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I studied evolutionary history in the angiosperm order Apiales, with a special 

emphasis on interactions between form, time, and space. Four broad categories of 

problems were addressed: interfamilial relationships in Apiales, the assignment of genera 

traditionally assigned to the Apiaceae subfamily Hydrocotyloideae, the estimation of 

divergence times of the major clades, and the reconstruction of the biogeographic history 

of Apiales. We used molecular markers with different evolutionary properties and rates 
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derived from the plastid (trnD-trnT and rpl16), nuclear (RPB2), and mitochondrial (nad1 

intron 2) genomes, from more than 250 species representing all major clades in the order. 

The nuclear RPB2 region exhibited evidence of at least six duplication events in Apiales 

and provided a rich source of information for understanding the origins of polyploid 

lineages, especially in Araliaceae. Sequence comparisons among the copies show that exon 

regions are highly conserved. All copies appear to be functional but may have undergone 

subfunctionalization. Phylogenetic analyses of the three genomes suggest that 

Hydrocotyloideae should be divided into as many as six evolutionary lineages, but that 

most taxa should be included in subfamilies Azorelloideae and Mackinlayoideae. 

Relationships among and within the major clades of Azorelloideae need further analyses 

since many genera appeared non-monophyletic (e.g., Azorella, Schizeilema, and 

Eremocharis). Mackinlayoideae appeared as the earliest diverging lineage of Apiaceae, but 

the plastid and nuclear trees were incongruent in the placement of the Platysace clade 

relative to Mackinlayoideae and the rest of Apiaceae. Among the remaining clades of 

suborder Apiineae, Myodocapaceae appeared sister to Apiaceae in both plastid and nuclear 

trees, preceded by the divergence of Araliaceae and then Pittosporaceae. At the base of the 

gene trees in Apiales, Griseliniaceae and Torricelliaceae formed successive sisters to 

Apiineae. The placement of Pennantiaceae as sister to the rest of Apiales was confirmed by 

plastid data, but was not found in the nuclear trees. The order appears to have originated in 

the Cretaceous, with Apiineae having an age of c. 100 Mya. Australasia appears to be the 

most likely center of origin for Apiineae and most of its major clades, except 

Azorelloideae (South America) and Apioideae-Saniculoideae (sub-Saharan Africa). 



 

CHAPTER 1  

The Demise of Subfamily Hydrocotyloideae and the Re-alignment of its 
Genera across the whole Order Apiales 

 
A. N. Nicolas & G. M. Plunkett 

 

Abstract 

As circumscribed by Drude, the umbellifer subfamily Hydrocotyloideae posed a 

major hindrance to resolving the phylogeny of order Apiales. Previous studies have 

suggested its polyphyly, but have not had sufficient sampling to address the issue fully. To 

put an end to the out-dated concept of Hydrocotyloideae, we investigated the placement of 

40 of the 42 genera once placed in the subfamily, using extensive taxon sampling across 

the entire order. Molecular phylogenies were constructed using plastid sequences of the 

rpl16 intron and the trnD-trnT regions and revealed at least six hydrocotyloid lineages 

dispersed across both families Apiaceae and Araliaceae. The most speciose of these clades 

corresponds to the recently erected subfamily Azorelloideae. Another lineage includes 

genera grouped in Mackinlayoideae, where relationships are well-resolved. Platysace 

appears paraphyletic with respect to Homalosciadium, and their placement is well 

supported as a basal lineage in Apiaceae. The type genus, Hydrocotyle, belongs to a 

supported clade in Araliaceae. The placement of Hermas as sister to a clade consisting of 

Apiaceae subfamilies, Apioideae and Saniculoideae, and Choritaenia as sister to 

Lichtensteinia in a clade with affinities to both Apioideae and Saniculoideae, questions the 
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circumscriptions of the two subfamilies. Finally, plastid data suggest that many former 

hydrocotyloid genera are are non-monophyletic (e.g., Azorella, Schizeilema, and 

Eremocharis) and are in dire need of additional phylogenetic and taxonomic studies.  

 

1. Introduction 

For over a century, Apiaceae subfamily Hydrocotyloideae has posed a major 

obstacle to understanding evolutionary relationships throughout the order Apiales, 

especially between its two biggest families, Apiaceae (= Umbelliferae) and Araliaceae. 

Drude (1898) placed Hydrocotyloideae in Apiaceae as one of three subfamilies, the others 

being Apioideae (the “typical umbellifers”) and Saniculoideae (including, for example, 

Eryngium and Sanicula). In Pimenov and Leonov’s (1993) adaptation of Drude’s (1898) 

three-subfamily system, Hydrocotyloideae comprises 42 genera (and c. 470 species) of 

mostly herbaceous and suffrutescent plants. The group has a worldwide distribution, but its 

greatest generic diversity is in the Southern Hemisphere, with particularly high levels of 

endemism in southern South America, Australia, and New Zealand. Hydrocotyloideae 

include medicinals (e.g., Centella, Mulinum, Azorella), edible plants (e.g., Centella, 

Diposis), plants used as ornamentals (e.g., Trachymene, Actinotus, Azorella, and the 

aquatic pennywort Hydrocotyle), and plants of ethnobotanic importance, some of which 

have been over-harvested to levels of endangerment (e.g., Azorella compacta and Laretia 

acaulis; Hodge, 1960; Wickens, 1995). In differentiating Hydrocotyloideae from the rest 

of Apiaceae, Drude (1898) emphasized three fruit characters. Unlike apioid and saniculoid 

fruits, the fruits of Hydrocotyloideae were described as having woody endocarps and 
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lacking both free carpophores and vittae (oil tubes in the furrows between the main ribs, 

although rib oil ducts may be present). Drude further divided Hydrocotyloideae into two 

tribes based on the direction of fruit compression: Hydrocotyleae (with two laterally 

compressed mericarps) and Mulineae (with dorsally compressed mericarps).  

Drude’s (1898) classification of Apiaceae was widely followed through the next 

century, despite alternative delimitations (e.g., Koso-Poljansky, 1916; Cerceau-Larrival, 

1962). The traditional view of a close relationship between Apioideae and Saniculoideae 

has been supported by many studies (see Downie et al., 2001), with persisting difficulties 

in the precise placement of some early-diverging taxa (e.g., Lichtensteinia, Steganotaenia, 

and Polemanniopsis; Van Wyk, 2001; Liu et al., 2003; Calviño et al., 2006; Calviño and 

Downie, 2007). Hydrocotyloideae, on the other hand, were often viewed as intermediates 

between Araliaceae and the rest of Apiaceae (see Tseng, 1967; Pickering and Fairbrothers, 

1970; Rodríguez, 1957, 1971), which led some workers to recognize the hydrocotyloids as 

a distinct family (Hylander, 1945), or to merge Apiaceae and Araliaceae into a single 

family (Thorne, 1973). With the advent of phylogenetic studies, particularly those based on 

molecular data, it has become clear that Hydrocotyloideae are polyphyletic and include 

genera belonging to several major groups in both families (Plunkett et al., 1996, 1997; 

Downie et al., 1998, 2001; Plunkett and Lowry, 2001; Chandler and Plunkett, 2004; 

Andersson et al., 2006). In a revised classification for Apiales, Plunkett et al. (2004) 

divided the hydrocotyloids among three groups: Araliaceae (to which Trachymene and the 

subfamilial-type Hydrocotyle were transferred) and two new subfamilies in Apiaceae, 

Azorelloideae and Mackinlayoideae. That study, however, placed fewer than half of the 
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genera of Hydrocotyloideae among the major clades of Apiales, and thus a full resolution 

of relationships among the hydrocotyloids has not yet been achieved. Also, the polyphyly 

of Drude’s tribes and subtribes was addressed through studies based on morphology, fruit 

anatomy, and molecular data (Henwood and Hart, 2001; Liu, 2004; Chandler and Plunkett, 

2004; Andersson et al., 2006), but many questions remain unanswered regarding both 

tribal and generic circumscriptions.  

Drude’s classification of Hydrocotyloideae suffers from many limitations that 

contribute to its artificiality. In erecting his system, Drude relied heavily on superficial 

characters of fruit morphology, which has been proved faulty in many umbellifer 

subgroups (see Downie et al., 2001). His classification also lacked sufficient representation 

from the Southern Hemisphere, where hydrocotyloids exhibit their greatest diversity (see 

Tseng, 1967). Subsequent to Drude’s system, questions have been raised, though rarely 

addressed, regarding the distinctiveness of some hydrocotyloid genera (e.g., between 

Eremocharis and Domeykoa, or among Schizeilema, Huanaca and Diplaspis; Mathias and 

Constance, 1962a; Dawson, 1971), which may imply problems with monophyly at the 

generic level. Despite the progress made by several recent studies, sampling from 

Hydrocotyloideae has remained limited due largely to a focus on problems at other 

phylogenetic levels (e.g., subfamily Apioideae in Downie et al., 1998, 2000; Plunkett and 

Downie, 1999; or the order Apiales in Plunkett et al. 1996, Plunkett and Lowry 2001, 

Chandler and Plunkett 2004), or to questions dedicated to a single genus (e.g., Azorella; 

Andersson et al. 2006) or a single geographic region (e.g., Australia in Henwood and Hart 

2001). 
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In an effort to resolve the placement of all hydrocotyloid genera, and through this 

to gain a better understanding of relationships throughout Apiales, the present study 

includes a wider sampling of taxa than any previous study of the order. This goal follows 

the conclusions of many studies that emphasize the importance of increased sampling of 

taxa (Graybeal, 1998; Pollock et al., 2002; Zwickl and Hillis, 2002; DeBry 2005), in 

addition to choosing the appropriate characters.  The availability of the necessary taxa has 

a great impact on phylogeny reconstruction, including an increased likelihood of obtaining 

a more fully resolved molecular phylogeny. Thus, we have produced over 500 new 

sequences from two plastid markers, using an extensive generic sampling from Apiales 

(139 genera) to determine the correct placement for all but two of the hydrocotyloid 

genera. We also achieved substantial sampling within many of these genera to cover all 

major geographic regions and to test their monophyly. As a result, we have been able to 

recover a phylogeny that resolves relationships across Apiales, allowing the placement of 

hydrocotyloid genera not represented in previous molecular analyses, and to support (or in 

some cases refute) the placements and relationships suggested by prior studies. In addition, 

we provide an assessment of the taxonomic value of characters traditionally used to group 

Hydrocotyloideae and its tribes and subtribes (e.g., the carpophore, woody endocarp, 

vittae, winged fruits, and petaloid sepals) by noting where structural data available from 

previous studies are consistent (or inconsistent) with monophyletic groups estimated in our 

molecular phylogeny. 
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2. Materials and Methods 

2.1. Taxon Sampling 

The goal for the taxon sampling (Table 1) was to include an extensive 

representation of genera from throughout Apiales, with a particular emphasis on 

representing all major phytogeographic regions where hydrocotyloids are represented. This 

sampling will provide an extensive framework for the placement of hydrocotyloid genera 

while improving the phylogenetic inference. Pimenov and Leonov (1993) list 42 genera in 

subfamily Hydrocotyloideae. Two of these genera, Turczaninowiella Koso-Pol. and 

Neoturczaninowia Koso-Pol. appear to be nomina nuda for which no specimens or 

descriptions are known, thus decreasing the number of genera to 40. Mitchell et al. (1999) 

showed a close relationship between the megaherb Stilbocarpa (previously placed in 

Araliaceae) and the hydrocotyloid genera Schizeilema and Azorella, which suggested the 

transfer of Stilbocarpa to Hydrocotyloideae. The recently erected Australian Brachyscias, 

a monotypic genus, was also added to the list of hydrocotyloid genera based on its 

morphological affinities with Chlaenosciadium (Hart and Henwood, 1999). This brings the 

total number of extant hydrocotyloid genera back to 42, of which we were able to sample 

40 genera. We were unable to sample the monotypic Asciadium, a Cuban taxon, known 

only from the type (dating from 1865), and the critically endangered Brachyscias 

verecundus, known only from two populations in SW Western Australia (Hart and 

Henwood, 1999). Where available, we also sampled multiple species within genera, 

especially from the more speciose ones, with emphasis on representation of the type 

species of each genus and a broad geographic representation of widespread genera. Due to 
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the high number of genera in Apiaceae subfamily Apioideae and the support for its 

monophyly by various studies (see Downie et al., 2000 and 2001; Sun et al., 2004), a 

representative sample of thirty-five genera was included from Apioideae, with particular 

emphasis on the early-diverging lineages. We also included all eight genera of subfamily 

Saniculoideae sensu stricto. We sampled all but two genera from Araliaceae (excluding the 

two monotypic genera Anakasia and Woodburnia, the latter only known from the type), 

both genera of Myodocarpaceae, and all nine genera of Pittosporaceae. The outgroup 

included samples from the five genera that represent the three earliest diverging families of 

Apiales: the monogeneric Pennatiaceae and Griseliniaceae, and all three genera of 

Torricelliaceae (Plunkett, 2001; Kårehed, 2003; APG II, 2003; Chandler and Plunkett, 

2004; Plunkett et al., 2004). 

 

2.2. Character Sampling  

Two sequence regions from the plastid genome were used as sources for molecular 

markers. These regions contain sequences (tRNAs, spacers, and an intron) which have 

different evolutionary properties that, theoretically, can yield greater phylogenetic 

accuracy (Delsuc et al., 2002). In the chloroplast genome, the trnD-trnT spacer region 

(which also spans trnY and trnE) and the rpl16 intron are among the most useful markers 

examined by Shaw et al. (2005 and 2007), representing his Tier I and Tier II sequences 

(respectively) based on the average number of potentially informative characters (PIC). Of 

these, the trnD-trnT spacer exhibits one of the highest PIC values of all chloroplast 

markers tested. Previous studies have successfully used these markers in phylogenetic 
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studies at various taxonomic levels and across many families, genera, and species, 

including in Apiales (e.g., Downie, 2000; Ackerfield and Wen, 2003).  

 

2.3. DNA Extraction, PCR, and Sequencing  

Most leaf tissue samples were either field-collected and dried using silica gel or 

harvested from herbarium specimens (Table 1 provides source and voucher information). 

All sequences used in this study were newly derived, including 268 sequences from the 

trnD-trnT region and 272 sequences from the rpl16 intron. The two datasets shared in 

common sequences from 268 samples, representing 263 species across 139 genera of 

Apiales. Harvesting reliable, high purity, total DNA from fresh, silica-gel dried leaf tissue, 

or dried herbarium specimens was achieved using the CTAB method of Doyle and Doyle 

(1987), the DNeasy Plant extraction kit (QIAGEN Inc.), a modified Puregene DNA 

extraction protocol (Gentra Systems), or following the protocol of Alexander et al. (2007) 

with minor modifications. External and internal primer sets were designed to amplify and 

sequence regions of the chloroplast genome that included the entire rpl16 intron and the 

trnD-trnT spacer region (Fig. 1; Table 2). PCR amplifications were produced by thermally 

cycling a mix of 1 µL of unquantified DNA, 5 µL Sigma JumpStart™ REDTaq® 

ReadyMix™ Reaction Mix or Promega GoTaq® Green Master Mix, 0.5 µL of each 

forward and reverse primers (at concentrations of 5 µM), 0.5 µM spremidine (4 mM), and 

2.5 µL ultrapure water for a total volume of 10 µL. The PCR thermal profile included a 2 

min denaturing step at 94ºC, followed by 35 to 40 cycles of denaturation (30 sec at 94ºC), 

primer-annealing (30 sec at 54ºC), and DNA extension (30 to 90 sec at 70ºC). This was 
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followed by an extra extension step for 5 min at 72ºC. For many samples, successful 

amplification could be achieved in a single reaction using the external primers, but for 

most herbarium samples, amplification of the entire trnD-trnT region and rpl16 intron was 

achieved in two overlapping fragments sized between 300 and 600 bp, using a combination 

of external and internal primers (see Table 2).  

 PCR amplicons were cleaned using ExoSAP-IT (USB Corp.), according to the 

manufacturer’s recommendations, before serving as template for the sequencing reaction. 

Cycle sequencing reactions were performed by mixing 1 µL of the DYEnamic™ ET 

Terminator Cycle Sequencing mix (GE Healthcare), 1.5 µL of purified double-stranded 

PCR product, 0.5 µL primer (5µM), and 3 µL ultrapure water, for a total volume of 6 µL. 

The amplification program consisted of 40 cycles of 3 steps: 30 sec at 94ºC, 15 sec at 

55ºC, and 60 sec at 60ºC. Sequencing products were purified using MontageSeq plates 

(Millipore Corp.) and then separated electrophoretically on a 96-capillary MegaBACE™ 

1000 automated sequencer. The resulting sequences were edited using MegaBACE™ 

Sequence Analyzer. Complementary (forward and reverse) fragments were assembled and 

edited using the SequencherTM 3.0 DNA sequence analysis package (Gene Codes 

Corporation, Ann Arbor, MI) or by pairwise BLAST (www.ncbi.nlm.nih.gov/BLAST/).  

 

2.4. Sequence Alignment and Phylogenetic Analyses 

Sequences were aligned in ClustalX using the default settings (Higgins and Sharpe, 

1988), followed by manual adjustments made in BioEdit version 7.0.5 (Hall, 2005). An 

incongruence length difference (ILD) test (Farris et al., 1994) was conducted to assess 
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congruence among the individual datasets before combining data. This was achieved by 

running 100 iterations of the partition homogeneity test in PAUP. Maximum parsimony 

(MP) was employed in the phylogenetic analysis of the separate datasets and of the 

combined dataset, using PAUP* (Swofford, 2001), with heuristic searches, equally 

weighted characters, stepwise addition, random addition of sequences, and accelerated-

transformation character-state optimization (ACCTRAN). One-hundred replicates were run 

under the TBR branch-swapping algorithm, saving no more than 1000 trees per replicate. 

Clade support was estimated using PAUP* to calculate bootstrap values (Felsenstein, 

1985) based on 100 pseudo-replicates of full heuristic searches, and these values were 

compared to estimates from 10,000 pseudo-replicates generated using fast heuristic 

searches. 

For the combined dataset, additional phylogenetic trees were generated using two 

model-based approaches, maximum likelihood (ML) and Bayesian inference (BI). 

MODELTEST 3.06 (Posada and Crandall, 1998) was used with PAUP to determine the 

most appropriate model of sequence evolution to produce the most reliable tree and to 

reduce the computation time (Posada and Buckley, 2004). Subsequently, the best fitting 

evolutionary model, GTR + I + Γ, was implemented in the ML and BI analyses on the 

combined dataset, allowing the programs to estimate the parameters directly from the data. 

ML analyses were run in GARLI (version 0.95; Zwickl, 2006) using an Apple 

SuperComputing Cluster under three alternative conditions: (1) parameters were consistent 

with the default settings, with termination conditions reached after the log likelihood value 

decreases by no more than 0.01 for 10,000 generations; (2) settings allowed for termination 
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after the log likelihood values decreases by no more than 0.001 for 100,000 generations; 

(3) analyses were run for 5,000,000 generations without any premature termination. In 

total, GARLI was run once under condition 1, ten times under condition 2, and once under 

condition 3. Two non-parametric bootstrap analyses were performed, the first for 250 

iterations under condition 1 and the second for 180 iterations under condition 2.  

Bayesian inference analyses were conducted using MrBayes 3.1 under a 

Metropolis-coupled Markov-chain Monte Carlo (MCMC) sampling for the estimation of 

the likelihood scores (Huelsenbeck and Ronquist, 2003). Two simultaneous runs were 

conducted, each for 1,000,000 generations and four incrementally heated chains. 

Trees generated before the likelihood value stabilized were discarded (the “burn-in”) and 

the remaining trees were used to calculate the posterior probabilities by constructing a 

majority rule consensus tree (Huelsenbeck and Ronquist, 2001a, 2001b). 

 

3. Results 

Complete new sequences were retrieved for the rpl16 intron and the trnD-trnT 

region from all samples included in this study with the exception of < 100-bp fragment 

from the trnD-trnT sequence of Notiosciadium pampicola. Comparisons of sequence 

characteristics and tree descriptions of the two regions are listed in Table 3. Length 

variation for the rpl16 intron ranged from 830 bp in Azorella trifoliolata to 1068 in Pozoa 

volcanica, but >85% of the ingroup sequences ranged between 900 and 1000 bp. Within 

the trnD-trnT matrix, unaligned sequence lengths varied from 535 bp in Choritaenia 

capensis to 1416 bp in Gymnophyton isatidicarpum. However, much of this variation is 
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due to a large deletion in the trnE-trnT spacer unique to Choritaenia capensis, and a large 

repeat found in the sequence of the trnY-trnE spacer of Gymnophyton isatidicarpum and a 

related species (Asteriscium closii). Most ingroup sequences for the trnD-trnT region 

(>80%) ranged in size between 850 bp and 1200 bp.  

We tested for bias due to subjectivity in sequence alignment by comparing 

consensus trees produced under MP with bootstrap (10,000 replicates with fast-stepwise 

addition) based on two versions of the combined dataset. In the first, the entire alignment 

was used without removing any potentially informative data, and in the second all 

potentially ambiguous regions were removed from the alignment. The topologies of the 

two trees were visually congruent and all the clades identical, with only slight differences 

in bootstrap values, suggesting that the potentially ambiguous regions do not affect 

phylogenetic inferences. To reduce the amount of excluded data, we realigned all 

problematic regions after manual pairwise comparisons of all sequences to verify the 

positions of gaps relative to aligned characters across different groupings of sequences. 

Through this process, we excluded ambiguous regions totalling 388 aligned characters 

from the trnD-trnT partition of the combined dataset. Thus, the final analyses were carried 

out with an aligned matrix of 5432 characters from the 268 samples common to both 

datasets (3277 aligned characters from trnD-trnT region and 2155 characters from the 

rpl16 intron). The individual dataset for the rpl16 intron included four more terminals 

(totaling 272 sequences) compared to the trnD-trnT and combined datasets. The additional 

samples necessitated two extra characters in the rpl16 intron dataset, and thus the total 

number of characters of the two individual datasets was 5434. 
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In general, the trnD-trnT spacer provided better resolution of relationships within 

and among major clades, especially within genera of the different clades of family 

Apiaceae. The strict consensus of trees retrieved for the individual datasets (64,000 trees 

for trnD-trnT and 70,000 for rpl16) were mostly congruent. Of the few nodes that were 

different between the two trees, most had <65% bootstrap support (e.g., the placement of 

Diposis, Klotzschia, and Actinotus; the relationship between the Asteriscium clade, the 

Bowlesia clade, and the Azorella clade), and thus do not have a major influence on our 

conclusions regarding phylogenetic relationships (Fig. 2). However, a single difference 

was well supported in both trees, the placement of Chlaenosciadium as sister to Xanthosia 

plus the Centella clade in trnD-trnT phylogeny but sister to Xanthosia alone in the rpl16 

intron phylogeny (Fig. 2). 

The ILD test indicated a lack of significant incongruence between the two data 

partitions (p = 0.26), suggesting their combinability. The combined dataset included 1601 

parsimony informative characters (29.47%) and parsimony analysis resulted in the preset 

upper limit of 40,000 most parsimonious trees with 7321 steps (CI = 0.4790 and RI = 

0.8776). The strict consensus of these trees, showing only the major clades with their 

bootstrap percentages is provided in Fig. 3. The 12 runs of ML analyses in GARLI yielded 

likelihood scores ranging from -49116.9240 to -49115.1376, with identical tree topology 

among runs. The bootstrap values retrieved under the two conditions (see Methods) were 

very similar (with < 5% difference), hence the support values shown on the ML phylogeny 

represent the average percentages of the two bootsrap runs. The ML tree also showed no 

topological differences from the two trees retrieved from the BI analyses (see Fig. 4a-d for 
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topology with ML bootstraps and BI posterior probabilities). Although the placement of 

Harmsiopanax (in Araliaceae) varies between the two topologies (as sister to the 

Hydrocotyle-Trachymene clade in the ML/BI tree, but sister to the rest of Araliaceae in the 

MP tree), either placement is poorly supported (48% in the MP tree and 69% in the ML 

tree). In addition to the placement of Harmsiopanax, there were evident differences 

between the two trees in the bootstrap support values of some clades (e.g., Hermas, 

Lichtensteinia and Choritaenia, Actinotus, and Myodocapaceae). 

 

4. Discussion 

4.1. Evolutionary Positions of Hydrocotyloideae in Apiales 

Drude’s Hydrocotyloideae forms a polyphyletic assemblage of at least six main 

lineages dispersed across both Apiaceae and Araliaceae (Figs. 2-4), and none of Drude’s 

tribes and sub-tribes are monophyletic. One of these six lineages is placed in Araliaceae 

and includes four genera of tribe Hydrocotyleae (subtribe Hydrocotylinae). Araliaceae 

appear sister to a clade consisting of Myodocarpaceae and Apiaceae (BS < 65%), whereas 

Myodocarpaceae appears sister to Apiaceae with significant difference in bootstrap support 

between the MP and ML trees (55% and 81% respectively). Infra- and inter-familial 

relationships in Apiales will be addressed in more details in a separate paper through 

comparisons of plastid, nuclear, and mitochondrial gene phylogenies. Apart from the 

Hydrocotyle-Trachymene lineage, the other five lineages of Hydrocotyloideae are scattered 

across Apiaceae. The most diverse of these lineages includes genera from the three 

subtribes of tribe Mulineae. This clade corresponds most closely to the current concept of 
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subfamily Azorelloideae proposed by Plunkett et al. (2004). The second largest clade 

(seven hydrocotyloid genera) forms part of subfamily Mackinlayoideae, together with two 

former araliads, Mackinlaya and Apiopetalum. Members from both subtribes of tribe 

Hydrocotyleae are included in this clade. Four other hydrocotyloid genera fall within 

subfamilies Apioideae (Naufraga and Notiosciadium) or Saniculoideae (Arctopus and 

Choritaenia) (Fig. 4b). The Platysace clade includes two genera (Platysace and 

Homalosciadium) of tribe Hydrocotyleae (subtribe Hydrocotylinae) and is separated from 

all other species from that tribe. The placement of Klotzschia and Hermas remains 

problematic, but they may be considered–with caution–as two distinct lineages in 

Apiaceae. Klotzschia may be arguably treated as part of Azorelloideae and Hermas appears 

to be an early-diverging lineage in Apioideae. A comparison of Drude’s classification of 

Hydrocotyloideae (with the morphological characters used to make this system) with their 

placement in this study is provided in Table 4. 

 

4.2. Subfamily Azorelloideae 

The Azorelloideae form a well supported monophyletic group in Apiaceae that 

includes 21 of the 42 genera formerly placed in Hydrocotyloideae. Klotzschia is sister to 

the Azorelloideae in the trnD-trnT and combined trees (Figs. 2a, 3) but with low bootstrap 

support (BS = 66%, PP = .98), and this relationship is not found in the tree based on the 

rpl16 data (Fig. 2b). The ambiguous placement of Klotzschia prevents us from drawing 

strong conclusions regarding its relationship to Azorelloideae or Apioideae-Saniculoideae. 

Azorelloideae are divided into four well supported clades (Fig. 4a) but the relationships 
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among these four clades remain unresolved. With the exception of Stilbocarpa and 

Dickinsia, the genera of Azorelloideae were all included in Drude’s tribe Mulineae, but our 

results do not support his subtribal system (discussed below). All taxa in Azorelloideae 

conform to Drude’s grouping of Hydrocotyloideae based on the presence of a woody 

endocarp, the lack of vittae, and (with the exception of Diposis) distinct rib oil ducts. 

However, the lack of free carpophores is not synapomorphic among and within the clades 

of Azorelloideae. The clades are not geographically structured, but instead a series of 

Australian-South American connections are obvious in each of the three largest clades. 

 

4.2.1. The Azorella Clade 

Most of the genera in the Azorella clade (Fig. 4a) were grouped in Drude’s 

Mulineae subtribe Azorellinae based on the presence of unwinged and non-hollowed fruits, 

with the exception of Mulinum and Laretia, which were placed in subtribe Asteriscinae 

because they possess winged fruits, Dickinsia, which was placed in tribe Hydrocotyleae 

(although it lacked the laterally compressed fruits characterizing the Hydrocotyleae), and 

Stilbocarpa, which was formerly a member of Araliaceae. The Azorella clade (Fig. 4a) has 

two well supported basal branches, the monotypic Mesoamerican Spananthe and a clade 

uniting the Asian Dickinsia and the Australian Diplaspis. The genera in these two clades 

are among a minority of taxa in the Azorella clade that have free carpophores (Tseng, 

1967; Liu, 2004). The core group of the Azorella clade includes two sister subclades, the 

Schizeilema subclade and the Mulinum subclade. The Schizeilema subclade includes two 

species of Azorella, one of which is the type (A. filamentosa), in addition to all 
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representatives from Schizeilema, Huanaca, and Stilbocarpa. The Mulinum subclade 

includes Mulinum, Laretia, and the remaining species of Azorella. Chandler and Plunkett 

(2004), with more limited sampling, were the first to suggest the lack of monophyly in 

Azorella based on molecular markers, and this finding was later echoed by Andersson et 

al. (2006) using additional sampling of Azorella but no samples of Mulinum. Martinez 

(1993a, 1993b) divided Azorella into four sections based on phenetic relationships. Our 

study shows that members of Martinez’s section Azorella are more closely aligned with 

Huanaca, Stilbocarpa, and Schizeilema than to other sections of Azorella, but relationships 

among these four genera are not well resolved. Schizeilema appears to be polyphyletic, 

with the New Zealand and Australian species forming one clade (with the Australian 

species, S. fragoseum, nested within the New Zealand species) and the only South 

American species, S. ranunculus, forming a second unrelated clade. The sister-group 

relationship between Schizeilema and Stilbocarpa found by Mitchell et al. (1999) is not 

supported by our study. Our results also offer some insight into questions regarding the 

generic distinctions between Schizeilema, Huanaca, and Diplaspis (see Mathias and 

Constance, 1971; Van den Borre and Henwood, 1998; Henwood and Hart, 2001) by 

helping to place the monophyletic Diplaspis with sister Dickinsia, as sister to the 

Schizeilema and Mulinum subclades. Although the two species of Huanaca sampled here 

are monophyletic, and their placement with respect to the polyphyletic Schizeilema 

remains poorly supported, but data from the unsampled species of both genera may 

provide better insight into the relationship between the two genera. Schizeilema ranunculus 

is the only species of Schizeilema reported to have a carpophore, a character shared with all 
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species of Stilbocarpa and Huanaca (Grushvitzky et al., 1969; Dawson 1971; Mathias and 

Constance, 1971). The carpophore is reduced to fused ventral bundles in the closely related 

Azorella filamentosa (Liu, 2004), and these bundles are absent altogether in the Australian 

and New Zealand species of Schizeilema (Allan, 1961; Tseng, 1967). Hence the presence 

of a carpophore is not synapomorphic in the Schizeilema subclade. 

The Mulinum subclade includes species from Azorella, Laretia, and Mulinum. The 

topology of this subclade suggests that members of Martinez’s (1993b) Azorella sections 

Ciliatae and Cirrhosae are non-monophyletic. The South American representative from 

Cirrhose, A. lycopodioides, is sister to the remainder of the Mulinum subclade, while the 

only other members of Cirrhosae, the subantarctic A. selago and its segregate A. 

macquariensis (Orchard, 1989), form a sister group to three members of the section 

Ciliatae (A. multifida, A. pulvinata, and A. trifurcata), which range from Colombia to 

Argentina. The rest of the Ciliatae (A. crenata, A. biloba, A. monantha, A. caespitosa, A. 

trifoliolata, and A. compacta) are grouped with Laretia, which together forms the sister 

group to Mulinum. Like its sister subclade, the presence or absence of a carpophore is not 

synapomorphic in the Mulinum subclade. Although some members of the genus Mulinum 

have been reported to lack a carpophore, this character is present in all species sampled for 

this study (Tseng, 1967; Zech, 1992) and these species form a well supported 

monophyletic group. Azorella lycopodioides is one of a few species of Azorella reported to 

have a carpophore, but this structure does not become free at maturity (Tseng, 1967). Two 

other members of this clade, Laretia acaulis and Azorella compacta have fused ventral 



 19 

bundles in place of a carpophore (Tseng, 1967; Liu, 2004) and form a well supported sister 

relationship.  

 

4.2.2. The Asteriscium Clade 

The Asteriscium clade is a well supported group in Azorelloideae (BS = 100%, PP 

= 1, Fig. 4a). The clade includes the South American genera Asteriscium, Gymnophyton, 

Pozoa, Eremocharis, and Domeykoa, and the Australian genus Oschatzia. Two sister 

subclades emerge, the Gymnophyton subclade (Asteriscium, Gymnophyton, Pozoa, and 

Oschatzia) and the Eremocharis-Domeykoa subclade, a grouping that largely agrees with 

Mathias and Constance’s (1962a) conclusions based on mature fruit morphology. The 

placement of Oschatzia, which was not treated by Mathias and Constance (1962a), is 

noteworthy because it is the the only genus in the Asteriscium clade that is not South 

American, and (together with Pozoa) was placed by Drude in a different subtribe of 

Mulineae (subtribe Azorellinae) due to the lack of winged fruits. The four remining 

members of this clade were grouped in subtribe Asteriscinae due to the presence of winged 

fruit without hollows, and this again emphasizes the artificiality of Drude’s subtribes. As in 

the Azorella clade, fruit hollows or wings has not proved to be informative at the subtribal 

level of phylogeny, and without additional information, these two characters are not 

sufficient to define monophyletic groups.  

Both subclades of the Asteriscium clade include genera that are non-monophyletic. 

In the Gymnophyton subclade, Asteriscium is paraphyletic with respect to Gymnophyton 

(Fig. 4a), due to the placement of A. closii (sister to G. isatidicarpum). Asteriscium closii 
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had formerly been recognized as the monotypic genus Bustillosia (as B. chilensis Clos), 

but Mathias and Constance (1962a) preferred to treat it under Asteriscium because of 

morphological similarities with various species of Asteriscium.  Pozoa is sister to 

Asteriscium-Gymnophyton (Fig. 4a) and is the only genus in this subclade to lack a well 

developed free carpophore (Mathias and Constance, 1962a; Tseng, 1967; Liu, 2004). The 

sister group to the Gymnophyton subclade includes Domeykoa and Eremocharis, both of 

which appear non-monophyletic. Both genera lack free carpophores or ventral bundles, and 

thus the lack of a carpophore is synapomorphic to this subclade but not the whole 

Asteriscium clade. Despite the taxonomic discrepency, the branching pattern in this 

subclade is consistent with the geographic distributions of the species sampled. One group 

includes the Peruvian species of Domeykoa (D. amplexicaulis) and Eremocharis (E. 

longiraneae, E. trpartita, and E. triradiata), whereas the other includes the Chilean species 

E. fruticosa and D. oppositifolia. This pattern confirms Mathias and Constance’s dilemma 

as to whether they should unite these two genera and emphasizes the need for more 

intensive study of generic delimitations in this clade. 

 

4.2.3. The Bowlesia Clade 

The Bowlesia clade consists of four major subclades, one uniting the South 

American Bolax and the Australian Dichosciadium (BS > 95%, PP = 1, Fig. 4a), and the 

other three each with a single genus, the South American Homalocarpus (BS = 100%, PP 

= 1), the American Bowlesia (BS = 100%, PP = 1), and the Somalia-Canary Islands 

monotypic genus Drusa. The three latter genera comprised Drude’s Mulineae subtribe 
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Bowlesiinae, which are characterized by unwinged but hollowed fruits, whereas Bolax and 

Dichosciadium were included in his subtribe Azorellineae because they lack hollowed 

fruits. This clade provides another example in Azorelloideae where the lack of a free 

carpophore is not synapomorphic, since Drusa and Homalocarpus have free carpophores, 

Bolax and Bowlesia have fused ventral bundles, and Dichosciadium appears to lack both 

(Mathias and Constance, 1965; Tseng, 1967; Liu, 2004 and pers. comm. regarding 

Bowlesia). Support for each subclade is strong but the relationships among the four groups 

need further analysis. 

 

4.2.4. The Diposis Clade 

The Diposis clade includes only the rarely studied genus Diposis, which includes 

three species with edible tubers, each limited to relatively restricted areas of South 

America (Patagonia, the Pamapas, and Chile, respectively). Drude placed Diposis in 

subtribe Astersicinae based on the presence of fruits with winged lateral ribs. Our data 

support the placement of Diposis in Azorelloideae, but its relation to the other three clades 

of Azorelloideae is only poorly supported. Species of this genus have a free carpophore but 

differ from the other genera of Azorelloideae in lacking distinct rib oil ducts (Tseng, 1967; 

Liu, 2004). 

 

4.2.5. Klotzschia 

 The three species that comprise the Brazilian endemic genus Klotzschia form a 

monophyletic group (Fig. 4a), sister to the rest of Azorelloideae, but this result is not 
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strongly supported (BS: MP = 61%; ML = 66%; PP = .98). The genus was traditionally 

grouped in subtribe Azorellinae due to the lack of wings on the fruit, and has even been 

suggested to form a link to Araliaceae on the basis of pollen evidence (see Shoup and 

Tseng, 1977). Our results show strong support for the inclusion of the genus in Apiaceae, 

but the two separate datasets (Figs. 2a and 2b) do not agree on the placement of this genus 

within the family. Like some members of Azorelloideae, the fruits of Klotzschia have a 

single fused ventral bundle in place of a carpophore, but differ from fruits from the rest of 

the Azorelloideae (except Diposis) in lacking distinct rib oil ducts (Liu, 2004).  

