
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2013

Design and Analysis of Digital True Random
Number Generator
Avantika Yadav
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Engineering Commons

© The Author

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/3229

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/51290139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F3229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F3229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarscompass.vcu.edu%2Fetd%2F3229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/3229?utm_source=scholarscompass.vcu.edu%2Fetd%2F3229&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


ii 

 

Design and Analysis of Digital True Random Number 
Generator 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science in Electrical Engineering at Virginia Commonwealth University 
 

 

 

 

 

 

 

 

 

by 
 

Avantika Yadav 
Bachelor of Engineering 

Motilal Nehru National Institute of Technology, Allahabad, India 
 

 

 

 

 

 

Director: Dr Robert H. Klenke 
Associate Professor 

Department of Electrical and Computer Engineering 

 

 

 

 

 

 
 
 
 
 
 
 
 

Virginia Commonwealth University 
Richmond, Virginia 

Fall 2013 
  



iii 

 

 

ABSRACT 

 

Random number generator is a key component for strengthening and securing the 

confidentiality of electronic communications. Random number generators can be divided as 

either pseudo random number generators or true random number generators. A pseudo 

random number generator produces a stream of numbers that appears to be random but 

actually follow predefined sequence. A true random number generator produces a stream of 

unpredictable numbers that have no defined pattern. 

 

There has been growing interest to design true random number generator in past few years. 

Several Field Programmable Gate Array (FPGA) and Application Specific Integrated 

Circuit (ASIC) based approaches have been used to generate random data that requires 

analog circuit. RNGs having analog circuits demand for more power and area. These 

factors weaken hardware analog circuit-based RNG systems relative to hardware 

completely digital-based RNGs systems. This thesis is focused on the design of completely 

digital true random number generator ASIC.  
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CHAPTER 1 INTRODUCTION  

 

Computer systems and telecommunications play an important role in modern world 

technology. The communication and data transfer through computers touches almost every 

aspect of life, i.e. transferring data, tracking personal data, trading over the internet, online 

banking and sending emails. As more vital information is transferred through wire or 

wireless means, the need to safeguard all this data from hackers is growing. All these 

security concerns emphasize the importance of developing methods and technology for the 

transformation of data to hide its information content, prevent its modification, and prevent 

unauthorized use. 

 

Random number generation is a fundamental process for protecting the privacy of 

electronic communications. It is a key component of the encryption process that protects 

information from attackers by making it unreadable without the proper decryption process. 

Since the strength of an encryption mechanism is directly related to the randomness of the 

binary numbers used in it, there has been an enormous need to design and develop an 

efficient random number generator that can produce true random numbers to implement a 

safe and secure cryptographic system.  

 

In addition to cyber security, random number generators (RNGs) are a vital ingredient in 

many other areas such as computer simulations, statistical sampling, and commercial 

applications like lottery games and slot machines. 
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1.1 Hardware vs. Software Random Number Generators 

Most random number generators available today are software-based RNGs.  As the 

algorithms used for software RNGs are fixed, the numbers generated by these appear 

random at any given time, but actually follow a predefined sequence. Thus, these numbers 

are not truly random and can easily be predicted by having knowledge of the generating 

algorithm. Random numbers generated by these algorithms can only mimic the true 

unpredictability of a truly random number generator. That is why software based RNGs are 

commonly referred to as “pseudo random number generators”.    

  There are also hardware-based random number generators that are, in fact, pseudo 

random.  

 

On the other hand, some hardware-based random number generators can generate truly 

random and unpredictable binary number sequences.  Numbers generated by these types of 

hardware RNGs have no defined structure or order, the next number of the string is always 

a surprise, and it cannot be guessed by a human or any computational device by knowing 

the internal algorithm or structure of the circuit. These generators use some type of physical 

noise source as an initial value to generate truly random numbers. Some of the common 

physical noise sources that have been used so far as an inputs include: thermal noise, clock 

jitter, and nuclear decay. As the noise values these sources generate are unpredictable, it is 

impossible to predict the generated numbers.  

   

There has been growing interest in the digital design area to develop simpler hardware-

based true random number generators within last few years. Several Field Programmable 
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Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) based approaches 

have been used to implement these generators. Chip manufacturing companies are making 

silicon-based random number generators that can be integrated onto a processor chip to 

provide a high level of data security in digital systems. This thesis focuses the chip design 

for generating true random numbers using only standard digital components. 

 

1.2 Thesis Objective 

The main goal of this thesis is: 

a. To design a completely digital Application Specific Integrated Circuit (ASIC) based 

hardware True Random Number Generator (TRNG).  

b. To prepare a test fixture to analyze the randomness of output random numbers and 

perform the Federal Information Processing Standard (FIPS) and the National 

Institute of Standards and Technology (NIST) randomness tests on the data. 

To achieve thesis objectives, an ASIC was designed using the Mentor graphics Electronic 

Design Automation (EDA) tool and fabricated by the MOS Implementation Service 

(MOSIS) using AMI05 micron process technology.  

  A printed circuit board was designed to communicate between the fabricated TRNG and a 

microprocessor. A software program was written to control the ASIC operations and 

generate random numbers. The test board is used to assess the functionality of each block 

of the RNG chip and to generate and gather random numbers for long period of time. Once 

the chip functionality was tested, random numbers were generated by the RNG chip and 

uploaded to a personal computer (PC) for analysis. Finally, the FIPS and NIST statistical 

test suites are applied to the strings of random numbers.  
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1.3 Overview  

  The remaining chapters of this thesis are structured as follows: Chapter 2 covers the 

background of random numbers generators, such as descriptions of true and pseudo random 

number generators and their applications in digital world. Chapter 3 explains the design of 

the RNG of this thesis. Chapter 4 includes details that explain how testing has been 

performed on the RNG for its functionality as well as on random numbers generated from 

the chip. Chapter 5 covers results of the FIPS 140-1, FIPS 140-2 and NIST 800-22 tests on 

the RNG data. Finally, chapter 6 presents a summary of the work and possible future work 

on digital random number generation.  

 

1.4 Abbreviations  
 

Below are the listed abbreviations and acronyms used throughout this thesis. 
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Abbreviations Stands For 
 

 

Definition  

ASIC Application Specific 
Integrated Circuit 

A chip designed for a specific 
application rather than general 
purpose use 

LFSR Linear Feedback Shift 
Register  

A series of shift registers 
whose input is a logical 
combinations of previous 
states 

RNG Random Number Generator A circuit that generates 
random numbers 

PRNG Pseudo Random Number 
Generator 

A circuit that generates 
numbers which appear to be 
random but are actually 
predictable 

TRNG True Random Number 
Generator 

A circuit that generates 
random numbers that are truly 
unpredictable 

FIPS Federal Information 
Processing Standard 

Standards developed by 
government for use in 
computer systems 

NIST National Institute of 
Standards and Technology 

Government organization to 
develop and apply technology 
standards 
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CHAPTER 2 BACKGROUND OF RANDOM NUMBER 

GENERATORS 

 

2.1 Types of Hardware Random Number Generators (RNGs) 

Hardware RNGs can be divided into two broad categories: pseudo random number 

generators (PRNGs) and true random number generators (TRNGs).  

 

2.2 Pseudo Random Number generator (PRNG) 

A hardware pseudo random number generator is a device capable of generating a sequence 

of binary numbers that imitates the properties of random numbers. The initial input value 

fed to the PRNG is called a ‘seed’. The output sequence generated appears to be random 

while it is not truly unpredictable. 

A PRNG’s output sequence of binary numbers is a deterministic function of the seed value, 

meaning that sequence can be reproduced later if the seed is known. The term 

"pseudorandom" refers to the deterministic nature of the generator.  

PRNGs are also periodic; as randomness is limited to seed generation, the output sequence 

of binary numbers will start repeating at regular intervals. The period of a PRNG is defined 

as maximum length of the non-repetitive pattern in the sequence. PRNG's containing n bits 

of internal state cannot have its period longer than 2n or sometimes have a period that is 

much shorter depending on the given seed. The apparent randomness of a PRNG can be 

increased by including substantially more bits in the PRNG than are required by the 
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consuming application. However the additional bits require additional hardware to 

implement, which is an undesirable effect. 

  A good example of hardware pseudo random number generator is a Linear Feedback Shift 

Register (LFSR). An LFSR is basically set of shift registers connected in series with the 

outputs of some of the shift registers combined in exclusive-OR configuration to provide a 

feedback mechanism. When the inputs of the registers are fed with a seed value and the 

LFSR is clocked, it generates a pseudorandom pattern of 1s and 0s. Figure 1 shows the 4-

bit LFSR using D flip flops and XOR gate. A LFSR is called a maximal length LFSR, if it 

can generate a stream of random numbers of maximum length of 2n -1 before it starts to 

repeat, where n is number of register element in it. A 32-bit maximal length LFSR can 

generate about 4 billion random numbers before it begins to repeat the sequence of 

numbers again.  

