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ABSRACT

Random number generator is a key component fomgitnening and securing the

confidentiality of electronic communications. Randoumber generators can be divided as
either pseudo random number generators or trueomanmumber generators. A pseudo
random number generator produces a stream of ngntbat appears to be random but
actually follow predefined sequence. A true randarmber generator produces a stream of

unpredictable numbers that have no defined pattern.

There has been growing interest to design truearantimber generator in past few years.
Several Field Programmable Gate Array (FPGA) andligation Specific Integrated
Circuit (ASIC) based approaches have been usedrergte random data that requires
analog circuit. RNGs having analog circuits demfomanore power and area. These
factors weaken hardware analog circuit-based RNS&eBys relative to hardware
completely digital-based RNGs systems. This thisdiscused on the design of completely

digital true random number generator ASIC.
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CHAPTER 1 INTRODUCTION

Computer systems and telecommunications play arortapt role in modern world
technology. The communication and data transfeutin computers touches almost every
aspect of life, i.e. transferring data, trackingsp@al data, trading over the internet, online
banking and sending emails. As more vital inforomtis transferred through wire or
wireless means, the need to safeguard all this fata hackers is growing. All these
security concerns emphasize the importance of dpire methods and technology for the
transformation of data to hide its information amntt prevent its modification, and prevent

unauthorized use.

Random number generation is a fundamental processpriotecting the privacy of

electronic communications. It is a key componenthaf encryption process that protects
information from attackers by making it unreadabléhout the proper decryption process.
Since the strength of an encryption mechanismrecty related to the randomness of the
binary numbers used in it, there has been an enmmeed to design and develop an
efficient random number generator that can prodoee random numbers to implement a

safe and secure cryptographic system.

In addition to cyber security, random number getoesa(RNGS) are a vital ingredient in
many other areas such as computer simulationgstgtat sampling, and commercial

applications like lottery games and slot machines.



1.1 Hardware vs. Software Random Number Generators

Most random number generators available today afeware-based RNGs. As the
algorithms used for software RNGs are fixed, thenbers generated by these appear
random at any given time, but actually follow adefned sequence. Thus, these numbers
are not truly random and can easily be predictedhdying knowledge of the generating
algorithm. Random numbers generated by these Higwmi can only mimic the true
unpredictability of a truly random number generaiidrat is why software based RNGs are
commonly referred to as “pseudo random number géores’.

There are also hardware-based random number ajererthat are, in fact, pseudo

random.

On the other hand, some hardware-based random mugelberators can generate truly
random and unpredictable binary number sequendeasibers generated by these types of
hardware RNGs have no defined structure or orternext number of the string is always
a surprise, and it cannot be guessed by a humanyocomputational device by knowing
the internal algorithm or structure of the circlihese generators use some type of physical
noise source as an initial value to generate rahdom numbers. Some of the common
physical noise sources that have been used ss fan mputs include: thermal noise, clock
jitter, and nuclear decay. As the noise valuesdlsesirces generate are unpredictable, it is

impossible to predict the generated numbers.

There has been growing interest in the digital glesirea to develop simpler hardware-

based true random number generators within lastykavs. Several Field Programmable



Gate Array (FPGA) and Application Specific Integ@tCircuit (ASIC) based approaches
have been used to implement these generators.@dmpifacturing companies are making
silicon-based random number generators that cammtbgrated onto a processor chip to
provide a high level of data security in digitasgms. This thesis focuses the chip design

for generating true random numbers using only stethdigital components.

1.2Thesis Objective

The main goal of this thesis is:

a. To design a completely digital Application Specifitegrated Circuit (ASIC) based
hardware True Random Number Generator (TRNG).

b. To prepare a test fixture to analyze the randomoéssitput random numbers and
perform the Federal Information Processing Stand&i®S) and the National
Institute of Standards and Technology (NIST) randess tests on the data.

To achieve thesis objectives, an ASIC was desigrisaty the Mentor graphics Electronic
Design Automation (EDA) tool and fabricated by tMOS Implementation Service
(MOSIS) using AMIO5 micron process technology.

A printed circuit board was designed to commuteidzetween the fabricated TRNG and a
microprocessor. A software program was written émtol the ASIC operations and
generate random numbers. The test board is usasks&ss the functionality of each block
of the RNG chip and to generate and gather randambers for long period of time. Once
the chip functionality was tested, random numbeesewgenerated by the RNG chip and
uploaded to a personal computer (PC) for analy@mally, the FIPS and NIST statistical

test suites are applied to the strings of randombars.



1.3 Overview

The remaining chapters of this thesis are stradtias follows: Chapter 2 covers the
background of random numbers generators, suchsasipliions of true and pseudo random
number generators and their applications in digitatld. Chapter 3 explains the design of
the RNG of this thesis. Chapter 4 includes detdilst explain how testing has been
performed on the RNG for its functionality as wa#l on random numbers generated from
the chip. Chapter 5 covers results of the FIPSIL4BHPS 140-2 and NIST 800-22 tests on
the RNG data. Finally, chapter 6 presents a sumioifaitye work and possible future work

on digital random number generation.

1.4 Abbreviations

Below are the listed abbreviations and acronymsd tls®ughout this thesis.



Abbreviations

Stands For

Definition

ASIC Application Specific A chip designed for a specific
Integrated Circuit application rather than gene
purpose use
LFSR Linear Feedback Shift A series of shift registers
Register whose input is a logical
combinations of previous
states
RNG Random Number GeneratolA circuit that generates
random numbers
PRNG Pseudo Random Number |A circuit that generates
Generator numbers which appear to bg
random but are actually
predictable
TRNG True Random Number A circuit that generates
Generator random numbers that are tr
unpredictable
FIPS Federal Information Standards developed by
Processing Standard government for use in
computer systems
NIST National Institute of Government organization tQ

Standards and Technology

develop and apply technolo
standards

1%




CHAPTER 2 BACKGROUND OF RANDOM NUMBER

GENERATORS

2.1 Types of Hardware Random Number Generators (RN§

Hardware RNGs can be divided into two broad caiegorpseudo random number

generators (PRNGs) and true random number gengi@RINGS).

2.2 Pseudo Random Number generator (PRNG)

A hardware pseudo random number generator is &eleapable of generating a sequence
of binary numbers that imitates the propertiesasfdom numbers. The initial input value
fed to the PRNG is called a ‘seed’. The output seqa generated appears to be random

while it is not truly unpredictable.

A PRNG'’s output sequence of binary numbers is ardehistic function of the seed value,
meaning that sequence can be reproduced later eif sked is known. The term

"pseudorandom"” refers to the deterministic natfith® generator.

PRNGs are also periodic; as randomness is limdeskéd generation, the output sequence
of binary numbers will start repeating at regutdeivals. The period of a PRNG is defined

as maximum length of the non-repetitive patterthansequence. PRNG's containmbits

of internal state cannot have its period longentdaor sometimes have a period that is

much shorter depending on the given seed. The appendomness of a PRNG can be

increased by including substantially more bits e PRNG than are required by the



Clock

consuming application. However the additional brejuire additional hardware to

implement, which is an undesirable effect.