 

4.3. Subfamily Mackinlayoideae  

Subfamily Mackinlyoideae constitutes a well supported clade (Fig. 4c; BS= 100%; 

PP = 1) sister to the rest of Apiaceae (ML: BS = 86%; MP: BS = 77%; PP = 1). This clade 

includes two genera formerly placed in Araliaceae, Apiopetalum and Mackinlaya, and 

seven hydrocotyloid genera. Of these hydrocotyloids, two well supported sister subclades 

were retrieved: the Centella clade (which includes the mostly South African Centella, the 

Mesoamerican Micropleura, and the Australian Pentapeltis and Schoenolaena) and the 

Xanthosia clade (with the Australian Xanthosia and Chlaenosciadium). Together, the two 

subclades are sister to Mackinlaya. All of the genera in these two subclades were included 

in tribe Hydrocotyleae (Pimenov and Leonov, 1993) but our topology does not conform to 

their assignment in the two subtribes (Hydrocotylinae and Xanthosinae). Hydrocotyleae 

share the character of laterally compressed fruit, a feature common to all genera of 

subfamily Mackinlayoideae, with the exception of Apiopetalum. The genera sampled here 
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also share fruits with woody endocarps and no vittae, but vary in regard to the presence of 

distinct rib oil ducts (see below). Also, all six genera that comprise the Centella and 

Xanthosia clades are reported to lack free carpophores; instead, they have ventral bundles 

(single or paired) fused to the mericarps (Tseng, 1967; Theobald, 1967a; Hart 1998; Liu, 

2004). 

The sister-group relationship between Centella and Micropleura has already been 

reported (Plunkett et al., 1996, 1997, Plunkett and Lowry, 2001, Chandler and Plunkett, 

2004), and is fully supported in this study. Together, Micropleura and Centella are sister to 

the monotypic Schoenolaena, and these three genera form a sister group to the ditypic 

Pentapeltis. The Australian genera Pentapeltis and Schoenolaena have not been previously 

included in molecular phylogenetic studies and their placement in Mackinlyoideae, as well 

as the relationships between them is fully supported by our combined analyses (Fig. 4c; 

BS=100%; PP =1). Centella and Micropleura were included in subtribe Hydrocotylinae 

based on the lack of sepals, whereas Pentapeltis and Schoenolaena were affiliated with 

tribe Xanthosiinae because they have petaloid sepals. Such incongruence between our gene 

tree and the traditional subtribal division is also evident in the Xanthosia clade, with 

Xanthosia and Chlaenosciadium belonging to subtribes Xanthosiinae and Hydrocotylinae, 

respectively. The placement of the monotypic Chlaenosciadium as sister to Xanthosia (BS 

= 81%; PP = 1; Fig. 4c) has not been reported based on molecular data because the former 

had not been included in any previous molecular-phylogenetic analysis.  

As with the divisions of Mulineae, the characters used to divide tribe 

Hydrocotylineae into subtribes appear to be homoplasious and do not provide a reliable 
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basis for defining monophyletic groups. Also, the presence of distinct rib oil ducts is not 

synapomorphic for either the Centella or Xanthosia subclades. In the Centella clade, rib oil 

ducts are present in Micropleura, may be present or indistinct in Centella, and are 

indistinct in Pentapeltis and Schoenolaena (Tseng, 1967, Theobald, 1967a, Liu, 2004). In 

the Xanthosia clade, such ducts are present in Xanthosia but absent in Chlaenosciadium 

(Theobald, 1967).  

The Australasian genus Actinotus is well supported as a member of subfamily 

Mackinlyoideae but it is not found among the other former hydrocotyloids. The genus was 

placed in subtribe Xanthosiinae, with which it shares fruit characters such as a woody 

endocarp and lack of vittae, but differs from members of this group in having distinct rib 

oil ducts. Within the subfamily, our results indicate a closer relationship between Actinotus 

and the New Caledonian endemic genus Apiopetalum than any of the genera of Drude’s 

subtribe Xanthosiinae. The sister relationship between Actinotus and Apiopetalum was first 

reported by Plunkett and Lowry (2001) based on maximum parsimony analysis of plastid 

matK sequences (BS = 71%). Although this sister relationship is not well supported in our 

MP tree (BS = 55%; Fig. 3), the clade received high support in the ML (BS = 96%) and BI 

(PP = 1%) analyses (Fig. 4c). The fruits of Actinotus are reduced to a single functional 

carpel and, like Apiopetalum, lack carpophores altogether. Further investigation of the 

morphological and anatomical similarities between the two genera is necessary to test their 

taxonomic affinities as well as the exact placement of Actinotus within Mackinlyoideae. 
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4.4. Hydrocotyloids transferred to Subfamily Apioideae 

Two monotypic genera with very limited distributions are grouped with subfamily 

Apioideae, Naufraga (N. balearica) and Notiosciadium (N. pampicola). Pimenov and 

Leonov (1993) placed both genera as incertae sedis in Hydrocotyloideae. Naufraga is a 

rare species endemic to the Balearic Islands and possibly Corsica, where it is suspected to 

have gone extinct two years after its initial collection there (Friedlender and Boisselier–

Dubayle, 2000). The species was placed in Hydrocotyloideae based on the absence of a 

free carpophore and the likely presence of a woody endocarp (Constance and Cannon, 

1967). Using plastid sequences, however, Downie et al. (2000) placed Naufraga in the 

Apium clade of Apioideae, sister to Apium and our data agree with these results with 100% 

support (Fig. 4b).  

Notiosciadium pampicola is known only from a few collections and has not been 

included in any previous phylogenetic analysis. The species was reported by Delucchi 

(2006) to be a critically endangered endemic in Argentina. A report by the Institut Royal 

des Sciences Naturelles des Belgique (1996) listed it as a constituent of the vegetation of 

the southern Pampa regions of Uruguay and Argentina. The genus shares characters with 

many apioid taxa, such as laterally compressed fruits, compound umbels, and entire 

carpophores. Mathias and Constance (1962b) also noted that it coexists with Apium 

uruguayense in south-central Uruguay and that the two species bear great superficial 

resemblance to one another. Such resemblance is not surprising in light of the supported 

placement of Notiosciadium pampicola in the apioid superclade, sister to the clade that 
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includes the terminals from Arracacia to Petroselinum (Fig. 4b.). However, this sister 

relationship received low support (BS < 60%; PP = 0.75).  

 

4.5. Hydrocotyloids transferred to Subfamily Saniculoideae and related lineages 

The genus Arctopus was originally placed in subfamily Saniculoideae (Wolff 

1913), but later transferred to Hydrocotyloideae (incertae sedis), based on similarities of 

its inflorescences and flowers (Magin, 1980). However, recent studies have re-established 

the placement of Arctopus in subfamily Saniculoideae (e.g., Plunkett and Lowry, 2001; Liu 

et al., 2003; Chandler and Plunkett, 2004; Calviño and Downie, 2007). Arctopus includes 

three species endemic to the Cape region of South Africa. The plants have simple leaves 

with marginal setae, characters shared with many Saniculoideae. The three species of 

Arctopus form a monophyletic group within Saniculoideae, sister to another African-

endemic genus Alepidea (Fig. 4b; BS = 100%; PP = 1). These sister genera share the 

synapomorphic presence of a carpophore, which is lacking in all other members of 

Saniculoideae s. str. (Liu et al., 2003). In addition, Arctopus and Alepidea share characters 

such as sessile female flowers and the presence of kaurenoic acids (Liu et al., 2003; 

Magee, 2008). Together, Arctopus and Alepedia form a well supported clade sister to the 

rest of Saniculoideae. 

Like Arctopus, the monotypic genus Choritaenia, is endemic to the Cape region of 

South Africa. Choritaenia capensis was included in tribe Mulineae by Pimenov and 

Leonov based on the dorsal compression of its fruit, and in subtribe Asteriscinae due to its 

winged, non-hollowed fruits. Liu et al. (2007) described some morphological differences 
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between Choritaenia and the rest of the Mulinoideae, including the distinctively short, 

bipartite carpophore and the presence of oil vesicles instead of vittae. MP analysis based 

on DNA sequences of the nuclear ITS region (Calviño et al., 2006) placed Choritaenia as 

sister to the Annesorhiza clade and Astydamia + Molopospermum (BS < 50%). Based on 

the combined analysis of the plastid sequences used herein, Choritaenia is not closely 

related to any of the hydrocotyloid groups, but is rather fully supported as sister to 

Lichtensteinia (Fig. 4b). Together, Choritaenia and Lichtensteinia form a weakly 

supported sister group to the rest of Saniculoideae s. str. with Polemanniopsis and 

Steganotaenia.   

 Hermas is a third South African endemic with affinities to the Saniculoideae and 

early-diverging lineages of Apioideae. First classified as a member of subtribe Asteriscinae 

based on the presence of winged fruits, molecular data have shown that the genus is quite 

distinct from other Asteriscinae (Calviño et al., 2006). Also, a recently described species, 

H. proterantha (de Villiers and Van Wyk, 2008) lacks the lateral wings that are common to 

all other species of this genus. Species grouped in Hermas share characters with Apioideae 

(e.g., free carpophores), Saniculoideae (e.g., congested umbels), and Hydrocotyloideae 

(e.g., woody endocarps, although a newly discovered species, H. ciliata, lacks a woody 

endocarp; De Villiers, Van Wyk and Tilney, pers. comm.). This lends validity to its 

placement in our trees as sister to the entire Apioideae plus Saniculoideae clade (Fig. 4a), 

although support for this placement is not very high (BS = 70%; PP = 1).  
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4.6. Platysace and Homalosciadium 

The Australian endemics Platysace and Homalosciadium are well-supported as 

sister to the rest of Apiaceae, excluding Mackinlayoideae (Fig. 4b; ML: BS = 93%; MP: 

BS = 87%; PP = 1). The two genera were previously included in tribe Hydrocotyleae based 

on the presence of laterally compressed mericarps, and in subtribe Hydrocotylinae based 

on their lack of sepals. Prior to this study, the monotypic Homalosciadium (H. 

homalocarpum) had not been sampled for molecular phylogenetic analyses and no 

comprehensive analyses, molecular or morphological, are available for Platysace. Our 

results call into question the monophyly of Platysace due to the placement of the H. 

homalocarpum among the three species of Platysace sampled in our study. Fruits of 

species of both genera share the presence of carpophores and woody endocarps, but lack 

vittae and (in most cases) distinct rib oil ducts (Tseng, 1967; Hart, 1998; Liu, 2004). The 

two genera form a well supported, early-diverging lineage within Apiaceae, sister to the 

rest of Apiaceae (excluding Mackinlayoideae). 

 

4.7. Hyrocotyloids transferred to Araliaceae 

Hydrocotyle and Trachymene, as well as their respective satellite genera, 

Neosciadium and Uldinia, constitute a lineage sister to the rest of Araliaceae. Within this 

lineage, Hydrocotyle and Neosciadium form a well-supported clade (BS =100%; PP = 1; 

Fig. 4d) sister to Trachymene and Uldinia (also well supported; BS = 100%; PP =1). All 

four genera were included in Hydocotyleae subtribe Hydrocotylinae based on the presence 

of laterally compressed fruits and the absence of sepals. The placement of these genera in a 
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separate lineage from the rest of the Hydrocotyleae demonstrates the ineffectiveness of the 

morphological characters used by Drude for their classification in providing reliable 

phylogenetic signal. All four genera have fruits with woody endocarps and without vittae, 

but only Hydrocotyle and Neosciadium lack carpophores. The relationship of Hydrocotyle 

and Trachymene to Araliaceae, and some of the morphological similarities that link them 

to members of that family (e.g., sclerified endocarps and bicarpellate gynoecia) were 

detailed by Chandler and Plunkett (2004). The placement of Harmsiopanax as sister to the 

Hydrocotyle-Trachymene clade in the ML and BI trees is not well supported, but is 

intriguing given the similarities of their morphologies. Like Hydrocotyle and Trachymene, 

for example, Harmsiopanax has schizocarpic fruits (rare in Araliaceae) and was long 

thought to show ties to both Araliaceae and Apiaceae (see Frodin and Govaerts 2003). This 

relationship should be followed up with future investigation into the morphological 

affinities among these genera. 

 Hydrocotyle is a widely distributed genus of more than 130 species with 

remarkable morphological variations both within and among species. In the trees presented 

here, Hydrocotyle appears sister to Neosciadium, a monotypic Australian endemic. 

However, in an earlier version of the datasets, the inclusion of an undetermined species of 

Hydrocotyle, originally misidentified as Homalosciadium homalocarpum (Eichler 22047), 

rendered Hydroctyle paraphyletic with respect to Neosciadium (data not shown). The 

misidentified species was excluded from our study until it can be properly identified, and 

questions regarding the monophyly of Hydrocotyle must await availability of wider 
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sampling across the entire morphological and geographic range of the genus (neither of 

which are represented sufficiently here). 

 Trachymene is another large genus of more than 55 species, 38 of which are 

endemic to Australia, while the remaining species are found across Oceania and SE Asia. 

Previous studies (e.g., Theobald, 1967b; Henwood and Hart, 2001) represented 

Trachymene as a close relative to the sole species of Uldinia (U. ceratocarpa) which is 

endemic to Australia. In a recent revision of Trachymene, Hart and Henwood (2007) 

formally transferred Uldinia to Trachymene, thus reducing to three the number of 

Hydrocotyloideae genera associated with Araliaceae. In the present study, Uldinia appears 

sister to the three species sampled from Trachymene. Theobald (1967) listed the absence of 

carpophores as a character that separates Uldinia from Trachymene, but Liu (2004) 

demonstrated the presence of carpophores in Uldinia similar to those found in some 

Trachymene species.  

 

5. Conclusion 

Our molecular phylogeny demonstrates that neither Drude’s subfamily 

Hydrocotyloideae, nor his two tribes or five sub-tribes are monophyletic. Although the 

presence of a woody endocarp and absence of vittae is common to most genera of 

Hydrocotyloideae (and rare in Apioideae and Saniculoideae), these two characters are 

homoplasious when considering the entire order Apiales and the placement of the different 

hydrocotyloid lineages across the phylogeny of the order. The presence or absence of 

carpophores is not useful at the subfamilial, tribal, and subtribal levels, but this character 
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may be of much greater value at lower taxonomic levels, especially in the Azorella clade, 

where it exhibits a wide range of variation.  

The placement of the former hydrocotyloids is of major importance in 

understanding evolutionary trends in Apiales. What remains as “subfamily 

Hydrocotyloideae” includes only the type, Hydrocotyle, and the related genera 

Neosciadium and Trachymene (with Uldinia), which forms a distinct lineage within 

Araliaceae. The remaining genera of Drude’s Hydrocotyloideae are separated into four 

main lineages in Apiaceae, most of which belong to subfamilies Azorelloideae (including 

Klotzschia) and Mackinlayoideae. The relationships within subfamily Mackinlayoideae are 

well resolved, with the exception of lingering doubts regarding the placement of Actinotus. 

More work, however, is required to understand relationships within subfamily 

Azorelloideae. Our study provided great improvements towards understanding this 

subfamily, but more data are needed to address the many evolutionary questions that 

remain. These issues include the resolution of the relationships among the major clades 

and the circumscriptions of many genera within them, especially those that appear to be 

non-monophyletic (e.g., Azorella, Schizeilema, Asteriscium, Gymnophyton, Eremocharis, 

Domeykoa). Of the other lineages, Platysace (with Homalosciadium) appears to be an 

independent lineage in Apiaceae and it may merit its recognition as its own subfamily. 

Finally, the placement of Hermas and Choritaenia, and the sister relationship of 

Azorelloideae to the Hermas+Saniculoideae+Apioideae clade, support the concept that the 

circumscription of taxa at the level of subfamilies and tribes among the early diverging 

lineages of Apiaceae are in need of additional revision (Van Wyk, pers. comm.).  
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TABLES 

Table 1. List of species, voucher information, and sources.     

Taxa Voucher Locality 

Family Apiaceae   

Subfamily Hydrocotyloideae   

   Actinotus helianthii Labill. Donaldson 584 NSW, Australia 

   Arctopus dregei Sond. Goldblatt 11880 South Africa 

   Arctopus echinatus L. Bond 1149 South Africa 

   Arctopus monacanthus Carmich. ex Harv. & Sond. Goldblatt 11676 South Africa 

   Asteriscum chilense Cham. & Schlecht. Plunkett 2056 cult., France (Mulhouse) 

   Asteriscum closii (Kuntze) Math. and Const. Muilgara 123 Chile 

   Asteriscium glaucum Hieron. & Wolff Teillier 972 Argentina 

   Azorella biloba (Schlecht.) Wedd. Solomon 11669 Bolivia 

   Azorella caespitosa Hook.f. (non Cav. 1799) Chandler 1124 Argentina 

   Azorella compacta Phil. Chandler 1093 Argentina 

   Azorella crenata (R. & P.) Pers. Smith 11882 Peru 

   Azorella  filamentosa Lam. Chandler 1123 Tierra del Fuego, Argentina 

   Azorella  fuegiana Speg. Chandler 1127 Tierra del Fuego, Argentina 
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   Azorella lycopodioides Gaud. Chandler 1119 Tierra del Fuego, Argentina 

   Azorella macqueriensis A.E. Orchard Jackson 69 Macquarie Island 

   Azorella monantha Clos ex  Gay Chandler 1102 Mendoza, Argentina 

   Azorella multifida (R. & P.) Pers. Ceron 19429 Ecuador 

   Azorella pulvinata Wedd. Solomon 16611 Bolivia 

   Azorella selago Hook. f. Donaldson 234 Heard Island 

   Azorella trifoliolata Clos ex Gay Chandler 1115 Argentina 

   Azorella trifurcata (Gaertn.) Pers. RBG Kew 379-81.04150 Kew 

   Bolax caespitosa Hombre. & Jacq. ex Decaisne Chandler 1122 Tierra del Fuego, Argentina 

   Bolax gummifera (Lam.) Spreng. Chandler 1126 Tierra del Fuego, Argentina 

   Bowlesia flabilis J.F. Macbr. Solomon 11625 Bolivia 

   Bowlesia lobata Ruiz. & Pav. Stein 2003 Peru 

   Bowlesia platantifolia Wolff Pedersen 13975 Argentina 

   Bowlesia tropaeolifolia Gill. & Hook. Chandler 1091 Jujuy, Argentina 

   Bowlesia uncinata Colla Landrum 7581 Chile 

   Centella asiatica (L.) Urb. Plunkett 1494 Queensland, Austarlia 

   Centella linifolia (L.f.) Drude Phillipson 5253 South Africa 

   Chlaenosciadium gardneri C. Norman Keighery 448 WA, Australia 
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   Choritaenia capensis (Sond.) Burtt Davy  NMB 5106 South Africa 

   Dichosciadium ranunculaceum (F. Muell.) Domin Plunkett 1556 NSW, Australia 

   Dickinsia hydrocotyloides Franch. Wen 5003 Sichuan, China 

   Diplaspis cordifolia (Hook.) Hook.f. Ratkowsky 195 Tasmania, Australia 

   Diplaspis hydrocotyle Hook.f. CANB 9501185 Victoria, Australia 

   Diposis bulbocastanum DC. Claude-Joseph 1360 Chile 

   Domeykoa oppositifolia Phil. Teillier 547 Chile 

   Domeykoa saniculifolia Math. & Const. Dillon 8839 Peru 

   Drusa glandulosa (Poir.) Bornm. Bally 15777 Somalia 

   Eremocharis fruticosa Phil. Constance, C-2382 cult., Univ. Calif. Bot. 

Gard. 

   Eremocharis longiramea (Wolff) Johnst. Quiroz 2543 Peru 

   Eremocharis tripartita (Wolff) Math. & Const. Sagástegui 14854 Peru 

   Eremocharis triradiata (Wolff) Johnst. Hutchison 6214 Peru 

   Gymnophyton isatidicarpum (Presl ex DC.) Math. & Const. Landrum 8218 Chile 

   Gymnophyton polycephalum (Gill. & Hook.) Clos Chandler 1108 Mendoza, Argentina 

   Gymnophyton robustum Clos. Zöllner 10279 Chile 

   Gymnophyton spinosissimum Phil. Zöllner 10383 Chile 
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   Hermas capitata L.f. van Wyk 4103 South Africa 

   Hermas villosa (L.) Thunb. van Wyk 4100 South Africa 

   Homalocarpus dichotomous (Poepp. ex DC.) Math. & Const. Taylor 1991 Chile 

   Homalocarpus digitatus (Phil.) Math. & Const. Teillier 890 Chile 

   Homalocarpus integerrimus (Turcz.) Math. & Const. Muñoz 2892 Chile 

   Homalocarpus nigripetalus (Clos ex Gay) Math. & Const. Zöllner 11424 Chile 

   Homalosciadium homalocarpum (F. Muell.) H. Eichler Lepschi 3646 WA, Australia 

   Huanaca acaulis Cav. Chandler 1125 Tierra del Fuego, Argentina 

   Huanaca andina (Phil.) Phil Zöllner 5389 Chile 

   Hydrocotyle bonariensis Lam. Ware s.n. Virginia, USA 

   Hydrocotyle cf. callicephala Urb. Fiaschi 3159 Brazil 

   Hydrocotyle javanica Thunb. Plunkett 1551 Fiji 

   Hydrocotyle cf. javanica Plunkett 1999 Yunan, China 

   Hydrocotyle modesta Cham. & Schltdl. Chandler 1098 Jujuy, Argentina 

   Hydrocotyle novae-zealandiae DC. Croft 10446 Tasmania, Australia 

   Hydrocotyle sibthorpioides Lam. Ware 10052 Virginia, USA 

   Klotzschia brasiliensis Cham. Conceição 752 Brazil 

   Klotzschia glaziovii Urb. Paula-Souza 6666 Brazil 
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   Klotzschia rhizophylla Urb. Irwim 20245 Brazil 

   Laretia  acaulis Gill. & Hook. Teillier 2504 Chile 

   Laretia acaulis Gill. & Hook. Zöllner 11719 Chile 

   Micropleura renifolia Lag. Plunkett 1273 Oxaca, Mexico 

   Mulinum albovaginatum Gill. & Hook. Chandler 1105 Mendoza, Argentina 

   Mulinum chillanense Phil. Chandler 1103 Mendoza, Argentina 

   Mulinum spinosum (Cav.) Persoon Chandler 1099 Mendoza, Argentina 

   Mulinum ulicinum Gill. & Hook. Chandler 1092 Jujuy, Argentina 

   Naufraga balearica Constance & Cannon Parc Zoologique et Botanique 

de la Ville de Mulhouse, 

20141 

cult., France 

   Neosciadium glochidiatum (Benth.) Domin Short 2185 NSW, Australia 

   Notiosciadium pampicola Speg. Gallinal PE-5292 Uruguay 

   Oschatzia cuneifolia (F. Muell.) Drude Strid 22126 NSW, Australia 

   Oschatzia saxifraga (Hook. f.) Walp. Ratkowsky 199 Tasmania, Australia 

   Pentapeltis peltigera (Hook.) Bunge  Taylor 2045 WA, Australia 

   Pentapeltis silvatica (Diels) Domin  Keighery 6524 WA, Australia 

   Platysace lanceolata (Labill.) Druce Davies 7304 NSW, Australia 
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   Platysace stephensonii (Turcz.) Norman Constable 7304 NSW, Australia 

   Platysace valida (F. Muell.) F. Muell. Plunkett 1547 Queensland, Australia 

   Pozoa coriaceae Lag. Kiesling 8098 Argentina 

   Pozoa volcanica Math. & Constance Pedersen 14208 Chile 

   Schoenolaena juncae Bunge Keighery 8006 WA, Australia 

   Schizeilema fragoseum (F. Muell.) Domin Gray 4790 NSW, Australia 

   Schizeilema haasti Domin Wardle 94/170 South Island, New Zealand 

   Schizeilema hydrocotyloides Domin Bulloch s.n. (WAIK 590) South Island, New Zealand 

   Schizeilema ranunculus Domin Pisano 2445 Tierra del Fuego, Argentina 

   Schizeilema ranunculus Domin Goodall 719 Tierra del Fuego, Argentina 

   Schizeilema trifoliolatum Domin DeLange s.n. (WAIK 5480) North Island, New Zealand 

   Spananthe paniculata Jacq. Barrie 1496 Guererro, Mexico 

   Spananthe paniculata Jacq. Fiaschi 3167 Brazil 

   Stilbocarpa polaris (Hombr. & Jacq.) A. Gray Croft 10437 Tasmania, Australia 

   Trachymene coerulae Graham Crisp 6099 ACT, Australia 

   Trachymene  glaucifolia (F. Muell.) Benth. Letouzey AUS99 NT, Australia 

   Trachymene hookeri (Domin) A.E. Holland Plunkett 1548 Queensland, Australia 

   Trachymene incisa Rudge CANB 9613231 NSW, Australia 
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   Uldinia certocarpa (W.Fitzg.) N.T.Burb Symon 12272 SA, Australia 

   Xanthosia atkinsoniana F.Muell.  Adams 1629 WA, Australia 

   Xanthosia pilosa Rudge Coveny 11135 NSW, Australia 

   Xanthosia pusilla Bunge Symon 13400 SA, Australia 

   Xanthosia rotundifolia DC. Bayer WA-94106 NSW, Australia 

   Xanthosia tridentata DC.  Melville 2918 Victoria, Australia 

   

Subfamily Saniculoideae s. str.   

   Actinolema eryngioides Fenzl Samuelsson 5540 Syria 

   Alepidea capensis R.A. Dyer Phillipson 5235 South Africa 

   Alepidea peduncularis Steud. ex A. Rich. Marshall WK383 Tanzania 

   Astrantia x rosensimfonie Plunkett 1327 

cult., New York Bot. 

Garden 

   Astrantia maxima Pall. Atha 2458 Republic of Georgia 

   Eryngium scaposum Turcz. Plunkett 1278 Mexico 

   Eryngium yuccifolium Michx. Plunkett 1370 Kansas, USA 

   Hacquetia epipactus DC. Patzak s.n.   

   Petagnaea saniculifolia Guss.  Hufford 1993-960 Kew 
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   Sanicula gregari Bickn. Ware 9898 Virginia, USA 

   

Subfamily Apioideae   

   Aciphylla aurea W.R.B. Oliv. RBG Kew, s.n. cult., London 

   Aciphylla glacialis F. Muell. ex Benth. Plunkett 1555 NSW, Australia 

   Aciphylla simplicifolia F. Muell. ex Benth. Plunkett 1557 NSW, Australia 

   Aegopodium podograria L. Plunkett 1332 Washington, USA 

   Andriana tsaratanensis (Humbert) B.-E. van Wyk Lowry 5363 Madagascar 

   Angelica lucida L. Plunkett, s.n. Washington, USA 

   Anginon difforme (L.) B.L. Burtt Goldblatt 11173 South Africa 

   Anginon paniculatum  (Thunb.) B.L. Burtt Pimenov s.n. South Africa 

   Anginon ragosum Thunb. Constance, C-2399 cult., Univ. Calif. Bot. 

Gard. 

   Anistome  aromatica Hook. f. Plunkett 2183 New Zealand 

   Anisotome haastii Ckn. & Laing Bayer 1007 New Zealand 

   Anisotome pilifera Ckn. & Laing Bayer 1006 New Zealand 

   Annesorhiza altiscapa Schltr. ex H. Wolff Goldblatt 11111 South Africa 

   Apiopetalum  glabratum Baill. Lowry 4798 New Caledonia 



 40 

   Apiopetalum  velutinum Bail. Lowry 4700 New Caledonia 

   Apium graveolans L. Plunkett 1334 Washington, USA 

   Arracacia quadrifida Constance & Affolter Plunkett 1268 Mexico 

   Astydamia latifolia Baill. Mort s.n. Canary Islands 

   Bupleurum salicifolium R. Brown Mort s.n. Canary Islands 

   Capnophyllum africanum (L.) Gaertn. Goldblatt 11667 South Africa 

   Chamarea? sp. Goldblatt 11072 South Africa 

   Corriandrum sativum L. Plunkett 1337 Washington, USA 

   Daucus montanus Humb. & Bonpl. ex Spreng. Plunkett 1289 Mexico 

   Donnellsmithia cordata (Coult. & Rose) Math. & Const. Plunkett 1270 Mexico 

   Endressia castellana Coincy Constance, C-2184 cult., Univ. Calif. Bot. 

Gard. 

   Gingidia montana (J.R. Forst. & G. Forst.) Dawson CHR 489446 New Zealand 

   Heteromorpha trifoliata (Wendl.) Eckl. & Zeyner Plunkett 1345 

cult., Univ. Calif. Bot. 

Garden 

   Heteromorpha sp. Phillipson 5402 South Africa 

   Itasina filiformus? filifolia (Thunb.) Raf.  Goldblatt 11138 South Africa 

   Lagoecia cuminoides L. Plunkett 1389 Washington, USA 
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   Lichtensteinia lacerata  van Wyk 4098 South Africa 

   Lichtensteinia sp. nov. van Wyk 4104 South Africa 

   Lichtensteinia trifida Cham. & Schltdl. Goldblatt 11174 South Africa 

   Lignocarpa diversifolia Dawson Glenny (CHR 471842) Canterbury, New Zealand 

   Mackinlaya confusa Hemsl. Plunkett 1512 Queensland, Australia 

   Mackinlaya macrosciadia (F.Muell.) F.Muell. Plunkett 1365 

cult., Huntington Bot. 

Garden 

   Mackinlaya schlechteri (Meisn.) Philipson Lowry 5290 cult., Bogor Bot. Garden 

   Neogoezia minor Hemsl. Plunkett 1272 Mexico 

   Oreomyrrhis eriopoda (DC.) Hook.f. Plunkett 1558 NSW, Australia 

   Petroselinum crispum (Mill.) A.W. Hill Plunkett 1478 Virginia, USA 

   Peucedanum sp. Phillipson 5733 South Africa 

   Pimpinella saxifraga L. Plunkett 1324 

cult., New York Bot. 

Garden 

   Polemanniopsis marlothii (H. Wolff) B.L. Brutt vanWyk 4105 South Africa 

   Pseudocarum laxiflorum (Baker) B.-E. van Wyk Lowry 5342 Madagascar 

   Scandia geniculata Dawson Webb, s.n. (CHR 512012) New Zealand 

   Steganotaenia araliaceae Hochst. Plunkett 1832 South Africa 
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   Stoibrax capense B.L. Burtt Goldblatt 11146 South Africa 

   Tinguarra montana (Webb ex H. Christ) Hansen & Kunkel  Mort 1536 Canary Islands 

   Xyloselinum leonidii Pimenov & Kljuykov Plunkett 2009 Vietnam 

   

Family Araliaceae   

   Aralia spinosa L. Plunkett 1371 Washington, USA 

   Arthrophyllum mackeei Lowry 5310 New Caledonia 

   Astrotricha latifolia Benth. Mackinson 452093 NSW, Australia 

   Astrotricha pterocarpa Benth. Plunkett 1527 Queensland, Australia 

   Astrotricha sp. nov. Isabella Plunkett 1551 Queensland, Australia 

   Brassaiopsis glomerulata Regel Wen 8458 Yunan, China 

   Cephalaralia cephalobotrys Harms Plunkett 1519 Queensland, Australia 

   Cheirodendron bastardianum Frodin Price 205 French Polynesia 

   Cheirodendron fauriei Hochr. Harder 4070 Hawaii 

   Cheirodendron platyphyllum (Hook. & Arn.) Seem. Harder 4072 Hawaii 

   Cheirodendron trigynum (Gaud.) A. Heller Johnson 92-110  Hawaii 

   Chengiopanax sciadophylloides (Franch. & Sav.) C.B. Shang & J.Y. 

Huang Tsugaru 20947 Japan 
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   Cuphocarpus aculeatus Decne. & Planch. Lowry 5125 Madagascar 

   Cussonia spicata Thunb. Goldblatt 10490 South Africa 

   Dendropanax arboreus (L.) Decne. & Planch. Plunkett 1352 UC BG 

   Dendropanax hoi C.B. Shang Lowry 4903 Vietnam 

   Elutherococcus trifoliatus (L.) S.Y. Hu Lowry 4972 Taiwan 

   Fatsia japonica (Thunb.) Decne & Planch. Plunkett 1320 

cult., New York Bot. 

Garden 

   Fatsia polycarpa Hayata Lowry 4968 Taiwan 

   Gamblea pseudoevodiifolia (Franch.) C.-B. Shang, Lowry & Frodin Wen 8447 Yunan, China 

   Gastonia crassa F. Friedmann Lowry 6008 Seychelles 

   Gastonia duplicata Thouars ex Baill. Aridy 299 Madagascar 

   Gastonia rodriguesiana Marais Lorence 7765 Nat'l Trop. Bot. Garden 

   Harmsiopanax ingens Philipson Lowry 5266 Irian Jaya 

   Hedera helix L. Plunkett 1476 Virginia, USA 

   Heteropanax fragrans (Roxb.) Seem. Plunkett 2032 Vietnam 

   Kalopanax septemlobus (Thunb.) Koidz. Plunkett 1328 

cult., New York Bot. 

Garden 

   Macropanax dispermus (Bl.) Ktze. Lowry 4940 Vietnam 
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   Merrilliopanax chinensis Li Wen 5068 Yunan, China 

   Meryta sinclairii (Hook.f.) Seem. Plunkett 1367 Huntington BG 

   Metapanax davidii (Franch.) Frodin ex J. Wen & Frodin Wen 5005 Sichuan, China 

   Motherwellia haplosciadea F. Muell. Plunkett 1515 Queensland, Australia 

   Munroidendron racemosum (C. N. Forbes) Sherff Lorence 7628 Nat'l Trop. Bot. Garden 

   Neopanax arboreus (L.f.) Allan Plunkett 1353 UC BG 

   Neopanax colensoi (Hook.f.) Allan Bayer 1002 New Zealand 

   Oplopanax elatus Nakai Wen 3120   

   Oreopanax capitatus (Jacq.) Decne. & Planch. Miller 38 Chenci, Costa Rica 

   Osmoxylon boerlegei (Warb.) Philipson Takeuchi 15499 Papua New Guinea 

   Osmoxylon geelvinkianum Becc. Takeuchi 15500 Papua New Guinea 

   Osmoxylon insidiator Becc. Lowry 5240 Irian Jaya 

   Osmoxylon orientale (Guillaumin) B.C. Stone Plunkett 1858 Vanuatu 

   Panax quinquefolius L. Ware 10046 Virginia, USA 

   Polyscias guilfoylei (W. Bull) L.H. Bailey Lowry 5525 Irian Jaya 

   Polyscias multijuga (A. Gray) Harms Lowry 5219 Fiji 

   Polyscias murrayi (F. Muell.) Harms Plunkett 1829 Australia 

   Polyscias schmidii Lowry Plunkett 2166 Vanuatu 
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   Pseudopanax ferox Kirk Bayer 1003 New Zealand 

   Pseudopanax lessonii (DC.) K. Koch Plunkett 2193 New Zealand 

   Raukaua anomalus (Hook.) A.D. Mitch.  Mitchell (CHR 5279) New Zealand 

   Raukaua edgerleyi (Kirk) Seem. Plunkett 2191 New Zealand 

   Raukaua simplex (G. Forst.) A.D.Mitch. Plunkett 2184 New Zealand 

   Reynoldsia sandwicensis A. Gray Plunkett 1359 cult., Honolulu Bot. Garden 

   Schefflera arboricola (Hayata) Merr. Plunkett 1958 cult., Florida, USA 

   Schefflera candelabra Baill. Lowry 4762 New Caledonia 

   Schefflera costata A.C. Sm. Plunkett 1954 Fiji 

   Schefflera digitata J. R. Forst. & G. Forst. Plunkett 2192 New Zealand 

   Schefflera gabriellae Baill. Lowry 4792 New Caledonia 

   Schefflera cf. lasiogyne Neill 11935 Ecuador 

   Schefflera macrophylla (Dunn) R. Vig. Lowry 4852 Vietnam 

   Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin Hammel 22506 Costa Rica 

   Schefflera myriantha Drake Mwangulango 501 Tanzania 

   Schefflera myriantha Drake Lowry 5808 Madagascar 

   Schefflera pickeringii (A. Gray) Frodin Plunkett 1840 Fiji 

   Schefflera rainaliana Bernardi Lowry 4994 Madagascar 
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   Schefflera reginae (Linden ex W. Richards) Frodin Lowry 4652 New Caledonia 

   Seemannarlia gerrardii (Seem.) R. Vig. Phillipson 5470 South Africa 

   Sinopanax formosanus (Hayata) Li Lowry 4967 Taiwan 

   Tetrapanax papyriferus (Hook.) K. Koch Plunkett 1344 cult., Missouri Bot. Garden 

   Tetraplasandra hawaiiensis A. Gray Plunkett 1378 cult., Honolulu Bot. Garden 

   Tetraplasandra oahuensis Harms Johnson 92-0220 cult., Honolulu Bot. Garden 

   Trevesia palmata Vis. Plunkett 1329 

cult., New York Bot. 

Garden 

   

Family Myodocarpaceae   

   Delarbrea balansae (Baill.) Lowry & G. Plunkett Lowry 4714 New Caledonia 

   Delarbrea collina Vieill. Lowry 4789 New Caledonia 

   Delarbrea harmsii R. Vig. Lowry 4732 New Caledonia 

   Delarbrea michieana (F. Muell.) F. Muell. Plunkett 1502 Queensland, Australia 

   Myodocarpus crassifolius Dubard & R. Vig. Plunkett 5537 New Caledonia 

   Myodocarpus fraxinifolius Brongn. & Gris Lowry 5308 New Caledonia 

   Myodocarpus involucratus Dubard & R. Vig. Lowry 5555 New Caledonia 

   Myodocarpus pinnatus Brongn. & Gris Lowry 1850 New Caledonia 
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Family Pittosporaceae   

   Auranticarpa edentata L.W. Cayzer , Crisp & I. Telford Plunkett 1532 Queensland, Australia 

   Bentleya spinescens E. M. Bennett CANB 9203655 ACT, Australia 

   Billardiera cymosa F. Muell. Hadlow 522 (CANB 

8603985) 

SA, Australia 

   Billardiera heterophylla (Lindl.) L.W.  Cayzer & Crisp Plunkett 1361 cult., Huntington Bot. 

