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 Pharmacokinetic evaluation of 5-chloro-2-methoxy-N-[2-(4- 

sulfamoylphenyl)ethyl]benzamide in mouse plasma demanded for a suitable bioanalytical method. 

No reported bioanalytical method exists to-date that can quantify concentration of this compound 

in any biological matrix. The purpose of this study was 1) to develop and validate a new 

bioanalytical method using a micro-extraction and LC-MS/MS to quantify the target analyte in 

mouse plasma and 2) to partially validate the method in whole blood. A bioanalytical method was 

developed and validated in both matrices for a linear concentration range of 2-1000 ng/ml. For 



 
 

 

both matrices, the reverse predicted concentration of calibration standards (-8.95% to 12.16% and 

-9.54% to 12.90% respectively) and precision and accuracy (QCs) were within ±15% (%RSD and 

%BIAS). Four-hour bench top stability and post preparative stability results for plasma and whole 

blood matrices were within ±15% and ±20% respectively.  Blood –plasma concentration 

correlation co-efficient was 0.9956 with a slope value of 1.018. 
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CHAPTER 1: INTRODUCTION 

 

 

 

1.1 5-Chloro-N-[4-(cyclohexylureidosulfonyl)phenethyl]-2-methoxybenzamide (glyburide) 

and 5-chloro-2-methoxy-N-[2-(4-sulfamoylphenyl)ethyl]benzamide (glyburide 

analogue) 

  

 Type 2 Diabetes Mellitus (T2DM) is a chronic condition that has affected 29 million people 

in the US alone by 2012 (Diabetes Latest, 2014). It is an increasingly prevalent disease affecting 

more people worldwide with no cure to-date. Pathologically, T2DM causes elevated plasma blood 

glucose levels by beta cell dysfunction in pancreas and insulin resistance to dietary sugars (Lim et 

al., 2015). Elevated glucose levels further results in heart and blood vessel disease, neuropathy, 

kidney failure, eye damage and skin conditions (Type 2 Diabetes, 2013). While not curable, current 

treatments to manage diabetes include diet regulation and physical activity and exercise, in 

combination with medication and insulin therapy (Type 2 Diabetes, 2013). The first line agent 

used in the US to manage T2DM is metformin, a drug that belongs to biguanide class which works 

by reducing the amount of glucose produced by the liver and helping the body respond better to 

insulin (White, 2010). Next in line are sulfonylureas that stimulate the beta cells of the pancreas 

to secrete more insulin, which in turn helps lowering free glucose circulating in blood. These 

include the only currently used first generation drug, chlorpropamide, and three second generation 

drugs namely: glipizide, glyburide and glimepiride (Lim et al., 2015). Aggressive therapies to treat
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 T2DM that is not managed by metformin alone include a sulfonylurea in combination with 

metformin (Lim et al.)

 Among available sulfonylureas, glyburide or 5-chloro-N-[4-

(cyclohexylureidosulfonyl)phenethyl]-2-methoxybenzamide (Figure 1.1) is the most widely used 

sulfonylurea for the treatment of T2DM in the US (McIntosh et al., 2011). It was first approved 

by the USFDA in 1984 as a prescription medication to treat T2DM (Electronic Orange Book,

2016).  Mechanistically, the cyclohexylurea moiety within glyburide (highlighted in green, Figure 

1.1) binds to the ATP-sensitive K+ channels on the surface of sulfonylurea receptor (SUR) of 

pancreatic β-cells and inhibits them, which eventually regulates insulin secretion and release that 

further lower plasma glucose concentrations (Lamkanfi et al., 2009).  

 In 2009, an in-vitro study using lipopolysaccharides (LPS) primed BMDM (Bone Marrow 

Derived Macrophage) cells by Lamkanfi et al. demonstrated that in addition to its glucose lowering 

effect, glyburide also prevented activation of the cryopyrin inflammasome modulated by cytokines 

interleukin-1β secretion, thus delaying lipopolysaccharide (LPS) induced lethality in mice. Figure 

1.2 shows expression levels of IL-1β in presence of varying concentration of different compounds 

(Figure 1.3) tested by Lamkanfi et al. Furthermore, the structure-activity relationship experiments 

performed by Lamkanfi et al. with compounds including glyburide demonstrated that only sulfonyl 

and benzamido groups (highlighted in red, Figure 1.1) within glyburide are required for optimal 

inhibition of the cryopyrin inflammasome.  
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Figure 1.1 Chemical structure of glyburide highlighting important moieties for optimal 

inhibition of the cryopyrin inflammasome (red) and ATP-sensitive K+ channels on the surface of 

pancreatic β-cells (in green). Reprinted from Product Specification, In Sigma-Aldrich, Retrieved 

January, 10, 2016, from 

http://www.sigmaaldrich.com/catalog/product/sial/g2539?lang=en&region=US 

 

 
Figure 1.2 Expression levels of IL-1β in LPS-primed BMDM cells in the presence of different 

sulfonylureas (Lamkanfi et al., 2009). 
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Figure 1.3 Chemical structures of compounds tested by Lamkanfi et al for their effect on IL-1β.  
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 Recently, it was established through an in-vivo study using a mouse model that the 

cryopyrin inflammasome is one of the intracellular protein sensors that amplify the inflammatory 

response after an experimentally induced acute myocardial infarction (Marchetti et al., 2014). The 

genetic deletion of protein encoding nucleotides of the cryopyrin inflammasome limited the infarct 

size in experimental acute myocardial infarctions. This suggested that the protein itself would be 

a viable target for pharmacologic inhibition via glyburide. Glyburide, however in an, in-vivo 

(mouse model) to inhibit cryopyrin inflammasome would require 100-fold higher doses than 

amounts used in the treatment of diabetes, inevitably leading to lethal hypoglycemia. Hence, 

Marchetti et al., based on conclusions drawn from research efforts by Lamkanfi et al., synthesized 

5-chloro-2-methoxy-N-[2-(4-sulfamoylphenyl)ethyl]benzamide (compound 16673-34-0), a 

glyburide analogue that retained only the sulfonyl and benzamido moieties of glyburide needed 

for the selective inhibition of the cryopyrin inflammasome (Marchetti et al., 2014). The chemical 

structure of the glyburide analogue (GA) that contains only the required moieties for the cryopyrin 

inhibition is shown in Figure 1.4 (highlighted in red). 

Cl

OCH3

O

N
H

S

O

O
NH2

 

Figure 1.4 Chemical structure of 5-chloro-2-methoxy-N-[2-(4 sulfamoylphenyl)ethyl] 

benzamide (glyburide analogue) with important moieties (red) synthesized by Marchetti et al.  

 

 The chemical synthesis of compound 16673-34-0 or GA was initiated by first reacting 5-

chloro-2-methoxybenzoic acid with 2-phenylethylamine in the presence of EDCI (1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide) to form the amide intermediate, 5-chloro-2-methoxy-N-(2-
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phenylethyl)-benzamide. This intermediate compound was then treated with chlorosulfuric acid 

and aqueous ammonium hydroxide to form the target compound, 5-chloro-2-methoxy-N-[2-(4-

sulfamoylphenyl)ethyl]benzamide. Figure 1.5 shows the synthetic pathway of the compound 

16673-74-0 (Marchetti et al., 2014). 

 

Figure 1.5 Chemical synthesis of compound 16673-34-0 (Marchetti et al., 2014). 

 Following the synthesis and subsequent use of the glyburide analogue in their in-vivo 

experiments with mice, Marchetti et al., demonstrated that compound 16673-34-0 significantly 

reduced both serum cardiac troponin I levels and infarct size in the heart 24 hours after induced 

ischemia and subsequent reperfusion compared to the saline control. Moreover, it was concluded 

that compound 16673-34-0 free of cyclohexylurea moiety inhibited the formation of the cryopyrin 

inflammasome without any adverse anti-diabetic effects in the experimental mouse model, thus 

disclosing it to be a novel pharmacologic inhibitor of the cryopyrin inflammasome. Figures 1.6A 

and 1.6B show experimental data collected by Marchetti et al.  
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Figure 1.6A (left) and 1.6B (right) Experimental data by Marchetti et al showing significant 

reductions in cardiac troponin I levels and heart infarct size in their in-vivo experiment using 

mouse model treated with compound 16673-34-0 (Marchetti et al., 2014).  

 

1.2 Rationale for bioanalysis of GA and specific aims 

 Marchetti et al. further pursued the in-vivo mice study on the inhibitory effects of 5-chloro-

2-methoxy-N-[2-(4-sulfamoylphenyl)ethyl]benzamide on the cryopyrin inflammasome with a 

subsequent pharmacokinetic evaluation of the novel compound in plasma. Prior to this work, initial 

efforts were made quantify the glyburide analogue in mouse (CD-1 strain adult male) plasma using 

LC-MS/MS platform. Plasma based methodologies offer ease of handling and storage along with 

relatively cleaner matrix over whole blood, thus enhancing selectivity and assay sensitivity 

(Chance, 2002). However, initial results showed intra subject variabilities in plasma drug 

concentrations for a particular time point and inter subject variabilities in overall PK profiles. 

Moreover, limited plasma availability from the mouse model resulted in inadequate time points in 
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the study necessary to determine the terminal half-life of the drug compound. At least three time 

points during the terminal phase are required for a reliable estimation of the terminal half-life and 

those three time points should span at least two half-lives (Fan et al., 2014). Furthermore, the 

variabilities observed in the plasma results could also be explained if glyburide analogue exhibits 

preferential binding to red blood cells over free distribution in plasma. If true, plasma analysis 

alone would misrepresent drug exposure in the circulatory system of the mouse model and would 

yield an overall false PK evaluation of the target compound. No scientific information exits that 

show blood distribution characteristics of glyburide analogue. Thus, the purpose of this study was 

1) to develop and validate a new bioanalytical method that can quantify the levels of the target 

analyte in mouse plasma with minimal sample volume to obtain adequate time points for an 

appropriate PK evaluation and 2) to partially validate the method for analysis of the test article 

directly in whole blood in an event of preferential distribution of the target analyte into 

erythrocytes over plasma.  

 To our knowledge, no reported bioanalytical method exists to date that can quantify drug 

concentrations of this compound in any biological matrix. This led to the challenge and opportunity 

of developing a new bioanalytical method using LC-MS/MS (Liquid Chromatography-Tandem 

Mass Spectrometry) as the main platform that can successfully quantify biological concentrations 

of the test article, both reliably and reproducibly as proposed. 

1.3 Bioanalysis of GA and specific challenges 

  During the developmental phase of developing a suitable bioanalytical method for 

glyburide analogue, specific challenges were identified and addressed with respect to the overall 

process of sample quantification via LC-MS/MS platform. These included limited availability of 

scientific literature on the test article, limited sample volume availability from the animal model, 
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need for an extraction procedure that used minimal sample, selection of a suitable internal standard 

and possible blood-plasma partitioning of GA relevant to the proposed direct whole blood analysis. 

All these issues are discussed further in detail.  

1.3.1 Availability of scientific literature   

 Literature searches on 5-chloro-2-methoxy-N-[2-(4-sulfamoylphenyl)ethyl]benzamide or 

glyburide analogue (target analyte) yielded very limited information due to the novelty of the 

compound. Although not a sulfonylurea, it is structurally similar to glyburide and other compounds 

within the sulfonylurea class. Compounds within the sulfonylurea class are broadly classified as 

weak organic acids (pKa 5-6) due to the presence of sulfonamide group that is often used as non-

classical carboxylic acid bioisostere (Smith, 2010). The molecular mass of glyburide analogue is 

368.84 g/mol with the empirical formula of C16H17ClN2O4S (Sigma-Aldrich, 2014). It is a small, 

polar molecular entity soluble in dimethyl sulfoxide (DMSO) (HIMEDIA LAB, 2012). It is 

commercially available as a reference standard. Like other sulfonylureas, the glyburide analogue 

possesses both lipophilic and hydrophilic moieties within its structure. The aromatic rings provide 

lipophilic character while the –SO2, -NH-, -CO- moieties are hydrophilic (DeRuiter, 2003). Similar 

compounds that belong to same class as glyburide analogue include, but not limited to glyburide, 

gliclazide, glipizide, gliquidone, glibonuride and glimepiride (DeRuiter, 2003). Henceforth, 

available literature on these compounds with respect to chromatographic separation and mass 

spectrometric analysis was used in the development of a suitable bioanalytical method to quantify 

the glyburide analogue. 

