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RÉSUMÉ

Le présent mémoire est la somme de travaux touchant principalement le sujet de la 

physico-chimie des surfaces, ayant pour objectif principal l’élaboration de surfaces de 

poly(acrylique acide) (PAAC) résistant à l’adsorption de protéines non spécifiques. Le 

contrôle in vitro de la différenciation/croissance de cellules à l’aide de facteurs de régulations 

spécifiques immobilisés sur un substrat solide est pratiquement impossible sans l’utilisation 

de surfaces empêchant l’adhésion de molécules non-désirées. L’objectif initial était donc de 

développer des surfaces de PAAC résistantes à l’adsorption de protéines non spécifiques, de 

greffer ensuite sur ces surfaces des molécules spécifiques pour la culture des cellules souches 

hématopoïétiques et enfin de cultiver les cellules sur ces surfaces bioactives. Ce mémoire 

comporte donc deux chapitres : une revue de littérature sur les cellules souches 

hématopoïétiques tout d’abord, puis une deuxième section présentant les effets des conditions 

d’immobilisation sur la physico-chimie des couches minces et l’adsorption de protéines sur 

ces couches.

La revue de littérature sur les cellules souches hématopoïétiques constitue une partie 

de chapitre soumis dans un livre à être publié par Landes Biosciences (Cell - Mate rial 

Interactions: Molecular to Biomolecular Events related to Material Properties. Editors: 

Patrick Vermette, Yves Martin, Charles J. Doillon). Cette revue de littérature s’intitule "The 

rôle of regulatory and environmental factors in self-renewal and différentiation of 

hematopoietic stem cells". Le titre français est "Le rôle de facteurs environnementaux et de 

régulation dans la survie et la différenciation de cellules souches hématopoïétiques". Le 

deuxième chapitre présente la méthodologie utilisée et les résultats expérimentaux obtenus 

dans le cadre du projet de maîtrise. Des couches minces de PAAC ont ainsi été élaborées et 

l’influence des conditions d’immobilisation sur la physico-chimie des couches minces et 

l’adsorption de protéines sur ces couches a également été déterminée. Les paramètres étudiés 

étaient : 1) le poids moléculaire du PAAC, 2) la concentration en solution du PAAC ainsi que 

3) le ratio de catalyseurs par rapport aux groupements carboxylique du PAAC.
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Introduction

Bien que la médecine moderne soit parvenue à faire de grandes avancées dans les domaines de la 

chirurgie, notamment dans le cas de greffes d’organes, le manque de donneurs et les risques 

immunologiques associés à cette technique ont contribué à l’élaboration de nouvelles stratégies. 

Une de celles-ci est le génie tissulaire qui a pour objectif la reconstruction d’organes in vitro ou 

in vivo. Les principaux avantages du génie tissulaire sont d’éliminer non seulement les risques de 

rejet d’organes évitant ainsi l’utilisation de médicaments anti-rejets qui peuvent induire de 

nombreux effets secondaires chez les patients, mais également l’utilisation de prothèses et autres 

organes artificiels dont l’efficacité, le coût ainsi que la durée de vie sont problématiques. L’accès 

à des méthodes de culture cellulaire permettant de contrôler le développement de cellules afin de 

recréer les différents types de tissus composant un organe fonctionnel représente le principal 

défi. Il faut de plus sélectionner des cellules capables de recréer le développement d ’organes 

entiers in vitro sous l’influence de divers stimuli (facteurs de croissance). Les chercheurs ont 

depuis longtemps identifié les cellules souches embryonnaires comme étant la source de cellules 

pouvant permettre au génie tissulaire d ’atteindre cet objectif de construction d’organes in vitro.

Cependant, avec tous les débats éthiques entourant l’utilisation de ces cellules souches 

embryonnaires, d’autres sources de cellules doivent être considérées. Les cellules souches 

adultes représentent un excellent substitut en limitant les conflits moraux. Les cellules souches 

hématopoïétiques sont parmi les cellules souches adultes les plus utilisées en contexte clinique 

(traitement de leucémie, infarctus) et les plus documentées, tant au niveau de leur potentiel 

clinique que de leur physiologie (marqueurs de surface). Des protocoles permettant de les isoler, 

de les cultiver ainsi que de les utiliser dans des contextes thérapeutiques existent et les 

connaissances des facteurs influençant la différenciation et la prolifération de cellules souches 

hématopoïétiques in vitro et in vivo sont de plus en plus étoffées. Cependant, il existe encore de 

nombreuses interrogations quant aux mécanismes permettant de contrôler efficacement la 

prolifération et la différenciation de ces cellules in vitro. Une meilleure connaissance de ces 

mécanismes permettrait le développement de méthodes rapides et efficaces pour établir des 

réserves de cellules souches hématopoïétiques. Ces réserves fourniraient des cellules autologues

1
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pouvant être transplantées à des patients sans avoir à faire de prélèvements de cellules pour 

chaque intervention. De plus, le nombre de cellules disponibles pour des études deviendrait plus 

considérable, ce qui faciliterait et accélérerait le rythme des recherches en génie tissulaire.

De nombreux articles et revues de littérature répertorient les différents facteurs contrôlant la 

différenciation et la prolifération de cellules souches hématopoïétiques. Cependant, une synthèse 

regroupant les différentes molécules de régulation (cytokines, facteurs de croissance), les 

récepteurs membranaires, la transduction de signaux à l’intérieur de la cellule (cascades de 

signalisation), s’avérait nécessaire. Cette synthèse est présentée dans le chapitre de revue de 

littérature intitulée « Le rôle de facteurs environnementaux et de régulation dans la survie et la 

différenciation de cellules souches hématopoïétiques ». Cette revue, permet de cerner les grandes 

familles de facteurs influençant les cellules souches hématopoïétiques. Cependant, beaucoup 

d’interrogations demeurent quant aux interactions possibles entre ces différents facteurs, car ils 

semblent pour la plupart agir de façon synergique. Cela rend l’identification des facteurs 

environnementaux et de régulation et leurs rôles précis dans la survie et la différenciation de 

cellules souches hématopoïétiques très complexe.

La connaissance des facteurs influençant la survie et la différenciation de cellules souches 

hématopoïétiques doit cependant être couplée à un système de culture adéquat. En effet, il est 

très difficile d ’analyser les phénomènes biologiques liés à la différenciation in vitro et in vivo, 

souvent par manque d’outils d’analyses appropriés. Les micro-puces pourraient ainsi être un 

outil très utile en culture cellulaire, en permettant de déterminer les conditions de culture 

optimales. Les micro-puces développées au départ pour des appariements ADN sont maintenant 

utilisées dans le cadre de la culture cellulaire. Cette méthode permet d’analyser de nombreux 

échantillons biologiques avec peu de matériel dans un délai très rapide grâce au regroupement de 

différentes conditions de culture sur un seul support physique. D’autre part, ces micro-puces 

permettent de contrôler la concentration des facteurs de croissance et le site de greffage de ces 

derniers de façon automatique.

Il est donc possible de contrôler encore plus efficacement les conditions dans lesquelles les

cellules peuvent être cultivées sur une micro-puce. En effet, un des problèmes inhérent à la
2
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culture cellulaire est que les cellules ont la capacité de créer une matrice de protéines sur laquelle 

elles vont se fixer, leur permettant ainsi d’adhérer à un matériau ou à une surface. L’utilisation de 

surfaces de polymères aux propriétés anti-adhésives (low-fouling) devient alors un outil 

important, puisque ces surfaces ont la propriété de repousser les protéines, ce qui permet de 

contrôler plus précisément où ces cellules vont pouvoir se fixer sur une micro-puce et de vérifier 

par le fait même le véritable impact de facteurs de croissance et de cytokines immobilisés sur 

cette surface.

Donc, le but de ce projet de maîtrise était d’optimiser des surfaces de poly(acrylique acide) 

(PAAC) en étudiant l’impact des paramètres d ’immobilisation (poids moléculaire du PAAC, 

concentration de la solution de PAAC et le ratio des catalyseurs carbodimiides par rapport aux 

groupements COOH sur le PAAC) de ce polymère sur des substrats. De nombreux polymères 

ayant des propriétés anti-adhésives ont été étudiés. Le choix du PAAC s’est fait sur la base de 

nombreux critères : coût peu élevé, bonne biocompatibilité, facilité d’utilisation en chimie de 

surface. De plus, peu d’articles sur son utilisation à des fins anti-adhésives existent dans la 

littérature, ce qui rendait son étude encore plus intéressante. Le deuxième chapitre «L’effet des 

conditions d’immobilisation de couches de PAAC sur ces propriétés de diminution d’interactions 

surface-molécules» présente les résultats expérimentaux obtenus dans le cadre de ce projet de 

maîtrise. Ce chapitre démontre tout d’abord l’efficacité des paramètres utilisés pour lier de façon 

covalente le PAAC aux groupements aminés (HApp) fixés par le réacteur au plasma sur les 

substrats. L’effet des facteurs d ’immobilisation du polymère sur la capacité de ce dernier à 

diminuer les interactions surface-molécules est ensuite présenté. Ainsi, les différentes conditions 

d’immobilisation du PAAC sélectionnées semblent moduler les interactions surface-molécules, 

bien qu’il n’ait pas été possible de démontrer quels facteurs affectent de façon statistiquement 

significative la diminution des interactions surface-molécules.

Les deux chapitres de ce mémoire sont donc complémentaires. Premièrement, il est essentiel de

connaître les mécanismes fondamentaux des facteurs de régulation des cellules souches

hématopoïétiques, ainsi que les effets cliniques de ces cellules souches, afin de mieux distinguer

quels sont les meilleurs combinaisons à utiliser afin d ’optimiser la culture in vitro des cellules

souches hématopoïétiques. De plus, il faut également connaître les propriétés anti-adhésives de
3
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certains biomatériaux (dans ce cas-ci le PAAC), afin de mieux contrôler les interactions surfaces- 

cellules. Ces interactions peuvent influencer grandement les comportements de cellules cultivées 

in vitro, et leur compréhension et leur contrôle sont tout aussi importants que de connaître les 

facteurs de régulation des cellules souches hématopoïétiques.
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Chapitre 1: Le rôle de facteurs environnementaux et de régulation dans la 
survie et la différentiation de cellules souches hématopoïétiques

Ce chapitre est une revue détaillée des méthodes et des outils utilisés pour maintenir, réguler et 

contrôler la survie, la prolifération et la différenciation des cellules souches hématopoïétiques. 

Ces outils et ces méthodes reposent sur l’utilisation de molécules (molécules uniques, 

combinaisons de molécules ou des variations de leurs concentrations) et de facteurs 

environnementaux (type de culture). Une vue d ’ensemble sur l’état actuel des connaissances 

concernant les cellules souches hématopoïétiques est incluse et permettra une meilleure 

compréhension des différents domaines de recherche et des applications cliniques de ces cellules.

5
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Chapter 1: The rôle of regulatory and environmental factors in self-renewal 
and différentiation of hematopoietic stem cells (HSCs)

1. Abstract

This chapter consists of an in-depth analysis of methods and tools used to maintain, regulate and 

control the différentiation, prolifération and survival of hematopoietic stem cells. The tools and 

methods can involve the use of molécules (single molécules, combinations, and variation of their 

concentrations), environmental factors (type of culture). A wide overview of the knowledge of 

HSCs will also be provided to allow a better compréhension of the différent fields of research 

and the clinical applications of those adult stem cells. So, clinical uses, characterization methods, 

the source of the cells, behaviour of HSCs and the différent key factors affecting their behaviour 

will be covered.
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2. Introduction

Since Till and McCulloch’s paper (1) rose the possibility that cells in the bone marrow could 

provide protection to lethally irradiated mice (i.e., bone marrow transplants from healthy donors 

could rescue lethally irradiated mice from death), researchers have been on the lookout to 

discover which cells possess such ability. Thus, the concept of stem cells has emerged -  a 

définition that is now known to include various kinds of cells. The report of the NIH(2) on stem 

cells indicates that a stem cell is a kind of cell with the unique capacity to renew itself and to 

give rise to specialized cell types. A stem cell is also uncommitted and remains so until it gets a 

signal triggering its transformation into a specialized cell.

Here, a brief reminder of the concept of hematopoiesis could be useful. It is first 

established early in embryonic development within the blood islands of the yolk sac. Then, it is 

moved to the fetal liver, then to the spleen and after that, the final localization of hematopoiesis 

is the bone marrow, where the cell populations that sustain formation of blood cells throughout 

life are generated. Hematopoiesis deals not only with the replacement of millions of mature cells 

that are expanded daily (steady-state hematopoiesis), but also with sudden requirements such as 

infection or acute blood loss (emergency hematopoiesis). Two mechanisms are involved in the 

control of hematopoiesis: cell-to-cell interactions, predominantly involving specialized stromal 

cell elements that form the microenvironment of the hematopoietic tissues and HSCs 

(hematopoietic stem cells) by way of, among others, the c-kit receptor, and the soluble molecular 

regulators produced by the hematopoietic microenvironment and other tissues that are able to act 

from remote sites.(3)

The clinical use of the stem cells has been reviewed quite so, even more when the HSCs 

are concemed.(4) It would seem that they are the adult stem cells which possess the most 

potential for clinical applications, since they would appear to be the cells (apart from the 

embryonic stem cells) that have the more versatility when it cornes to the pluripotency (see the 

plasticity section).

The scientifïc literature addressing HSCs research tends to point out towards two main 

challenges: i) HSCs are difficult to identify and ii) it is diffïcult to multiply them in vitro in high 

density. HSCs tend to behave and look in culture like standard white blood cells. So far, the best

7
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way to identify HSCs is by their surface proteins (surface markers) such as CD 34 (see Table 

1.2). Another issue that complicates the study of HSCs is their rarity: 1/10 000 to 1/15 000 cell in 

the bone marrow is an HSC and 1/100 000 cell in the bloodstream is an HSC.(2) These cells do 

not easily stay in a quiescent State for a long period of time, neither are they considered as a 

robust family of cells. One of the major challenge in HSCs research is the lack of an adéquate 

culture System to expand HSCs numbers in a reproducible manner and in large-scale in such a 

way that they can be used in clinical applications.

The following sections aim to review the rôle of regulatory and environmental factors in 

self-renewal and différentiation of hematopoietic stem cells. In fact, we will review the known 

natural molécules that are of importance in maintaining in vitro a quiescent line of HSCs and the 

ones that can be used in a designed fashion to control the fate of these cells. Since attempts to 

control the in vitro behavior of HSCs are in a way a reconstitution of the stem cell niche, this

article will review methods used for the in vitro growth of HSCs, whether they are combinations

of extracellular factors (cytokines, concentration gradients of growth factors, structural proteins 

of the ECM), and intracellular factors (the injection of a transcription factor) and the use of 

stromal cells as a feeder layer. An important number of factors, signal-transduction pathways and 

genes seem to be involved in the HSCs fate décisions, but to precisely which extent, it still 

remains unknown. There is even a few arguments about whether or not the décision to self-renew 

without différentiation is stochastic (5-7), and in that case, no factor could affect stem cell 

décision. Nonetheless, many factors are known to impact on the fate of these stem cells.

This review chapter is divided as followed:

• Characterization methods to identify hematopoietic stem cells;

• Sources of hematopoietic stem cells;

• Clinical uses;

• The stem cell niche;

• Growth factors and cytokines;

• Négative modulators

• Physichochemical factors

• Plasticity.

8
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It is essential to have a knowledge of the steps involved in the characterization of HSCs. A 

section will thus résumé a few key methods of HSCs characterization and it will also include the 

surface markers of the HSCs. Their importance lies in the fact that they are used to identify and 

isolate the HSCs. Also worthy of attention is the sources of HSCs because it is important to 

know their sites of production in the organism. A section on clinical uses is included because the 

clinical potential of HSCs is illustrated in several papers showing that HSCs transplanted 

(injected most of the time) in the circulatory system or directly at the desired site tend to 

regenerate damaged tissues. Whether or not HSCs fuse with already differentiated cells or 

differentiate themselves is what makes this part controversial, and it remains to be established.

A division on the stem cell niche will follow. Studies have shown that the environmental 

factors i.e., 3-D structure and physical stimuli are as important as the molecular signais. Given 

that the stem cell niche is the starting point in the stem cell cycle, it makes sense to briefly 

discuss about it. Next, a section on the regulatory molécules including growth factors (e.g., 

cytokines, the most important of the regulatory molécules) and other molécules that have been 

regrouped in that category. It will describe individual effects of these regulatory molécules as 

well as their synergitic effects and the effects of their concentration on the behaviour of HSCs. 

The section will also cover genetic factors, mainly about genes coding for proteins that have a 

direct impact on the genes (up or down-regulation of genes) and transcriptional factors. Négative 

modulators i.e., molécules that have deleterious effect on the culture of HSCs have been 

reviewed since they are as important as the molécules that have bénéficiai effects on the culture 

of these cells.

A brief section on physicochemical factors will also be included. It concems ail the “non- 

biological” factors such as oxygen, pH, and lactate production that affects the in vitro culture of 

HSCs. The last topic is about plasticity. Even though it could be included in clinical uses section, 

the reviewed literature about this issue was more critical regarding the eventual trans- 

differentiation of HSCs into specialized cells instead of reporting on protocols and reports of 

clinical experiments made to cure patients or to test on animais. This section therefore reviews 

reports addressing reasons why the plasticity should be regarded as plausible or, on the other 

hand, as questionable. A glossary is presented in the appendix to allow a better understanding of 

the terminology used in this chapter.

9
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3. Characterization methods to identify hematopoietic stem cells

A “gold standard” has been developed to demonstrate that the cells derived from mouse 

bone marrow are HSC-like.(2) Those cells are injected into a mouse that was previously lethally 

exposed to radiation (powerful enough to kill its own blood-producing cells). If the mouse can 

recover and that ail types of blood cells reach back normal numbers, the transplanted cells (with 

a genetic marker from the donor animal) are considered to have included hematopoietic stem 

cells.

Studies showed that there is two kinds of HSCs: i) long-term stem cells and short-term 

progenitors/precursor cells.(2) When regenerated cells from an irradiated transplanted mouse are 

injected into another lethally irradiated mouse and are able to restore its hematopoietic System 

over a period of some months, these cells are considered to be long-term stem cells.(2) On the 

other hand, cells from the bone marrow/bloodstream that can immediately regenerate ail the 

différent blood cells but cannot regenerate themselves for a long period of time (3-4 months) are 

considered to be short-term progenitor/precursor cells.(8) Progenitor cells seem to be immature 

cells that are precursors to fully differentiated cells of the same tissue. They can proliferate, but 

have a small capacity to differentiate into more than one cell type as HSCs are able to do. For 

clinical uses, the long-term stem cells seem to have the self-replicating advantage for an efficient 

and long-term HSC therapy. Unfortunately, researchers have been unable so far to distinguish 

the long-term stem cells from the precursor cells once taken from the bone marrow or blood. In 

addition to that, the tests used to identify the short-term progenitors and the long-term stem cells 

are expensive, cumbersome and cannot be carried out in humans. Figure 1.1 shows the sequential 

steps of the hematopoiesis.

As for in vitro culture, the préservation of cell function is the best way to establish the

success of the culture System (see Table 1.1). It must be understood that before undergoing the

“gold standard” assays, samples collected have to be measured for their functional compositions

of hematopoietic cell populations. These tests can détermine if there are cells contained within

the samples taken from a subject with a potential to reconstitute ail types of blood cells. Here, is

a brief description of each of the in vitro tests listed in Table 1.1.(9) HPP-CFC (high proliferative

potential colony forming cells) compares the proliferative potential of a population of

hematopoietic cells cultured in the presence of various cytokines. The HPP-CFC cells are
10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



considered as being the most primitive cells because they are able to generate late arising and 

large colonies. The CFU-C (colony forming unit in culture) is a protocol used to identify 

progenitor cells by evaluating their ability to differentiate into différent lineages. Différent 

versions of the CFU-C exist, each one aimed to identify the presence of a spécifie erythroid or 

myeloid progenitor.(10-12) CAFC (cobblestone area forming cells) form colonies on a 

supportive stromal layer that has been irradiated.(13) The LTC-IC (long-term colony-initiating 

cells) and ELTC-IC (extended long-term colony-initiating cells) are used to study the ability of 

human HSCs to survive for long periods of time in culture and to later differentiate.(14-17) The 

cells are grown on a stromal feeder layer between 35 to 60 days for LTC-IC, and aliquots are 

transferred at many periods to CF-U medium to count the colonies of differentiated cells that will 

be generated. The cells are grown for a longer time period (60 to 100 days) for the ELTC-IC, 

which allows for the détection of even more primitive cellular populations.