Garden 

   Bursaria incana Lindl. Plunkett 1530 Queensland, Australia 

   Bursaria spinosa Cav. Plunkett 1524 Queensland, Australia 

   Cheiranthera linearis A. Cunn. ex Lindl. Mallinson 359 (CANB 

9409910) 

NSW, Australia 

   Hymenosporum flavum F. Muell. Plunkett 1364 cult., Huntington Bot. 

Garden 

   Marianthus ringens F. Muell. Cayzer 200 WA, Australia 

   Pittosporum brackenridgei A. Gray Keppel, s.n. Fiji 

   Pittosporum koghiense Guillaumin Lowry 6305 New Caledonia 

   Pittosporum rubiginosum (F. Muell.) R.C. Cooper Gray 5928 Queensland, Australia 
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   Pittosporum sp. Lowry 6284 Madagascar 

   Pittosporum spinescens (F. Muell.) L.W. Cayzer , Crisp & I. Telford Plunkett 1534 Queensland, Australia 

   Pittosporum tobira (Thunb.) W.T. Aiton Plunkett 1388 Washington, USA 

   Pittosporum undulatum Vent. Plunkett 1831 Australia 

   Rhytidosporum alpinum McGill. Crisp 8186 ACT, Australia 

   

Family Torricelliaceae   

   Aralidium pinnatifidum (Jungh. & deVriese) Miq. Soejarto 5981 Thailand 

   Melanophylla alnifolia Baker Schatz 3552 Madagascar 

   Melanophylla aucubifolia Baker Schatz 3745 Madagascar 

   Melanoplylla modestei G.E. Schatz, Lowry & A.-E. Wolf Schatz 3319 Madagascar 

   Torricellia tilifolia Harms ex Diels Tu, s.n. Guizhou, China 

   

Family Griseliniaceae   

   Griselinia lucida G.Forst. Cameron, s.n. New Zealand 

   Griselinia littoralis (Raoul) Raoul Bayer 1001 New Zealand 

   Griselinia ruscifolia (Clos) Taub. Fiaschi 3073 São Paulo, Brazil 
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Family Pennantiaceae   

   Pennantia corymbosa J.R.Forst. & G.Forst. Gemmil, s.n. New Zealand 

   Pennantia cunninghamii Miers CANB 8203606 NSW, Australia 
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Table 2. List of primers used to amplify the rpl16 and trnD-trnT regions in Apiales. 

Primer Name Region Designation (Fig.1)  Sequence (5´-3´)  Source 

rpl16_EX1F rpl16 Exon1 R1  GCTATGCTTAGTGTGYGACTCGTTG this study 

rpl16_EX2BR rpl16 Exon2 R2  CTATGTTGTTTACGGAATCTGGTTC this study 

rpl16_IN400F rpl16 intron R3  TAAGAAGYGATGGGAACGATGGA this study 

rpl16_IN450R rpl16 intron R4  GTTYCGCCATCCCGATCAATG this study 

rpl16_EX1Falt rpl16 intron R5  TAATRACCAACTCATCACTTC this study 

rpl16_MRalt rpl16 intron R6  TACATATTGGATGGAWTTNTATATC this study 

rpl16_EX2R_Seq rpl16 Exon2 R7  CTTCTCATCCAGCTCCTCGCGAAT this study 

trnD_F trnD D1  CGGTGCTCTGACCAATTGAACTA this study 

trnT_R trnT D2  CCGATGACTTACGCCTTACCAT this study 

trnDT_MF trnE-trnT spacer D3  GTGGTTGGTCCGTCAGAAAA this study 

trnDT_MR trnE-trnT spacer D4  TTTTCTGACGGACCAACCAC this study 

trnDT_HydroMF trnE-trnT spacer D5  TCCGGGRRATCTTTCCGTTTTTCATC this study 

trnDT_ HydroMR trnE-trnT spacer D6  GATGAAAAACGGAAAGATYYCCCGGAT this study 

trnE trnE D7  AGGACATCTCTCTTTCAAGGAG Shaw et al., 2005 

trnE_F trnE D8  CTCCTTGAAAGAGAGATGTCCT modified from 

            Shaw et al., 2005 
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Table 3. Comparison of sequence characteristics and tree matrices of the rpl16 intron, trnD-trnT, and the combined dataset. 

  rpl16 intron trnD-trnT  Combined 

Sequence length 830-1068 535-1416 1507-2419 

Aligned sequence length 2157 3277 5432 

No. of constant characters 1186 2035 3219 

No. of parsimony uninformative characters 284 328 612 

No. of parsimony informative characters 687 914 1601 

Tree length 3168 4127 7321 

Consistency index (CI) 0.4773 0.4853 0.479 

Retention index (RI) 0.8816 0.8778 0.8776 
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Table 4. Traditional division of subfamily Hydrocotyloideae compared to the placement of genera in this study. 

Divisions based on Drude (1898) and Pimenov and Leonov (1993)   Placement in Apiales (this study)   

I. Tribe Hydrocotyleae (Mericarps are laterally compressed)     

       a. Subtribe Hydrocotylinae (No sepals)     

 Centella    Mackinlayoideae (Centella Clade) 

 Brachyscias    Mackinlayoideae* (Xanthosia Clade) 

 Chlaenosciadium   Mackinlayoideae (Xanthosia Clade) 

 Homalosciadium    Platysace clade  

 Hydrocotyle    Araliaceae  

 Micropleura    Mackinlayoideae (Centella Clade) 

 Neosciadium    Araliaceae  

 Platysace    Platysace clade  

 Trachymene    Araliaceae  

 Uldinia    Araliaceae  

       b. Subtribe Xanthosiinae (petaloid sepals present)     

 Actinotus    Mackinlayoideae  

 Pentapeltis    Mackinlayoideae (Centella Clade) 

 Shoenolaena    Mackinlayoideae (Centella Clade) 
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 Xanthosia    Mackinlayoideae (Xanthosia Clade) 

       

II. Tribe Mulineae (Mericarps are dorsally compressed)     

       a. Subtribe Asteriscinae (fruits are winged and non-hollowed)    

 Asteriscium    Azorelloideae (Asteriscium Clade) 

 Choritaenia    Apioideae/Saniculoideae  

 Diposis    Azorelloideae (Diposis Clade) 

 Domeykoa    Azorelloideae (Asteriscium Clade) 

 Eremocharis    Azorelloideae (Asteriscium Clade) 

 Gymnophyton    Azorelloideae (Asteriscium Clade) 

 Hermas    Apioideae/Saniculoideae  

 Laretia    Azorelloideae (Azorella Clade) 

 Mulinum    Azorelloideae (Azorella Clade) 

       b. Subtribe Azorellinae (fruits are non-winged and non-hollowed)    

 Azorella    Azorelloideae (Azorella Clade) 

 Bolax    Azorelloideae (Bowlesia Clade) 

 Dichosciadium    Azorelloideae (Bowlesia Clade) 

 Dickinsia    Azorelloideae (Azorella Clade) 
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 Diplaspis    Azorelloideae (Azorella Clade) 

 Huanaca    Azorelloideae (Azorella Clade) 

 Klotzschia    Azorelloideae (Azorella Clade) 

 Oschatzia    Azorelloideae (Asteriscium Clade) 

 Pozoa    Azorelloideae (Asteriscium Clade) 

 Schizeilema    Azorelloideae (Azorella Clade) 

 Spananthe    Azorelloideae (Azorella Clade) 

       c. Subtribe Bowlesiinae (fruits are non-winged and hollowed)    

 Bowlesia    Azorelloideae (Bowlesia Clade) 

 Drusa    Azorelloideae (Bowlesia Clade) 

 Homalocarpus    Azorelloideae (Bowlesia Clade) 

       

III. Incertae sedis       

 Arctopus    Saniculoideae  

 Asciadium    Unknown  

 Naufraga    Apioideae  

  Notiosciadium       Apioideae   

*Placement for Brachyscias is based on Henwood and Hart, 2001.
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FIGURE LEGENDS 

 

Figure 1. Illustration of the plastid regions rpl16 and trnD-trnT, with the approximate 

location of primers used for PCR and sequencing across Apiales. The size of rpl16 intron 

is c. 800 to 1100 bp. In most species, the sizes of trnD, trnY, trnE, and trnT is between 70 

and 90 bp, the size of each spacer in the trnD-trnY and trnY-trnE regions is c. 100 bp and 

the size of the trnE-trnT spacer is c. 500 to 800 bp. 

 

Figure 2. Comparison of major clades retrieved with maximum parsimony for the 

individual data sets, trnD-trnT (strict consensus of 40,000 trees) and rpl16 intron (1b; strict 

consensus of 70,000 trees). Estimates of branch support based on 100 bootstrap replicates 

are shown above branches. See Table 3 for tree statistics. 

 

Figure 3. Strict consensus tree showing major clades of the maximum parsimony analysis 

of the combined dataset. Bootstrap support values are indicated above branches. 

 

Figure 4. Tree retrieved by maximum likelihood and Bayesian inference analyses on the 

combined dataset. Bootstrap support values (BS) and posterior probabilities (PP) are 

indicated above or below branches (BS, PP). Designations on some deeper branches: * 

when BS > 95%; + when BS is from 80% to 94%; x when BS is from 50% to 79%. Values 

less than 50% are not shown unless the PP = 1. 
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FIGURES

Figure 1. Illustrations of rpl16 and trnD-trnT with the locations of primers.
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Azorella trifoliolata 
Azorella caespitosa 
Azorella monantha 
Azorella biloba 
Azorella crenata 
Lare57tia acaulis 11719
Laretia acaulis 2504
Azorella compacta
Mulinum albovaginatum 
Mulinum spinosum 
Mulinum chillanense
Mulinum ulicinum 
Azorella multifida 
Azorella pulvinata 
Azorella trifurcata 
Azorella macquariensis 
Azorella selago 
Azorella lycopodioides 
Schizeilema hydrocotyloides 
Schizeilema trifoliatum 
Schizeilema fragoseum 
Schizeilema haasti 
Azorella filamentosa 
Azorella fuegiana 
Huanaca acaulis 
Huanaca andina 
Stilbocarpa polaris 
Schizeilema ranunculus 2445
Schizeilema ranunculus 11719
Diplaspis hydrocotyle 
Diplaspis cordifolia 
Dickinsia hydrocotyloides 
Spananthe paniculata 3167
Spananthe paniculata 1496
Asteriscium closii 
Gymnophyton isatidicarpum 
Gymnophyton polycephalum 
Gymnophyton spinosissimun 
Gymnophyton robustum 
Asteriscium chilense 
Asteriscium glaucum 
Pozoa volcanica 
Pozoa coriaceae 
Oschatzia cuneifolia 
Oschatzia saxifraga 
Eremocharis longiramea
Eremocharis tripartita 
Eremocharis triradiata 
Domeykoa saniculifolia 
Eremocharis fruticosa 
Domeykoa oppositifolia 
Bowlesia tropaeolifolia 
Bowlesia lobata 
Bowlesia platanifolia
Bowlesia uncinata 
Bowlesia flabilis
Bolax gummifera 
Bolax caespitosa 
Dichosciadium raunculaceum 
Drusa glandulosa 
Homalocarpus digitatus 
Homalocarpus nigripetalus 
Homalocarpus integerrimus 
Homalocarpus dichotomous 
Diposis bulbocastanum 
Klotzschia glaziovii 
Klotzschia brasiliensis 
Klotzschia rhizophylla 
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Figure 4. Maximum likelihood phylogeny based on the combined plastid dataset.



Arracacia quadrifida 
Donnelsmithia cordata 
Endressia castellana 
Xyloselinum leonidii 
Angelica lucida
Stoibrax capense 
Capnophyllum africanum 
Peucedanum sp.
Coriandrum sativum 
Naufraga balearica
Apium graveolans 
Petroselinum crispum 
Notiosciadium pampicola 
Lagoecia cuminoides 
Pimpinella saxifraga 
Aegopodium podograria 
Oreomyrrhis eriopoda 
Tinguarra montana 
Daucus montanus 
Anisotome pilifera 
Anisotome haasti 
Aciphylla aurea 
Anisotome aromatica 
Aciphylla glacialis 
Aciphylla simplicifolia 
Gingidia montana 
Scandia geniculata 
Lignocarpa diversifolia 
Neogoezia minor 
Bupleurum salicifolium 
Anginon difforme 
Anginon ragosum 
Anginon paniculata 
Heteromorpha sp.
Heteromorpha trifoliata 
Andriana tsaratanensis 
Pseudocarum laxiflorum 
Annesorhiza altiscapa 
Itasina filiformus 
Chamarea? sp.
Astydamia latifolia 
Eryngium scaposum 
Eryngium yuccifolium 
Petagnaea saniculifolia 
Hacquetia epipactus 
Sanicula gregari 
Astrantia maxima
Astrantia x rosensimfonie 
Actinolema eryngioides 
Arctopus monacanthus 
Arctopus echinatus 
Arctopus dregei 
Alepidea capensis
Alepidea peduncularis 
Polemanniopsis marlothii 
Steganotaenia araliaceae 
Lichtensteinia lacerata 
Lichtensteinia trifida 
Lichtensteinia sp. nov.
Choritaenia capensis 
Hermas villosa 
Hermas capitata 
Platysace lanceolata 
Platysace stephensonii 
Homalosciadium homalocarpum
Platysace valida 
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Pittosporum tobira 
Pittosporum sp.
Pittosporum brackenridgei 
Pittosporum koghiense 
Pittosporum undulatum 
Pittosporum spinescens 
Pittosporum rubiginosum 
Bursaria incana 
Bursaria spinosa 
Rhytidosporum alpinum 
Auranticarpa edentata 
Hymenosporum flavum 
Marianthus ringens 
Billardiera cymosa 
Billardiera heterophylla 
Bentleya spinescens 
Cheiranthera linearis 

Melanophylla aucubifolia 
Melanophylla alnifolia 
Melanophylla modestei
Torricellia tilifolia 
Aralidium pinnatifidum 
Pennantia corymbosa 
Pennantia cunninghamii 

Griselinia littoralis 
Griselinia lucida 
Griselinia ruscifolia 

Centella asiatica 
Centella linifolia 
Micropleura renifolia 
Shoenolaene juncae 
Pentapeltis silvatica 
Pentapeltis peltigera 
Xanthosia rotundifolia 
Xanthosia pusilla 
Xanthosia tridentata
Xanthosia pilosa 
Xanthosia atkinsoniana 
Chlaenosciadium gardneri 
Mackinlaya confusa 
Mackinlaya schlechteri 
Mackinlaya macrosciadia 
Apiopetalum velutinum 
Apiopetalum glabratum 
Actinotus helianthii 
Delarbrea collina 
Delarbrea balansae 
Delarbrea harmsii 
Delarbrea michieana 
Myodocarpus pinnatus 
Myodocarpus crassifolius 
Myodocarpus involucratus 
Myodocarpus fraxinifolius 

Araliaceae 
(Details on Fig. 4d)
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Tetraplasandra hawaiiensis 
Reynoldsia sandwicensis 
Munroidendron racemosum
Tetraplasandra oahuensis 
Gastonia duplicata 
Gastonia rodriguensis 
Cuphocarpus acauleatus 
Gastonia crassa 
Polyscias schmiddii
Polyscias murrayii 
Polyscias guilfoylei 
Polyscias multijuga
Arthrophyllum mackeei 
Schefflera costata 
Schefflera reginae 
Schefflera gabriellae 
Schefflera pickeringii
Meryta sinclairii 
Pseudopanax lessonii 
Pseudopanax ferox 
Neopanax arboreus 
Neopanax colensoi 
Cussonia spicata 
Seemannaralia gerrardii 
Osmoxylon insidiator 
Osmoxylon geelvinkianum 
Osmoxylon boerlegei 
Osmoxylon orientale 
Astrotricha sp. nov.
Astrotricha pterocarpa 
Aralia spinosa 
Panax quinquefolius 
Oreopanax capitatus 
Dendropanax arboreum 
Sinopanax formosanus 
Fatsia polycarpa 
Kalopanax septemlobus 
Metapanax davidii 
Macropanax dispermus 
Oplopanax elatus 
Schefflera cf. lasiogyne 
Dendropanax hoi 
Brassaiopsis glomerulata 
Trevesia palmata 
Schefflera morototoni 
Gamblea pseudoevodiifolia 
Chengiopanax sciadophylloides
Schefflera macrophylla 
Schefflera arboricola 
Heteropanax fragrans 
Merilliopanax chinensis 
Hedera helix 
Elutherococcus trifoliatus 
Tetrapanax papyriferus
Raukaua anomalus 
Raukaua simplex 
Raukaua edgerleyi 
Cheirodendron fauriei 
Cheirodendron platyphyllum 
Cheirodendron bastardianum 
Schefflera digitata 
Schefflera candelabra 
Cephalaralia cephalobotrys
Motherwellia haplosciadea 
Schefflera myriantha 5808
Schefflera myriantha 510
Schefflera rainaliana 
Hydrocotyle javanica 
Hydrocotyle cf. javanica
Hydrocotyle novae-zealandiae 
Hydrocotyle sibthorpioides 
Hydrocotyle cf. callicephala
Hydrocotyle modesta 
Hydrocotyle bonariensis 
Neosciadium glochidiatum 
Trachymene incisa 
Trachymene hookeri 
Trachymene coerulae 
Trachymene glaucifolia 
Uldinia ceratocarpa 
Harmsiopanax ingens 

See Fig. 4c 

Pittosporaceae
(See Fig. 4c) 

Fig. 4d. Araliaceae.
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CHAPTER 2  

Duplication of RPB2 in Apiales: Characteristics of orthologs and 
paralogs and their implications on the evolution of Apiales 

 
A. N. Nicolas & G. M. Plunkett 

 

Abstract 

The second largest subunit of the DNA-dependant RNA polymerase II (RPB2) 

gene was studied to estimate phylogenetic relationships in the order Apiales. A region 

from exon 18 to exon 23 (including introns) was sequenced from more than 260 species. 

This taxon sampling represented all major clades of Apiales, and nearly every genus within 

these clades (with the exception of Apioideae, where a more representative sampling 

strategy was applied). Based on interpretations from maximum parsimony and maximum 

likelihood analyses, at least two copies of RPB2 could be identified in most lineages, 

representing at least five independent duplication events in the order. The oldest of these 

duplications can be mapped to the early history of Apiales (c. 100 mya) and appears to 

precede the divergence of the families of suborder Apiineae (Apiaceae, Araliaceae, 

Myodocarpaceae, and Pittosporaceae). Both copies place Pittosporaceae as the earliest 

diverging lineage in the suborder, followed by Araliaceae, Myodocarpaceae, and Apiaceae. 

Within Araliaceae, several independent duplication events are specific to clades having 

many known polyploidy species, suggesting that these duplications may have resulted 

from ancient hybridizations. Following the divergence of subfamily Mackinlayoideae, two  
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duplication events occurred in Apiaceae. One is shared between subfamilies Apioideae and 

Saniculoideae, after the divergence of the South African genus Hermas. The other is 

limited to the Azorella clade of subfamily Azorelloideae and represents the most recent 

duplication in Apiineae (c. 55 mya). Both copies demonstrate the polyphyly of Azorella, 

the largest genus in Azorelloideae, and the role of rapid radiation and reticulation in 

shaping the history of the subfamily. Beyond Apiineae, duplications of RPB2 were 

detected in the early-diverging families Griseliniaceae and Pennantiaceae, but these appear 

to be more recent than the earliest duplication found in Apiineae.  

 

1. Introduction 

Our understanding of evolutionary relationships in the order Apiales has been 

hampered by a series of rapid radiations, differences in evolutionary rates among lineages, 

and the accumulation of homoplasious characters that complicates the task of identifying 

unique synapomorphies for the major clades of the order. Although molecular data have 

offered new insights into the evolution of Apiales and its placement among the dicots, 

many problems remain in understanding the relationships among and within the families of 

the order. These include the precise relationship among the seven families of Apiales, the 

proper placement of families Pittosporaceae and Myodocarpaceae, as well as subfamily 

Mackinlyoideae, the delimitation of subfamilies Apioideae and Saniculoideae in Apiaceae, 

and the resolution of relationships among the major clades of Azorelloideae. In order to 

resolve these problems, it is important to sample from sources of data that are as yet 

untested, with the hope that they will provide additional markers to resolve relationships in 
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Apiales. In a recent paper aimed at placing 40 of 42 genera once placed within subfamily 

Hydrocotyloideae (Chapter 1), we retrieved a phylogeny based on new sequences from the 

plastid rpl16 intron and the trnD-trnT spacer region. Results from that study showed some 

disagreement with relationships based on nuclear 26S data and two other plastid markers 

(matK and rbcl) presented by Chandler and Plunkett (2004), the last paper on relationships 

within Apiales that included a thorough sampling across all major clades. To define the 

nature of these incongruences, we sought a source of data from the nuclear genome that 

was unlinked to ones used in prior studies to help improve our understanding of the 

remaining perplexing relationships. Based on recommendations suggested by Denton et al. 

(1998) and especially the work of Oxelman and Bremer (2000) and Oxelman et al. (2004), 

we focused on the RPB2 region of the nuclear genome as a potential candidate to 

reconstruct intra- and inter-familial relationships in Apiales. 

The use of nuclear markers to resolve phylogenetic issues in Apiales has been 

limited to mostly to rDNA spacers and genes (but see also Mitchell & Wen, 2004). ITS 

and ETS rDNA sequences have been used mostly at the familial and intergeneric levels 

(e.g., Downie et al., 2000; Wen et al., 2001; Valiejo-Roman et al., 2002; Plunkett et al., 

2004b, 2004c; Tronchet et al., 2005) and a single study used sequences from the 26S 

coding region at the ordinal level (Chandler and Plunkett, 2004). Due to the differences in 

substitution rates among and within the main lineages of Apiales, it is virtually impossible 

provide reliable alignments of ITS and ETS sequences across lineages even within 

Apiaceae (empirical observation), let alone across the order. On the other hand, the 26S 

gene is highly conserved and did not provide sufficient information to reconstruct a well 
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resolved phylogeny in Apiales (Chandler and Plunkett, 2004), leaving many questions 

unanswered. Due to the complexity of the nuclear genome, the reconstruction of nuclear 

gene trees is more complicated and their use to infer species trees can be less reliable 

compared to markers from the plastid genome. One cause of this complexity is gene (or 

even whole genome) duplication, a process that is especially common in plants (Soltis et 

al., 2004). This process often leads to a confusing array of paralogs and orthologs, 

rendering it difficult to identify homologous copies of the same gene. Nonetheless, when 

sufficient information is collected about the history of the gene, paralogs and orthologs 

may be separated with confidence, and the evolution of the different copies may provide 

valuable insights into the evolution of the taxa.  

Recently, to expand the options of informative molecular markers in phylogenetics 

at different taxonomic levels, much work has been published on the utility of low-copy 

nuclear genes (reviewed by Sang, 2002; Small et al., 2004). Of these genes, DNA-

dependent RNA polymerase (RNAP) genes are emerging as potential markers for 

addressing phylogenetic relationships at different levels. RNAP II is one of three RNAPs 

identified in eukaryotes that have amino acid sequence homology among fungi, plants, and 

animals, as well as to the core subunits of the single RNAP found in prokaryotes (Sweester 

et al., 1987; Pati and Weismann, 1990; Kawagishi et al., 1993). RNAP II is responsible for 

the transcription of mRNA and consists of 10 or more subunits in most eukaryotes. The 

RNAP II genes encoding for the two largest subunits, RPB1 and RPB2, have proved to be 

very useful in the reconstruction of phylogenies in different groups of fungi (e.g., Liu et 

al., 1999; Zhong and Pfister, 2004; Frøslev et al., 2005; Matheny et al., 2007; Hofstetter et 
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al.,  2007). A single copy of RPB2 has been identified in prokaryotes, fungi, and animals, 

and it was first suggested that the gene was single copy in plants as well (James et al., 

1991; Thuriaux and Sentenac, 1992; Archambault and Friesen, 1993; Denton et al., 1998). 

However, two RPB2 paralogs were identified in the asterid Gentianales, Lamiales, 

Ericales, Solanales, Aquifoliales, and Escallonia (Oxelman and Bremer, 2000; Oxelman et 

al., 2004) and the rosid family Malvaceae (Pfeil et al., 2004). The two asterid copies, 

named paralogs D and I, are both functional and resulted from a duplication event that 

preceded the divergence of the core eudicot lineages (Oxelman et al., 2004; Luo et al., 

2007). The two copies exhibit size variations in some groups due to the loss of introns 18-

23 in paralog D (Oxelman et al., 2004). In the same study, the I paralog was reportedly lost 

in many asterid groups, including Apiales, which was represented by Hedera helix from 

Araliaceae (including data from exon 11 to exon 24) and Anthriscus silvestris from 

Apiaceae (data from exon 11 to exon 20). Since Denton et al. (1998) addressed the utility 

of RPB2 amino acid, exon, and intron sequences to resolve phylogenies at different levels, 

the phylogenetic utility of the RPB2 gene has been tested by several studies of angiosperm 

groups (e.g., Popp and Oxelman, 2001; Oxelman et al., 2004; Pfeil et al., 2004; Goetsch et 

al., 2005; Thomas et al., 2006; Loo et al., 2006; Luo et al., 2007; Sun et al., 2008), but not 

in Apiales. Because the introns of RPB2 are relatively short, the proximity of exon/intron 

boundaries makes it easier to delimit sequence regions that would be otherwise difficult to 

align. This helps to reduce the number of ambiguously aligned regions in the introns, thus 

producing more potentially-informative characters for phylogenetic reconstructions.  
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Gene duplication studies and the phylogenetic information they provide have been 

very limited in Apiales (e.g., Mitchell and Wen, 2004), and none have been targeted at the 

level of sampling we present in this study. As such, we used extensive sampling of the 

genera and species within the order to address the following issues: (1) to assess 

duplication events of the RBP2 gene and identify paralogous and orthologous copies; (2) to 

test for positive selection and variations in substitution rates within and among copies; and 

(3) to estimate a phylogeny of Apiales based on the history of the RPB2 gene and address 

the efficacy of RPB2 intron and exon regions in addressing relationships at different levels 

within the order. 

 

2. Materials and Methods 

2.1. Taxon Sampling 

The taxon sampling included an extensive representation of genera from 

throughout Apiales, with representation of all major clades and, when possible, all major 

phytogeographic regions. We used a sample nearly identical to that of Chapter 1, which 

included 139 genera and 263 species (see Table 1, therein) drawn from nearly every genus 

in the order except Apioideae (where the sampling was more representative, and focused 

especially on the early diverging lineages). Additional sequences were produced for 

Diposis patagonica Skottsb. (Puntieri s.n., BCRU), Gymnophyton flexuosum Clos (Zöllner 

14986, MO), Homalosciadium homalocarpum F. Muell. (Lepschi 3646, CANB), and 

Hydrocotyle sp. (Eichler 22047, CANB). The outgroup included newly-derived sequences 

from Ilex opaca [Soland.] (Plunkett 2262, NY) and Helwingia japonica (Thunb.) F. Dietr. 
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(Xiang 04C62, NCSC) from Aquifoliales, and Lonicera japonica Thunb. (Plunkett 2255, 

NY) from Dipsacales. We also added previously published sequences of Valeriana 

officinalis L. (GenBank accession number AJ565860) and Senecio vulgaris L. (GenBank 

accession number AJ557132) from Asterales, and Lonicera sp. (GenBank accession 

number AJ565933) from Dipsacales, all included in the study of Oxelman et al. (2004). 

The choice of outgroup taxa was based on previous studies that placed Aquifoliales as 

sister to a trichotomy comprising Apiales, Asterales and Dipsacales (Plunkett et al. 1996; 

APG II 2003; Judd and Olmstead 2004; Soltis and Soltis 2004).  

 

2.2. DNA extraction, amplification, and sequencing 

Most leaf tissue samples were either field-collected and dried using silica gel or 

harvested from herbarium specimens. Harvesting reliable, high purity, total DNA from 

fresh, silica-gel dried leaf tissue, or dried herbarium specimens was achieved using the 

CTAB method of Doyle and Doyle (1987), the DNeasy Plant extraction kit (QIAGEN 

Inc.), a modified Puregene DNA extraction protocol (Gentra Systems), or following the 

protocol of Alexander et al. (2007) with minor modifications. We targeted a region of the 

RPB2 gene ranging from the 3´ portion of exon 18 to the 5´ portion of exon 23. For a 

subset of species (representing different clades across Apiales), we extended this fragment 

to the 5´ end of exon 24. Primers (Table 1) were designed in exon regions by comparing 

previously published RPB2 sequences available on GenBank. PCR amplification reactions 

contains a mixture of 1 µL of unquantified DNA, 5 µL Sigma JumpStart™ REDTaq® 

ReadyMix™ Reaction Mix or Promega GoTaq® Green Master Mix, 0.5 µL of each 
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forward and reverse primers (at concentrations of 5 µM), 0.5 µM spermidine (4 mM), and 

2.5 µL ultrapure water, for a total volume of 10 µL. The PCR thermal profile included a 2 

min denaturing step at 94ºC, followed by 35 to 40 cycles of denaturation (30 sec at 94ºC), 

primer-annealing (30 sec at 54ºC), and DNA extension (30 to 90 sec at 70ºC). This was 

followed by an extra extension step for 5 min at 72ºC. PCR amplicons were cleaned using 

ExoSAP-IT (USB Corp.), according to the manufacturer’s recommendations, before 

serving as template for the sequencing reaction.  

Although some sequences were produced directly from PCR products (especially 

within Apiaceae), most were produced from cloned PCR products inserted into plasmid 

vectors using the StrataClone™ PCR cloning kit (Stratagene) or the Promega pGEM 

cloning systems (Promega, Madison, Wis.). Four to twelve clones were screened using 

PCR amplification with M13-20 and M13-27 primers. From these amplicons, one to ten 

inserts were sequenced. In addition to the M13 primers, inserts were sequenced using the 

internal RPB2-specific primers (RPB2_EX21R and RPB2_EX20F) in order to attain 

complete sequences from both complementary strands. Cycle sequencing reactions were 

performed by mixing 1 µL of the DYEnamic™ ET Terminator Cycle Sequencing mix (GE 

Healthcare), 1.5 µL of purified double-stranded PCR product, 0.5 µL primer (5µM), and 3 

µL ultrapure water, for a total volume of 6 µL. The amplification program consisted of 40 

cycles of 3 steps: 30 sec at 94ºC, 15 sec at 55ºC, and 60 sec at 60ºC. Sequencing products 

were purified using Montage SEQ384 plates (Millipore Corp.) and then separated 

electrophoretically on a 96-capillary MegaBACE™ 1000 automated sequencer. For some 
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samples derived from herbarium specimens, amplification was performed in two separate 

pieces with sufficient overlap to ensure that the same copy is being amplified. 

 

2.3. Sequence editing and alignment 

Sequences were manually edited using MegaBACE Sequence Analyzer. 

Complementary strands from individual cloned inserts were compared using BLAST 

(bl2seq; http://www.ncbi.nlm.nih.gov), as were different clones derived from the same 

sample. For copies from the same species exhibiting allelic variation less than 1%, a 

consensus sequence was constructed; when this variation was greater than 1%, both alleles 

were included in the dataset. Chimeric sequences, detected manually by comparing the 

sequence to each of the two different copies, were removed from the final data matrix. 

Sequences were aligned in ClustalX using the default settings (Higgins and Sharpe, 1988), 

followed by manual adjustments. Long insertions unique to a single sample, as well as 

certain regions of intron 22 found only in some outgroup taxa were removed from the final 

alignment.  Sequences were compared to annotated sequences in GenBank to determine 

the exact positions of exons. Subsequently, introns were excised to construct an exon-only 

data matrix (for comparison to results based on both exons plus introns). 

 

2.4. Data analyses 

 To compare the phylogenetic placement of our duplicate copies relative to paralogs 

D and I described by Oxelman et al. (2000 and 2004), a maximum likelihood tree was 

estimated in GARLI (Zwickl, 2006) using the aligned data matrix of the exon sequences. 
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For this analysis alone, Platanus orientalis (GenBank accession number AY566618) was 

added to the outgroup because it diverged before the duplication of RPB2 into copies D 

and I. We also added the D and I paralogs from Escallonia sp. (GenBank accession 

numbers AJ565858 and AJ557265), Solanum lycopersicon (GenBank accession numbers 

AJ565934 and AJ565936), and the I paralog for Ilex × meserveae (GenBank accession 

number AJ557241).  

For the data set including aligned regions of both intron and exon sequences, the 

parsimony ratchet (Nixon, 1999) was implemented in PAUPRat (Sikes and Lewis, 2001) 

and was run for 10,000 replicates. The 10,000 trees produced from the ratchet analysis 

were used as starting trees for a heuristic search using TBR swapping in PAUP* version 

4.0b10 (Swofford, 2001), with an upper limit of 50,000 trees. Consistency and retention 

indices (CI and RI) were estimated in PAUP. Support values for nodes were estimated 

using 200 bootstrap replicates. MODELTEST 3.06 (Posada and Crandall, 1998) was run 

with PAUP* to estimate the best model of sequence evolution. The recommended model 

GTR+Г+I was used for the maximum likelihood analyses in GARLI v. 0.96 Beta (Genetic 

Algorithm for Rapid Likelihood Inference; Zwickl, 2006). Since GARLI uses a stochastic 

approach to estimate phylogenies, we followed the recommendation of its authors and 

performed separate runs estimating the starting tree for the first run by stepwise addition. 

We used the best scoring tree from each run as the starting tree for the succeeding run. In 

this approach, the consistency of tree topologies from different runs and similarity in log 

likelihood values of the resulting trees will reduce the possibility of error. We also set 

GARLI to perform 100 bootstrap replicates. 
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To test for significant differences in rates of evolution between exon regions of 

duplicate copies, we used Tajima’s relative rates test as implemented in MEGA 4.0 

(Tamura et al., 2007), using Ilex opaca as the outgroup. Divergence rates within copies of 

major clades were also compared under the composite likelihood model using Gamma 

distribution and the transition to transversion ratio (Ts:Tv) calculated in MEGA 4.0. We 

tested for equivalence in the rates of synonymous (dS) vs. non-synonymous (dN) 

substitutions with the codon-based Z-test (with 1000 bootstrap replicates) as implemented 

in MEGA 4.0. The codon based Z-test evaluates the deviation from the null hypothesis of 

neutral evolution where the ratio dN/dS is 1. Two alternative hypotheses were tested to 

check whether positive selection (HA: dN > dS) or purifying selection (HA: dN < dS) drives 

the evolution of exon sequences. The significance values were estimated by the codon-

based Z-test under the modified Nei-Gojobori method with Jukes-Cantor correction model, 

which accounts for the bias in Ts:Tv and multiple substitutions at the same site to estimate 

dS and dN.  

Exon sequences were translated to amino acid sequences in BioEdit version 7.0.5 

(Hall, 2005). Redundant and partial sequences were removed from the matrix and a 

neighbor-joining (NJ) tree based on the amino acid sequences was constructed in Clustal. 

Tests for functional divergence between the amino acid sequences of paralogs were carried 

out in DIVERGE by estimating the coefficient of Type I functional divergence (θ), where 

θ = 0 under a null hypothesis of no functional divergence between clusters of amino acid 

sequences in the NJ tree (Gu and Velden, 2002). In Type I functional divergence, the 

functional constraints vary between the two copies after duplication, leading to different 
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protein functions. Type II functional divergence tracks significant changes in individual 

amino acid properties between the two copies, which is beyond the scope of this paper. 

Likelihood ratio tests (LRT) were conducted in DIVERGE to evaluate the significance 

value of each θ.   

We used BEAST v1.4.8 (Drummod and Rambaut, 2007) to estimate the timing of 

the duplication events that produced each copy in the different groups. XML input files for 

BEAST were prepared in BEAUti v1.4.8 (available in the BEAST software package) from 

a nexus file of aligned sequences. Starting with molecular sequences and a model of 

evolutionary relationships among these sequences, BEAST uses Bayesian MCMC to 

estimate posterior distribution of phylogenies and lineages within them. It also uses 

calibration points at nodes to infer a time-scale for relationships. Hence the result is a 

Bayesian tree with a posterior probability for each node and an age estimate for each 

divergence event. We conducted a likelihood ratio test (LRT) to test whether the sequences 

evolve according to a molecular clock. This was achieved by comparing –ln likelihood 

values of the best fit model estimated by Modeltest (GTR+Г+I) with a clock and without a 

clock. The outgroup was removed and the sample set was trimmed to 169 taxa, 

representing available copies from all major clades of Apiales, rooted with Pennantia. We 

set calibration points with fossils related to Torricelliaceae (Toricellia bonesii 

(Manchester) Manchester comb. nov.; Manchester, 1999) and the Asian Palmate clade of 

Araliaceae (Dendropanax eocenensis Dilcher & Dolph; Dilcher and Dolph, 1970). The 

calibration points were placed at the point of common ancestry for Torricelliace based on 

fruit fossils collected from lower Eocene deposits. The minimum age was set to 52.2 MYA 
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and the 95% confidence interval between 48.6 and 55.8 MYA, which spans the lower 

Eocene epoch. We followed the same concept for the Dendropanax leaf fossil and 

calibrated its clade with a minimum age of 42.9 MYA and 95% confidence interval 

spanning the middle Eocene from 37.2 to 48.6 MYA. Since estimates for the age of 

Apiales have not been consistent across previous studies, we did not set a conservative age 

to the ingroup. Instead we considered prior estimates, calibrations, and sampling 

limitations to set the age of the ingroup to 100 MYA and relaxed the estimate with 2.5% 

confidence intervals between 90 and 110 MYA. We used the GTR+Г+I as the model of 

evolution and a relaxed clock with uncorrelated lognormal. As recommended by the 

authors of BEAST, the tree prior was set according to the Yule speciation process, which 

assumes a constant speciation rate per lineage. The chain was run for 10 million 

generations with sampling of trees every 1000 generations. The tree file was transferred to 

TreeAnnotator v1.4.8 (in the BEAST package) to estimate the tree with the maximum sum 

of clade posterior probabilities (maximum clade credibility tree). 