1.3.2 Availability of sample volume 

 The in-vivo study by Marchetti et al used adult male mouse (CD-1 strain) as the animal 

model. Obtaining an adequate amount of blood sample for a typical PK study is a major challenge 
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in rodent species due to their small size and other physiological considerations. Moreover, 

established guidelines set limits on maximum blood sample that can be collected from a particular 

animal based on size (or weight) and to minimize stress on the animal (Dainty et al., 2012). In a 

study involving repeated draws, separated by weeks, only 1% of animal’s total circulating blood 

can be removed within 24 hours in mice (NIH 2015). Given the blood composition of mice with 

39-49% hematocrit, plasma recovery is even less. Table 1.1 shows maximum available blood 

volumes that could be collected in 24 hours from mouse (Burnett, 2011). 

Table 1.1 Maximum Available Blood Volumes (Mice)  

 

Avg. weight 

(g) 

Day 1 

Avg. weight 

(g) 

Week 4 

Volume (ml) 

Day 1 

Volume (ml) 

Week 4 

Male 

(Plasma) 
30 38 

0.30 

(0.15-0.18)* 

0.38 

(0.19-0.23)* 

Female 

(Plasma) 
25 30 

0.25 

(0.13-0.15)* 

0.30 

(0.15-0.18)* 

*Values represent plasma recovery volumes based on 39-49% HCT. 

 

 Such limitations often require using multiple animals per time point in a PK study. A seven 

time point study using four animals per time point with both male and female species would end 

up using 166-168 animals (Burnett, 2011). This leads to large numbers of animals being sacrificed 

with both economic and ethical implications. Additionally, studies suffer from high inter-animal 

variability when several animals are used for a single time point. Overall, these aspects often lead 

to a compromise in number of time points being evaluated or an incomplete PK profiling 

altogether. Table 1.2 shows typical animal numbers required when generating toxicokinetic data 

from mouse plasma (Burnett, 2011).  
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Table 1.2 Typical animal numbers required when generating toxicokinetic data from mice plasma 

(Burnett, 2011)  

 

 

1.3.3 Extraction procedure with minimal sample  

 Once obtained, most samples are not ready for direct analysis via LC-MS. The target 

analyte(s) have to be extracted into a solution, which can then be submitted to LC-MS instruments 

(Mitra et al., 2003). The biological samples should be processed in a way that the final sample 

extracts have minimal amount of other endogenous components present in the matrix. Thus, it 

should be ensured that extraction procedure is selective for the target analyte. Selective extraction 

procedures in turn increases the overall assay sensitivity and help to accurately and reliably 

quantify the analyte of interest. Finally, the sample extract composition should be compatible with 

the analytical platform of choice (Bylda et al., 2014). Once a sample is extracted and rendered 

mostly free from interfering substances, only then chromatographic techniques such as HPLC 

conjunction with mass spectrometry platform become employable to quantify compounds of 

interest. In order to overcome the inherent challenge of sampling while ensuring selective 

extraction of the test article, a microextraction procedure via HybridSPE technology that allowed 

for sample processing in low microliter volumes was employed in the development of a suitable 
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bioanalytical method to quantify the glyburide analogue in plasma and whole blood. The benefit 

of such a method is that with low sample volumes, it is possible to obtain more time points during 

the PK profiling of the glyburide analogue. In addition, a low sample volume requirement would 

consume minimal numbers of animals, which in turn reduces the inter-animal variability in the 

study.  

1.3.4 Selection of a suitable internal standard 

 As mentioned earlier, during LC-MS/MS analysis of drug compounds and/or their 

metabolites, samples have to be pre-treated prior to being injected onto the instrument. These pre-

treatments are necessary for selective extraction of the test article from the biological matrix. Thus, 

processes such as dilution, extraction, quantitative transfer or evaporation and reconstitution of the 

representative biological sample may be necessary. During these processes, loss of targeted 

analytes may occur in variable forms affecting its recovery in the prepared sample to be analyzed 

(Tan et al., 2012) Moreover, there may be variability within the instrumental analysis such as 

injection volume and ionization process in form of suppression or enhancement of the signal 

caused by matrix effects (Tan et al., 2012).  Therefore, an internal standard is added to the sample 

of interest at the very beginning of the sample preparation procedure to account for such losses 

and analytical variations. It is added in equal amounts to all samples, calibration standards as well 

as quality control samples, within an assay. In this way, the target analyte losses and instrumental 

variations can be accounted by taking a ratio of the analyte to the internal standard peak area (or 

height) versus concentration to form a calibration curve, and ultimately improve accuracy and 

precision of the assay. 

 Mainly, there are two types of internal standards that are routinely used in bioanalytical 

methods that use LC-MS technique for quantification: stable isotope labeled (SIL) internal 
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standards and structural analogues of the target compound (FDA, 2001). SILs are compounds 

similar to the actual analyte with atoms being replaced by their respective isotopes i.e. deuterium 

(2H), 13C, 15N, etc. Normally, SILs are chosen in a LC-MS/MS for two main reasons. First, due to 

their similar physicochemical properties, ionization inefficiencies are well tracked with similar 

retention time as the target analyte (Arrivault et al., 2015). Second, SILs possess same stability as 

the target analyte and thus would be equally affected at various steps of the analysis. On the other 

hand, the structural analogues used as internal standards are compounds with a different mass than 

the actual analyte, with key moieties being preserved. Thus, it is ensured that the ionization 

characteristics are still similar to that of the actual target analyte (Valbuena et al., 2016). It is 

always preferable to use a SIL compound as the internal standard as they are the most effective. 

However, they are not always available or maybe extremely expensive. In these cases, structural 

analogues should be given preference. Possible candidate compounds that could be used may be 

found from the same therapeutic or chemical class as the analyte of interest. This way the chosen 

compound would most likely have similar chemical and physical properties as the analyte. In the 

bioanalysis of the glyburide analogue, glipizide (MW 494 g/mol) (Sigma-Aldrich, 2011), which is 

a compound that belongs to the same class called sulfonylurea, was chosen as the internal standard. 

The structural similarity between the glyburide analogue and glipizide can be seen in Figure 1.7. 
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Figure 1.7 Structural similarities between the glyburide analogue and glipizide. 

 Structurally similar to glyburide analogue, glipizide was predicted to have the same 

physical and chemical properties as the analyte i.e., solubility, hydrophobicity and ionization 
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characteristics as well as stability in various solvents and chemicals used during sample 

preparation. It was predicted that glipizide would not completely resolve from the target analyte 

during chromatographic separation and thus, have similar retention time as the target analyte. This 

would ensure similar degree of ionization for both the target analyte and the internal standard 

during subsequent MS analysis. Finally, the glipizide was predicted to fragment differently than 

the target analyte in a SRM experiment during the mass spectrometric detection phase of the 

analysis.  

1.3.5 Blood-plasma partitioning of GA 

 Pharmacokinetic parameters calculated from the plasma data alone may be misleading if 

there is a difference between concentrations of the drug in the plasma and the red blood cells 

(Altmayer et al., 1983). Thus, determining blood to plasma ratio for a compound known to partition 

in red blood cells is an important parameter to determine to make the case for using direct whole 

blood analysis over plasma. Compounds that are sulfonamide derivative have been known to 

extensively bind to red blood cells, which typically result in blood to plasma ratio greater than one 

(Smith, 2010). Moreover, these compounds have shown a concentration dependent partitioning 

into blood with mechanisms involving not only passive diffusion but also protein binding and 

active transport (Yu et al., 2004). In the bioanalysis of GA, a blood to plasma distribution study 

was conducted to determine whether direct analysis of whole blood would be more appropriate 

than plasma analysis since the target compound possessed the sulfonamide moiety.  

  This thesis will further elaborate on the choice and rationale for using the HybridSPE 

technology, a microextraction sample preparation technique in conjunction with LC-MS/MS 

analysis of the glyburide analogue. In addition, this thesis will also focus on the selection process 

of a suitable internal standard (structural analogue) for LC-MS/MS analysis and chromatographic 
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optimization experiments during method development phase along with several modifications in 

the extraction procedure of glyburide analogue.  

1.4.Microextraction via Hybrid SPE-Phospholipid and Precipitation Technology for GA 

sample processing and clean up 

   

 As discussed earlier, sample preparation is an important step in the process of analysis, as 

most biological samples cannot be directly introduced into instruments. This step involves sample 

extraction wherein the drug of interest is isolated from the matrix with the help of extraction 

solvents, typically organic in nature (Mitra et al., 2003). As emphasized before, an important 

consideration during development of the analytical assay of glyburide analogue was that the 

extraction procedure use minimal amount of sample volume. This is due to the fact that the animal 

model being studied was mouse in which blood volumes become a limiting factor in 

pharmacokinetic studies. This issue was addressed by employing a microextraction technique 

using HybridSPE precipitation technology during the extraction phase of the experimental 

procedure.  

 Typical sample extraction techniques include liquid-liquid extraction and solid phase 

extraction (Juhascik et al., 2009).  In a liquid-liquid extraction (LLE), compounds are separated 

from each other based on their relative solubility in two or more immiscible liquids. In a solid 

phase extraction (SPE), compounds are separated from a liquid using a solid stationary phase 

through which they are eluted. These methods are conceptually simple, however, both of these 

techniques are time consuming and often lead to extracted volumes, which exceed the 

chromatographic needs (Pawliszyn et al., 2006). In contrast, supported liquid extraction (SLE) 

allows for a traditional liquid-liquid extraction using low solvent volumes followed by elution of 

organic (extraction) solvent through a supported cartridge (Pan et al., 2010). Thus, SLE helps 
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address the issues of bigger sample volume requirement and are much more time efficient than 

LLE or SPE avoiding column conditioning, equilibration and washing steps, which can add to the 

complexity of the procedure (Chang, 2013). Thus, a microextraction procedure using this 

HybridSPE technology in form of solid supported liquid extraction (SLE) offered an alternative 

method, which was relatively less time consuming and labor intensive.  

 In addition to sample extraction, removal of other endogenous components from the matrix 

cleanup is also an important step in processing of samples in a biological matrix such as plasma 

and whole blood. In particular, matrix components such as proteins, anti-coagulants, fibrinogen 

and especially phospholipids interfere with drug of interest that may lead to ion suppression; poor 

peak shape and resolution in MS/MS based quantification approaches. Due to the amphiphilic 

nature of phospholipids, they can be co-extracted with analytes of interest during sample 

preparation and lead to variability and overall accuracy of the assay when analyzing small 

molecules. (Pucci et al., 2009). Several techniques have been used to remove phospholipids and 

other components within the matrix during sample preparation. Traditionally, these techniques 

comprise of solid-phase extraction procedures that use strong cation exchange sorbents (Shen et 

al, 2005). Non-traditional approaches for phospholipid removal have used automated on-line 

SPE or liquid/liquid extraction with methyl tert-butyl ether (Marchese et al., 1998) followed by 

solid-phase extraction using chemical sorbents with an active lanthanide (Want et al., 2006). 

Although effective, these procedures have the disadvantage of increased costs related to materials 

and instrumentation set-up along with introduction of further time consuming steps in the cleanup 

process.  

 In the bioanalysis of the glyburide analogue, a relatively new and commercially available 

HybridSPE technology by Sigma-Aldrich was adopted.  HybridSPE precipitation technology in a 
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96 well plate format is used for fast and efficient sample preparation of plasma samples. It merges 

both protein precipitation and solid phase extraction techniques for phospholipid removal within 

plasma matrix (Pucci et al., 2009).  It uses a zirconia sorbent that exhibits a high affinity for 

phospholipids while remaining non-selective toward a wide range of basic, neutral and acidic 

compounds (Supelco, 2009). This technology allows for a simultaneous execution of SPE and SLE 

extraction techniques in a convenient way that helps to eliminate matrix effects (i.e., 

phospholipids) with the ability to extract model compounds in a smaller sample volume LLE.  In 

addition, the miniaturization of sample volume is achieved via this technology, as it only requires 

loading volumes of less than 100 µl. The 96 well plate format simplifies the assay procedure and 

contributes to overall efficiency and ease in carrying extraction of 96 samples per plate. Figure 

1.8 shows the working principle of HybridSPE technique.  

 

Figure 1.8 Retention mechanism of HybridSPE Phospholipid Technology (Supelco, 2009). 

 In a typical 96 well plate HybridSPE sample preparation experiment, plasma or serum is 

first subjected to protein precipitation (in-well precipitation) via the addition and mixing of 
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acidified acetonitrile or methanol. After a brief mixing step, vacuum is applied.  During this step, 

the solid phase column in the packed bed containing low porosity filters within acts as a depth 

filter that aids in the removal of both phospholipids and precipitated proteins. The retention of 

phospholipids is based on a highly selective Lewis acid-base interaction between the zirconia ions 

functionally bonded to the stationary phase and the phosphate moiety within the phospholipids. 

The resultant eluent is then free from the interfering phospholipids and ready for LC-MS/MS 

analysis (Supelco, 2009).  