 

 

 

 

 

 

 

 

Figure 1: 4-bit LFSR 
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A very early and efficient approach of generating random numbers from a PRNG is 

described in the US patent 5732138 [1], which uses a chaotic system as a source of 

randomness to generate random numbers. 

  In this invention, a state of a chaotic system is digitized (changed into sequence of bits) to 

generate a binary sequence. This binary string is then cryptographically hashed to generate 

a second binary sequence. The second binary string is used as an initial state or seed of a 

pseudo-random number generator to generate random numbers. A random output data may 

be used for the security of confidential information. 

  A chaotic system is one that changes states unpredictably over time. Here, a chaotic 

system is used as a source of randomness to transform the state of the system into a binary 

sequence. In this invention, lava lamps are used as a chaotic system. Lava lamps are a 

system in which two different types of fluid which has different colors and different 

chemical properties combine in closed container. The color pattern of the fluids changes in 

unpredictable manner over time. Figure 2 in [1] shows how the pattern of the liquid 

changes after t seconds. It is reproduced below in Figure 2. In this invention, four lava 

lamps are used and their changing images or color patterns are converted to digital state 

using a digital camera. A digital camera records the picture as a digital image and is placed 

in front of the lava lamps. The images recorded can be described as a rectangular array of 

values such that each value corresponds to the color pattern at that point. The rectangular 

array consists of pixel values is a binary representation of the associated color and 

intensity.  
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             Lava lamp after t seconds: 

 

Figure 2: Lava Lamps [1] 

The binary string generated from the images is transformed into a secondary binary string 

using a cryptographic hash function. This invention uses the dual mode Secure Hash 

Standard cryptographic hash function by NIST. A cryptographic hash function takes binary 

strings produced from images and converts into another binary string.  For example, a 

cryptographic hash function takes a string x = 00001101100 and transforms it into another 

binary string hash(x) = 10110010011. The cryptographic hash function has following 

properties. 
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a. x and hash(x) may not have same length. A user will observe hash(x) only, and it 

will be hard for a user to use the output to determine the state of the chaotic system 

x. 

b. The values of hash(x) and hash(x+1) are totally different. This property ensures that 

predicting a future output will be extremely difficult from the current output. 

c. For two different values, x and y, there is possibility to get the value of hash(x) 

=hash(y). The third property explains that it will be extremely difficult to find an 

alternative value of x that has same hash value. 

These properties make it difficult for a user to utilize the output of the generator to 

determine the state of the chaotic system.   

  The PRNG receives a seed, which is generated by applying a cryptographic hash function 

to the output string obtained from a chaotic source. Then the PRNG takes the appropriate 

number of bytes as a seed or an initial state and applies a deterministic transformation to 

obtain a new state and a random number. This step is repeated until the pattern generated 

from the PRNG eventually starts repeating. To refresh the system, a new seed is used 

which can be obtained as required. Figure 3 is the flow chart from [1] that describes the 

steps for generating random numbers. 
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Figure 3: Flow Chart from [1]  

2.2.1 Uses of Pseudo Random Numbers Generators 

PRNGs are not suitable for applications where unpredictability of binary numbers is the 

most desirable feature, such as gaming and generating encryption/decryption keys. The 

characteristics of PRNGs make these generators suitable for applications such as 

simulation, modeling, fault grading and digital communication. 
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Texas Instrument uses PRNGs for the purpose of fault grading as described in [2]. The 

paper describes how the PRNG generates patterns which have been proven to provide high 

fault coverage. Once a design engineer has completed design and functional verification for 

an ASIC, the LFSR is designed and outputs of the LFSR are connected with the inputs of 

the ASIC.  Figure 4 from [2] shows that the LFSR outputs are multiplexed with the ASIC 

input in such a way that the ASIC logic can be simulated by both the LFSR’s output and 

the normal data input.  

 

Figure 4: LFSRs Outputs Multiplexed with ASIC Inputs [2] 

First, a designer would take the LFSR sub circuit and simulate it by itself so that he can 

observe the output pattern generated by the LFSR. The designer could then easily observe 

the effect of different seed values on the generated output patterns. It is important if all the 

2n -1 pattern that the LFSR can generate are not being used for circuit testing. A designer 

would take a print out of the output pattern generated by the LFSR and use it to verify that 

the LFSR is producing the correct signal, when the complete circuit (the ASIC and the 
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LFSR) is simulated. Next, the device is set in the test mode and the LFSR generates the 

inputs to the ASIC.  The outputs of the complete circuit are sampled every clock cycle to 

generate the expected outputs from the ASIC with the inputs provided by the LFSR. 

  Once it is verified that the LFSR is producing correct inputs for the circuit, the resulting 

simulation vector can be used to fault grade the design. Fault grading ensures that the test 

vector set applied for the design will detect manufacturing defects, such as shorted 

transistors and open metal lines.  

 

2.3 True Random Number generator (TRNG) 

A hardware true random number generator is an electronic device that generates truly 

random and unpredictable binary numbers. The output pattern of a TRNG is arbitrary and 

non-deterministic in nature, meaning that the output binary numbers cannot be reproduced 

even if internal design and seed of the generator is known. As complete unpredictability is 

the key aspect of the true random number generator, a seed given to the TRNG must be 

random. Fortunately, it is not so difficult to collect true unpredictable randomness by 

tapping a chaotic world. Some of the examples of physical random sources are, thermal 

noise, shot noise, atmospheric noise, radioactive decay and clock jitter. A TRNG can be fed 

a seed from such a physical random process to get true random outputs.  

  Another characteristic of TRNGs is that they are non-periodic in nature (as opposed to 

PRNGs), meaning that output binary pattern of a TRNGs is never repeated even if the same 

seed is applied to the generator.    
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2.3.1 The Intel RNGs 

Chip manufacturing companies such as Intel are including random number generators in 

their chips [3]. This paper illustrates a hardware based Intel Random Number Generator for 

use in cryptographic applications. Figure 5 shows the block diagram of the Intel RNG from 

[3]. The Intel hardware random number generators are based on unpredictable analog 

property such as junction or thermal noise. In this design, Intel RNG samples the thermal 

noise of undriven resistors by amplifying the voltage across it.  One significant problem 

associated with this noise amplification technique is that random components are 

associated with local pseudorandom noise sources such as temperature and power supply 

fluctuations. The effects of these sources are minimized by subtracting the signals sampled 

from two adjacent resistors. 

 

 

Figure 5: Block Diagram of Intel RNG from [3] 

The Intel RNG uses two free-running oscillators, one fast and other much slower. The 

thermal noise source is used to modulate the frequency of the slower clock. The variable, 

noise-modulated slower clock is used to start the fast clock. The drift between the noise 

modulated slower clock and the fast clock provides the source of random binary numbers. 

Both oscillator signals are latched and then fed to the digital corrector. A Von Neumann 



15 

 

corrector converts pairs of bits into output bits by changing the bit pair (0, 1) into an output 

bit 1, changing (1, 0) into an output bit 0, and generating no output bit for pair (0, 0) or (1, 

1).   

 

Intel’s early attempt to generate random numbers is described above in section 2.3.1. This 

approach includes ring oscillator based analog design of a RNG. An analog circuit 

consumes lots of power and area. Every year, chip makers are coming up with fabrication 

processes at finer scales, and packing more transistors in small area, which is very difficult 

if the circuit has analog circuitry. Intel came up with the design of a random number 

generator that contained only digital hardware. 

  This digital random number generator includes a pair of inverters, where the output of 

each inverter is connected to the input of each inverter. If the output of first inverter is 0, 

then the input of the second inverter is also 0, and then its output is 1. If the output of the 

first inverter is 1, the second inverter’s output will be 0. 

  But these inverters are placed with two transistors in such a way that switching those 

transistors forces the inputs and the outputs of both inverters to the logic state 1. Figure 6 

from reference [4] shows that the two transistors are connected to a clock that regularly 

turns both of inverters either ON or OFF. 
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Figure 6: Intel RNG [4] 

  The two inverters in the circuit are not stable when all the inputs and outputs are in the 

same state. The inverter circuit is stable when the input and output are of opposite states. 

When these transistors are turned off, the two inverters, which were forced to have all their 

inputs and outputs in same state, race forward to acquire a stable state. Even though the 

inverters are the same in design, there is always a subtle difference in the speed or strength 

of their response. Thermal noise present within the circuit of the inverters determines the 

outcome of the inverter. One random output bit is generated at each clock cycle. 