A good example of hardware pseudo random numdreergtor is a Linear Feedback Shift
Register (LFSR). An LFSR is basically set of sigisters connected in series with the
outputs of some of the shift registers combinedxalusive-OR configuration to provide a
feedback mechanism. When the inputs of the regigter fed with a seed value and the
LFSR is clocked, it generates a pseudorandom patfets and 0s. Figure 1 shows the 4-
bit LFSR using D flip flops and XOR gate. A LFSRclled a maximal length LFSR, if it
can generate a stream of random numbers of maxileogth of 2 -1 before it starts to
repeat, where n is number of register element.ir\ iB2-bit maximal length LFSR can
generate about 4 billion random numbers beforeetiris to repeat the sequence of

numbers again.

/T outl Out2 Out3 out4
—— p1 | D2 L D3 | | D4

Figure 1: 4-bit LFSR



A very early and efficient approach of generatimpdom numbers from a PRNG is
described in the US patent 5732138 [1], which useshaotic system as a source of
randomness to generate random numbers.

In this invention, a state of a chaotic systemiggtized (changed into sequence of bits) to
generate a binary sequence. This binary strinlges tryptographically hashed to generate
a second binary sequence. The second binary stringed as an initial state or seed of a
pseudo-random number generator to generate randorbers. A random output data may
be used for the security of confidential informatio

A chaotic system is one that changes states digpably over time. Here, a chaotic
system is used as a source of randomness to trantie state of the system into a binary
sequence. In this invention, lava lamps are used alkaotic system. Lava lamps are a
system in which two different types of fluid whidias different colors and different
chemical properties combine in closed containee ddlor pattern of the fluids changes in
unpredictable manner over time. Figure 2 in [1]we&dow the pattern of the liquid
changes after t seconds. It is reproduced belowigare 2.In this invention, four lava
lamps are used and their changing images or caltienns are converted to digital state
using a digital camera. A digital camera recordsyltture as a digital image and is placed
in front of the lava lamps. The images recorded lmamlescribed as a rectangular array of
values such that each value corresponds to the pattern at that point. The rectangular
array consists of pixel values a binary representation of the associated calut

intensity.



Lava lamp after t seconds:

Figure 2: Lava Lamps [1]
The binary string generated from the images isstamed into a secondary binary string
using a cryptographic hash function. This inventisses the dual mode Secure Hash
Standard cryptographic hash function by NIST. Aptographic hash function takes binary
strings produced from images and converts into lerobinary string. For example, a
cryptographic hash function takes a string x = @A@1100 and transforms it into another
binary string hash(x) = 10110010011. The cryptogm@mash function has following

properties.



a. x and hash(x) may not have same length. A userabilerve hash(x) only, and it
will be hard for a user to use the output to deteenthe state of the chaotic system
X.

b. The values of hash(x) and hash(x+1) are totalliecBht. This property ensures that
predicting a future output will be extremely diffit from the current output.

c. For two different values, x and y, there is posiibio get the value of hash(x)
=hash(y). The third property explains that it vii# extremely difficult to find an
alternative value of x that has same hash value.

These properties make it difficult for a user tdalize the output of the generator to
determine the state of the chaotic system.

The PRNG receives a seed, which is generategjlyiag a cryptographic hash function
to the output string obtained from a chaotic soulideen the PRNG takes the appropriate
number of bytes as a seed or an initial state aptles a deterministic transformation to
obtain a new state and a random number. This stegpeated until the pattern generated
from the PRNG eventually starts repeating. To sdfréhe system, a new seed is used
which can be obtained as required. Figure 3 isfldve chart from [1] that describes the

steps for generating random numbers.

10



START

>Y

RECORD STATE OF
CHAOTIC SYSTEM

100
2

CONVERT STATE TO
BINARY NUMBER

105
r
APPLY

CRYPTOGRAPHIC

HAS FUNCTION 110

OBTAIN SEED FROM
CRYPTOGRAPHIC
HASH 135

¥

APPLY PSEUDO-RANDOM
NUMBER GENERATOR
USING SEED {5

NEW SEED DESIRED
?

CONTINUE USING
PSEUDO-RANDOM
GENERATOR
130

Figure 3: Flow Chart from [1]
2.2.1 Uses of Pseudo Random Numbers Generators
PRNGs are not suitable for applications where ufiptability of binary numbers is the
most desirable feature, such as gaming and gemgraticryption/decryption keys. The
characteristics of PRNGs make these generatorabseitfor applications such as

simulation, modeling, fault grading and digital amomication.

11



Texas Instrument uses PRNGs for the purpose df aatling as described in [2]. The
paper describes how the PRNG generates patterieh Wwave been proven to provide high
fault coverage. Once a design engineer has condpiietgign and functional verification for
an ASIC, the LFSR is designed and outputs of thBR_.Ere connected with the inputs of
the ASIC. Figure 4 from [2] shows that the LFSRpoutis are multiplexed with the ASIC
input in such a way that the ASIC logic can be $atad by both the LFSR’s output and

the normal data input.

le Y To ASIC Logic
A2
/ 3 To ASIC Logic
\IPI04 MU111 MU 111 MU111
A1
/ A Y A Y A Y% To ASIC Logic
B B B
IPIO4
A0
/ s s s
FF1_OUT r )|
1P104 TEST_SEL
cix _D ‘ FF2_OUT
DTN20 DTN20 DTN20
Q Q Q
cik) cuk| cx] FF3_OUT
D .oz D Qz D Qz DATA_OUT
DFF1 DFF2 DFF3
EX210
—

Figure 4: LFSRs Outputs Multiplexed with ASIC Inputs [2]
First, a designer would take the LFSR sub circaod aimulate it by itself so that he can
observe the output pattern generated by the LF®R.dEsigner could then easily observe
the effect of different seed values on the gendratgput patterns. It is important if all the
2" -1 pattern that the LFSR can generate are noghgsed for circuit testing. A designer
would take a print out of the output pattern getestdy the LFSR and use it to verify that

the LFSR is producing the correct signal, when d¢bmplete circuit (the ASIC and the

12



LFSR) is simulated. Next, the device is set intd& mode and the LFSR generates the
inputs to the ASIC. The outputs of the completeut are sampled every clock cycle to
generate the expected outputs from the ASIC wighirtputs provided by the LFSR.

Once it is verified that the LFSR is producingreot inputs for the circuit, the resulting
simulation vector can be used to fault grade thegte Fault grading ensures that the test
vector set applied for the design will detect mawctiring defects, such as shorted

transistors and open metal lines.

2.3 True Random Number generator (TRNG)

A hardware true random number generator is an rel@ct device that generates truly
random and unpredictable binary numbers. The oyiptiern of a TRNG is arbitrary and
non-deterministic in nature, meaning that the outpoary numbers cannot be reproduced
even if internal design and seed of the generat@nown. As complete unpredictability is
the key aspect of the true random number generateeed given to the TRNG must be
random Fortunately, it is not so difficult to collect guunpredictable randomness by
tapping a chaotic world. Some of the examples ofsjgal random sources are, thermal
noise, shot noise, atmospheric noise, radioacteayland clock jitter. A TRNG can be fed
a seed from such a physical random process towgetandom outputs.

Another characteristic of TRNGs is that they aom-periodic in nature (as opposed to
PRNGSs), meaning that output binary pattern of a TRNs never repeated even if the same

seed is applied to the generator.

13



2.3.1 The Intel RNGs

Chip manufacturing companies such as Intel araudicy random number generators in
their chips [3]. This paper illustrates a hardwiaased Intel Random Number Generator for
use in cryptographic applications. Figure 5 shdwestilock diagram of the Intel RNG from

[3]. The Intel hardware random number generatoes kmsed on unpredictable analog
property such as junction or thermal noise. In thesign, Intel RNG samples the thermal
noise of undriven resistors by amplifying the vglaacross it. One significant problem
associated with this noise amplification technigwse that random components are
associated with local pseudorandom noise souraes &gl temperature and power supply
fluctuations. The effects of these sources aremaz@d by subtracting the signals sampled

from two adjacent resistors.