As for the in vivo tests, the CFU-S (colony forming unit-spleen) allows to measure the 

number of cells in a bone marrow suspension able to proliferate in a continuous fashion, as 

analysed by the formation of hematopoietic colonies in the spleen foliowing the injection of bone 

marrow into subjects that have been lethally irradiated.(l) The radioprotection assay is a test 

analysing the capacity of a cell population to protect a subject from a lethal dose irradiation for a 

minimum period of 1 month. As it has been mentioned, the best tests to detect HSCs are the ones 

that can verify the ability of a cell population to give rise to ail the hematopoietic lines over a 

long time period (4 months or more). The first of these tests (compétitive transplantation) is 

based on the ability of an expérimental hematopoietic cell population to compete with a cell 

population (unmanipulated) to reconstitute the hematopoietic System of an irradiated subject.(18) 

The second version of this test uses a mouse strain having an inherited defect in HSCs, which is 

showed by a réduction in ail myeloid tissue and in a macrocytic anémia.(19-21) Since the HSCs 

injected do not have the same genetic defects than the HSCs of the mutant mouse, it is easy to 

see if they can really have an effect on the mouse.
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Table 1.1: In vitro and in vivo assavs used to studv

hematopoietic progenitors and stem cells.

Assays Stim ulation D uration C ells detected R esults

In vitro
HPP-CFC

CSF-1, G-CSF, GM- 
CSF, IL-la, IL-3, 
SCF, bFGF

14 days Progenitor Proliferative potential 
(>5xl 04 cells/colony)

CFU-C SCF, GM-CSF, IL-3, 
EPO

14 days Myeloid progenitor Number and type of 
colonies (increase)

CFU-E SCF, GM-CSF, IL-3, 
EPO

10-12 days Erythroid progenitor Erythroid (small 
hemoglobinized 
colonies)

BFU-E SCF, GM-CSF, IL-3, 
EPO

10-12 days, 18 days Primitive erythroid 
progenitor

Large hemoglobinized 
colonies

CFU-GM SCF, GM-CSF, IL-3, 
EPO

16-18 days Granulocytic and 
monocytic progenitors

Large colonies with 
granulocytes and 
macrophages

CFU-GEMM SCF, GM-CSF, IL-3, 
EPO

16-18 days Most primitive 
myeloid progenitor

Large colonies with 
erythroid, granulocytes 
and macrophages

CAFC Irradiated adhèrent 
bone marrow feeder 
layer

30 days Primitive progenitor Time of appearance of 
colonies

LTC-IC Irradiated adhèrent 
bone marrow feeder 
layer with IL-3, IL-6, 
SCF-containing media; 
followed by CFU-C 
assay

35-60 days Primitive progenitor 
andHSC

Ability to detect CFU 
colonies after long 
period in culture; time 
in culture détermines 
primitiveness of cell 
type
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ELTC-IC Irradiated adhèrent 
bone marrow feeder 
layer with IL-3, IL-6, 
SCF-containing media; 
followed by CFU-C 
assay

60-100 days Primitive progenitor 
and HSC

Ability to detect CFU 
colonies after long 
period in culture; time 
in culture détermines 
primitiveness of cell 
type

In vivo
CFU-S

Non applicable 5 days and more Progenitors and HSC Macroscopic colonies 
on spleen

Radioprotection Non applicable 30 days Progenitors and HSC Survival of irradiated 
hosts

W mouse transplant Non applicable 16-52 weeks Long-term HSC Donor-derived
multilineage
hematopoiesis

Compétitive transplant Non applicable 16-52 weeks Long-term HSC Donor-derived
multilineage
hematopoiesis

CFU-E=colony forming units erythroid; BFU-E=burst forming unit-erythroid; CFU-GM =colony forming units-

granulocyte/macrophage; CFU-GEMM=colony forming units granulocyte/erythroid/macrophage/megakaryocyte; 

LTC-IC=long-term culture-initiating cells; ELTC-IC=enhanced long-term culture-initiating cells; W =white 

mutation (sériés o f  mutants with mutations in the c-kit tyrosine kinase gene); CSF=colony stimulating factor; G- 

CSF=granulocyte-colony stimulating factor; GM-CSF=granulocyte/macrophage/-colony stimulating factor; 

IL=interleukin; SCF=stem cell factor; bFGF=basic fibroblast growth factor; EPO=erythropoietin: CAFC= 

cobblestone area-forming cells ; CFU-S=colony forming unit spleen.

Référencés : (9 ;22-24)
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Three methods have been developed to sort out populations of stem cells. The fïrst one 

makes uses of the FACS (fluorescence-activated cell sorting) (Figure 1.2), which relies on the 

tagging of the surface markers of the HSCs (Table 1.2) with fluorescent tags to individually 

analyze each cell of a sample and to sort them by their emitted fluorescence (thus HSCs will be 

tagged by the fluorescent label and emit more than the other cells). Another technique, which 

uses also fluorescent tags consists of tagging the stem cells but to observe them with a 

microscope in tissues. A slice of tissue is prepared, marked with the fluorescent labels that will 

specifically bind to the stem cell surface receptors. The tags are then activated by either a 

Chemical reaction or a spécifie light energy (Figure 1.3). More recently, a genetic engineering 

technique based on fluorescence has been developed. The différence is that it does not rely on 

the surface markers of stem cells but rather on their genes as the cell differentiates or becomes 

specialized.(26) For example, the gene is activated when cells are undifferentiated, directing the 

cell to produce a protein that emits fluorescence (an intense green color), and is switched off 

once the cells have become specialized, or differentiated. It is now possible to combine these 

three techniques to have a broader view of the HSCs behavior and physiology. With flow 

cytometry and monoclonal antibodies, HSCs can be enriched, and with 20 to 100 of them, it is 

possible to reconstitute the lymphohematopoietic System in myeloablated mice.(27-29) 

Progenitor cells of bone marrow have a limited capacity for différentiation and self-renewal; they 

can sustain hematopoiesis for only 1-2 months, hence they are called short-term repopulating 

stem cells. (29; 30)
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Figure 1.2: FACS adapted from Ref (2)
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Î ÀJ
Fluorescence Interulty

Stem ces found

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 1.2: Markers used to identify bone marrow and blood stem cells and to

characterize differentiated cell types. Adapted from Ref (2)

Marker name Cell types Rôle
Bone morphogenetic Mesenchymal stem and Important for the différentiation of committed mesenchymal cell types
protein receptor progenitor cells from mesenchymal stem cells and progenitor cells; BMPR identifies early
(BMPR) (osteoblasts) mesenchymal lineages (stem cells and progenitor cells)
CD4 and CD8 White blood cell (WBC) Cell-surface protein markers spécifie for mature T lymphocyte (WBC 

subtype)
CD34 Hematopoietic stem cell 

(HSC), satellite, 
endothélial progenitor

Cell-surface protein on bone marrow cell, indicative of a HSC and 
endothélial progenitor; CD34 also identifies muscle satellite, a muscle stem 
cell

CD34+Scal+ Lin- Mesenchymal stem cell Identifies MSCs, which can differentiate into adipocyte, osteocyte,
profile (MSC) chondrocyte, and myocyte
CD38 Absent on HSC , présent 

on WBC lineages
Cell-surface molecule that identifies WBC lineages. Sélection of 
CD347CD38" cells allows for purification of HSC populations.

CD44 Mesenchymal A type of cell-adhesion molecule used to identify spécifie types of 
mesenchymal cells

c-Kit HSC, MSC Cell-surface receptor on BM cell types that identifies HSC and MSC; 
binding by fetal calf sérum (FCS) enhances prolifération of ES cells, HSCs, 
MSCs, and hematopoietic progenitor cells

Colony-forming unit 
(CFU)

HSC, MSC progenitor CFU assay detects the ability of a single stem cell or progenitor cell to give 
rise to one or more cell lineages, such as red blood cell (RBC) and/or white 
blood cell (WBC) lineages

Fibroblast colony- 
forming unit (CFU- 
F)

Bone marrow fibroblast An individual bone marrow cell that has given rise to a colony of 
multipotent fibroblastic cells; such identified cells are precursors of 
differentiated mesenchymal lineages

Hoechst dye Absent on HSC Fluorescent dye that binds DNA; HSC extrades the dye and stains lighüy 
compared with other cell types

Leukocyte common 
antigen (CD45)

WBC Cell-surface protein on WBC progenitor

Lineage surface HSC, MSC 13 to 14 différent cell-surface proteins that are markers of mature blood cell
antigen (Lin) Differentiated RBC and 

WBC lineages
lineages; détection of Lm-negative cells assists in the purification of HSC 
and hematopoietic progenitor populations

Mac-1 WBC Cell-surface protein spécifie for mature granulocyte and macrophage 
(WBC subtypes)

Muc-18 (CD 146) Bone marrow fibroblasts, 
endothélial

Cell-surface protein (immunoglobulin superfamily) found on bone marrow 
fibroblasts, which may be important in hematopoiesis; a subpopulation of 
Muc-18+cells

Stem cell antigen 
(Sca-1)

HSC, MSC Cell-surface protein on bone marrow (BM) cell, indicative of HSC and 
MSC Bone Marrow and Blood cont.

Stro-1 antigen Stromal (mesenchymal) 
precursor cells, 
hematopoietic cells

Cell-surface glycoprotein on subsets o f bone marrow stromal 
(mesenchymal) cells; sélection o f Stro-1 + cells assists in isolating 
mesenchymal precursor cells, which are multipotent cells that give rise to 
adipocytes, osteocytes, smooth myocytes, fibroblasts, chondrocytes, and 
blood cells

Thy-1 HSC, MSC Cell-surface protein; négative or low détection is suggestive of HSC

Adapted from reference(2;25)
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Figure 1.3: Identification of cell surface markers with fluorescent tags.

Adapted from Ref (2)
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It is now a common practice in the treatment of blood disorders to isolate and transplant 

CD34+ stem cells, which include progenitors and HSCs. Donnelly et al.(31) have reported that 

the compartment of HSCs is phenotypically heterogeneous with CD34 populations that are either 

positive or négative. It appears that CD34 expression can be lost after a transplantation, but if re- 

transplanted in another lethally irradiated mouse, the cells would either re-express their CD34 

marker or produce progeny having the marker.(32;33) In other cases, CD34 expression seems to 

increase in mice shortly after transplantation in the marrow, which is consistent with this 

molecule being involved in homing.(34) Perhaps CD34 expression is linked to cell cycle 

activation(35) and could be réversible in vitro.(36)

A point that was mentioned earlier and that needs to be further discussed is that HSCs do 

not express spécifie surface markers (more precisely, researchers do not completely agree on 

these markers); they only share a few characteristics, such as a few antigens (CD34, Thy-1, 

CD133, Flk-1, Sca-1, c-kit) (37;38) and they are lineage négatives (lin-) for a certain number of 

antigens. AC133+, which corresponds to hemangioblast, seems to be another surface marker of 

HSC.(39) Table 1.2 récapitulâtes some known cell-surface markers expressed by HSCs. There is 

also the side population (SP), which represents a small cell population detected by Hoescht 

fluorescence émission, which is rich in HSCs.(40)

A standard phenotype for HSCs seems to be KLS (Lin' Sca-1+ c-Kit+), which represents 

0.08 % of the nucleated cell population in the bone marrow.(41;42) The use of CD34+ and CD34' 

splits KLS population into two catégories: CD34+ contains the short-term repopulating cells and 

CD34' contains the cells that are the long-term progenitors(43), but this claim has not been 

proven without any doubt.

Also, the presence of the Flk-2/Flt-3 tyrosine kinase receptor (KLS Flk-2+) indicates cells 

able to reconstitute the lymphoid lineage, while (KLS Flk-2) is a désignation for the cells of the 

hematopoietic lineages (it can sustain multilineage reconstitution) of the récipient mice.(44) The 

receptor tyrosine kinase (Flt-3) is involved in early hematopoiesis. It would appear that the 

surface marker tends to switch from being expressed or not. For example, Flt-3' stem cells can be 

converted to Flt-3+, which seem to be linked to SCF and IL-11.(45) The functional différences 

between Flt-3' and Flt-3+ hematopoietic stem cells remain to be solved.(45)
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Another phenotype has been linked with cells that only generate cells of the lymphoide 

lineage (T, B, NK cells) when these cells have been transplanted into adult mice.(46) This 

phenotype is the CLP (common lymphoid progenitor), which has the following markers: Lin' 

Sca-1low c-kitlow Thy-l' IL-7R+. Another group of cells has been identified and shown to generate 

myeloid lineages (i.e., granulocytes, macrophages, érythrocytes, megakaryocytes). They are 

named CMP (common myeloid progenitor, Lin' Sca-1' c-Kit+ CD34+ FcyRlow).(46) In vitro 

studies have clearly shown that CMP and CLP are présent in the human bone m a r r o w .(3 0 )

Spangrude et al.(47) reported another phenotype of progenitor cells. Rhodamine-123 low 

(Rh-123low) cells were quiescent stem cells while Rh-123hl were active progenitor cells. In vitro 

assays showed that Rh-123hl were able to differentiate into megakaryocytes, while Rh-123low 

cells were not able to differentiate into as many megakaryocytes. On the other hand, 

transplantation into irradiated hosts of the two cell populations showed an opposite resuit, 

revealing that the tissue culture tests were not able to predict in vivo results.(47) Rh-123hl cells 

do not have the ability to colonize the bone marrow, which would be the element that triggers 

megakaryocyte commitment while Rh-123low stem cells are able to colonize the marrow, and 

then migrate and differentiate within the spleen.(48)

As shown in this section, many surface markers for HSCs and progenitor cells are 

known, and while markers are used to sort HSCs for clinical treatments (CD34+), there is no 

clear consensus on which are the best HSCs/progenitor cells surface markers. More research 

needs to be done to identify ail the possible surface markers of HSCs and progenitor cells, which 

would allow for better efficiancy in collecting HSCs for clinical treatments and for further 

studies.

4. Sources of hematopoietic stem cells

The fïrst source to obtain HSCs has been the bone marrow, usually by puncturing a bone 

(hip), drawing out the bone marrow cells with a syringe. Figure 1.4 shows where hematopoiesis 

takes place in the bone marrow.(2;25) Since a few years, a more convenient and widely used 

source for HSC transplantation is the peripheral blood.(2;25) Researchers knew that some stem 

cells and progenitor cells were in circulation in the blood. In addition, ways of getting these cells 

to migrate from the marrow to the bloodstream in greater quantities have now been developed.
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Donors are injected with G-CSF a few days before cells are harvested. A few days after the 

injection, a tube inserted into the donor’s vein is used to pass the blood through a filtering device 

that keeps CD34+ white blood cells and let red blood cells go back to the patient blood.(2) Only 

5-20 percent of the cells gathered will be HSCs. The CD34+ cells are a mixture of white blood 

cells of varying degrees of maturity, progenitor cells and stem cells.(2;25)

The majority of autologous and allogeneic transplants have been made with cells taken 

from the peripheral circulation instead of the bone marrow.(2) Taken ffom the NIH report and 

other sources(2;25), the harvest of cells from the peripheral blood is easier for the donor (i.e., 

less pain, no anesthesia, no hospitalisation) and the ratio of the HSCs obtained is better. Patients 

receiving cells harvested from peripheral circulation have a higher rate of survival than patients 

receiving bone marrow transplants.(2) These cells would appear twice as numerous, but also to 

engraft quickly, so the patients recover their platelets, white blood cells and their 

immune/clotting System many days faster than would have with a bone marrow transplant.(25) 

Another study (49) claims that cells having CD34+ and Thy-1+ surface markers engraft quickly 

and easily in patients with breast cancer receiving an autologous transplant of the cells after 

chemotherapy treatments.

Another source of HSCs is the umbilical cord blood.(2;25) Children are usually the 

récipients of cord blood transplants, and the results seem to be encouraging and the GVHD (graft 

versus host disease) is less fréquent with that source of HSCs.(50) Some have suggested that 

umbilical cord blood contains stem cells capable of multipotency or of developing cells of 

multiple germ layers (i.e., pluripotency).(25)

The fetal system is also a source of HSCs for research purposes (but not for clinical 

work). Hematopoietic cells are présent early in vertebrate development. For example, they 

appear in the mouse embryo after 7 days, a fact acknowledged by the presence of blood islands 

in the yolk sac.(2) It is a point still being debated, but some researchers affirm that the blood 

production of the yolk sac is able to generate blood cells for the embryo, but probably not the 

bulk of the HSCs for the adult animal.(51) However, there is less information about human fetal 

HSCs, but it has been shown that blood of 12- to 18-week aborted human fetuses was rich in 

HSCs.(52-54)

Mouse embryonic stem cells can be another source of precursor cells(55) to différent

kind of blood cells. It was also demonstrated that the main lineage of progenitor cells of the
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mouse could be obtained from embryoid bodies, even without using growth factors.(56) Mouse 

embryonic stem cells, coupled with the right growth factors can generate the majority, if not ail, 

of the many blood cell types.(57) Even if researchers are studying them, blood-producing cells 

derived from human embryonic germ cells and embryonic stem cells have not been thoroughly 

tested for their long-term self-renewal or their capacity to generate ail the différent blood 

cells(2).
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Figure 1.4: Human hematopoiesis in the bone marrow. Adapted from reference(25)
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5. Clinical uses

One of the first uses in clinic of HSCs was for the treatment of blood cancers (e.g., acute 

lymphoblastic leukemia and myeloblastic leukemia, chronic myelogenous leukemia, multiple 

myeloma, Hodgkin’s disease, non-Hodgkin’s lymphoma). In these treatments, the cancerous 

hematopoietic cells of the patient were destroyed by way of chemotherapy or radiation, then 

replaced with a bone marrow transplant or, as it is done now, with a transplant of HSCs gathered 

from the peripheral circulation of a corresponding donor.(2) Also, many other illnesses are 

treated with HSCs, such as blood disorders (anémia, genetic disorders characterized by defects in 

major enzymes needed to generate body components or dégradé byproducts issued of Chemical 

reaction, beta-thalassemia, anemiagloboid cell leukodystrophy, Blackfan-Diamond syndrome, 

sickle-cell anémia, X-linked lymphoproliferative syndrome, severe combined immunodeficiency 

and Wiskott-Aldrich syndrome.(2) Lesch Nyhan syndrome, Hurley’s syndrome and Hunter’s 

syndrome can also be treated with HSCs.(2) HSCs are also used to treat patients undergoing 

chemotherapy and to treat patients that have tumors resisting standard cancer therapy. (2;49;58) 

Other studies are aimed at différent pathologies such as diabetes, System lupus erythematosis and 

rheumatoid arthritis.(2)

We can see the différent number of illnesses that can be treated with HSCs with only a 

minimal knowledge of their true potential. It seems likely that with a better understanding of the 

mechanisms of the HSCs in curing these illnesses that researchers will be able to apply the use of 

the cells to other clinical treatments.