 

3. Results 

The data matrix included 339 new seqeuences of RPB2 that span a region from 

exon 18 to exon 23. Three previously published sequences were used as additional 

outgroups, thus bringing the total to 342 sequences. After comparisons of preliminary 

sequences of intron 23, it proved to be the largest of the introns (> 400 bp) and showed a 

high degree of variability, rendering it difficult to align among distant groups, so we did 

not include it in the analyses. However, this intron contained sufficient variability to 
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provide information within families and genera, and may prove useful at these levels in 

future phylogenetic studies. The aligned sequence matrix comprised 2610 characters, of 

which 438 aligned characters represented exon regions. The exon alignment included only 

two indel regions (of 3 bp and 6 bp) that were potentially synapomorphic to some groups, 

plus six that were autapomorphic. Most length variations were restricted to the introns. 

Sequence lengths (excluding outgroups) varied from 819 bp in copy 1 of Aegopodium 

podograria (due to deletion of ~200 bp spanning intron 19, exon 20, and intron 20) to 1393 

in Bowlesia tropaeolifolia (due to an insertion of ~300 bp in intron 22). Most sequences 

ranged between 900 and 1050 bp. Sequences from one copy of Pittosporaceae (RPB2-Pi1) 

lack intron 19, but the lengths of these sequences are made up with an insertion in intron 

20 that is also unique to RPB2-Pi1.  

The maximum likelihood tree based on the data from both D and I copies (analysis 

not shown) indicates that all samples from Apiales fall within the D clade, which makes 

them homologous to the D copy of other asterids (and unrelated to the I copy). This 

justifies the use of the D copy of Asterales, Dipsacales, and Aquifoliales as outgroups. One 

interesting placement retrieved by this analysis was that of Pennantia outside of Apiales, 

and instead as sister to Ilex opaca and Helwingia japonica (Aquifoliales). Both ML and 

MP trees showed the presence of several paralogs of the D copy, distributed among all the 

families of Apiales (and within subfamilies of Apiaceae) except Torricelliaceae, for which 

only one copy was retrieved. Two paralogs were present in Pennantiaceae (Pen1 and Pen2) 

and in Griseliniaceae (Gr1 and Gr2) (Figs. 1 and 3e). Two copies were identified in 

Pittosporaceae (Pi1 and Pi2), Araliaceae (Ar1 and Ar2), Myodocarpaceae (My1 and My2), 
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Mackinlayoideae (Mk1 and Mk2), the Azorella clade (Az1 and Az2), and Apioideae + 

Saniculoideae (Ap-Sa1 and Ap-Sa2) (Figs. 1, 3, and 4). Within Araliaceae copy Ar1, two 

paralogs were identified for the Pseudopanax group (Px1 and Px2) and the Asian Palmate 

clade (AP1 and AP2) (Fig. 3d). 

The MP trees for the D copy and its paralogs (summary of tree in Fig. 1) was based 

on 1057 parsimony-informative characters and was 11,548 steps long. The consistency 

index (CI) was 0.2488 and the retention index (RI) was 0.8081 (Table 2). Most 

relationships, especially among families and paralogs of RPB2-D were well resolved. The 

ML tree had a -ln likelihood score of -61115.8937 and was fully resolved (summary of tree 

in Fig. 1, details in Fig. 3). Most nodes representing phylogenetic relationships among and 

within families had strong bootstrap support in both the MP and ML trees. Both analyses 

also demonstrated the same placement of RPB2 paralogs in Apiales (Fig. 1). Major 

disagreements between the MP and ML trees included the placement of the Trachymene 

clade in copy 2 of Araliaceae (Ar2), the placement of the Hydrocotyle clade in copy 1 of 

Araliaceae (Ar1), the relationship between Mackinlayoideae and Myodocarpaceae, and the 

placement and relationship between Lichtensteinia and Choritaenia (Fig. 1). Although all 

these placements were resolved, they were not well supported. 

The length of the shortest MP tree based on exon data alone was 2124 steps long 

with 255 parsimony-informative characters (Table 2). The ML tree had a -ln likelihood 

score of -12362.8375 (Fig. 2). The trees were not as well resolved as those based on the 

data matrix with both exons and introns, but only a few taxa differed in their placements. 

For example, Azorelloideae (excluding Klotzschia) appears monophyletic in Fig. 2 but not 
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in Fig.1, and Harmsiopanax appears as sister to Hydrocotyle in Fig. 2 but not Fig. 1, but 

the sister relationship between Harmsiopanax and Hydrocotyle was not well supported.  

Tajima’s relative rates tests showed no significant differences in the evolutionary 

rates between the two copies in most clades. However, a significant difference was 

observed in some Araliaceae, and in all samples of the Azorella clade for which both 

copies were represented (P < 0.05 for the null hypothesis of equal rates). The codon-based 

Z-test of neutrality showed that neither of the two copies is under positive selection (P = 1) 

but are more likely to be under purifying selection due to a significant increase (P < 0.05) 

in the number of synonymous mutations compared to non-synonymous ones for most 

groups (Table 3). The only exception was Az2 of Azorella (P = 0.0887 to reject purifying 

selection). The LRT on all pairwise comparisons of amino acid clusters representing 

duplicates showed that Type I functional divergence parameter θ is not significantly higher 

than 0 (LRT < 2.5; P > 0.1). This indicates that there is no heterogeneity in function 

between the two duplicates.  

The LRT of rate constancy led to the rejection of a molecular clock (P ~ 0), 

validating the use of a relaxed clock with uncorrelated lognormal distribution of priors. 

Such a clock considers variation of rates among lineages without assuming a priori 

correlation between a lineage and its ancestor, and usually performs better than other 

models (Ho et al. 2005; Drummond et al. 2006). The earliest duplication event dates back 

to more than 103 Mya, prior to the divergence of Pittosporaceae and after the divergence of 

Torricelliaceae and Griseliniaceae (Table 4). The most recent duplication within Apiales s. 

str. occurred in the Azorella clade of Azorelloideae, dating back to over 55 Mya (Table 4). 
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The maximum clade credibility tree (Fig. 4) confirms most relationships already 

established by the ML tree. Two key differences are the placement of Lichtensteinia as 

sister to the remaining copy1 sequences of Apioideae and Saniculoideae (PP = 0.84) and 

the placement of Torricelliaceae as sister to the two copies of Griseliniaceae (PP = 0.95). 

 

4. Discussion 

4.1. Duplication of RPB2 

Through this study we demonstrate multiple, independent duplications of RPB2 in 

Apiales, events not previously reported in this order. One of these copies is homologous to 

the D copy isolated from Hedera helix by Olmstead et al. (2004). However, the paralogs 

we retrieved do not correspond to copy I, discovered in some groups of angiosperms in 

that study. Rather, they are a result of duplications of the D paralog long after the event 

leading to the divergence of RPB2-D and RPB2-I. The duplication of RPB2-D occurred at 

least five times throughout the history of Apiales: within Pennantiaceae, before the 

divergence of Griseliniaceae and Torriceliaceae, before the divergence of families 

Pittosporaceae, Araliaceae, Myodocarpaceae and Apiaceae subfamily Mackinlayoideae, 

and at least twice within family Apiaceae (once within the Azorella clade of subfamily 

Azorelloideae, and once before the divergence of subfamilies Apioideae and 

Saniculoideae). The oldest of these events dates to the late Cretaceous (103 Mya) and 

occurred before the divergence of the four core families of Apiales (Apiaceae, 

Myodocarpaceae, Araliaceae, and Pittosporaceae). Another duplication occurred within 

core Apiales, dating back to c. 70 Mya, and is shared between Apioideae and 
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Saniculoideae. A duplication (also c. 70 Mya) occurred outside of core Apiales, giving rise 

to two copies of RPB2 in Griseliniaceae, perhaps originating in the common ancestor of 

this family and Torricelliaceae (see below). The duplication event giving rise to the two 

copies found in Pennantiaceae, however, appears to be unique to that family. This suggests 

that, despite their membership in Apiales, the nuclear genomes of Griseliniaceae, 

Torricelliaceae, and Pennantiaceae may be quite divergent, a finding that is also reflected 

in the morphological characters of these families.  

Gene duplication can result from whole genome duplication, duplication of an 

entire chromosome, duplication within a chromosome by unequal crossing-over, or 

retroposition through the insertion of cDNA into the genome (reviewed in Zhang, 2003). In 

many cases, one of the duplicates or paralogs may lose function (pseudogenization) and 

thus either become highly divergent in its sequence or it may be lost altogether. In contrast 

to pseudogenization is concerted evolution, where duplicates maintain the same protein 

and function, with minimal changes in DNA sequences. Two of the most important 

evolutionary fates of a duplicated gene are subfunctionalization and neofunctionalization. 

Subfunctionalization is most beneficial in genes with a high functional load, so duplicates 

can take over subsets of the function of the gene (Nowak et al., 1997; Force et al., 1999). 

In these cases, genes accumulate variations in their sequences and diverge without losing 

function, but the expression of each copy becomes differential to certain tissues (Lynch 

and Force, 2000). Neofunctionalization implies that sufficient divergence in sequence and 

function led to the emergence of a new function by one of the duplicates. The survival of 

distinct gene copies depends on evolutionary pressures and the cellular dynamics that 
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control neutralism and selectionism (whether positive or purifying selection) in order to 

decide the fate of synonymous and non-synonymous mutations. Our results show that the 

number of synonymous substitutions is significantly higher than that of non-synonymous 

substitutions in both copies, which indicates that the gene is not under positive selection in 

any of the clades (HA: dN > dS P = 1). Also, the estimates of the parameters of the type I 

functional divergence (θ) indicate that there is no divergence of functions between the two 

copies. This means that neofunctionalization can be eliminated as the mechanism driving 

the divergence of the paralogs.  Pseudogenization may also be eliminated because, in 

addition to the similarity in the ratio of non-synonymous to synonymous mutations in both 

copies (Table 3), the exon and amino acid matrices did not show frame disruptions and 

significant length variations between the two copies of any duplication event. Rather, in 

most clades both copies are under purifying selection (HA: dN < dS; P < 0.05), a process 

indicating either concerted evolution or subfunctionalization. Since the variation between 

the two copies is evident through the comparison of DNA sequences of introns and exons, 

as well as amino acid sequences of proteins, concerted evolution appears to be less likely, 

which leaves subfunctionalization as the best explanation for the fate of the two copies. 

The RPB2 subunit is part of the active center of RNAP II (Hahn, 2004) and the RNAP II 

enzyme is frequently used in the cell because of its great importance for the transcription 

of protein-coding genes into mRNA (Young, 1991; Shilatifard et al., 2003). Such high 

demand supports the process of subfunctionalization as the likely reason for the survival of 

two functional copies. Luo et al. (2007) were able to show that both I and D paralogs of 

RPB2 are expressed in various plant tissues, with a preferential expression of copy D in 



 92 

vegetative tissues and copy I in floral tissues. Since copy I was not found in Apiales, it is 

possible the two copies of D isolated here may follow a similar pattern to that described in 

Luo et al. (2007). 

Some authors suggested that subfunctionalization and neofunctionalization may 

both be part of the history of the same gene, and that the former may be a “stepping-stone” 

to the latter (e.g., Lynch and Force, 2000; He and Zhang, 2005). Subfunctionalization may 

be a short term process, and after the paralogs lose their ancestral functions in lieu of 

subfunctions, they may accumulate advantageous mutations and gain new functions. The 

Azorella clade may provide one possible example of the early stage of such a model 

because the duplication event is more recent (c. 55 Mya) than in other clades. The 

functional divergence test did not show functional divergence between the two copies of 

the Azorella clade but the relative rates test showed a significant difference in the rates of 

substitution in exons and almost twice the difference in the mean genetic distance between 

the two copies. In addition, Az2 had the highest ratio of non-synonymous mutations 

compared synonymous ones (0.58) and a low Ts:Tv (1.061), almost three times less than 

that of copy 1 (Table 3). In addition, copy 2 was not shown to be under either positive or 

negative selection, but rather under neutral selection (HA: dN ≠ dS; P = 0.16), although P = 

0.0887 for purifying selection may be significant if the cutoff significance level for P was 

0.1 (Table 3). This may indicate a progression in copy 2 from subfunctionalization to 

neofunctionalization, or even pseudogenization.  
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4.2. Identifying Paralogs and Orthologs – Some Pitfalls to Avoid   

Following the duplication of a genomic region, the task of separating orthologs 

from paralogs without ambiguity may prove very challenging. In a best-case scenario, 

phylogenetic analysis of the duplicated sequences will produce two well supported clades 

(one duplicate per clade), each exhibiting a similar or identical topology among the 

terminals. Our results approached this situation, but not fully. Paralogy and orthology was 

difficult to discern in some cases because duplications occurred independently in different 

clades, followed by apparent loss in some clades. The occurrence of duplication events in 

clades exhibiting significantly different rates of sequence divergence further complicated 

the task of identifying orthologs. In Apiales, such shifts in evolutionary rates are known to 

be correlated to life-history differences among species, resulting in branch-length 

differences of greater than a factor of three in herbs compared to woody trees or shrubs 

(Smith and Donaghue, 2008). This applies particularly to comparisons of entire clades that 

are mostly woody (e.g., Araliaceae, Myodocarpaceae, and Pittosporaceae) to those that are 

mostly herbaceous (e.g., Apiaceae), but also within clades that include both woody and 

herbaceous taxa (e.g., Mackinlayoideae). Differences in diversification rates may make 

duplication events appear older in more rapidly evolving lineages (e.g., Azorella and 

Apioideae-Saniculoideae clades) and blur the phylogenetic estimations in rapidly evolving 

clades that exhibit ambiguity in their delimitations (e.g., the early-diverging clades of 

Apioideae-Saniculoideae). In this study, we used an advance model of sequence evolution 

(GTR+Г+I) incorporated in maximum likelihood analyses that consider rate variations 

among and within lineages and produce reliable estimates for the placement of duplicates 
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in the phylogeny. We also used Bayesian approaches (incorporated in BEAST), which 

account for rate heterogeneity and the lack of correlation between rates along different 

branches in order to provide greater reliability in the estimation of times of divergence. In 

addition, we were able to confirm the orthology among duplicate copies in each of the 

main lineages by comparing introns, exons and amino acid sequences. Exons of 

orthologous copies are expected to accumulate relatively few variations since they are 

under purifying selection, regardless of the plant’s habit or life history. Amino acid 

comparisons provide an additional line of evidence in the event that the nucleotide 

substitutions in the exons were synonymous (and hence not selected). The broad sampling 

we employed here, including representatives from both the deep and shallow branches 

across Apiales, increased the chances of retrieving both copies of a duplication where 

possible, which provides for a more reliable placement of each copy in the overall 

phylogenetic tree.  

Within individual copies of RPB2, we also found evidence of different sequences 

from the same species. These differences may be ascribed to allelic variation, 

neopolyploidy, or paleopolyploidy. In some cases, such differences in sequences showed a 

very small degree of divergence (< 2%), mostly limited to transitions or indels in introns, 

and these we attributed to allelic variation. In all cases, these alleles comprised a 

monophyletic clade. Neopolyploids and paleopolyploids were hypothesized based on 

current knowledge of cytology (albeit rather limited), as well as the monophyly of the 

sequences and the placement of the sequences compared to other published phylogenies. 

The distinction between allelic variation and gene duplication becomes especially difficult 
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in clades with long branches where the monophyly of each copy is not violated even by 

very close relatives. In these cases, allelic variants, neopolyploids, and even 

paleopolyploids may all appear monophyletic with low rates of divergence between 

sequences.  

Identification of orthologs may be further complicated by recombination between 

the two copies, yielding chimeric sequences. This is known to occur in vivo through 

crossing over during meiosis, and in vitro as an artifact of molecular techniques, such as 

PCR (Bradley and Hillis, 1997; Judo et al., 1998; Zhou and Hickford, 2000; Jelesko et al., 

2004). Our thorough sampling of taxa and the recovery of copies across all major clades 

facilitated the identification of such recombinants. These recombinants were then excluded 

from our analyses because they represent two independent evolutionary histories. If left in 

the data matrix, chimeric sequences may have a significant effect on the placement of other 

taxa and bias the conclusions of a phylogenetic analysis. In Apiales, we identified at least 

twelve sequences retrieved from clones as chimeric sequences, each with evident crossing-

over points that always occurred in exons, but not always in the same exon (all exons 

between 18 and 23 served as cross-over points among our recombinants). In the absence of 

detailed cytological work to detect recombinants and the proximity of the two duplicates 

on the chromosomes, it is not possible to ascertain whether chimeras arose in vivo or were 

in vitro PCR artifacts. However, proximity is certainly brought about during the PCR 

process, facilitating rearrangements at regions with very high similarity (usually exons). 

Also, while rare, we did find a very few colonies that contained only fragments of the 

target PCR product. Such fragmentation in PCR may lead to chimeric sequences through 
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the joining of fragments from different copies early in the amplification process (Pääbo et 

al., 1990; Bradley and Hillis, 1997). The presence of chimeras with various recombination 

points along different exons and the retrieval of partial sequences in a few cloning 

reactions makes us suspect that these sequences are PCR artifacts.  

The amplification of the entire target DNA region as two or more separate but 

overlapping PCR products is sometimes necessary, but can represent another pitfall related 

to molecular methodology because different primer pairs may favor different paralogs. 

This was especially important for older samples collected from herbaria, where 

amplification is typically successful only in small sections of c. 500 bp. In Apiales, for 

example, amplification with primers RPB2_EX18F and RPB2_EX21R favored one copy 

in some species of Apioideae (e.g., Petroselinum crispum and Peucedanum sp.) and 

Mackinlayoideae (e.g., Mackinlaya, Pentapeltis silvatica, and Chlaenosciadium gardneri), 

while primers RPB2_EX20F and RPB2_EX23R retrieved another copy for the same 

species. In such cases, it is important that the overlapping region contains sufficient 

variation (e.g., intron 20 in our study) to be able to identify which paralog has been 

amplified. Another issue potentially related to the PCR process is the failure to retrieve one 

of the two duplicates; this may be difficult to distinguish from the evolutionary loss of one 

copy. In Apiales, this was evidenced in the Hydrocotyle and Trachymene clades of 

Araliaceae, in Torricelliaceae, and in the Asteriscium and Bowlesia clades of 

Azorelloideae. We attempted to circumvent this problem by using different combinations 

of primers and lowering the annealing temperatures, but the same copy was retrieved in all 

samples of these clades. The differential loss of one copy is a common process that may 
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follow gene duplication, and this may lead to conflicting signals between phylogenies from 

different genes. It may be a result of dysploidy, rearrangements within chromosomes, or 

high divergence in one copy of the sequence following loss of function. Further cytological 

evidence is imperative to prove that the lack of PCR amplification for one copy indicates 

the loss of this copy. 

 

4.3. Implications on the Phylogeny of Apiales 

The relationships among the families of Apiales retrieved through the phylogenetic 

analysis of RBP2 data are largely congruent with most relationships estimated by the 

combined analyses of data from the plastid rpl16 intron and the trnD-trnT spacer (Chapter 

1). In the plastid study, Pennantia was chosen as outgroup based on the results of Kårehed 

et al. (2001), Kårehed (2003), and Chandler and Plunkett (2004). However, both exon + 

intron and exon-only trees place Pennantia in one of the outgroup clades, sister to the Ilex-

Helwingia clade of Aquifoliales (Figs. 1-3). We retrieved only a single copy of RPB2 from 

all three genera that comprise Torricelliaceae. That family appears to be the sister of 

Griseliniaceae (BS = 83%), but with ambiguity in its placement relative to the two copies 

of Griseliniaceae (Figs. 1, 3, and 4). Relationships among families Pittosporaceae, 

Araliaceae, and Myodocarpaceae are the same as those demonstrated by our plastid data 

(Chapter 1) and by the plastid data (matK and rbcL) used by Chandler and Plunkett (2004). 

All three studies show Pittosporaceae as the earliest diverging lineage of the group, 

followed by Araliaceae, Myodocarpaceae and Apiaceae (Figs. 1, 3, and 4). The long-held 

view of Myodocarpus and Delarbrea (of Myodocarpaceae) as intermediates between 
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Araliaceae and Apiaceae (Baumann, 1946; Frodin and Govaerts, 2003) is supported with 

this placement (Figs. 1, 3, and 4). None of our analyses support a sister-group relationship 

between Pittosporaceae and Myodocarpaceae, a relationship suggested by the nuclear 26S 

phylogeny estimated in Chandler and Plunkett (2004). Genera in Mackinlayoideae have 

also been viewed as intermediates between Araliaceae and Apiaceae (see Plunkett and 

Lowry, 2001; Plunkett et al. 2004a), and the placement of the subfamily as the earliest 

diverging lineage of Apiaceae supports this view (Figs. 1, 3, and 4). In the RPB2 

phylogeny, the Platysace clade (Platysace & Homalosciadium) appears sister to the rest of 

Mackinlayoideae and not as successive sister groups to the rest of Apiaceae (Fig1, 3, and 

4) as in the plastid phylogeny (Chapter 1). Within Apiaceae, the relationships among the 

four subfamilies are compatible with our plastid data (Chapter 1), where Mackinlayoideae 

are sister to the other three subfamilies (Azorelloideae, Saniculoideae, and Apioideae) (Fig. 

1). Of the lineages from Azorelloideae, the Asteriscium clade alone appears sister to 

Apioideae-Saniculoideae, but with low support in the exon + intron tree (BS = 57%; Fig. 

3b). However, in the exon phylogeny, the Asteriscium clade groups with the rest of 

Azorelloideae (except Klotzschia) to form a monophyletic sister group to Apioideae + 

Saniculoideae, but again support is low (BS < 50%; Fig. 2). Compared to the plastid trees, 

the RPB2 phylogeny shows a better resolution of relationships among the major groups of 

Azorelloideae, supporting a sister relationship between the Azorella and Bowlesia clades 

and a well supported placement of Diposis as sister to the Asteriscium clade (Figs. 1 and 

3b). Hermas is well supported as sister to the Azorelloideae-Saniculoideae clade (BS = 

83%; Fig. 3a). Problems remain regarding the placement of Klotzschia and the 
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establishment of a clear relationship between Lichtensteinia and Choritaenia, and between 

these taxa and the rest of the Apioideae + Saniculoideae. 

 

4.4. Characteristics and phylogenetic utility of RPB2 duplicates 

4.4.1. Early diverging families 

 Two variants of RPB2 were retrieved from Pennantia (Pen1 and Pen2, both 

forming a clade sister to the outgroup species from Aquifoliales), but we were unable to 

determine whether these represent duplicated copies or merely alleles of the same locus. If 

the two variants of Pennantia represent a duplication event, it would be the most recent of 

the duplications detected in this study (mean age of 32.29 Mya). This is also reflected in 

the remarkably high similarity of the exons (> 95%) and even the introns (> 85%) of the 

two variants. The only sizeable indel is an insertion of 32 bp at the 3´ end of intron 22 in 

Pen2. All chromosome counts reported for the species of Pennantia show a diploid 

number of 2n = 50 and no polyploidy has been reported (Murray and De Lange 1995). The 

high level of intron similarity and the lack of evidence of polyploidy provide reason to 

suspect that the two variants may represent two alleles of the same locus, perhaps resulting 

from an old hybridization event within the genus, especially since hybrids between 

Pennantia species have been documented (Gardner and De Lange 2002).  It is also worth 

noting that he placement of Pennantia in our phylogeny (among the outgroup taxa), 

coupled with the lack of morphological links to Apiales, casts some doubts as to its 

inclusion in the order.  
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The two RPB2 sequences detected in Griseliniaceae are clearly two distinct copies. 

Copy 2 (Gr2) was much longer than copy 1 (Gr1) due to a large insertion (~ 177 bp), but 

when this long insertion was excluded from the alignment, sequence similarity between the 

two copies was ~ 85% (> 95% in exons). The placement of the two copies of 

Griseliniaceae relative to Torricelliaceae was not well supported and varied between the 

ML and Bayesian trees. However, the two groups always constituted one clade, sister to 

the rest of Apiales, in trees based on exons + introns (Figs. 1, 3e, and 4b). The placement 

of Gr2 as sister to a clade including both Gr1 and Torricelliaceae in both the MP and ML 

trees (Fig. 1) may suggest a shared ancestry of the duplication of RPB2 in the two families. 

We also identified a third variant or RPB2 identified from Griselinia lucida, but this was a 

chimeric sequence, with evidence of recombination at exon 21. 

 

4.4.2. Pittosporaceae 

Based on the data matrix that includes both introns and exons, the two copies of 

RPB2 found in Pittosporaceae (Pi1 and Pi2) are orthologous to the two copies found in 

Araliaceae, Myodocarpaceae, and Mackinlayoideae (Fig. 1). The placement of these copies 

is resolved and well supported (Pi1 BS = 86%; Pi2 BS = 92%; Figs. 3c and 3e) and agrees 

with the placement based on chloroplast data (Chapter 1). Our primers did not produce 

homogeneous PCR products ready for direct sequencing without cloning, but they heavily 

favored the amplification of Pi1. Consequently, Pi1 was retrieved from clones of all the 

species sampled from Pittosporaceae, whereas only three of the species had clones with 

inserts of Pi2. As mentioned above (see Results), Pi1 is distinct from all other RPB2 
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sequences from Apiales included in this study due the loss of intron 19 (~88 bp) and 

because of a large insertion at the beginning of intron 20 (~250 bp). The insert did not 

match any region of any sequence from Apiales or from any other sequence of RPB2 on 

GenBank, which led us to suspect that it may have resulted from a rearrangement that was 

old enough to accumulate substitutions and indels over time. Distinctive features in Pi2 

include three large synapomorphic insertions in introns 18 (~30 bp) and 22 (~ 45 bp and 12 

bp). No indels were observed in the exons. Excluding indels, sequence identity between 

the two copies was higher than 77% in the overall sequence and higher than 86% in exons. 

Most chromosome counts available for Pittosporaceae have a diploid chromosome 

number of 2n = 24 (IPCN; Ito et al., 1997; Kiehn, 2005). Although three counts on 

unidentified species of Pittosporum reported 32-36 somatic chromosomes (Ito et al., 

1997), polyploidy has not been confirmed in the family, nor did we find variation between 

RPB2 sequences from the same species that were high enough to indicate polyploidy. The 

most significant variation among clones within the same copy was found in copy Pi1 of 

Pittosporum undulatum, which showed a difference of nine substitutions (0.87%), only one 

of which was a transversion. This difference is best interpreted as allelic heterozygosity, 

which is not surprising when we consider the wide distribution, fast growth, and 

invasiveness of this species.  

Phylogenetic relationships within Pittosporaceae may be inferred from copy Pi1, 

which includes all genera of the family in a fully resolved, well supported lineage (Fig. 

3c). Relationships among the nine genera are well resolved and in most cases well 

supported. Two major clades emerge within this lineage: the first groups Pittosporum, 
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Bursaria, Rhytidisporum, and Auranticarpa (BS= 59%), while the second groups 

Billardiera, Marianthus, Cheirenthera, Bentleya, and Hymenosporum (BS= 80%) (Fig. 

3c). The placement of Hymenosporum is of greatest interest because prior studies showed 

it either in a polytomy relative to the other two clades, or in one of the two main clades of 

Pittosporaceae but with poor support (Chandler et al., 2007; Chapter 1).  In the Pi1 lineage, 

Hymemosporum is sister to the clade comprising Billardiera, Marianthus, Cheirenthera, 

and Bentleya, with considerable bootstrap support in the ML (80%) and MP (67%) trees.  

 

4.4.3. Araliaceae 

The taxa sampled from Araliaceae were well represented by both copies of RPB2.  

Copy 1 (Ar1) sequences ranged in length from 996 to 1070 bp, with the exception of 

Chengiopanax, in which intron 19 (~120 bp) was deleted in its entirety. Sequences of copy 

2 (Ar2) were all slightly smaller than 1000 bp, mostly ranging between 950 and 992 bp. 

The size variation between the two copies was too small to detect on agarose gels, making 

it difficult to screen Ar1 and Ar2 inserts. The pairwise comparisons between the two copies 

in Araliaceae (excluding Hydrocotyle and Trachymene) showed a sequence similarity 

higher than 70% across the entire region sequenced, and higher than 90% across the exons. 

Two synapomorphic indels were found in intron 22 of Ar1, both insertions of ~15 bp. The 

PCR process favored the amplification of Ar1 over Ar2 in a ratio of about 4:1. A few 

chimeric sequences were retrieved, exhibiting recombination between the homologous 

copies at exons 20 (e.g., Hedera helix), exon 21 (e.g., Hedera helix, Merilliopanax 

chinensis, and Neopanax colensoi), and exon 22 (e.g., Raukaua anomalus). Both copies 
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showed evidence of allelic variations within species, most of which had an identity of 

~99%. Examples include Panax quinquifolius (97.87% identity), Schefflera morototoni 

(99.12%), and Trevesia palmata (98.64% identity) of Ar1, and Gastonia rodriguesiana 

(98.6 %) of Ar2. 

In the Araliaceae clade based on copy Ar1 (Fig. 3d), three main groups provide the 

greatest information related to the evolution of RPB2. These are the Asian Palmate clade, 

the Polyscias-Pseudopanax clade, and the Raukaua-Schefflera s. str. clade, each of which 

has its own complicated pattern of evolution. Genera of the Asian Palmate clade were 

divided into two subclades (BS = 69%), with sequence variants (derived from clones of the 

same samples) identified in Hedera helix, Dendropanax arboreus, Chengiopanax 

sciadophylloides (ML phylogeny only), and Trevesia palmata appearing in both clades 

(Fig. 3d). The placement of allelic variants from the same samples in different subclades 

could be explained by a polyploid event in the most recent common ancestor of the two 

subclades, where hybridization (rather than coalescence) produced the two alleles (AP1 

and AP2; Fig. 3d). The inference of polyploidy is further supported by the findings Yi et 

al. (2004), who deduced that a polyploidy event occurred very early in the history of the 

Asian Palmates, and that the few diploids in this group resulted from later events of ploidal 

reduction. This is not surprising since the Asian Palmate clade includes a high proportion 

of polyploids, especially tetraploids (2n = 48), and is suspected to have experienced both a 

rapid radiation and subsequent reticulation events that hindered the resolution of 

relationships within the group (Mitchell and Wen, 2004; Plunkett et al., 2004b; Yi et al., 

2004). Associated with the Asian Palmate genera are the Asian-Pacific genus Osmoxylon, 
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which appears sister to the AP2 clade of the Asian Palmates (BS = 55%), and the African 

genera Cussonia (BS = 89%) and Seemannaralia (BS = 63%), which form successive 

sisters to the Asian Palmates + Osmoxylon clade (Fig. 3d).  

The Polyscias-Pseudopanax clade (Fig. 3d) includes genera associated with 

Polyscias sensu lato (including Gastonia, Reynoldsia, Tetraplasandra, Munroidendron, 

Cuphocarpus, and Arthrophyllum) and Pseudopanax (Neopanax, Meryta, and Melanesian 

Schefflera). Like other Araliaceae, the taxa in this clade share a base chromosome number 

x = 12, with tetraploidy reported from species of both subclades, but more commonly in 

the Pseudopanax clade. Most species of Polyscias sensu lato with reported chromosomal 

counts are diploid (2n = 24), with the exception of Munroidendron and Tetraplasandra 

(IPCN, 1979-2007; Yi et al. 2004). The tetraploidy of Tetraplasandra may explain the 

placement of two variants as polyphyletic with respect to the other genera. Similarly, 

sequences from Gastonia crassa appear polyphyletic in Ar1. Although chromosome counts 

have not been reported from any Gastonia species, this placement makes us suspect 

polyploidy in this genus, which warrants further investigation into the origin of known 

polyploid species in Polyscias s. lat. group and whether they originated from ancient 

hybridization events. Polyploidy in Polyscias s. lat. is more likely a relatively recent 

occurrence, predated by the divergence of the Polyscias and Pseudopanax subclades.  

Of the chromosome counts available from the species of the Pseudopanax subclade 

(Pseudopanax, Neopanax, Melanesian Schefflera, and Meryta) (IPCN 1979-2007; Yi et al., 

2004), all are 2n = 48, suggesting that tetraploidy may be an ancestral state in the subclade. 

There is additional evidence of this conclusion from the number of variable sequences of 
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inserts retrieved for many of its species. The process of sequence editing and comparison 

in the Pseudopanax group proved to be the most complex and confusing in Apiales. 

Through the ML and MP analyses, it became clear that sequences derived from the same 

species of this group formed two unrelated clades, one sister to the Polyscias s. lat. group 

(Px1; Fig. 3d) as expected based on prior studies, and another (Px2; Fig. 3d) associated 

with the Raukaua-Schefflera s. str. clade. Within Araliaceae RPB2 copy Ar1, different 

sequences derived from the same species (e.g., Schefflera pickeringii, Schefflera costata, 

Neopanax arborus, N. colensoi, and Pseudopanax lessonii) did not appear monophyletic 

but were instead separated into two distantly related clades, either copy Px1 or Px2. The 

same pattern is evident in Ar2, where one sequence from Neopanax arboreus is placed 

sister to Raukaua, whereas the remaining Ar2 sequences from the Psuedopanax group are 

placed in a clade with Polyscias s. lat (Fig. 3e). The most probable explanation for this 

finding is that an allopolyploid event occurred very early in the evolution of Araliaceae. 

Hybridization between the ancestors of the Polyscias group and the Raukaua-Schefflera s. 

str. group, (the extant species of which are mostly diploid) might have led to the 

emergence of the tetraploid Pseudopanax group.  

In addition to sequences of the Pseudopanax group, the Raukaua-Schefflera s. str. 

clade includes many genera with Pacific distribution whose placements were usually 

unresolved or poorly supported in prior studies (Chandler and Plunkett, 2004; Plunkett et 

al., 2004b, 2005). These include the Australian Cephalaralia, Motherwellia, and 

Astrotricha, the New Zealand Raukaua, the mostly Hawaiian Cheirodendron, and the 

Pacific Schefflera s. str. (Fig. 3d). Bootstrap support for the clade that includes these taxa 
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plus Pseudopanax et al. is 66%, but the relationships among the genera in this clade are 

not supported. Harmsiopanax is also part of this clade, but in the phylogeny based on exon 

sequences (BS = 55%; Fig. 2) it appears sister to the Hydrocotyle clade. The sister-group 

relationship between Harmsiopanax and the Hydrocotyle clade is similar to the 

relationship estimated by the ML phylogeny based on plastid trnD-trnT and rpl16 data 

(Chapter 1). 

Most previous phylogenetic studies of Apiales have shown that Hydrocotyle and 

Trachymene form a clade sister to the rest of Araliaceae (Chandler and Plunkett, 2004; 

Chapter 1). In the MP phylogeny (Fig. 1), Hydrocotyle is sister to copy Ar1 (BS < 50%) 

and Trachymene sister to Ar2 (BS = 100%), which is not the same in the ML phylogeny, 

where Ar1 is paraphyletic with respect to Hydrocotyle (Figs. 1 and 3d) and Ar2 is 

paraphyletic with respect to Trachymene (Figs. 1 and 3e). Both Hydrocotyle and 

Trachymene were sequenced directly from PCR reactions. When cloned, they showed the 

presence of only one copy, despite relaxation of PCR conditions. This is surprising, 

considering the high level of polyploidy reported in the two genera, especially Hydrocotyle 

where counts as high as n = 48 have been reported for species represented in our study 

(IPCN, 1979-2007; Pimenov et al., 2003). Pseudogenization or differential gene loss may 

be a factor that hindered the estimation of the organismal relationship between the 

Hydrocotyle and Trachymene.  
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4.4.4. Myodocarpaceae 

We retrieved the two copies of RPB2 from both Myodocarpus and Delarbrea, the 

only two genera of Myodocarpaceae (copies My1 and My2; Figs. 1, 3, and 4). Size 

variation was significant between the two copies due to large indels in intron 22, resulting 

in total length increase of ~150 bp in My1, facilitating the identification of each copy on 

agarose gels. No indels were observed in exons. The two copies showed sequence 

similarity of ~65% across the entire region (but > 75% when excluding the indels in intron 

22) and ~91% in exons. The PCR process favored copy 1 in Myodocarpus and copy 2 in 

Delarbrea. Two cloned sequences derived from Myodocarpus crassifolius were chimeric, 

showing a recombination point around the middle of exon 22. Chromosome counts 

reported for Myodocarpaceae show a gametophyte number n = 12. No evidence of 

polyploidy has been identified in this family and no RPB2-sequence variation within 

species was great enough to be attributed to anything other than allelic heterozygosity.  

In the ML phylogeny, Myodocarpaceae appears as a lineage which diverged after 

Araliaceae and before Apiaceae. This placement is in agreement with the phylogeny 

estimated from plastid markers (Chapter 1) but disagrees with the suggestion of a 

“tentative sister group-relationship” with Pittosporaceae suggested by Chandler and 

Plunkett (2004). Our placement also agrees with the long-held view of Myodocarpus and 

Delarbrea as “morphological intermediates” between Araliaceae and Apiaceae (see 

Plunkett and Lowry, 2001). In the MP tree, Myodocarpaceae appeared sister to the 

Platysace clade, but with low support (< 50%).  
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4.4.5. Apiaceae 

The subfamilies of Apiaceae are addressed below in three main sections, following 

the current subfamilial classification of Mackinlayoideae, Azorelloideae, and subfamilies 

Apioideae and Saniculoideae together. Unlike the other families of the order, most of the 

genera in Apiaceae are herbaceous and hence exhibit higher rates of substitution than the 

mostly woody taxa of the rest of Apiales. This is obvious in the pairwise comparisons of 

homologous sequences and the mean genetic distances of exons where Mackinlayoideae 

and Apioideae + Saniculoideae have the highest genetic distances (Table 3). 