A i -
Noise Voltage High
» Amplifier Controlled Speed
Oscillator Oscillator
Johnson Thermal l l
Noise Source
(Resistor) Super Latch
Control/ -
Status Reg. FIFO Digital Corrector
h v
< Bus >

Figure 5: Block Diagram of Intel RNG from [3]
The Intel RNG uses two free-running oscillatorse dast and other much slower. The
thermal noise source is used to modulate the fremyuef the slower clock. The variable,
noise-modulated slower clock is used to start st €lock. The drift between the noise
modulated slower clock and the fast clock provittessource of random binary numbers.

Both oscillator signals are latched and then feth®odigital corrector. A Von Neumann
14



corrector converts pairs of bits into output biyschanging the bit pair (0, 1) into an output
bit 1, changing (1, 0) into an output bit 0, anc@®@ting no output bit for pair (0, 0) or (1,

1),

Intel’s early attempt to generate random numbedescribed above in section 2.3.1. This
approach includes ring oscillator based analoggdesif a RNG. An analog circuit
consumes lots of power and area. Every year, clakens are coming up with fabrication
processes at finer scales, and packing more ttarsis small area, which is very difficult
if the circuit has analog circuitry. Intel came with the design of a random number
generator that contained only digital hardware.

This digital random number generator includesam pf inverters, where the output of
each inverter is connected to the input of eaclertev. If the output of first inverter is 0O,
then the input of the second inverter is also @, #en its output is 1. If the output of the
first inverter is 1, the second inverter’s outpuit ae O.

But these inverters are placed with two transisia such a way that switching those
transistors forces the inputs and the outputs di boverters to the logic state 1. Figure 6
from reference [4] shows that the two transistares @nnected to a clock that regularly

turns both of inverters either ON or OFF.

15
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Figure 6: Intel RNG [4]

The two inverters in the circuit are not stableew all the inputs and outputs are in the
same state. The inverter circuit is stable wheniripat and output are of opposite states.
When these transistors are turned off, the tworieve, which were forced to have all their
inputs and outputs in same state, race forwarcctpise a stable state. Even though the
inverters are the same in design, there is alwasstle difference in the speed or strength
of their response. Thermal noise present withindiheuit of the inverters determines the
outcome of the inverter. One random output bitesagated at each clock cycle.

To make these output numbers even more randoml, diesigns a three stage circuit
which contains: the RNG, a conditioner, and a psemtlom-number generator. Figure 7

shows the block diagram for three stage process [4]

Pseudorandom-
Digital number
circuit Conditioner generator
Usas thermal Chacksand HIGH- Takestha
nojse to generate HAW combines: gg; Eg l:t 256-bitnumbers gi?i%%i#
astream of BITS palrs of SEEDS and creates 128-hit. IR
random bits 256-bit numbers that
atarateof 3 numbars: Intel's RdRand 3
3 gigahits } to makathem } instruction set }
per second s more secure ’ can use

Figure 7: Block Diagram for three stage process [4]

16



This RNG generates random output numbers at aofateound 3 gigabits per second. The
RNG starts by collecting 512-bits at a time, wharle the mostly random outputs of the
two inverters. Furthermore, the circuit divideste@package of 512-bits into a pair of 256-
bits numbers. To make numbers more random theynathematically combined or

conditioned in such a way that produces 256-bitsbers that are close to perfect. The
circuit takes two of these 256-bit values, multiphem together, and then collects the
upper 256-bits of the resultant 512-bit number. tN&xese 256-bit random numbers are
used to seed a cryptographically secure pseudonamdonber generator that generates
128-bit output numbers. From one 256-bit seed pdeidorandom-number generator can

throw out many secure pseudorandom numbers.

2.3.2 Uses of True Random Numbers Generators

True random number generators are suitable for nspecific applications, such as
government-sponsored lotteries, gambling, simuatiand cryptographic-based security
systems. True random number generators are fundahiezys to all aspects of security
requirements to protect sensitive information icomputer and telecommunication world.
Thus, it is important that hardware TRNGs usedgiemerating binary numbers are not at

risk to fail by knowing circuit algorithm or seeddlosure.

In [5], engineers from Intel presented a desigradDigital Coin Tosser’ for future
processors. Intel's engineers announced that tbhaid duild an all-digital true random-
number generator using the complementary metalees@mniconductor (CMOS) process

for chips with feature size as small as 32 nanorsete22 nanometers. They informed that

17



they had already made an all-digital random-nundesrerator using the 45-nm CMOS

process that has been used to build Intel processoce 2007.

The Intel engineer describes that this device @aregate billions of random numbers per
second at very low voltage. Every bit in eacingtof output binary numbers is the result
of “metastability.” Generally, a digital device'sitput is sampled when it has settled on a
definite value, either a ‘one’ or a ‘zero’. Metdstdy occurs when the voltage is sampled
during a bit transition, and the bit is caught esw ‘one’ and ‘zero’. The bit will settle
down to one state, but it is hard to predict wiside it will stay. The Intel researchers take
advantage of this process and sample the outpatybbits during transition. They improve
the randomness even more by tuning the metastabdithat the bit falls to ‘one’ or ‘zero’

with reasonably equal probability in random pattevhich is crucial for a coin flip.

2.4 Summary ofCharacteristics of Random Number Generators:

Below is the summary of the properties of a pseaddom and a true number generator.

Characteristic Pseudo Random NumberTrue Random Number
Generator Generator
Non-deterministic No Yes
Unpredictable No Yes
Reproducible Yes No
Periodic Yes No
Table 1
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The summary of suitable application of random hengenerators is given in Table 2

Uses Suitable Generator
Lotteries TRNG
Gambling TRNG

Security ( Data and Voice encryption) TRNG for seed

Simulation and Modeling PRNG and TRNG

Fault Grading ( Ex. Texas Instruments) |PRNG

Table 2

2.5 Clock Jitter based TRNGs

The period of oscillation for an ideal oscillatsragonstant, such that the time between the
consecutive rise and fall of edges would be sanme pgeriod of oscillation for a ring
oscillator composed of real elements is not comstamwever, because the time between
similar edges is not constant. The time period wfhsa clock is unpredictable. This
variation of the time period in a ring oscillatsrkinown as clock jitter (or phase noise). The
simplest ring oscillator is made by connecting addhbers of inverter gates in the form of
a ring as shown in figure 8, the output of one ¢reomes the input of the other gate. The
last inverter output is fed back into the firstenter such that the last output of a chain is
the logical NOT of the first input. The feedbacloyided by the last output to the input of
the first inverter causes oscillatiorA ring composed of an even number of inverters
cannot be used as a ring oscillator; in that cheeldst output would be the same as the

input of the first inverter which would create alde state, suppressing oscillation.
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Figure 8: Ring Oscillator using five inverter gates
The time period of a ring oscillator changes rangoigure 9 shows how the ideal clocks

are different from the clocks having phase noiselack jitter.