6. Stem cell niche

The stem cell niche is the environment in which the HSCs are located. Basically, HSCs 

are found in the bone marrow in adults, although it is possible to find them in the spleen, a few 

other tissues and in the peripheral circulation.(59) It would appear that the interstices in the bone 

marrow allow the engraftment of transplanted cells and the maintenance of the HSCs as a self- 

renewing population. The stroma also plays an important rôle because its physical contact allows 

the prolifération, maturation and différentiation of the blood cells.(59)
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The stem cell niche is located in the bone marrow, consisting of many cell types (e.g., 

fibroblasts, adipocytes, macrophages), which create an extracellular matrix that is crucial for 

HSCs. It is a natural scaffold, a physical frame for the HSCs to grow within but at the same time 

it is also a dynamic environment (60) that offers molecular signaling, whether it is by way of 

soluble growth factors (SCF or stem cell factor), insoluble extracellular matrix and growth 

substrates (SCF, VCAM1), or by way of environmental stress, physical eues or cell-cell 

interactions.(61) These regulatory molécules can have spécifie association with several matrix 

molécules allowing them to be presented in an adéquate configuration to HSCs within their 

niche. HSCs express integrins (VLA4) that interact with counter receptors and ECM 

(extracellular matrix) molécules of the stromal environment to provide an interface allowing 

adhésion between HSCs and stromal cells.(59)

An important fact to keep in mind is that the bone marrow is vascularized, thus allowing 

some circulating agents in the peripheral blood to enter in contact with HSCs within their niche, 

then to trigger their release and their latter fixation in another location followed by their diapesis 

through the endothélial cells. The complexity of the niche exemplified by the various natural 

materials présent within the niche may be part of the explanation why, so far, few artificial 

materials are used to culture HSCs or to help in the maintenance of HSC in vitro. Différent cells, 

structural proteins, soluble and linked agents together create an environment that gives a tri- 

dimensional structure to provide physical and Chemical interactions in a dynamic fashion 

allowing the cells to respond to the many stimuli of a living organism. But, the science of 

biomaterials has evolved to the point where it is now possible to engineer devices from the 

nanoscopic level to the macroscopic properties that could be used in a near future to modulate 

the behavior of HSCs without (or with little) need for other cell types. For a schematic model of 

the hematopoietic stem cell niche, see Figure 1.5.
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Figure 1.5: Stem cell niche, taken from (59).
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HSCs need précisé biomolecules to be kept in an undifferentiated State, which is difficult 

to maintain for long. As for in vitro assays, the undifferentiated State can be maintained, at best, 

up to 7 weeks (62), but this extreme case requires a supportive layer of stromal cells. The 

problem with many culture Systems is that stem cell prolifération is almost always accompanied 

by différentiation events.(63;64) Some problems also arise from the use of pre-established 

stromal monolayer, even if they can achieve some stem cell renewing and maintenance.(65) The 

problems linked with stromal cells utilization are the use of unpurifïed input of stem cells and the 

heterogeneous nature of the supportive layer. Other studies have used highly enriched stem cell 

sources and cloned stromal monolayers (66;67), but except for few systems(66;68), they do not 

tend to yield good results in terms of survival and réplication rate. On the other hand, the use of 

AFT024 cell line as a culture system gave good results to support HSCs growth.(68) In fact, this 

cell line shows: 1) an ability to maintain an arbitrary amount of stem cell activity no matter the 

quantity used to start the culture, 2) no remarkable increase or decrease in stem cell activity, and 

3) stem cell/AFT024 co-cultures are dynamic i.e., myeloid-erythroid and B cell progenitors were 

generated during the culture period.(62;68) So it would seem that the AFT024 cell line gives an 

environment, which allows a balanced state of commitment and of self-renewal while at the 

same time it generates mature components of the stem cell and progenitor cell hierarchy. Contact 

with AFT024 seems sufficient to support stem cells without acting through other micro­

environment elements, the mechanisms maintaining the balance are conserved between mouse 

and man.(69) Ail these elements seem to point out that this cell line can provide a part of the 

stem cell niche that seems indispensable for the optimal control of HSCs in vitro.

The requirement of the stromal cells reminds us that the HSCs are a spécial kind of cells

that corne from a peculiar in vivo environment. The rôle of that environment (stem cell niche) is

often considered as being one to facilitate the génération in right proportions of the primitive part

of the stem cells and progenitor cells hierarchy.(70) It has even lead some researchers to claim

that location rather than spécifie pattems of genes expression may be what describes better stem

cells.(71) Despite some technical difficulties to recreate an artifïcial environment in which the

HSCs could survive and multiply, their clinical potential compensate for it since it has been

shown that very primitive cells can function for up to 15 months after an hematiopoietic

reconstitution and they can even clonally expand during the régénération of the hematopietic
27
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System, and they can have 300 to 1000-fold extensive potential when limiting numbers are 

transplanted in vivo.(72-75) Even if it has been demonstrated that HSCs cultured in vitro can 

repopulate secondary récipients from the progeny of a single clone thus showing that HSCs can 

self-renew in vitro, the identification of the culture conditions supporting a net in vitro expansion 

remains obscure. Studies show that a little expansion of HSCs can be achieved in adhèrent and 

non-adherent cultures using différent cytokine combinations added in solution.(76) The numbers 

of HSCs generated in these studies are reported over 10 days to be approximately 6-fold as 

compared to culture Systems not using cytokine combinations.(77)

Two major problems seem to have emerged in many studies related to the culture of 

HSCs: i) stem cells eventually become extinct due to their différentiation (i.e., lost of their 

immature character) and ii) it is quite difficult to make them migrate to an accurate in vivo 

micro-environment.(77)

7 Growth factors and cytokines

7.1 Introduction and nomenclature
Several factors are involved in the régulation of HSCs différenciation, prolifération and

homing into a living organism (see Figure 1.6 for a graphie représentation of stem cell 

mobilization). Many molecular regulators (more than twenty) having an effect on the production 

or function of hematopoiesis have been listed. On the other hand, not ail of these regulators 

affect HSCs; some affect hematopoietic cells that are already committed (3), and others have an 

effect on HSCs and/or progenitors only when coupled with other regulatory factors. The high 

quantity of the molecular regulators implies thus some redundancy in the control of 

hematopoiesis, where many molécules can share similar effects on the same cell lineage. The 

combination of the cytokines can also have synergistic effects on the hematopoietic cells (stem 

cells and commited cells).(3) The overlap of activity of the molecular regulators could be 

explained by a mechanism aiming at achieving a greater effïciency of cell production while 

generating the right amount of blood cells mixtures required at précisé location in vivo.(3)

Due to the confusion created by the diverging uses of the nomenclature such as cytokines 

and growth factors, we believe it is important to address some semantic issues. The term growth 

factor is a collective one which originally included many substances promoting cell growth. (78)
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Figure 1.6: Diagram of hematopoiesis and cytokines involved in its régulation. Reference
adapted from (25)
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The expression is used rather commonly now, including molécules having the following 

spécifications: growth stimulators (mitogens), stimulation of cell migration, growth inhibitors 

(négative growth factors) and chemotactic agents among others.

These factors can be secreted molécules that are présent in the conditioned medium of 

cell cultures. Numerous factors also have either a membrane-anchored form or soluble forms. 

These molécules can therefore act in an autocrine, paracrine, juxtacrine or retrocrine way. In 

numerous cases, the term growth factor is used as an équivalent for cytokines. Also, the terni 

cytokine is used in a generic way for a heterogenous group of soluble molécules (proteins and 

peptides) that can act as humoral regulators and, under either normal or pathological States, 

regulate the functional activities of individual tissues and cells.(78) Many cytokines and growth 

factors, by preventing apoptosis, behave as cellular survival factors.(78) In fact, cytokines are 

known by their pleiotrophic effects rather than their spécifie effects.(79)

We will examine the effect of individual biomolecules on HSCs behavior and also on 

progenitors/early differentiated cells, since the gap between these two States is sometimes hard to 

distinguish. So it made sense to us to overstep the boundaries of cell différentiation to be able to 

analyse a little bit more of regulatory molécules to include those who seem to affect progenitors 

and/or stem cells. A large number of molécules are known to affect the response of HSCs -  see 

Tables 1.3 and 1.4 and also Figures 1.6 and 1.7 for a list of these molécules and a description of 

their effects. We have decided to focus on molécules which their effects have been well 

documented in the scientific literature, or that seemed to us to have an important influence on 

HSCs (Table 1.5). Many molécules affect the fate of the hematopoietic cells, while those 

affecting HSCs are fewer, but nonetheless numerous. The following molécules will be reviewed: 

SCF, EPO, TPO, Flt-3 ligand, CSFs (M-CSF, G-CSF, GM-CSF Interleukin-3 (IL-3)), and 

ATRA (all-trans retinoic acid). Their individual, synergitic effects on HSCs behaviour will be 

discussed as well as the effects of concentration and of genes/transcription factors. This paper 

does not aim at giving an exhaustive list of ail the factors affecting HSCs, and even if we tried 

being as objective as we could, the choice of the molécules listed below remains subjective. An 

example of this would be the omission of IL-1, IL-6, IL-10 and IL-11. Although a few référencés 

are being made at them, they were not included in the list of the most important molecular 

regulators because there are contradicting opininons about their rôle. They seem to play a rôle in 

the HSCs régulation, but to which extent precisely, that remains to be known.
30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 1.3: Ex vivo génération of primitive hematopoietic progenitors/stem cells

from human CD34+ cells. Adapted from reference(80).

source of cells cytokines test fold increase of 
primitive 

hematopoietic 
progenitors/stem 

cells

Bone marrow SCF, PIXY321 HPP-CFC 5.5

Bone marrow SCF, IL-3, FL,EL-6,G- 

CSF.NGF

LTCIC 47-68

Bone marrow FL, SCF, IL-3 LTCIC 30

Umbilical cord blood SCFJFL,TPO,G-CSF E-LTCIC 21

Umbilical cord blood SCF,FL,TPO,G-CSF LTCIC 47

Umbilical cord blood FL, TPO, SCF, IL-6 CFU 278

Umbilical cord blood FL, TPO LTCIC ) 200 000

Umbilical cord blood EL-1, EL-3, SCF LTCIC 15-20

Peripheral blood SCF, IL-1, IL-3, IL- 

6,EPO

LTCIC 1.1

Référencés: (80-87)
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Table 1.4: In vivo studies with ex vivo-expanded hematopoietic stem cells or

progenitor cells from umbilical cord blood. Adapted from reference(80).

cytokines used for 

expansion

long-term reconstitution

FL, SCF, IL-3, IL-6, G-CSF 2-4 fold increase on SRC

FL, SCF, TPO, IL-6/SÏL-6R 4.2 fbld increase in SRC

SCF, IL-3, IL-6, IL-11 increased survival in SCID

récipients

^ong-term reconstitution: cells able to restore a depleted
hematopoietic system over a period of some months.(80;81;86-90)
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Figure 1.7: Stem cell mohilization: mechanisms and interaction between some mobilizing

agents. Taken from(59)
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Table 1.5: Effects of différent cytokines on HSCs

Effects of cytokines_______________________________ [ Synergy and synergistic effects
SCF (stem cell factor): mainly produced by fibroblasts in the bone marrow.

•  promûtes the survival of hematopoietic progenitor cells, protects HSCs of 
apoptosis.

•  increases the number of HSCs and be a limiting regulator of the renewal 
of HSCs in vivo.

•  transmembrane isofotm of SCF seems to be a physical component of the 
stem cell niche in situ.

•  homing of HSCs to the BM.

•  SCF also acts as a chemotactic and chemokinetic factor for primitive 
mutine progenitors.

•  enhanced engraftment o f CD34+ cells in NOD/SCID récipients.

EPO (erythropoietin): produced mainly by peritubular cells in the kidney.

•  affects late determined and the differentiated progenitor cells of the 
erythropoiesis cycle.

• affects colony formation and stimulate maturation of megakaryocytes.

Flt-3 ligand: produced in fibroblasts of the bone marrow and in the stromal
cells o f adhèrent layers of long-term BMC.

• influences survival of blood-fotming cells like CFU-GEMM, CFU-GM, 
and some proliferative potential colony-forming cells such as HPP-CFC 
effects on megakaryocyte and erythroid progenitor cells.

•  improves the génération of stem/progenitor ceUs in vivo.

M-CSF (macrophage colony stimulating factor): produced by many cell types, 
including B-lymphocytes, épithélial cells, fibroblasts, endothélial cells, 
macrophages, stromal cell line and T-lymphocytes among others.

SDF-1 (stromal-derived factor 1): chemotactic and chemokinetic 
factor for primitive murine progenitors.

MM-9 (matrix metalloproteinase-9) : release of tm-SCF, which is 
then cleaved and becomes soluble, mobilization o f progenitors 
and stem cells from the bone marrow niche.

TPO (thrombopoietin), Flt-3 ligand, and EL-6 (interleukin 6) in 
culture o f BM and MPB HSCs to give after 10 weeks a yield of 
3000-fbld o f  committed progenitor.

ML (Mpl receptor): support multi-lineage colony formation.

Flt-3 ligand: enhances the production of nucleated and of 
progenitor cells.

CSFs (colony stimulating factors): influence the relative 
frequency of progenitor cells, more so with those commited to 
granulocyte production, in developing colonies of immature blast 
cells.
IL-1 (interleukin 1), TNF-alpha (tumor necrosis factor) and IL-6 
(interleukin 6): decrease the sensitivity of EPO in vitro.

IL-3 (interleukin 3), GM-CSF (growth macrophage colony 
stimulating factor) or SCF (stem cell factor): leads the BFU-E to 
mature into CFU-E.

IL-7 and IL-3 or with IL-7: promotion of the long-term 
expansion and différentiation of human pro-B-cells.

GM-CSF (growth macrophage colony stimulating factor), G-CSF 
(granulocyte colony stimulating factor), M-CSF (macrophage 
colony stimulating factor), IL-3 (interleukin 3), SCF (stem cell 
factor), ami PIXY-321: increases the clonogenic capacity of 
immature stem/progenitor cells.

SCF (stem cell factor) and IL-3 (interleukin 3): expansion of 
CD34+ CD38' cells (maximum stimulation occurring at 250 
ng/ml).
None applicable.

•  induces production of monocyte/macrophage colonies.
•  can commit progenitors to macrophage production.

•  reduces cytopenia caused by cancer chemotherapy, myeloablation prior to 
bone marrow transplantation and in aquired or in congénital bone marrow 
failure.
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G-CSF (granulocyte colony stimulating factor): produced by many cell types, •  ML (Mpl receptor): support colony formation in serum- 
including, B-lymphocytes, épithélial cells, fibroblasts, endothélial cells, containing cultures but not in serum-free cultures,
macrophages, stromal cell line and T-lymphocytes among others.

•  involved in production of small, well-differentiated granulocytes.
•  mobilize hematopoietic progenitor and stem cells into the circulation.

•  bénéficiai effects on neutrophil recovery after a chemotherapy and/or bone
manow transplantation in cancer patients.

•  reduces cytopenia caused by cancer chemotherapy, myeloablation prior to
bone marrow transplantation and in aquired or in congénital bone marrow
failure.

GM-CSF (growth macrophage colony stimulating factor): produced by many •
cell types, including, B-lymphocytes, épithélial cells, fibroblasts, endothélial 
cells, macrophages, stromal cell line and T-lymphocytes among others.

• stimulâtes both unileage and bipotential granulocyte and macrophage 
progenitors, eosinophil, megakaryocyte, erythroid and mixed colony 
formation in vitro.

•  progenitors can be commited to granulocyte production by GM-CSF 
in human models with doses (0.3-30 pg/kg/day) of GM-CSF.

•  bénéficiai effects on neutrophil recovery after a chemotherapy and/or 
bone marrow transplantation in cancer patients.

•  reduces cytopenia caused by cancer chemotherapy, myeloablation 
prior to bone marrow transplantation and in aquired or in congénital 
bone marrow failure.

IL-3 (interleukin 3): produced by many cell types, including, B-lymphocytes, •
épithélial cells, fibroblasts, endothélial cells, macrophages, stromal cell line 
and T-lymphocytes among others.

•
•  reconstitution of bone marrow and in the stimulation of 

erythropoiesis, reduces cytopenia caused by cancer chemotherapy, 
myeloablation prior to bone marrow transplantation and in aquired or 
in congénital bone marrow failure.

•  similar effects than GM-CSF and G-CSF on the recovery of 
neutrophil after chemotherapy and bone marrow transplantation, has 
an effect on the platelet recovery of patient taking chemotherapy •  
treatments.

•  can decrease the ability of stem cells to self-renew and engraft in 
irradiated mice.

•  blocks the two apoptosis pathways in HSCs while giving at the same 
time a myeloid différentiation signal. It also seems to block these two 
apoptosis mechanisms in T-cells.

•  stimulâtes the in vitro growth of colonies of myeloid and erythroid 
cells while stimulating the division of cells (CFUs) in vitro and in 
vivo.

•  is the CSF that has the widest spectrum of activity: stimulâtes 
eosinophil, megakaryocyte mast cell and erythroid progenitors and 
immature multipotential hematopoietic.
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None applicable.

CSFs, EPO: reconstitution of bone marrow and in the 
stimulation of erythropoiesis.

mix of SCF, Flt-3 ligand, TPO and IL-6/sIL-6R 
GM-CSF, SCF (stem cell factor), IL-6 (interleukin 6), IL-11 
(interleukin 11), LIF (leukemia inhibitory factor), G-CSF 
(granulocyte colony stimulating factor) and M-CSF 
(macrophage colony stimulating factor): decreases the 
repopulating ability of the expanded cord blood CD34* cells.

IL-1 (Interleukin 1): stimulâtes the prolifération of immature 
hematopoietic progenitor cells (CFU-GEMM, BFU-E, and 
CFU-GM).

IL-6 (Interleukin 6): induces the prolifération of mutine 
pluripotent hematopoietic progenitors in vitro.

M L (Mpl receptor) support muiti-lineage colony 
formation.
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TPO (thrombopoietin): produced by the liver, kidney striated muscle and 
stromal cells in the bone marrow.

•  stimulator of megakaryocytopoiesis and promûtes the différentiation 
of platelets.in vitro and in vivo rôle in regulating the HSC 
compartment and enhancing the prolifération of stem/progenitor 
cells.

•  effect on myeloid and erythroid lineage.
bone marrow CD34+ /Thy 1+ /Lin' are affected by that molecule, 
least mature cells can be expanded with TPO while maintaining a 
multi-lineage différentiation potential.

ATRA (all-trans retinoic acid receptor): produced in the walls o f the small 
intestine.

•  stimulâtes neutrophilic différentiation of normal progenitors and 
acute promyelocytic leukemia cells enhances the maintenance, self- 

_________ renewal o f short and long-term repopulating stem cells.

IL-3 and IL-6 : stimulâtes an increase in megakaryocyte size 
and number.

SCF (stem cell factor) and IL-3 (interleukin 3): production 
of CFU-Mix, CFU-E and CFU-GM in suspension cultures of 
CD34+ /c-kit+/ CD38*°W in human bone marrow cultures.

G-CSF (granulocyte colony stimulating factor): enhances 
miltilineage hematopoietic recovery (mainly neutrophils) in 
monkeys recovering from radiation-induced bone marrow 
aplasia.

Flt-3 ligand: positive effects on the production of committed 
hematopoietic progenitors belonging to ail hematopoietic 
lineages.

reduces the time needed for the fîrst cell division of LTR- 
HSC if combined with IL-3 (interleukin 3), SCF (stem cell 
factor) or with both of them.

Flt-3 ligand, SCF (stem cell factor) and IL-11 (interleukin 
11): cytokines that are able to stimulate the amplification of 
the most primitive hematopoietic stem cells in vitro, a dose- 
response and interaction parameters to predict how to 
optimize the mix of the cytokines revealed that showed that a 
20 ng/ml concentration they had the maximal HSCs 
stimulatory (higher concentrations being inhibitory).

Flt-3 ligand: gives extensive expansion (of Lin' /Sca+ /c-kit+) 
with little différentiation of CD34+ cord blood cells cultured 
in stroma-free conditions, induces a several thousand-fold 
increase of CD34+/CD38' and CD34+/CD38+ populations 
after 5 months of culture.
None applicable.

References: (3;25;34;78;80;83;91-125)
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Clearly by looking at Tables 1.3, 1.4 and 1.5 we can see the prédominant rôle played by 

IL-3, TPO and SCF. We can conclude that individual regulatory molécules are important, but 

also of importance are their concentrations and the combinations of these molécules, since 

synergistic effects are reported in many studies. More experiments should be carried to 

détermine in a clearer fashion the concentration and combinations of cytokines that affect which 

spécifie stages of the hematopoiesis in vivo and in vitro. What is needed is a chart that tells the 

nature, combination and quantity of cytokines that are needed to achieve accurate and 

reproductive results while cultivating HSCs in vitro.