  To make these output numbers even more random, Intel designs a three stage circuit 

which contains: the RNG, a conditioner, and a pseudorandom-number generator. Figure 7 

shows the block diagram for three stage process [4] 

 

Figure 7: Block Diagram for three stage process [4] 
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This RNG generates random output numbers at a rate of around 3 gigabits per second. The 

RNG starts by collecting 512-bits at a time, which are the mostly random outputs of the 

two inverters. Furthermore, the circuit divides each package of 512-bits into a pair of 256-

bits numbers. To make numbers more random they are mathematically combined or 

conditioned in such a way that produces 256-bits numbers that are close to perfect. The 

circuit takes two of these 256-bit values, multiply them together, and then collects the 

upper 256-bits of the resultant 512-bit number. Next, these 256-bit random numbers are 

used to seed a cryptographically secure pseudorandom-number generator that generates 

128-bit output numbers. From one 256-bit seed, the pseudorandom-number generator can 

throw out many secure pseudorandom numbers.  

 

2.3.2 Uses of True Random Numbers Generators 

True random number generators are suitable for many specific applications, such as 

government-sponsored lotteries, gambling, simulation, and cryptographic-based security 

systems. True random number generators are fundamental keys to all aspects of security 

requirements to protect sensitive information in a computer and telecommunication world. 

Thus, it is important that hardware TRNGs used for generating binary numbers are not at 

risk to fail by knowing circuit algorithm or seed disclosure.   

  In [5], engineers from Intel presented a design of a ‘Digital Coin Tosser’ for future 

processors. Intel’s engineers announced that they could build an all-digital true random-

number generator using the complementary metal-oxide-semiconductor (CMOS) process 

for chips with feature size as small as 32 nanometers or 22 nanometers. They informed that 
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they had already made an all-digital random-number generator using the 45-nm CMOS 

process that has been used to build Intel processors since 2007. 

The Intel engineer describes that this device can generate billions of random numbers per 

second   at very low voltage. Every bit in each string of output binary numbers is the result 

of “metastability.” Generally, a digital device’s output is sampled when it has settled on a 

definite value, either a ‘one’ or a ‘zero’. Metastability occurs when the voltage is sampled 

during a bit transition, and the bit is caught between ‘one’ and ‘zero’. The bit will settle 

down to one state, but it is hard to predict which side it will stay. The Intel researchers take 

advantage of this process and sample the output binary bits during transition. They improve 

the randomness even more by tuning the metastability so that the bit falls to ‘one’ or ‘zero’ 

with reasonably equal probability in random pattern, which is crucial for a coin flip. 

 

2.4 Summary of Characteristics of Random Number Generators:  

Below is the summary of the properties of a pseudo random and a true number generator. 

Characteristic Pseudo Random Number 
Generator 

True Random Number 
Generator 
 

 

Non-deterministic No Yes 

Unpredictable No Yes 

Reproducible Yes No 

Periodic Yes No 

 

Table 1 
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  The summary of suitable application of random number generators is given in Table 2 

Uses 
 

 

Suitable Generator 
 

 

Lotteries TRNG 

Gambling TRNG 

Security ( Data and Voice encryption) TRNG for seed 

Simulation and Modeling PRNG and TRNG 

Fault Grading ( Ex. Texas Instruments) PRNG 

 

Table 2 

2.5 Clock Jitter based TRNGs 

The period of oscillation for an ideal oscillator is constant, such that the time between the 

consecutive rise and fall of edges would be same. The period of oscillation for a ring 

oscillator composed of real elements is not constant, however, because the time between 

similar edges is not constant. The time period of such a clock is unpredictable. This 

variation of the time period in a ring oscillator is known as clock jitter (or phase noise). The 

simplest ring oscillator is made by connecting odd numbers of inverter gates in the form of 

a ring as shown in figure 8, the output of one gate becomes the input of the other gate. The 

last inverter output is fed back into the first inverter such that the last output of a chain is 

the logical NOT of the first input. The feedback provided by the last output to the input of 

the first inverter causes oscillation. A ring composed of an even number of inverters 

cannot be used as a ring oscillator; in that case the last output would be the same as the 

input of the first inverter which would create a stable state, suppressing oscillation. 
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Figure 8: Ring Oscillator using five inverter gates 

The time period of a ring oscillator changes randomly. Figure 9 shows how the ideal clocks 

are different from the clocks having phase noise or clock jitter.   

 

 Figure 9: Clock Jitter 

 

A clock jitter property of free running ring oscillator has been used for long time to 

generate true random number generator as a source of randomness. A very good discussion 

of building a two ring oscillator based RNG is illustrated in [6]. In this TRNG, a clock jitter 

in a ring oscillator is used as a source of noise. The TRNG is built with two ring oscillators 

and three LFSRs 13-bit, 19-bit and 32-bit. One ring oscillator clocks 19-bit LFSR and the 

other clocks the 13-bit and 32-bit LFSR. Figure 10 from [6] shows the block diagram of the 

TRNG. 
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Figure 10: Block Diagram of TRNG [6] 

Adding an independent action of split rotation on two LFSRs gives a more uncertain output 

sequence then the normally operating LFSRs. An extra circuit is added to provide split 

rotation for the 19-bit LFSR and the 13-bit LFSR. The upper half bits of these LFSRs are 

rotated left and the lower half bits are rotated right. These two LFSRs are then 

concatenated to generate the 32-bit long random number sequence, and then XORed with 

the 32-bit LFSR output to generate the final whitened 32-bit random number. A similar 

concept is used to design the TRNG of this thesis, however, the differences exist in the 

design of the ring oscillators and the control registers for LFSRs, such as addition a 

different independent action in 19-bit and 13-bit LFSR. In this RNG, a ‘preloader’ is added 

to reshuffle the 13-bit and 19-bit LFSR bits. 

 

Another paper, [7], describes how the randomness related to the unpredictability of the   

frequency of ring oscillators is used as a source of implementing the true random number 

generator. This approach uses counters clocked by free-running ring oscillators and 

sampled at a regular interval. As there is some jitter associated with the clock, there is a 
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small amount of uncertainty about any particular value of the counter, and the output of the 

counter is random numbers at sample instants. However, the value generated by this 

generator can be approximated, as path of the generator through the range of possible 

values is fixed; that is, the generator always counts by incrementing its output every clock. 

To overcome this weakness, the path traversed by the generator as it counts, is varied by 

changing the generator operation only at sampling instant. Normally, the function 

performed by a counter is either incrementing or decrementing the number. If the function 

is changed to an independent operation like left shifting (doubling) only at the sample 

instant, then the output value becomes more random. Adding a tertiary independent 

operation such as transposition at the sampling instant generates even more random output. 

The generator, which previously had only one path through the range of possible values, 

now has many more paths throughout the range of possible values. Thus, it can be seen that 

adding more independent operations to the counter at sample instant increases the 

randomness of the output sequence. 

  As shown in figure 11 from [7], the RNG is designed with two 16-bit counters to generate 

a 32-bit random sequence: One counter counts up while the other counts down. Dividing 

the 32-bit counter into two 16-bit counters decreases the overall time required for 

generating all possible bit signals. Each counter has a unique ring oscillator. A secondary 

operation is provided by a 32-bit logarithmic shifter where the 5-bit counter is clocked by 

its unique ring oscillator that provides shift count for the log shifter. A tertiary operation is 

provided by adding a transposer unit that is 4:1 multiplexer. It selectively transposes bits in 

one of four possible patterns. The output sequence coming out from the generator is truly 

random. 
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Figure 11: Random Number Generator [7] 

2.6 RNG U.S. Patents of True Random Number Generators 

The US patent 6,581,078 was issued in 2003 to STMicroelectronics SA.A for a true 

random number generator [8]. In this invention, random numbers are generated by 

combining a physical noise source’s signals with signals produced by a pseudo random 

number generator. The combined signal is fed as an input to the PRNG. The final random 

output numbers are unpredictable thus suitable for cryptography.  

 

The circuit of this RNG includes: a pseudo random number generator, a physical noise 

source, a logic circuit, a memory unit and an output interface. The PRNG used in the 

generator is based on a linear congruence algorithm. The PRNG is characterized by the 

equation x (n+1) = a*x (n) + b (mod c), where its last output signal is related to its previous 

outputs. Here, x (n+1) is the last output signal and x (n) is the previous output signal. The 

coefficients a, b and c are dependent on the statistical characteristic of the PRNG. The 
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physical noise source is formed by shift registers sampled at a frequency other than the 

frequency of the central processing unit which is controlling the whole circuit. The shift 

registers produce a digital signal having a size appropriate for the PRNG to receive the 

digital signals as an input. The logic circuit is a two-input exclusive-OR (EX-OR) gate. The 

memory unit receives the output signal from the pseudo-random number generator and 

supplies this signal to the logic circuit. The content of the memory unit is erased as soon as 

it receives a new digital output signal coming from the PRNG. The output interface 

receives the generated true random numbers. Figure 12 shows the block diagram of RNG 

from [8]. 

 

 

Figure 12: Block Diagram of RNG patent 6,581,078 from [8] 

The operating principle of the circuit is as follows: The physical noise source is sampled 

either at a fixed frequency different from the operating frequency of the central processing 

unit, or at a variable frequency produces digital signals. These signals are sent at a first 
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input of the logic circuit. At the same time, the memory unit which stores the outputted 

digital signals from the PRNG sends the digital signal to the second input of the logic 

circuit. The logic circuit (EX-OR) combines these two inputs (received from the physical 

noise source and the memory unit) and feed as the input of the pseudo random number 

generator. The resulting output signals from the PRNG are true random digital numbers, 

which are stored in the memory unit, and also received by the output interface. 