 

a) Mackinlayoideae (including Platysace and Homalosciadium)  

The placement of Mackinlayoideae relative to Araliaceae and Myodocarpaceae was 

similar in both copies of RPB2 (Mk1 and Mk2; Figs. 1, 3, and 4). The subfamily shares the 

orthologous copy 2 with Pittosporaceae (Pi2), Araliaceae (Ar2), and Myodocarpaceae 

(My2), but this copy is not found in the rest of Apiaceae, as might be expected. Sequence 

comparison between Mk1 and Mk2 was difficult due to the presence of many small indels 

across the introns, especially intron 22. We were not able to identify long indels that could 

be used to distinguish one copy from the other. This was exacerbated by the high variation 

between the main lineages of Mackinlayoideae and the failure to retrieve copy 1 from 

some key genera (e.g., Apiopetalum). Sequence variations between the two copies of the 

same species in Xanthosia, Actinotus, and Mackinlaya were < 70%.  Polyploids have been 

reported in Centella asiatica and in some species of Xanthosia that were not sampled here 

(Keighery 1982; Hart, 2000; Pimenov et al., 2003). We did not encounter any differences 
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in the same copy within species that could indicate ancient polyploidy, but significant 

allelic variations due to heterozygosity were observed in Actinotus helianthii (98.1% 

identity) and Centella linifolia (98.5% identity, excluding an 82-bp insertion in intron 21 of 

one of the alleles). No size differences were observed in the exons.   

Our PCR process favored Mk2, for which we were able to derive sequences from 

all genera of Mackinlayoideae. Eventually, the Mk2 clade provided better information 

regarding phylogenetic relationships in the subfamily. We were able to amplify Mk1 from 

Actinotus, Mackinlaya, Xanthosia, Centella, and Pentapeltis. We also retrieved a copy 

orthologous to Mk1 from Platysace and Homalosciadium, two Australian genera usually 

associated with Mackinlayoideae. Consequently, orthologs of copy 1 provided a better 

estimation of relationships relative to other main lineages due to overall better 

representation of copy 1 across the main lineages of Apiales, and specifically Apiaceae. 

Relationships within Mackinlayoideae Mk2 were very well resolved, and in most cases 

supported (Fig. 3e). In the ML phylogeny of copy 1, Platysace and Homalosciadium 

appeared sister to the rest of Mackinlayoideae (BS = 70%). However, in the MP tree, 

Myodocarpaceae, Mackinlayoideae, and the Platysace clade formed a clade that was sister 

to the rest of Apiaceae, but support for this clade and its internal relationships was poor 

(BS < 50%; Fig. 1). It is evident that the clade has undergone dysploid or aneuploid 

reduction from x = 12 (in Apiopetalum; Yi et al., 2004) to x = 10 (in Actinotus, Xanthosia, 

Chlaenosciadium, and Micopleura) to x = 9 (in Centella), and even as low as x = 5 (in 

Pentapeltis and Shoenolaena) (IPCN, 1979-2007; Keighery, 1983; Pimenov et al., 2003), 

but both copies have been preserved, even in Pentapeltis, with only 5 chromosomes. 
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b) Azorelloideae 

Azorelloideae have their highest taxonomic diversity in South America, but there is 

also a clear connection to Oceania. The subfamily includes four major clades: the 

Asteriscium, Bowlesia, Azorella, and Diposis clades (Chapter 1). The Brazilian genus 

Klotzschia is sometimes placed as sister to the rest of Azorelloideae, but support for this 

placement has not been very strong. The relationships among the five clades of 

Azorelloideae are resolved in some trees, but have usually received low support. Unlike 

results from other studies, RPB2 data do show a well supported sister-group relationship 

between the Azorella and Bowlesia clades (BS = 100%; Fig. 3b), but Klotzschia, Diposis, 

and the Asteriscium clade form a poorly supported group (BS < 50%) sister to Apioideae + 

Saniculoideae, rather than to Azorella + Bowlesia. The Azorella and Bowlesia clades share 

the same basic chromosome number of x = 8, whereas that of the Asteriscium clade is x = 

10 (IPCN, 1979-2007; Constance et al., 1976; Pimenov et al., 2003). This may indicate a  

closer relationship in the evolution of the nuclear genome in these two clades. 

The Azorella clade was the only lineage of Azorelloideae in which two copies of 

RPB2 were found (Az1 and Az2; Fig. 3b). The duplication event can be mapped to the root 

of the Azorella clade and, apart from the variants detected in Pennantia (which may or may 

not represent duplicate copies, see above), it is the most recent of the duplications reported 

herein. Sequence identities between Az1 and Az2 sequences from those species having both 

copies ranged between 73% and 77% across the whole region, and between 85% and 90% 

in the exons alone. Hence, the two copies were easy to align and, when considered 

separately from the rest of the taxa, resulted in an aligned data matrix of 1143 bp, where 
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the longest unaligned length was 1052 bp (Az2 of Azorella fuegiana). A few indels (unique 

to one or the other of the copies) were scattered across the introns, all of which were 

smaller than 10 bp except for an insertion of 14 bp in intron 19 that was synapomorphic to 

Az2.  We also observed one insertion of two codons in exon 22 of Az1. On average, Az2 

(slightly more than 1000 bp) was longer than Az1 (slightly smaller than 1000 bp). One 

chimeric sequence was retrieved from Mulinum chilenense, with a cross-over point at 

intron 19.  

Both copies show that the genus Azorella is polyphyletic, a finding consistent with 

results from plastid data (Chapter 1). Copy Az1 indicates that Schizeilema is paraphyletic, 

with S. ranunculus, the only South American species of Schizeilema, forming a lineage 

apart from the rest of the genus (Fig. 3b). Both copies yielded clades that were mostly 

resolved and well supported. The relationship among Schizeilema, Huanaca, Stilbocarpa, 

Azorella filamentosa, and A. fuegiana (the Schizeilema et al. clade) remains unresolved. 

We suspect that reticulation may have been a major factor in the evolution of this clade. 

We found three variable sequences in Stilbocarpa, with a sequence variation as high as 

7%. Two of these sequences were very similar exhibiting ~99% identity, and thus we used 

only one of them in the data matrix. Stilbocarpa is tetraploid (2n = 48), so we suspect that 

that the high allelic variation may be the result of polyploidization. Polyploidy is also very 

common in Schizeilema, where chromosome counts up to 2n = 80 have been reported. 

Schizeilema ranunculus is the only diploid member of Schizeilema (2n = 16). Azorella 

filamentosa and A. fuegiana, which are affiliated with the other species of Schizeilema, are 

both diploid. Huanaca acaulis was reported to have a diploid count of 2n = 18, but this is 
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very likely a result of dysploidy or aneuploidy since all reported numbers in the Azorella 

clade suggest a basic chromosome number x = 8. The prevalence of polyploidy and the 

retrieval of clones with high variation in Stilbocarpa may be an indication of ancient 

hybridization events between diploid ancestors (2n = 16), and this may account for the lack 

of resolution among these taxa in the trees resulting from our phylogenetic analyses. 

Outside of the Schizeilema et al. clade, tetraploids have been reported in other Azorella 

species and in Mulinum. The placement of one of these tetraploids, A. trifoliolata, at the 

base of the Schizeilema et al. clade (BS = 100%), differed from that of the plastid 

phylogeny, where it appears sister to A. monantha (BS = 100%) in the Azorella clade, far 

from Schizeilema et al.. Azorella monantha and A. trifoliolata are not morphologically 

similar and the latter may represent an allopolyploid whose initial hybridization event may 

be the source of the incongruent histories recovered from the plastid and nuclear markers.  

 

c) Apioideae-Saniculoideae 

 Subfamilies Apioideae and Saniculoideae share a duplication event that post-dates 

the divergence of Hermas (BS = 100%; Figs. 1 and 3a). The placement of Hermas relative 

to the rest of Apiaceae has been problematic, but both our plastid phylogeny (Chapter 1) 

and the RPB2 phylogeny place it as sister to the Apioideae + Saniculoideae lineage (BS = 

83%; Fig. 3a). Most species of Apiaceae gave homogeneous PCR products (apart from a 

few nucleotide polymorphisms), which allowed direct sequencing without cloning. 

However, these sequences were placed in two different clades and represented two distinct 

copies. After cloning, we were able to sequence both copies for some genera in Apioideae 



 113 

(Petroselinum, Peucedanum, Notiosciadium, Aegopodium, Angelica, and Astydamia) and 

Saniculoideae (Eryngium and Petagnaea). However, some sequences from genera of 

Saniculoideae or the early diverging lineages of Apioideae, were placed either with copy 

Ap-Sa1 (e.g., Astrantia and Andriana) or Ap-Sa2 (e.g., Heteromorpha, Anginon, Sanicula, 

and Arctopus) but not both, despite repeated efforts to adjust PCR conditions and to collect 

data from additional clones. The lack of both copies from all species did not interfere with 

the main conclusions of phylogenetic relationships because the clade representing copy 

Ap-Sa1 included species from all major clades.  

 Apiaceae exhibited the greatest sequence variation among species within the 

individual copies, among alleles of the same species, and between paralogs of RPB2 of the 

same species when compared to the other main lineages of Apiales (see mean distances; 

Table 3). This finding may be explained, at least in part, by the great species diversity 

among the apioids, and by their largely herbaceous habit. Alleles with high variation were 

recovered in Ap-Sa1 of Daucus (96.31% identity), Petagnaea (98.09%), and Astydamia 

(95.17%) (Fig. 3a). The introns included many autapomorphic indels, and the only 

synapomorphic length variation of considerable size was a ~15 bp indel in intron 22. RPB2 

appeared to have great potential to resolve relationships within and among tribes of 

Apioideae. The species of this clade exhibit a high frequency of dysploidy and polyploidy 

compared to species from other families and subfamilies of Apiales, suggesting that the 

history of the nuclear genome in this group is more complicated. More detailed work using 

multi-copy genes such as RPB2 may uncover patterns of evolution that would not be 

detected with the use of single-copy nuclear markers or organellar genomes alone. An 
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example of the complexity of the history of the nuclear genome is evident in the 

Saniculoideae and some of the early-diverging lineages of Apioideae for which variations 

in chromosome numbers have been reported. Counts include n = 12 (e.g., Steganotaenia), 

which is the same as that of Araliaceae and the other woody families, as well as n = 11 

(e.g., Heteromorpha, Lichtensteinia), n = 9 (Arctopus), n = 8 (e.g., Alepidea, Sanicula), 

and n = 7 (e.g., Hermas, Astrantia) (IPCN, 1979-2007; Constance and Chuang, 1982; 

Pimenov et al., 2003). The assignment of the early diverging lineages, mostly from 

southern and sub-Saharan Africa, to either Apioideae or Saniculoideae remains a major 

problem in the classification of Apiaceae. Similar problems persist in Azorelloideae (e.g., 

the placement of Klotzschia) and Mackinlayoideae (e.g., Platysace). This lack of resolution 

along the “spine” of the Apiaceae tree creates an obstacle to understanding the duplication 

of RPB2 in this clade in relation to their cytotaxonomy. 

 

4.5. Putative Model of RPB2 duplication in Apiales  

Raven (1975) “cautiously” postulated a base chromosome number x = 6 for 

Umbellales (= Apiales). Yi et al. (2004) suggested the same for a more broadly defined 

Apiales after considering many additional chromosome counts, and the taxonomic transfer 

of Hydrocotyle and Trachymene to Araliaceae. The RPB2 phylogeny is largely consistent 

with these suggestions. The oldest duplication of RPB2 in Apiales appears to be almost as 

old as the order itself (c. 100 Mya) and probably resulted from a paleopolyploid event that 

led to the doubling of chromosome numbers to n = 12. That number was maintained in 

Pittosporaceae, Araliaceae, and Myodocarpaceae. In Araliaceae, a more recent polyploid 
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event may have been brought about through hybridization (or allopolyplodization) between 

an ancestor of the Polyscias group and an ancestor of the Raukaua-Schefflera s. str. group, 

giving rise to the tetraploid Pseudopanax group (with n = 24). The Pseudopanax group 

maintained copies related to both the Polyscias and Raukaua- Schefflera s. str. groups. A 

similar but more recent event may have occurred in the Asian Palmate clade, giving rise to 

additional tetraploids in Araliaceae. Hydrocotyle (x = 6 or 12) and Trachymene (x = 11) 

have a shorter generation time than the rest of Araliaceae and may have been subject to 

reductional dysploidy or to polyploidy (in some cases extensively), possibly leading to the 

loss of one of the RPB2 copies.  

 Chromosome counts of n = 12 were maintained in Apiopetalum (Mackinlayoideae) 

and Steganotaenia (Apioideae-Saniculoideae). Within Apiaceae, these woody genera are 

considered two of the most ancient lineages of their groups. This indicates that the 

common ancestors to Apiaceae may have shared a count of n = 12, as is still found in 

Pittosporaceae, Araliaceae, and Myodocarpaceae. Due to the herbaceous nature of most 

Apiaceae, a shorter generation time may have allowed for a higher probability for fixation 

of chromosomal rearrangements than in the rest of Apiales. Thus, our results are consistent 

with Raven’s (1975) conclusions that the rest of Apiaceae has probably undergone many 

chromosomal changes, including both descending dysploidy and polyploidy. This would 

explain the more recent duplication events in Apioideae-Saniculoideae and the Azorella 

clade, and the possible loss of an RPB2 copy in some Apiodeae-Saniculoideae and other 

lineages characterized by apparent reduction in chromosome numbers (e.g., the Bowlesia, 

Asteriscium, and Hermas clades). However, this was not the case in Mackinlayoideae, 
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where both copies of RPB2 persist in both woody and herbaceous species, despite 

reductions in chromosome numbers. 

 Based on the phylogeny and age of the RPB2 duplication, we suspect that 

Griseliniaceae, Torricelliaceae, and Pennantiaceae diverged before the duplication event 

that led to chromosomal doubling from x = 6 to x = 12 in the rest of Apiales. These three 

families may have been subject to polyploidy (multiple times in some cases) and dysploidy 

events, independent of the one shared by suborder Apiineae (i.e., the “core” families of 

Apiales). These events would result in an increase from the hypothesized x = 6 to the 

current counts of n = 18 in Griselinia, n = 12 in Torricellia, n = 20 in Aralidium, and n = 

25 in Pennantia (IPCN, 1979-2007; Murray and Delange, 1995). If the duplication of 

RPB2 resulted from a paleopolyploid event that resulted in x = 12 in Apiales, then it will 

not be possible for Pittosporaceae, Araliaceae, Myodocarpaceae, and Apiaceae to share a 

prior paleopolyploid event with Griseliniaceae, Torricelliaceae, and Pennantiaceae. 

Otherwise, the base chromosome counts for the four families would be x = 24, which 

seems very improbable given known counts from extant species. 

 

5. Conclusion 

 Differences in habits and the ages of clades have contributed to the complexity of 

resolving phylogenetic relationships in Apiales, and tackling these problems with the use 

of additional markers remains necessary. Nuclear markers have been underutilized in 

phylogenetic studies compared to the size and importance of that genome. While plastid 

markers have provided a broad framework for understanding relationships in plants in 
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general and Apiales in particular, the unipaternal inheritance and lack of variation render 

them insufficient (especially for woody groups) when comparing relations at the lower 

levels. Nuclear markers are much more complex and must be studied carefully because 

various forms of chromosomal rearrangements may prove difficult to track and may 

require detailed cytological work to shed better light on sequence evolution. Such events 

include gene duplication, which is especially widespread in plants. The RPB2 duplicates 

isolated here provide a small (but very good) example of the degree of information that can 

be extracted from low-copy number nuclear genes for exploring the history of Apiales. 

This information can be taken from both copies resulting from the duplication event, or 

from either one of the markers studied separately. This study provided data from many 

new sequences, but also yielded information about some structural variation reflected in 

those sequences, which may help to develop each copy individually for further, more 

focused phylogenetic studies (e.g., within the various tribes of Apiaceae). Additional 

nuclear genes should be studied to compare their histories and extrapolate hypotheses on 

the history of Apiales. Duplication, polyploidization, ancient hybridization, and deep 

coalescent events provide evidence that can be useful in revising classification systems.  
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TABLES 

Table 1. List of primers developed during this study for the amplification and sequencing 

of RPB2 regions from exon 18 to 24 in Apiales.  

 
Primer Name Region Sequence  (5' to 3') Direction 
rpb2EX18_F Exon18 ATGGAGCATTTGCACTTTAGGCA  Forward 
rpb2_EX20F Exon 20 GGATGAGGAGAAGAAGATGGGAA Forward 
Az_rpb2EX20F Exon 20 AGGGAYGAGGAGAARAARATG Forward 
Az_rpb2_EX20R Exon 20 TCCTCNTTAACAAGTGTYCC Reverse 
rpb2EX21_F Exon 21 TCATATGATAAATTGGACGATGATG Forward 
rpb2_EX21R Exon 21 TGCAAGACCATCATCGTCCAA Reverse 
rpb2_EX22F Exon 22 AAGYTTACGCCACAGYGAAAC Forward 
rpb2_EX22R Exon 22 ACCTGATCCACCATCCCWGT Reverse 
rpb2EX23_F Exon 23 CAAATGCTGATGGGCTGAGATTTGT Forward 
rpb2_EX23R Exon 23 TCACCCTTACTTTCACAAATCTCA    Reverse 
rpb2_EX23R_alt Exon 23 ACAGTTCCTTTCTGACCATGCCTA Reverse 
rpb2EX24_R Exon 24 GCCAAGGAATATCATAGCTGTAAG  Reverse 

 

 

Table 2. Comparison of data set and tree statistics based on exon and exon+intron data 

matrices and trees. 

  exons  exons-introns 
Aligned length 438 2612 
MP tree length 2124 11548 
Parsimony informative 
characters  255 1057 
Constant characters 104 1225 
Consistency index (CI) 0.28 2.25 
Retention index (RI) 0.72 0.8081 
ML -ln Likelihood -12363 -61115.8937 
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Table 3. Comparative exon statistics of the two copies of RPB2, generated in MEGA 4.0. 

Mean distances within groups were calculated using the composite likelihood model. Mean 

rates of synonymous (dS) and non-synonymous (dN) substitution rates  within groups, as 

well as Z-tests for positive selection and purifying selection, were calculated using the 

modified Nei-Gojobori model with Jukes Cantor model of evolution and incorporating the 

transition to transversion ratio (Ts:Tv).  

Clade # seqs. Mean distance ± S.E. Ts:Tv bias 
Apioideae-Saniculoideae C1 46 0.0625 ± 0.0070 1.936 
Apioideae-Saniculoideae C2 18 0.0813 ± 0.0137 1.386 
Azorella C1 19 0.0207 ± 0.0033 2.909 
Azorella C2 16 0.0408 ± 0.0053 1.061 
Mackinlayoideae C1 5 0.0570 ± 0.0134 1.892 
Mackinlayoideae C2 14 0.0683 ± 0.0078 2.065 
Myodocarpaceae C1 4 0.0118 ± 0.0042 1.32 
Myodocarpaceae C2 5 0.0366 ± 0.0065 1.541 
Araliaceae C1 89 0.0368 ± 0.0040 1.591 
Araliaceae C2 26 0.0471 ± 0.0058 2.512 
Pittosporaceae C1 18 0.0196 ± 0.0034 1.746 
Pittosporaceae C2 3 0.0214 ± 0.0059 3.276 

 
Clade dS ± S.E. dN ± S.E. 
Apioideae-Saniculoideae C1 0.2206 ± 0.0231 0.0092 ± 0.0037 
Apioideae-Saniculoideae C2 0.1941 ± 0.0247 0.0436 ± 0.0067 
Azorella C1 0.0570 ± 0.0100 0.0059 ± 0.0020 
Azorella C2 0.0526 ± 0.0115 0.0305± 0.0062 
Mackinlayoideae C1 0.1993 ± 0.0347 0.0093 ± 0.0038 
Mackinlayoideae C2 0.2071 ± 0.0262 0.0186 ± 0.0046 
Myodocarpaceae C1 0.0315 ± 0.0115 0.0049 ± 0.0028 
Myodocarpaceae C2 0.0705 ± 0.0187 0.0225 ± 0.0071 
Araliaceae C1 0.1031 ± 0.0145 0.0134 ± 0.0024 
Araliaceae C2 0.1372 ± 0.0180 0.0128 ± 0.0034 
Pittosporaceae C1 0.0380 ± 0.0085 0.0128 ± 0.0037 
Pittosporaceae C2 0.0663± 0.0186 0.0034 ± 0.0034 
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Table 3. Continued. 
 
 Positive selection  Purifying selection  
 HA: (dN>dS) HA: (dN<dS) 

Clade 
Z-

statistic 
P-

value Z-statistic P-value 
Apioideae-Saniculoideae C1 -8.448 1 8.6275 0 
Apioideae-Saniculoideae C2 -5.5334 1 5.7912 0 
Azorella C1 -5.173 1 5.1933 0 
Azorella C2 -1.365 1 1.3567 0.0887 
Mackinlayoideae C1 -5.558 1 5.6382 0 
Mackinlayoideae C2 -7.1391 1 7.1028 0 
Myodocarpaceae C1 -2.1723 1 2.1949 0.015 
Myodocarpaceae C2 -2.4112 1 2.4653 0.0076 
Araliaceae C1 -6.248 1 6.5507 0 
Araliaceae C2 -6.8049 1 6.7796 0 
Pittosporaceae C1 -2.588 1 2.575 0.0056 
Pittosporaceae C2 -3.28 1 3.4188 0.0004 

 
 
 
 
Table 4. BEAST estimates of mean root heights (divergence dates) at the nodes of the 

RPB2 duplications and the 95% high posterior density (HPD) for each date. Estimates 

were calculated using the GTR+Г+I evolutionary model, the Yule model of speciation, and 

a relaxed clock with uncorrelated lognormal. 

 
Node of Duplication Divergence Date (MYA) 95% HPD (MYA) 
Mackinlayoideae-Myodocarpaceae-   
Araliaceae-Pittosporaceae 103.94 [93.94,113.21] 
Griseliniaceae 71.47 [36.05,103.67] 
Apioideae-Saniculoideae 69.36 [58.95,80.80] 
Azorella Clade  55.78 [43.46,67.91] 
Pennantiaceae 32.29 [10.74,87.48] 
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FIGURE LEGENDS 

 

Figure 1. Comparative summaries of the maximum parsimony (MP; 1a) and maximum 

likelihood (ML; 1b) phylogenies. The MP tree is the strict consensus of 50,000 most-

parsimonious trees generated using heuristic searches and TBR swapping in PAUP*. The 

ML tree was estimated in Garli using the model GTR +Г+I. Bootstrap values are shown 

above branches.  

 

Figure 2. Summary of the tree estimated in GARLI using exon sequences only. Bootstrap 

values above 50% are shown above branches. 

 

Figure 3 (a-e). Detailed maximum likelihood tree estimated in GARLI from exon and 

intron sequences with GTR+Г+I model of evolution. Percentages of 100 bootstrap 

replicates above 50% are printed above branches. 

 

Figure 4 (a-b). Maximum clade credibility chronogram estimated from trees generated in 

BEAST after 10 million MCMC generations. Estimates were calculated using the 

GTR+Г+I evolutionary model, the Yule model of speciation, and a relaxed clock with 

uncorrelated lognormal. Calibration points are represented by black diamonds. Grey-block 

tracks represent branches to nodes of duplication. Posterior probabilities > 85% are shown 

above the branches. 
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Fig. 1. Comparison of major clades in the maximum parsimony (MP; Fig. 1a) 
           and maximun likelihood (ML; Fig. 1b) RPB2 phylogenies.
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Polemanniopsis & Steganotaenia 

Apioideae Copy Ap-Sa2

Hermas

Saniculoideae s. str. Copy Ap-Sa2

Asteriscium Clade

Apioideae Copy Ap-Sa1

Choritaenia 

Lichtensteinia

Diposis

Klotzschia

Azorella Copy Az1

Azorella Copy Az2
Bowlesia Clade

Mackinlayoideae Copy Mk2

Myodocarpaceae Copy My2

Araliaceae Copy Ar2

Trachymene Clade

Pittosporaceae Copy Pi2

Pennantiaceae Copy Pen2

Outgroup (Other)

Outgroup (Aquifoliales)

Griseliniaceae Copy Gr2

Pennantiaceae Copy Pen1

Torricelliaceae

Griseliniaceae Copy Gr1

Pittosporaceae Copy Pi1

Mackinlayoideae Copy Mk1

Myodocarpaceae Copy My1

Araliaceae Copy Ar1

Hydrocotyle Clade

Platysace & Homalosciadium

Saniculoideae s. str. Copy Ap-Sa1

Harmsiopanax

Fig. 2. Summary of the maximum likelihood phylogeny
           estimated from RPB2 exon sequences.
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Endressia castellana
Xyloselinum leonidii
Angelica lucida
Arracacia quadrida
Donnelsmithia cordata
Pimpinella saxifraga
Coriandrum sativum
Capnophyllum africanum
Stoibrax capense
Peucedanum sp.
Apium graveolans
Naufraga balearica
Petroselinum crispum
Notiosciadium pampicola
Aegopodium podograria
Lagoecia cuminoides
Bupleurum salicifolium
Oreomyrrhis eriopoda
Tinguara montana
Daucus montanus1
Daucus montanus2
Neogoezia minor
Anistome haasti
Anistome pilifera
Lignocarpa diversifolia
Scandia geniculata
Gingidia montana
Anistome aromatica
Aciphylla simplicifolia
Aciphylla aurea
Aciphylla glacialis
Itasina filiformus
Chamarea? sp.
Annesorhiza altiscapa
Andriana tsatarenensis
Astydamia latifolia
Choritaenia capensis
Petagnaea saniculifolia1
Petagnaea saniculifolia2
Eryngium scaposum
Astrantia x rosenfonie
Astantia maxima
Actinolema eryngioides
Polemanniopsis marlothii
Steganotaenia araliaceae
Lichtensteinia lacerata
Lichtensteinia trifida
Lichtensteinia sp. nov.
Petroselinum crispum
Peucedanum sp.
Angelica lucida
Notiosciadium pampicola
Aegopodium podograria
Astydamia latifolia
Heteromorpha trifoliata? 
Heteromorpha sp.
Pseudocarum laxiflorum
Anginon difforme
Anginon ragosum
Sanicula gregari
Hacquetia epipactis
Petagnaea saniculifolia
Eryngium scaposum
Eryngium yuccifolium
Arctopus monacanthus
Arctopus echinatus
Arctopus dregei
Alepidea capensis
Alepidea peduncularis
Hermas villosa
Hermas capitata
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Gymnophytom robustum
Gymnophyton polycephalum
Gymnophyton isatidicarpum
Gymnophyton spinossissimum
Gymophyton flexuosom
Pozoa coriaceae
Pozoa volcanica
Asteriscium chilense
Asteriscium glaucum
Asteriscium closii
Eremocharis longiramea
Eremocharis triradiata
Domeykoa amplexicaulis
Eremocharis tripartita
Domeykoa oppositifolia
Eremocharis fruticosa
Oschatzia cuneifolia
Oschatzia saxifraga
Diposis patagonica
Diposis bulbocastanum
Klotzschia rhizophylla
Klotzschia brasiliensis
Klotzschia glaziovii
Schizeilema haasti
Schizeilema hydrocotyloides
Schizeilema trifoliatum
Schizeilema fragoseum
Azorella filamentosa
Azorella fuegiana
Stilbocarpa polaris2
Huanaca acaulis
Huanaca andina
Stilbocarpa polaris1
Schizeilema ranunculus
Azorella trifoliolata
Azorella caespitosa
Azorella monantha
Laretia acaulis
Mulinum spinosum
Azorella crenata
Azorella pulvinata
Azorella selago
Azorella macqueriensis
Azorella lycopodioides
Diplaspis hydrocotyle
Diplaspis cordifolia
Dickinsia hydrocotyloides
Spananthe paniculata
Mulinum spinosum
Mulinum chillanense
Mulinum ulicinum
Mulinum albovaginatum
Azorella compacta
Laretia acaulis
Azorella monantha
Azorella caespitosa
Azorella selago
Azorella macqueriensis
Azorella biloba
Azorella triffurcata
Azorella multifida
Azorella filamentosa
Azorella fuegiana
Schizeilema ranunculus
Bowlesia tropaeolifolia
Bowlesia platanifolia
Bowlesia uncinata
Bowlesia flabilis
Bolax caespitosa
Dichosciadium ranunculaceum
Bolax gummifera
Drusa glandulosa
Homalocarpus nigripetalus
Homalocarpus digitatus
Homalocarpus integerrimus
Homalocarpus dichotomous

Apioideae and Saniculoideae
(Fig. 3a)

Continued on Fig. 3c

Fig. 3b. Azorelloideae

A
zo

re
lla

 C
opy A

z1
A

zo
re

lla C
opy A

z2

100

100

100

100
64

70
62

99

8859

91

98

99

99

86

979789
99

50

92

94

100

85

100

81

93

100
99

80

100

71

72
100

100
75 60 88

100

94
54

95

100

100

100

100
100100

100

100

100

56

100

100

100
100

100

100

50

52 96

99 B
o

w
le

s
ia 

   C
lade

A
s
te

ris
c

iu
m

 C
lade

Diposis 

Klotzschia 

125



Xanthosia atkinsoniana
Xanthosia rotundifolia
Xanthosia tridentata
Centella linifolia
Pentapeltis silvatica
Actinotus helianthii
Mackinlaya confusa
Mackinlaya schlechteri
Mackinlaya macrosciadia

Platysce lanceolata
Platysace stephensonii
Platysace valida
Homalosciadium homalocarpum E
Homalosciadium homalocarpum L

Myodocarpus involucratus
Myodocarpus pinnatus
Myodocarpus fraxinifolius
Delarbrea balansae

Pittosporum tobira
Pittosporum sp.
Pittosporum spinescens
Pittosprum koghiense
Pittosporum brackenridgei
Pittosporum undulatum1
Pittosporum undulatum2
Pittosporum rubiginosum
Bursaria incana
Bursaria spinosa
Rytidisporum alpinum
Auranticarpa edentata
Billardiera cymosa
Billardiera heterophylla
Marianthus ringens
Chirenthera linearis
Bentleya spinescens
Hymenosporum flavum

Araliaceae Copy Ar1
(See Fig. 3d)

Continued from Fig. 3b

Continued on Fig. 3e

Fig. 3c. Copy 1 Clade of Mackinlayoideae, Myodocarpaceae, 
	   and Pittosporaceae
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Metapanax davidii
Macropanax dispermus
Schefflera arboricola
Heteropanax fragrans
Dendropanax arboreus2
Oplopanax elatus
Sinopanax formosana
Gamblea pseudoevodiifolia
Trevesia palmata2
Trevesia palmata3
Brassaiopsis glomerulata
Eleutherococcus trifoliatus
Schefflera morototoni1
Schefflera morototoni2
Dendropanax hoi
Hedera helix2
Chengiopanax sciadophylloides2
Kalopanax pictus
Trevesia palmata1
Hedera helix1
Schefflera cf. lasiogyne
Merilliopanax chinensis
Chengiopanax sciadophylloides1
Schefflera macrophylla
Fatsia polycarpa
Dendropanax arboreus1
Oreopanax capitatus
Tetrapanax papyriferus
Osmoxylon geelvinkianum
Osmoxylon orientale
Osmoxylon insidiator
Osmoxylon boerlegei
Cussonia spicata 
Seemannaralia gerrardii
Tetraplasandra oahuensis
Tetraplasandra hawaiiensis2
Reynoldsia sandwicensis
Munroidendron racemosum
Gastonia crassa1
Cuphocarpus acauleatus
Tetraplasandra hawaiiensis1
Gastonia crassa2
Polyscias schmidii
Arthrophyllum mackeei2
Arthrophyllum mackeei1
Polyscias murrayii
Neopanax colensoi1
Neopanax arboreus1
Neopanax arboreus2
Pseudopanax lessonii1
Schefflera pickeringii1
Schefflera reginae
Schefflera costata1
Panax quinquefolius1
Panax quinquefolius2
Aralia spinosa 
Schefflera myriantha
Schefflera rainaliana
Schefflera gabriellae
Hydrocotyle cf. callicephala
Hydrocotyle bonariensis1
Hydrocotyle sibthropioides
Hydrocotyle javanica
Hydrocotyle bonariensis2
Hydrocotyle modesta
Hydrocotyle novae-zealandae
Neosciadium glochidiatum
Hydrocotyle sp.
Raukaua edgerleyi
Raukaua simplex
Cephalaralia cephalobatrys
Astrotricha sp. nov.
Astrotricha pterocarpa
Schefflera digitata
Harmsiopanax ingens
Schefflera candelabra
Cheirodendron platyphyllum 
Cheirodendron faurei
Cheirodendron bastardianum
Raukaua anomalus
Motherwellia haplosciadia
Meryta sinclarii
Neopanax arboreus3
Neopanax colensoi2
Pseudopanax ferox1
Schefflera costata2
Pseudopanax ferox2
Pseudopanax lessonii2
Schefflera pickeringii2
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Raukaua edgerleyi
Raukaua simplex
Raukaua anomlus
Neopanax arboreus
Dendropanax arboreus
Schefflera digitata
Motherwellia haplosciadia
Trachymene hookeri
Trachymene incisa
Uldinia ceratocarpa
Trachymene galziovii
Trachymene coerulae
Schefflera myriantha
Astrotricha pterocarpa
Gastonia rodriguesiana1
Gastonia rodriguesiana2
Gastonia duplicata1
Gastonia duplicata2
Munroidendron racemosum
Reynoldsia sandwicensis
Arthrophyllum mackeei
Pseudopanax ferox
Pseudopanax lessonii
Polyscias guilfoylei
Schefflera pickeringii
Schefflera reginae
Centella linifolia1
Centella linifolia2
Micropleura renifolia
Centella asiatica
Schoenolaena juncae
Pentapeltis peltigera
Pentapeltis silvatica
Chlaenosciadium gardneri
Xanthosia rotundifolia
Mackinlaya macrosciadia
Mackinlaya schlechteri 
Apiopetalum glabratum 
Apiopetalum velutinum 
Actinotus helianthii1
Actinotus helianthii2
Delarbrea michieana
Delarbrea balansae
Delarbrea collina
Delarbrea harmsii2
Delarbrea harmsii1
Myodocarpus involucratus
Myodocarpus crassifolius
Marianthus ringens
Bentleya spinescens
Pittosporum koghiense

Melanophylla aucubifolia
Melanophylla alnifolia

Melanophylla modestei
Aralidium pinnatifidum
Toricellia tilifolia
Griselinia littoralis
Griselinia ruscifolia
Griselinia lucida
Griselinia lucida
Griselinia ruscifolia
Pennantia corymbosa
Pennantia cunninghamii
Pennantia corymbosa
Ilex opaca
Helwingia japonica
Lonicera sp.
Lonicera japonica
Senecio vulgaris
Valeriana officinalis

Continued from Fig. 3c

Fig. 3e. Clade of Copy 2 of Mackinlayoideae, Myodocarpaceae, 
	     Araliaceae, and Pittosporaceae, plus clades representing 
	     the early diverging families and outgroups.
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Endressia castellana
Arracacia quadrida

Coriandrum sativum

Stoibrax capense
Peucedanum sp.

Apium graveolans
Aegopodium podograria
Bupleurum salicifolium
Oreomyrrhis eriopoda
Daucus montanus1
Neogoezia minor

Anistome haasti
Scandia geniculata

Chamarea? sp.
Andriana tsatarenensis
Choritaenia capensis

Petagnaea saniculifolia1

Astantia maxima
Actinolema eryngioides

Polemanniopsis marlothii
Steganotaenia araliaceae
Lichtensteinia lacerata

Itasina filiformus

Petroselinum crispum
Peucedanum sp.

Angelica lucida
Aegopodium podograria
Heteromorpha trifoliata? 
Anginon difforme
Sanicula gregari
Hacquetia epipactis
Eryngium yuccifolium

Arctopus dregei
Alepidea capensis

Hermas villosa

Gymnophyton polycephalum
Pozoa volcanica

Asteriscium chilense

Domeykoa amplexicaulis
Eremocharis fruticosa
Oschatzia cuneifolia
Diposis patagonica
Klotzschia glaziovii

Schizeilema haasti
Azorella filamentosa
Stilbocarpa polaris2

Huanaca acaulis
Azorella monantha
Mulinum spinosum
Azorella selago
Azorella lycopodioides
Diplaspis hydrocotyle
Dickinsia hydrocotyloides
Spananthe paniculata

Mulinum spinosum
Azorella compacta
Laretia acaulis

Azorella monantha

Azorella selago
Azorella triffurcata

Azorella filamentosa
Azorella fuegiana
Schizeilema ranunculus
Bowlesia tropaeolifolia

Dichosciadium ranunculaceum
Bolax gummifera

Homalocarpus dichotomous

Xanthosia rotundifolia
Actinotus helianthii
Mackinlaya schlechteri

Platysce lanceolata
Homalosciadium 

Myodocarpus involucratus
Delarbrea balansae

Continued on Fig. 4b

Fig. 4. Bayesian Tree generated in BEAST.
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Continued from Fig. 4a

Pittosprum koghiense

Bursaria incana
Rytidisporum alpinum

Auranticarpa edentata

Billardiera heterophylla
Marianthus ringens

Chirenthera linearis
Bentleya spinescens

Hymenosporum flavum

Metapanax davidii
Heteropanax fragrans

Dendropanax arboreus2
Oplopanax elatus
Sinopanax formosana
Gamblea pseudoevodiifolia
Eleutherococcus trifoliatus

Schefflera morototoni1
Kalopanax pictus

Trevesia palmata1
Hedera helix1

Merilliopanax chinensis
Chengiopanax sciadophylloides1

Fatsia polycarpa
Dendropanax arboreus1
Tetrapanax papyriferus
Osmoxylon geelvinkianum
Cussonia spicata 
Seemannaralia gerrardii
Tetraplasandra oahuensis
Tetraplasandra hawaiiensis2
Reynoldsia sandwicensis
Munroidendron racemosum
Cuphocarpus acauleatus
Gastonia crassa2
Polyscias schmidii
Arthrophyllum mackeei1
Pseudopanax lessonii1
Schefflera reginae

Panax quinquefolius1
Aralia spinosa 
Schefflera myriantha
Schefflera rainaliana

Schefflera gabriellae

Hydrocotyle modesta
Neosciadium glochidiatum
Hydrocotyle sp.

