariana, M., Désilets, M. et Proulx, P. On the analysis of ionic mass transfer in the 

electrolytic bath of an aluminum reduction cell. Canadian Journal of Chemical 

Engineering, volume 92, numéro 11, p. 1951-1964.  

[60] Solheim, A. et Sterten, A. (1999). Activity of alumina in the system NaF-AlF 3-Al 

2O 3 at NaF/AlF 3 molar ratios ranging from 1.4 to 3. Dans Light Metals: 

Proceedings of Sessions, TMS Annual Meeting (Warrendale, Pennsylvania)p. 445-

452.  

[61] Robert, E., Olsen, J. E., Danek, V., Tixhon, E., Østvold, T. et Gilbert, B. (1997). 

Structure and thermodynamics of alkali fluoride-aluminum fluoride-alumina melts. 

Vapor pressure, solubility, and Raman spectroscopic studies. Journal of Physical 

Chemistry B, volume 101, numéro 46, p. 9447-9457.  

[62] Bouyer, F., Picard, G. et Legendre, J. -. (1997). Computational and analytical 

chemistry: Methodology to study chemical reactions between sodium, calcium, and 

aluminum fluorides in molten cryolite. International Journal of Quantum Chemistry, 

volume 61, numéro 3, p. 507-514.  

[63] Leistra, J. A. et Sides, P. J. (1988). Hyperpolarization at gas evolving electrodes-II. 

Hall/heroult electrolysis. Electrochimica Acta, volume 33, numéro 12, p. 1761-1766.  



136 

 

[64] Thonstad, J. (1969). Chronopotentiometric measurements on graphite anodes in 

cryolite-alumina melts. Electrochimica Acta, volume 14, numéro 2, p. 127-134.  

[65] Issa, R. I. (1986). Solution of the implicitly discretised fluid flow equations by 

operator-splitting. Journal of Computational Physics, volume 62, numéro 1, p. 40-

65.  

[66] Jasak, H. (1996). Error analysis and estimation for the finite volume method with 

applications to fluid flows. Error Analysis and Estimation for the Finite Volume 

Method with Applications to Fluid Flows,  

  

 

 