 To process smaller volumes of plasma, the plasma sample is first diluted with deionized 

water so the final volume is around 100 µL. To this, 300 µl of precipitating agent is added (in a 

ratio of 1:3, plasma: precipitant). Acetonitrile with 1% formic acid is used as the primary 

precipitating agent. This is because formate acts as a much stronger Lewis base than most 

carboxylate groups found on acidic compounds, thus inhibiting analyte retention on the HybridSPE 

phase but not as strong a Lewis base as the phosphate moiety found in phospholipids. For 

compounds containing nitrogen atoms, ammonium formate in methanol is used as the precipitating 

agent. Here, NH4
+ ions act as stronger counter ions then H+ in inhibiting basic compounds from 

interacting with HybridSPE silanol groups (Si-O). Also, methanol is a more polar solvent than 

acetonitrile, further inhibiting any potential hydrophilic interactions between the analyte and silica 

surface. In the bioanalysis of glyburide analogue, ammonium formate in methanol was used as the 

precipitating agent after comparing selectivity and recovery of the test article in both variants of 

the extraction solvent. Such a comparison was necessary due to the fact that the target compound 

contained amine moieties (basic) while sulfonamide moieties exhibited acid like characteristics 

(Supelco, 2009). 
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1.5 LC-MS/MS as the quantitative platform  

 The combined power of liquid chromatography and tandem mass spectrometry makes LC-

MS/MS one of the most powerful quantitative approaches in small molecule drug analysis. With 

enhanced selectivity and selectivity, it is far more superior to conventional high performance liquid 

chromatography with UV-Vis detection alone especially for small drug analytes. In the bioanalysis 

of the glyburide analogue, LC-MS/MS was chosen as the primary platform for quantitative 

analysis. The target analyte from the sample extract was first isolated on a column using reversed 

phase liquid chromatography followed by a subsequent MS/MS analysis.   

1.5.1 LC-MS method conditions in the bioanalysis of the glyburide analogue 

 Based on previous literature on sulfonylureas, GA (a sulfonylurea derivative) was 

predicted to be a suitable candidate for chromatographic separation via reversed-phased liquid 

chromatography (RP-LC) (Mistri et al., 2007). Chromatographic separation of GA was 

characterized by sample molecule’s strong interaction between the polar mobile phase (dipole 

interaction and hydrogen bonding) and relatively weaker interactions with the non-polar stationary 

phase. The non-polar, hydrophobic stationary phase of the column (2.1 x 50 mm, 3 µm, 100 Å) 

used in the bioanalysis of glyburide analogue consisted of a silica based packing bonded to 

octadecylsilyl (C-18) functional group moieties. The mobile phase consisted of two miscible 

solvents: solvent A (95:5 water: acetonitrile + 0.5% formic acid) and solvent B (acetonitrile + 0.5 

% formic acid). A suitable gradient scheme with respect to both solvents was achieved through a 

series of experiments with neat solutions of GA/GP in which the eluent composition was changed 

from solvent A (weaker solvent) to solvent B (stronger solvent) over 4.5 minutes at a flow rate of 

0.300 ml/min. These details are explained in the method development section of this thesis.  
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 Separation of GA was achieved upon its relative amount of time spent interacting with the 

stationary phase and the mobile phase based on its chemical affinity. Being relatively hydrophobic 

(Log P ~ 2.5), GA is thought to partition into the non-polar stationary phase from the mobile phase 

eluent. Initial column loading of GA was achieved by the aqueous phase of the gradient. The 

hydrophobic moieties present in GA partitioned into the stationary phase by hydrophobic 

interaction with the non-polar bonded phase. The analyte was retained until a gradient shift to a 

stronger solvent (mobile phase B).  Glyburide analogue, due to its favorable chemical affinity for 

a more polar solvent, subsequently eluted. Figure 1.9 shows the relative interaction of GA 

molecules with mobile and stationary phase inside the column (Patel, 2001). 

 

Figure 1.9 Schematic showing GA molecule in mobile and stationary phase (Patel, 2001). 
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 The dimensions of the column were carefully chosen so as to maximize the separation 

efficiency of the analyte molecule. A shorter column (50 mm) was chosen in the bioanalysis of 

GA as it is ideal for gradient analyses for a short run time, which was desirable in the LC-MS/MS 

analysis of GA. The Van Deemter equation, 𝐻 = 𝐴 +  
𝐵

𝜇
+ 𝐶𝜇 describes the relationship between 

the plate height, H (measure of column efficiency) and the linear velocity, µ (flow rate of the 

mobile phase). Smaller plate height values or more number of plates correspond to increased 

column efficiency and reduced band broadening. The constants A, B and C describe the peak 

broadening governed by eddy diffusion, longitudinal diffusion and mass transfer of the analyte 

inside a column, respectively. Figure 1.10 shows the Van Deemter plot relating the effect of each 

constant to band broadening (column efficiency) (Lake, 2016). 

 

Figure 1.10 Van Deemter plot with graphical representation of each term contributing to band 

broadening (Lake, 2016). 
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 Eddy dispersion (term A) relates to multiple paths available for analyte molecules to flow 

through the column. A smaller particle size and homogenous packing of the material reduce the 

path between particles allowing a solute molecule to travel in and out of the particle faster. As the 

analyte spends less time inside the particle, peak diffusion is limited, thus increasing the overall 

column efficiency by reducing contributing effects of the A term. Considering this, a column with 

3 µm particle size and nearly homogenous particle size distribution (90%/10% diameter ratio of 

1.46) was used. Figure 1.11 shows the effect of particle size on overall efficiency via a Van 

Deemter plot. 

 Longitudinal diffusion relates to the outward movement of analyte molecules from the 

center of the band due to concentration gradient along the axis of the flow. Practically, increasing 

mobile phase flow rates minimizes this. However, column efficiency tends to be independent of 

flow rates with a smaller particle size as seen in Figure 1.11 allowing for a wider optimum flow 

rate. As is the case with GA analysis, a column with 3 µm particle size allowed for a wide range 

of flow rate without significant loss of column efficiency and hence effects of band broadening 

due to longitudinal were thought to be minimized. 

 

Figure 1.11 Particle size vs column efficiency in a Van Deemter Plot. Reprinted from 

CHROMacademy. 
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 The mass transfer (C term) relates to the movement of analyte between the mobile phase 

and porous packing material of the stationary phase. The mobile phase within the pores remains 

relatively stagnant compared to the free flowing mobile phase. Analyte molecules that penetrate 

the pores are held for a longer time to the extent causing broadening of the band. In this study, the 

effects of mass transfer were minimized by selecting a column with smaller pore size (100 Å) and 

heating the column (40 ºC) to speed up the diffusion process that would eventually reduce the 

elution time differences of individual analyte molecules from the particle pores. 

1.5.2 Mass spectrometric detection and m/z analysis of glyburide analogue and glipizide 

 

 Once the target analyte (GA) and the internal standard (GP) were isolated via liquid 

chromatography, the mass spectrometric analysis was carried out using a triple quadrupole mass 

analyzer and electrospray ionization in positive mode. The detection and subsequent quantification 

of GA and GP was achieved through selected reaction monitoring (SRM) specific to GA 

(369169) and GP (446320).  

 After the chromatographic separation, the sample eluent containing GA/GP was introduced 

into the ion source. The eluent was passed through a stainless steel capillary held at 3.50 kV. The 

strong electric field caused the dispersion of the sample solution into an aerosol of highly positively 

charged electrospray droplets. A flow of dry N2 gas around the capillary aided in better 

nebulization of the liquid droplets with simultaneous evaporation of solvent. At high temperature 

(400 ºC) the pre-formed ions were further desolvated and gas phase production of positively 

charged ions from liquid droplets was achieved. Figure 1.12 shows the schematic representation 

of the sample flow within the ion source. 
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Figure 1.12 Sample flow within the ion source during MS/MS analysis of GA/GP (Banerjee et al., 

2012). 

 ESI was the preferred ionization method for GA/GP molecules as it is best suited for polar 

ionizable analytes in solutions (Pereira et al., 2008). Moreover, being a soft ionization technique, 

ESI allows compound with low internal energies to remain intact without causing in-source 

fragmentation of the analyte molecule generating unwanted ions that could later on interfere with 

MS/MS analysis (Banerjee et al., 2012). Furthermore, ESI technique could be operated either in 

positive or in negative mode depending on the nature of the molecule to be analyzed (Chin et al., 

2004). With available –N- atoms in the analyte molecule, it was predicted that (GA/GP) would be 

positively ionized by simply providing a source of generating positive ions in the eluent. Formic 

acid, a pH-lowering agent was used as the source of positive ion generation within the sample 

solution. Figure 1.13 depicts ESI process in the positive mode. 
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Figure 1.13 Electrospray ionization in positive mode in MS/MS quantification of GA/GP 

(Banerjee et al., 2012). 

 

 The generation of singly charged ions of the target analyte (GA) and the internal standard 

(GP) occurred via the ion evaporation model of the ESI process. During this process, the positive 

potential (capillary) causes repulsion of positive ions within the LC-eluent. As the eluent exits the 

capillary, it is stretched towards the downfield electrical gradient. Upon exiting the stretched 

solution forms into a Taylor cone at the tip of the metal capillary. Eventually, small liquid droplets 

break off with net positive charge from the solution. The solvent on the droplets then undergoes 

rapid evaporation. The process of evaporation is aided by high temperature and continuous flow 

of N2 gas. As the solvent evaporates, the surface tension on droplets decreases while charge density 

increases (Chin et al., 2004). The droplets subsequently disintegrate in a Coulomb fission 

generating smaller progeny ions with positive charge. This process continues until droplets are 

broken into singly charged ions, which are then directed towards a metal plate that is being held 

negative with respect to the ground into the mass analyzer (Grebe et al., 2011). Separation based 

on m/z of ions takes place within the mass analyzer depending on the type of experiment is being 

carried out. The glyburide analogue and glipizide (ISTD) were analyzed using Full Scan (Q1) and 
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Selected Reaction Monitoring (Q3) experiments in a triple quadrupole mass analyzer. Figure 1.14 

shows the internal parts of a triple quadrupole mass analyzer.  

 

Figure 1.14 Internal parts of a triple quadrupole mass analyzer used in the bioanalysis of 

GA/GP. 

 

 In the full scan experiment, the sample (GA/GP) ions were scanned across the entire mass 

range within Q1. During this mode, the collision cell was void of collision gas (and energy), which 

did not generate product fragments of the precursor ions. The (M+H)+ ion representing precursor 

m/z of GA/GP molecules were then selected for the SRM. The selected ions (GA and GP) in Q1 

were then allowed to fragment in the collision cell (Q2). The collision cell was innervated by Ar 

gas with various energies (V) that aided in the fragmentation of the sample ions into product ions 

through a process called collision-induced dissociation. Generated product ions were then 

transferred into Q3 using constant DC and RF voltages. Under SRM, (M+H)+ product ions for 

GA/GP with specific m/z fragments generated in Q2 were allowed to pass and subsequently 

detected. The most intense (M+H)+ peak for each compound were then selected as the specific 

SRM for GA/GP. This allowed for a very selective detection of the test article and the ISTD. Each 

ion hit a conversion dynode that generated an electrical signal in form of counts per second, which 

was further amplified via a photo multiplier tube. A mass spectrum was generated based on the 
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intensity of the signal with respect to relative abundance of the ions based on m/z.  Figure 1.15 

shows the schematic representation of SRM as used in the bioanalysis of GA. 

 

Figure 1.15 SRM transitions used in the bioanalysis of GA and GP (Grebe et al., 2011). 

1.5.3 Evaluation of Matrix Effects  

 The advantages of quantitative LC-MS/MS over traditional HPLC include reduced run 

times, superior selectivity due to its ability to monitor specific mass ions, and increased sensitivity 

because of the enhanced signal to noise ratio. However, this technique also comes with a major 

pitfall called matrix effects especially when ESI is chosen as ionization mechanism (Weng et al., 

2002). In its most simple definition, matrix effects are any changes in the ionization process of an 

analyte due to a co-eluting compound (Lambert, 2004). In a typical LC-MS/MS experiment, large 

amounts of endogenous matrix components can co-elute with the target analyte. In a SRM 

experiment these co-eluting components may not be detected. However, they can significantly 

affect the ionization process of the target analyte. The co-eluting compound may compete with the 

target analyte during ionization process and contribute to ion suppression (or enhancement). Ion 

suppression leads to decreased signal intensity of the target analyte causing overall loss in 

sensitivity of the assay (Lambert, 2004).   

 Typically, ion suppression is prominent in matrix effects due to phospholipid interference. 

Glycerophosphocholines and lysophosphatdylchonies constitute about 70% and 10% of total 



 
 

28 
 

plasma phospholipids, respectively (Pucci et al., 2009). In a SRM transition experiment carried 

out in ESI+ mode, these two classes of phospholipids have shown to fragment to form 

trimethylammonium-ethyl phosphate ions (m/z) 184 in MS/MS (Pucci et al., 2009). Figure 1.16 

shows chemical structures of major class of phospholipids and their corresponding ion fragment 

of m/z of 184 (19). 