  In the beginning, the memory element is empty; in that case, the logic circuit sends an 

intermediate digital signal similar to the input noise signal to the PRNG as the input signal. 

However, if the memory unit is not empty when a first random number is generated, it 

sends a return signal to the logic circuit while emptying the contents of its memory.  In 

other words, the memory unit sends its information to the logic circuit in the form of digital 

signals immediately upon receiving a new digital signal from the PRNG. 

  In summary, digital signals generated from a physical noise source are combined with 

signals generated by a pseudo-random number generator. The combined signals are fed to 

the pseudo random number generator; the resulting output signals are true random digital 

bits. The output random numbers are suitable for cryptography. 

 

The US Patent 7124157 was issued in 2006 to HMI Co., Ltd. for a random number 

generator [9]. In this invention, a random number generator has an amplifier to amplify 

noise signals generated from a noise source and sent to a digitizer to digitize the amplified 

noise signals. The digitizer includes a serial register, which outputs serial digital random 

numbers. The generator consists of a serial-parallel converter, which converts serial digital 

random output from the digitizer to parallel signals. In order to adjust the probability of the 
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output random numbers, a generator includes a bit masking section, which can mask and 

output some of the random bits. The bit masking section may mask bits controlled by an 

external device. This generator also includes memory to store the generated output random 

numbers.  

  The operation of the generator is as follows:  The thermal noise of a semiconductor is 

used as a source of noise input for the generator. This signal is amplified by the amplifier 

and the amplified signal is sent to a Schmidt trigger gate, which converts an analog noise 

signal to rectangular waves with a pulse width similar to the magnitude of an analog noise 

signal.  

  The output signal from the Schmidt trigger is inputted into the serial register, which is 

mainly three D-flip flops connected in series utilizing a sampling clock. The digitizer 

digitizes a noise signal at the sample time and the output is random binary bits. The output 

from the digitizer is fed to the serial-parallel converter to convert the 8-bit parallel output 

data. 

  The bit masking section masks some bits of the 8-bit random number output. It has an OR 

circuit which performs logical OR operation between the output data bit and the bit of the 

masking register and masks certain bits of the random data. The generated random numbers 

can be used for an encryption system. 
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CHAPTER 3 TRNG DESIGN 

 

3.1 Overview 

The TRNG in this thesis uses the clock jitter property of the ring oscillator as the source of 

noise to generate true random numbers. A clock jitter is described in section 2.5. The 

principles behind the TRNG ASIC are to operate Linear-Feedback Shift Registers (LFSR) 

clocked by such ring oscillators to take advantage of the unstable output frequency of the 

oscillator. LFSRs are an easy way of generating pseudo-random numbers. The basic design 

of a LFSR is simply to have a shift register of appropriate length that has feedback taps at 

certain points. These taps are XORed together to form the input of the shift register. If the 

right set of taps is used, then the LFSR can generate a pseudo-random sequence of the 

maximum length without repeating. A design of the LFSR is described earlier in section 

2.2 of chapter 2. A paper published by Xilinx lists the appropriate taps for maximum-length 

LFSR counters of up to 168 bits [10]. 

  There are 3 different LFSRs in this design: the 13-bit, 19-bit and 32-bit LFSR, which have 

taps to generate sequences of maximum length random numbers. Figure 13 shows the 

block diagram of the TRNG design. 
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Figure 13: Block Diagram of TRNG Design   

The 13-bit and the 19-bit LFSRs are each clocked by a noisy ring oscillator; each LFSR is 

preloaded with its own output bits and the bits are shuffled before preloading. The output 

binary numbers from the two LFSRs are concatenated to generate a 32-bit random number.  

Another 32-bit LFSR which is clocked by the other ring oscillator has its own finite state 

machine to control the LFSR operations, which generates a 32-bit pseudo random numbers. 

The outputs from the 13-bit and the 19-bit LFSRs (that are combined to make 32-bit 

random numbers) and 32-bit PRNG are selectively flipped (XOR). The output will be 
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random number, which is then multiplexed to get the 16-bit output data bus that will be 

either high or low word depending on a ‘word select input’. Below is the description of 

each functional block. 

  

3.2 Functional Blocks Description of the TRNG  

3.2.1 13-bit and 19-bit LFSR 

The 13-bit LFSR is made with shift registers with XOR taps at 12, 3, 2 and 0 to provide 

linear feedback logic. Another 13-bit register is added to shuffle the output more, and a 13-

bit register that holds the output until the next read request. There are MUXs on the input 

of the LFSR that input from either the shuffle register or back from the output of the LFSR.   

The 19-bit LFSR is similar in design to the 13-bit LFSR. It has 19-bit shift registers with 

XOR taps at 18, 5, 1 and 0 to provide feedback to the LFSR.  Similar to the 13-bit LFSR, it 

has another 19-bit register to shuffle the output more, a 19-bit register that holds the output 

until the next read request, and MUXs to input the output. Figure 14 shows the block 

diagram of the 13/19 bit LFSR. 

 

Figure 14: Block Diagram of 13/19 Bit LFSR 
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When these LFSRs get a read request from the system, they internally generate a pulse 

called “did”.  At the beginning of this pulse, the current value of the LFSR is latched out, 

while a special “preloader” shuffling of the bits is stored in the LFSR. Here, these values 

are being shifted based on a variable frequency clock, so the amount of time it takes to shift 

through these values is random. After this, the LFSR continually shifts with taps at 18, 5, 1 

and 0 for the 19-bit LFSR and 12, 3, 2, and 0 for the 13-bit LFSR.  This continues until the 

next read request comes into the system. Also, each LFSR provides an asynchronous reset 

which sets all values back to 0. 

  

3.2.2 32-bit LFSR 

The 32-bit LFSR is divided up into two different sections. First, there is the actual LFSR 

itself. It has taps from the following bits: 31, 21, 1, and 0. It also has an input signal that 

tells it when to shift, and another reset signal which resets the LFSR to all zeros. Second, 

there is a finite state machine (FSM) for this LFSR that controls the LFSR. This state 

machine makes sure that the LFSR shifts exactly 32 times and then stops until it needs to 

generate a new number. This is to make sure that the old number is entirely shifted out, so 

that the new random number will contain all new bits. 

  The FSM and the LFSR have been partitioned into two different parts to ease the 

implementation.  To do this it has two 2-bit state variables, and a 5-bit counter.  There are 

also the 32-bit shift register, a 32-bit register to hold the output, and four control registers.  

The LFSR and the counter will have to be reset at times, so these 37 will have to have 

‘reset’ functionality, while the other 40 can just be standard D-FFs. Then, there is the linear 
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feedback logic with three XORs and inverter. There are various MUXs that control what 

happens depending on the state of the FSM.  

  The FSM controls when the PRNG generates random numbers. It takes a reset, clock, and 

read signal, and outputs a ready signal and a state that is used in the 32-bit LFSR. 

The LFSR shifts the value while the state input is “01”, which is the input given by the 

FSM to control the shifting.  Figure 15 shows the block diagram for 32-bit PRNG. 

 

Figure 15: Block Diagram of 32-Bit PRNG 

 

3.2.3 Ring Oscillator 

The design of the ring oscillator is based on the design that has been described in paper 

[11]. Two ring oscillators are used to provide clock signals in this TRNG design. One ring 

oscillator clocks the 19-bit LFSR and the other ring oscillator provides clocks to the 13-bit 

LFSR and the 32-bit PRNG. The ring oscillator that is used in this design is not that large, 

but is fairly complicated in construction.  First, the input frequency select signals are 

latched, back to back, into the system to reduce the metastability of the clock.  Then these 

latched select lines are decoded into four one-hot signals that select what frequency is 

being used at the moment.  
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  Second, it has the actual oscillation ring.  The first part of this is fairly standard; it's 

simply a chain of inverters. The output of this section is selected by sel_xn.  Then there are 

three more sections of this chain which are simply an inverter followed by a NOR gate.  

The output of each of these sections is selected by sel_xn-1 down to sel_x0 in that order.  

Each of these NOR gates not only have the inverter before them as an input, but also the 

select line of the signal before it.  This disables the last part of the chain which is unused 

and forces those outputs to be low. This prevents glitches when the frequency select lines 

switch to a slower clock frequency.   

  Each of the output clock signal are then routed into an AND-OR block using NANDs.  

Using this, each of the signals is selected only if the associated sel_x line is high.  Then, the 

output of this block runs into another inverter which then runs into a NOR gate along with 

the ‘reset’ signal and the ‘notRun’ signal.  This simply prevents the clock from oscillating 

when the clock is disabled.  The output of this NOR gate is the clock signal that is 

outputted.  This signal is also routed back around to the beginning of the inverter chain to 

make the signal loop, so that oscillations can continue. Figure 16 shows the block diagram 

of the ring oscillator.  