-— T —_— Iz = T3 =

Figure 9: Clock Jitter

A clock jitter property of free running ring oseitbr has been used for long time to
generate true random number generator as a souraedmmness. A very good discussion
of building a two ring oscillator based RNG is dttated in [6]. In this TRNG, a clock jitter
in a ring oscillator is used as a source of ndi$® TRNG is built with two ring oscillators
and three LFSRs 13-bit, 19-bit and 32-bit. One wsgillator clocks 19-bit LFSR and the
other clocks the 13-bit and 32-bit LFSR. Figurefrbdn [6] shows the block diagram of the

TRNG.
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Ring 13 bit — 32 bt
Oscillator LESR PRNG
Ring 19 bit
Oscillator LFSR
32 bit
XOR

I—Dsz bit TRN

Figure 10: Block Diagram of TRNG [6]

Adding an independent action of split rotation wo LFSRs gives a more uncertain output
sequence then the normally operating LFSRs. Anaesiticuit is added to provide split

rotation for the 19-bit LFSR and the 13-bit LFSRieTupper half bits of these LFSRs are
rotated left and the lower half bits are rotatedhti These two LFSRs are then
concatenated to generate the 32-bit long randonbausequence, and then XORed with
the 32-bit LFSR output to generate the final whatr82-bit random number. A similar

concept is used to design the TRNG of this thdssyever, the differences exist in the
design of the ring oscillators and the control segis for LFSRs, such as addition a
different independent action in 19-bit and 13-HSR. In this RNG, a ‘preloader’ is added

to reshuffle the 13-bit and 19-bit LFSR bits.

Another paper, [7], describes how the randomnelsgerk to the unpredictability of the
frequency of ring oscillators is used as a souffcdenplementing the true random number
generator. This approach uses counters clockedrdw-réinning ring oscillators and

sampled at a regular interval. As there is somerjéssociated with the clock, there is a
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small amount of uncertainty about any particuldugaf the counter, and the output of the
counter is random numbers at sample instants. Hemwvethe value generated by this
generator can be approximated, as path of the gemethrough the range of possible
values is fixed; that is, the generator always t®liy incrementing its output every clock.
To overcome this weakness, the path traversed éoygeerator as it counts, is varied by
changing the generator operation only at samplingtant. Normally, the function
performed by a counter is either incrementing arelmenting the number. If the function
is changed to an independent operation like leiftisy (doubling) only at the sample
instant, then the output value becomes more randbdading a tertiary independent
operation such as transposition at the samplingmigenerates even more random output.
The generator, which previously had only one phtbugh the range of possible values,
now has many more paths throughout the range dliflesralues. Thus, it can be seen that
adding more independent operations to the countesample instant increases the
randomness of the output sequence.

As shown in figure 11 from [7], the RNG is desdnwith two 16-bit counters to generate
a 32-bit random sequence: One counter counts uje wie other counts down. Dividing
the 32-bit counter into two 16-bit counters decesashe overall time required for
generating all possible bit signals. Each coungesr & unique ring oscillator. A secondary
operation is provided by a 32-bit logarithmic shiftvhere the 5-bit counter is clocked by
its unique ring oscillator that provides shift cotor the log shifter. A tertiary operation is
provided by adding a transposer unit that is 4:1tiplaxer. It selectively transposes bits in
one of four possible patterns. The output sequenogng out from the generator is truly

random.
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Clock

Figure 11: Random Number Generator [7]

2.6 RNG U.S. Patents of True Random Number Generat®

The US patent 6,581,078 was issued in 2003 to Siodliectronics SA.A for a true

random number generator [8]. In this invention, d@m numbers are generated by
combining a physical noise source’s signals witinals produced by a pseudo random
number generator. The combined signal is fed asput to the PRNG. The final random

output numbers are unpredictable thus suitablerfgatography.

The circuit of this RNG includes: a pseudo randommber generator, a physical noise
source, a logic circuit, a memory unit and an outpterface. The PRNG used in the
generator is based on a linear congruence algarifiira PRNG is characterized by the
eqguation x (n+1) = a*x (n) + b (mod c), where dstloutput signal is related to its previous
outputs. Here, x (n+1) is the last output signa &r(n) is the previous output signal. The

coefficients a, b and c are dependent on the wtalisharacteristic of the PRNG. The
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physical noise source is formed by shift regissampled at a frequency other than the
frequency of the central processing unit which ostmlling the whole circuit. The shift
registers produce a digital signal having a sizpr@mriate for the PRNG to receive the
digital signals as an input. The logic circuit isn@-input exclusive-OR (EX-OR) gate. The
memory unit receives the output signal from theugserandom number generator and
supplies this signal to the logic circuit. The aritof the memory unit is erased as soon as
it receives a new digital output signal coming frahe PRNG. The output interface
receives the generated true random numbers. Fidushows the block diagram of RNG

from [8].

NOISE [/
SOURCE

Se

E] 5" S)I’

N en

S MEMORY

3 | PSEUDO-RANDOM
\J NUMBER
GENERATOR

A
OUTPUT
Y INTERFACE

Figure 12: Block Diagram of RNG patent 6,581,078 &hm [8]
The operating principle of the circuit is as follewl'he physical noise source is sampled
either at a fixed frequency different from the @iirg frequency of the central processing

unit, or at a variable frequency produces digitghals. These signals are sent at a first
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input of the logic circuit. At the same time, themmory unit which stores the outputted
digital signals from the PRNG sends the digitalnaigto the second input of the logic
circuit. The logic circuit (EX-OR) combines theseotinputs (received from the physical
noise source and the memory unit) and feed asnihét iof the pseudo random number
generator. The resulting output signals from théNBRare true random digital numbers,
which are stored in the memory unit, and also xeszkby the output interface.

In the beginning, the memory element is emptythat case, the logic circuit sends an
intermediate digital signal similar to the inputigesignal to the PRNG as the input signal.
However, if the memory unit is not empty when atfirandom number is generated, it
sends a return signal to the logic circuit whilepgymg the contents of its memory. In
other words, the memory unit sends its informat@mthe logic circuit in the form of digital
signals immediately upon receiving a new digitghsil from the PRNG.

In summary, digital signals generated from a ma&snoise source are combined with
signals generated by a pseudo-random number genefae combined signals are fed to
the pseudo random number generator; the resultityjgub signals are true random digital

bits. The output random numbers are suitable fgstography.

The US Patent 7124157 was issued in 2006 to HMI| Cal. for a random number
generator [9]. In this invention, a random numbeneayator has an amplifier to amplify
noise signals generated from a noise source aridsandigitizer to digitize the amplified
noise signals. The digitizer includes a serial stagi which outputs serial digital random
numbers. The generator consists of a serial-parateverter, which converts serial digital

random output from the digitizer to parallel signdh order to adjust the probability of the
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output random numbers, a generator includes a &siking section, which can mask and
output some of the random bits. The bit maskindi@@anay mask bits controlled by an
external device. This generator also includes mgrwstore the generated output random
numbers.

The operation of the generator is as follows:e Thermal noise of a semiconductor is
used as a source of noise input for the generatos. signal is amplified by the amplifier
and the amplified signal is sent to a Schmidt &rggate, which converts an analog noise
signal to rectangular waves with a pulse width ksimio the magnitude of an analog noise
signal.

The output signal from the Schmidt trigger isutipd into the serial register, which is
mainly three D-flip flops connected in series atilig a sampling clock. The digitizer
digitizes a noise signal at the sample time andthput is random binary bits. The output
from the digitizer is fed to the serial-paralleineerter to convert the 8-bit parallel output
data.