 

Figure 1.16 Chemical structures of lysophosphatidylcholines and glycerophosphocholines and 

their trimethylammonium-ethyl phosphate ion fragment (m/z 184) (Pucci et al., 2009). 

 

 The molecular structure of both of these phospholipids reveal two major functional groups: 

a polar head region which consists of an ionizable phosphate moiety and long fatty acid chains 

(one or two) shown as R, R1 and R2. The highly ionic structure of phospholipids makes them 

susceptible to co-ionization with the target compound during the ionization process within mass 

spectrometer.  

 In the bioanalysis of GA/GP, it was thus important to identify if there was such a loss in 

sensitivity due to an existing matrix effect. First, a qualitative approach was used to evaluate matrix 

effect by conducting a post column infusion experiment. Figure 1.17 shows the post column 

infusion experiment set up. In this experiment, the analyte was infused at a steady flow while 
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simultaneously injecting a blank extract.  The signal of the analyte was then monitored for variation 

caused by co-eluting components from the blank extract in form of suppression in signal intensity 

of the analyte. Thus, in this way critical areas (retention time) related to matrix effects were 

visualized by either seeing signal suppression of signal enhancement (Weng et al., 2002).  

 

 

 

 

 

 

Figure 1.17 Post column infusion experiment Set-Up 

 Figure 1.18 shows an example of matrix effect in an experiment done elsewhere (Ye et al., 

2015). In this experiment, chromatographic run was carried out using an extracted plasma blank 

and 50 % acetonitrile in water while monitoring the phospholipid fragment (m/z of 184) in SRM 

mode. The relative intensity of the plasma compared with water is significantly reduced by the co-

eluting phospholipids that cause a drop in the signal (regions of dips in gray, Figure 1.18). This 

behavior of signal intensity suppression becomes an issue if the analyte peak appears within that 

region leading to reduced signal intensity 

Blank Plasma Extract 
100 ng/ml /ml 
Neat GA Blank Plasma Extract 



 
 

30 
 

 

Figure 1.18 Example chromatogram showing matrix effect (Ye et al., 2015). 

 While a post column infusion experiment is a qualitative way of evaluating matrix effects, 

a quantitative approach was also carried out by comparing the post extracted spiked sample to the 

unextracted sample, using the following equation %ME = [(A-B)/B]*100, where A is the area of 

the post extracted spiked sample and B is the area of the neat standard. A negative value would 

suggest ion suppression and a positive value would suggest ion enhancement (Pucci et al., 2009). 

In the bioanalysis of GA, miniaturizations of the sample volume extract and phospholipid removal 

via HybridSPE (as discussed earlier) during sample process were carried out to minimize matrix 

effects. Furthermore, chromatographic conditions were optimized to selectively elute peak of 

interest away from the regions of matrix effect.
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CHAPTER 2: METHOD DEVELOPMENT 

 

 

 

 During the development phase of a suitable bio-analytical method to quantify the glyburide 

analogue in a biological matrix i.e., plasma, the literature search was expanded to find out what 

has been already done with this compound from a bioanalytical standpoint. To our knowledge, no 

reported bioanalytical method exists to date that can quantify concentrations of this compound in 

any biological matrix. The literature search was therefore further expanded to similarly classified 

compounds with respect to bioanalysis to form the basis of the method development. An article 

titled, “Rapid extraction, identification and quantification of oral hypoglycaemic drugs in serum 

and hair using LC-MS/MS” published in Forensic Science International journal (Binz et al, 2012) 

was referred to obtain chromatographic and mass spectrometric parameters that could be used in 

development of the proposed method for the glyburide analogue. 

2.1 MS tuning and detection of glyburide analogue via direct infusion  

 

2.1.1 Stock solution preparation of glyburide analogue 

 

 Glyburide analogue (GA) reference standard was obtained from Sigma-Aldrich (St. Louis, 

MO, USA). The GA stock solution was made by dissolving 0.1 mg of the reference standard in 10 

mL 50:50 dimethylsulfoxide: acetonitrile + 1% formic acid using a 10 mL volumetric flask. The

contents were mixed on a single tube vortexer at the max setting for 30 seconds followed by 

sonication for one minute in a water bath.
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2.1.2    MS tuning with glyburide analogue  

 The initial detection and subsequent tuning of the glyburide analogue for optimum 

sensitivity was carried on Waters Micromass Quattro Micro mass spectrometer (Waters 

Corporation, Milford, MS, USA). The operation of the MS system was carried out by MassLynx 

4.1 software in positive electrospray ionization mode (ESI+). 

 A tuning solution at a concentration of 1 µg/ml (made from 0.1 mg/mL stock solution) was 

directly infused using a 0.500 mL Hamilton syringe at a flow rate of 0.012 mL/min into the MS 

source. Tuning parameters for the ESI source and the mass analyzer were adjusted to detect and 

obtain optimum intensity of the parent ion of glyburide analogue. These parameters under the ESI+ 

mode were as follows: capillary voltage 3.50 kV, cone energy 28.00 V, collision energy 24.00 V, 

extractor voltage 2.00 V, RF lens voltage 0.2 V, source temperature 150°C, desolvation 

temperature 500°C, desolvation gas flow 400 L/hr, cone gas flow 150 L/hr, collision gas (argon) 

flow 0.15 mL/min), gas cell pirani pressure <1x 10-4mbar, LM1 resolution 12.5 V, HM1 resolution 

11.5, LM2 resolution 12.5, HM2 resolution 11.5, ion energy 1 0.5 V, ion energy 2 2.0 V. A total 

ion chromatogram was obtained for the parent ion (MS 1 or MS full scan) showing the precursor 

m/z of 369.24 representing the (M+H)+ mass. Following precursor ion optimization, collision gas 

was employed alongside collision energy potential to obtain optimal product ions of the precursor 

compound. A total ion chromatogram was obtained as MS 2 or product ion scan to see possible 

fragments of the precursor ion within a range of 100 to 500. The product fragment with m/z of 

169.02 was found to be the most intense. This observation was confirmatory with respect to 

theoretical fragmentation pattern within the structure of glyburide analogue as shown in  
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Figure 2.1. Figures 2.2 and 2.3 show representative mass spectra of precursor and product ions 

as detected. 

 

 
 

Figure 2.1 Amide bond cleavage leading to the characteristic ion with m/z of 169.02 as (M+H)+ 

product ion. 

 

 
 

Figure 2.2 (M+H)+ precursor ion peak for glyburide analogue with m/z of 369.24.  
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Figure 2.3 (M+H)+ product ion peak for glyburide analogue with m/z of 169.02. 

 

2.1.3 Initial chromatographic detection of glyburide analogue using SRM 

 

 The chromatographic separation of GA (1 µg/ml in 50:50 MeOH: water) was achieved via 

reversed phase liquid chromatography using a Atlantis dC18 column (2.1 x 50 mm, 3 µm, 100 Å) 

through a gradient (Table 2.1) of mobile phase A (95:5 water:acetonitrile) and mobile phase B 

(acetonitrile + 0.5% formic acid) at a flow rate of 0.300 mL/min. Figure 2.4 shows mass 

chromatograph of GA at 2.77 minutes 

Table 2.1.  Gradient used during initial chromatographic detection of glyburide 

Time A% B% 

0.00 75.0 25.0 

0.20 90.0 10.0 

0.50 85.0 15.0 

4.50 50.0 50.0 

5.50 75.0 25.0 

6.50 75.0 25.0 
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Figure 2.4 Chromatographic detection of GA using SRM (369.24169.02) 

2.2 Internal standard selection and optimization 

 

 Currently, no stable isotope labeled internal standard is available for the glyburide 

analogue; therefore, structurally similar analytes were evaluated as potential internal standards 

(ISTD) for quantitative analysis of glyburide analogue. Table 2.2 shows a summary of all 

compounds tested as potential ISTD. 

Table 2.2. List of all compounds tested as potential ISTD in bioanalysis of GA 

 

Compound Result 

Glyburide (MW 494 g/mol) 

Failed; 

in-source fragmentation; cross-

talk with GA 

Gliclazide (MW 323.41 g/mol) 

Failed; 

Chromatographically resolved, 

possible Na+ adduct formation 

Glipizide (MW 445.54 g/mol) 

Passed; 

Co-elution with GA; no cross-

talk 
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2.2.1 Evaluation of glyburide 

 Glyburide, a sulfonylurea, was initially evaluated due its structural similarity. The 

molecular mass of glyburide is 494 g/mol with a molecular formula of C23H28ClN3O5S (5). Figure 

2.5 shows the structure of glyburide. 

 

 
 

Figure 2.5 Structure of glyburide 

 

 The stock solution of glyburide was made using the analytical reference standard obtained 

from Sigma Aldrich (St. Louis, MO, USA) at a concentration of 0.1 mg/mL in methanol (3). A 

tuning solution of glyburide was prepared at a concentration of 1 µg/mL in methanol from its stock 

solution (0.1 mg/mL in methanol). The initial detection and tuning was carried out similarly to the 

test compound via direct infusion at 12 µl/min. MS 1 or full scan spectrum of glyburide was 

obtained using the MS tune parameters optimized for the test compound. The cone voltage was 

changed from 28 V to 25 V and the capillary voltage was changed from 3.50 kV to 3.00 kV while 

the remaining tune parameters were left unchanged. Figure 2.6 shows MS 1 scan of glyburide 

obtained between the masses of 345 to 520. The m/z values of the (M+H)+ ion of glyburide was 

494.13. However, (M+H)+ ion of the glyburide analogue (m/z 369.01) was also detected. This 

suggested cross-talk between glyburide and the glyburide analogue in their mass spectrometric 

detection. With varying cone voltage values, the phenomenon of in-source fragmentation of 

glyburide to glyburide analogue was confirmed.  Furthermore, MS 1 scan using precursor mass of 
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369 was obtained to confirm the presence of the glyburide analogue. Figure 2.7 shows the 

confirmatory (M+H)+   ion of glyburide analogue (m/z 369.12) during direct infusion of the 

glipizide tuning solution. Moreover, the MS2 or the daughter scan (Figure 2.8) of precursor ion 

with a m/z value of 494 (glipizide) revealed 168.91 (M+H)+ mass ions of the highest relative 

abundance. This observation suggested that glyburide undergoes two amide bond cleavages first 

breaking down to yield the parent test compound (glyburide analogue) with (M+H)+ molecular ion 

of 369.12 m/z and subsequently fragmenting to it daughter ion yielding the (M+H)+ molecular ion 

of 168.91 m/z.  Figure 2.9 reveals amide bond cleavages within the chemical structure of 

glyburide.  This observation led glyburide to be a useless candidate as the internal standard because 

of the prevailing cross talk between the internal standard and the target compound due to a common 

SRM transition. 

 
Figure 2.6 (M+H)+ molecular ions for glyburide analogue and glyburide (precursors) with m/z 

of 369.01 and 494.13 respectively. 
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Figure 2.7 (M+H)+ molecular ion peak with m/z of 369.12 representing glyburide analogue ion 

generated from glyburide.  

 

 
Figure 2.8 (M+H)+ molecular ion peak (product) with m/z of 168.91 representing glyburide 

analogue daughter ion generated from glyburide after multiple amide bond cleavage. 
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360 380 400 420 440 460 480 500 520

%

0

100

GLY+GLYA_Q3_494_25JULY14 1 (0.018) Daughters of 494ES+ 
6.48e6369.12

368.68

368.42

351.42

352.18 394.68
370.12
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Figure 2.9 Amide bond cleavages within glyburide leading to generation of glyburide analogue 

and its characteristic product ion fragment 

 

 2.2.2 Evaluation of gliclazide 

 Gliclazide (MW 323.41, linear formula C15H21N3O3S), another sulfonylurea, was then 

tested as an alternative internal standard. The MS tuning solution was prepared using the reference 

standard from Sigma-Aldrich (St. Louis, MO, USA) at a concentration of 1 µg/mL in methanol 

from the stock solution of 0.1 mg/mL in methanol. Figure 2.10 below shows the chemical structure 

of gliclazide (Sigma-Aldrich, 2014). 

     

 
 

Figure 2.10 Chemical structure of gliclazide. Reprinted from Sigma-Aldrich (2014). 