7.2 Effect of growth factors and cytokines concentration on hematopoietic stem cell 

behavior

Table 1.6 shows that interactions between the cytokines/growth factors are important in 

the régulation of HSCs. Another important element is the concentration at which these 

cytokines/growth factors are used. Table 1.6 shows many examples demonstrating the effects of 

cytokines and growth factors on the behaviour of the HSCs. We must also keep in mind that the 

differential expression of isoforms of cytokines (soluble or membrane-bound) and their receptors 

are another elements that can also affect the “apparent’'concentration of the cytokines, and it is 

also a way in which stimulatory levels of factors affecting HSCs behavior can be controlled. 

FGF, SF and Flt3L can be regulated in this manner.(126-128) In some cases, it has been 

demonstrated that this influences the ability of cytokines to bind to membrane and to generate a 

response.(129) Another important point to notice is that soluble receptors generally keep their 

ligand binding property and can be either compétitive inhibitors (IL-1, IL-2, G-CSF) (130) or 

positive effectors to the membrane-bound receptor, such as sIL-6R.(131;132)
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Table 1.6: Concentration-related effects of some cvtokines

and growth factors on HSCs bchaviour.

Cytokines and growth factors Concentration tested and effects

SCF

TPO

Flt3-ligand

CSFs

M-CSF

50 ng/ml: best effect on total cell expansions.

1:1:1 ratios (ranging from 0.1 ng/ml to above lOOng/ml) 
of IL-11, SCF and FL: CRU and CFC expansion climb 
until the concentration reaches more than 100 ng/ml 
where the CFC and CRU lower, value of the total cells 
climbs until it reaches a plateau at 100 ng/ml.

Increased SCF sérum concentration is linked to an 
increase in numbers of hematopoietic progenitors of 
patients with aplastic anémia.
50 ng/ml: best effect on total cell expansions.

For LTC-IC expansion needs a concentration which 
appears to be 10 times higher than that of the same 
cytokines used to maximize CFC expansion in the same 
cultures.
50 ng/ml: best effect on total cell expansions.

For LTC-IC expansion needs a concentration, which 
appears to be 10 times higher than that of the same 
cytokines used to maximize CFC expansion in the same 
cultures.
Sérum levels being disregulated during leukemogenesis 
and transplantation, coupled with the fact that high 
concentrations of that cytokine can promote stem cell 
self-renewal gives evidence that changes in the 
exogeneous quantifies cytokines may be a key factor in 
regulating HSCs différentiation in vivo.
Increased FL sérum concentrations is linked to an 
increase in numbers of hematopoietic progenitors of 
patients with aplastic anémia.
Can have their concentration affect the length of the 
mitotic cycle and the number of mature progeny 
generated from each progenitor cell.
Lineage commitment and proliferative activity of 
granulocyte-macrophage progenitors can be modified 
depending on the concentration and the sequence M-CSF 
at which the cells were initially exposed.

Intravenous injections in mice (20 pg/day) increased up 
to 10-fold the number of circulating mature monocytes, 
increased the macrophage content in the liver and in the 
peritoneal cavity and it also increased the splenic 
cellularity and extramedullary hematopoiesis.
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G-CSF • (1-60 pg/kg/day) stimulâtes prolifération of 
granulopoiesis at ail stages, resulting in a dose dépendent 
élévation of up to 15-fold in peripheral blood neutrophils.

GM-CSF • Lineage commitment and proliferative activity of 
granulocyte-macrophage progenitors can be modified 
depending on the concentration and the sequence GM- 
CSF at which the cells were initially exposed.

IL-3 • Concentration that gives the best results for the self- 
renewal of murine stem cells is 50 U/ml (102 fold 
increase in cell number).

• Has a concentration-related ability to suppress the self- 
renewal of murine stem cells.

IL-11 • 50 ng/ml: best effect on total cell expansions.

IL-1 • Has a concentration-related ability to suppress the self- 
renewal of murine stem cells.

Référencés: (7;122;123;128;133-143)
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In summary, the nature of the ligand-receptor is important for the régulation of the stem- 

cell responses, but also is the quantitative nature of the interaction and the dynamics of the 

receptor expression, its intemalization and signaling -  these have a rôle in dictating stem cell 

fate.(128) As an example, the threshold in the receptor expression/activation seems to have an 

important impact in the T and B-cell development and lineage commitment, reflected by the 

relative levels of surface expression that seem to regulate the developmental stages. Immature B- 

cells submitted to low activation signais differentiate, while higher signais gave clonal 

expansion.(144) In the T-cells, the T-cell cycle can be estimated based on changes in the IL-2 

concentration and its receptor density and the duration of the receptor activation, leading to think 

that the limiting parameter in the IL-2-stimulated expansion of T-cells is the interaction of the 

interleukine with its receptor. (145) Adding weight to these assumptions, B and T cells have 

receptor transcripts of IL-7 and IL-2, respectively.(146)

7.3 Genetic factors

Another aspect that has to be addressed in studying stem cell régulation is the corrélation 

between HSCs developmental potential and gene expression. Many molécules are of importance 

in the development of spécifie hematopoietic lineages and it is highly likely that the behavior of 

these cells is related to many genes and the interactions of diverse regulatory pathways.(147) 

Some genes of importance in the régulation of HSCs will be briefly reviewed as will be some 

transcriptional factors that have also an important rôle in the régulation of HSCs (Tables 1.7 and 

1.8). The rôle played by genes and transriptional factors in regulating HSCs fate is crucial, but 

the full nature and rôle of the key genes and transcriptional factors implied in the régulation of 

the HSCs remain to be fully established. A better understanding of the genes and the 

transcriptional factors will probably lead also to a better understanding of the rôle played by the 

cytokines and growth factors implied in the régulation of the HSCs since they ail affect the HSCs 

on the genetic level.
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Table 1.7: Some transcriptional factors and their rôle in hematopoiesis.

Factor Type Expression Requirements

SCL/tal-l BHLH Prog, E, Meg Ail (embryonic and 

définitive) hematopoiesis

Runxl/AM Ll Runt Prog Définitive hematopoiesis 

E and Meg différentiation

GATA-1 Zinc finger Prog, E, Meg

GATA-2 Zinc finger Prog, Meg Proliferation/survival of 

hematopoietic 

stem/progenitor cells

GATA-3 Zinc finger Prog, T cells T cell development

PU .l Ets Prog, myeloid, B cells Myeloid, T and B cell 

development

FOG-1 Multi-type zinc finger Prog, E, Meg E and Meg différentiation

Dcaros Zinc finger Prog, T, B and NK cells Lymphoid cell 

différentiation

Pax5 Paired box B cells B cell development

Prog= progenitors; E= érythrocytes; Meg= megakaryocytes

In vivo requirements in development have usually been established by gene targeting in mice 

Reference: (6; 148-162)
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Table 1.8: Genes and proteins involved in the régulation of HSCs fate.

Factors Functions
Genes
HOXB4

HIWI

PTEN/SHIP

Bcr-Abl

Proteins
Morphogens

involved in the biological processes of adult eukaryotic cells: control of cell identity, différentiation and cell 
growth, cell-cell and cell-ECM interactions.

enhances high level of ex vivo HSC expansion
cultures of HOXB4-transfected cells give fast and great polyclonal HSC expansion, yielding 1000-fold 
higher levels vs Controls and a 40-fold HSC increase, resulting HSCs kept their lympho-myeloid 
repopulating potential and increased the in vivo regenerative potential. 
its expression in the hematopoietic compartment is unique to the most primitive of CD34+ cells 
(progenitors), and it is decreased or absent in the more differentiated cells.

important négative developmental regulator of hematopoietic stem cells and progenitor cells, expressed in 
many developing fetal and adult tissues, shown to be présent in human CD34+ hematopoietic progenitor 
cells but not in more differentiated cell populations, expression of hiwi in the human leukemia cell line KG- 
1 dramatically reduces prolifération, overexpression of hiwi in KG-1 cells causes cell death by apoptosis. 
lowers the amount of PI3K product (PIP3) inside of cells, PI3K/PIP3 régulâtes prolifération, transcriptional 
régulation, cell migration, glucose metabolism, protein synthesis and protect against apoptosis, altération of 
that gene seems to be linked to the emergence of certain tumors.

SHIP1 can negatively regulate PI3K which results in enhanced prolifération and différentiation of HSCs in 
response to growth factors and also a decrease in apoptosis o f myeloid cells.
responsible for stimulating the activity of several signal transducers, promotes cell growth and cell death 
inhibition.
orient cell fate in a concentration-dependent manner by activating transcription of distinct target genes, and 
they include three classes of proteins: hedgehogs, Wnts and BMP.

Sonic hedgehog (Shh): régulâtes hematopoiesis.
in cell cultures, addition of Shh increases the quantity of blood cells able to repopulate NOD/SCID mice 
induces the expansion of repopulating cells.

inhibits BMP-4 and a BMP inhibitor called Noggin which allows Shh to tune the local effective 
concentration of BMP in the bone marrow.

Wnts: expressed in the bone marrow.
over-expression of a downstream activator of the Wnt signaling pathway (0-catenin) in long-term cultures 
of HSCs enhances the pool of transplantable stem cells determined by phenotype (Scal+ /c-kit+ /T hyl.lLow 
/Liri ) and their ability to reconstitute the hematopoietic System in vivo

Wnta proteins induce self-renewal of HSCs.

BMP: generic name of a family of proteins found in small amounts in bone material.

some BMPs (BMP-2, BMP-4, and BMP-7) play a rôle in the spécification of hematopoietic tissue from the 
mesodermal germ layer, they regulate the prolifération and différentiation of highly purified primitive 
human hematopoietic cells CD34+ CD38' Lin" stem cells from adult and neonatal sources.

treatment of isolated stem cell populations with soluble BMP-2, BMP-4, and BMP-7 induced dose- 
dependent changes in prolifération, clonogenicity, cell surface phenotype and multüineage repopulation 
capacity after transplantation in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice.

some effects are concentration-dependent, with high concentrations of factors inhibiting prolifération and 
low concentrations inducing prolifération and différentiation.
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Notch • group of proteins acting both as cell surface receptors and regulators of gene transcription, HSCs express
the four Notch transcripts.

•  Notch 1 is generally expressed on thymocytes and on marrow precursors, its signaling can affect the stem 
cell self-renewal and différentiation and also plays a rôle in vivo by modulating the self-renewing to keep 
the number of stem cells and by ensuring that a portion of the progeny differentiates in the altemate 
lymphoid instead of the default myeloid lineages.

•  Notch2 is on both thymocytes, B-cells and on precursor cells.

•  Notch4 is mostly expressed in endothélial cells but is also expressed on macrophages.

•  HSCs express greater levels of Notch2 than Notch 1 leading to the hypothesis that individual Notch family 
members could have varying rôles in the self-renewal and différentiation of HSCs.

•  acts in the embryo as the pathway directing binary cell fate décisions, limits the number of cells choosing a 
 given fate and leaves progenitors uncommitted but compétent to adopt alternative fates.

Référencés: (6;78; 163-179)
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8. Négative modulators

A few molécules are also known to have a négative effect on the HSCs expansion in 

vitro, leading researchers to suggest that these molécules are probably spontaneously secreted in 

vitro, which could in part explain the difficulty to control accurately the expansion of the HSCs. 

Protein factors such as TGF-P, TNF-a and IL-3 can decrease the repopulating potential by 

causing apoptosis, différentiation, inhibiting prolifération and by decreasing the ability of 

repopulating stem cells to migrate to the bone marrow environment.(180-182) TGF-P has the 

ability to inhibit the shift from Go/Gi to S phase, and inhibits the prolifération of primitive CD34+ 

cells, myeloid and erythroid progenitors.(182;183) The fact that HSCs can produce TGF-P in an 

autocrine manner could explain their quiescence in vivo. Neutralizing anti-TGF-P antibodies or 

antisense oligomers to the D2 cyclin inhibitor p27kipl allows for the prolifération of HSCs in 

vàro.( 184-186) TNF-a has also been reported to decrease HSCs expansion in cultures 

supplemented with SCF and FL by inhibiting the prolifération of progenitor cells by way of 

apoptosis. It also inhibits the total nucleated and CD34+ cell production in subpopulations 

enriched for erythroid cells. (182; 187-190) IL-3 is another molecule that seems to have négative 

regulatory properties. It could decrease the expansion and self-renewal of primitive stem cells in 

a concentration-dependent manner, and it could also impair the reconstituting ability of 

HSCs.(87;109;139) Another report (191) clarifies these facts by showing that HSCs may 

experience a chemotactic response towards SDF-1 through the impaired CXCR4 receptor. Since 

SDF-1 plays a chemotactic rôle and is secreted by stromal cells, its receptor being blocked could 

affect the homing and transplantation of HSCs to a culture substrate.

Other molécules also have an inhibitory effect on the HSCs: M lP-la, MCP-1. They must 

be generated in vitro to have a négative effect on the HSCs in culture. M lP-la, for example, 

inhibits the expansion of primitive CD34+cells in vitro. (180-182) An interesting fact to notice is 

that by négative modulators, it is not necessarily implied that the effects are deleterious for the 

HSCs, but rather that at times, some molécules can slow down the différentiation of HSCs, so an 

equilibrium between stimulatory and inhibitory factors is obtained. It would then lead to suggest 

that inhibitory factors play a rôle in decreasing in vitro expansion of repopulating HSCs by 

causing them to alter their cell cycle rate, and inducing their différentiation, apoptosis and/or lose 

their ability to home to the bone marrow microenvironment.(192)

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9. Physico-chemical factors

Several “non-biologieal” factors are known to affect HSCs behavior. Oxygen being one 

of the most important and most studied of these factors. Many studies have shown that oxygen 

levels have an effect on the HSC prolifération. In vivo, the oxygen tension in the bone marrow is 

about 2%-7%, while it has been demonstrated that for cultures maintained in atmospheric 

oxygen (20%), the results were poorer than when using oxygen tensions ranging from 1%-10%. 

A 5% oxygen tension has been demonstrated to enhance the size and numbers of HSCs in 

semisolid media.(193;194) It could also be possible that the increased growth of HSCs in low 

oxygen conditions could be due to an increased response of the cells to the growth factors and to 

a decreased production of the oxygen derivatives (oxygen radicals, intermediates and hydrogen 

peroxide) made by macrophages.(195) Mature cells would seem to be less affected by changes in 

the oxygen within their environment than their precursors, so the best oxygen conditions could 

dépend on the developmental State of the cells, in part, and on the cytokines used to regulate 

them.(196) In cases where HSCs were not expanding or were expanded only in small percentage, 

low oxygen conditions allowed for a higher number of cells to be maintained, and greater 

expansion of HSCs occurred when oxygen concentrations were higher. (196-198)

The fact that more mature cells may be less affected by changes of oxygen tension in 

their environment than their precursors (196) points out that the concept of an “optimal” oxygen 

tension may dépend not only on the cytokines that are stimulating the cells but also on the 

potential of development of the cells that are stimulated. In conditions where little or no 

expansion of HSCs is observed, low oxygen conditions gave way to the maintenance of a higher 

number of HSCs.(196) On the other hand, HSCs expansion at large scale occurred under 

conditions that included higher oxygen concentrations, although the expansion in cell numbers 

made a plateau at 20% in oxygen.(197;198)

More traditional approach, like cultures with inocula of bone marrow-derived cells fed by 

regular replacement of a part of the culture medium with fresh one can be limitating due to the 

depletion of cytokines and nutrients, and by exposure to inhibitory compounds, although 

Cashman et al. claim nutrient exhaustion can be ruled out.(76;199) An increase in the medium 

exchange rate of HSCs culture leads to an increase in total cell and progenitor cell 

output.(198;200) Consumption of cell-specific glucose and production of lactate both increase
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with faster exchange rates of medium and increased sérum supplementation.(201) This has a 

downside effect, since the faster introduction of fresh medium dilutes metabolic by-products and 

inhibitory factors faster. Studies have also shown that medium acidification inhibits growth. 

Other researchers reported that there is a différence in the survival and différentiation of 

hematopoietic cells (peripheral blood mononuclear cells), and they dépend on certain factors, 

such as introduction of ffesh medium, low sodium lactate concentration and low pH would give 

a better fold expansion of the cultured cells.(202) In brief, lactate production, pH and medium 

utilization during hematopoietic cultures have an effect on cell responses.

So far, the physico-chemical factors that affect HSCs that have been identified are the 

oxygen consitions (mainly the oxygen tension), lactate production, pH, and the choice of culture 

medium. With the utilization of new technology, such as bioreactors in which oxygen flow and 

concentration, nutrients, pH and other metabolite concentration can be controlled and monitored 

in real-time, new relations between these factors will probably be discovered and understood. It 

will also give a better approximation of the in vivo conditions of HSCs, thus allowing researchers 

to better study their behaviour in différent conditions.

10. Plasticity

Plasticity, or trans-differentiation, is a term frequently used in the stem cell vocabulary. 

Both of these terms are synonym to one which is maybe less of a “hype” word and has been used 

as a current pathological term: metaplasia. To make it short, metaplasia is the conversion of one 

cell/tissue type into another (see Figure 1.8).(203) The rules goveming the switch of tissue type, 

once understood, could help researchers to control stem cells in vitro for therapeutic means such 

as transplantation (203), just as the détermination of the exact phenotype of the bone marrow 

sub-population that shows this increased plasticity.(34)

The theorical model for stem cells is that the ones from a particular tissue have similar 

characteristics to the embryonic stem cells of the tissue in question. Some researchers prétend 

that a stem cell is not fixed in its potential of différentiation, but rather influenced by its 

environment, and more precisely by the signais from damaged tissues.(204) That would explain 

in part the results listed in Table 1.9. Also, HSCs would seem to be able to differentiate into 

other kind of specialized cells, such as cells of the rénal parenchyma, épithélial cells of the liver,
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skin, gastrointestinal tract and lung. They could also have the ability to differentiate into 

hépatocytes, which would ignore the traditional specificity of the germ layers.(34;205;206)

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1.8: Exemples of plasticity. Adapted from reference (2)
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Table 1.9: plasticity assavs.

Organ in which HSCs 
were injected

Site where HSCs were 
isolated

Type of new cells 
stimulated

Proof of plasticity: signs 
of new phenotype from 
the injected HSCs into 

the host

liver (rat) bone marrow oval cells, hépatocytes ISH, MHC class II Ag  

L 21 -6/morphology

liver (human) bone marrow hépatocytes ISH/CK8 or albumin

liver (mouse, human) bone marrow endothélium ISH/FAH+

kidney (mouse, human) bone marrow tubular épithélium ISH/cytochrome P450, 
CAM 5.2

kidney (mouse) bone marrow mesangial cells, 

endothélium

morphometry, culture, 

genotype, MMP assay

kidney (human) bone marrow endothélium XX chromosome, HLA 
typing/morphology

heart (mouse) bone marrow myocardium ISH, GFP/cardiac myosin

heart (mouse) bone marrow SP eells cardiomyocytes,
endothélium

P-gal/cardiomyocytes:a- 
actinin, endothélial 
cells:flt-l

lung (mouse) bone marrow type II pneumocytes ISH/surfactant B

lung (mouse) bone marrow plastic - 
adhèrent

type I pneumocytes P-gal/morphology

bone (mouse) bone marrow (also MSCs) collagen-expressing cells expression o f  minigene
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bone (human) Bone marrow osteoblasts ISH/morphology and 
culture

CNS bone marrow neurones ISH/NeuN

CNS bone marrow microglia, astrocytes ISH, GFP/macrophage 
antigen F4/80

ISH= in situ hybridization for Y-chromosome; (i-gal=P-galactosidase; CNS= central nervous System; GFP: green 
fluorescent protein 
References: (34;99;206-219)
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Zandstra et al. (77) made the hypothesis that stem cell plasticity could be explained by 

two models. The first one is that tissue-specific stem cells, like HSCs, could de-differentiate 

through a pluripotent cell State (ES-like cells) to another tissue-specific. The other model is that 

the capacity for development of HSCs could be broader than first thought, allowing trans- 

differentiation of one cell type to another resulting from spécifie influences of the micro­

environment. For example, this hypothesis is supported by the démonstration of highly enriched 

HSCs that were able to differentiate into functional hépatocytes in vivo.(220)

On a cellular level, we need to ask ourselves if hematopoietic stem cells of the bone 

marrow naturally diffuse into other tissues. The fact that HSCs seem to be able to regenerate 

other spécifie tissues once injected into them does not seem to be a known phenomenon in 

physiological conditions, further studies are warranted to examine if it can be considered as a 

natural phenomenon or rather a forced one that as only short-term results.(203) Since it is known 

that isolated cells are more labile than the ones which are surrounded by their own kind of cells, 

it would not be surprising to find grafted stem cells in unexpected tissues. So, from a clinical 

angle the importance of finding if the stem cells, in our case HSCs, can migrate naturally from 

the bone marrow to fix themselves in other tissues (like damaged ones, which would expose 

signais chemically attractive for HSCs) or if it is only something caused by grafts of stem cells, 

which then migrate from the grafting point to other tissues(203), is of great importance.