Raukaua simplex
Cephalaralia cephalobatrys
Astrotricha pterocarpa
Schefflera digitata

Harmsiopanax ingens

Schefflera candelabra

Cheirodendron bastardianum
Motherwellia haplosciadia
Meryta sinclarii
Pseudopanax ferox1

Schefflera pickeringii2

Schefflera costata2

Pseudopanax ferox2
Pseudopanax lessonii2

Raukaua simplex
Dendropanax arboreus

Schefflera digitata
Motherwellia haplosciadia

Uldinia ceratocarpa
Trachymene galziovii

Schefflera myriantha
Astrotricha pterocarpa

Gastonia rodriguesiana1

Munroidendron racemosum
Reynoldsia sandwicensis

Pseudopanax ferox

Schefflera pickeringii
Schefflera reginae

Centella asiatica
Pentapeltis silvatica
Chlaenosciadium gardneri
Xanthosia rotundifolia

Mackinlaya schlechteri 

Apiopetalum velutinum 
Actinotus helianthii1

Delarbrea balansae
Myodocarpus involucratus
Marianthus ringens
Bentleya spinescens
Pittosporum koghiense

Melanophylla modestei
Aralidium pinnatifidum
Toricellia tilifolia

Griselinia ruscifolia
Griselinia lucida
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Griselinia ruscifolia

Pennantia corymbosa
Pennantia corymbosa

Fig. 4b. Bayesian Tree continued.
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CHAPTER 3  

Evolution of Apiales in form, time, and space: Information from the 
chloroplast, mitochondrial, and nuclear genomes 

 
A. N. Nicolas & G. M. Plunkett 

 

Abstract 

 We generated a dataset of sequences from the nad1 intron 2 region of the 

mitochondrion from a representative sample of all major clades across the order Apiales. 

Phylogenetic analyses were carried out through maximum likelihood (ML) and maximum 

parsimony (MP) methods. Resulting trees were compared to trees based on plastid trnD-

trnT and rpl16 sequences (Chapter 1) and nuclear RPB2 exons 18-23 sequences (Chapter 

2) to evaluate evidence from three unlinked sources of the genome. The nad1 intron 2 

tree was most useful in resolving well supported relationships within families, but failed 

to produce many supported ones among families. Trees based on both plastid and nuclear 

markers were congruent in the placement of Pittosporaceae as the earliest diverging 

lineage in suborder Apiineae, followed by Araliaceae, Myodocarpaceae, and Apiaceae. 

Within Apiaceae, Mackinlayoideae appears as the earliest diverging subfamily of 

Apiaceae, but the placement of the Platysace clade was not congruent in the plastid and 

nuclear trees. In both trees, Azorelloideae diverged after Mackinlayoideae and Platysace, 

followed by Hermas, and then Apioideae + Saniculoideae. Divergence estimates based 

on the plastid dataset using models with uncorrelated lognormal and uncorrelated 
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exponential distributions in BEAST suggested a Cretaceous age for both Apiales (> 100 

Mya) and suborder Apiineae (c. 100 Mya). This implies that Apiineae, Torricelliaceae, 

and Griseliniaceae may be of Gondwanan origin. DIVA inferences for the biogeographic 

history of Apiineae showed an Australasian origin for the order and for each of its four 

families, including Apiaceae, in which Mackinlayoideae (and the Platyscae clade) were 

also inferred to be of Australasian origin.  By contrast, DIVA suggests that Azorelloideae 

(including Klotzschia) had a South American origin, while Hermas and Apioideae + 

Saniculoideae originated in sub-Saharan Africa. 

 

1. Introduction 

Form: Apiales comprises more than 500 genera and roughly 5,000 species, with 

an overall cosmopolitan geographic distribution. The order was traditionally grouped 

with the dicot subclass Rosidae (e.g., Cronquist, 1988), but its transfer to the asterids is 

now supported by many molecular studies in which Apiales is placed in a polytomy of 

the “euasterid II” clade together with Asterales and Dipsacales (Plunkett et al., 1996a; 

APG II, 2003; Judd and Olmstead, 2004; Soltis and Soltis, 2004). Traditionally, the order 

included only two families: the largely herbaceous Apiaceae (Umbelliferae), which is 

mostly temperate in distribution, and the woody Araliaceae, with a predominantly 

tropical distribution. The circumscriptions and relationship between the two families have 

long been subject to debate due to difficulties in the circumscription of Apiaceae 

subfamily Hydrocotyloideae and the placement of genera currently included in 

subfamilies Mackinlayoideae and Apioideae and family Myodocarpaceae. Adanson 
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(1763) combined the umbellifers and araliads in a single family (Umbellatae), but this 

system was not accepted by contemporary authors such as Linnaeus (1764) and de 

Jussieu (1789), who, among many others, recognized Araliaceae and Apiaceae as 

separate, but closely related families. The maintenance of Apiaceae and Araliaceae as 

related but distinct families was adopted by many 20th century botanists, including 

Takhtajan (1959), Cronquist (1968), and Rodríguez (1971), but a few authors have 

challenged this classification. Hutchinson (1969), for example, separated the two families 

between his two major divisions of dicots (Herbaceae and Lignosae) in his controversial 

system. Conversely, Thorne (1968, 1973) preferred merging the two groups into a single 

family. Within the past two decades, molecular studies based on Hennig’s (1966) 

cladistic methodology have provided consistent support for grouping the two families 

within the same order as distinct clades, but with some adjustment in the circumscriptions 

of each family. Moreover, the order was expanded to include six additional families 

(Pittosporaceae, Aralidiaceae, Melanophyllaceae, Torricelliaceae, Griseliniaceae, and 

Pennantiaceae) plus the araliad segregate family Myodocarpaceae (Plunkett et al., 1996a, 

1997, 2004a; Plunkett, 2001; Kårehed, 2003; APG II, 2003). The monogeneric 

Aralidiaceae, Melanophyllaceae, and Toricelliaceae were shown to constitute a single 

lineage and were thus merged into Torricelliaceae (Chandler and Plunkett, 2004). 

However, the exact delimitation of Apiales and the precise relationships among its seven 

families remain active areas of investigation.  

Apiaceae (Umbelliferae) has a very ancient history in botanical research, 

stretching back to the ancient Greeks (Rodríguez, 1957; Constance, 1971). With more 
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than 450 genera and 4,000 species, Apiaceae are the largest family of the order Apiales 

(Pimenov and Leonov, 1993; Judd et al., 2002). The term ‘De Umbelliferis Herbis’ was 

first coined by Dodoëns (1583) and the family was first grouped together under 

Umbelliferae by Tournefort (1694) (see Constance, 1971). Drude (1898) proposed a 

system in which the family was divided into three subfamilies: Apioideae, 

Hydrocotyloideae, and Saniculoideae. The relationship between Apioideae and 

Saniculoideae has been addressed by many studies, with problems arising from the 

ambiguity of placement of early diverging lineages of Apioideae that exhibit certain 

affinities to Saniculoideae (e.g. Lichtensteinia, Polemanniopsis). Recently, the former 

apioids Polemanniopsis and Steganotaenia were grouped in Saniculoideae as tribe 

Steganotaeneae, while the rest of that subfamily comprise tribe Saniculeae (Calviño and 

Downie, 2007). The status of Hydrocotyloideae has always been more difficult to assess 

due to the presence of morphological similarities to each of the two other subfamilies of 

Apiaceae, as well as to Araliaceae. Several studies have demonstrated the polyphyly of 

this subfamily (Plunkett et al., 1996, 1997; Chandler and Plunkett 2004) and we recently 

placed 40 of the 42 genera previously assigned to hydrocotyloideae in at least six 

different lineages spread across both Apiaceae and Araliaceae (Nicolas and Plunkett, 

Chapter 1). Of these, 36 genera remain in Apiaceae, but are distributed among all four 

currently recognized subfamilies, namely Azorelloideae (with 22 former hydrocotyloid 

genera), Mackinlayoideae (with 7 genera), Apioideae and Saniculoideae (4 genera). In 

addition, there are distinct lineages in Apiaceae for the Platysace group (2 genera) and 

Hermas (a single genus exhibiting morphological similarities to Azorelloideae, 
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Apioideae, and Saniculoideae). The four remaining genera (Hydrocotyle, Neosciadium, 

Trachymene, and Uldinia) form a distinct lineage in Araliaceae.   

Araliaceae currently comprise 41 genera and more than 1,500 species.  This 

family was traditionally regarded as more “primitive” or less specialized than Apiaceae 

(Baumann, 1946; Mathias, 1965). The taxa of Araliaceae are more consistent in some 

features, such as basic chromosome number (usually x = 12), but they are more variable 

than Apiaceae in many anatomical and morphological characters (Darlington and Wylie, 

1955; Rodríguez, 1971; Plunkett et al., 2004c; Yi et al., 2004). In addition to the transfer 

of Hydrocotyle and Trachymene to Araliaceae (see above), the revised classification of 

Apiales by Plunkett et al. (2004a) reflected the transfer of three genera (Stilbocarpa, 

Mackinlaya, and Apiopetalum) from Araliaceae to Apiaceae (see also Mitchell et al., 

1999; Wen et al., 2001; Lowry et al., 2004), and of two other genera (Myodocarpus and 

Delarbrea) to a new family, Myodocarpaceae (see Plunkett and Lowry, 2001). Within 

Araliaceae, Plunkett et al. (2005) demonstrated the polyphyly of Schefflera, the family’s 

largest genus (900+ species). The final infrafamilial revision of Araliaceae has been 

hindered by the polyphyly of both Hydrocotyloideae (across Apiales) and Schefflera 

(within Araliaceae), the scarcity of diagnostic morphological synapomorphies consistent 

with molecular data, and poor resolution of relationships among and within the genera of 

Araliaceae (and the order Apiales in general).   

The classification of families Pittososporaceae and Myodocarpaceae in Apiales 

followed rather opposite tracks. Pittosporaceae (9 genera and ~200 species) had 

previously been included in subclass Rosidae, but a placement in Apiales was suggested 
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by molecular data (Chase et al., 1993; Plunkett et al., 1996a, 1997) and then formally 

adopted in the first APG system (1998) on the basis of those studies. However, its precise 

placement in the order remains unresolved (Plunkett et al., 1996a; Downie et al., 2000; 

Plunkett and Lowry, 2001; Kårehed, 2003; Plunkett et al., 2004a; Chandler and Plunkett, 

2004). Despite its traditional association with Rosidae, there were much earlier 

indications of an affinity of Pittosporaceae to Apiales based on chemical data (Hegnauer, 

1971; Bohlman, 1971), anatomical characters (Jurica, 1922; Rodriguez, 1971), and 

cytology (Darlington and Wylie, 1955; Jay, 1969). Its association with Rosidae was 

influenced most heavily by floral and foliar characters, which differ from most taxa in 

Apiales (Brewbaker, 1967; Plunkett et al., 1996a), but phylogenetic studies suggest that 

many of the features thought to be derived in Apiales (e.g., low carpel number and simple 

leaves) are ancestral in Apiales, and many of these features also characterize 

Pittosporaceae (see Plunkett, 2001). By contrast, Myodocarpaceae are a small family 

whose taxa have always been included in Apiales, but have recently been segregated 

from Araliaceae (APG II, 2003; Plunkett and Lowry, 2001; Plunkett et al., 2004a, 

2004c). The three genera originally assigned to Myodocarpaceae (Myodocarpus, 

Delarbrea, and Pseudosciadium) were long considered araliads because of similarities in 

habit, inflorescence structure, fruit, and geographic distribution, but they also share many 

characters with Apiaceae (Oskolski et al., 1997; Plunkett and Lowry, 2001; Lowry et al., 

2001). After the family’s erection phylogenetic analysis demonstrated that the monotypic 

Pseudosciadium should be included within Delarbrea (see Plunkett and Lowry, 2001; 
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Sprenkle, 2001; Raquet, 2004; Plunkett et al., 2004). Consequently, the family has been 

reduced to two genera with 17 species (Lowry et al., 2004a).  

Among the three remaining families, Torricelliaceae and Griseliniaceae were 

formerly placed near Cornaceae, but both have their own troubled taxonomic histories 

(see Philipson et al., 1980; Dillon and Muñoz-Schick, 1993; Schatz et al., 1998; 

Trifonova, 1998). Genera within these families were artificially grouped in or near 

Cornaceae, or sometimes between Cornaceae and Apiales (see Rodríguez, 1957, 1971; 

Murrell, 1993; Plunkett et al., 1997; Plunkett and Lowry, 2001). Over the last decade, 

there has been a convergence in recognizing an affinity of these genera to Apiales. For 

example, Philipson (1967) noted the close similarity in wood anatomy between Griselinia 

and Araliaceae, and both Raven (1975) and Goldblatt (1978) suggested an alternative 

inclusion of Torricellia in Araliaceae based on chromosome number. The best support, 

however, came from molecular phylogenetic studies, which led to their inclusion as 

separate families in Apiales (Plunkett et al., 1996a, 1996b, 1997; APG I, 1998; Albach 

2001; APG II, 2003; Chandler and Plunkett, 2004; Plunkett et al. 2004a). A third family, 

Pennantiaceae, was most recently added to Apiales.  This family was erected after the 

removal of the genus Pennantia from Icacinaceae (Kårehed, 2001, 2003) on the basis of 

both molecular and morphological evidence, a result confirmed (in part) by Chandler and 

Plunkett (2004). However, relationships of all three of these smaller families to the 

remaining lineages of Apiales remains poorly resolved and additional studies are needed 

(APG, II; Judd and Olmstead, 2004; Chandler and Plunkett, 2004).  
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Two recent studies have provided additional insights into the phylogeny of 

Apiales. One study aimed at assessing the placement of all genera once placed in 

subfamily Hydrocotyloideae using the plastid rpl16 and trnD-trnT regions (Chapter 1). 

The second sought to study patterns of duplications in the nuclear RPB2 genes 

throughout the order (Chapter 2).  Both studies provided extensive sampling (from over 

260 species) representing every major lineage in Apiales, and yielded phylogenies that 

exhibited both agreements and disagreement regarding relationships in Apiales. In the 

present study, we examine these markers together with a new data set derived from the 

mitochondrial genome, which to date has not been used in phylogenetic studies of 

Apiales. Although the mitochondrial genome is the preferred source of molecular 

markers for phylogenetic studies in many animal groups, it remains underutilized in plant 

phylogenetics largely because of its overall low rate of nucleotide substitutions (which 

reduces the number of potentially informative characters) and the high rate of structural 

rearrangements (which may lead to incorrect inferences of phylogeny). Nevertheless, the 

genome has provided valuable information about the evolutionary history in seed plants 

(e.g., Qiu et al., 1999; Chaw et al., 2000; Barkman et al., 2004; Bergthorsson et al., 

2004).  The mitochondrial genome has its own unique history which provides a different 

source of information about the evolution of the plants, independent of the chloroplast 

and nuclear genomes. To maximize the chances of detecting nucleotide substitutions, we 

targeted non-coding regions of the mitochondrial genome.  On the basis of literature 

searches and comparisons of sequences available on GenBank, we selected a region of 

~1200 bp that included the second intron of the nad1 gene. This gene includes five exons 



 149 

(a-e) that code for subunit 1 of NADH dehydrogenase. Intron 2 is located between exons 

b and c with a length of less than 1500 bp in most angiosperms and has been used in 

phylogenetic studies at the interspecific (e.g., Spiranthes spp.; Chen and Sun, 1998), 

intergeneric (e.g., Pelargonium; Bakker et al., 2000; Actinidia; Chat et al., 2004),  and 

interfamilial (e.g., Polemoniaceae; Porter and Johnson, 1998; Orchidaceae; Freudenstein 

and Chase, 2001; Burmanniacaeae; Merckx et al., 2006) levels.  

 

Time: The earliest known angiosperm fossils date from Valanginian-Hauterivian 

deposits, demonstrating the presence of angiosperms in the early Cretaceous (141-132 

Mya) (Brenner, 1996). The angiosperm fossil record suggests that these plants underwent 

a rapid diversification from the Barremian of the early Cretaceous (c. 115 Mya) through 

the late Cretaceous (c. 90 Mya) (Friis et al., 1999; Herendeen et al., 1999, Magallón-

Puebla et al.,  1999; Bell et al., 2005). However, there have been several different 

estimates of the origin of angiosperms, some of which are quite disparate, due largely to 

differences in methodology or statistical approach (Sanderson and Doyle, 2001). 

Molecular clocks calibrated with fossil data produced less conservative estimates for an 

origin of the angiosperms, as early as the Triassic or Jurassic (> 200 Mya) (Sanderson, 

1997; Chaw et al., 2004; Bell et al., 2005). The core eudicot lineage was estimated to 

have diverged from other angiosperms c. 100 – 147 Mya (Bell et al., 2005; Chaw et al., 

2004; Bremer, 2000; Wikström et al., 2001). For Apiales, early work by Bessey (1897) 

reported that fossil “Umbellales” (reflecting on out-dated circumscription that included 

families Umbelliferae, Araliaceae, and Cornaceae) stretched back to the Cretaceous.  
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Bessey also estimated that the number of extant species relative to the total number of 

angiosperms has decreased since the late Cretaceous and Eocene. Much more recently, 

Magallón and Sanderson (2001) estimated an increase in the diversification rate for 

Apiales since its divergence. However, this rate may be attributed to recent radiations in 

the more speciose Apiaceae (~75% of the 4,898 species counted in the study) compared 

to the other families, which appear to be older but have fewer extant species (e.g., 

Myodocarpaceae and Pittosporaceae). Also, the divergence time used for Apiales (45.15 

Mya) represents an underestimate of that inferred from fossil records (> 60 Mya; Farabee 

1993). Within suborder Apiineae, more than 60 fossil taxa have been retrieved for 

Araliaceae, dating back to the Cretaceous (Europe and North America) and Tertiary 

(Siberia, Australasia), whereas most fossils referable to Apiaceae were scarce in the 

Oligocene and Miocene and increased in the Pleistocene (Berry, 1903; Axelrod, 1952; 

Mathias, 1965). Considering recent advancements in fossil dating and the 

phylogenetically based classifications, the oldest apialean fossils were collected in 

Germany and belong to the Maastrichtian flora of the Cretaceous Period (c. 70 Mya) and 

are placed in the araliad genera Acanthopanax (= Eleutherococcus) (A. friedrichii, A. 

gigantocarpus, A. mansfeldensis, and A. obliquocostatus) and Aralia (A. antiqua) 

(Knobloch and Mai, 1986; Bremer et al., 2004). The age of these fossils was among six 

reference fossil dates used by Bremer et al. (2004) to calibrate their molecular clock, 

resulting in a stem age of 113 Mya for the order Apiales and a crown age of 84 Mya. 

Schneider et al. (2004) estimated a fossil age of 37 Mya and molecular age of 50 to 80 

Mya, whereas Wikström (2001) used a fixed fossil age of 69 Mya and estimated the age 
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of Apiales at 85-90 Mya, with the Araliaceae clade originating 41-45 Mya. Farabee 

(1993) relied on pollen fossils to date the history of Araliaceae back to the Paleocene (55-

65 Mya), but few other studies have provided estimates for the timing of diversification 

among families and genera in Apiales. Using several alternative estimation models, the 

present study will make use of paleobotanical evidence and gene phylogenies in an effort 

to estimate divergence times for the order and its families and genera. 

 

 Space: Apiales exhibits an interesting geographic distribution, where Apiaceae 

are largely north-temperate and Araliaceae mostly tropical. Most of the smaller families 

are geographically restricted (e.g., Pittosporaceae is largely Australian and 

Myodocarpaceae is restricted almost exclusively to New Caledonia). Information from 

fossils and extant species distributions provides evidence that species within Apiales have 

occupied all major phytogeographic regions and kingdoms, yet very little is known about 

the historical biogeography of the major apialean clades. Traditional theories of its 

evolution include an origin of Araliaceae in the Paleotropics during the Creatceous or 

earlier, and the derivation of the more temperate Apiaceae from proto-araliaceous stock 

due to climatic changes during the late Cretaceous or Tertiary (Mathias, 1965; Rodríguez, 

1971). This Paleotropic-origin theory parallels that of the angiosperms in general 

(Axelrod, 1952; Shields, 1991) and is supported by the high diversity of “ancient” 

apialean taxa in tropical regions, specifically Australasia. This region has been of major 

interest in biogeographic studies at least since the times of Alfred Russel Wallace due to 

its geology and high levels of endemism for both plants and invertebrates. Different 
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theories have been proposed to explain both the distribution of taxa within this region and 

the links of these Australasian taxa to those in other regions of the world. These include 

vicariance resulting from geological events affecting Gondwana (e.g., Brundin, 1966; 

Raven and Axelrod, 1972; Nelson, 1975; Linder and Crisp, 1996), and dispersal of 

surviving taxa across narrow ocean basins or by means of “island stepping stones” (e.g., 

Carlquist, 1974, 1981; Diamond, 1984; Takhtajan, 1986; Pole, 1994). Explanations 

supporting dispersal include the submergence of many island and land masses during the 

Oligocene, implying a post-Gondwanan colonization and diversification (Pole, 1994, 

2001; McPhail, 1997). This suggests the affinity between taxa of post-Gandwanan origin 

on isolated areas may be best explained by long distance dispersal. However, many 

studies have dated endemic lineages in different Australasian regions to ancient 

Gondwana-related ancestors, separated by vicariance events (e.g., McLoughlin, 2001; 

Swenson et al., 2001; Stöckler et al., 2002; Ladiges et al., 2003). Most of these studies 

attribute this to the presence of refugia, in which some Gondwanan species persisted 

during periods of submergence and climatic fluctuations. The current distribution of 

Apiales most likely resulted from both vicariance and long-distance dispersal. Such 

events can be tested using different biogeographic-reconstruction and estimation tools 

based on gene phylogenies, geologic histories, current distributions, and patterns of 

endemism.  

The goals of this study are to address the following issues regarding phylogenetic 

relationships in Apiales: (1) to estimate interfamilial relationships within suborder 

Apiineae (i.e., among Apiaceae, Araliaceae, Myodocarpaceae,and Pittosporaceae); (2) to 
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reconstruct relationships among the smaller families of the order (Torricelliaceae, 

Griseliniaceae, and Pennantiaceae), and to assess the relationships between these groups 

and suborder Apiineae; (3) to evaluate the utility of the mitochondrial genome in 

resolving relationships within Apiales, especially through comparisons to phylogenies 

retrieved from nuclear and chloroplast genomes; (4) to determine divergence estimates 

for the major clades in Apiales; and (5) to examine the historical biogeography of 

Apiales. These objectives are addressed by building on the plastid data analyzed in 

Nicolas and Plunkett (Chapter 1, in review) and orthologs and paralogs of the RPB2 gene 

region between exons 18 and 23, assembled from Nicolas and Plunkett (Chapter 2). The 

wide taxonomic sampling in those papers (more than 260 species) will be supplemented 

by additional character sampling in this study, using data from the second intron from 

nad1 of the mitochondrial genome. Many recent studies have demonstrated the 

importance of increasing both taxon sampling and character sampling to reduce 

phylogenetic error (Swofford et al., 1996; Graybeal, 1998; Mitchell et al., 2000; 

Rosenberg and Kumar, 2001; Zwickl and Hillis, 2002; Debry, 2005). Extensive 

representation of taxa yields better estimates of relationships and alleviates problem with 

long branches (Hillis, 1996), but use of markers from unlinked regions or genomes 

provides truly independent characters for evolutionary inference. Sampling from such 

data can provide corroboration of the phylogenetic hypotheses if results are congruent, or 

provide some insights into past reticulation events in cases of incongruence. As such, our 

choice of character sampling provides a solid framework to test the phylogenetic 
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hypotheses in the main lineages of Apiales and a reliable assessment of the utility of the 

mitochondrial nad1 intron 2 to resolve relationships at different phylogenetic levels. 

 
 
2. Materials and Methods 
 
2.1. Taxon and Molecular Marker Sampling  

The final sampling for the nad1 intron 2 phylogeny was chosen from the taxa 

listed in Table 1 of Chapter 1. We maintained the sampling strategy of representing all 

available genera (except in cases where our attempts to produce reliable sequences 

failed), but with a limit to the sampling within each genus to only one or two species. The 

final sampling included 126 species from more than 100 genera of Apiales. We also 

added three outgroup taxa, Sonchus asper from Asterales (Plunkett 2257, NY), Lonicera 

japonica from Dipsacales (Plunkett 2255, NY), and Helwingia japonica from 

Aquifoliales (Xiang 04C62, NCSC). Most leaf tissue samples were field-collected and 

dried using silica gel, but a few were harvested from herbarium specimens. All 129 nad1 

intron 2 sequences were generated specifically for this study. Total DNA was extracted 

using the CTAB method of Doyle and Doyle (1987), the DNeasy Plant extraction kit 

(QIAGEN Inc.), a modified Puregene DNA extraction protocol (Gentra Systems), or 

following the protocol of Alexander et al. (2007) with minor modifications. External and 

internal primer sets were designed to amplify a region of c. 1200 bp of nad1 intron 2 

from Apiales and outgroups (Table 1) by comparing sequences of the same region from 

euasterid II taxa which are available in GenBank. PCR reactions included 1 µL of 

unquantified DNA, 5 µL Sigma JumpStart™ REDTaq® ReadyMix™ Reaction Mix or 
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Promega GoTaq® Green Master Mix, 0.5 µL of each forward and reverse primers (at 

concentrations of 5 µM), 0.5 µM spremidine (4 mM), and 2.5 µL ultrapure water for a 

total volume of 10 µL. The PCR thermal profile included a 2 min denaturing step at 94ºC, 

followed by 35 to 40 cycles of denaturation (30 sec at 94ºC), primer-annealing (30 sec at 

57ºC), and DNA extension (90 sec at 70ºC). This was followed by an extra extension step 

for 5 min at 72ºC. Some products were amplified in two separate reactions using a 

combination of external and internal primers to produce two overlapping fragments.  

 PCR amplicons were cleaned using ExoSAP-IT (USB Corp.), according to the 

manufacturer’s recommendations, before serving as template for the sequencing reaction. 

Cycle sequencing reactions were prepared by mixing 1 µL of the DYEnamic™ ET 

Terminator Cycle Sequencing mix (GE Healthcare), 1.5 µL of purified double-stranded 

PCR product, 0.5 µL primer (5µM), and 3 µL ultrapure water, for a total volume of 6 µL. 

The amplification program consisted of 40 cycles of 3 steps: 30 sec at 94ºC, 15 sec at 

55ºC, and 60 sec at 60ºC. Sequencing products were purified using Montage SEQ384 

plates (Millipore Corp.) and then separated by electrophoresis on a 96-capillary 

MegaBACE™ 1000 automated sequencer.  

 
2.2. Sequence Alignment and Data Analyses 

 
Sequences were edited using MegaBACE™ Sequence Analyzer. Complementary 

(forward and reverse) fragments were compared by pairwise BLAST 

(www.ncbi.nlm.nih.gov/BLAST/). Sequences used in the final analyses were aligned in 

ClustalX using the default settings (Higgins and Sharpe, 1988), followed by manual 

adjustments. An unweighted maximum parsimony analysis was implemented in PAUP* 
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4.0b10 (Swofford, 2001). We set PAUP* to run 100 replicates of heuristic searches using 

random addition of sequences and tree-bisection-reconnection (TBR) as the branch-

swapping algorithm. A maximum of 1000 optimal trees was saved for each replicate, 

setting a total upper limit of 50,000 trees for the overall search. Support values for nodes 

were estimated using 100 bootstrap replicates in PAUP*. MODELTEST (Posada and 

Crandall, 1998) was run (with PAUP*) to estimate the best model of sequence evolution. 

The model GTR+Г+I was used for three separate maximum likelihood analyses in 

GARLI (Zwickl, 2006). After visually assessing the congruence among tree topologies 

and similarities in log likelihood values from trees resulting from different runs, we 

selected the tree with the best likelihood score.  

  
2.3. Inferences of Historical Biogeography and Times of Divergenece 

 Cladistic biogeography has emerged as the most commonly employed approach to 

examining historical biogeographical relationships (Ronquist, 1997). This approach uses 

phylogenetic trees of taxa in an attempt to discover patterns of species distributions that 

reflect vicariance explanations, using extinction and dispersal where necessary to explain 

certain distributions (Crisci et al., 2003). An event-based method of reconstruction of 

areas was implemented in the DIVA software package (Ronquist 1996 and 1997), where 

vicariance was set as the default cause of speciation (no cost) while accounting for 

dispersal and extinction events using a priori cost assignment (one per event). Due to the 

large size of our data set and limitations in the number of terminals and characters 

accepted in DIVA, we constructed three separate DIVA matrices, each with 61 samples 

and five area characters. Each of the input trees was pruned from the fully resolved ML 
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plastid phylogeny. The first data set included 61 taxa from Apiaceae and 

Myodocarpaceae, the second included 61 taxa from Pittosporaceae, Araliaceae, and 

Griseliniaceae, and the third included 61 taxa representing all major clades across the 

order. The five geographically-defined characters were Australia + Pacific (area A), the 

Neotropics + temperate South America (Area B), temperate North America (Area C), 

sub-Saharan Africa (Area D), and Asia + Europe + North Africa (Area E).  

Bayesian estimation of rate variation was assessed using the software BEAST 

v1.4.8 (Drummond and Rambaut, 2007). The model is optimized through Bayesian 

MCMC without requiring rate autocorrelation or a starting phylogram, and thus provides 

a better account for phylogenetic uncertainty (Drummond et al., 2006; Rutschmann, 

2006). Both fossils and rates of molecular evolution were used to estimate the time of 

divergence at different nodes in Apiales. Hence estimates of divergence time were 

determined by a data matrix of aligned DNA sequences and reliable fossils in order to 

calibrate branches across various lineages. The data matrix was generated after trimming 

taxa in the plastid dataset to 161 taxa, which represented all major clades and subclades 

of the order. We conducted a likelihood ratio test (LRT) to test whether the sequences 

evolve according to a molecular clock. Fossils used as calibration points included 

Toricellia bonesii (Manchester, 1999) from the lower Eocene and Dendropanax 

eocenensis (Dilcher and Dolph, 1970) from the middle Eocene (detailed in Chapter 2), as 

well as pollen fossils related to Steganotaenia and Bupleurum from the lower Eocene, 

and Heteromorpha from the upper Eocene (Gruas-Cavagnetto and Cerceau-Larrival, 

1984). The calibration points were placed at the most appropriate points of common 
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ancestry for each fossil (Fig. 10). The minimum ages for Torricellia, Steganotaenia, and 

Bupleurum fossils was set at 52.2 Mya and the 95% confidence interval between 48.6 and 

55.8 Mya, which spans the entire lower Eocene. We followed the same concept for the 

fossil of Dendropanax and calibrated the clade with a minimum age of 42.9 Mya and 

95% confidence interval spanning the middle Eocene from 37.2 to 48.6 Mya, and the 

fossil of Heteromorpha, which was set to a minimum age of 35.55 Mya and 95% 

confidence interval spanning the middle Eocene from 33.9 to 37.2 Mya. The age of the 

ingroup was dated to 100 Mya and we relaxed the estimate with 2.5% confidence 

intervals between 90 and 110 Mya. We used the GTR+Г+I as the model of evolution and 

set the tree prior to the Yule speciation process, which assumes a constant speciation rate 

per lineage. We performed two separate runs with different relaxed clock models, 

uncorrelated lognormal distribution (UCLN) and uncorrelated exponential distribution 

(UCED). Both models account for rate variations across branches and do not assume a 

priori correlation between a lineage and its ancestor, although exponential models have a 

higher variance (Drummond and Rambaut, 2007). For each of the two runs, the chain was 

run for 20 million generations with sampling of trees every 1000 generations. The tree 

file was transferred to TreeAnnotator v1.4.8 (in the BEAST package), the burn-in was set 

to 2000 (10%), and a maximum clade credibility tree was estimated.  

 
3. Results and Discussion 

3.1. Characteristics and phylogeny of nad1 intron 2 

The final nad1 intron 2 data matrix included 129 sequences with an aligned length 

of 1725 bp. Individual sequence lengths ranged from 642 bp in Centella and Micropleura 
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of Mackinlayoideae to 1227 in Pittosporum undulatum of Pittosporaceae. However, most 

sequences in Apiales had a much narrower range, between 1100 bp and 1200 bp. The 

shorter lengths found in the herbaceous members of Mackinlayoideae (except Actinotus) 

were due to various deletions spread across the length of the sequence region, the longest 

one of which was ~500 bp. The Azorella clade of Azorelloideae was another group of 

taxa that exhibited a variety of structural rearrangements, including one major indel 

greater than 250 bp. The Trachymene clade exhibited high variability among species, 

including an insertion of up to 100 bp. Based on our previous experience with 

hypervariability in the plastid and nuclear markers, we were prepared for challenges in 

aligning mitochondrial sequences from the early diverging lineages of the Apioideae + 

Saniculoideae group and the herbaceous members of Mackinlayoideae. This proved true 

for the latter group, but not the former. In Apioideae + Saniculoideae, nad1 intron 2 

showed a surprisingly conserved structure, save for a few small indels. We detected an 

inversion of 20 bp (5´ – AGCCTTTTTCTAAAGGCTCT – 3´) in many taxa belonging to 

different clades; this ultimately proved to be homoplasious and was thus excluded from 

the final analyses. 

 The maximum parsimony (MP) analysis of nad1 intron 2 resulted in 30,000 trees 

with a length of 621 steps and a consistency index of 0.8116 (see Table 2 for tree 

characteristics) and offered greater resolution within the major clades than among them. 

The best scoring maximum likelihood (ML) tree had a –ln likelihood score of -6632.6566 

and showed greater resolution and higher support values than the MP strict consensus 

tree. In general, we will refer to the ML phylogeny (Fig. 1) to interpret relationships, but 
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will note important incongruences where the topologies resulting from the two methods 

disagree.   

The early diverging families (Pennantiaceae, Torricelliaceae, and Griseliniaceae) 

appear in three resolved clades at the base of Apiales in the ML phylogeny only. Support 

for the placements of Pennantiaceae and Torricelliaceae was < 55% (Fig.1b). 

Griseliniaceae are sister to the clade uniting the four families that constitute suborder 

Apiineae (Pittosporaceae, Araliaceae, Myodocarpaceae, and Apiaceae) with 70% 

bootstrap support. Two major lineages are evident in suborder Apiineae. The first unites 

family Apiaceae (but excluding Mackinlayoideae) to Platysace + Homalosciadium (Fig. 

1a), but this placement of the Platysace clade is not well supported, nor was it retrieved 

in the MP phylogeny. Both MP and ML phylogenies show five main clades in one of the 

two lineages of Apiaceae. These are Klotzschia, Hermas, the Asteriscium + Bowlesia 

clade (of Azorelloideae), Saniculoideae + related genera, and Apioideae (but also 

including members of the Azorella group) (Fig. 1a). The relationships among these five 

subclades were unresolved in the MP tree and resolved with low support in the ML tree 

(BS < 50%). Klotzschia and Hermas formed two early diverging clades in Apiaceae but 

with low support. The rest of this lineage includes three main subclades. Clade 1 includes 

mostly Apioideae but also members of the Azorella group, clade 2 includes Asteriscium, 

Diposis, and Bowlesia clades of Azorelloideae and is sister to clade 1, and clade 3 

includes Saniculoideae and other early lineages of Apiaceae (Steganotaenia, 

Polemanniopsis, Lichtensteinia, and Choritaenia) (Fig. 1a). The placement of the 

Azorella group in Apioideae rather than among the other members of Azorelloideae was 
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surprising, but appears to represent an artifact due to the large deletion in a region of 

nad1 that exhibited the greatest number of synapomorphies uniting the rest of 

Azorelloideae. Two other results worth noting are the placement of Lichtensteinia and 

Choritaenia as sister to Saniculoideae (BS = 64%) and the placement of Diposis as sister 

to the Asteriscium clade (BS = 90%).  

The second clade of Apiineae includes Mackinlayoideae and the three remaining 

families of Apiineae (Fig. 1b). The relationships among the clades were unresolved in the 

MP tree and resolved with low support in the ML tree (Fig.1b). The sister-group 

relationship between Mackinlayoideae and Pittosporaceae was novel but only weakly 

supported (BS = 56%), and it did not appear in the MP phylogeny. Although the 

resolution of relationships among many major groups was poor (especially in the MP 

tree), the mitochondrial marker resolved relationships in many of the clades, especially at 

the intergeneric level (e.g., in Pittosporaceae and the major clades of Apiaceae). 