 

 Using previously set tuning parameters for the test compound, initial detection and tuning 

of gliclazide was carried out in similar fashion. The highest intensity was achieved with the cone 

voltage and capillary voltage set at 30 V and 3.00 kV, respectively. The MS1 spectra for the 

(M+H)+ parent ion of mass 323.26 m/z was obtained as shown in Figure 2.11. Applying a collision 
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energy of 24 V, the MS2 scan revealed several product ions of (M+H)+ including 90.81, 110.36, 

and 127.12 m/z as shown in Figure 2.12. However, upon further monitoring the 90.81 and 110.36 

product fragments were found to be irreproducible even with different cone, capillary and collision 

energies. The fragment with (M+H)+ at 127.12 was eventually selected as the product ion to be 

monitored. This was also based on previously known literature that used a similar SRM transition 

(324.4127.2) to quantify gliclazide (6). In addition, of 127 was monitored as a specific product 

for the precursor ion. Figures 2.13 shows a mass chromatogram of (M+H)+ at 127.27 as the 

product fragment. Figure 2.14 shows the theoretical fragment pattern which is responsible for 

generating such a fragment off the parent ion of gliclazide via amide bond cleavage as seen within 

the test compound as well as glyburide.   

 

 
Figure 2.11 (M+H)+ molecular ion peak (parent) with m/z of 323.26 showing gliclazide 

 

m/z
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Figure 2.12 Product ion spectrum of ion peaks of gliclazide with m/z of 90.81, 110.36, and 

127.12 using 323 as the precursor ion 

 

 
Figure 2.13 (M+H)+ product ion peak of gliclazide with m/z of 127.27 upon a specific transition 

(323127) being monitored.  
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Figure 2.14 Fragment pattern within gliclazide which leads to the generation of daughter ion 

with (M+H)+ of 127 m/z from the parent ion via amide bond cleavage 

 

 Upon selecting specific transition, it was necessary to perform a chromatographic run to 

check the feasibility of simultaneous detection of both, glyburide analogue and gliclazide with 

their respective SRMs. It was anticipated that both, glyburide analogue and gliclazide co-elute and 

have similar retention times so matrix effects during plasma and whole blood sample analysis are 

correctly accounted. To do this, gliclazide solution at a concentration of 1 µg/ml in 50:50 MeOH: 

water was made from its stock solutions and subsequently injected (30 µl) using similar 

chromatographic conditions as the glyburide analogue. Table 2.3 shows specific SRM for 

gliclazide that was monitored during MS/MS analysis.  

Table 2.3. Specific SRM transition being monitored for gliclazide during MS/MS analysis 

  

Q1 (Precursor 

Ion) 

Q3 (Product 

Ion) (Da) 

Cone (V) 

Energy 

Collision (V) 

Energy 

Ionization 

mode 

323.69 127.12 24 28 ESI+ 

 

 A representative chromatogram of gliclazide is shown in Figure 2.15. It was observed that 

the gliclazide peak (represented by characteristic SRM transition 323.69127.12) had a different 

retention time (3.88 minutes) compared to the glyburide analogue (RT 2.77 minutes; Figure 2.4). 

In other words, the compounds were found to be significantly chromatographically resolved. 

Furthermore, cross-talk between gliclazide and the glyburide analogue was observed when the 

SRM transition (369.01169.15) specific to the glyburide analogue was monitored in form of two 

S

O

O

NH N
H

O

N



 
 

43 
 

peaks detected at retention times of 3.71 and 3.93 minutes. This phenomenon can be explained by 

possible Na+ adduct formation of the gliclazide molecule. During the ESI+ process, it could have 

been possible that 2 sodium ions formed an adduct with gliclazide, increasing its mass by 46 Da 

for a total of 369 Da which then generated a fragment of 169 m/z similar to glyburide analogue. It 

was concluded that even if systematic approaches to address possible adduct formation happen to 

be successful, it would be difficult to achieve co-elution of both compound given the vast 

difference in their retention times. Hence, gliclazide was deemed inappropriate as the ISTD in 

bioanalysis of the glyburide analogue.  

 

Figure 2.15 Cross-talk between glyburide analogue and gliclazide detected during a 

chromatographic run of gliclazide only (1 µg/ml) 

 

2.2.3 Evaluation of glipizide 

 Due to the glyburide cross talk and possible sodium adduct formation along with issue of 

chromatographic resolution with gliclazide, glipizide, another sulphonylurea, was tested for its 

use as the IS. The chemical structure of glipizide is shown in Figure 2.16. 
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Figure 2.16 Chemical structure of glipizide (Sigma-Aldrich, 2014). 

 

 Glipizide reference standard in form of white powder (MW of 445.54 g/mol with a 

molecular formula of C21H27N5O4S) was obtained from Sigma Aldrich (St. Louis, MO, USA). The 

MS tuning solution was prepared using the reference standard at a concentration of 1 µg/ml in 

methanol from the stock solution of 0.1 mg/ml in dichloromethane. Figure 2.17 shows the MS 1 

spectra obtained via MS tune file settings for the glyburide analogue. The cone voltage and the 

capillary voltage were set at 17 V and 3.50 kV respectively and rest of the parameters were 

unchanged. The MS1 scan reveals glipizide (M+H)+ with m/z of 445.80. The MS2 scan of glipizide 

obtained with collision energy of 15 V is shown in Figure 2.18. The product ion with m/z of 320.62 

was most abundant. 
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Figure 2.17 (M+H)+ molecular ion peak (precursor) of glipizide with m/z of 445.80 

 

 

 
Figure 2.18 Product ion peak of glipizide with m/z of 320.62 
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 The chromatographic feasibility and co-elution of glyburide analogue and glipizide were 

evaluated similarly to the gliclazide study. The initial chromatographic detection of glipizide was 

carried out using previously used chromatographic parameters for glyburide analogue including 

mobile phase, column and gradient conditions. Separate solutions of the test compound and the 

ISTD were made at 1 µg/ml in 50:50 methanol: water using respective stock and intermediate 

solutions (in methanol). The injection volume for each compound was 30 µL. Figures 2.19 and 

Figure 2.20 show chromatograms of glyburide analogue and glipizide in 50:50 methanol: water. 

Knowing that these analytes are structural analogues to glyburide, both glyburide analogue and 

glipizide show similar retention times while free of cross-talk. The IS elutes at 2.81 min while the 

test compound has a retention time of 2.77 min, which is very favorable for compensation of matrix 

effects. Based on this observation, glipizide was chosen as the IS in developing a suitable LC-

MS/MS based bioanalytical method to quantify glyburide analogue and the solvent of choice was 

50:50 methanol: water for future analysis. 

 
 

Figure 2.19 Chromatographic detection of the glyburide analogue at 1 µg/ml (top) with SRM 

(369.19168.84). No cross talk observed with glipizide upon its SRM (446.29320.85) in the 

glyburide analogue solution (bottom) 
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Figure 2.20 Chromatographic detection of glipizide at 1 µg/ml (top) with SRM 

(446.29320.85). No cross talk observed with glyburide analogue upon its SRM 

(369.19168.84) in the glipizide solution (bottom) 

 

2.3 Post column infusion experiment to evaluate for matrix effects in extracted blank 

mouse plasma 

 

 After the initial detection of the glyburide analogue (test compound) and its structural 

analogue internal standard, glipizide, a post column infusion experiment was carried out to 

evaluate the presence of matrix effects, specifically at their retention times.  Blank extract (Mouse 

Plasma, CD-1, sodium heparin, 3 lots pooled gender) was prepared using HybridSPE 96 well 

precipitation plate (Sigma, St. Louis, MO, USA) as follows: first, a 75 µL aliquot of water was 

added to the Hybrid SPE plate to pre-wet the bed. To this, 25 µl of blank plasma was added after 

being vortexed and centrifuged (3000 rpm, 5 minutes). Then, 300 µL of 1% formic acid in 

acetonitrile was added as the precipitating reagent. The blank plasma samples were then vortexed 

using a Talboys 96 well plate shaker (Troemner Laboratory Equipments, Thorofare, NJ, USA) for 

2 minutes. The samples were then collected onto a Waters 1 mL collection plate (Waters 

Corporation, Milford, MA, USA) using the Tomtec Quadra (Hamden, CT, USA) vacuum manifold 
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and evaporated to dryness using N2 (60 psi) via SPE Dry (Biotage, Charlotte, NC, USA) 96 well 

plate evaporator at 50 oC. The samples were then reconstituted using 100 µl of 50:50 methanol: 

water followed by mixing for 1 min on the Talboys 96 well plate shaker. Thirty microliters of 

sample was injected onto the LC-MS and data were collected for three replicates while performing 

a post column infusion of glyburide analogue at 100 ng/mL concentration. Phospholipids were 

monitored at cone energy of 90 V and collision energy of 5. The specific SRM transition monitored 

to detect phospholipids was 184184. The inlet file, MS tunes file and the SRM transition being 

monitored for glyburide were same as used during the initial chromatographic run. Figure 2.21 

shows the post column infusion chromatogram obtained in this experiment. 

 

 

 

  
Figure 2.21 Post column infusion chromatogram of 100 ng/ml glyburide analogue showing the 

glyburide analogue (top), while monitoring characteristic SRM (184184) for phospholipids 

(bottom).   

 

 The post column infusion experiment revealed areas of signal suppression around the 

retention times (2.77 – 2.81 minutes) at which both glyburide analogue and the ISTD were 

detected. Also, it appeared that the HybridSPE plate did not completely remove phospholipids. In 
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order to minimize matrix effects, the chromatographic optimization experiments were carried out 

to cause “peak shift” such that the peaks of interest elute away from the regions of ion suppression 

as identified during the post column infusion experiment. 

2.4 Chromatographic optimization based on results of post column infusion experiment  

 

2.4.1 Sample Solvents vs Peak Shape  

 

 In order to see the effect of solvent composition (reconstitution solution) on peak shape 

and signal intensity, glyburide analogue at 1 µg/ml in the baseline composition (50:50 methanol: 

water) was subjected to increased organic (60:40 MeOH: H2O) and aqueous (10:90 MeOH: H2O) 

conditions. The initial gradient at which glyburide analogue was detected remained unchanged. 

Figure 2.22 show GA detection at increased organic condition where peak splitting was observed. 

In contrast, no such splitting was observed with increased aqueous condition of the sample solvent. 

It was thus concluded that increased aqueous component was necessary to retain the peak shape 

during chromatographic detection of the test article. Similar results were assumed for the ISTD 

due to its similarity in structure and physicochemical properties.  

 

 
Figure 2.22 Chromatographic detection of GA (1 µg/ml) upon increased organic component in 

the solvent phase (60: 40 methanol: water). 
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2.4.2. Gradient Change vs. Peak Shift 

 

A) Modified Gradient 1 

  

 A modified gradient with respect to %B composition was employed where aqueous 

component of mobile phase was changed to organic phase relatively quickly as compared to the 

baseline composition used during the initial detection of GA. Upon changing the gradient from 

15% to 50% between 0.50-4.50 minutes to 15% to 95% between 0.50-4.50 minutes, the retention 

time changed from 2.77 minutes to 2.70 minutes (Figure 2.24). A steeper gradient (Figure 2.23) 

change favored the elution of peak of interest slightly away from the region of suppression. Based 

on this result, gradient was further modified to improve elution (reduced RT).  

 

 
 

Figure 2.23 Modified gradient 1 

 

 
Figure 2.24 Chromatographic shift of GA peak to 2.70 minutes (RT) 
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B) Modified Gradient 2 

 

 A modified gradient 2 was employed where aqueous composition of mobile phase was 

changed to organic phase even more steeply compared to the modified gradient 1. Upon changing 

the gradient from 15% to 95% between 0.50-4.50 minutes to 10% to 98% between 0.20-2.50 

minutes, the retention time changed from 2.70 minutes to 2.16 minutes (Figure 2.26). A steeper 

gradient change (Figure 2.25) favored the elution of peak of interest completely away from the 

region of suppression.  

 

 

Figure 2.25 Modified gradient 2 

 

 
 

Figure 2.26 Chromatographic shift of GA peak to 2.16 minutes (RT) 
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C) Modified Gradient 3 

 

 Upon changing the gradient from 10% to 98% between 0.20-2.50 minutes to 0% to 98% 

between 0.20-2.50 minutes (Figure 2.27), no change in the retention time was observed. However, 

a two-fold increase in the signal intensity was observed (Figure 2.28). Modified gradient 3 was 

finalized for subsequent chromatographic separation for future analysis. 

 

 
 

Figure 2.27 Modified gradient 3 

 

 
Figure 2.28 Chromatographic detection of GA peak with no change in the retention time and 

increased signal intensity.  
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away from the suppression region) as the test compound. Chromatographic detection of GA and 

ISTD (both 1 µg/ml) was carried out with modified gradient 3 conditions in a combined solution 

in 10:90 methanol: water. Figure 2.29 shows co-elution of GA and ISTD as expected with 

modified gradient conditions and an overall increase in the signal intensity for both compounds 

with respect to the baseline gradient conditions.    