From a molecular biology standpoint, metaplasia is the resuit of a change in the 

expression level of certain genes, which are responsible for the path taken by the cells in a given 

part of the organism. Normal development involves combination of these genes that are triggered 

in each région by various inducing signais. Given combinations resuit in précisé States of 

development. In tum, the genes produce proteins that act as transcription factors to regulate the 

next hierarchical level of genes, ultimately leading to spécifie tissue types.(203)

Despite ail the hype that surrounds the plasticity of adult stem cells, including HSCs, it is 

crucial to remember that this theory does not make unanimity in the stem cell research 

community. Some reports (221;222) claim that plasticity is rather a phenomenon of cell-cell 

fusion, and the hybrids display a dual phenotype. They also have an enlarged nucléus that 

contains numerous nucleoli and a tetraploid number of chromosomes.(221 ;222) On the other 

hand, other reports show that BMSCs injected in mice with a liver disorder allowed the

régénération of an important liver mass, or in mouse retinopathy were a retinal capillary network
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was regenerated from BMSCs.(220;223) In another case, myocardial régénération was made 

possible from BMSCs injection.(220;223) It seems unlikely that the cell-cell fusion could 

explain the results of these reports, even if it is a phenomenon that can occur more ffequently 

with large quantity of transplanted stem cells.

An interesting fact about plasticity is that HSCs can home to where they are needed 

(usually sites of injured tissues) due to environmental factors. For example, cell necrosis caused 

by an injury could cause the release of signais that circulate and stimulate the release of stem 

cells from the bone marrow pool.(30) The damaged tissue could express key signais and 

receptors to allow traffic and adhésion of stem cells to the injured tissue, and then a 

différentiation cascade could lead to the génération of the appropriate cell lineage. However, it is 

one thing for a cell to circulate in the blood stream or to be engrafted in a novel tissue and adopt 

its phenotype, but it is something else to déclaré that it has become a stem cell in that new 

niche.(99) It is believed that a stem cell should be able to find its new niche in an injury-free 

tissue, since ail the interventions to track the whereabouts of transplanted stem cells have caused 

a certain amount of trauma to the tissues. But, on the other hand, some researchers think that a 

certain amount of damage is needed to see trans-differentiation at work. It could be some kind of 

a last resort System of régénération of the organism.(99) Cells summoned in injured tissue could 

be attracted at the site of injury by factors secreted by the injured tissue, and once there, the cells 

could see the local environment to stimulate genes expression pattem causing a phenotypical 

change in the cell. On the other hand, théories explaining how cells undertake cell-specific 

différentiation claim that tissue-specific factors are rare. It would rather be différent 

combinations of the same transcription factors in différent ratios, which induce varying pattems 

of genetic expression thus causing cells to differentiate in différent pathways. It is not yet known 

which of bone marrow cells are able to differentiate into épithélial cells, but Krause et al. suspect 

that purified CD34+ lin" can, since they are the ones that have been reported by Theise et al. 

(224) to differentiate into hépatocytes in the liver.

Other théories are that the stem cells are continuously circulating in the blood through ail

tissues, but it is only at the time of injury that they migrate from the blood to the site of the

injury. HSCs could also migrate early in the development of the organism and become what is

called a developmental leftover (mesodermal multipotent stem cells in fact). There are findings

that support that stem cells isolated from skeletal muscle keep an hematopoietic activity and are
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in fact itinérant cells originating from bone m a r r o w .(2 2 5 -2 2 7 )  It is still unclear which 

environmental factors trigger the mobilization and the homing of BMSCs to tissues, whether 

they are healthy or injured (if it is really what is happening). Also, little is known about the 

factors that cause stem cells to differentiate into the right organ-specific lineage.

A lot of reviews have been made on the plasticity of stem cells and their behavior when 

implicated in the régénération of tissues. It has been suggested that they could be considered as 

complex adaptive Systems (such as a colony of ants that shows an emergence of behaviors due to 

the sheer number of its members compared to a single ant). While it is highly spéculative, it is 

nonetheless interesting to consider another point of view on a subject that is much 

discussed.(228) Further examples could be given conceming plasticity of BMSC, and the review 

of Orlic et al.(30) is an excellent source of references on that matter.

11. Conclusion
We find that after reviewing many articles on HSCs, that a lot remains to be explained, 

not only in regard to the many conflicting and obscure rôles of cytokines and growth factors, but 

of the very physiological aspects of the HSCs (surface markers, operating genes), and its many 

interactions with their in vivo and in vitro environments. Even characterization methods used to 

identify hematopoietic stem cells and the surface markers used to identify and isolate HSCs are 

not yet fully optimized, since researchers can only rely on probability when they collect HSCs 

from a patient or in culture.

A lot of clinical potential résides in the uses of these cells, wheter it is in direct 

transplantation to treat illnesses or in vitro assays used for HSCs expansion, which can allow 

further tests to uncover the différent surface markers of the blood cell as it goes from the stem 

cell stage to a specialized cell. The impact, concentration and synergistic effects of the regulatory 

molécules can also be tested in vitro, which allows more control than the in vivo environment 

due to more restraint parameters, and these aspects of the regulatory molécules are to be fully 

understood if we want to eventually be able to control in vitro ail the mechanisms regulating 

HSCs cycles.

Unfortunately, the régulation of HSCs relies on more than just key molécules; it also 

dépends on the microenvironment in which the HSCs résidé, which has not yet been completely
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analyzed, making it difficult to reproduce in vitro synergistic effects between molécules, 

concentration of the regulatory molécules. The number and identity of ail the molécules 

regulating hematopoiesis directly or indirectly has probably not been established without a 

doubt, as their effects on HSCs. The stem cell niche, growth factors and cytokines and the 

physicochemical factors that affect the in self-renewal and différentiation of hematopoietic stem 

cells must ail be identified and understood if the HSCs are to be used on a large scale in tissular 

engineering.

Reports on clinical treatments using HSCs abund in the literature, as well as reports 

showing certain methods of in vitro control of HSCs behavior. On the other hand, not much is 

known about the way HSCs react once injected in a diseased host. Many théories have been 

elaborated, but it is hard to support them. The same thing occurs in vivo, molécules affecting 

HSCs are known, but exactly how and when do they react? Which genes do they activate or 

regulate? Here again, théories are being submitted, but again, it is hard to reach a consensus 

based on undeniable expérimental facts. So the bottom line seems to be that HSCs are being used 

in clinical treatments with good results, although the expérimental assays and théories cannot 

explain so far why this success and exactly how much more can we hope from the hamessing of 

the HSCs.

Among ail the environmental factors playing a rôle in the self-renewal and différentiation 

of hematopoietic stem cells, SCF, TPO and 11-3 are the three that play key-role in regulating in 

vivo and in vitro behaviour of HSCs. Their influence in the self-renewal and différentiation of 

hematopoietic stem cells seems to make consensus. Wheter it is the prévention of apoptosis, 

combination with other cytokines, or increasing the survival of HSCs, the literature on these two 

cytokines reveals that they have an important impact on the less mature cell lines, and show an 

influence on the effect of other cytokines when combined with them. Other cytokines, growth 

factors and physico-chemical factors are as probably important, but they are not as well- 

documented as SCF, TPO and IL-3. New analysis techniques and technology will probably help 

in discovering which environmental factors are essential in the self-renewal and différentiation 

of hematopoietic stem cells, such as genes, transcription factors and physico-chemical factors.

In our opinion, the three main challenges that remain to be solved to allow researchers to

make better clinical uses and develop a better theoretical model of the HSCs is to get a better

physiological model of the HSCs (surface markers), how do they interact with their micro-
54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



environment and fïnally which exact molecular and physico-chemical regulators, in which 

quantity, combinations and sequences affect the development and régulation of HSCs and early 

progenitors.

This report aimed at covering ail the aspects by which HSCs could be controlled and 

analyzed. Although we are aware that there is still a lot of subjectivity left about what is crucial 

about controlling the self-renewal and différentiation of HSCs, we think that this paper is able to 

narrow the options which researchers must face when dealing with HSCs culture. Still a lot has 

to be made to discover and understand ail the intricacies involved in the mechanisms regulating 

HSCs behaviors, but the promises of adult stem cells themselves are enough to justify the efforts 

made in a field that has the potential to revolutionize the life sciences.
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Chapitre 2: Effet des conditions d’immobilisation de couches de PÂÂC sur 

leurs propriétés anti-adhésives au niveau de l’adsorption de protéines.

Résumé

Les conditions d’immobilisation du poly(acrylique acide) (PAAC) i.e., le poids 

moléculaire du PAAC, la concentration de la solution de PAAC et le ratio des catalyseurs 

carbodimiides par rapport aux groupements COOH du PAAC ont été variées pour étudier leur 

impact sur la physico-chimie et les propriétés anti-adhésives des couches de PAAC au niveau 

de l’adsorption de protéines. Des analyses par XPS démontrent que l’immobilisation de 

PAAC sur des substrats de borosilicate recouverts par une mince couche de n-heptylamine 

(HApp) a été réussie, et une analyse factorielle démontre également que le ratio atomique O/C 

est influencé par la concentration et le poids moléculaire du PAAC. Des mesures de QCM 

démontrent que l’adsorption de protéines sur des couches de PAAC était moins importante 

que celle observée sur les surfaces servant de contrôles. Cependant, les analyses QCM 

démontrent que les conditions d’immobilisation du PAAC n’ont aucun impact statistiquement 

significatif sur le niveau d’adsorption des protéines bovines fœtales. Les analyses statistiques 

ANOVA des résultats QCM du "half-band-half-width" indiquent que les changements de 

viscoélasticité des couches de PAAC causées par l’adsorption de protéines étaient influencés 

par la concentration de la solution de PAAC. Les mesures de forces AFM avec une sonde 

colloïdale démontrent également un effet statistiquement significatif des trois paramètres 

d’immobilisation du PAAC sur l’épaisseur apparente des couches de PAAC. L’épaisseur 

apparente et le travail effectué par le cantilevier pour comprimer les couches de PAAC 

déterminés par AFM ont été utilisés pour comparer les différentes couches de PAAC entre 

elles. De plus, le travail effectué par le cantilevier pour comprimer les couches de PAAC a été 

estimé grâce aux sommes de Riemann.
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Chapter 2: Effects of immobilisation conditions on poly(acrylic acid) layers 
physico-chemistry and fouling properties.

1. Abstract
Poly(acrylic acid) (PAAC) immobilisation conditions i.e., PAAC molecular weight, 

PAAC solution concentration and ratio of carbodiimide catalysts to COOH groups on the 

PAAC molécules, were varied to study their impact on the physico-chemistry and fouling 

properties of the PAAC hydrogel layers. Factorial design analyses of the XPS results showed 

that the immobilisation of PAAC on borosilicate substrates covered by n-heptylamine (HApp) 

thin film was successful, and that the atomic ratio O/C was affected by the concentration of 

the PAAC solution and the molecular weight of the PAAC. QCM measurements showed that 

some PAAC layers show better protein résistance than the control HApp films. However, 

QCM analyses revealed that immobilization conditions used to produce PAAC layers had no 

statistical impact on the level of protein adsorption observed from FBS. QCM analyses of the 

half-band-half-width showed that the viscoelasticity change of the PAAC layers following 

protein adsorption was affected by the PAAC solution concentration. AFM colloidal probe 

force measurements revealed that the conditions varied during PAAC immobilisation ail had a 

statistical effect on the apparent thickness of the PAAC layers. Two parameters were 

extracted from AFM colloidal force probe measurements and used to compare the PAAC 

hydrogel layers: the apparent thickness and the work done by the cantilever to compress 

PAAC hydrogel layers. The Riemann sums were calculated to estimate the work made by the 

cantilever to compress PAAC layers.
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2. Introduction
Surfaces with reduced protein adsorption, often referred to as low-fouling surfaces, are 

of great interest in the field of tissue engineering. Many materials présent good physical 

properties (e.g., durability, lightness, non-toxicity), but most of the time, they tend to be 

unable to minimize the adsorption of unwanted molécules présent in biological Systems. A 

way to avoid this problem is to select what is considered a good biomaterial based on its bulk 

material properties and to modify its surface with a layer that présents low-fouling 

characteristics with respect to non-specifïc adsorption. These low-fouling surfaces can be 

used for the covalent immobilization of biologically active molécules onto biomaterial 

surfaces to induce spécifie cell responses, for example. However, immobilization of bioactive 

molécules, which are often fragile (i.e., they can easily be denatured) can often lead to a 

significant réduction in the activity of the immobilized molécules. To avoid this problem, a 

spacer layer is often inserted between the substrate surface and the bioactive molecule, 

preferably one with low non-specific interactions. Many polymers such as functionalized 

dextran, poly(ethylene glycol) (PEG), poly(acrylic acid) and others(l-17) have been used to 

produce thin films with potential low-fouling properties for biomédical applications. 

Poly(acrylic acid) (PAAC) coatings have seen few papers on their utilisation and 

characterization,(l;2;4;5;18) however. PAAC is used as absorbent filling in féminine hygiene, 

diapers and products used to deal with adult incontinence,(19) because of its high capacity to 

absorb water.(20) PAAC, an anionic polyelectrolyte, can be a valuable bounding layer for the 

immobilization of biologically active molécules because of the high density of carboxylic acid 

groups along its backbone, which may be used to covalently immobilize molécules containing 

aminé groups, such as proteins. For example, these layers have been used to attach 

NeutrAvidin, a biotin binding protein.(l;21) Poly(acrylic acid) graft layers have also been 

prepared using poly(olefïn) and gold substrates for electrostatic incorporation of bioactive 

molécules and modification of surface properties.(22;23) However, to our knowledge, no 

study has been carried out to investigate protein adsorption on PAAC layers. In this study, 

covalent immobilization of PAAC was carried out onto thin films bearing aminé groups 

deposited by radio-frequency glow discharge (RFGD) from a vapour of n-heptylamine 

(HApp). The main objective of this paper was to use a factorial design analysis(24) and 

ANOVA to screen the effect of the immobilisation parameters on PAAC layers physico- 

chemistry and fouling properties. The following parameters were investigated: PAAC 

molecular weight, PAAC solution concentration and the ratio of carbodiimide catalysts to the 

-COOH groups available on the PAAC backbone. The Chemical composition of PAAC layers
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was analysed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy 

(AFM) colloidal force probe measurements to investigate the hydrated structure and thickness 

of the PAAC hydrogel layers. Quartz crystal microbalance (QCM) with dissipation 

monitoring was used to measure ffequency and half-band-half-width shifts of the différent 

PAAC hydrogel layers during protein adsorption from FBS.

3. Expérimental section
3.1 Materials

N-heptylamine (99 % purity, cat. #126802-100G), l-ethyl-3-(3-(dimethylamino) 

propyl) carbodiimide (EDC, cat. #E1769-5G) and A-hydroxysuccinimid (NHS, cat.#H-7377) 

were obtained from Sigma-Aldrich (Oakville, ON, Canada). Poly(acrylic acid) PAAC (5, 90, 

250 kDa, cat. #06519, 03326, 03311, respectively with a polydispersity (Mw/Mn) ranging 

from 1.60 to 6.2) from Polysciences, Inc (Warrington, PA, USA) were used. Sodium chloride 

(NaCl, ACS grade, cat. #S271-500) was obtained from Fisher Scientifïc (Nepean, ON, 

Canada). The borosilicate glass was obtained from Chemglass (Vineland, NJ, USA) and then 

eut to smaller dimensions (13x13 mm and 20x20 mm). The QCM crystals were obtained from 

Maxtek (Santa Fe Springs, USA, #149211-1). RPMI 1640 cell culture medium (cat. #R0883) 

and FBS (#F1051), used in the QCM adsorption assays, were obtained from Sigma-Aldrich 

(Oakville, ON, Canada). The buffer used with the QCM crystals (to allow the PAAC layer to 

adjust itself to a concentrated medium) covered with PAAC was TRIS 

(tris[hydroxymethyl]aminoethane) (cat. #T-1378) and was obtained from Sigma-Aldrich 

(Oakville, ON, Canada). Reagent alcohol (HPLC-grade, # A995-4) was obtained from Fisher 

Scientifïc (Nepean, ON, Canada).

3.2 Methods

3.2.1 Surface immobilization o f PAAC

The borosilicate glass substrates were cleaned in nitric acid (1M) Sigma-Aldrich 

(Oakville, ON, Canada) ovemight, then rinsed with Milli-Q gradient purifïed water 

(Millipore, Nepean, ON, Canada) with a resistivity of not less than 18.2 MO-cm. The QCM 

crystals were cleaned in a UV lamp (Novascan, Ames, IA, USA) for 40 minutes, cleaned in a 

pyrhana solution (3:1 sulfuric acid and 30% peroxide hydrogen) (Fisher Scientifïc (Nepean, 

ON, Canada), rinsed with Milli-Q gradient purifïed water, and then blow-dried with an air gun 

equipped with a 0.2-pm fïlter (Techrite, San Ramon, CA, USA). They were cleaned again in
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the UV lamp for another 40 minutes, in HPLC-grade ethanol for 20 minutes, rinsed with 

Milli-Q gradient purified water, and blow-dried with an air gun equipped with a 0.2-pm filter.

The cleaned substrates (borosilicate and QCM crystals) were put in a plasma 

polymerization reactor. Radio-frequency glow discharge (RFGD) was used to deposit a thin 

cross-linked and organic film with aminé functionalities. Déposition of thin films by RFGD 

was carried out from vapours of n-heptylamine in a custom-built reactor as described in more 

détails elsewhere (Martin et al., Thin Solid Films, in press). Briefly, the reactor chamber is a 

glass cylinder closed by two Teflon™ covers. The chamber has a height of 35cm and a 

diameter of 17cm, and two circular electrodes of 9.5cm of diameter. The substrates were 

deposited on the lower electrode of the plasma reactor, and the parameters used for the plasma 

déposition were as follow: a frequency of 50 kHz, a glow discharge power of 80 W, a 

déposition time of 45 seconds and a distance between the electrodes of 10cm. The initial 

monomer pressure was of 0.040 torr. These conditions resuit in a HApp film thickness of 

approximately 35 nm, as determined by AFM imaging and SPR measurements (Martin et al., 

Thin Solid Films, in press). PAAC films were directly attached onto the HApp layer by way 

of a water-soluble carbodiimide chemistry.(l;18;25)

Following the plasma polymerization, the QCM crystals and borosilicate glass 

substrates were immersed in différent PAAC solutions. HApp-coated substrates were left to 

react ovemight with the PAAC, then samples were rinsed ovemight in a 0.2mM NaCl 

solution, and finally they were soaked in Milli-Q water ovemight and the water content was 

changed three times. To minimize PAAC structural changes caused by RPMI incubation, the 

QCM crystals were equilibrated in a TRIS solution (300mM, pH of 7.4) before incubation in 

the RPMI solution. PRMI is composed of amino acids, organic salts, and other molécules 

(information obtained from Sigma-Aldrich). The effect of the following three (3) 

immobilization parameters on PAAC hydrogel layers surface properties and fouling 

characteristics were investigated: PAAC molecular weight, PAAC solution concentration and 

the ratio of carbodiimide catalysts to the COOH groups available on the PAAC backbone. It is 

important to note that the activation of PAAC using EDC+NHS can be achieved up to a 

EDC+NHS/COOH ratio of 1/1 because PAAC precipitate under some conditions. At too high 

EDC+NHS/-COOH ratios it can be hypothesized that the solubility of the PAAC substantially 

decreases owing that less carboxyl groups are available on the PAAC backbone. This 

hypothesis is further supported by the fact that following activation of the PAAC by 

EDC+NHS and an ovemight incubation period, the precipitate disappears suggesting that the

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



non-reacted active ester hydrolyses to reforra the COOH groups that can dissociate in the 

aqueous environment.