 

 

 

 

 

 

 

Figure 16: Block Diagram of Ring Oscillator 
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3.2.4 NAND/XOR Block 

This block inputs the 32-bit data buses from the 19-bit and 13-bit LFSRs and the 32-bit 

data bus from the PRNG and inhibit signal for each. The output is a 32-bit bus which 

implements the function:  

(Data1 NAND T_ Inhibit) XOR (Data2 NAND P_ Inhibit).  

  The ‘true and pseudo random number inhibit’ signals are helpful for debugging purposes. 

Setting any of those signals disables the values of either the TRNG or the PRNG from 

being output, so that they can be examined one at a time.  The block diagram is shown in 

figure 17. 

 

 

Figure 17: NAND/XOR Circuit  

 

3.2.5 Output Block 

To facilitate the pin limitations of the tiny chip for fabrication, multiplexing of the output 

pins was required to get the 32-bit output to the outside world. It accepts 32-bit random 

numbers and generates a 16-bit output bus that will be either the high or low word 
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depending on a ‘word select input’ at the output of the TRNG.  This block contains latches 

and MUXs to store and output a 16-bit data bus respectively.  When the ‘most significant 

word’ line is high, the latched high word is correctly output, and when it is low the current 

‘least significant word’ is passed straight through to the 16-bit output bus.  The block 

diagram is shown in figure 18. 

 

 

Figure 18: Output Circuitry  

 

3.3 Design Implementation 
 
Following are the steps to describe the design methodology of each block. 

1. The VHDL code was written for each functional block to partition the design into 

relatively small pieces which could be implemented individually.   

2. The Mentor Graphics Modelsim and the Leonardo Spectrum were used to simulate 

the behavioral VHDL description and synthesize into a gate level (structural) 

Verilog description. 
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3. The Design Architect (DAIC) was used to create and verify the schematic and 

symbol from the gate level description. The ELDO simulation was run for each 

schematic to make sure that it functions correctly. 

4. The IC station’s Schematic Driven Layout (SDL) feature was used to lay out each 

functional block. 

5. The Layout Versus Schematic (LVS) check was run frequently to be sure that each 

block was wired the same as the schematic. 

6. Finally, the MachTA was used for the post layout simulation for each functional 

block and then to verify a top level design layout. 

Figure 19 shows the IC layout of the TRNG. The chip layout area was 3000λ*6000λ. There 

were 20 pads aligned horizontally at each side, 10 pads vertically at each side and four 

corner pads to connect altogether. Six types of pads were used: input(PadInC), 

output(PadOut), unconnected pins(PadSpace), corner pad(PadFC), VDD(PadVdd), and 

GND(PadGnd). When they were aligned properly it allocated an exact area of 

3000λ*6000λ to fit a chip design layout inside the frame. 

  Looking from the top, the first layout placed was the 32-bit LFSR along with the PRNG 

FSM., two ring oscillators were placed below the PRNG layout and the 19-bit and the 13-

bit LFSR were located just underneath them. At the bottom, the AND-XOR layout and 

output stage layout were placed. 
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Figure 19: TRNG Chip Layout 

Once the design was completed and successfully simulated, it was sent to MOSIS for 

fabrication in AMI05 technology.  

 

3.4 Chip-Level Functional Description 

This TRNG chip has a total of 20 output signals and 15 input signals, power signal VDD 

and GND signal. Table 3 lists a description of the operation of each pin. 
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Pin Name Description 

VDD  5V power input 

GND Ground signal 

busRst Reset signal 

busCS Chip Select 

busOBO On Board Oscillator select line 

busIRun Run signal 

busMSW High/Low word select line 

T_Inhibit inhibit true random number control line 

P_Inhibit inhibit pseudo random number control line 

busC19Fix LRO19 fixed frequency select line 

busC19S[0,1] LRO19 external frequency select lines 

busC13Fix LRO13 fixed frequency select line 

busC13S[0,1] LRO13 external frequency select lines 

busO[1,2]I external oscillator inputs 

busO[1,2]O external oscillator outputs 

busData[0,..,15] random number output lines 

busAck[1,2] TRN and PRN acknowledgement lines 

 

Table 3: Input/output pin descriptions of ASIC 

 

The overall chip was controlled by relatively few signals. The reset, run, chip select, and 

word select inputs were the most important for overall operations. Here is the description of 

each signal. 

 

1. The ‘reset signal’ resets all LFSR flip flops, disables the ring oscillators, and 

restarts the pseudo random number generator. 
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2. The ‘run signal’ enables a generation of the clock signals and the LFSR 

computations. 

3. The ‘chip select’ signal affects the read request inputs to the different LFSR’s, and 

affects when the outputs are stable. 

4. The ‘word select input’ selects between the ‘least’ and the ‘most’ significant word 

to output to the 16-bit data bus. It also signals when to generate a new random 

number. 

5. The ‘true and pseudo random numbers inhibit signals’ are used for debugging 

purpose. 

6. There are two ‘ACK’ outputs that inform the user when the PRN or the TRN is 

ready for reading. 

7. The 16-bit data output bus is the output for the generator. Finally, there are clock 

related signals that allow the most user-control of the behavior of the chip. 

There are two clock inputs that can be used to replace the ring oscillators. An ‘on board 

oscillator’ select signal is used to select between the external clocks and the internal ring 

oscillators. There are also two clock outputs. If the ‘on board oscillator’ select line is 

enabled, and the ring oscillator clock signals are output, otherwise the external oscillators 

are routed through those output lines. If the internal ring oscillators are being used, there 

are six other signals used for changing their frequency by selecting which stage the final 

clock signal comes from. There is one fixed frequency select signal for each ring oscillator. 

In addition, each ring oscillator takes two frequency select lines to choose one of four 

possible frequencies (output stages). The fixed frequency select signals determine whether 

or not the frequency select lines are chosen externally or internally. 



39 

 

The initial setup for general operation of the RNG chip is performed by disabling the 

‘reset’ signal, enabling the ‘run’ and ‘chip select’ signals, and disabling the ‘word select 

line’. Either the ‘true’ or ‘pseudo inhibit signals’ can be enabled to disable one of the RNG 

sources on the output. Also, the system clocks can be set up to use a variety of sources. For 

instance, if the ‘on board oscillator’ is disabled, the frequency select signals don’t need to 

be set, but two external clocks must be input. On the contrary, if the ‘on board oscillator’ is 

selected, the external clock inputs are unnecessary but the frequency select signals must be 

set to the right mode. Usually, the user will want to set the fixed frequency select signals 

low, so that the frequencies will vary randomly over time, based on certain TRN bits. The 

fixed frequency select signals are most likely to be used for debugging purposes. 

 

Once the control signals are set up, the actual processing occurs after the ‘run’ signal goes 

high. If the ‘chip select’ is high, the true random number should be ready in just a few 

clock cycles, and the TRNG’s ‘ACK’ signal should go high. The PRNG will take at least 

32 clock cycles to complete generating its number. When it is complete, the PRNG’s 

‘ACK’ signal should go high. The value should remain high until the ‘word select line’ is 

pulsed high to read the ‘most significant word’. When the ‘word select line’ goes low 

again, the next pseudo random number should begin computing. The next true random 

number is also latched few clock cycles after the ‘word select line’ goes low. In other 

words, the user should only have to wait for ‘ACK’ to be high, read the LSW from the data 

bus, pulse the ‘word select line’ high for a time while reading the MSW of the RN from the 

data bus, and set it low again to begin a new RN generation. 
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3.5 TRNG Chip Simulation 

3.5.1 Simulation with External Clocking 

Figure 20 shows a random number computation with the chip running off of external 

clocks.   

 

 

Figure 20: Chip Simulation with External Clocking 

The ‘busO1O’ and ‘busO2O’ are the clock signals that are being used as the two clocks in 

the design. The ‘busO2O’ clock signal has significantly higher rise and fall times. This is 

because this clock runs the 13-bit LFSR, the 32-bit LFSR and the 32-bit FSM, while the 

other clock only runs the 19-bit LFSR, so it has a much higher capacitance to drive. As 

long as ‘busOBO’ signal goes low, the internal oscillator does not affect the computation, 

so the value of ‘BusC13Fix’ and ‘BusC19Fix’ signals have no effect on operation. The 

output data bus undergoes 32 transitions before both of the ‘Ack’ signals go high. This is 
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the 32-bit LFSR completely shifting out the old value before signaling that it is ready. The 

output value changes when the ‘busMSW’ value goes high because it is then displaying the 

high order word of the 32-bit value computed. Then, when the ‘busMSW’ signal goes low, 

the logic begins computing the next value. Table 4 gives a summary of status of control 

signals to run the chip with external clocks. 