 

 

   
Figure 2.29 Chromatographic detection of GA/GP (1 µg/ml) with finalized gradient conditions 
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LM1 resolution 12.5 V, HM1 resolution 11.5, LM2 resolution 12.5, HM2 resolution 11.5, ion 

energy 1 0.5 V, ion energy 2 2.0 V. 

o Inlet File Parameters/Chromatographic Conditions: 

 Chromatographic separation of glyburide analogue and the ISTD were achieved using a 

Shimadzu LC-10AD VP binary pump and HTC PAL O2-AS Auto-sampler with following inlet 

parameters and LC conditions: Atlantis C18 column (2.1 x 50 mm, 3 µm, 100 Aº), mobile phase 

A (95:5 water: acetonitrile + 0.5% formic acid), mobile phase B (acetonitrile + 0.5% formic acid), 

column temperature 40 ºC, sample temperature 5 ºC, sample injection volume 30 µL. The 

following step gradient conditions were used as shown in Table 2.4 with a total run time of 4.50 

minutes.  

Table 2.4. Gradient conditions used in the bioanalysis of glyburide analogue 

Time A% B% Flow (ml/min) 

0.00 75.0 25.0 0.300 

0.20 100.0 0.0 0.300 

2.50 2.0 98.0 0.300 

3.75 75.0 25.0 0.300 

4.50 75.0 25.0 0.300 

 

o MS/MS Method Parameters: 

 MS/MS analysis of glyburide analogue and the ISTD was achieved using following SRM 

parameters as shown in Table 2.5 for a total detection time of 4.50 minutes.  

Table 2.5. MS/MS parameters used in the bioanalysis of glyburide analogue 

Q1 

(Precursor 

Ion) 

Q3 (Product  

Ion) (Da) 

Cone (V) 

Energy 

Collision(V) 

Energy 

Dwell 

Time (s) 

369.19 168.84 28.00 24.00 0.35 

446.29 320.85 17.00 15.00 0.35 
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2.5 HybridSPE extraction optimization 

 

2.5.1 Mouse Plasma Evaluation 

 

2.5.1.1 Selectivity based on extraction solvent variants 

 The HybridSPE technology allowed for two variants of extraction solvent that could be 

used for selective extraction of compound of interest from the biological matrix (plasma): 1% 

formic acid in acetonitrile and 1% ammonium formate in methanol. In-well precipitation method 

using HybridSPE 96-well format was performed to extract blank plasma (3 lots, pooled gender) 

from mouse (CD-1 strain with sodium heparin) in a similar fashion as the post column infusion 

experiment. Both extraction solvents namely 1% formic acid in acetonitrile and 1% ammonium 

formate in methanol were tested separately during the extraction procedure while other parameters 

remained unchanged. Figure 2.30 and Figure 2.31 show chromatograms of blank plasma extract 

(injection vol. 30 µl) with 1% formic acid in acetonitrile and 1% ammonium formate in methanol 

with relative signal responses. Selectivity was evaluated based on the relative signal response 

during the SRM of glyburide analogue and glipizide in each solvent. In blank extracts, a relatively 

higher signal (from other co-eluents) was observed with glyburide analogue (1320 counts) where 

extraction was carried out with 1% formic acid in acetonitrile compared to the signal response 

(756 counts) of the blank extracted with 1% ammonium formate in methanol. Similar differences 

were observed with glipizide as well. Based on these chromatographic results, it was concluded 

that a more selective extraction was possible with 1% ammonium formate in methanol as the 

extraction solvent.    
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Figure 2.30 Blank plasma extracted with 1% formic acid in acetonitrile. Glipizide (top) and 

glyburide analogue (bottom) were monitored using specific SRM transitions 446.29320.85 and 

369.19168.84 respectively. 

 

 
Figure 2.31 Blank plasma extracted with 1% ammonium formate in methanol. Glipizide (top) 

and glyburide analogue (bottom) were monitored using specific SRM transitions 446.29320.85 

and 369.19168.84 respectively. 
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2.5.1.2 Recovery and Matrix Effect Evaluation Post Chromatographic Optimization 

 

I) Qualitative Assessment: Post Column Infusion Experiment 

 

 While post chromatographic experiments enabled favorable results with peak shifting away 

from regions of signal suppression due to matrix effects, it is however possible that the whole 

suppression region might have shifted along with the peaks of interest. It was thus imperative to 

do a qualitative assessment of matrix effects via post column infusion experiment with optimized 

gradient conditions. To do this, a post column infusion experiment was carried out in a similar 

fashion as before with glyburide analogue and glipizide directly infused (100 ng/ml, 12 µL/min) 

during a chromatographic run of blank extract using 1% ammonium formate in methanol as the 

extraction solvent. Figure 2.32 shows the chromatographic run of a blank plasma extract where 

SRM transitions of glyburide analogue, glipizide and phospholipids were monitored. The vertical 

blue line shows the peak retention time for glyburide and glipizide free from phospholipid presence 

and minimized matrix effects. 
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Figure 2.32 Post column infusion chromatogram showing, glipizide (446.29320.85), glyburide 

analogue (369.19168.84) and phospholipids (184184) from a blank plasma extract. The 

vertical blue line represents retention time region of GA and GP approximately at 2 minutes.  

 

II) Quantitative Assessment: Matuszewski et al. method (i.e., Post-Extraction Addition) 

  

 In this procedure, three sets of samples were prepared and subsequently injected. Set A) 

consisted of neat standard solutions of glyburide analogue and the internal standard at 50 ng/mL 

and 200 ng/mL respectively. Set B) consisted of 3 different blank matrices (3 lots, pooled together) 

fortified at same concentration of standard solutions as in set A post extraction. Finally set C) 

consisted of 3 different blank matrices (3 lots, pooled together), supplemented before extraction 

with the same amount of standards as in set A (Matuszewski et al., 1998). The standard solutions 

were made at desired concentrations from 1 µg/mL stock solutions.  

 The matrix effect, extraction efficiency and absolute recovery were then calculated using 

the following equations:  
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• Matrix Effect 

o %ME = (B-A)/A x 100 

• Extraction Efficiency 

o %EE = C/B x 100 

• Absolute Recovery 

o %AR = C/A x 100 

 

 Table 2.6 and Table 2.7 show quantitatively assessed parameters (matrix effects, 

extraction efficiency and absolute recovery) for glyburide analogue and ISTD respectively in 

comparison with both extraction solvents (1 % formic acid in acetonitrile vs 1 % ammonium 

formate in methanol). 

Table 2.6. Quantitative analysis of % matrix effect, % extraction efficiency and % absolute 

recovery for glyburide analogue comparing both variants of extraction solvent in mouse plasma 

 Actual Response (Area GA/Area ISTD) 

 Pre-Spiked 50 ng/ml (C) Post-Spiked 50 ng/ml (B) Neat (A) 

Replicate Methanol Acetonitrile Methanol Acetonitrile N/A 

1 0.080 0.071 0.063 0.174 0.080 

2 0.066 0.073 0.069 0.122 0.076 

3 0.072 0.070 0.068 0.130 0.078 

Average 0.073 0.071 0.067 0.142 0.078 

      

Parameter Methanol Acetonitrile    

%ME -15% 82%    

%EE 109% 50%    

%AR 93% 91%    

 

 

 

 

 

 

 

A: Area of the neat standard solution 

B: Area of post extraction spiked blank 

C: Area of pre-spiked extracted blank 
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Table 2.7. Quantitative analysis of % matrix effect, % extraction efficiency and % absolute 

recovery for glipizide comparing both variants of extraction solvent in mouse plasma 

ISTD Response in Area Counts 

 Pre-Spiked 50 ng/ml (C) Post-Spiked 50 ng/ml (B) Neat (A) 

Replicate Methanol Acetonitrile Methanol Acetonitrile Neat 

1 7608 5185 13900 13515 10571 

2 7828 7509 13993 14660 10246 

3 7068 6624 15518 14790 10415 

Average 7501 6439 14470 14322 10411 

      

Parameter Methanol Acetonitrile    

%ME 39% 38%    

%EE 52% 45%    

%AR 72% 62%    

  

 Based on these results, it was concluded that 1% ammonium formate in methanol 

performed better than 1% formic acid in acetonitrile as far as matrix effect and recovery of the 

test analyte and the IS were concerned.  

2.5.1.3 Chromatographic detection of glyburide Analogue and glipizide  

 

 Following recovery and matrix effects evaluation, glyburide analogue and the ISTD were 

extracted via HybridSPE using 1% ammonium formate in methanol as the extraction solvent using 

similar experimental procedure as before. A 30 µL aliquot of each sample extract was submitted 

for LC-MS/MS analysis. Figure 2.33 shows chromatographic detection of both the compounds at 

1 µg/mL in extracted plasma sample.  
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Figure 2.33 Chromatographic detection of GA (top: 369.19168.84) and ISTD (middle: 

446.29320.85) from a pre-spiked plasma sample followed by HybridSPE extraction with 1% 

ammonium formate in methanol. TIC (bottom) shows co-elution of the test article and ISTD as 

desired 

 

2.5.2 Whole Blood evaluation  

 

2.5.2.1 Recovery and Matrix Effect Evaluation Post Chromatographic Optimization 

 

I) Qualitative Assessment: Post Column Infusion Experiment 

 

 A post column infusion experiment was conducted to evaluate regions of suppression or 

enhancement using whole blood blank extract in a similar fashion as mouse plasma. However, 

based on results from solvent comparison study with mouse plasma, only 1% ammonium formate 

in methanol was tested in this evaluation. Figure 2.34 shows the chromatographic run of a blank 

whole blood extract where SRM transitions of glyburide analogue, glipizide and phospholipids 

were monitored. The vertical blue line shows the peak retention time for glyburide and glipizide 

free from phospholipid presence and minimized matrix effects. 
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Figure 2.34 Chromatographic detection of GA (top: 369.19168.84) and ISTD (middle: 

446.29320.85) from a pre-spiked plasma sample followed by HybridSPE extraction with 1% 

ammonium formate in methanol. TIC (bottom) shows co-elution of the test article and ISTD as 

desired 

 

II) Quantitative Assessment: Matuszewski et al method (i.e., post extraction addition) 

 

 A quantitative assessment of matrix effect, extraction efficiency and absolute recovery 

was done using mouse whole blood in a similar fashion as plasma for glyburide analogue and 

glipizide. Based on recovery results obtained for GA and ISTD in plasma, only 1% ammonium 

formate in methanol was used as the extraction solvent. However, three different concentration 

levels were tested i.e. 10, 100 and 500 ng/ml of GA. Table 2.8 and Table 2.9 show 

quantitatively assessed parameters (matrix effects, extraction efficiency and absolute recovery) 

for glyburide analogue and ISTD respectively.  
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Table 2.8. Quantitative analysis of % matrix effect, % extraction efficiency and % absolute 

recovery for glyburide analogue comparing both variants of extraction solvent in whole blood 

 

GA Actual Response (Area GA/Area ISTD) 

 
Pre-Spiked (ng/ml)  

(C) 

Post-Spiked (ng/ml)  

(B) 

Neat  

(A) 

Replicate 10 100 500 10 100 500 10 100 500 

1 0.029 0.27 1.5 0.036 0.28 1.6 0.040 0.32 1.6 

2 0.032 0.28 1.6 0.034 0.29 1.6 0.040 0.32 1.6 

3 0.035 0.28 1.6 0.035 0.28 1.5 0.038 0.31 1.6 

Average 0.032 0.28 1.6 0.035 0.28 1.6 0.039 0.32 1.6 

          

Paramete

r 
10 100 500       

%ME -11% -11% -3%       

%EE 91% 98% 100%       

%AR 81% 87% 97%       

 

Table 2.9. Quantitative analysis of % matrix effect, % extraction efficiency and % absolute 

recovery for glyburide analogue comparing both variants of extraction solvent in whole blood 

 

IS Response in Area Count 

 
Pre-Spiked (ng/ml)  

(C) 

Post-Spiked (ng/ml)  

(B) 

Neat 

(A) 

Replicate 10 100 500 10 100 500 10 100 500 

1 9489 8213 10164 15096 20016 21577 18108 18099 17339 

2 12241 4684 11632 16758 10406 22106 17588 17615 17574 

3 9922 5133 18108 19517 19957 20895 17776 17968 17486 

Average 10550 6010 13301 17123 16793 21526 17824 17894 17466 

          

Parameter 10 100 500       

%ME -4% -6% 23%       

%EE 62% 36% 62%       

%AR 60% 34% 76%       

 

2.5.2.2 Chromatographic detection of glyburide Analogue and glipizide  

 

 Following recovery and matrix effects evaluation, glyburide analogue and the ISTD were 
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extracted via HybridSPE using 1% ammonium formate in methanol as the extraction solvent using 

similar experimental procedure as before. A 30 µL aliquot of each sample extract was submitted 

for LC-MS/MS analysis. Figure 2.35 shows chromatographic detection of both the compounds at 

1 µg/ml in extracted whole blood sample. 