The bit masking section masks some bits of th& Bandom number output. It has an OR
circuit which performs logical OR operation betwebka output data bit and the bit of the
masking register and masks certain bits of theaandata. The generated random numbers

can be used for an encryption system.
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CHAPTER 3 TRNG DESIGN

3.1 Overview

The TRNG in this thesis uses the clock jitter propef the ring oscillator as the source of
noise to generate true random numbers. A clocérjig described in section 2.5. The
principles behind the TRNG ASIC are to operate amEeedback Shift Registers (LFSR)
clocked by such ring oscillators to take advantaigthe unstable output frequency of the
oscillator. LFSRs are an easy way of generatinggseandom numbers. The basic design
of a LFSR is simply to have a shift register of iygpiate length that has feedback taps at
certain points. These taps are XORed togetherrta fbe input of the shift register. If the
right set of taps is used, then the LFSR can gémergpseudo-random sequence of the
maximum length without repeating. A design of tHeSR is described earlier in section
2.2 of chapter 2. A paper published by Xilinx lifte appropriate taps for maximum-length
LFSR counters of up to 168 bits [10].

There are 3 different LFSRs in this design: tBeébit, 19-bit and 32-bit LFSR, which have
taps to generate sequences of maximum length ramdonbers. Figure 13 shows the

block diagram of the TRNG design.
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Preload Preload

13 bit Ring Oscillator 19 bit
Ring Oscillator —> LESR LFSR

FSM ‘ b0-----b12 b13----b31 <

MUX ——> o/p ‘

Figure 13: Block Diagram of TRNG Design
The 13-bit and the 19-bit LFSRs are each clocked hgisy ring oscillator; each LFSR is
preloaded with its own output bits and the bits straffled before preloading. The output
binary numbers from the two LFSRs are concatenatg@nerate a 32-bit random number.
Another 32-bit LFSR which is clocked by the othiergroscillator has its own finite state
machine to control the LFSR operations, which gatesra 32-bit pseudo random numbers.
The outputs from the 13-bit and the 19-bit LFSRwaftare combined to make 32-bit

random numbers) and 32-bit PRNG are selectivepypéid (XOR). The output will be
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random number, which is then multiplexed to get 1Bebit output data bus that will be
either high or low word depending on a ‘word seliegut’. Below is the description of

each functional block.

3.2 Functional Blocks Description of the TRNG

3.2.1 13-bit and 19-bit LFSR

The 13-bit LFSR is made with shift registers witOR taps at 12, 3, 2 and 0 to provide
linear feedback logic. Another 13-bit register aglad to shuffle the output more, and a 13-
bit register that holds the output until the needd request. There are MUXs on the input
of the LFSR that input from either the shuffle stgr or back from the output of the LFSR.
The 19-bit LFSR is similar in design to the 13-bHSR. It has 19-bit shift registers with
XOR taps at 18, 5, 1 and 0 to provide feedbackeéd =SR. Similar to the 13-bit LFSR, it
has another 19-bit register to shuffle the outpatena 19-bit register that holds the output
until the next read request, and MUXs to input theput. Figure 14 shows the block

diagram of the 13/19 bit LFSR.

h 4

MUX

. 13/19 Bt | 13/1% Bit register
I LFSR

{latches)

v

Preloader

Figure 14: Block Diagram of 13/19 Bit LFSR
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When these LFSRs get a read request from the sysiey internally generate a pulse
called “did”. At the beginning of this pulse, tbarrent value of the LFSR is latched out,
while a special “preloader” shuffling of the bits stored in the LFSR. Here, these values
are being shifted based on a variable frequenakecko the amount of time it takes to shift
through these values is random. After this, theRESntinually shifts with taps at 18, 5, 1
and O for the 19-bit LFSR and 12, 3, 2, and O ffier 13-bit LFSR. This continues until the
next read request comes into the system. Also, EBRSIR provides an asynchronous reset

which sets all values back to 0.

3.2.2 32-bit LFSR

The 32-bit LFSR is divided up into two differentctiens. First, there is the actual LFSR
itself. It has taps from the following bits: 31,,21, and 0. It also has an input signal that
tells it when to shift, and another reset signalcwhresets the LFSR to all zeros. Second,
there is a finite state machine (FSM) for this LF8mRt controls the LFSR. This state
machine makes sure that the LFSR shifts exactlyi3@s and then stops until it needs to
generate a new number. This is to make sure teadlthnumber is entirely shifted out, so
that the new random number will contain all nevs bit

The FSM and the LFSR have been partitioned imto different parts to ease the

implementation. To do this it has two 2-bit staéeiables, and a 5-bit counter. There are
also the 32-bit shift register, a 32-bit registehbld the output, and four control registers.
The LFSR and the counter will have to be resetna¢d, so these 37 will have to have

‘reset’ functionality, while the other 40 can ju standard D-FFs. Then, there is the linear
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feedback logic with three XORs and inverter. Thare various MUXs that control what
happens depending on the state of the FSM.

The FSM controls when the PRNG generates randonbars. It takes a reset, clock, and
read signal, and outputs a ready signal and atiatés used in the 32-bit LFSR.
The LFSR shifts the value while the state inputOi&”, which is the input given by the

FSM to control the shifting. Figure 15 shows tlheck diagram for 32-bit PRNG.

Reset
e
LFState[1:0]
Clock >
E— FSM . —
Ready | 32-bit PRNG
Read 4 32-bit Random
—_— Number

Figure 15: Block Diagram of 32-Bit PRNG

3.2.3 Ring Oscillator

The design of the ring oscillator is based on tesigh that has been described in paper
[11]. Two ring oscillators are used to provide &laignals in this TRNG design. One ring
oscillator clocks the 19-bit LFSR and the othegroscillator provides clocks to the 13-bit
LFSR and the 32-bit PRNG. The ring oscillator tisatised in this design is not that large,
but is fairly complicated in construction. Firgshe input frequency select signals are
latched, back to back, into the system to redueenthtastability of the clock. Then these
latched select lines are decoded into four onesigials that select what frequency is

being used at the moment.
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Second, it has the actual oscillation ring. Tingt part of this is fairly standard; it's
simply a chain of inverters. The output of thiste®tis selected by sel,x Then there are
three more sections of this chain which are singslyinverter followed by a NOR gate.
The output of each of these sections is selectedebyg.; down to sel_x in that order.
Each of these NOR gates not only have the invéeésre them as an input, but also the
select line of the signal before it. This disaltles last part of the chain which is unused
and forces those outputs to be low. This prevelitishgs when the frequency select lines
switch to a slower clock frequency.

Each of the output clock signal are then routéd an AND-OR block using NANDs.
Using this, each of the signals is selected onllgefassociated sel_x line is high. Then, the
output of this block runs into another inverter efhthen runs into a NOR gate along with
the ‘reset’ signal and the ‘notRun’ signal. Thisigly prevents the clock from oscillating
when the clock is disabled. The output of this N@&e is the clock signal that is
outputted. This signal is also routed back arotnthe beginning of the inverter chain to
make the signal loop, so that oscillations canioaet Figure 16 shows the block diagram

of the ring oscillator.

Inverter/ - .
Inverter > NOR »  NAND »  Inverter
7'y
A

A

NOR

Latches » Decode v‘
o/pP

Figure 16: Block Diagram of Ring Oscillator
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3.2.4 NAND/XOR Block
This block inputs the 32-bit data buses from thebit®nd 13-bit LFSRs and the 32-bit
data bus from the PRNG and inhibit signal for edldiie output is a 32-bit bus which
implements the function:
(DatalNANDT_ Inhibit) XOR (DataNANDP_ Inhibit).