 

3.2. Relationships among the families of Apiales  

 In our discussion of phylogenetic relationships in Apiales, we draw inferences 

from all three molecular makers, including data from the mitochondrial (nad1 intron 2), 

plastid (trnD-trnT + rpl16) and nuclear (RPB2) genomes. The traditional notion of 

Araliaceae and Apiaceae as a “family pair” is not supported by the results of the markers 

from the three genomes (Fig. 2). The principle exception is the placement of family 

Myodocarpaceae relative to Apiaceae and Araliaceae, and in some trees, the placement of 

subfamily Mackinlayoideae relative to Myodocarpaceae. Although support for these 
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placements is not very high (< 60%; Fig. 2), this picture of relationships fits with the pre-

cladistic view that the taxa now placed in Myodocarpaceae (Myodocarpus and 

Delarbrea) represent “bridging groups” between Apiaceae and Araliaceae. These plants 

share the woody habit of most Araliaceae, and Delarbrea also has the drupaceous fruits 

characteristic of most Araliaceae but with thin endocarps. By contrast, Myodocarpus has 

dry, schizocarpic fruits with free carpophores, reminiscent of many Apioideae. Basic 

chromosome numbers (x = 12) also provide a link between Myodocarpaceae and 

Araliaceae. However, wood anatomical characters, such as non-septate fibers and thin 

intervessel pits, suggest a connection to Apiopetalum and Mackinlaya of 

Mackinlayoideae, the earliest diverging lineage of Apiaceae (Fig. 2; Plunkett et al. 1996a, 

1996b, 1997; Oskolski and Lowry, 2000). Evidence from wood anatomy shows some 

affinities between Araliaceae and woody Apiaceae (excluding Mackinlayoideae) that are 

not shared with Myodocarpaceae, prompting Oskolski (2001) to conclude that 

Myodocarpaceae is a distinct lineage of Apiales rather than an intermediate between 

Apiaceae and Araliaceae (see also Rodríguez, 1957). 

 Unlike the results inferred from mitochondrial data, Apiaceae, Myodocarpaceae, 

and Araliaceae form a resolved clade in trees based on plastid (BS = 64%) and nuclear 

(BS = 86%) data (Fig. 2). The affinity of Pittosporaceae to these three families is evident 

in the phylogenies estimated from all three genomes. The sister-group relationship of 

Pittosporaceae to the rest of Apiineae is well supported in the plastid (BS = 99%) and the 

nuclear (BS = 93%) phylogenies (Fig. 2), but Pittosporaceae is nested well within 

Apiineae in the mitochondrial tree (sister to Mackinlayoideae), albeit with low support. A 
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distinguishing morphological feature of Pittosporaceae is the presence of superior ovaries 

with parietal or axile placentation, whereas the other three families of Apiineae have 

inferior ovaries with axile (apical) placentation.  

 The early-diverging families, Griseliniaceae, Torricelliaceae, and Pennantiaceae 

form successive sister groups to Apiineae. In the mitochondrial and plastid trees, 

Torricelliaceae appears to have diverged earlier than Griseliniaceae, but in the nuclear 

topology, the two groups form a clade (Figs. 1 & 2). The three families differ from 

Apiineae in several features, including the lack of schizogenous secretory canals (see 

Plunkett 2001) and their pollen morphology, which is usually reticulate in most Apiineae 

but varies in the three remaining families (Kårehed, 2003). The morphological evidence 

supporting the inclusion of these families in Apiales is scant. Several features common in 

Apiineae are also found in most of these groups, such ovary-roof nectaries (Erbar and 

Leins, submitted), a single functional ovule (either per locule or per ovary), drupaceous 

fruits, and sheathing petiole bases, but there are significant exceptions to each. By 

contrast, molecular evidence has consistently suggested that these families belong to 

Apiales as early-diverging lineages. The link between Pennantiaceae and the rest of 

Apiales is especially tenuous, where only ovary position and low carpel number are 

shared. In fact, results from two nuclear studies of Apiales have placed it among the 

outgroups (Dipsaclaes and Aquifoliales) rather than as sister to the rest of Apiales 

(Chandler and Plunkett, 2004; Nicolas and Plunkett, Chapter 2). Considering the troubled 

history of Icacinaceae (where Pennantia had formerly been placed), we suggest that the 

affinity between Pennantia and the rest of Apiales requires further testing with more 
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extensive sampling of genera and species of Icacinaceae, its relatives and the other 

families of Dipsacales and Aquifoliales, as well as Apiales. 

 

3.3. Relationships in Apiaceae 

 The greatest difficulties in resolving subfamilial relationships in Apiaceae were 

the placement of taxa formerly grouped in the now obsolete subfamily Hydrocotyloideae 

and some early-diverging lineages that blurred the circumscriptions of Apioideae and 

Saniculoideae. The problem of Hydrocotyloideae has largely been put to rest with the re-

alignment of its genera across the different subfamilies of Apiaceae and in Araliaceae. In 

its current circumscription, Apiaceae includes four subfamilies: Azorelloideae, 

Mackinlayoideae, Apioideae, and Saniculoideae (Plunkett et al., 2004a). 

Mackinlayoideae appear to be the earliest-diverging lineage of Apiaceae, followed by 

Azorelloideae then Apiodeae + Saniculoideae (Fig. 2). The exact circumscription of the 

latter two subfamilies remains an open subject for debate (see van Wyk, 2001; Calviño et 

al., 2006). 

 

Mackinlayoideae: This subfamily includes two woody genera formerly placed in 

Araliaceae (Apiopetalum and Mackinlaya), plus eight mostly herbaceous, former 

hydrocotyloid genera (Actinotus, Xanthosia, Chlaenosciadium and its segregate 

Brachyscias, Pentapeltis, Shoenolaena, Centella, and Micropleura), all of which had 

been assigned to tribe Hydrocotyleae (Pimenov and Leonov, 1993) based on the presence 

of laterally compressed fruit. This fruit character is also found in Mackinlaya, but it is 
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absent in Apiopetaulm. Members of Mackinlayoideae share several other characters, such 

as sheathing petiole bases and valvate petals with clawed bases and inflexed tips (detailed 

in Plunkett and Lowry, 2001). These characters are also shared with many Apiaceae and 

thus do not represent unique synapomorphies of Mackinlayoideae. Mackinlaya and 

Apiopetalum also have features that link them to Araliaceae, such as shrubby to 

arborescent habits and fleshy fruits, but wood anatomical characters suggest that, 

collectively, these two genera are distantly related to woody Araliaceae (detailed in 

Oskolski and Lowry, 2000).  

  The monophyly of Mackinlayoideae and the resolution of most of its 

intergeneric relationships is clearly evidenced in all three of our molecular studies 

(summarized in Fig. 3). The studies with the most extensive sampling are those based on 

plastid trnD-trnT + rpl16 (Chapter 1) and nuclear RPB2 (copy 2) (Chapter 2). Based on 

DNA sequence data, Mackinlayoideae appear to consist of five main groups: 

Apiopetalum, Mackinlaya, Actinotus, Chlaenosciadium-Xanthosia (the Xanthosia group), 

and Centella-Micropleura-Shoenolaena-Pentapeltis (the Centella group) (Fig. 3). High 

rates of sequence variation are apparent among these five groups, especially among the 

herbaceous taxa. The woody genera, Apiopetalum and Mackinlaya, appear as distinct 

lineages that are not sisters within Mackinlayoideae. The separation of these two genera 

is also reflected in their geographies, with Apiopetalum restricted to New Caledonia and 

Mackinlaya ranging from Malesia to Australia. The relationship of these two lineages 

relative to the mostly Australian Actinotus is not clear, and the nad1 intron 2 phylogeny 

did not offer a well supported relationship among the three genera. In trees where all 
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genera of Mackinlayoideae were represented, Actinotus appeared either as sister to 

Apiopetalum, as in the combined plastid analysis (ML BS = 96%; Fig. 3a), or as a lineage 

that diverged earliest in Mackinlayoideae, as in the tree based on RPB2 copy 2 (ML BS < 

50%; Fig. 3b). In the same trees, the placement of Mackinlaya is well supported as sister 

to the Xanthosia and Centella groups (plastid ML BS = 96%; RPB2 ML BS = 80%) (Fig. 

3). The main problem remains the relative placements of Apiopetalum and Actinotus at 

the base of Mackinlayoideae. 

The morphological affinities between (and within) the Xanthosia and Centella 

groups were addressed in Chapter 1. The molecular evidence from plastid and nuclear 

genomes strongly supports the sister relationship between the two groups and suggests a 

geographic progression from Australia (Xanthosia, Chlaenosciadium, Shoenolaena, and 

Pentapeltis), to Mesoamerica (Micropleura) and Africa (Centella). A remarkable feature 

of the Centella group is the high number of synapomorphic indels in the sequences of 

mitochondrial nad1 intron 2 that are unique to these groups. These characters provide 

evidence of the association of the Australian Pentapeltis and Shoenolaena with Centella 

and Micropleura, and not with the sympatric Xanthosia, in which some authors had once 

placed them (e.g., Burbidge, 1963). Despite the overwhelming molecular evidence for 

grouping Chlaenosciadium-Xanthosia and Centella-Micropleura-Shoenolaena-

Pentapeltis, we were unable to identify unique morphological characters that could be 

used as diagnostic features of these subgroups of Mackinlayoideae. 

The Platysace clade includes both Platyscae and Homalosciadium, the close 

relationship between which was first demonstrated by Nicolas and Plunkett (Chapter 1). 
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Platysace had previously been affiliated with Trachymene, whereas Homalosciadium was 

considered a “satellite genus” of Hydrocotyle (Henwood and Hart, 2001; Hart and 

Henwood, 2006). Both genera were grouped in Hydrocotyloideae subtribe 

Hydrocotylinae, together with Trachymene and Hydrocotyle, based on the presence of 

laterally compressed mericarps and petaloid sepals. Hydrocotylinae also included 

Centella, Micropleura, and Chlaenosciadium, now placed in Mackinlayoideae. Molecular 

data indicate that Platysace and Homalosciadium are not closely related to Hydrocotyle 

and Trachymene, but rather to Mackinlayoideae (Fig. 2). The relationship of Platyscae to 

Homalosciadium has strong support in all three of our phylogenies, but their exact 

placement in Apiaceae remains questionable. The plastid phylogeny indicates that the 

Platysace clade diverged after Mackinlayoideae and is sister to the rest of Apiaceae (BS 

= 93%). The nuclear tree shows the Platysace clade as sister to Mackinlayoideae (BS = 

70%), whereas the mitochondrial tree places it as sister to most Apiaceae (excluding 

Mackinlayoideae) but with very low support (Fig. 1 & 2). Thus, the placement and 

taxonomic status of Platysace and Homalosciadium remain uncertain; one possible 

solution is to recognize these two genera as a fifth subfamily of Apiaceae, but more 

detailed studies are necessary. 

 

 Azorelloideae:  Our analyses of chloroplast markers (Chapter 1) provided strong 

evidence that many of the former hydrocotyloid genera belong to subfamily 

Azorelloideae. The same study showed four main clades in the well supported 

Azorelloideae clade (the Asteriscium, Diposis, Azorella, and Bowlesia clades) plus 
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Klotzschia, tentatively included in Azorelloideae incertae sedis (Fig. 2). 

Interrelationships among the four clades were not strongly supported, but the nuclear (BS 

= 81%) and mitochondrial (BS = 90%) phylogenies corroborate a sister-group 

relationship between the Diposis and the Asteriscium clades (Figs. 1a & 2b). The taxa of 

these two clades all have winged fruits with lateral ribs, but this character is not unique in 

Azorelloideae. On the other hand, Diposis differs from other Azorelloideae in lacking 

distinct rib oil ducts in their fruits (Liu, 2004). In the nuclear phylogeny, the Diposis-

Asteriscium group did not form a monophyletic group with the rest of Azorelloideae, but 

rather was placed (with low support) as sister to Apioideae + Saniculoideae (Fig. 2b).  

The Asteriscium clade includes several genera that are shown to be non-

monophyletic in both the plastid and nuclear trees (viz., Asteriscium, Eremocharis, and 

Domeykoa) (Fig. 4). Three main lineages are apparent in this clade, one with Asteriscium, 

Gymnophyton, and Pozoa, a second with the interdigitated species of Eremocharis and 

Domeykoa, and a third with Oschatzia, the only Australian genus in the group. The 

placements of Pozoa and Oschatzia varied in the three phylogenies. These are the only 

two genera in the clade to lack winged fruits. In the plastid and mitochondrial 

phylogenies, Oschatzia diverged after the Eremocharis-Domeykoa clade, but the situation 

is reversed in the nuclear topology (Fig. 4). Pozoa is sister to Gymnophyton-Asteriscium 

in the plastid and mitochondrial phylogenies, but sister to Asteriscium chilense alone in 

the nuclear tree (BS = 88%). 

 A sister-group relationship between the Azorella and Bowlesia clades was 

supported in the nuclear RPB2 phylogeny (BS = 100%; Fig. 2), but not the plastid or 
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mitochondrial trees. Within the Bowlesia clade, the only well supported relationship 

among the five genera was found between the South American Bolax and the Australian 

Dichosciadium (Fig. 5). Bowlesia, Homalocarpus, and Drusa had traditioanlly been 

grouped together in subtribe Bowlesiinae due to their hollow fruits, whereas Bolax and 

Dichosciadium had been placed in subtribe Azorellinae because they lack this character. 

Bolax also exhibits suffrutescent and mat-forming habits that are very similar to the 

habits of many species of Azorella.  

The genera of the Azorella clade (Azorella, Mulinum, Laretia, Schizeilema, 

Huanaca, Diplaspis, Dickinsia, Stilbocarpa, and Spananthe) exhibit a complex pattern of 

relationships in the plastid phylogeny (detailed in Chapter 1). The placement of 

Spananthe as the earliest diverging lineage, followed by Dickinsia + Diplaspis, is 

congruent between the plastid and nuclear phylogenies (Fig. 6). The remaining problems 

in the clade include the polyphyly of Azorella and Schizeilema, and the placement of 

Laretia and Mulinum. Character states traditionally used in the classification of these taxa 

(e.g., the presence or absence of carpophores and wings, and low herbs versus mat- or 

cushion-forming habits), appear to be poor indicators of relationships and do not provide 

a solid basis for classification in this clade. Both of the major subclades of the Azorella 

clade included species of Azorella. One included Mulinum and Laretia (the Mulinum 

subclade), while the other included Huanaca, Schizeilema, and Stilbocarpa (the 

Schizeilema subclade) (Fig. 6). The nuclear tree showed a more complicated pattern than 

the plastid tree. While the relationships in the Schizeilema subclade were very similar, the 

relationships in the Mulinum subclade differed between the plastid and nuclear 
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phylogenies (Fig 6). In one copy of RPB2 (copy Az1), A. trifoliolata alone was placed as 

sister to the Schizeilema subclade, followed successively by four different subclades that, 

in the plastid phylogeny, belonged to the Mulinum subclade (Fig. 6b). In copy Az2 of 

RPB2, the A. trifurcata and A. selago subclades were sister to the Schizeilema subclade 

and did not group in the Mulinum subclade (Fig. 6b), but this relationship was not well 

supported (BS = 56%). Other data (not shown here) indicate that neither Mulinum nor 

Huanaca are monophyletic, thus further exacerbating the taxonomic problems, and 

indicating that the group is in dire need of more study. 

One of the main phylogenetic problems remaining in Azorelloideae is the 

placement of Klotzschia. This genus was placed as sister to the rest of Azorelloideae in 

the plastid study (BS = 66%), sister to the Diposis + Asteriscium clades in the nuclear 

study (BS = 50%), and sister to the rest of Azorelloideae + Apioideae + Saniculoideae in 

the mitochondrial study (BS < 50%) (Figs.1a & 2). The genus was traditionally grouped 

in subtribe Azorellinae due to the presence of dorsally compressed fruits that lack wings. 

Within Azorelloideae, Klotzschia shares a fruit synapomorphy with Diposis, the lack of 

distinct intrajugal oil ducts (Liu, 2004). Diposis may in fact represent the closest relative 

to Klotzschia, and is placed in a clade that diverged just after the divergence of Klotzschia 

in both the plastid and nuclear trees (Fig. 2).  

 

Apioideae-Saniculoideae: The placement of Hermas sister to Apioideae + 

Saniculoideae is congruent in the plastid and nuclear phylogenies (BS > 80%; Fig. 2). 

The mitochondrial tree did not provide a well supported placement for Hermas or a 
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sister-group relationship between Apioideae and Saniculoideae (Fig. 1a). Polemanniopsis 

+ Steganotaenia formed a clade that is sister to tribe Saniculeae (Eryngium, Petagnaea, 

Sanicula, Hacquetia, Astrantia, Actinolema, Alepideae, and Arctopus) and is supported in 

both the plastid and mitochondria phylogenies (> 70%), but is not in the nuclear 

phylogeny (BS < 50%) (Fig. 7). Choritaenia + Lichtensteinia are sister to Saniculeae + 

Polemanniopsis + Steganotaenia in the plastid and mitochondrial phylogenies (BS > 

50%), but Lichtensteinia alone had that placement in the nuclear phylogeny (BS < 50%), 

whereas Choritaenia was placed as sister to the rest of Apioideae (BS = 68%). Within 

Saniculeae, different copies of RPB2 were derived from different genera. Despite this, 

the same overall pattern of relationships can be deduced from all three phylogenies: 

((Arctopus + Alepideae), ((Astrantia + Actinolema),((Sanicula + Hacquetia), (Eryngium 

+ Petagnaea)))) (Fig. 7). 

 Within the early diverging lineages of Apioideae, the placement of Astydamia 

varies among the three phylogenies. It appears as sister to the Annesorhiza clade 

(Annesorhiza + Itasina + Chamarea) in the plastid tree (BS = 100%), the next diverging 

lineage after Choritanea in the nuclear tree (BS = 97%), and after the divergence of the 

Annesorhiza and Heteromorpha (Heteromorpha + Anginon + Pseudocarum + Andriana) 

clades in the mitochondrial tree (BS = 61%) (Figs. 1a & 7). The Annesorhiza clade 

diverged before the Heteromorpha clade in the plastid tree (BS = 100%), but the 

converse relationship was shown in the mitochondrial and nuclear phylogenies, but with 

low support (BS < 50%) (Figs. 1a & 7). These variations in placement from different 

markers highlight the persisting problems in resolving relations among the early lineages 
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of Apioideae + Saniculoideae (van Wyk, 2001; Calviño et al., 2006; Calviño and 

Downie, 2007; Nicolas and Plunkett, Chapters 1 & 2). 

Apart from the early lineages described above, Bupleurum diverges next in the 

plastid and mitochondrial trees (BS > 96%). In the plastid phylogeny, Bupleurum is 

succeeded by the Neogoezia clade (BS = 100%), the Anisotome clade (BS = 100%), and 

the Daucus clade (Daucus + Tinguara + Oreomyrrhis; BS = 98%) (Figs. 1a & 7). The 

nuclear phylogeny shows the Anisotome clade diverging first (BS = 100%), followed by 

the Neogoezia clade (BS = 70%), the Daucus clade (BS = 92%), and the Bupleurum clade 

(BS < 50%) (Fig. 7). Since the later diverging lineages of Apioideae were not heavily 

sampled in our study (due to the large number of genera), we limit our discussion to the 

placement of Notiosciadium since it has only been sampled in two previous molecular 

studies (Nicolas and Plunkett, Chapters 1 & 2). In the RPB2 phylogeny, Notiosciadium 

and Aegopodium are supported sisters (BS = 82%) that together appear as the sister to 

Lagoecia (BS = 86%) (Fig. 7). These three genera appeared as distinct clades in the 

plastid phylogeny (Fig. 7). 

 

3.4. Relationships in Myodocarpaceae 

 The sister-group relationship between Delarbrea and Myodocarpus, as well as the 

monophyly of each genus, is well supported in all of our phylogenies, just as it has been 

in many other studies (e.g. Chandler and Plunkett, 2004; Plunkett et al. 2004a). These 

two genera are almost exclusively restricted to New Caledonia and have similar wood 

anatomies, especially in their shared apotrachial axial parenchyma (Oskolski et al., 1997, 
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Lowry et al., 2001). The most conspicuous distinguishing feature between the two genera 

is their fruit types, either dry and schizocarpic in Myodocarpus or fleshy and drupaceous 

in Delarbrea. Despite this, the fruits of both genera bear several similarities, notably 

bicarpelly and large secretory oil vesicles (Lowry, 1986a and 1986b). The variation in 

fruit type likely reflects adaptations to different dispersal strategies (Lowry, 1986a and 

1986b). 

 

3.5. Relationships in Araliaceae 

 Plunkett et al. (2004c) assigned informal names to three main lineages of 

Araliaceae: the Asian Palmate group, the Polyscias-Pseudopanax group, and the Aralia 

group. The relationships among and within these clades, as well as among many of clades 

of Araliaceae, remain poorly understood. Based on our results, some affinities appear 

between the Pacific genera Raukaua, Cheirodendron, and Schefflera s. str., and 

sometimes extending further to the Australian genera Cephalaralia and Motherwellia 

(Fig.1b & 8). The resolution of these genera in a single clade has neither been consistent 

nor well supported. Many other clades (e.g., Astrotricha, Harmsiopanax, Osmoxylon, 

Cussonia and Seemannaralia, and African members of Schefflera) form polytomies 

within Araliaceae or are retrieved in poorly supported and variable placements in 

different phylogenic trees. In addition, the Hydrocotyle-Trachymene group includes 

former hydrocotyloids (Hydrocotyle, Neosciadium, Trachymene, and Uldinia) that were 

once placed in Apiaceae, but are more appropriately placed in Araliaceae. Several genera 

in Araliaceae are poly- or paraphyletic (e.g., Polyscias, Gastonia, Cuphocarpus), but the 



 174 

polyphyly of Schefflera has the greatest impact on the taxonomy of the entire family. 

Schefflera is currently the largest genus in Araliaceae, but its species are divided into five 

separate clades, largely reflecting geographic distributions, with clades centered in Asia, 

the Neotropics, Africa and Madagascar, and the Pacific. The species of Pacific, however, 

fall in two unrelated clades, one centered in Melansia, and a second smaller (but more 

broadly distributed) clade representing Schefflera s. str. (Plunkett et al., 2005). 

 

The Asian Palmate Group (plus Osmoxylon, Cussonia, and Seemannaralia): 

This clade includes 20 genera with a predominantly Asian distribution, with several 

notable exceptions. Dendropanax is disjunct between Asia and the Neotropics, 

Oplopanax is disjunct between Asia and North America, and Oreopanax is restricted to 

the Neotropics. In addition, two (of the five) clades of the polyphyletic Schefflera are 

found in this group, including both the Asian and Neotropical clades. The plastid 

phylogeny provides good resolution of the Asian Palmate group, but with very low 

support (BS < 50%). The nuclear phylogeny offers better support for the clade (BS = 

75%), but only with the inclusion of Osmoxylon as an early-diverging lineage in one of 

the subclades (Fig. 8). There is also some evidence that ancient allopolyploidy may have 

shaped the early history of the tetraploid species in the group (see Chapter 2; Mitchell 

and Wen, 2004; Yi et al., 2004). Judging from our findings and the conclusions of prior 

studies of the group (e.g., Wen et al., 2001; Mitchell and Wen 2004; Plunkett et al., 

2004c), the lack of resolution and support, despite the application of various sources of 

molecular and morphological evidence, may reflect an early rapid radiation and 
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subsequent reticulation events. The mitochondrial tree did not provide strong support for 

any relationships in this clade.  

 In the nuclear RPB2 data from the Asian Palmate group, we found evidence of 

another duplication event within the Ar1 copy of the gene, yielding an additional level of 

paralogy (copies AP1 and AP2) found only among the Asian Palmates. This may be an 

indication of ancient allopolyploidy among the ancestors of the species in the clade 

(Chapter 2). In the resulting cladogram, Osmoxylon falls within the Asian Palmate group 

at the base of the AP2 subclades (BS = 55%; Fig. 8b). We found no evidence of this 

placement in the plastid phylogeny, where Osmoxylon forms a clade with Astrotricha 

(but with low bootstrap support, BS < 50%; Fig. 8a). In the nuclear cladogram, the 

African genera Cussonia and Seemannaralia are successive sister lineages to the Asian 

Palmate group (including Osmoxylon), with strong support (90% and 73%, respectively; 

Fig. 8b). In the plastid tree, these two genera had a sister-group relationship (BS = 66%) 

and, in turn, were sister to the Polyscias-Pseudopanax group (BS < 50%) in the broader 

clade that included both the Polyscias-Pseudopanax group and the Asian Palmate group 

(Fig. 8a). Given the palmate structure of the leaf venation, lobing, or division in 

Osmoxylon, Cussonia, and Seemannaralia, their association with (or possibly their 

inclusion in) the Asian Palmate group warrants more detailed study. 

 

 The Polyscias-Pseudopanax Group: This group unites Polyscias and its 

segregates in one subclade, and Melanesian Schefflera, Meryta, Pseudopanax and 

Neopanax in a second subclade, and is strongly support in the plastid tree (BS = 95%, 
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Fig. 8a), confirming results from prior studies (e.g., Wen et al. 2001; Plunkett et al. 

2004c). The group is not found in the mitochondrial tree (Fig. 1b). The RPB2 gene tree 

provides an additional perspective into the evolution of this group, due to the detection of 

two unrelated copies of the gene. Given the predominance of tetraploidy in the taxa of the 

Pseudopanax subclade, it appears that the duplicated copies of the gene track two 

different evolutionary histories, which is reflected in the two Pseudopanax subclades 

found in the RPB2 tree. One copy reflects the Polyscias-Pseudopanax group as we see it 

in the plastid phylogeny, albeit with lower support (BS = 56%).  The second copy, 

however, shows a relationship to a distant clade that includes Raukaua et al. (Fig. 8b). 

This may be an indication of ancient hybridization events between these groups (see 

details in Chapter 2). Within the Pseudopanax subclade there are four genera of 

exclusively Pacific distribution (Pseudopanax, Neopanax, Meryta, and Melanesian 

Schefflera). The genera were not placed together in a single supported clade in the 

mitochondrial phylogeny, but were well-supported in both the plastid phylogeny (BS = 

90%) and the Pseudopanax1 subclade of the nuclear tree (Figs. 1b & 8). 

In the plastid and nuclear trees, the Polyscias subclade is consistently one of the 

best supported clades in Araliaceae (plastid BS = 67%; nuclear BS = 99%; Fig. 8).  And 

while the broader Pseudpanax-Polyscias group is not resolved in the mitochondrial tree, 

the smaller Polyscias clade does receive support (BS = 69%; Fig. 1b).  In this clade, we 

find additional evidence for the paraphyly of the genus Polyscias relative to six other 

genera, confirming several prior studies (Plunkett et al., 2001, 2004b; Plunkett and 

Lowry, submitted). This paraphyly ultimately led to the taxonomic inclusion of 
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Arthrophyllum, Cuphocarpus, Gastonia, Munroidendron, Reynoldsia, Tetraplasandra 

under a much broader Polyscias to restore monophyly (Lowry and Plunkett, submitted).  

 

 Raukaua et al.: This group is recognized primarily on the basis of plastid data 

(Fig. 8a), where it includes Raukaua, Schefflera s. str., Cheirodendron, Motherwellia, 

and Cephalaralia. In the nuclear phylogeny, these genera are also allied, but form a 

phylogenetic grade at the base of the Hydrocotyle clade (Fig. 8b). Neither of the two data 

sets provided high support for the clade. A similar pattern was shown in Plunkett et al. 

(2004c; BS = 53%) in an MP tree based on plastid trnL-trnF sequences (with the 

exception of Motherwellia, which was placed in the Asian Palmate group), and in their 

Bayesian analysis of combined trnL-trnF + ITS data, which united all five genera (PP = 

51%). In the mitochondrial phylogeny, these genera (except the unsampled Cephalaralia) 

grouped together with the Polyscias clade and Astroticha, with 80% bootstrap support 

(Fig. 1b). In the plastid tree, a sister relationship between Motherwellia and Cephalaralia 

is supported (BS = 82%; Fig. 8a), and this relationship may be reflected in their 

overlapping geographies (in NE Australia), and in their climbing habits and imbricate 

petal aestivation (which is uncommon in Araliaceae; Plunkett et al., submitted).  

 

 Aralia Group: Apart from the former hydrocotyloids, Aralia and Panax are the 

only genera of Araliaceae that include at least some herbaceous species. Aralia and 

Panax form a well supported clade in both the plastid (BS = 95%; Fig. 8a) and nuclear 

cladograms (BS = 100%; Fig. 8b), a result similar to other studies that included better 
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sampling from these two genera (e.g., Wen et al. 2001; Mitchell and Wen, 2004; Plunkett 

et al. 2004c). In the nuclear tree, the Aralia group is placed in a larger clade that also 

includes the Polyscias-Pseudopanax group and African Schefflera. Bootstrap support for 

this group is 75%, but relationships among its three clades are not well supported (Fig. 

8b). An affinity between the Aralia group and the Polyscias-Pseudopanax group was 

reported by prior studies (e.g., Wen et al., 2001; and Plunkett et al., 2004c). 

 

 African Schefflera: The nuclear tree places African Schefflera with the Aralia 

group (see above), but stronger support for its placement as sister to the rest of Araliaceae 

(excluding the Hydocotyle-Trachymene group) came from the plastid phylogeny (BS = 

80%; Fig. 8a). Relationships in this group, however, remain tentative, and given the 

limited sampling used in this study (only two species), it is not prudent to make too many 

additional inferences. 

 

 Astrotricha and Harmsiopanax: These two genera do not form a clade, but 

neither resembles any other genus in Araliaceae, and some authors viewed them as 

potential links between Araliaceae and Apiaceae (see Frodin and Govaerts, 2003). The 

affinity to Araliaceae comes from their tropical distributions, woody habits, and 

paniculate inflorescences. On the other hand, they have bicarpellate, schizocarpic fruits, 

which are characteristic of most Apiaceae.  Molecular studies provide overwhelming 

support for the inclusion of both genera in Araliaceae, where they are currently classified, 

but their placement in this family remains unstable. The only well supported placement 
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for Astrotricha was in the mitochondrial nad1 phylogeny (Fig. 1b), where it is sister to 

the Raukaua et al. group in a larger clade that also includes the Polyscias subclade and 

Motherwellia. There is moderate support for this entire clade (BS = 80%), but not for 

many of the internal relationships. A somewhat similar placement was evident in the 

RPB2 phylogeny but with low support (BS < 50%; Fig. 8b). In the cladogram resulting 

from RPB2 copy 2 for Araliaceae (RPB2 Ar2), Astrotricha is sister to African Schefflera 

with 52% bootstrap support (see Chapter 2). We were not able to find congruence for the 

placement of Astrotricha in our studies (or the studies cited herein), and thus the 

placement of Astrotricha in Araliaceae remains elusive.   

 Harmsiopanax presents a similar case. Its placement in Araliaceae has been 

problematic and the genus appears either unresolved or unsupported relative to other 

genera. The plastid ML phylogeny provides the best supported placement, where it was 

sister to the Hydrocotyle-Trachymene group (BS = 69%; Fig. 8a). The same placement 

was retrieved in the ML tree based on RPB2 exon sequences (BS = 55%; Chapter 2), but 

not in the tree based on both exons and introns. In the tree based on copy Ar1 of the 

duplicated RPB2 gene (Fig. 8b), Hydrocotyle and Harmsiopanax are placed in the same 

clade. This may have been due to sampling difference between the two copies, since copy 

Ar1 was not found in Trachymene, and copy Ar2 was not found in either Hydrocotyle or 

Harmsiopanax.  

 

 Hydrocotyle-Trachymene Group: Hydrocotyle, Neosciadium, Trachymene, and 

Uldinia constitute a lineage that appeared sister to the rest of Araliaceae in the plastid 
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phylogeny (BS = 100%; Fig. 8a). All four genera had been included in Apiaceae, based 

on their herbaceous habit and presence of schizocarpic fruits, and further in 

Hydrocotyloideae subtribe Hydrocotylinae, based on the presence of mericarps with 

lateral compression, woody endocarps, lack of vittae, and absence of sepals. As discussed 

in Chapter 1, these characters do not provide reliable phylogenetic signal and do not 

represent synapomorphies when mapped out on the plastid phylogeny. The suggestion for 

moving Hydrocotyle from Apiaceae to Araliaceae dates back at least to Seemann (1854) 

who concluded that the valvate corolla aestivation of Hydrocotyle warranted this transfer. 

Other morphological similarities also link the Hydrocotyle-Trachymene group to 

members of Araliaceae, including sclerified endocarps and laterally compressed, 

bicarpellate fruits, but these characters are also present in some Apiaceae. In addition to 

the plastid phylogeny, the Hydrocotyle-Trachymene group was placed in Araliaceae on 

the basis of  nad1 intron 2 and RPB2 data, in both cases with high support (BS > 95%; 

Figs. 1b & 8b). In the RPB2 tree, two paralogous copies were retrieved from this group.  

In Hydrocotyle and Neosciadium, we retrieved copy Ar1 (but not Ar2), but in 

Trachymene and Uldinia, we found the converse (Ar2 but not Ar1) (Fig. 8b). Within 

Araliaceae, the Hydrocotyle-Trachymene group is most closely related to Harmsiopanax, 

which also has schizocarpic fruits (see previous section). With the exception of the 

plastid MP phylogeny (Chapter 1), the whole Hydrocotyle-Trachymene group did not 

appear sister to the rest of Araliaceae. In the nuclear MP phylogeny (Chapter 2), the 

Hydrocotyle clade alone appears as sister to the rest of Araliaceae in the Ar1 clade, and 

this same relationship is reflected in the Ar2 clade, but with Trachymene as sister to the 
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rest of Araliaceae. In the other trees, these genera appeared nested within one of the 

smaller clades of Araliaceae (nad1 intron 2 and RPB2 ML phylogenies; Figs 1b & 8b), or 

sister to Harmsiopanax (ML plastid phylogeny; Fig. 8a). Despite this instability among 

data sets, molecular evidence uniformly places members of the Hydrocotyle-Trachymene 

group in Araliaceae, leaving little doubt as to their status as members of this family (see 

also Plunkett et al., 1997, 2004a, 2004c; Chandler and Plunkett, 2004). 

 Within the Hydrocotyle-Trachymene group, the Hydrocotyle subclade is sister to 

the Trachymene subclade in both the plastid phylogeny (BS = 100%; Fig. 8a) and the 

mitochondrial phylogeny (BS < 50%; Fig. 1b), a result similar to that of Chandler and 

Plunkett (2004) based on nuclear 26S rDNA (BS = 72%), plastid matK and rbcL (BS = 

88%) sequences, and the combination of these datasets (99%). One character that 

distinguishes the two groups is the carpophore, which is lacking in the Hydrocotyle 

subclade but present in the Trachymene subclade (Tseng 1967; Henwood and Hart 2001; 

Liu 2004). In the Hydrocotyle subclade, Hydroctyle is paraphyletic with respect to the 

monotypic Neosciadium due to the early divergence of a single species of Hydrocotyle 

(Eichler 22047). This result is supported in both the nad1 intron 2 (BS = 99%; Fig. 1b) 

and RPB2 (BS =100%; Fig. 8b) cladograms, as well as preliminary analysis based on 

plastid trnD-trnT and rpl16 sequences (results not shown). In the Trachymene subclade, 

the monotypic Uldinia is either the sister to Trachymene (plastid data; Fig. 8a) or nested 

within a paraphyletic Trachymene (mitochondrial data; Fig 1b). Theobold (1967) 

emphasized several characters that separate Uldinia from Trachymene (e.g., wing 

development, floral venation, and the orientation of fibers in the endocarp). Keighery and 



 182 

Rye (1999), however, considered these differences to be insufficient justification for 

recognizing a distinct genus, especially given the tremendous variation in fruit features 

found among other species of Trachymene. Thus, they treated the single species of 

Uldinia as T. certocarpa (see also Rye, 1999).  

 

3.6. Relationships in Pittosporaceae  

 The placement of Pittosporaceae as the earliest diverging lineage in suborder 

Apiineae is well supported in the plastid phylogeny (Fig. 2a) and both copies in the RPB2 

phylogeny (Fig. 2b). The family is also placed in suborder Apiineae in the nad1 intron 2 

tree, but without high support for a sister-group relationship (Fig. 1). The same placement 

(but also without strong support) was reported in the plastid phylogeny of Chandler and 

Plunkett (2004), the only other study of Apiales that included significant sampling across 

all families of the order. By contrast, the BI analysis of their combined plastid and 

nuclear data sets suggested a novel and strongly supported relationship (PP = 98%) 

between Pittosporaceae and Myodocarpaceae in a clade appearing between the 

divergence of Araliaceae and Apiaceae.  

 All phylogenies estimated herein show two defined groups within Pittosporaceae, 

the first includes Pittosporum + Auraunticarpa + Bursaria + Rhytidisporum (the 

Pittosporum group), and the second includes Bentleya + Billardiera + Cheirenthera + 

Marianthus (the Billardiera clade) (Fig. 9). The one remaining genus, Hymenosporum, 

was placed as sister to the Pittosporum group in the plastid phylogeny (but with weak 

support; BS < 50%), and sister to the Billardiera group in the RPB2 tree (with moderate 
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support; BS = 80%). The monophyly of the Pittosporum group was supported in the 

plastid (BS = 90%), nuclear (59%), and mitochondrial (85%) phylogenies (Fig. 9). The 

group included three subclades, Pittosporum, the Bursaria + Rhytidisporum clade, and 

Auraunticarpa (Fig. 9). The species of Pittosporum form a well supported clade in all 

three cladograms (BS > 80%), but the relationship between Bursaria and Rhytidisporum 

is only well supported in the RPB2 tree (100%). Auranticarpa is placed as sister to 

Bursaria in the mitochondria ML tree (BS = 55%), sister to Bursaria + Rhytidisporum in 

the plastid tree (BS < 50%), and sister to the Pittosporum and Bursaria + Rhytidisporum 

clades in the RPB2 cladograms (BS = 56%). The nuclear tree also shows Pittosporum as 

sister to the Bursaria + Rhytidisporum subclade (BS = 50%; Fig. 9b).  