 

 

 
Figure 2.35 Chromatographic detection of GA (top: 369.19168.84) and ISTD (middle: 

446.29320.85) from a pre-spiked whole blood sample followed by HybridSPE extraction with 

1% ammonium formate in methanol. Total Ion Chromatogram (bottom) shows co-elution of the 

test article and ISTD as desired. 
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was spiked into fresh CD-1 mouse whole blood with sodium heparin at two different 

concentrations: 2.50 ng/ml and 800 ng/ml. The whole blood samples were then vortexed and 

centrifuged at 3000 rpm for 5 minutes at 5 ºC. A 25 µl aliquot from plasma layer on top and red 

blood cell layer at bottom were extracted using HybridSPE and analyzed by LC-MS/MS. The 

blood to plasma ratio was calculated from the following equation:  

 

𝐾
𝑏

𝑝
= (𝐾

𝑒

𝑝
 ∗ 𝐻) + (1 − 𝐻);  

 

In the above equation, K
b

p
 is the relative whole blood to plasma ratio, 𝐾

𝑒

𝑝
  is the erythrocyte (red 

blood cell) to plasma partition coefficient defined by the response for whole blood to plasma and 

H is the hematocrit level in mice. Table 2.10 shows the blood to plasma ratio at two different 

concentration levels using spiked test compound. 

Table 2.10. Blood to plasma ratio at two concentration levels in spiked samples of glyburide 

analogue. 

 

Blood to Plasma 

Ratio 
Low QC (2.5 ng/ml) High QC (800 ng/ml) 

𝐾
𝑏

𝑝
 1.11 1.17 

  

  The glyburide analogue showed fairly even whole blood-to-plasma distribution for two 

concentrations tested. Hence, it can be inferred that drug concentration levels calculated using 

direct whole blood analysis should show a good correlation with plasma concentration values and 

could be used as an alternative to plasma values which would be simpler and faster.       
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CHAPTER 3: EXPERIMENTAL 

 

 

 

3.1 Chemicals and reagents 

 

 Glyburide analogue and glipizide were purchased from Sigma Aldrich (St. Louis, MO, 

USA). Pooled gender mouse plasma and whole blood (CD-1 strain with sodium heparin) were 

purchased from Bioreclamation IVT (Westbury, NY, USA). HPLC grade water was purchased 

from Acros Organics (Fairlawn, NJ, USA). HPLC grade methanol and formic acid were purchased 

from EMD Chemicals (Gibbstown, NJ, USA). Ammonium formate was purchased from Sigma 

Aldrich (St. Louis, MO, USA). Dimethyl sulfoxide (DMSO) was purchased from Spectrum 

Chemicals (New Brunswick, NJ, USA). Dichloromethane and acetonitrile were purchased from 

Burdick and Jackson (Muskegon, MI, USA). 

3.2 Materials and equipment 

 

 Plasma and whole blood samples were aliquoted into 1.5 mL microcentrifuge tubes 

purchased from VWR International (Westchester, PA, USA). Prior to sample preparation, plasma 

was centrifuged using an Allegra X-15R centrifuge by Beckman Coulter, Inc. (Brea, CA, USA). 

All aliquoting was carried out using Biohit mechanical pipettes with adjustable volumes from 

Sartorius AG (Goettingen, Germany) using Neptune pipette tips from Biotix Inc. (San Diego, CA, 

USA). All repeat aliquots were carried out using Eppendorf Repeater M4 mechanical pipettes and 

Combitips advanced pipette tips from Eppendorf (Hamburg, Germany). Plasma and whole blood

samples were mixed using a multi-tube vortexer from VWR International (Westchester, PA, USA). 
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Plasma and whole blood samples were extracted using HybridSPE Phospholipid Precipitation 96 

well plates from Sigma Aldrich (St. Louis, MO, USA). Extracted samples were mixed using a 

Talboys 96 well plate shaker from Troemner Laboratory Equipments (Thorofare, NJ, USA) and 

collected into a Waters 1 ml 96 well collection plate purchased from Waters Corporation (Milford, 

MA, USA) under vacuum using Tomtec Quadra vacuum manifold from Tomtec (Hamden, CT, 

USA).  All samples were evaporated to dryness using SPEDry 96 well plate evaporators from 

Biotage (Charlotte, NC, USA). 

3.3 Instruments and HPLC conditions 

 

 HPLC separations during method development and validation experiments were carried 

out using following equipment: Shimadzu system controller SCL-10A VP, pumps LC-10 AD VP, 

solvent degasser DGU14A (Shimadzu, Kyoto, Japan). An HTS PAL Autosampler from CTC 

Analytics (Zwingen, Switzerland and a CH-30 column heater from Eppendorf (Westbury, NY, 

USA) were used. Reversed phase liquid chromatography was carried out using an Atlantis C-18 

column (2.1 x 50 mm, 3 µm) as the loading and elution column purchased from Waters 

Corporation (Milford, MA, USA). A binary gradient using two Shimadzu pumps operated with 

one controller was carried out using mobile phase A consisting of 95:5 water: acetonitrile with 

0.5% formic acid and mobile phase B consisting of acetonitrile with 0.5% formic acid. Modified 

gradient 3 was used at flow rate of 0.300 mL/min. The column temperature and the sample 

temperature were maintained at 40 C and 5 C respectively. Intermittent washes between sample 

injections were made using two cycles of methanol.  

3.4 Mass Spectrometer Parameters 

 

 The mass spectrometric detection was carried out by using a Micromass Quattro micro 

mass spectrometric system by Waters (Milford, MA, USA) equipped with a triple quadrupole mass 
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analyzer operated in the positive electrospray ionization mode with selected reaction monitoring 

(SRM) of the glyburide analogue and glipizide. Initial tuning of the target analyte and internal 

standard using stock solutions (1 µg/ml) was performed via direct infusion method through a 500 

µl Hamilton syringe. LC-MS/MS evaluations of glyburide analogue and glipizide (ISTD) during 

method development and validation experiments were carried out using Q1 full scan and Q3 

product ion scan. The mass spectrometer parameters to achieve maximum sensitivity of both 

compounds were finalized as follows: capillary voltage 3.50 kV, cone energy 28.00 V, extractor 

voltage 2.00 V, RF lens voltage 0.2 V, source temperature 150°C, desolvation temperature 450°C, 

desolvation gas flow 400 L/hr, cone gas flow 150 l/hr, collision gas (argon) flow 0.15 ml/min), gas 

cell pirani pressure <1x10-4 mbar, LM1 resolution 12.5 V, HM1 resolution 11.5, LM2 resolution 

12.5, HM2 resolution 11.5, ion energy 1 0.5 V, ion energy 2 2.0 V. Table 3.1 shows the SRM 

transition and MS/MS analysis parameters.  

Table 3.1. MS/MS parameters used for glyburide analogue and glipizide  

 

Q1 

(Precursor 

Ion) 

Q3 (Product or 

“Daughter” 

Ion) (Da) 

Cone (V) 
Collision 

(V) 

Dwell 

Time (s) 

369.19 168.84 28.00 24.00 0.35 

446.29 320.85 17.00 15.00 0.35 

 

3.5 Stock solution and working solution preparation 

  

 The glyburide analogue stock solution was made in 50:50 dimethylsulfoxide: 1% formic 

acid in acetonitrile at a concentration of 100 µg/mL. The glipizide internal standard stock solution 

was prepared in dichloromethane at a concentration of 100 µg/mL. Intermediate working stock 

solution for both compounds were made at 10 µg/mL in methanol followed by a final dilution to 

1 µg/mL in 10:90 methanol: water. All stock solutions and subsequent working solutions were 

prepared fresh throughout the validation experiments.  
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3.6 Preparation of calibration standards and quality control samples in mouse plasma and 

whole blood 

 

 Pooled mouse plasma and whole blood from at least two donors (CD-1 strain with sodium 

heparin) were used to prepare the calibration standards and quality control samples. A 50 µL 

aliquot of a 10 µg/mL intermediate solution of Glyburide was spiked into 450 µL of blank plasma 

or whole blood to obtain the highest calibration standard at 1000 ng/mL. The high standard was 

then used to spike into 1.5 mL micro centrifuge tube to prepare remaining eight calibration 

standards (2.0, 4.0, 10.0, 25.0, 50.0, 100.0, 250.0 and 500.0 ng/mL). A 20 µL aliquot of 10 µg/mL 

intermediate solution was spiked into 230 µL of plasma or whole blood to obtain the highest 

quality control sample at 800 ng/mL. Similarly, a 12.5 µL aliquot of 1 µg/mL intermediate solution 

was spiked into 237.50 µL blank plasma or whole blood to obtain the medium QC. Finally, 25.00 

ng/ml standard calibrator was used to obtain the low QC at a concentration of 2.5 ng/mL by spiking 

25.0 µL aliquot into 225.0 µL blank of whole blood. Calibration standards and quality control 

samples were freshly prepared for all analytical runs. The calibration standards and QC samples 

were prepared in a similar fashion to contain less than 10 % (v/v) of the spiking solution to comply 

with the SOP to stimulate real matrix samples as much as possible. 

3.7 Extraction via HybridSPE 

 

 In order to overcome the challenge of limited sample volume from mice and render samples 

free of phospholipids that become cause of concern due to matrix effects in a LC-MS/MS study, 

selective extraction of standard calibrators and quality control samples was carried out via 

HybridSPE precipitation technology. The goal of this method was to maximize target analyte 

recovery while minimizing recovery of background phospholipids and endogenous proteins found 

within plasma or whole blood. In the pre-extraction phase of the sample preparation, a 25 µL 
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aliquot of standard calibrators and QC samples was mixed with 75 µL of deionized water in a 1.5 

mL microcentrifuge tube. To this, a 50 µL aliquot of glipizide ISTD was added at a concentration 

of 200 ng/mL. The sample mixture was then vortexed on a multi tube vortexer for 30 seconds. The 

entire content of the microcentrifuge tube was then transferred to a single well on the 96 well plate 

HybridSPE precipitation plate. Following this, a 300 µL aliquot of 1 % ammonium formate in 

methanol was added as the extraction solvent. All standard calibrators and QC samples were 

extracted in a similar fashion. The 96 well extraction plate was then covered with a polypropylene 

mat (hard plastic) with edges taped to ensure a thorough fit. The extraction plate was then put on 

Talboys shaker for 1 minute at 800 rpm to ensure thorough extraction. The mixture was allowed 

to sit for 1 minute. Using Tomtec Quadra’s vacuum manifold, the samples were pulled through 

the depth filter of the HybridSPE plate over a time of 3 minutes with a pressure of -20 mm/Hg. 

The samples were collected onto a Waters 1 mL collection plate and submitted to SPEDry for 

evaporation of the extraction solvent. The samples were dried at 50 degrees C for roughly 10 

minutes at 60 psi until the all wells were dried. After that, the plate was allowed to cool for about 

2 minutes at room temperature. Samples were then reconstituted with 100 µl aliquot of 90:10 

water: methanol solution. The samples were mixed for 1 minute on Talboys shaker. A 30 ul sample 

was injected onto LC-MS for further evaluation. 

3.8 Plasma Validation parameters 

 

3.8.1 Linearity 

 

 Nine calibration standards were prepared by serial dilution at concentrations of 2, 4, 10, 

25, 50,100, 250, 500, and 1000 ng/mL in CD-1 mouse plasma with sodium heparin. Stock solutions 

of glyburide analogue and glipizide (1 µg/mL) were used to make necessary intermediate solutions 

to carry out serial dilution. All standards were analyzed in duplicates. Standard curves were 
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constructed using linear regression with a 1/x2 weighting factor to determine concentration of 

glyburide analogue.  

3.8.2 Precision and Accuracy 

 

 Precision and accuracy were assessed using quality control samples at three different 

concentrations and were analyzed in four separate runs for plasma. Intra- and inter-assay precision 

and accuracy were determined by extracting LLOQ, low, medium and high QC in six replicates to 

determine the intra assay performance of the analysis. Concentration of quality control samples 

were calculated from the calibration curve analyzed in the same run. 

3.8.3 Selectivity 

 

 Mouse plasma and whole blood samples from three different lots (pooled together) were 

analyzed in triplicate to evaluate selectivity with regard to interferences. The mixed lot was 

extracted using similar extraction procedure as described in section 3.7 with the addition of the 

internal standard. The selectivity criterion was that the peak area response co-eluting with 

glyburide analogue must be less than 20% of the average peak area of LLOQ samples of glyburide 

for all replicates. 