The ‘true and pseudo random number inhibit’ sigaae helpful for debugging purposes.
Setting any of those signals disables the valuesitoer the TRNG or the PRNG from
being output, so that they can be examined onetiasiea The block diagram is shown in

figure 17.

Datal[0:3]
4D9—}
P_Inhibit

\ Randondata
~ | (31

Dat&2[0:3]
Ty e }

Figure 17: NAND/XOR Circuit

3.2.5 Output Block
To facilitate the pin limitations of the tiny chfpr fabrication, multiplexing of the output
pins was required to get the 32-bit output to théside world. It accepts 32-bit random

numbers and generates a 16-bit output bus that beilleither the high or low word
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depending on a ‘word select input’ at the outputhef TRNG. This block contains latches
and MUXs to store and output a 16-bit data buseesgely. When the ‘most significant
word’ line is high, the latched high word is cottgutput, and when it is low the current
‘least significant word’ is passed straight throughthe 16-bit output bus. The block

diagram is shown in figure 18.

> Random_data

Random_data [15:0]
31 :0_] [ D Flip Flop MUX >

rdReady [

rdMSW

Figure 18: Output Circuitry

3.3 Design Implementation

Following are the steps to describe the design odetlogy of each block.

1. The VHDL code was written for each functional bldokpartition the design into

relatively small pieces which could be implemeritedividually.

2. The Mentor Graphics Modelsim and the Leonardo $petivere used to simulate
the behavioral VHDL description and synthesize iatogate level (structural)

Verilog description.
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3. The Design Architect (DAIC) was used to create aedfy the schematic and
symbol from the gate level description. The ELD@ugiation was run for each

schematic to make sure that it functions correctly.

4. The IC station’s Schematic Driven Layout (SDL) featwas used to lay out each

functional block.

5. The Layout Versus Schematic (LVS) check was ruqueatly to be sure that each

block was wired the same as the schematic.

6. Finally, the MachTA was used for the post layoumdation for each functional
block and then to verify a top level design layout.
Figure 19 shows the IC layout of the TRNG. The dhyput area was 30Q860001. There
were 20 pads aligned horizontally at each sidepdds vertically at each side and four
corner pads to connect altogether. Six types ofspagre used: input(PadinC),
output(PadOut), unconnected pins(PadSpace), cqrad(PadFC), VDD(Padvdd), and
GND(PadGnd). When they were aligned properly itocdled an exact area of
3000.*6000M to fit a chip design layout inside the frame.
Looking from the top, the first layout placed was 32-bit LFSR along with the PRNG
FSM., two ring oscillators were placed below theN@Rlayout and the 19-bit and the 13-
bit LFSR were located just underneath them. Athb#om, the AND-XOR layout and

output stage layout were placed.
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Figure 19: TRNG Chip Layout
Once the design was completed and successfullylatiea, it was sent to MOSIS for

fabrication in AMIO5 technology.

3.4 Chip-Level Functional Description

This TRNG chip has a total of 20 output signals aBdnput signals, power signal VDD

and GND signal. Table 3 lists a description ofdperation of each pin.
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Pin Name Description

VDD 5V power input

GND Ground signal

busRst Reset signal

busCS Chip Select

busOBO On Board Oscillator select line

busiRun Run signal

busMSW High/Low word select line

T _Inhibit inhibit true random number control line
P_Inhibit inhibit pseudo random number control line
busC19Fix LRO19 fixed frequency select line

busC19SJ0,1] LRO19 external frequency select lines

busC13Fix LRO13 fixed frequency select line

busC13SJ0,1] LRO13 external frequency select lines

busO[1,2]I external oscillator inputs

busO[1,2]O external oscillator outputs

busDatal0,..,15] random number output lines

busAck[1,2] TRN and PRN acknowledgement lines

Table 3: Input/output pin descriptions of ASIC
The overall chip was controlled by relatively feigrels. The reset, run, chip select, and
word select inputs were the most important for all@perations. Here is the description of

each signal.

1. The ‘reset signal’ resets all LFSR flip flops, dites the ring oscillators, and

restarts the pseudo random number generator
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. The ‘run signal’ enables a generation of the clmignals and the LFSR
computations.

. The ‘chip select’ signal affects the read requeptiis to the different LFSR’s, and
affects when the outputs are stable.

. The ‘word select input’ selects between the ‘leask the ‘most’ significant word
to output to the 16-bit data bus. It also signaleemw to generate a new random
number.

. The ‘true and pseudo random numbers inhibit sigresls used for debugging
purpose.

. There are two ‘ACK’ outputs that inform the useremhthe PRN or the TRN is
ready for reading.

. The 16-bit data output bus is the output for theegator. Finally, there are clock

related signals that allow the most user-contrahefbehavior of the chip.

There are two clock inputs that can be used tcacepthe ring oscillators. An ‘on board

oscillator’ select signal is used to select betwd#enexternal clocks and the internal ring

oscillators. There are also two clock outputs.hié ton board oscillator’ select line is

enabled, and the ring oscillator clock signals @rgut, otherwise the external oscillators

are routed through those output lines. If the maéring oscillators are being used, there

are six other signals used for changing their feeqy by selecting which stage the final

clock signal comes from. There is one fixed frequyeselect signal for each ring oscillator.

In addition, each ring oscillator takes two freqeserselect lines to choose one of four

possible frequencies (output stages). The fixequieacy select signals determine whether

or not the frequency select lines are chosen eailgrar internally.
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The initial setup for general operation of the RNRp is performed by disabling the
‘reset’ signal, enabling the ‘run’ and ‘chip selesignals, and disabling the ‘word select
line’. Either the ‘true’ or ‘pseudo inhibit signalsan be enabled to disable one of the RNG
sources on the output. Also, the system clocksbeaset up to use a variety of sources. For
instance, if the ‘on board oscillator’ is disablége frequency select signals don’t need to
be set, but two external clocks must be input. I@ncontrary, if the ‘on board oscillator’ is
selected, the external clock inputs are unnecessdrihe frequency select signals must be
set to the right mode. Usually, the user will wamset the fixed frequency select signals
low, so that the frequencies will vary randomly otime, based on certain TRN bits. The

fixed frequency select signals are most likely éaulsed for debugging purposes.

Once the control signals are set up, the actualgssing occurs after the ‘run’ signal goes
high. If the ‘chip select’ is high, the true randaramber should be ready in just a few
clock cycles, and the TRNG's ‘ACK’ signal should bmh. The PRNG will take at least
32 clock cycles to complete generating its numb&hen it is complete, the PRNG's
‘ACK’ signal should go high. The value should remaigh until the ‘word select line’ is
pulsed high to read the ‘most significant word’. &dhthe ‘word select line’ goes low
again, the next pseudo random number should begimpating. The next true random
number is also latched few clock cycles after twerd select line’ goes low. In other
words, the user should only have to wait for ‘AGK’be high, read the LSW from the data
bus, pulse the ‘word select line’ high for a timbile reading the MSW of the RN from the

data bus, and set it low again to begin a new Ri¢iggion.
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3.5 TRNG Chip Simulation

3.5.1 Simulation with External Clocking
Figure 20 shows a random number computation with ¢hip running off of external

clocks.
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Figure 20: Chip Simulation with External Clocking
The ‘busO10’ and ‘busO20’ are the clock signald Hra being used as the two clocks in
the design. The ‘busO20’ clock signal has signiftbahigher rise and fall times. This is
because this clock runs the 13-bit LFSR, the 32-BBR and the 32-bit FSM, while the
other clock only runs the 19-bit LFSR, so it hamach higher capacitance to drive. As
long as ‘busOBO’ signal goes low, the internal bastr does not affect the computation,
so the value of ‘BusC13Fix’ and ‘BusC19Fix’ signdlave no effect on operation. The

output data bus undergoes 32 transitions beforie tothe ‘Ack’ signals go high. This is
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the 32-bit LFSR completely shifting out the old walbefore signaling that it is ready. The
output value changes when the ‘busMSW’ value gagis Ibecause it is then displaying the
high order word of the 32-bit value computed. Thehen the ‘busMSW’ signal goes low,
the logic begins computing the next value. Tablgives a summary of status of control

signals to run the chip with external clocks.