3.2.2 Factorial design

Surface immobilization and detailed surface characterization of thin polymer films is a 

complex process with many potent variables affecting the surface properties (i.e., thickness, 

structures, and atomic composition) of the resulting thin films. Moreover, XPS Chemical 

analyses, QCM and AFM force measurements, and plasma polymerization itself are time- 

consuming and costly procédures. Thus, a non-replicated 2k plus one center point full factorial 

design was used to plan the 9 experiments, as factorial planning of experiments allows the 

rapid identification of the important variables affecting the properties of the PAAC layers and 

subséquent ANOVA statistical analyses. Based on our personal experience and range of 

possible solution concentrations of PAAC that can be used, upper and lower thresholds were 

defined for each of the three variables investigated in this study. The variables studied and 

thresholds were: 3 PAAC molecular weights (5, 90 and 250 kDa), 3 solution concentrations of 

PAAC (1%, 0.5% and 0.01%) and 3 ratios of EDC+NHS to carboxyl groups available on the 

PAAC backbone (0.01/1, 0.025/1 and 0.05/1). The chosen thresholds combined with the 

factorial design of experiments yielded a total of 16 XPS experiments. Design of experiments 

and statistical analyses of the results were done using Design-Expert 6.0.10 (Stat-Ease Inc., 

Minneapolis, MN). Design-Expert uses analyses of variance (ANOVA) for statistical analysis. 

An ANOVA was used to analyze QCM and AFM colloidal force measurements (level of 

significance was 95% and the P-Value was <0.01). Experiments were carried out in triplicates 

(n=3) except for AFM colloidal force measurements where samples were analyzed only once, 

but many spots on each sample were analyzed (at least 3).

3.2.3 Atomic Force Microscopy colloidal probe force measurements

The interaction forces between a silica particle and the immobilized PAAC hydrogel 

layers were measured with a BioScope Atomic Force Microscope from Veeco Instruments 

(Veeco Metrology, Santa Barbara, CA, USA) using the colloidal probe method developed by 

Ducker et al. (26) Using a XYZ-micromanipulator (MP-85 Huxley Wall Type 

Micromanipulator Sutter Instruments, Novato, CA, USA), a spherical colloidal particle was 

attached to the AFM cantilever spring via an epoxy adhesive (EP30Med Master Bond, 

Hackensack, NJ, USA) to provide a surface of known geometry. In our case, the spherical 

particles were pure silica (diameter of 4-5 pm), and were obtained from Bangs Laboratories,
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Inc. (Fishers, IN, USA). The diameters of the silica spheres were measured using a video 

caméra and screen attached to a high-power optical microscope (magnification of 400X). 

After gluing the spheres to the cantilever, the glue was left to dry for 48 hours, then it was 

cured using a UV lamp (Novascan, Ames, LA, USA) for 2 x 5 minutes. The buffer used in 

force measurements to immerse the PAAC hydrogel layers contained lOmM HEPES and 

150mM NaCl with a pH adjusted to 7.4. To scale the force curves, the spring constant of the 

AFM cantilever must be known precisely. This was achieved using the résonance method 

developed by Cleveland et al..(27) This technique gives the spring constant with an error of 

approximately 10%. An average value calculated from a sample of at least 10 cantilevers was 

used to scale the raw data obtained from the interaction force experiments. The cantilevers 

used were gold-coated, triangular Si3N4 cantilevers obtained from Veeco Instruments Inc. 

(Woodbury, NY, USA) (model NP) with spring constants of 0.076 N m"1. Conversion of the 

cantilever deflection curves to plots of the force normalized on the radius of the sphère as a 

fonction of séparation distance was carried out using a homemade computer program (Force 

Curve Analysis v 1.0.2). The inputs in the program are spécifications of zéro force and zéro 

séparation distance as well as the radius of the micro-sphere and the spring constant. In the 

analysis and scaling of the force profiles, the compliance or linear région of the deflection 

curve was used to define the zéro séparation distance. The AFM flow cell and the custom- 

built Teflon chamber that contains the liquid were cleaned ovemight in Liquinox 

(Alconox,White Plains NY, USA) and RBS 35 from Biolynx (Brockville, ON, Canada), 

respectively. They were then rinsed with Milli-Q gradient purified water and blow-dried with 

an air gun equipped with a 0.2-pm filter (Techrite, San Ramon, CA, USA). Solutions were 

prepared in glassware cleaned by two ovemight immersions in solutions of 2M nitric acid and 

2M NaOH. Ail opérations were carried out in a laminar flow cabinet to minimize any 

particulate contamination. The procédure used in AFM interaction force measurements was as 

follow: freshly prepared glass substrates bearing immobilized PAAC hydrogel layers were 

inserted into the AFM flow cell, and using the piezoelectric element of the AFM, the 

substrates were brought to within a séparation distance of ca. 30 pm of the cantilever bearing 

a glued silica sphere on its tip. A buffer solution was injected, and the surfaces were allowed 

to equilibrate for approximately 1 h. Force curves were then obtained. Three spots on each 

substrates were analysed at two frequencies (0.1 Hz and 1 Hz), and three scans were taken for 

each of the frequencies.
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3.2.4 Protein adsorption by Quartz Crystal Microbalance

QCM measurements were performed using an apparatus from Résonant Probes GmbH 

(Hochgrevestr, Germany). For QCM experiments, the PAAC- and HApp-coated resonators 

were placed into a commercial holder made of Teflon™ (CHT100, Maxtek, Cypress, CA, 

USA). Data from the network analyzer (HP4396A, Agilent, Palo Alto, CA) were analyzed 

using the software from Résonant Probes. Techniques and theory behind this apparatus are 

well explained elsewhere.(28;29) The frequency and the half-band-half-width (HBHW) were 

then analyzed following an injection of RPMI containing 10% (v/v) FBS. The QCM quartz 

holder and the vials containing the différent solutions to be injected were kept at a constant 37 

degrees Celsius. To characterize the fouling properties of the différent PAAC coatings, RPMI 

1640 medium containing 10% (v/v) FBS was pumped at a flow rate of lOml/min into the 

QCM quartz fluid cell using a micro-injection pump from KDA Scientific (Holliston, MA, 

USA). RPMI was fïrst injected in the chamber, then the System was allowed to equilibrate for 

10-15 minutes and the harmonies were taken as references. RPMI containing 10% (v/v) FBS 

was injected after the System was stable. The RPMI injection was used as a baseline to 

calculate the frequency change (Af) and HBHW change {AT) following the RPMI+FBS 

injection. RPMI culture medium contains molécules (amino acids, inorganic salts among 

others) that can adsorb on the HApp film and on the PAAC hydrogel layers. It should be used 

as the baseline as it signifïcantly affects the QCM signais.

3.2.5 PAAC graft layers Chemical composition by X-ray photoelectron spectroscopy (XPS)

XPS analyses were performed using a PHI 5600-ci spectrometer (Physical Electronics, 

Eden Prairie, MN, USA) equipped with a monochromated Al Ka source at a power of 180 W. 

The pressure in the main vacuum chamber during analysis was typically 5 x 10'8 mbar. 

Eléments présent were identified from survey spectra. High-resolution spectra were also 

collected at 40 eV pass energy (yielding a typical peak width for polymers of ca. 1 eV). 

Atomic concentrations of each element were calculated by determining the relevant intégral 

peak intensities and applying the sensitivity factors supplied by the instrument manufacturer. 

A linear background was used in ail cases. The random error associated with elemental 

quantification was determined to be 1-2% of the absolute values for atomic percentages in the 

range encountered in this study (>5 atom %).(30) The systemic error was assumed to be of the 

order of 5-10%.(31) A reference binding energy of 285.0 eV (aliphatic CHX) was used to 

correct for offsets due to charge neutralization of specimens under irradiation (typically ca.
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3.5 eV in this case). The electron atténuation length of a C ls photoelectron in a polymeric 

matrix was assumed to be about 3 nm.(31) This translates into an approximate value for the 

XPS analysis depth (from which 95% of the detected signal originates) of 10 nm when 

recording XPS data at an émission angle normal to the surface. A minimum of three positions 

on each sample were analyzed and the results averaged.

4. Results and Discussion
4.1 Effects of immobilisation conditions on PAAC graft layer Chemical composition by XPS

The XPS analysis of HApp films deposited on borosilicate substrates showed a 

polymer containing hydrocarbon and nitrogen compounds (see Figure 2.1 and Tables 2.1 and 

2.2). XPS results of the HApp Chemical composition are in good agreement with those of 

another study.(l) The broad C ls peak (Fig. 2.1) is associated with a variety of Chemical 

structures, formed during thin film déposition from the gas plasma. As a resuit, it was difficult 

to clearly résolve the C-N-containing species from those containing C-O, which may resuit 

from the spontaneous quenching of carbon radicals within the film on exposure to air. The 

réduction in Silicon atomic concentration from ca. 22% for uncoated borosilicate substrate 

(data not shown) to zéro when coated with HApp also indicated a > 10-nm thick and pinhole- 

free HApp layer. This has been confirmed by AFM imaging step height measurements and by 

SPR, which showed films prepared in an identical manner to be thicker than lOnm (Martin et 

al., Thin Solid Films, in press).

XPS analysis of the HApp-coated borosilicate samples following EDC/NHS grafting 

of PAAC demonstrated a significant increase in oxygen content relative to the HApp surface, 

which confirmed the attachment of PAAC (Fig. 2.1 and Table 2.1). It should be noted that the 

control HApp surfaces were treated in exactly the same manner as the samples bearing PAAC 

layers; thus, the degree of oxidation should be the same in ail samples. To compare the high- 

resolution C ls peak positions, the spectra were shifted to ensure that the leading edges of the 

fitted aliphatic CHX component were coincident. Ail spectral intensifies were normalized to a 

maximal intensity corresponding to the full height of the fitted aliphatic CHX (285.0 eV) 

component peak. Typical high-resolution C ls XPS spectra obtained from a HApp and grafted 

PAAC surfaces were compared (Fig. 2.1). Of particular note was the intensity increase in the 

peak at approximately 289 eV relative to the plasma polymer, which is indicative of carboxyl 

incorporation at the surface. Comparison to published XPS reference spectra (32) verified that 

the high-resolution C ls spectra were typical of PAAC. The dry PAAC layers show a 

thickness of less than 10 nm (indicated by the presence of N in the XPS survey spectra) and
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since that the XPS has an analysis depth of ca.10 nm, the surface Chemical composition 

originate from both the PAAC layer and the HApp film undemeath the PAAC film. The 

presence of PAAC was not detected by XPS when EDC and NHS were omitted during the 

coupling of PAAC to HApp layers.

The factorial analysis indicates that the O/C ratio was influenced by the solution 

concentration of the PAAC used during the PAAC immobilisation and by PAAC molecular 

weight (Table 2.3). On the other hand, the ANOVA (95% significance) did not reveal that the 

two parameters (PAAC concentration and the EDC+NHS/PAAC) had a significant impact on 

the O/C ratio (Table 2.2). This discrepancy between the two statistical analysis is intriguing, 

and further experiments with more samples should be made to increase the accuracy of the 

analysis.
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Figure 2.1: Représentative high-resolution XPS C ls spectra of HApp layers and HApp layers 

bearing covalently immobilized PAAC layers.
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Table 2.1: Elemental compositions of PAAC graft layers immobilized on HApp films
deposited on borosilicate. The data were derived from XPS survey spectra.

Sample %C % o %N O/C N/C

HApp 81.1+ 13.4+ 5.4+ 0.16 0.06
0.5 0.6 0.1

HApp+PAAC (MW: 250 kDa, [ ]paac: 1%, 72.6+ 23.2+ 4.1+ 0.31 0.05
EDC+NHS/COOH: 0.05/1) 1.0 0.2 0.9

HApp+PAAC (MW: 250 kDa, [ ]PAac: 0.01%, 84.1± 9.8+ 6.0+ 0.11 0.07
EDC+NHS/COOH: 0.05/1) 0.5 0.9 0.5

HApp+PAAC (MW: 250 kDa, [ Jpaac: 1%, 74.2+ 21.8+ 3.9+ 0.29 0.05
EDC+NHS/COOH: 0.01/1) 0.9 0.8 0.2

HApp+PAAC (MW: 250 kDa, [ Ipaac: 0.01%, 82.2+ 12.0+ 5.8+ 0.14 0.07
EDC+NHS/COOH: 0.01/1) 0.5 0.07 0.03

HApp+PAAC (MW: 5 kDa, [ Ipaac: 0.01%, 80.9+ 13.1+ 5.6+ 0.16 0.06
EDC+NHS/COOH: 0.01/1) 0.5 0.1 0,03

HApp+PAAC (MW: 5 kDa, [ ]paac: 1%, 78.3+ 16.9+ 4.7+ 0.21 0.06
EDC+NHS/COOH: 0.05/1) 0.3 0.2 0.2

HApp+PAAC (MW: 5 kDa, [ ]paac: 0.01%, 81.9+ 12.5+ 5.5+ 0.15 0.06
EDC+NHS/COOH: 0.05/1) 1.0 1.0 0.2

HApp+PAAC (MW: 5 kDa, [ Ipaac: 1%, 79.1+ 15.4+ 5.4+ 0.19 0.06
EDC+NHS/COOH: 0.01/1) 1.0 0.2 0.9

HApp+PAAC (MW: 90 kDa, [ ]paac: 0.5%, 81.6+ 13.4+ 4.9+ 0.16 0.06
EDC+NHS/COOH: 0.025/1) 0.1 0.4 0.3
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Table 2.2: Elemental compositions of PAAC graft layers immobilized on HApp films
deposited on borosilicate. The data were derived from XPS survey spectra.

Sample %C % o %N O/C N/C
HApp 82.4+

0.1
11.6+

0.6
5.9+
0.4

0.14 0.07

[ ]paac: 0.01%
HApp+PAAC (MW: 5 kDa, EDC+NHS/COOH: 0.05/1)

79.9+ 14.4+ 5.6+ 
0.2 0.1 0.1

0.18 0.07

[ Ipaac: 0.1% 79.1+
0.6

15.7+
0.4

5.1+
0.2

0.19 0.06

[ Ipaac: 0.5% 76.8+
0.1

17.8+
0.3

5.3+
0.3

0.23 0.06

[ ]paac: 1% 78.3+
0.3

16.9+
0.2

4.7+
0.2

0.21 0.06

HApp+PAAC (MW: 5 kDa, [ ] PA a c :  1%) 
EDC+NHS/COOH: 0.01/1 79.1+ 15.4+

1.0 0.2
5.4+
0.9

0.19 0.06

EDC+NHS/COOH: 0.025/1 78.7±
0.5

16.1+
0.2

5.1+
0.6

0.20 0.06

EDC+NHS/COOH: 0.05/1 78.3+
0.3

16.9+
0.2

4.7+
0.2

0.21 0.06
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Table 2.3: ANOVA analysis of O/C ratios derived from XPS survey spectra of PAAC graft 
layers. Taken from the factorial design analysis.

Parameter P-value Interactions between parameters
PAAC

concentration
0.0348 O/C ratio increases as PAAC concentration increases (0.01% to

1%).

PAAC MW 0.0004 O/C ratio increases as PAAC MW increases (5 kDa to 250 kDa).

PAAC
concentration

+
PAAC MW

0.0040 With low PAAC concentration (0.01%), O/C ratio decreases as 
the molecular weight increases (5kDa to 250 kDa).

PAAC
concentration

+
PAAC MW

0.0040 With high PAAC concentration (1%), O/C ratio increases as the 
molecular weight increases (5 kDa to 250 kDa).
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4.2. Effects o f immobilisation conditions on PAAC hydrogel layers protein fouling by QCM 

The main reason to produce substrates covered by thin PAAC graft layers was to 

develop coatings that can lower or eliminate non-specifîc cell-material interactions. A good 

estimation of this property is to monitor dynamic protein adsorption on the polymer layers, as 

this adsorption will dictate the interaction level of cells with the material.(33;34) The quartz 

crystal microbalance QCM apparatus was used to measure the adsorption of the large spectra 

of proteins found in fetal bovine sérum (FBS) on the différent PAAC graft layers. PAAC 

layer fouling properties were tested toward RPMI containing 10% (v/v) FBS. RPMI was 

selected because it is a common cell culture medium. It contains amino acids of both positive 

and négative charges. In this study, positively charged species are more likely to adsorb on 

PAAC graft layers, which should be negatively charged at physiological pH. FBS contains 

albumin, a protein présent in high concentration in the blood plasma and showing high 

affinity for many surfaces.(5;35)

Protein adsorption can be measured by QCM through the analysis of the frequency 

and half-band-half-width (HBHW) signais, as the QCM apparatus directly measures minute 

changes in oscillating frequencies of a gold-coated quartz crystal occurring as the load présent 

on the crystal changes. Among the advantages of the technique is the possibility to work in 

différent aqueous media and the extreme sensitivity of the technique. Protein adsorption 

measured by QCM on PAAC graft layers is presented in Figure 2.2.

The lowering of the résonance frequency of the vibrating quartz crystal in QCM 

experiments is physically correlated with the mass of the material vibrating with the crystal. 

For Systems where no energy loss is associated with the vibration, the variation in frequency 

is proportional to the mass on the crystal through the well-known Sauerbrey équation. (36)

d / = -  2fo/Zq dm (2.1)

where:

d / : frequency shift.

dm: change of mass per unit area

/o  : frequency.

Zq: acoustic impédance of quartz.
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However, for the protein-containing aqueous System used in this study, vibration 

energy losses are présent and, thus, the Sauerbrey mass can only be an approximation of the 

real protein mass adsorbed on the crystal.

While variations in chemistry by XPS measurements were indicating that some 

immobilization conditions could have an effect on the PAAC graft layer composition, QCM 

analyses of the HApp films and PAAC graft layers exposed to a cell culture medium 

containing FBS revealed that the PAAC immobilisation conditions have no significant effect 

(level of significance of 95%) on the level of protein adsorption. As shown in Figure 2.2a, 

while some of the PAAC graft layers tested in this study show better protein repulsion than 

HApp films, other show similar protein adsorption level than HApp films.

A réduction in protein adsorption over a control surface, such as HApp layers, does not entitle 

the test coating to be called “low-fouling”. The term “low-fouling” should only be used if no 

measurable adsorption can be detected by the most sensitive state-of-the-art methods,(37) 

such as QCM that can probe in the low ng/cm2 range. For example, PEG covered surfaces 

produced using 5 mg/ml PEG solutions under cloud point conditions lower protein adsorption 

below the threshold of the sensitivity of the QCM technique (38). We believe that the extent 

of réduction offered by PAAC graft layers would not be sufficient for clinical success. PAAC 

graft layers could find niches in short-term biosensing applications in which the signal-to- 

noise ratio is not too much of an issue.
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Figure 2.2a: QCM results (A frequency shifts) presenting protein adsorption from cell culture

medium (RPMI) containing FBS on différent PAAC graft layers at steady State.
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Figure 2.2b: QCM results (A HBHW shifts) presenting protein adsorption from cell culture
medium (RPMI) containing FBS on différent PAAC graft layers at steady State.
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For ail the PAAC graft layers tested in this study, the injection of RPMI containing 

10% (v/v) FBS shows an increase in the visco-elasticity (increase in HBHW in Fig. 2.2b). The 

PAAC solution concentration was shown to have a statistically significant impact on the 

visco-elasticity changes (AHBHW) following protein adsorption. Upon exposition to 

RPMI+FBS, the visco-elasticity of the HApp layers also increases. This fïnding indicates that 

protein contained in FBS contributes to increase the visco-elasticity of the PAAC and HApp 

coatings.