Control Signal 
 

 

Status 

busRst Low 

busCS High 

busOBO Low 

busIRun High 

busMSW Low/High 

busAck2 High 

busAck1 High 

 

Table 4 

 

3.5.2 Simulation with Internal Clock 

The normal mode of operation of the TRNG chip is working with the internal clock 

running at a random frequency. The ‘busOBO’ signal goes high which indicates that 

internal ring oscillators are selected to generate clock signals for the LFSRs. It can be 

noticed that the‘busO1O’ and ‘busO2O’ clock signals are not following the external clock 

sources now. The ‘busC13Fix’ and ‘busC19Fix’ signals go low, so that frequency provided 

by the oscillator varies randomly depending on the TRN bits. The 32-bit LFSR is being 
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inhibited by setting P_inhibit signal high. The ‘ACK1’ signal goes high when true random 

numbers are ready. The ‘busMSW’ signal goes low to read the ‘least significant word’ and 

goes high to read the high order word of the 32-bit output data. Table 5 summarizes the 

status of control signal in normal mode operation and figure 21 shows the MachTA 

simulation of the TRNG chip generating the true random numbers. 

Control Signal 
 

 

Status 

busRst Low 

busCS High 

busOBO High 

busIRun High 

busMSW Low/High 

busAck2 Low 

busAck1 High 

 

Table 5 
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Figure 21: TRNG Chip Simulation with ring oscillators providing clock signals 
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CHAPTER 4 TRNG TESTING  
 

The TRNG testing was divided into two stages. First, chip functionality was tested to verify 

its operations of all signals, such as to check the function of each block and then as a whole 

chip. Once chip testing was done successfully, it was run for a long time to generate and 

gather the random numbers.  

  Next, testing was performed on the random numbers generated from the chip. The 

numbers outputted from the RNG should be random enough to meet the cryptographic 

standards such as those set by the FIPS and the NIST. 

 

4.1 Test Board for RNG ASIC 
 

To perform the first level of testing, a small printed circuit board (PCB) was designed so 

that the RNG could be fixed to the test board to run and generate random numbers.  

  Figure 22 is the block diagram of the test board. This test board containing the RNG is 

equipped with a voltage regulator which converts 5V input to 3.3V output voltage to 

provide power supply to the RNG ASIC. It has headers provided to connect four ‘on board 

oscillator’ outputs of the RNG, so that an oscilloscope can be attached to each oscillator 

output to verify its oscillations. Another set of headers are used to attach external 

oscillators to the RNG in the case when ‘on board oscillators’ are not working. There are 

also headers to connect the RNG output data bus, such that an oscilloscope can be 

connected to read the output data bits. Finally, there is a circuit which has transceivers and 

decoders that controls the signals which are necessary to run the RNG ASIC properly. This 

test board can be connected to any microprocessor to generate and collect random numbers 

for a longer period. 
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Figure 22: block diagram of the test board 

The Mentor Graphics PADS tool was used to design the schematic and layout of the 

printed circuit board. The PCB was designed as a four layered board: top, bottom, power 

and ground. To reduce the effect of crosstalk and interference, the top and bottom planes 

were designed as signal planes, and the power and ground planes were designed on the 

inner layers. Once the PCB layout was completed, the appropriate Gerber file was 

generated and sent to ‘Advanced Circuits’ for the fabrication. After the test board was 

fabricated, it was then populated. The RNG IC was installed in a socket and could be 

removed easily when needed.  

 

4.1.1 Hardware Equipment Used for RNG Testing 
 

Gumstix was used to interface with the RNG test board. Gumstix is a company established 

by Gordon Kruberg in 2003 which manufactures single-board computers. As the name 
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refers, these computers have a motherboard as small as a stick of gum. These computers are 

pre-installed with Linux Kernel 2.6.2 operating system. Gumstix also provides a variety of 

feature-rich expansion components such as general purpose input/output (GPIO), additional 

serial ports, compact flash cards, USB connectivity, ethernet and different power sources 

which can be easily connected to a motherboard. Gumstix motherboards come in two 

different configurations: Overo Earth and Verdex-Pro1.  

  In this thesis, the Verdex-pro motherboard was used. It was connected with two other 

expansion boards: Breakout-vx and Netpro-vx and the whole setup was used to network 

with the RNG test board. The entire assembly (Verdex-pro motherboard + Breakout-vx + 

Netpro-vx) is referred to as “gumstix" in this thesis. Figure 23 shows the block diagram of 

the gumstix setup networked with test board and a personal computer. 

 

 

 

 

 

 

 

 

 

 

 

_____________________________________________________________________________ 

1More information can be found on www.gumstix.com , www.gumstix.org   
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Figure 23: block diagram of the hardware setup to test RNGs 

 

The Verdex-pro motherboard contains a PXA270 microprocessor manufactured by Marvell 

with Xscale technology running at 400MZ. It also has 64 MB of RAM, 16 MB of Flash and 

a 60-pin Hirose I/O connector. The Breakout-vx expansion board was connected with the 

motherboard for easy access to the GPIO lines from the test board. The ‘Netpro-vx’ was 

attached to the gumstix motherboard so that the whole gumstix setup can be connected to a 

PC with Ethernet.  

    60 pin Hirose I/O Header  

  64MB RAM         16MB FLASH 
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PCB with   

RNG IC 

Breakout-vx 

Netpro-vx 

Ethernet 

PC 

gumstix 
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Once the gumstix was connected to the RNG test board and the whole setup was attached 

to a PC through Ethernet, software was developed to control the RNG and generate and 

upload the random numbers to a PC. 

A total of 24 GPIO pins were used to interface with the RNG test board: 16 GPIO pins 

were attached to the 16-bit output data bus of the test board, 6 GPIO pins were attached to 

control signals, and 2 GPIO pins were used to provide power and ground signal to the 

gumstix. 

 

C code was written to control the gumstix and the test board set up. In order to generate 

random numbers from the RNG, values were assigned to control signals. Below are the 

steps that describe how the control values were assigned through programming. 

1. To assign the control signals, 6 GPIO pins were set up in the ‘OUT’ mode and 

values were allotted to those pins. For example, GPIO 11 is assigned to chip select 

(CS) signal, and it should be ‘Set’ to run the RNG chip. Here are the lines of code 

for this operation: 

           gpio_function (11, GPIO); 

           gpio_direction (11, OUT); 

           gpio_set (11);    

  Similarly all the control signals were assigned either ‘Set’ or ‘Reset’ using the C code. 

2. For reading the generated bit from the RNG, 16 pins of GPIO were put in the ‘IN’ 

mode so that the value accepted could be read by knowing the status of the GPIO 

pins. If GPIO pin is ‘Set’ (high), the output RNG bit is 1, and when GPIO pin status 
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is ‘Reset’ (low), the output RNG bit is 0. Here is the example of code to read the 

generated bit.  The GPIO 16 is assigned to read ‘lowest significant bit’: 

gpio_function (16, GPIO); 

gpio_direction (16, IN); 

b0 = gpio_status (16); 

After reading the status of the GPIO 16 that can be either ‘Set’ or ‘Reset’, the value is 

stored in b0. Similarly, all output data bits can be read. 

Once the GPIO pins were allotted in the correct mode and assigned the proper value. As 

soon as power was switched ON, the RNG started generating random numbers. 

 

The Logic Analyzer was helpful to observe the RNG ASIC functionality and to verify 

random data generation. The Logic Analyzer was connected with the test board. All of 16 

channel of the oscilloscope were attached to the 16-bit output data bus. Figure 24 shows the 

screenshot of random number generation from the Tektronix MSO 4034 Mixed Signal 

Oscilloscope. 
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Figure 24: Random Number Generation 
 

The screenshot illustrates that all 16 bits are changing randomly providing first LSB then 

MSB.  

4.2 Randomness Testing of Random Numbers 

Various statistical tests are designed to test the extent of the randomness of the random 

numbers. These tests help to detect any kind of weakness a random number generator 

might have. For example, the very basic test for random numbers is that the probability of 

occurrence of 0’s and 1’s in the sequence should be roughly equal. Too many 0’s or too 

many 1’s in the sequence would disqualify the numbers from being random.  

  A range of tests are developed to test the random numbers which verify for presence or 

absence of certain ‘pattern’ and if not detected, considered being nonrandom sequence. The 

NIST 800-22 test suite has 15 statistical tests to test the randomness of long binary 

sequence generated by any hardware or software based pseudorandom number generators. 

If random numbers do not pass the statistical tests, it can be considered as pseudo random 
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numbers and can be discarded as being true random numbers and if the random numbers do 

pass the entire statistical test, it can be accepted as truly random numbers. However, these 

statistical tests provides only probabilistic idea that is, the properties of a random binary 

sequence can be characterized and illustrated in terms of probability as there is no 

mathematical proof that binary sequence is truly random [12]. 

  The NIST 800-22 statistical tests are explained below. 
 