 The monophyly of the Billardiera clade was supported in the plastid (BS = 91%), 

nuclear (100%), and mitochondrial (75%) cladograms (Fig. 9). The relationships between 

the four genera of this clade were fully resolved in each tree, but were not identical in 

topology. A sister-group relationship between Marianthus and Billardiera is well 

supported in the RPB2 phylogeny (BS = 99%) and weakly supported in the nad1 intron 2 

phylogeny (BS = 51%). The two genera constitute a clade in the plastid phylogeny (BS > 

95%), but Billardiera appears paraphyletic with respect to Marianthus (BS < 50%). This 

paraphyly was due to the grouping of Marianthus (recently re-segregated from 

Billardiera; see Cayzer and Crisp, 2004) with B. cymosa. These two taxa formed a sister 

group to B. heterophylla, which had formerly been treated in the genus Sollya  (see 

Cayzer et al. 2004). Chandler et al. (2007) also showed a paraphyletic Marianthus with 

affinities to Cheiranthera, but a sister-group relationship between Cheiranthera and 
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Marianthus was not found in any of our analyses. In the RPB2 phylogeny, Chiranthera 

was sister to Bentleya (BS = 67%) and in turn, Cheiranthera + Bentleya were sister to 

Billardiera + Marianthus (BS = 100%) (Fig. 9b). The plastid phylogeny showed Bentleya 

as sister to Billardiera + Marianthus (BS = 92%) and, in turn, Bentleya + Billardiera + 

Marianthus were sister to Cheiranthera (BS = 91%) (Fig. 9a).  Bentleya was not sampled 

in the nad1 intron 2 analysis, and Cheiranthera was sister to Billardiera + Marianthus in 

that phylogeny (BS = 75%) (Fig. 9c). Although our sampling was limited in this group, 

results from our study, coupled with those of Chandler et al. (2007), indicate that many 

questions persist regarding the relationships and generic circumscriptions in the 

Billardiera clade, and that further phylogenetic analyses with much expanded sampling is 

necessary.  

 

3.7. Divergence and Biogeography  

Most approaches for reconstructing biogeographic history involve the use of 

phylogenetic trees and present-day distributions to understand past events of vicariance, 

dispersal, and extinction. Although robust methodologies for exploring gene trees provide 

good inferences of relationships among extant species, the complexities of geological 

history and unsupported (and sometimes conflicting) evidence regarding area 

relationships hinder our ability to test hypotheses of vicariance and expose the 

stochasticity of hypotheses of dispersal. The lack of reliable fossil records also thwarts 

our ability to ascertain extinction events. All of these issues apply to Apiales, and our 

objective to understand the biogeography of the order was limited by many of these 
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complications. As discussed above (see Materials and Methods), DIVA did not 

accommodate the sample size, and hence we pruned some branches from the plastid tree 

and analyzed groups separately. Since we discuss divergence and biogeography together, 

we have superimposed results of the area reconstructions generated by separate runs of 

DIVA on the chronogram estimated in BEAST, which was also based on the plastid data 

set (Fig. 10a-c). Times of divergence for select clades in the chronogram are summarized 

in Table 3 and we also compare some of these estimates to the divergence estimates 

derived from the nuclear RPB2 data, presented in Chapter 2. Thus, in the following 

section, we infer biogeographic patterns in Apiales using information drawn from a 

combination of sources, including the DIVA reconstructions (based on the plastid 

phylogeny), estimated times of divergence (based on plastid and nuclear estimates), 

published accounts of geological history, patterns of phylogenetic relationships (based on 

this and prior studies), and our educated speculations. Through this we hope to provide a 

framework that attempts to explain the biogeographic relationships of the backbone of 

Apiales. This initial attempt will produce hypotheses that we anticipate to be the subject 

of detailed studies in the future. 

 Starting at the deepest branches in Apiales, the divergence of the Pennantiaceae 

lineage from the rest of the order occurred in the early Cretaceous, between 120 to 130 

Mya. Torricelliaceae diverged later, c. 104 Mya (exponential estimate, or UCED) or 113 

Mya (lognormal estimate, UCLN), followed by Griseliniaceae, which diverged from the 

rest of Apiales c. 100 Mya (UCED) or 110 Mya (UCLN) (Fig. 10b; Table 3). The nuclear 

phylogeny differed in the placement of Griselineaceae + Torricelliaceae (as sister to order 
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Apiineae), and in the nuclear chronogram this clade diverged c. 111 Mya, followed by 

the divergence of Torricelliaceae from Griseliniaceae c. 92 Mya (Chapter 2). Our plastid 

divergence-date estimates give suborder Apiineae (= Pittosporaceae, Araliaceae, 

Myodocarpaceae, and Apiaceae) a mid- to late-Cretaceous origin, with a crown age of c. 

100 Mya (c. 95 Mya with UCED, c. 103 Mya with UCLN; Table 3). This agrees with the 

UCLN estimates from the RPB2 phylogeny (Chapter 2), where the crown age is c. 102 

Mya. In all cases, the nodes had a posterior probability (PP) higher than 90%.  

DIVA provided four likely explanations for the biogeographic history of Apiales, 

areas A, AD, ABD, or ABDE (Fig. 10). In light of this lack of consensus, we present 

those scenarios from DIVA that we consider most likely, while keeping in mind the 

alternative explanations. DIVA reconstructions demonstrate that suborder Apiineae 

originated in the Australia + Pacific region (area A, Fig. 10b). This indicates that the 

several alternatives for the origin of the entire order are due to the complex pattern of 

distributions that characterize these early-diverging families. Considering the ages of 

Pennantiaceae, Torricelliaceae, Griseliniaceae, and Apiineae, these four clades represent 

ancient lineages, possibly with Gondwanan origins. Their ancestors may have been 

isolated in Madagascar, South America, and Australasia during the Cretaceous. Dispersal 

among the Gondwanan elements remained possible from Australia to South America 

(through Antarctica) until the Eocene and to Madagascar (through India) later than the 

Miocene (Gentry, 1982; Schatz, 1996; Sanmartín and Ronquist, 2004). The lack of 

ancient relatives of these lineages in India, Antarctica, and Africa is due most likely to 

extinctions. 
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Griseliniaceae exhibits a South American-New Zealand disjunction with a greater 

number of species in South America (5 spp.) than New Zealand (2 spp.). Mildenhall 

(1980) suggested that Griselinia appeared in New Zealand in the Miocene, but in our 

study, the age of this lineage is estimated to be much older (mid-Cretaceous). In general, 

flowering plants are thought to have arrived in New Zealand during the Eocene as a result 

of dispersal from Australia and oceanic Pacific Islands or from southern South America 

through Antarctica (Winkworth et al., 2002; Sanmartín and Ronquist, 2004; Wagstaff et 

al., 2006). Given these patterns, it seems that Griselinia most likely arrived in New 

Zealand through long-distance dispersal from South America. Torricelliaceae includes 

three genera with quite distinct distributions, Melanophylla in Madagascar, Torricellia 

from the East Himalayas to western China, and Aralidium in western Malesia. The 

overall distribution in Torricelliaceae may be explained as dispersal events from 

Madagascar to Malesia and the rest of Asia through India, followed by extinction in India 

(Schatz, 1996). The tropical flora of South America was largely isolated during most of 

the Cretaceous (Gentry, 1982), which may explain the divergence of Griseliniacae and its 

isolation from Torricelliaceae. Interpreting the geographic connection of Pennantiaceae to 

Torricelliaceae, Griseliniaceae, and Apiineae is more difficult given its placement in the 

phylogeny and its estimated time of divergence. One likely explanation is that 

Pennantiaceae is the only extant ancestor of a relative of Apiales that originated during a 

period of high angiosperm diversification centered in Australasia during the early 

Cretaceous. 
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Within Apiineae, radiations within a period of less than 15 Mya led to the 

origination of Pittosporaceae, Araliaceae, Myodocarpaceae, Mackinlayoideae, and the 

Platysace group (Fig. 10; Table 3). Pittosporaceae diverged during the Cretaceous with a 

plastid sequence stem age of c. 100 Mya (c. 95 Mya with UCED, c. 103 Mya with 

UCLN; Table 3). The estimates based on RPB2 copies 1 and 2 were comparable at c. 101 

Mya and c. 96 Mya, respectively (Chapter 2). The family has its greatest diversity in 

Australia, where nearly all of the nine genera are endemic, but the largest genus, 

Pittosporum, has secondary centers of diversity in New Caledonia and New Zealand, and 

also extends to other islands of the Pacific, into Asia, and across the Indian Ocean to 

Madagascar and eastern Africa. DIVA reconstructions showed an Australian-Pacific 

origin for the group (Area A; Fig. 10c). All estimates of the age of the Pittosporaceae 

crown group were less than 40 Mya, which indicates that diversification within the family 

was due to post-Gandwanan dispersal from Australasia to the Pacific, Africa, and Asia.  

 The stem age for Araliaceae ranged from c. 93 Mya (UCED) to c. 100 Mya 

(UNLG) based on plastid data. Estimates based on the nuclear RPB2 copies Ar1 and Ar2 

fall between 86 Mya and 96 Mya (Chapter 2). The stem age for the group was greater 

than 65 Mya in the plastid phylogeny but less than 55 Mya in both copies of RPB2. As 

discussed in Chapter 2, relations in the nuclear phylogeny were complicated by three 

factors: (1) the presence of two copies, (2) independent polyploidy events in different 

clades, and (3) the inability to identify copy 1 from one of the clades (Trachymene).  

Thus, we highlight estimates for well supported clades (having high PP values) from the 

plastid chronogram, summarized in Fig. 10 and Table 3. One of these supported clades is 
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the Hydrocotyle–Trachymene group (PP = 100%), which appears to have diverged from 

the rest of Araliaceae more than 65 Mya; the Hydrocotyle and Trachymene subclades 

subsequently diverged from one another c. 52 Mya. The clade has an Australian-Pacific 

origin due largely to the geographic ranges of Trachymene and Neosciadium and the 

early diverging sample of Hydrocotyle (Fig. 10). Hydocotyle and Trachymene mark a 

shift from other Araliaceae to herbaceousness and a preference to temperate habitats, 

especially in Western Australia, which is their likely center of origin. In the plastid 

topology, the earliest diverging clade among other Araliaceae is the African Schefflera 

clade (PP = 99.99%), which dates back to the early Eocene with a stem age of c. 54 Mya 

(UCED) to 61 Mya (UNLG). The age of this divergence is too recent to be considered 

Gondwanan. Instead, the presence of this clade in Africa and Madagascar is more likely 

due to long-distance dispersal across the western Indian Ocean Basin (IOB). Dispersal 

events across the IOB have been reported in many plant groups at different ages 

(including in other groups of Araliaceae, such as Polyscias s. lat.; see Plunkett et al., 

2004b), and may have led to secondary dispersals into Africa across Madagascar (Schatz, 

1996; Sanmartín and Ronquist, 2004). The Raukaua group diverged from the rest of 

Araliaceae more than 40 Mya, but support for the group is low. The pattern within the 

Raukaua group shows a Pacific origin and dispersal across the Pacific. The Polyscias and 

Pseudopanax subclades diverged 20-25 Mya and both show high species diversity in the 

Pacific islands. While the Pseudopanax subclade is restricted to the Pacific region, the 

Polyscias subclade shows a pattern of dispersal throughout the Paleotropics, that may 

have originated in Australasia and dispersed multiple times both eastward into the Pacific 
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and westward into the IOB (see Plunkett et al., 2001, 2004b; Plunkett and Lowry, 

submitted). A third dispersal to Africa from Australasia appears to explain the 

distribution of Seemannaralia and Cussonia. However, it is difficult to make accurate 

predictions on the routes of these dispersals due to the lack of support and incongruence 

of the placement of the two genera in different phylogenies. Our estimate for the 

divergence of the Asian Palmate clade from the rest of Araliaceae is 36-40 Mya, as a 

result of dispersal from Australasia, and the clade appears to have diversified rapidly in 

Asia (Fig. 10; Table 3). Resolution in the Asian Palmate group was not sufficient to make 

further conclusions on diversifications into the Americas, but some authors have 

suggested a boreotropical origin for the Asian-Neotropical disjunctions in this clade (e.g., 

Plunkett et al., 2004c).  

A thorough understanding of the biogeography of Araliaceae has been hindered 

by the many unresolved or unsupported relationships remaining in this family, but like 

the order as a whole, Araliaceae appears to have had an Australasian origin (Area A; Fig. 

10c). New Caledonia, in particular, exhibits extraordinary diversity and endemism in the 

family. This South Pacific island separated from the Australian continent in the Upper 

Cretaceous (~65 Mya), but maintained links to Australia through the Miocene (Barlow, 

1981). New Caledonia has been devoid of major climatic and volcanic events since the 

Oligocene (Thorne, 1969; Morat, 1993; Murienne et al., 2005), but between the 

Cretaceous and the Oligocene, major geological events helped to shape the distribution 

and diversification of the flora on the island (see Lowry, 1998; Murienne et al., 2005). 

The exceptionally high levels of species diversity and endemism in New Caledonia may 
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be explained by the persistence of refugia that helped to preserve “relictual lineages” 

during the aridification of Australia and the submergence of other island archipelagoes 

(during the Oligocene) (Chazeau, 1993; Jaffré, 1993; Lowry, 1998). The island’s flora is 

most similar to that of Australia (Morat, 1993; Morat et al., 2001), but has undergone less 

alteration due to fewer climatic changes (Stevenson and Hope, 2005). Inhabitation by 

humans was also delayed in New Caledonia relative to other landmasses (~ 3,000 years 

BP, compared to Australia, which was inhabited by humans since ~ 50,000 years BP), 

saving the island’s natural habitats from their detrimental anthropogenic effects (the 

“blitzkrieg” hypothesis; Martin, 1963) and fires that annihilated many forests elsewhere 

(Miller et al., 2005; Trueman et al., 2005). 

 Based on plastid data, Myodocapaceae represent an ancient lineage that diverged 

from the rest of Apiineae c. 89 Mya (UCED) to c. 96 Mya (UNLG); nuclear estimates 

were c. 93 Mya for copy 1 and c. 73 Mya for copy 2 (Chapter 2). The only two genera in 

this family, Delarbrea and Myodocarpus, diverged 20 to 30 Mya (Table 3). The family 

may constitute lineages that persisted in New Caledonia but went extinct in Australia and 

other nearby regions during Eocene climatic changes. Most of the 17 species in the 

family are restricted to New Caledonia, excepting only two species of Delarbrea (D. 

michieana, which is endemic to Queensland, and D. paradoxa, which ranges from New 

Caledonia to other nearby Pacific islands). The fruits of these species are dispersed by 

medium- to large-size birds (Lowry, 1986b) and thus may have been dispersed by birds 

through connections maintained during the Miocene between New Caledonia and 

Australia through the Sunda arc (Barlow, 1981). One key factor for the diversification of 
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Myodocarpus may be the adaptability to serpentine soils. Eight of the ten species of 

Myodocarpus grow exclusively on serpentine-like ultramafic soils (Lowry, 1986a), an 

adaptation that may have contributed to species endemism and increased competitive 

success (Fiedler, 1985; Baker, 1987; Lowry, 1991; Mayer and Soltis, 1994; Morat, 1993; 

de Kok, 2002). 

 Mackinlayoideae are another ancient lineage in Apiales, dating to beyond 90 Mya 

on basis of plastid data (Fig. 10; Table 3). In estimates based on nuclear data (Chapter 2), 

one of the two paralogous copies of RPB2 diverged from Mypdocarpaceae more than 73 

Mya, whereas the other diverged from Platysace more than 78 Mya. The divergence of 

Actinotus and Apiopetalum occurred more than 55 Mya, followed by Mackinlaya (c. 50 

Mya).  The mostly herbaceous taxa in the clade appear to be older than 40 Mya in the 

plastid chronogram and c. 34 Mya in the nuclear chronogram. The DIVA reconstruction 

suggested an Australian + Pacific origin for the clade (Fig. 10). Dispersal within 

Australasia explains the distribution of Mackinlaya from Australia to Malesia. The 

mostly-herbaceous mackinlayoids (Xanthosia, Chlaenosciadium, Pentapeltis, and 

Schoenolaena) diversified entirely within Australia, but the node ages for these clades do 

not indicate rapid radiation events. Dispersal to Mesoamerica (Micropleura) and Africa 

(Centella) must be invoked to explain the distribution of these taxa, which appear to have 

diverged after Schoenolaena, more than 14 Mya (Table 3).  

The Platysace clade (Platysace + Homalosciadium) appears sister to 

Mackinlayoideae in the RPB2 chronogram (but with low support; PP = 66.3%), and these 

two clades diverged more than 78 Mya. The plastid chronogram offered ~ 99% support 
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for its placement as sister to the rest of Apiaceae (i.e., Azorelloideae + Saniculoideae + 

Apioideae), and an age for the Platysace clade of 81-87 Mya. This clade is restricted to 

Australia and represents the youngest of the major Pacific lineages of Apiales (Fig 10; 

Table 3). The remaining lineages represent the relatively younger Azorelloideae (South 

American origin) and Apioideae-Saniculoideae (African origin). A shift from woody 

habits and tropical climates appears to start with the herbaceous genera of 

Mackinlayoideae and the Platysace clade, both of which show high levels of endemism 

in temperate southwestern Western Australia.  

 The split between Azorelloideae and Apioideae-Saniculoideae dates back to 73-

79 Mya. The first clade to diverge in Azorelloideae was the Klotzschia clade (67-73 

Mya), followed by radiation of the four additional clades 59-65 Mya (Fig. 10; Table 3). 

With the exception of the Diposis and Spananthe clades, which both diverged more than 

45 Mya, the crown ages of the South American Asteriscium, Bowlesia, and Azorella 

clades ranged between 23 and 44 Mya. These times represent periods of gradual uplifts 

and other geological changes in the Andes, especially the central and southern Andes 

(Gentry, 1982; Mégard, 1984). Azorelloideae show a South American origin, and the 

earliest diverging genus, Klotzschia, is the only species of the subfamily in Brazil. The 

remaining clades exhibit high diversification in the Andes. The diversification of these 

groups may reflect adaptations either to open areas at high elevations (e.g., Azorella), 

shady, humid areas of high elevations (e.g., Bowlesia), or deserts (e.g., Eremocharis). 

Many azorelloids are also characterized by a suffrutescent habit, which may be an 

adaptation to harsh weather conditions such as severe cold (e.g., Azorella) or aridity (e.g., 
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Eremocharis). The Asteriscium, Bowlesia, and Azorella clades all include independent 

dispersal events from South America to the Old World, either to the sub-Antarctic Islands 

(Stilbocarpa and Azorella), New Zealand (Schizeilema), or Australia (Diplaspis in the 

Azorella clade, Oschatzia in the Asteriscium clade, and Dichosciadium in the Bowlesia 

clade).   

 The earliest diverging lineage in the Apioideae-Saniculoideae group, Hermas, 

split 69-74 Mya (Fig. 10; Table 3). This was followed by the separation of the 

Saniculoideae and Apioideae clades c. 65 Mya. Based on the DIVA reconstruction, 

Apioideae-Saniculoideae has an African center of origin. Hermas is endemic to southern 

Africa, as are the early diverging genera in the two clades representing Apioideae and 

Saniculoideae (e.g., Polemanniopsis, Steganotaenia, Heteromorpha, Anginon, 

Lichtensteinia, Choritaenia). In Saniculoideae, the earliest diversification out of Africa is 

estimated to be c. 30 Mya for the clade that unites Eryngium + Sanicula + Astrantia + 

related genera. In Apioideae, the earliest clade not represented in Africa is the Central 

American Neogoezia (c. 41 Mya) followed by the New Zealand and Australian 

Anisotome group (c. 38 Mya), and then other areas (c. 35 Mya) (Fig. 10a; Table 3), but 

sampling among the genera of Apioideae is not comprehensive. The apioids experienced 

a massive diversification in the temperate regions, as evidenced by the large number of 

its species in Africa (both northern Africa and the Cape region), the Mediterranean, and 

throughout Eurasia. More detailed sampling and statistical analyses are necessary to 

explain the complex diversification routes of the very speciose Apioideae-Saniculoideae 

groups out of (and sometimes back to) Africa. 
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3.8. Summary and Hypotheses of Biogeographic History 

Suborder Apiineae appears to have originated in the Paleotropics, with 

Australasia as the likely center of origin. Araliaceae, Myodocarpaceae, Mackinlayoideae, 

and Pittosporaceae are collectively represented by more than 133 endemic species in New 

Caledonia alone (Morat 1993), and many of these represent early-diverging lineages in 

their respective clades (i.e., paleo-endemics).  Australia likewise has more than 200 

endemic species from the same four groups. Thus, either (or possibly both) New 

Caledonia and/or Australia may have been a center of origin for Apiineae; alternatively, 

they may merely have served as refugia where the few ancient relicts survived, followed 

by relatively recent diversifications (leading to a proliferation of neo-endemic species). 

Dispersals to Madagascar (through the Indian Ocean), to Asia (through Malesia), and into 

the Americas (either through Antarctica or Asia) provide possible explanations for the 

geographic histories of Pittosporaceae and Araliaceae to these continents. An 

Australasian (especially New Caledonian and Australian) distribution is retained in the 

three clades diverging next in the history of Apiineae (i.e., Myodocarpaceae, 

Mackinlayoideae, and the Platysace clade). Most taxa of Pittosporaceae, Araliaceae, and 

Myodocarpaceae (plus some Mackinlayoideae) have retained affinities to tropical 

climates and woody habits. DIVA provides three possible explanations at the node for the 

Platysace clade: Australia/South America, Australia/Africa, or Australia/South 

America/Africa. The earliest lineages in the South American and African clades are 

Klotzschia and Hermas, respectively. The ages of these clades are very similar and the 

divergence of Klotzschia and Hermas relative to their respective sister groups shows an 
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almost identical pattern. Africa and South America started separating more than 120 

Mya, but contact was possible until c. 80 Mya (Raven and Axelrod, 1974). Plant 

dispersals between Africa and South America have been recorded as late as the Eocene 

(Sanmartín and Ronquist, 2004), later than the age of divergence of the Azorelloideae 

and Apioideae-Saniculoideae clades. One likely explanation is dispersal from Australia to 

South America and then to Africa, followed by isolation and diversifications occurring in 

parallel in Australia, South America, and the Cape region of southern Africa. Radiations 

in the temperate region of Western Australia were correlated with the development of 

herbaceousness in Mackinlayoideae. Diversification in South America was followed by 

rapid diversification throughout the Andes, and dispersal to the sub-Antarctic Islands, 

New Zealand and Australia. The Cape region of southern Africa was the likely center for 

the third radiation, in Apiaceae, from where subsequent diversifications occurred 

throughout Africa and then to the North temperate regions. 

 

4. Conclusion 

 The nad1 intron 2 region of the plant mitochondrial genome provides a useful 

source of data for reconstructing relationships in Apiales, especially within families, 

where resolution and support were especially strong. The development of additional 

markers sampled from the mitochondrial genome will probably provide even greater 

resolution and support for many clades in Apiales. The present study provides a marked 

improvement in our understanding of phylogenetic relationships in Apiales, with 

evidence from all three plant genomes, but it also leaves many questions that require 
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further studies, especially for relationships within some of the major clades.  We have 

also presented for the first time (and with a nearly comprehensive sampling of genera 

from throughout the order) a detailed estimate of divergence times for all the major 

clades of Apiales. Nevertheless, it will be necessary to test these estimates using 

additional markers. Interpreting biogeographic patterns at this level of detail and depth is 

very complicated, but our study provides an historical-biogeographic framework for all 

the main lineages of Apiales that can be tested in future studies based on detailed work 

with additional markers and a focus within individual lineages of the order.  
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 TABLES 

Table 1. Primers developed during this study for the amplification and sequencing of the 

nad1 intron 2 region in Apiales.  

 
Primer name Sequence (5' to 3') Direction Position 
mt_nad1b_IF GCGTCTCGTCGCAAGGCTCATT Forward External 
nad1_MR CCGTCTCATCTTGATTTGGCTA Reverse Internal 
nad1_MF CATGGCTGGCTACATACAAGTA Forward Internal 
nad1c_IR2 CATGTGGCTCGTCCGTGCTT Reverse External 
nad1INT2_N08F GAGGTGACTGCAATGAGCAGA Forward External 
nad1INT2_N08R AGCGCCTACCAAGCAAAGCT Reverse External 
        

 
Table 2. Sequence characteristics of the mitochondrial nad1 intron 2 region, and tree 

statistics based on phylogenetic analyses of this marker. 

 
Sequence length 642-1227 
Number of aligned characters 1725 
Parsimony-informative characters 240 
Number of trees 40000 
Number of steps 621 
Consistency index (CI) 0.8116 
Retention index (RI) 0.9242 
Maximum likelihood -ln -6632.6566 
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Table 3. Estimates of divergence dates based on BEAST analyses (mean root height; MRH) at selected nodes in the plastid 
chronogram (Fig. 10), their 95% high posterior density (HPD) intervals, and posterior probabilities (PP). Date estimates are 
given in millions of years, based on two runs of 20 million generations each, using two relaxed clock models, uncorrelated 
lognormal distribution (UCLN) and uncorrelated exponential distribution (UNED).  
 

Node  
UCLN 

PP 
Plastid UCLN MRH with 

95% HPD 
UCED 

PP 
Plastid UCED MRH with 

95% HPD  
Pennantiaceae 1.00  125.27; [103.4,151.94] 1.00  120.80; [96.83,150.50] 
Torricelliaceae 1.00 113.74; [99.67,127.71] 1.00 104.49; [95.48,113.44] 
Griseliniaceae 0.96 109.54; [95.76,123.73] 0.88 100.85; [91.33,110.61] 
Pittosporaceae 1.00 103.21; [90.90,116.26] 1.00 95.73; [85.45,105.78] 
Araliaceae 1.00 100.06; [88.45,113.20] 1.00 92.82; [82.74,103.15] 
    Hydrocotyle and Trachmene 1.00 67.64; [48.78,87.53] 1.00 71.30; [55.14,88.06] 
    African Schefflera 1.00 54.2; [40.95,69.20] 1.00 60.73; [46.22,77.08] 
    Asian Palmate 0.93 39.11; [36.20,42.80] 0.93 40.52; [32.92,48.23] 
    Polyscias-Pseudopanax  1.00 28.29; [15.79,38.43] 1.00 25.83; [12.94,41.42] 
    Raukaua et al. 0.44 43.09; [36.21,50.61] 0.53 51.80; [40.21,66.15] 
Myodocarpaceae 1.00 95.64; [84.33,108.18] 1.00 89.16; [79.02,99.35] 
    Myodocarpus from Delarbrea 1.00 23.9; [2.40,52.74] 1.00 21.50; [4.51,68.29] 
Mackinlayoideae 1.00 90.55; [80.02,102.79] 0.99 84.94; [75.03,94.56] 
    Apiopetalum & Actinotus 1.00 66.72; [48.48; 88.68] 1.00 62.65 [41.99,81.42] 
    Mackinlaya 1.00 57.15; [39.96,76.18] 1.00 51.22; [34.98,69.79] 
    Xanthosia & Chlaenosciadium 1.00 47.98; [32.69; 65.33] 1.00 41.28; [26.66; 59.06] 
    Centella & Micropleura 1.00 19.57; [8.54; 32.43] 1.00 14.03; [5.14; 24.72] 
Platysace clade 0.97 85.68; [75.37; 96.16] 0.98 81.04; [71.55; 91.11] 
Azorelloideae from Apioideae-

Saniculoideae  1.00 78.84; [66.99,90.40] 1.00 73.31; [65.26,81.89] 
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Azorelloideae     
     Klotzschia 0.99 73.22; [61.14,84.94] 0.97 67.20; [55.55,78.04] 
     Azorella (Spananthe) 1.00 52.13; [39.47,63.68] 1.00 47.29; [34.57,60.95] 
     Azorella (Dickinsia-Diplaspis) 1.00 38.22; [26.11,51.16] 1.00 34.41; [23.28,48.56] 
     Azorella (rest of Azorella) 1.00 30.03; [20.40,41.20] 1.00 27.45; [17.14,39.72] 
     Bowlesia 1.00 43.55; [32.30,54.73] 1.00 40.84; [29.84,55.80] 
     Asteriscium 1.00 38.92; [20.32,55.49] 1.00 32.66; [15.52,50.25] 
     Diposis 1.00 65.01; [61.14,84.94] 0.54 59.50; [46.58,71.30] 
Apioideae-Saniculoideae     
     Hermas 0.98 73.25; [63.82,83.58] 0.95 69.60; [61.61,77.61] 
     Apioideae from Saniculoideae  1.00 65.99; [57.36,74.55] 1.00 64.93; [57.74,72.22] 
     Lichtensteinia & Choritaenia 

clade 0.96 59.18; [49.91,68.36] 0.94 59.06; [51.83,67.24] 
     Polemanniopsis & Steganotaenia 

clade  1.00 48.65; [47.69,49.65] 1.00 52.18; [48.01,56.38] 
     Annesorhiza clade 1.00 58.15; [52.06,65.34] 1.00 58.85; [52.77,65.37] 
     Heteromorpha clade 1.00 54.42; [49.69,60.20] 1.00 56.10; [50.44,61.68] 
     Bupleurum clade 1.00 48.64; [47.66,49.60] 1.00 51.45; [47.46,55.43] 
     Neogoezia clade 1.00 41.66; [37.13,45.68] 1.00 41.97; [34.87,48.16] 
     Anisotome clade 1.00 38.36; [32.91,43.11] 1.00 37.69; [30.39,44.67] 
     Rest of Apioideae 0.95 35.96; [30.28,41.06] 0.92 35.05; [27.20,42.01] 
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FIGURE LEGENDS 

 

Figure 1. Tree retrieved from maximum likelihood (ML) analyses of the mitochondrial 

nad1 intron 2 dataset. The tree was generated in GARLI under the model GTR+Г+I. ML 

bootstrap support values from 100 replicates are indicated above branches. See Table 1 

for tree statistics. 

 

Figure 2. Comparison of major clades retrieved with maximum likelihood (ML) analyses 

of (a.) the plastid combined dataset (trnD-trnT + rpl16 intron) to that of (b.) the nuclear 

dataset (RPB2). Both analyses were completed using GARLI and the model GTR+Г+I. 

Estimates of branch support (based on 100 ML bootstrap replicates) are shown above 

branches.  

 

Figure 3. Comparison of phylogenetic relationships in Mackinlayoideae (Apiaceae) 

based on maximum likelihood (ML) trees for the three data sets: (a.) plastid (trnD-trnT + 

rpl16 intron), (b.) nuclear (RPB2), and (c.) mitochondrial (nad1 intron 2). Trees were 

generated in GARLI under the model GTR+Г+I. Estimates of branch support based on 

100 ML bootstrap replicates are shown above branches.  

 

Figure 4. Comparison of phylogenetic relationships in the Asteriscium clade of 

Azorelloideae (Apiaceae) based on maximum likelihood (ML) trees for the (a.) plastid 

(trnD-trnT + rpl16 intron), (b.) nuclear (RPB2), and (c.) mitochondrial (nad1 intron 2) 
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datasets. Trees were generated using GARLI and the model GTR+Г+I. Estimates of 

branch support (based on 100 ML bootstrap replicates) are shown above branches.  

 

Figure 5. Comparison of phylogenetic relationships in the Bowlesia clade of 

Azorelloideae (Apiaceae) based on maximum likelihood (ML) phylogenies for the (a) 

plastid (trnD-trnT + rpl16 intron), (b) nuclear (RPB2), and (c) mitochondrial (nad1 

intron 2) datasets. Trees were generated using GARLI under the model GTR+Г+I. 

Estimates of branch support based on 100 ML bootstrap replicates are shown above 

branches.  

 

Figure 6. Comparison of phylogenetic relationships in the Azorella clade of 

Azorelloideae (Apiaceae) based on maximum likelihood (ML) phylogenies for the (a) 

plastid (trnD-trnT + rpl16 intron) and (b) nuclear (RPB2) datasets. Trees were generated 

using GARLI under the model GTR+Г+I. Estimates of branch support based on 100 ML 

bootstrap replicates are shown above branches.  

 

Figure 7. Comparison of phylogenetic relationships in the Apioideae-Saniculoideae 

(Apiaceae) based on maximum likelihood (ML) phylogenies for the (a) plastid (trnD-

trnT + rpl16 intron), (b) nuclear (RPB2), and (c) mitochondrial (nad1 intron 2) datasets. 

Trees were generated using GARLI under the model GTR+Г+I. Estimates of branch 

support based on 100 ML bootstrap replicates are shown above branches.  
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Figure 8. Comparison of phylogenetic relationships in Araliaceae based on maximum 

likelihood (ML) phylogenies for the (a) plastid (trnD-trnT + rpl16 intron) and (b) nuclear 

(RPB2 copy Ar1) datasets. Trees were generated using GARLI under the model 

GTR+Г+I. Estimates of branch support based on 100 ML bootstrap replicates are shown 

above branches. 

 

Figure 9. Comparison of phylogenetic relationships in Pittosporaceae based on 

maximum likelihood (ML) phylogenies for the (a) plastid (trnD-trnT + rpl16 intron), (b) 

nuclear (RPB2), and (c) mitochondrial (nad1 intron 2) datasets. Trees were generated 

using GARLI under the model GTR+Г+I. Estimates of branch support based on 100 ML 

bootstrap replicates are shown above branches.  

 

Figure 10. Maximum clade credibility chronogram estimated from trees based on plastid 

(trnD-trnT + rpl16 intron) data and generated in BEAST after 20 million MCMC 

generations. Estimates were calculated using the GTR+Г+I evolutionary model, the Yule 

model of speciation, and a relaxed clock with uncorrelated lognormal. Calibration points 

are represented by black diamonds. Relevant historical biogeography area relationships 

were estimated in DIVA and superimposed on the chronogram with letter designations 

for the five areas used. 

 

 

 



Arracacia quadrida
Coriandrum sativum
Angelica lucida
Endressia castellanea
Capnophyllum africanum
Dickinsia hydrocotyloides*
Petroselinum crispum
Naufraga balearica
Aegopodium podograria
Spananthe paniculata*
Mulinum spinosum
Azorella lycopodioides
Stilbocarpa polaris
Azorella trifoliolata
Huanaca acaulis
Pimpinella saxifraga
Tinguara montana
Aciphylla glacialis
Scandia geniculata
Anisotome pilifera
Bupleurum salicifolium
Astydamia letifolia
Andriana tsataranensis
Pseudocarum laxiflorum
Heteromorpha sp.
Anginon ragosum
Annesorhiza altiscapa
Asteriscium chilense
Gymnophyton polycephalum
Pozoa coriaceae
Oschatzia cuneifolia
Eremocharis fruticosa
Domeykoa oppositifolia
Diposis bulbocastanum
Diposis patagonica
Bowlesia tropaeolifolia
Bolax caespitosa
Dichosciadium ranunculaceum
Homalocarpus dichotomous
Hacquetia epipactis
Sanicula gregari
Eryngium scaposum
Petagnaea saniculifolia
Astrantia x rosenfonie
Actinolema eryngioides
Arctopus echinatus
Alepidea peduncularis
Steganotaenia araliaceae
Polemanniopsis marlothii
Lichtensteinia lacerata
Choritaenia capensis
Hermas villosa
Klotzschia glaziovii
Homalosciadium homalocarpum
Platysace lanceolatus
Platysace valida

See Fig. 1b

Figure 1. NAD1 INTRON 2 Maximum Likelihood Phylogeny.

Fig. 1a. Apiaceae.
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Myodocarpus fraxinifolius
Myodocarpus involucratus
Delarbrea michieana
Delarbrea balansae
Pittosporum tobira
Pittosporum koghiense
Pittosporum undulatum
Bursaria incana
Auranticarpa edentata
Rhytidisporum alpinum
Cheirenthera linearis
Marianthus ringens
Billardiera heterophylla
Micropleura renifolia
Centella asiatica
Schoenolaena jucea
Pentapeltis peltigera
Actinotus helianthii
Apiopetalum velutinum
Apiopetalum glabratum
Mackinlaya schlechteri
Mackinlaya confusa
Hydrocotyle javanica
Neosciadium glochidiatum
Hydrocotyle modestei
Hydrocotyle cf. callicephala
Hydrocotyle sp.
Trachymene hookeri
Uldinia ceratocarpa
Trachymene glaziovii
Trachymene incisa
Schefflera reginae
Schefflera gabriellae
Meryta sinclarii
Neopanax arboreus
Tetrapanax papyriferus
Osmoxylon geevinkianum
Aralia spinosa
Seemannaralia gerrardii
Schefflera rainaliana
Tetraplasandra oahuensis
Munroidendron racemosum
Cuphocarpus acauleatus
Gastonia rodriguesiana
Arthrophyllum mackeei
Polyscias multijuga
Schefflera candelabra
Schefflera digitata
Cheirodendron platyphyllum
Raukaua anomalus
Astrotricha pterocarpa
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a. Plastid trnD-trnT + rpl16.

b. Nuclear RPB2.
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Figure 8. Araliaceae plastid and nuclear maximum likelihood 
               phylogenies.

Fig. 8a. Plastid trnD-trnT + rpl16.
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Figure 9. Pittosporaceae.

a. Plastid trnD-trnT + rpl16.

b. Nuclear RPB2.

c. Mitochondrial nad1 intron 2.
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Continued on Fig. 10b
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Figure 10. Bayesian Chronogram generated in Beast with origin 
                 of some clades as estimated in DIVA.
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Centella asiatica 
Micropleura renifolia 
Shoenolaene juncae 
Pentapeltis peltigera 
Xanthosia rotundifolia 
Chlaenosciadium gardneri 
Mackinlaya confusa 

Apiopetalum velutinum 
Actinotus helianthii 

Delarbrea balansae 
Myodocarpus  

Continued on Fig. 10c

Continued from Fig. 10a
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Homalocarpus digitatus 

Diposis bulbocastanum 
Klotzschia brasiliensis 
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= South America.

Fig. 10b. Azorelloideae, Platysace, Mackinlayoideae, and 
               Myodocarpaceae.
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Reynoldsia sandwicensis 
Munroidendron racemosum
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Neopanax colensoi 
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Hydrocotyle javanica 
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Neosciadium glochidiatum 
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Continued from Fig. 10b
= Calibration Point.

E = Asia.

Fig. 10c. Araliaceae, Pittosporaceae, and the early-diverging 
               families.
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