The major différence between the HApp films and the PAAC graft layers is that, on 

one hand, HApp layers are rigid, non-porous and non-swelled (39)(Martin et al., Thin Solid 

Films, in press). We believe that proteins can adsorb onto HApp layers but they cannot 

penetrate within the structure of HApp layers. On the other hand, PAAC hydrogel layers are 

fïlled with interstices in which molécules can penetrate creating a local change of soluté 

concentration, therefore changing the intra-layer osmotic pressure. Thus, water can flow in the 

hydrogel resulting in an increase of the visco-elasticity.(40) For example, proteins contained 

in FBS, such as albumin (a 66 to 68-kDa protein), could penetrate the PAAC graft layers 

therefore increasing the extension of PAAC molécules away firom the undemeath rigid HApp- 

covered substrates and/or possibly increasing inter- and intra-chain distances allowing more 

flexibility of the surface-immobilized PAAC molécules. Also, the pénétration of proteins 

within the PAAC graft layers could allow more water to penetrate, resulting in an increased 

swelling of the PAAC graft layers by creating an osmotic pressure, which in tums would 

increase the swelling of the PAAC, which in tums would increase the visco-elasticity of the 

polymer layer.(5)

It is noteworthy that the QCM results of PAAC graft layers yield relatively large 

standard déviations, which we believe to be associated with the PAAC graft layers 

themselves. For example, the polydispersity (Mw/Mn) of the PAAC ranges from 1.60 to 6.2 

(information obtained from Polysciences, Inc.). Although the standard déviations have made 

an in-depth analysis of the QCM results more difficult, the QCM analyses still reveal that 

some PAAC graft layers can reduce protein adsorption but cannot reach undetectable protein 

adsorption level as found with some PEG surfaces by QCM (38).

Kinetic analysis of the fouling of the PAAC layers was carried out to get a better grasp 

of the dynamic behaviour of the polymer when exposed to fluids containing molécules that 

are surface active. In control theory, physical Systems dynamic responses to stimuli can be 

expressed either as fïrst, second or higher order differential équations, depending on the 

physical phenomena. From this, variables can be used to completely define dynamic
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responses; for second order Systems, three variables are sufficient: the static gain Kp, the time 

to steady State and the order of the reaction.(41) Kp basically gives the steady State variation 

between unperturbed and perturbed States. The time to steady sate is the time that is taken 

before the system reaches a stable State following a perturbation, in our case, the exposure of 

PAAC graft layers to RPMI+FBS. Once the molécules are injected in the QCM chamber, 

fluid flow probably disturb the PAAC graft layers and the QCM crystal itself, which causes a 

shift in the frequency. Then, molécules contained in the RPMI+FBS solution can adsorb onto 

and/or within the PAAC graft layers or displace other molécules from the surfaces (through 

the well-known Vroman effect).(42) In the case of a second order system, its damping factor 

(Q gives information about how quick the system can regain its stability after a perturbation. 

The damping factor (i.e., Ç) expresses the dynamic “shape” of the response.

In Figures 2.3a and 2.3b PAAC hydrogel layers présent a second-order dynamic 

behaviour relatively to the frequency shift as illustrated by the “S” shape of the system 

frequency response to fouling from RPMI culture medium containing FBS (i.e., there is an 

initial lag in the frequency response). The analysis of the raw data also revealed that ail the 

PAAC graft layers show a damping factor (Q of 1. Second order Systems are known as being 

not purely capacitive Systems i.e., they are not, like first order Systems, apt to store energy or 

mass. A damping factor of 1 means that the system does not have an oscillating signal (like 

under-damped responses, Ç<1) when responding to a perturbation, and is much quicker to 

stabilise itself than the over-damped responses (Ç>1). The damping factor value of 1 indicates 

that protein adsorption process on PAAC graft layers quickly reach equilibrium, without any 

oscillation in its signal, indicating perhaps no protein displacement was detected.(41)

An ANOVA (level of signifïcance of 95%) revealed that none of the PAAC 

immobilisation parameters tested here has a statistically significant impact on Kp. This 

finding is not so surprising because Kp represents the net frequency shift. On the other hand, 

the ANOVA (level of significance of 95% and the P-Value was <0.01) showed that the PAAC 

solution concentration has a statistically significant impact on the time to steady State. As 

PAAC concentration increases, the time to steady State decreases. The results of the time to 

steady State being affected by concentration of PAAC can be explained by the fact that the 

concentration of PAAC seems to affect the way the PAAC links itself to the substrate and 

how a colloid will be affected by the PAAC layer. Indeed, the high concentration value (1%) 

seems to lower the Riemann sum (see Section 4.3), which would indicate that the PAAC 

seems to offer less résistance to the colloidal probe (because of a lesser density of the PAAC 

layer). In tum, this would mean potentially more adsorption on the PAAC hydrogel layer
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and/or the substrate undemeath. This could explain why the concentration has an effect on the 

time to steady state.
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Figure 2.3a: Frequency shifts of PAAC immobilisation conditions (constant parameters are

EDC+NHS/PAAC: 0.05/1 and PAAC molecular weight: 5kDa).
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Figure 2.3b: Frequency shifts of PAAC immobilisation conditions (constant parameters are [ ]

PAAC: 1% and PAAC molecular weight: 5kDa).
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4.3 PAAC graft layers relative thickness and structure by AFM colloïdal probe force 

measurements

The measured interaction forces between a silica colloidal probe and HApp surfaces 

bearing poly(acrylic acid) grafted using différent immobilization conditions were plotted as 

F/R vs séparation distance (Fig. 2.4). The assumption made in presenting these interaction 

force data is that the error in defining zéro séparation distance is relatively small so that 

comparisons of force curves obtained under différent conditions can be reliably made and are 

not misleading. (1) The force profiles were répulsive, roughly exponentially decaying, and of 

long range. However, the decay lengths of the force profiles (ranging from 4.31 to 9.64 nm) 

presented do not match the theoretically calculated value (-0.78 nm) for purely electrostatic 

interactions between surfaces immersed in sait solutions of the concentration used here.(43) 

Thus, the interactions measured for the PAAC surfaces were not purely electrostatic in nature 

and cannot be described by the DLVO (Deijaguin- Landau-Verwey-Overbeek) theory. 

Membrane-colloid interactions have been characterized within the framework of the classical 

DLVO theory, which describes the total interfacial interaction energy as the summation of 

electrostatic (EL) and van der Waals (LW) interactions.(44) We can conclude from this that 

the interaction force profiles presented here are largely a resuit of compression of the 

covalently attached PAAC hydrogel layers by the silica sphère. Further explanation on the 

relationship between the molecular structure and the force profiles of PAAC graft layers has 

been detailed by Vermette and Meagher. (1)

From considération of the results obtained from molecular dynamics simulations (45) 

and self-consistent-field theoretical calculations (46;47), there should be a direct relationship 

between the grafted layer thickness and the grafting density of the layer. Unfortunately, it is 

difficult to calculate the grafting density of PAAC due to the polydispersed nature of the 

polyelectrolyte molécules, the fact that several grafting points per molecule are possible, and 

the difficulty to estimate the mass per unit area.

AFM force measurements were carried out to further study parameters used during 

PAAC immobilisation that had the most important impact on the O/C ratio obtained from 

XPS analyses. Figures 2.4a, b, c show the apparent thickness of PAAC immobilisation 

conditions. The force curves shown in Figures 2.4a, 2.4b and 2.4c show the impact of PAAC 

molecular weight, PAAC solution concentration, and EDC+NHS/COOH ratio on the force 

profiles. The following two parameters were extracted from the force profiles: 1) the apparent 

thickness of the PAAC graft layers and 2) the work necessary for the cantilever to compress 

these layers. We define the apparent thickness of the PAAC graft layers to be the maximum
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range of the interaction forces between the layer and the silica particle. But since electrostatic 

forces can affect the probe prior to its “contact” with the PAAC hydrogel layers, the real 

PAAC layer thickness is probably smaller than the apparent thickness reported here. In the 

constant compliance région, the PAAC layer is highly compressed by the silica particle, such 

that the slope of the spring deflection vs piezo travel data in this région appears to be constant 

i.e., the layer is behaving as a non-compressible solid. The work necessary for the cantilever 

to compress the PAAC layers can be obtained by calculating the Riemann sum and 

normalized over the radius of the colloidal probe.

An ANOVA was made to investigate the significance of the effect of each of the tested 

parameters (PAAC molecular weight, PAAC solution concentration, and EDC+NHS/COOH 

ratio). It showed that the différent levels of the parameters differ, which means that they 

signifïcantly affect the relative séparation. The level of significance was 95% and the P-Value 

was <0.01. It should be noticed that each sample was scanned at least at three différent spots. 

PAAC coatings were uniform across the HApp-covered borosilicate glass substrates 

substrates.
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Figure 2.4a: Effect of PAAC MW on the apparent thickness of the PAAC graft layers and the
work necessary for the cantilever to compress these layers (i.e., Riemann sum).
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Figure 2.4b: Effect of PAAC solution concentration on the apparent thickness of the PAAC
graft layers and the work necessary for the cantilever to compress these layers (i.e., Riemann
sum).
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Figure 2.4c: Effect of EDC+NHS/COOH ratio on the apparent thickness of the PAAC graft
layers and the work necessary for the cantilever to compress these layers (i.e., Riemann sum).
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In Figure 2.4a, the range and magnitude of the interaction forces between silica and 

the PAAC layers were signifîcantly affected by PAAC MW. As PAAC MW increases, the 

apparent thickness and the Riemann sum also increase. This effect on the apparent thickness 

is supported by previous results presented by Vermette and Meagher and by the results of 

molecular dynamics simulations for grafted polyelectrolyte layers (45) and by scaling 

theory. (48 ;49) The simulations predict a linear dependence between layer thickness and 

number of segments in the polymer chains. Note that this simulation was for end-grafted 

chains whereas the system under study here most likely has several grafting points per 

molecule. As only three molecular weights were studied, these data are not sufficient to 

establish a relationship between thickness and PAAC molecular weight used to make these 

PAAC layers. The apparent thickness varied from ca. 21 nm for the 5 kDa PAAC layers to 50 

nm for the 250 kDa layers. XPS results (Tables 2.1 and 2.3) show that an increase of the 

PAAC MW affects the O/C ratio, which could mean more polymers on the substrate. This is 

confîrmed by the AFM colloidal force measurements results (which show an increased 

apparent thickness as the PAAC molecular weight increases).

Figure 2.4b shows the effects of PAAC solution concentration on the force profiles. 

These preliminary data do not allow us to draw any conclusion. On the molecular basis, it is 

difficult to explain why 1% PAAC solution gave thinner layer than the other PAAC 

concentrations tested here. The ANOVA (95 % significance) of the XPS results (Table 2.2) 

show that the PAAC concentration does not have a statistically significative impact on the 

O/C ratio. On the other hand, Figure 2.2b shows that ail the PAAC concentrations used have a 

better protein repulsion than the control (HApp film), but the ANOVA revealed that it was not 

statistically significative. In the case of the AFM colloidal force measurements, the ANOVA 

reveals a statistically significative impact of the PAAC solution concentration on the apparent 

thickness. Clearly, further investigations seem necessary to better explain the rôle of the 

PAAC concentration on the immobilisation and its effects of the PAAC in repelling proteins.

Figure 2.4c shows the effects of the ratio of EDC+NHS/COOH on the force profiles. 

From these preliminary data, it seems that there is an optimal EDC+NHS/COOH ratio at 

which PAAC layers are denser. In fact, Figure 2.4c shows that passed a given ratio of 

EDC+NHS/COOH (among the three that were used), the thickness and the Riemann sum 

decreases. This finding is in good agreement with previous results.(l) Again, one possible 

explanation is that it could be hypothesized that as the EDC+NHS/COOH ratio becomes too 

high, PAAC solubility decreases, resulting in lower PAAC layer density, as explained above. 

But, this explanation is not supported by XPS results. Other works, such as the ones by Pieper
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et al.(50), Stile et al.(51) and Tobiesen et al.(52) tend to show that a high EDC+NHS/COOH 

ratio and a low concentration of polymer are better for a more packed polymer layer. On the 

other hand, we must be careful with the interprétation of the XPS results. PAAC layers are 

probably collapsed when analysed in the XPS chamber. Therefore, it is very difficult to gather 

structural information on the PAAC graft layers based on XPS results. Density of the chains 

seems to be a key factor in the low-fouling properties of PAAC layers, thus the 

EDC+NHS/COOH ratio is most important. The paper by Pasche et al. (53) seems to reach the 

same conclusion regarding the chain length; for a same surface density, longer polymer chains 

are more susceptible to be flexible than the shorter chains unless the conformation of the 

polymers is more densely packed. Another possible explanation is that PAAC is not like some 

other polymers that can only be fixed by their tail to a substrate, like PEG.(54) PAAC has 

many COOH groups along its backbone, which results in many possible links between one 

polymer chain and the HApp film. So, as more EDC and NHS are used for the reaction, more 

PAAC is linked to the substrate. As more COOH groups are linked to the HApp film, the 

PAAC gets more packed and tends to stretch to minimize the interaction with the adjacent 

chains.(55;56) But as more and more PAAC molécules are packed, the COOH groups will 

repel each other, which could resuit in an increase of the space between the PAAC chains.(lô) 

Water could then penetrate inside the chains and link itself by way of hydrogen bonds with 

the COOH groups (57;58). The PAAC in that case could then adopt something doser to a 

loops-and-trains configuration, which in tum gives enough room and mobility to sweep away 

proteins from the surface, rather than a fully extended conformation, since the chains will be 

repelling each other and they will be bound to the substrate by their side.(8;59;60) The 

cantilever would have to compress a layer with chains repulsing themselves and with spaces 

filled with water, which could explain why the work necessary to compress the PAAC layer is 

reduced when the EDC+NHS/COOH ratio gets more than the 0.025/1 value. Griesser et al. 

have also reported that a high quantity of linking agent is not the only parameter of 

importance in the low-fouling properties of a polymer.(l 1)

Layer density seems an important requirement to achieve good level of low- 

fouling(ll;16;40), since a densely packed surface with low-fouling polymeric molécules 

should limit spaces between the polymer chains, therefore limiting protein pénétration within 

the surface-grafted layer. De Gennes and Alexander proposed that a brush conformation is 

adopted by a polymer grafted on a surface to allow space for the extra polymer segments in 

solution, (55;56) which in tum results in a more packed polymer layer, thus providing better 

low-fouling results. This model, on the other hand, rather applies to polymers that are linked
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by their tail, rather than by their side as it is the case with PAAC. So PAAC conformation is 

probably doser to that of derivatized dextran.(8;16) In that case, the length of the chains is not 

as important as the complété coverage of the substrate by the hydrogel.(16) A thick layer (i.e., 

long polymer chains) but with a lot of space between the chains could offer places for the 

proteins to penetrate between the polymer chains,(61-63) and the deeper the protein could dig 

into the polymer coating, the harder they could be removed, which can be deduced from 

papers by Ôztop et al. who worked with poly(acrylamide/acrylic acid) hydrogels(5) and Fleer 

et al. who used block copolymers and grafted chains.(63)

Another matter of importance is the size of the particle fouling the grafted layers. 

Smaller molécules (diameter smaller than the length of the polymer) can penetrate the 

polymer layer while molécules with diameter larger than the polymer chain will tend to 

compress the polymer.(62) Because FBS contains the proteins albumin,a p and y globulins 

and other molécules such as the steroid hormones insulin, estradiol, testosterone and 

progestérone (to name a few), the way proteins interact with the différent PAAC layers tested 

in our study could be différent from one PAAC layer to another, depending on how 

outstretched the PAAC chains are. Also it is worthy to notice that proteins and molécules can 

adopt a given conformation once adsorbed on a polymer layer, and with time, that 

conformation can change, which can affect how the polymer layer interacts with the 

molécules in suspension around its surface. (64)

Even with the steric repulsion in mind, a lack of density could probably decrease the 

low-fouling properties of the PAAC. On the other hand, an increased graft density would 

force the polymer chains to stretch themselves, thus giving a brush conformation.(61) Another 

paper reported that for poly(ethylene glycol), a higher density of the polymer would lead to an 

increase of the steric force, thus leading to a better protein repulsion, which would confirm 

part of our results.(53) Combining that with longer chains probably adds more steric force to 

the polymer layer. But, in the case of PAAC layers this effect could be counterbalanced by 

electrostatic attraction created by the negatively charged PAAC molécules.

From the QCM analyses and AFM colloidal probe force measurements, it seems safe 

to assume that the low-fouling properties of PAAC layers are not strictly linked to their 

density and structure. Electrostatic attraction is probably playing an important rôle limiting 

the potential use of PAAC graft layers as low-fouling coatings.
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5. Conclusions

A system to immobilize PAAC layers on substrates was described, and the use of three 

immobilisation conditions, i.e., PAAC molecular weight, PAAC solution concentration and 

the ratio of carbodiimide catalysts to COOH groups on PAAC, was studied to evaluate their 

impact on PAAC layer physicochemical and low-fouling properties. XPS results are 

contradictory in their évaluation of the impact of the immobilisation conditions on the O/C 

ratio. Some PAAC graft layers analysed by QCM for protein adsorption show lower protein 

adsorption than the HApp layer control surfaces, but QCM analyses of the same results 

revealed that immobilization conditions used to produce PAAC layers had no statistical 

impact on the level of protein adsorption. QCM analyses of the half-band-half-width showed 

that the viscoelasticity change of the PAAC layers following protein adsorption was affected 

by the solution concentration of the PAAC. AFM colloidal probe force measurements 

revealed that the conditions varied during PAAC immobilisation ail had a statistical effect on 

the apparent thickness of the PAAC layers. With results that appear to be in some cases 

inconsistent, more in depth analyses will be required to study how exactly the immobilisation 

parameters affect the low-fouling properties of the PAAC layers in relation with PAAC layer 

physico-chemistry. We believe that the extent of réduction offered by PAAC graft layers 

would not be sufficient for clinical success. PAAC graft layers could fïnd niches in shoit-term 

bio-sensing applications in which the signal-to-noise ratio is not too much of an issue.
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Conclusions générales
Les connaissances sur le rôle de facteurs environnementaux et de régulation dans la survie et 

la différenciation de cellules souches hématopoïétiques, bien qu’assez vastes, demeurent 

encore à l’état embryonnaire. En effet, bien que des tests cliniques (traitements de leucémie, 

par exemple) aient démontré avec succès les effets bénéfiques de l’utilisation de cellules 

souches hématopoïétiques, il n’en demeure pas moins que les mécanismes précis (facteurs de 

croissance, cytokines, environnement) régulant les capacités thérapeutiques de ces cellules 

souches sont encore mal compris. Il en va de même pour les conditions de culture in vitro de 

ces cellules; il n’y a pas encore de protocole clairement établi permettant de réguler la survie 

et la différenciation de cellules souches hématopoïétiques de façon à pouvoir conserver de 

grandes quantités de cellules souches hématopoïétiques dans un état de quiescence. L’état des 

connaissances actuelles fait en sorte que les cliniciens et chercheurs fondamentaux ne peuvent 

que soulever des hypothèses afin d’expliquer le comportement de ces cellules en culture ainsi 

que leurs effets lors de leur utilisation en traitement clinique.

Cependant, bien qu’encore incompris, les mécanismes fondamentaux des facteurs 

environnementaux et de régulation dans la survie et la différenciation de cellules souches 

hématopoïétiques laissent croire que leur maîtrise pourrait un jour permettre des avancées 

majeures en génie tissulaire (par exemple la reconstruction d’un cœur grâce à la plasticité des 

cellules souches hématopoïétiques). L’obtention plutôt aisée de ces cellules (prise de sang) et 

leur utilisation déjà répandue dans certains cas cliniques laisse présager un potentiel 

grandissant pour l’utilisation de ces cellules souches adultes. Cependant, les recherches 

doivent se poursuivre dans de nombreux domaines afin de mieux comprendre ces cellules. 

Tout d’abord, il faut améliorer les méthodes d’identification de ces cellules car il n’existe pas 

encore de consensus quant aux marqueurs de surface permettant de les identifier. Cela 

pourrait de plus permettre d’élucider certaines questions notamment quant à leur localisation : 

les cellules souches hématopoïétiques sont-elles seulement présentes dans la moelle osseuse 

ou bien sont-elles en libre circulation dans le système sanguin? Certains chercheurs affirment 

qu’elles sont libérées lors de blessures majeurs de certains organes.