1. Frequency (Monobit) Test: This test gives a very fundamental proof of the absence 

of randomness in a binary sequence; if this test fails probability of failing other 

statistical tests is high, so it is recommended to run the frequency test first. The test 

focuses on the amount of ones and zeroes in the entire long sequence. The test fails 

if total number of 1’s and 0’s are not approximately equal in the sequence. 

2. Frequency Test within a Block: This test focus on the quantity of 1’s within blocks. 

The purpose of this test is to find out whether the occurrence of 1’s in a M-bit block 

is approximately the half of the block size as expected as for truly random 

sequence. For M=1, this test is equivalent to the Frequency test. 

3. Runs Test: This test measures the total number of runs in the sequence, where a run 

is defined as continuous stream of identical bits (either all ones or all zeros) present 

in the sequence.  A run of length n has n identical bits that are enclosed with an 

opposite bit at the start and end of the run. The runs test determines whether the 

number of runs of ones and zeros of various lengths present in the sequence as 

expected as for random sequence. 

4. Test for the Longest Run of Ones in a Block: This test measures the longest run of 

1’s within the specified bit block size. The test fails if the length of the longest run 
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of 1’s within the tested block does not match as expected as in a random sequence. 

If there is an irregularity in the expected length of the longest run of 1’s, it is most 

likely to have an irregularity in the expected length of the longest run of 0’s too. 

5. Binary Matrix Rank Test: The binary sequence is arranged in rows and columns of 

matrices. It then calculates the rank of matrix to check for linear dependence among 

fixed length of bit strings of the original sequence. The test fails if it detects a 

deviation of the rank distribution from that corresponding to a random sequence. 

6. Discrete Fourier Transform (Spectral) Test: The test observes the peak heights in 

the Discrete Fourier Transform of the binary sequence. The purpose of this test is to 

find out periodic patterns that are close to each other in the sequence. The test fails 

if the number of peaks exceeding the threshold is significantly high. 

7. Non-overlapping Template Matching Test: The focus of this test is to detect the 

number of occurrences of pre-specified non-periodic pattern in a specified bit block 

size. If the pattern is not found, the search begins from the next bit position of the 

block. If the pattern is found, the block is reset to the bit after the found pattern and 

the search starts again. The test fails if too many occurrences of the pattern found in 

the sequence. 

8. Overlapping Template Matching Test: The test is similar to the Non-overlapping 

Template Matching test. The difference from the above test is that if the pattern is 

found, the block slides only one bit and the search is continued again. The test fails 

if too many occurrences of the pattern are found in the sequence. 

9. Maurer’s “Universal Statistical” Test: The test detects for the number of bits 

between matching patterns in a binary sequence.  The purpose of the test is to detect 
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the sequence that can be compressed without loss of information. The test fails if 

sequence is compressible. 

10.  Linear Complexity Test: This test computes the length of a linear feedback shift   

register (LFSR) that would be needed to generate the bit pattern. A random 

sequence should be complex enough to be characterized by longer LFSRs. The test 

fails if the size of the required LFSR is too small. 

11.  Serial Test: This test searches for the occurrence of all possible overlapping 

patterns of specified bits in the entire binary sequence. The number of occurrences 

of each overlapping patterns should approximately the same. The test fails if the 

frequency of overlapping pattern is not uniform. For the case of 1-bit patterns, the 

Serial test is equivalent to the Frequency test. 

12.  Approximate Entropy Test: This test compares the occurrence of all possible 

overlapping m-bit patterns with (m+1)-bit patterns in the entire binary sequence. 

The test fails if the frequency of overlapping blocks of two consecutive lengths (m 

and m+1) is not as expected as for random sequence.  

13.  Cumulative Sums Test: The Cumulative sum is calculated by transferring the [0, 1] 

stream to the appropriate [-1, +1] sequence by using xi = 2ai – 1; where ai is the 

original bit pattern. The cumulative sum random walk is derived from partial sums 

within the new sequence. The test fails if the excursions of the random walk are too 

large or too small relative to the expected behavior of the random sequences. 

14. Random Excursions Test: In this test cumulative sum is calculated by taking a 

random walk that begins at one point considered to be origin and return to that 

point. The cumulative sum is calculated in similar way as described in the above 
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test, the sum is derived after the [0, 1] sequence is transferred to the appropriate [-1, 

+1] sequence. This test actually examines series of eight tests, such that how many 

times each of the states: -4, -3, -2, -1 and +1, +2, +3, +4 run into the random walk. 

The test fails if there are deviations from the expected number of visits to various 

states in the random walk.  

15. Random Excursions Variant Test: This test determines the total number of visits for 

particular state in the cumulative sum random walk. This test measures deviations 

for eighteen states [-9, -8, …, -1, +1, +2, …, +9], where the random excursions test 

walks for only eight states. The test fails if it detects deviations from the expected 

number of visits to various states in the random walk. 

 

 

4.3 FIPS Certification 

Federal organizations and the community rely on cryptography to protect information and 

data transfer used in electronic communications. Cryptographic modules are implemented 

in systems to provide cryptographic service such as confidentiality, reliability, 

authentication and security requirements. Federal agencies and the community can benefit 

from the use of tested and validated products as without adequate testing of the 

cryptographic module can result in insecure consequences. 

  In 1995, the National Institute of Standards and Technology (NIST) established the 

Cryptographic Module Validation Program (CMVP) for validating cryptographic modules 

to the Federal Information Processing Standards (FIPS) 140-1 which is a security 

requirement for cryptographic modules, and other FIPS cryptography based standards. The 
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CMVP is a collaborative effort between the NIST and the Communications Security 

Establishment Canada (CSEC). In 2001, the FIPS 140-2 was released for security 

requirement for cryptographic modules, and this test standard took over the FIPS 140-1 test 

standard [13]. 

United States and Canadian federal agencies accept modules conforming to the FIPS 140-1 

and 140-2 for the protection of sensitive information. The secretary of state made 

adherence to the FIPS standard for the protection of sensitive data mandatory. This 

standard is applicable to all federal agencies that use cryptographic based security system 

to protect sensitive information in computer and telecommunication systems including the 

voice systems [14][15]. 

Here are the approved pseudo and true random number generators for the FIPS 140-2 [16]. 

Approved Pseudo Random Number Generators  

  

1. Digital Signature Standard (DSS), Federal Information Processing Standards 

Publication 186-2, January 27, 2000 with Change Notice –Appendix 3.1. 

2. Digital Signature Standard (DSS), Federal Information Processing Standards   

Publication 186-2, January 27, 2000 with Change Notice –Appendix 3.2. 

3. American Bankers Association, Digital Signatures Using Reversible Public Key 

Cryptography for the Financial Services Industry (rDSA), ANSI X9.31-1998 - 

Appendix A.2.4. 

4. American Bankers Association, Public Key Cryptography for the Financial Services 

Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), ANSI X9.62-

1998 – Annex A.4 
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5. Recommended Random Number Generator Based on ANSI X9.31 Appendix A.2.4 

Using the 3-Key Triple DES and AES Algorithms, January 31, 2005. 

6. Recommendation for Random Number Generation Using Deterministic Random 

Bit Generators (Revised), Special Publication 800-90, March 2007. 

 

Approved True Random Number Generators 
 

  There are no FIPS Approved true random number generators.  
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CHAPTER 5 TEST RESULTS 
 

 

Long streams of the output numbers of the RNG were gathered and uploaded to a PC for 

testing the randomness of the random numbers. Once required random numbers were 

stored statistical tests were performed to determine whether they were random enough to 

pass the FIPS 140-1, FIPS 140-2 and NIST 800-22 cryptography standard test. 

 

 

5.1 FIPS 140-1 and FIPS 140-2 Test Results for the RNG ASIC 
 

As the RNG ASIC was verified for its correct functionality, generated random numbers 

were stored in a binary file and the statistical test suites FIPS 140-1 and FIPS 140-2 were 

run on the data. C code for FIPS 140-1 and FIPS-2 that was written by Samuel T. Mitchum 

was used to run binary files.  

  A total of 625 words of 32-bit (20,000 bits) random numbers were required to run the 

FIPS 140-1 and FIPS 140-2 test suites. One hundred binary files of 20,000 bits were run for 

these tests and 80% of them passed the tests successfully. The test results are shown in 

Figure 25 and Figure 26.  