Control Signal [Status
busRst Low
busCS High
busOBO Low
busiRun High
busMSW Low/High
busAck2 High
busAckl High
Table 4

3.5.2 Simulation with Internal Clock

The normal mode of operation of the TRNG chip isrkirg with the internal clock
running at a random frequency. The ‘busOBO’ siggaés high which indicates that
internal ring oscillators are selected to genecdbek signals for the LFSRs. It can be
noticed that the'busO10’ and ‘busO20’ clock sigreais not following the external clock
sources now. The ‘busC13Fix’ and ‘busC19Fix’ signgd low, so that frequency provided

by the oscillator varies randomly depending on TN bits. The 32-bit LFSR is being
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inhibited by setting P_inhibit signal high. The ‘KT signal goes high when true random
numbers are ready. The ‘busMSW’ signal goes lovetal the ‘least significant word’ and
goes high to read the high order word of the 32hiput data. Table 5 summarizes the
status of control signal in normal mode operatiow digure 21 shows the MachTA

simulation of the TRNG chip generating the trued@n numbers.

Control Signal [Status
busRst Low
busCS High
busOBO High
busiRun High
busMSW Low/High
busAck2 Low
busAckl High
Table 5
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Figure 21: TRNG Chip Simulation with ring oscillators providing clock signals
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CHAPTER 4 TRNG TESTING

The TRNG testing was divided into two stages. Faoisip functionality was tested to verify
its operations of all signals, such as to checKuhetion of each block and then as a whole
chip. Once chip testing was done successfully,ai$ wn for a long time to generate and
gather the random numbers.

Next, testing was performed on the random numlgerserated from the chip. The
numbers outputted from the RNG should be randonugmdo meet the cryptographic

standards such as those set by the FIPS and tAe NIS

4.1 Test Board for RNG ASIC
To perform the first level of testing, a small ped circuit board (PCB) was designed so
that the RNG could be fixed to the test board toand generate random numbers.

Figure 22 is the block diagram of the test boditus test board containing the RNG is
equipped with a voltage regulator which converts iBgut to 3.3V output voltage to
provide power supply to the RNG ASIC. It has heageovided to connect four ‘on board
oscillator’ outputs of the RNG, so that an oscitlgge can be attached to each oscillator
output to verify its oscillations. Another set otdders are used to attach external
oscillators to the RNG in the case when ‘on boagdllators’ are not working. There are
also headers to connect the RNG output data bud) that an oscilloscope can be
connected to read the output data bits. Finallgrehs a circuit which has transceivers and
decoders that controls the signals which are nacgs$s run the RNG ASIC properly. This
test board can be connected to any microprocesggerterate and collect random numbers

for a longer period.
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Figure 22: block diagram of the test board
The Mentor Graphics PADS tool was used to design dthematic and layout of the
printed circuit board. The PCB was designed asua lfyered board: top, bottom, power
and ground. To reduce the effect of crosstalk aekfierence, the top and bottom planes
were designed as signal planes, and the power emohd) planes were designed on the
inner layers. Once the PCB layout was completed, dppropriate Gerber file was
generated and sent to ‘Advanced Circuits’ for thbrication. After the test board was
fabricated, it was then populated. The RNG IC westailled in a socket and could be

removed easily when needed.

4.1.1 Hardware Equipment Used for RNG Testing
Gumstix was used to interface with the RNG testdo@umstix is a company established

by Gordon Kruberg in 2003 which manufactures skiglard computers. As the name
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refers, these computers have a motherboard as asnalstick of gum. These computers are
pre-installed with Linux Kernel 2.6.2 operating t®ym. Gumstix also provides a variety of
feature-rich expansion components such as genemabge input/output (GPIO), additional
serial ports, compact flash cards, USB connectidtirernet and different power sources
which can be easily connected to a motherboard. SBynmotherboards come in two
different configurations: Overo Earth and Verdex-Pr

In this thesis, the Verdex-pro motherboard wasdust was connected with two other
expansion boards: Breakout-vx and Netpro-vx andwthele setup was used to network
with the RNG test board. The entire assembly (Meqat® motherboard + Breakout-vx +
Netpro-vx) is referred to as “gumstix” in this tileedigure 23 shows the block diagram of

the gumstix setup networked with test board andragnal computer.

More information can be found emvw.gumstix.com, www.gumstix.org
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Figure 23: block diagram of the hardware setup toést RNGs
The Verdex-pro motherboard contains a PXA270 miaogssor manufactured by Marvell
with Xscale technology running at 400MZ. It alss ltd MB of RAM, 16 MB of Flash and
a 60-pin Hirose 1/0O connector. The Breakout-vx exgian board was connected with the
motherboard for easy access to the GPIO lines trartest board. The ‘Netpro-vx’ was
attached to the gumstix motherboard so that thdempamstix setup can be connected to a

PC with Ethernet.
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Once the gumstix was connected to the RNG tesidbmad the whole setup was attached
to a PC through Ethernet, software was developetbhdrol the RNG and generate and
upload the random numbers to a PC.

A total of 24 GPIO pins were used to interface wtlke RNG test board: 16 GPIO pins

were attached to the 16-bit output data bus oteékeboard, 6 GPIO pins were attached to
control signals, and 2 GPIO pins were used to peyower and ground signal to the

gumstix.

C code was written to control the gumstix and @ board set up. In order to generate
random numbers from the RNG, values were assignembiitrol signals. Below are the
steps that describe how the control values weligrass through programming.
1. To assign the control signals, 6 GPIO pins wereugetn the ‘OUT’ mode and
values were allotted to those pins. For exampldOGEH is assigned to chip select
(CS) signal, and it should be ‘Set’ to run the Rbl@p. Here are the lines of code
for this operation:
gpio_function (11, GPIO);
gpio_direction (11, OUT);
gpio_set (11);
Similarly all the control signals were assignétler ‘Set’ or ‘Reset’ using the C code.
2. For reading the generated bit from the RNG, 16 pinGPIO were put in the ‘IN’
mode so that the value accepted could be read bwikg the status of the GPIO

pins. If GPIO pin is ‘Set’ (high), the output RN@ I3 1, and when GPIO pin status
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is ‘Reset’ (low), the output RNG bit is 0. Heretlee example of code to read the
generated bit. The GPIO 16 is assigned to reaek%$d significant bit’:
gpio_function (16, GPIO);
gpio_direction (16, IN);
b0 = gpio_status (16);
After reading the status of the GPIO 16 that careitteer ‘Set’ or ‘Reset’, the value is
stored in b0. Similarly, all output data bits canrbad.
Once the GPIO pins were allotted in the correct enadd assigned the proper value. As

soon as power was switched ON, the RNG startedrgtng random numbers.