D’autres questions doivent aussi être élucidées. Par exemple, les cellules souches 

hématopoïétiques sont-elles capables de plasticité? Si tel est le cas, une plus grande 

connaissance des gènes impliqués dans ce phénomène est nécessaire, car cela permettrait
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savoir exactement quels mécanismes contrôlent la plasticité. Si la question de la plasticité 

peut être résolue par l’affirmative ou la négative, cela pourrait de plus mettre un terme au 

débat sur l’utilisation de cellules souches embryonnaires. Effectivement, des cellules souches 

hématopoïétiques pouvant bel et bien être capables de plasticité pourraient rendre inutile 

l’utilisation de cellules souches embryonnaires. Par contre, l’inverse pourrait justifier une 

utilisation plus massive des cellules souches embryonnaires, puisqu’elles deviendraient en 

théorie les seules cellules souches capables de plasticité et donc permettraient au génie 

tissulaire de pouvoir atteindre son objectif de culture de tissus et d’organes in vitro.

En plus de devoir approfondir les connaissances des facteurs environnementaux et de 

régulation dans la survie et la différenciation de cellules souches hématopoïétiques, il faut 

aussi que la technologie utilisée dans la culture de ces cellules soit développée. Les micro­

puces sont un excellent outil permettant de faire le criblage des différentes conditions de 

culture in vitro optimales des cellules souches hématopoïétiques, mais cependant ces micro- 

puces doivent être adaptées à la culture cellulaire. L’utilisation de matériaux aux propriétés 

anti-adhésives est depuis longtemps une réalité dans la fabrication d’implants utilisés en 

médecine. En effet, de nombreux implants sont traités afin de diminuer les interactions 

surfaces-cellules, ce qui permet de prolonger la durée de vie et le bon fonctionnement de ces 

implants. Cependant, dans le cas de l’utilisation de micro-puces pour la culture de cellules 

souches hématopoïétiques, l’utilisation de matériaux aux propriétés anti-adhésives n’a pas 

pour objectif de préserver la micro-puce mais bien de favoriser une fixation sélective des 

cellules souches hématopoïétiques à un endroit précis.

De nombreux matériaux aux propriétés anti-adhésives existent et on été testés, mais le PAAC, 

bien que peu abordé dans la littérature, présente de bonnes propriétés anti-adhésives. L’étude 

de ce polymère présentée dans ce mémoire démontre cependant que des analyses restent à 

faire, afin de démontrer quels sont les paramètres optimums permettant de créer la surface de 

PAAC présentant les meilleures propriétés anti-adhésives. Certaines analyses devraient être 

plus approfondies. Par exemple, plus d’échantillons devraient être analysés avec les mesures 

de force AFM et des analyses statistiques plus poussées devraient également être effectuées 

afin de déterminer l’impact de chacun des paramètres utilisés dans l’immobilisation du 

PAAC. De plus, les mesures QCM (Figure 2.2a) démontrent que certaines conditions 

semblent causer des surfaces moins performantes qu’une simple surface recouverte de HApp 

en ce qui a trait à la répulsion de protéines. Il pourrait être intéressant de démontrer si cela est
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imputable au PAAC ou à la technique d’analyse. D’autres techniques d’analyses comme la 

microscopie SPR pourraient être utilisées afin de déterminer par un autre moyen que les 

mesures de force AFM quelle est l’épaisseur des différentes couches de PAAC produites.

Afin de pouvoir cibler les meilleurs facteurs de croissance, cytokines et autres molécules 

impliquées dans la régulation, la survie et la différenciation de cellules souches 

hématopoïétiques in vitro, l’utilisation de matériaux aux propriétés anti-adhésives (dans notre 

cas le PAAC) est cruciale. En effet, sa capacité de repousser les protéines pourra permettre de 

concevoir des micro-puces ne permettant aux cellules souches hématopoïétiques de se fixer 

qu’aux endroits de la micro-puce où des facteurs de croissance, cytokines et autres molécules 

auront été fixées. Différentes combinaisons, concentrations et effets de gradient de 

concentration de ces molécules pourront être testés de façon rapide et efficace.

Bien que ce mémoire ne présente que des résultats préliminaires sur les propriétés anti- 

adhésives du PAAC, il apparaît que l’utilisation de tels matériaux aux propriétés anti- 

adhésives est un outil utile pour greffer des facteurs essentiels au contrôle de la 

différentiation, survie et de la prolifération des cellules souches hématopoïétiques. Une 

technique de ciblage de ces molécules, pourrait ainsi être développée afin de tester les 

concentrations et les combinaisons optimales capables de favoriser la culture in vitro de 

cellules souches hématopoïétiques. Cet outil permettrait par ailleurs de comprendre les 

mécanismes fondamentaux de développement des cellules souches hématopoïétiques en plus 

de pouvoir développer des méthodes rapides et efficaces pouvant permettre de maintenir des 

réserves de cellules souches hématopoïétiques. Ces réserves pourraient fournir des cellules 

pouvant être transplantées à des patients sans avoir à faire des prélèvements de cellules pour 

chaque intervention, et le nombre de cellules disponibles pour des études deviendraient plus 

considérables, ce qui faciliterait et accélérerait le rythme des recherches en génie tissulaire.

Il ne s’agit bien sûr que d’une avenue parmi tant d’autre en génie tissulaire, mais la 

combinaison de cellules souches hématopoïétiques avec des micro-puces dont la surface est 

traitée avec un matériau aux propriétés anti-adhésives adéquates pourraient permettre de faire 

progresser grandement le génie tissulaire. Une culture in vitro rendue plus efficace par la 

compréhension et la maîtrise des facteurs environnementaux et de régulation dans la survie et 

la différenciation de cellules souches hématopoïétiques n’est que la première étape vers la 

reconstruction de tissus et d’organes.
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6. Appendix

6.1 Glossary

Adult stem cells: Adult stem cells are undifferentiated cells (i.e. unspecialized) located in a 

differentiated thus specialized tissue. They are able to renew themselves and become 

specialized, thus yielding ail the specialized cell types of the tissue from which they originate. 

They have the ability to make identical copies of themselves for the lifetime of the organism, 

a property that is called self-renewal. Adult stem cells tend to divide and to generate 

progenitors or precursor cells, which in tum differentiate and develop into mature cell types 

that possess spécifie functions and shapes (olfactive cells, nerve signaling, etc). Sources of 

adult stem cells include (but are not limited to): bone marrow, blood, comea, retina, brain, 

liver, skin.

The most studied adult stem cells are the hematopoietic stem cells (which are at the 

origin of the blood cells) coming from the blood and the bone marrow. Adult stem cells are 

moreover quite rare, and usually hard to identify, purify and isolate. One of the challenges 

that clinicians and researchers have to face regarding these cells is that they come in 

insufficient numbers for transplantation and that they do not replicate indefinitely in vitro.

AFT024: This murine stromal cell line has been derived from fetal liver. The cells maintain 

long-term repopulating murine stem cells in vitro. The cells can be used also in direct contact 

cultures to maintain human CD34+ CD38" progenitor cells. The co-culture system allows the 

prolifération of pro-B cells and différentiation to mature B lymphocytes. Single adult human 

CD34+ Lin'CD38' progenitor cells give rise to natural killer cells, B-lineage cells, dendritic 

cells, and myeloid cells. In stroma non-contact cultures, addition of human SCF, G-CSF, 

GM-CSF, L IF , MIP-1-alpha and IL-6 improves the yield of LTC-IC . AFT024 murine 

stromal cell line supports the ex vivo survival and maintenance of human hematopoietic 

progenitor cells that are capable of long-term multilineage reconstitution for 2-3 weeks ex 

vivo, to levels superior to those that can be obtained using human stromal cells.

ATRA: all-trans retinoic acid receptor, ligand of RAR.
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Bcr-Abl: a gene that results from the fusion of the two genes Ber and Abl. 3 variants seems

to be involved in three différent kinds of cancer.

BFU-E: burst-forming unit-erythtroid.

BHLH: basic helix-loop-helix, a transcription factor.

BM: bone marrow.

BMEC: brain micro-vessel endothélial cell.

BMP: bone morphogenic protein.

BMSC: bone marrow stromal cells.

CAFC: cobblestone area-forming cells.

CFC: colony-forming cell. It can also be called CFU (colony forming unit), which is a général 

term used to describe spécifie precursor cell populations.

CFU-E: colony forming units erythroid.

CFU-GEMM: colony forming unit granulocyte érythrocyte monocyte macrophage. It seems 

to be a synonym of CFU-mix.

CFU-GM: colony forming unit granulocyte macrophage

CFU-mix: mixed colony forming cells. A human multipotential hematopoietic progenitor cell 

type which generates colonies containing ail types of mature myeloid cell types including 

érythrocytes, neutrophils, macrophages, eosinophils, mast cells, megakaryocytes. It seems to 

be a synonym of CFU-GEMM.

CFU-MK: colony-forming unit-megakaryocyte.
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CFXJ-S: colony forming unit spleen.

CK8: Cytokeratin 8

CMP: common monocytic progenitor.

Chemokine: a group of cytokines of low molecular weight affecting chemotaxy and other 

aspects of the leucocytes behavior.

Clonality: a cell is clonally derived if it was generated from the division of a single cell and is 

identical form a genetic point of view from that cell. It is an important concept in stem cell 

research for many reasons. If the researchers are to fully grasp the potential of stem cells to 

generate replacement tissues and cells, then these cell genetic properties must be understood. 

By contrast to human pluripotent stem cells from embryos and fetal tissue, only a few studies 

have demonstrated the clonal properties of the adult stem cells. The ultimate goal is to 

détermine if one cell type can, in a reproducible fashion, become another kind of cell and self- 

replicate.

Clonogenic cell: arising from or consisting of a clone.

CLP: common lymphocytic progenitor.

CRU: compétitive repopulating unit.

CXCR4: CXC-Chemokine receptor R4.

Cytokine: include molécules secreted by lymphocytes (lymphokines) and by monocytes and 

macrophages (monokines).

Différentiation: process by which a cell (i.e., stem cell) specializes itself into one of the cells 

that constitutes the body. While differentiating, certain genes become activated or inactivated 

in an accurate way, resulting in the cell developing spécifie structures and becoming able to 

execute specialized functions.
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ECM: extra-cellular matrix.

ELTCIC: extended long-term culture-initiating cell.

Embryonic germ cells: derived from fetal tissue, more precisely isolated from the primordial 

germ cells of the gonadal ridge of the 5-10 weeks-old fétus. They are différent in their 

properties and attributes from the embryonic stem cells.

Embryonic stem cells: cells taken from a group of cells called the inner cell mass, which is a 

part of the 4 to 5 day embryo (blastocyst). The cells of the inner cell mass can be, once taken 

from the blastocyst, cultured into embryonic stem cells, but they are not themselves embryos. 

Their in vitro behavior appears not to be the same as in the embryo.

F4/80 antigen: macrophage spécifie antigen.

FAH+: fumarylacetoacetate hydrolase (FAH), an essential liver enzyme.

FDCP-mix: factor-dependent cell progenitors. A multipotent cell line of hematopoietic stem 

cells obtained by long-term murine bone marrow cells. It is able to differentiate along myeloid 

and erythroid lineages in response to spécifie cytokines. The cells are able to generate mixed 

colonies in a colony formation assay. These cells are believed to reflect accurately the 

situation in vivo.

FGF: fibroblast growth factor.

FL: Flt-3 ligand.

Flt31: fms-like tyrosine kinase 3 ligand.

Flt-3: receptor tyrosine kinase.

FOG: friend of GATA. A transcription factor of the multi-type-zinc finger.
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GATA: GATA is a DNA-binding protein of the 'zinc-finger' family that functions as a

transcription factor.

G-CSF: granulocyte colony stimulating factor.

GM-CSF: growth macrophage colony stimulating factor.

Growth factors: various Chemicals (often polypeptides), that have a w ide array o f  rôles in  the 

stim ulation o f  ce ll growth and ce ll m aintenance. A s for haem opoietic stem  ce lls , they are 

controlled by the hem atopoietic growth factors, w hich include certain cytokines and 

horm ones.

HIWI: human homolog of the piwi gene, hiwi is the human homolog of piwi (52 percent 

homologous to Drosophila piwi).

HLA: human leukocyte antigen.

HO: AT-specifïc donor, Hoechst 33342 (Ho) which stains the nucléus of the cell.

Homeobox: nucleotide sequence that encodes a sériés of aminoacids known as homeodomain, 

which is présent in most eukaryotic regulatory proteins and this sequence is involved in the 

binding of regulatory proteins to the DNA molecule.

Homeogene: see homeobox.

Hom eoprotein: see hom eobox.

Homing: attraction, usually Chemical in  its induction, o f  a ce ll to a précisé location  in the 

organism .

HPP-CFC: high proliferative potential colony-forming cells.
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HSC: hemopoietic (hematopoietic) stem cell. Cells isolated from the bone marrow or the

blood that can renew themselves and differentiate into a variety of specialized cells. It can

also be mobilized out of the bone marrow into the circulation.

Ikaros: a transcription factor of the zinc fïnger family.

Interleukin: some cytokines are called interleukins because they are secreted by leucocytes 

and affect other leucocytes. There are 18 interleukins that have been identifïed so far. 

Interleukins are abbreviated by IL and is usually followed by the number of the molecule.

JAK/STAT: a signal transduction pathways initiated by the binding of a cytokine to its 

receptor. In many instances this involves the recruitment and interaction of non-receptor 

protein tyrosine kinases named Janus kinases and STAT propteins (signal transducers and 

activators of transcription).

KLS: composed by the absence (-) or presence (+) of three surface receptors: lin ' , Sca+, c- 

kit+.

L21-6: An anitigen of bone marrow origin.

LEF: leukemia inhibitory factor.

LTC-IC: long-term culture-initiating cell.

LTR: long-term repopulating.

MC (Mast cell): multifunctional effector cells of the immune System and important members 

of the microvasculature in many tissues and organs. These cells produce and secrete large 

amounts of biologically active mediators including histamine, proteoglycans, proteolytic 

enzymes, and cytokines. It has been established in mice and humans that MC is derived from 

multipotent hematopoietic progenitor cells.

MCP-1: monocyte chemo-attractant protein-1.
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MHC: the major histocompatibility complex (MHC) is a large genomic région or gene family

found in most vertebrates. It is the most gene-dense région of the mammalian genome and

plays an important rôle in the immune System, autoimmunity, and reproductive success.

Minigene: a minigene is a genomic fragment that includes the alternative exon(s) and the 

surrounding introns as well as the flanking constitutively spliced exons.

MlP-la: macrophage inflammatory protein 1 a.

MGF: monocyte growth factor.

ML: thrombopoietin, a cytokine.

MM-9: matrix metalloproteinase-9 (induced in BM cells).

MMP assay: measuring a value for the level of a first matrix metalloproteinase (MMP) in a 

blood sérum sample obtained from a subject.

MPB: mobilized peripheral blood.

Mpl: receptor that binds the ML ligand (thrombopoietin).

MSC: mesenchymal stem cells.

Multipotent stem cells: multipluripotent stem cells that have further specialized themselves, 

multipotent stem cells are commited to give rise to cells that have a particular function, such 

as blood stem cells that give rise to red and white blood cells and platelets. Multipoptent stem 

cells are found in adult animais, and perhaps in most organs of the body where they can 

replace damaged cells. They are suspected of being the cells that can produce the cancer cells 

when they have been mutated past a certain stage.

MYOD: myod is a gene the helps control muscle différentiation. The MyoD gene encodes for 

bHLH(basic hélix loop hélix) transcription factors.
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NeuN: Neuronal Nuclei. Reacts with most neuronal cell types throughout the nervous system

of mice.

NOD/SCED: non-obese diabetic/severe combined immuno-deficient.

Pax: transcription factor of the paired box family.

PEXY321: a fusion protein derived from the coding sequences of GM-CSF and IL3. PIXY321 

allows the stimulation and expansion of multilineage hematopoiesis from immature bone 

marrow progenitor cells.

Plasticity: ability of an adult stem cell from one tissue to generate specialized cells of another 

tissue. It is an emerging concept not quite fully understood and still much debated. It would 

appear that given the right environment, some adult stem cells are able to be “reprogrammed” 

(i.e., some of their genes are activated/deactivated) to generate specialized cells, which are 

characteristic of différent tissues.

Pluripotent stem cell: pluripotent stem cells have the ability to give rise to types of cells that 

corne from the three germ layers (mesoderm, ectoderm and endoderm) that produce ail the 

cells of the body. The only source, so far identifïed, of human pluripotent stem cells come 

from the cells isolated and cultured from early human embryos and fetal tissue that was 

destined to be part of the gonads.

Progenitors/precursor cells: progenitors/precursor cells occur in fetal or adult tissues and are 

partially specialized. They can divide and give rise to differentiated cells. The distinction with 

an adult stem cell is that when a stem cell divides, one of the two new cells is a cell able to 

replicate itself again. But a progenitor cell cannot replicate itself when it divides: it only gives 

rise to two specialized cells, and neither can replicate itself. The progenitor can replace the 

cells that are dead or damaged in a given tissue, allowing it to maintain its functions. They 

give related types of cells (i.e. lymphocytes cells) but in their natural State they do not 

generate a great variety of cell types.

PTEN: phosphatase and tensin.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PU.l: transcriptional activator protein that allows pip (PU.l interaction partner) which is a

lymphoid-specific protein to bind to a conserved cell type-specific composite element

essential for the activities of some immunoglobulin light-chain gene enhancers.

RAR: (retinoic acid receptor).

RHODAMINE-123: rhodamine 123 is a probe of the transmembrane potential and is 

accumulated within the inner mitochondrial membrane.

RUNX1/AML1: runt-related transcription factor 1/ acute myeloid leukemia 1. A transcription 

factor of the runt family.

SCID: severe combined immunodeficiency mice.

SCL: stem cell leukemia gene - encodes a basic loop-helix-loop protein.

SCL/Tal-1: a transcription factor of the BHLH family.

SDF: stromal-derived factor.

SF: steel factor. A synonym of SCF (stem cell factor) and c-kit ligand.

SHH: sonie hedgehoge gene.

SHIP: src homology 2-containing inositol phosphatase.

SRC: severe combined immunodeficient (scid) repopulating cells.

Stem cells: stem cells originate from the embryo, fétus or the adult body. They have in 

spécifie conditions the capacity to reproduce themselves for long periods of time. In the case 

of the adult stem cells, they can reproduce themselves trough the length of the lifetime of the 

organism.
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Surface receptors: area of a cell membrane equipped with a spécial protein, which can bind 

with a spécifie molecule (hormone, neurotransmitter, drug, other molécules, etc.) thus 

resulting in a change within the cell, usually by way of a synthesis of a second messenger 

inside the cell. Certain cells are identified by the presence or absence of certain surface 

receptors (phenotype). The positive and négative signs signify the presence/absence of the 

surface receptor. Here are a few examples of surface receptors: CD34, Thy-1, CD 133, Flk-1, 

Sca-1, c-kit AC133+ CD34+ FGFR++/+++.

TGF-p: transforming growth factor p.

TNF-a: tumor necrosis factor a.

TPO: thrombopoietin, also refered as to c-Mpl ligand, mpl ligand, Thpo, megapoeitin and 

megakaryocyte growth and development factor. It is the most potent cytokine that 

physiologically régulâtes platelet production.

VCAM: vascular cell adhésion molecule.

VLA: very late antigen. VLA-4 (Very Late Antigen-4, CD49d/CD29) is expressed by most 

leukocytes but it is observed on neutrophils only under spécial conditions. It binds to 

fïbronectin and the immunoglobulin superfamily member VCAM-1.

Wnt: family of highly conserved secreted signaling molécules that regulate cell-to-cell 

interactions during embryogenesis. Wnt genes and Wnt signaling are also implicated in 

cancer.

Wright-Giemsa staining: a solution specifically used to stain human blood cells for 

differential cell count. Used in in vitro diagnostic.
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6.2 Frequency shift caused by the injection of RPMI on a PAAC layer (5 kDa MW, [1%]

PAAC, 0.01/1 EDC+NHS/COOH)
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