 

 
 

Figure 25: FIPS-140-1 on RNG Data 
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Figure 26: FIPS-140-2 on RNG Data 
 

5.2 NIST 800-22 Test Results on Random Numbers 
 

The NIST 800-22 statistical test suites were run on the data of 100 sets of 2,000,000 bits 

(total of 200,000,000 bits). Once a total of 200,000,000 (two billion) bits were stored in a 

binary file, it was given as an input file to the NIST 800-22 test suite software. After the 

statistical tests code ran successfully, it generated the ‘final result analysis’ report 

computing the resulting value for each test. Some of the tests generate multiple values so 

the average of the total values was computed as the final result for the test. The NIST 800-

22 test results of the RNG data are tabulated in Table 6. The test that did not pass the NIST 

800-22 is marked with an asterisk. 
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Test TRN 

Frequency  0.6800 * 

Block Frequency  0.6700 * 

Runs 0.6700 * 

Longest Run of Ones 0.9700 

Binary Matrix Rank 0.9400 * 

Discrete Fourier Transform 0.9800 

Non-overlapping Template 0.9262 * 

Overlapping Template 0.9000 * 

Maurer’s Universal 0.9400 * 

Linear Complexity 0.9700 

Serial 0.9150 * 

Approximate Entropy 0.6800 * 

Cumulative Sums 0.6800 * 

Random Excursions 0.9872 

Random Excursions Variant 0.9954 

 

Table 6: NIST 800-22 Test Results for RNG 
  

The NIST 800-22 statistical tests are useful for studying and evaluating the randomness of 

the binary sequence produced by the generator. For 100 sets of data, each set having 

2,000,000 bits, a passing score suggested by the NIST 800-22 is 96%; that is, the test fails 

if it scores 95.9% or below whereas it is considered to pass if it scores 96.0% or above. 

  This RNG passed 5 tests out of the total 15 statistical tests. Failing the above test indicates 

that the bit patterns found in the sequence are not as consistent as expected for truly 
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random sequence, meaning that the occurrence of some bit patterns was either more or less 

frequent than the average.  

 

This chip failed the frequency test and block frequency test, meaning that the binary 

numbers generated from the chip did not have equal numbers of 1s and 0s in a stream or in 

the M-bit size block. As described earlier in section 4.2, the RNG outputs should have 

roughly equal numbers of 1s and 0s in a sequence to pass the frequency test and the block 

frequency test 

Also, this RNG did not generate equal numbers of n-bit length runs (continuous streams of 

all zeros or ones) as expected as to be random, and failed the ‘Runs test’.  

  The chip failed ‘Binary Matrix Rank test’, as it detects a deviation of the rank distribution 

from that corresponding to a random sequence.  

  The chip did not pass ‘Non-overlapping Template’ and ‘Overlapping Template’ tests, 

meaning that it generated either too many or very few pre-specified non-periodic patterns 

in the binary sequence.  

  It failed the ‘Maurer’s Universal Test,’ which means that there were sequences that could 

be squeezed without losing information.  

  Failure of the ‘Serial Test’ indicated that occurrences of all possible overlapping patterns 

of particular bits in a long binary sequence were not consistent.  

  It did not pass the ‘Approximate Entropy Test’ meaning that there were several m-bit and 

(m+1) bit overlapping patterns present in the entire binary sequence. 

  Finally, it failed the ‘Cumulative Sums Test,’ meaning that random walk (partial sums 

with in binary stream after transforming original [0, 1] pattern into [-1, +1] pattern) 
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expedition was not as relative as expected for the random sequence. These tests are 

described in detail in chapter 4. 

 

5.3 Whitening Random Numbers 

The process of combining (XOR/XNOR) the outputs of the TRNG with the outputs of a 

LFSR is termed as ‘whitening’. This procedure improves the randomness of the final 

outputted numbers and is widely used in cryptography. Figure 27 shows the block diagram 

of the whitening process. 

 

 

 

 

 

 

 

 

Figure 27: Whitening 

‘Whitening’ is described in [17, section 2.4.2], which states “The linear combination can be 

realized by adding and subtracting or XORing the two sets. Equation 2 illustrates this 

principle.  

 

True random 
bits  

Pseudo 
random bits 

XOR/XNOR 
Whiten data  
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Since a TRNG is independent of any LFSR based PRNG by virtue of its definition, 

Equation 2 shows how the output of a TRNG can be statistically improved by XORing it 

with the output of an LFSR….…” 

 

In this research, this approach was used to ensure that the RNG data passed all the 

statistical tests on the RNG data. The random output data were whitened and the whitened 

data were applied to the NIST 800-22 statistical suites. A 32- bit whitening PRNG has a 

32-bit LFSR that clocks the LFSR exactly 32 times between samples. A design of such 

PRNG is described in [17, section 5.3.1]. Here, C program of whiten PRNG that was 

originally written by Samuel T. Mitchum was used to whiten the RNG data. The software 

generates pseudo-random numbers and takes binary file of random bits as input. It then 

combine (XOR/XNOR) the pseudo random numbers with the random numbers generated 

from the RNG chip to output final whiten data.  

 

 5.4 NIST 800-22 Test Results on Whitened Random Numbers 

Whitening was done in two different ways. In the first method, half of the bits of the RNG 

(the odd bits 1, 3, 5…) were XORed and half of the bits (even bits 0, 2, 4...) were XNORed 

with the 32-bit maximal length LFSR, which is defined by ‘Xilinx Application’. This 

whitened RNG data were used to run the NIST 800-22 test suites and the results of the 

XOR/XNOR whitening data are tabulated in Table 7. The whitened data passed all the tests 

of NIST 800-22.  
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Test Whitened TRN 

Frequency  0.9900 

Block Frequency  1.0000 

Runs 1.0000 

Longest Run of Ones 0.9800 

Binary Matrix Rank 0.9900 

Discrete Fourier Transform 1.0000 

Non-overlapping Template 0.9895 

Overlapping Template 0.9900 

Maurer’s Universal 0.9900 

Linear Complexity 0.9900 

Serial 0.9900 

Approximate Entropy 1.0000 

Cumulative Sums 0.9950 

Random Excursions 0.9952 

Random Excursions Variant 0.9929 

 

Table 7: NIST 800-22 Test Results on Whitened RNG 

Other deviation from this approach is that the RNG data were whitened by only XNORing 

the 32-bit random numbers of the RNG with the 32-bit outputs of the LFSR. Whitened data 

were given to the NIST 800-22 tests and the results are tabulated in Table 8. Whitened data 

XNORed with the RNG data passed all the tests of NIST 800-22 statistical suites.  
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Test Whitened TRN 

Frequency  0.9900 

Block Frequency  0.9800 

Runs 1.0000 

Longest Run of Ones 0.9900 

Binary Matrix Rank 1.0000 

Discrete Fourier Transform 1.0000 

Non-overlapping Template 0.9903 

Overlapping Template 0.9900 

Maurer’s Universal 0.9900 

Linear Complexity 0.9700 

Serial 0.9950 

Approximate Entropy 0.9900 

Cumulative Sums 0.9900 

Random Excursions 0.9848 

Random Excursions Variant 0.9890 

 

Table 8: NIST 800-22 Test Results on Whitened RNG 
 

Looking over the test results of whitened data, it can be noted that there is not any 

significant difference with whitening using either only XNOR or both XOR/XNOR. In 

both approaches whitening data eliminates the inconsistency of the patterns present in the 

sequence, and improves the randomness in data to meet random standards sets by the NIST 

800-22. 
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CHAPTER 6 CONCLUSION  

 

6.1 Summary of Work  

This thesis focuses on designing a digital true random number generator. The methodology 

used is based on standard digital blocks that can be synthesized from the VHDL 

description. The Mentor Graphics tools were used to design schematics and layouts of the 

custom IC. The MachTA simulation tool was used for post-layout simulation of full chip 

design. Once chip design was simulated successfully, it was sent to MOSIS for the 

fabrication.  

The test board was designed to collect random numbers from the fabricated RNG IC. This 

board can be attached to any microprocessor. Here, it was attached to the gumstix, which 

had a pre-installed Linux operating system. Software was developed in C language to 

operate the fabricated RNG chip, perform functional testing, generate random numbers and 

upload generated random numbers to a PC.  

Once the RNG IC was verified as functionally correct, it was run to generate random bits. 

The data set of 100 files, each having 2,000,000 bit (a total of 200 million bit), were 

collected and uploaded to a PC. The statistical test suites were run on the data to test the 

quality of randomness. Initially, the chip  passed 5 tests of the NIST 800-22, to resolve this, 

whitening was performed on the RNG data to clear up the inconsistency in the output 

binary pattern. The whitened data did pass all 15 tests of NIST 800-22.Designing a VLSI 

chip from high-level VHDL code and using standard cells to implement the design was a 

good learning experience for real-world applications, as full-custom chip design is rare. 
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6.2 Future Work 

This RNG design utilized the 19-bit and the 13-bit LFSR to generate 32-bit random 

numbers; the combination was chosen arbitrarily, and more interesting research can be 

done in the area of generating the 32-bit random numbers by using different combination of 

LFSRs. Another possibility for future work would be to design a unique ring oscillator for 

each LFSR to provide clocks such that ring oscillator operates at a different speed 

(fast/slow) or different in design (big/small). In this design similar ring oscillators were 

used to clock the LFSRs. 

In this thesis, the test board in conjunction with the gumstix was used to generate and 

collect random numbers for testing the RNG IC. There are several other possibilities for 

interfacing the RNG chip with any other microcontroller or FPGA platform to generate and 

test random numbers.  
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