3.8.4 Stability 

 

 Stock solution stability study was dispensable and adverse effects were minimized due to 

fresh preparation for each inter assay run. Four-hour (bench side extraction time) bench top 

stability was evaluated by preparing six additional replicates of each QC during the first validation 

run with freshly prepared calibration standards and quality control samples for precision and 

accuracy assessment. Post preparative stability was determined to evaluate extracted samples 

stored in the autosampler beyond 24 hours at 5 ºC in the event of an instrument malfunction that 

would require re-injection of samples. Bench top stability was assessed by extraction of low and 
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high QC samples whereas post preparative stability was assessed via re-injection reproducibility 

with respect to precision and accuracy.   

3.9 Whole Blood Partial Validation parameters 

 

 A partial validation with whole blood samples containing spiked glyburide analogue and 

ISTD at same concentration as plasma was conducted through evaluation of linearity, precision 

and accuracy and stability in similar fashion as plasma samples from a single run. Standard 

calibrators and QC samples were prepared at similar concentration to assess linearity, precision 

and accuracy and stability. In addition, whole-blood to plasma correlation was carried out to check 

the applicability of the developed method for direct analysis of GA in whole blood. 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

 

 

 

4.1 Plasma Validation Results 

 

4.1.1 Limit of Detection, Limit of Quantification and Linearity 

 

 The peak area response of glyburide analogue in blank extract sample spiked with internal 

standard was used to determine the limit of detection. A total of 12 blank replicates from pooled 

plasma (three lots, mixed gender) were extracted and peak area response were obtained. Standard 

deviation of these samples was calculated and LOD in concentration units (ng/mL) was obtained 

by taking the ratio of 3SDblank to the slope of the calibration curve. The LOD was found to be 423 

pg/mL  

 The LLOQ for glyburide was established at 2 ng/mL. The peak area ratios of glyburide 

analogue to glipizide internal standard in mouse plasma linearly correlated to concentration over 

the range of 2 to 1000 ng/mL. The calibration curve (1/X2 weighted; linear) r2 values of three 

assays were 0.994, 0.992, and 0.991 with a mean of 0.992, SD 0.002 and %RSD 0.154. The slope 

values of the same were 0.00163, 0.00224, and 0.00202 with a mean of 0.00196, SD 0.00031 and 

%RSD 14.6. The reverse predicted concentrations for glyburide analogue calibration standard 

were acceptable ranging from -12.16 % to 8.41 % in term of percent bias. The method precision 

assessed in term of relative standard deviation ranged from 6.08 % to 14.08 %. Table 4.1 shows 

the reverse predicted residuals for glyburide analogue standards from a total of three runs.
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Table 4.1. Reverse predicted concentrations for glyburide analogue calibration standards (ng/mL) 

 

Glyburide Analogue Concentration (ng/ml) 

RUN 

No. 

2.00 4.00 10.00 25.00 50.00 100.00 250.00 500.00 1000.00 r2 

1 2.03 3.94 11.14 26.24 55.11 107.46 251.06 505.38 1036.51 0.994 

 2.62 3.94 8.95 21.41 51.77 94.72 248.10 454.09 987.64  

2 1.85 4.22 9.57 22.66 48.86 94.23 226.92 480.89 924.93 0.992 

 2.09 4.21 9.28 16.64 55.81 111.94 277.65 524.04 1020.79  

3 2.25 4.04 7.96 22.42 63.73 122.52 274.05 639.17 1118.61 0.991 

 1.88 3.56 7.73 22.39 49.96 95.17 249.85 534.62 1006.33  

 

Mean 2.12 3.99 9.11 21.96 54.21 104.34 254.61 523.03 1015.80 0.992 

SD 0.285 0.242 1.234 3.092 5.416 11.635 18.725 63.975 63.504 0.002 

%RSD 13.45 6.08 13.55 14.08 9.99 11.15 7.35 12.23 6.25 0.154 

%BIAS 6.00 -0.38 -8.95 -12.16 8.41 4.34 1.84 4.61 1.58   

 

4.1.2 Selectivity 

  

 The selectivity of the assay was evaluated in three different lots of blank mouse plasma for 

a total of 12 replicates in four runs. Average apparent blank area count at the retention time of the 

glyburide analogue was found to be less than 20 % of the average LLOQ area count from all those 

four runs. Figure 4.1 shows a representative chromatogram of a blank plasma extract sample with 

SRM transitions for glyburide analogue (369.19168.84) and the internal standard, glipizide 

(446.29320.85) monitored in a chromatographic run of blank plasma extract.  
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Figure 4.1 Representative chromatogram of a blank sample extract showing peak areas for the 

glyburide analogue (top) and internal standard (bottom). 

  

4.1.3 Precision and Accuracy 

 

 Intra- and inter assay precision and accuracy for the LLOQ, low, medium and high QC 

samples were determined in four runs. The intra assay accuracy or % bias ranged from -3.74 to 

1.83 percent for all concentrations including the LLOQ QC sample. The intra assay precision 

ranged from 3.16% to 14.6%. Similarly, inter assay accuracy and precision ranged from -11.66 % 

to 4.60 % and 7.79 % to 14.5 % respectively. These results indicate that assay method to quantify 

glyburide analogue was both accurate and precise according to the established acceptance criteria. 

Tables 4.2 and 4.3 show intra assay and inter assay precision and accuracy calculations 

respectively. 
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Table 4.2. Intra Assay Precision and Accuracy (1 Assays, 3 Replicates) 

 

QC (ng/mL) 
LLOQ 

(2 ng/mL) 

High QC 

(800 ng/mL) 

Medium QC 

(50 ng/mL) 

Low QC 

(2.50 ng/mL) 

Mean 2.04 781.46 48.13 2.47 

SD 0.176 24.7 7.04 0.356 

%RSD 8.62 3.16 14.6 14.4 

%Bias 1.83 -2.32 -3.74 -1.40 

 

Table 4.3. Inter Assay Precision and Accuracy (3 Assays, 3 Replicates) 

 

QC (ng/mL) 
LLOQ 

(2 ng/mL) 

High QC 

(800 ng/mL) 

Medium QC 

(50 ng/mL) 

Low QC 

(2.50 ng/mL) 

Mean 2.26 836.8 44.2 2.64 

SD 0.316 73.4 3.44 0.383 

%RSD 14.0 8.77 7.79 14.5 

%BIAS 13.0 4.60 -11.7 5.67 

 

4.1.4 Stability 

 

 Post preparative stability was assessed using re-injection reproducibility of stored QC 

(LLOQ, high, medium and low) samples at 5 ºC in the auto-sampler. The processed samples were 

stable for 14 days with a % bias of -16.4% and -15.8 % with %RSD of 6.47% and 10.9 % 

respectively for high and low QC samples the same (≤20% required for precision and accuracy). 

Four hour benchtop stability revealed a %bias of -5.70% and -6.00 % with %RSD of 3.65% and 

12.9% for high and low QC samples respectively (≤15% required for precision and accuracy). 

4.2 Whole Blood Partial Validation Results 

4.2.1 Linearity and Precision & Accuracy 

  

 Whole blood partial validation was carried out in similar fashion as plasma validation with 

respect to standard calibrators, quality control samples, exaction procedure and the like. One intra 

assay run was conducted to assess linearity, precision and accuracy and stability (four hour 
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benchtop stability). Table 4.4 and 4.5 show reverse predicted residuals of glyburide analogue 

standard calibrators and intra assay precision and accuracy.  

Table 4.4. Reverse predicted concentrations for glyburide analogue calibration standards 

(ng/mL). An * suggest excluded value when reporting the range. Linear, 1/X2 weighted. 

 

Glyburide Analogue Concentration (ng/mL) 

RUN 

No. 

2.00 4.00 10.00 25.00 50.00 100.00 250.00 500.00 1000.00 r2 

1 2.06 4.26 11.58 27.46 50.98 97.65 261.01 584.09 1089.51 0.993 

2 2.38 3.70 12.18 24.67 49.04 90.72 282.31 597.1 1168.87  

 

Mean 2.22 3.98 11.88 26.07 50.01 94.19 271.66 590.60 1129.19 N/A 

SD 0.226 0.400 0.424 1.97 1.37 4.90 15.1 9.20 56.1  

%RSD 10.2 9.95 3.57 7.57 2.74 5.20 5.54 1.56 4.97  

%Bias 11.0 -9.54 18.8 4.26 0.0200 -5.82 8.66 18.1* 12.9  

 

Table 4.5. Intra Assay Precision and Accuracy (1 Assay, 3 Replicates) 

 

QC (ng/mL) 
LLOQ 

(2 ng/mL) 

High QC 

(800 ng/mL) 

Medium QC 

(50 ng/mL) 

Low QC 

(2.50 ng/mL) 

Mean 2.11 880.58 55.35 2.54 

SD 0.123 35.8 1.81 0.122 

%RSD 5.84 4.07 3.26 4.80 

%Bias 5.42 10.1 10.7 1.93 

 

 

4.2.2 Stability 

  

 Post preparative stability was assessed using re-injection reproducibility of stored QC 

(LLOQ, high, medium and low) samples at 5 ºC in auto-sampler similarly to plasma samples. The 

processed samples were stable for 7 days with the % bias of -18.0 and -15.8% for high and low 

QC samples respectively. The %RSD of the same QC samples were 10.2% and 12.6 % 

respectively. Similarly to plasma, the four hour benchtop stability revealed a %bias of 3.37% and 

-7.95 % with %RSD of 5.38% and 6.47% for high and low QC samples respectively. 
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4.3 Whole blood-Plasma Correlation 

 

 To evaluate whether plasma concentrations of glyburide analogue correlate with 

concentration in whole blood, reverse predicted standard calibrator concentration in whole blood 

were plotted against calibrators in plasma with respect to nominal concentration. It was concluded 

that plasma concentration of glyburide reflect the whole blood concentration with a correlation 

coefficient of 0.9956.  This evaluation suggests that the validated method can be directly used to 

determine the analyte concentration in whole blood rendering unnecessary sample loss and 

procedural burden. Figure 4.2 shows the correlation of glyburide concentration in plasma against 

whole blood concentration. A linear relationship was observed with a slope of 1.0819. 

 

Figure 4.2 Blood-plasma correlation of glyburide analogue in mouse model. 
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CHAPTER 5: CONCLUSIONS 

 

 

 

 A bioanalytical method to quantify the glyburide analogue in mouse plasma (CD-1 strain, 

sodium heparin) using a microextraction procedure and LC-MS/MS was developed and validated 

for a concentration range of 2-1000 ng/mL. The microextraction procedure was accomplished via 

HybridSPE technology using 25 µL of plasma which addressed low sample volume issue in mice 

as well as selective extraction using an optimized extraction solvent. With a limited availability of 

scientific literature due to the novelty of the test compound, chromatographic separation was 

carried out by referring to literature of similar compounds within the same class as the glyburide 

analogue. Prior to MS/MS analysis, reverse phase chromatography was employed to achieve initial 

separation of the test compound along with the internal standard. LC-MS/MS analysis of the test 

article was accomplished using a structural analogue internal standard (glipizide). A systematic 

approach to find a suitable internal standard for further analysis via MS/MS conditions was 

undertaken where possible candidate compounds from sulfonylurea class were evaluated. Matrix 

effects were evaluated using post column infusion experiments and minimized using HybridSPE 

platform via selective extraction of the test article from plasma. Further evaluations of matrix 

effects led to chromatographic optimization studies using modified gradient LC conditions where 

the peaks of interests (glyburide analogue and glipizide) were eluted away from possible regions 

of ion suppression resulting from incomplete removal of phospholipids by the HybridSPE plate.
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Selectivity was evaluated using two variants of extraction solvent namely 1% formic acid in 

acetonitrile and 1% ammonium formate in methanol. Subsequently, quantitative assessment of

matrix effects, extraction efficiency and absolute recovery were made to select a suitable extraction 

solvent for further analysis. Plasma validation experiments determining precision and accuracy, 

linearity and stability were carried out and obtained results were within the bioanalytical guidance 

by FDA.  

 A partial validation of the method was done using whole blood with acceptable results for 

precision and accuracy, linearity and stability within a concentration range of 2-1000 ng/mL. 

Blood to plasma ratio study determining relative concentration of the test compound within red 

blood cells was carried out to better reflect the suitability for a direct whole blood analysis. It was 

concluded that glyburide analogue evenly distributes between whole blood and plasma and thus, 

a direct whole blood analysis would be more appropriate to achieve a quick and simpler 

pharmacokinetic profile of the test article from a bioanalytical standpoint. Finally, blood-plasma 

correlation was done to show that the validated method can either be used for plasma or whole 

blood analysis with a correlation coefficient of 0.9993. The utility of the validated method needs 

to be further studied in pre-clinical study samples of in-vivo experiment using mouse model of 

CD-1 strain.
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