The Logic Analyzer was helpful to observe the RNGI@ functionality and to verify
random data generation. The Logic Analyzer was eoted with the test board. All of 16
channel of the oscilloscope were attached to thkitléutput data bus. Figure 24 shows the
screenshot of random number generation from thdrdmeik MSO 4034 Mixed Signal

Oscilloscope.
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Figure 24: Random Number Generation
The screenshot illustrates that all 16 bits arenghrey randomly providing first LSB then

MSB.
4.2 Randomness Testing of Random Numbers

Various statistical tests are designed to testetttent of the randomness of the random
numbers. These tests help to detect any kind okmess a random number generator
might have. For example, the very basic test fadoan numbers is that the probability of
occurrence of 0's and 1’s in the sequence shoultbbghly equal. Too many 0’s or too
many 1’s in the sequence would disqualify the nusiffrem being random.

A range of tests are developed to test the rand@mbers which verify for presence or
absence of certain ‘pattern’ and if not detectemsaered being nonrandom sequence. The
NIST 800-22 test suite has 15 statistical testde®i the randomness of long binary
sequence generated by any hardware or softwarel pgseidorandom number generators.

If random numbers do not pass the statistical téstein be considered as pseudo random
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numbers and can be discarded as being true randorbers and if the random numbers do
pass the entire statistical test, it can be acdegsetruly random numbers. However, these
statistical tests provides only probabilistic ideat is, the properties of a random binary
sequence can be characterized and illustrated rinstef probability as there is no
mathematical proof that binary sequence is trutgcan [12].

The NIST 800-22 statistical tests are explainelds.

1. Frequency (Monobit) Test: This test gives a venydamental proof of the absence
of randomness in a binary sequence; if this tett faobability of failing other
statistical tests is high, so it is recommendedutothe frequency test first. The test
focuses on the amount of ones and zeroes in tlive domig sequence. The test fails
if total number of 1's and 0’s are not approximgaitual in the sequence.

2. Frequency Test within a Block: This test focus loa quantity of 1’s within blocks.
The purpose of this test is to find out whetherdbeurrence of 1's in a M-bit block
is approximately the half of the block size as etpe as for truly random
sequence. For M=1, this test is equivalent to tieglrency test.

3. Runs Test: This test measures the total numbarsf in the sequence, where a run
is defined as continuous stream of identical k@tthér all ones or all zeros) present
in the sequence. A run of lengthhasn identical bits that are enclosed with an
opposite bit at the start and end of the run. Tures test determines whether the
number of runs of ones and zeros of various lengtesent in the sequence as
expected as for random sequenc

4. Test for the Longest Run of Ones in a Block: Tlkeist tmeasures the longest run of

1's within the specified bit block size. The teaild if the length of the longest run
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of 1's within the tested block does not match gseeked as in a random sequence.
If there is an irregularity in the expected lengfithe longest run of 1’s, it is most
likely to have an irregularity in the expected léngf the longest run of 0’s too.

. Binary Matrix Rank Test: The binary sequence istraged in rows and columns of
matrices. It then calculates the rank of matrixheck for linear dependence among
fixed length of bit strings of the original sequend@he test fails if it detects a
deviation of the rank distribution from that coesding to a random sequence.

. Discrete Fourier Transform (Spectral) Test: The tdserves the peak heights in
the Discrete Fourier Transform of the binary segeeifhe purpose of this test is to
find out periodic patterns that are close to eableroin the sequence. The test fails
if the number of peaks exceeding the thresholdyrsfscantly high.

. Non-overlapping Template Matching Test: The focfights test is to detect the
number of occurrences of pre-specified non-peripditern in a specified bit block
size. If the pattern is not found, the search befiom the next bit position of the
block. If the pattern is found, the block is resethe bit after the found pattern and
the search starts again. The test fails if too n@ourrences of the pattern found in
the sequence.

. Overlapping Template Matching Test: The test isilainto the Non-overlapping
Template Matching test. The difference from thevabtest is that if the pattern is
found, the block slides only one bit and the se@atontinued again. The test fails

if too many occurrences of the pattern are fountthénsequence.

. Maurer's “Universal Statistical” Test: The test elgs for the number of bits

between matching patterns in a binary sequence. plilpose of the test is to detect
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the sequence that can be compressed without losgooimation. The test fails if
sequence is compressible.

10. Linear Complexity Test: This test computes thegtbrof a linear feedback shift
register (LFSR) that would be needed to generage kit pattern. A random
sequence should be complex enough to be charaxddrzlonger LFSRs. The test
fails if the size of the required LFSR is too small

11. Serial Test:This test searches for the occurrence of all ptessiverlapping
patterns of specified bits in the entire binarywsage. The number of occurrences
of each overlapping patterns should approximated dame. The test fails if the
frequency of overlapping pattern is not uniformr Bwe case of 1-bit patterns, the
Serial test is equivalent to the Frequency test.

12. Approximate Entropy TestThis test compares the occurrence of all possible
overlappingm-bit patterns with(m+1)-bit patterns in the entire binary sequence.
The test fails if the frequency of overlapping e®f two consecutive lengthm(
andm+1) is not as expected as for random sequence.

13. Cumulative Sums Test: The Cumulative sum is catedl by transferring the [0, 1]
stream to the appropriate [-1, +1] sequence bygusir 2a — 1; where as the
original bit pattern. The cumulative sum randomknialderived from partial sums
within the new sequence. The test fails if the esioms of the random walk are too
large or too small relative to the expected behavidhe random sequences.

14.Random Excursions Test: In this test cumulative ssingalculated by taking a
random walk that begins at one point consideretdetcorigin and return to that

point. The cumulative sum is calculated in similay as described in the above
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test, the sum is derived after the [0, 1] sequént@ansferred to the appropriate [-1,
+1] sequence. This test actually examines seriesgbit tests, such that how many
times each of the states: -4, -3, -2, -1 and +1,+82 +4 run into the random walk.
The test fails if there are deviations from theeotpd number of visits to various
states in the random walk.

15.Random Excursions Variant Test: This test determthe total number of visits for
particular state in the cumulative sum random waitkis test measures deviations
for eighteen states [-9, -8, ..., -1, +1, +2, ..., #9here the random excursions test
walks for only eight states. The test fails if @tects deviations from the expected

number of visits to various states in the randortkwa

4.3 FIPS Certification

Federal organizations and the community rely optography to protect information and
data transfer used in electronic communicationgptographic modules are implemented
in systems to provide cryptographic service sucboasidentiality, reliability,
authentication and security requirements. Fedgahees and the community can benefit
from the use of tested and validated products #sowi adequate testing of the

cryptographic module can result in insecure conseces.

In 1995, the National Institute of Standards drethnology (NIST) established the
Cryptographic Module Validation Program (CMVP) faalidating cryptographic modules
to the Federal Information Processing Standard$3F1140-1 which is a security

requirement for cryptographic modules, and oth&S~tryptography based standards. The
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CMVP is a collaborative effort between the NIST athd Communications Security
Establishment Canada (CSEC). In 2001, the FIPS 2140Gas released for security
requirement for cryptographic modules, and this $&mndard took over the FIPS 140-1 test

standard [13].

United States and Canadian federal agencies agushiles conforming to the FIPS 140-1
and 140-2 for the protection of sensitive inforroati The secretary of state made
adherence to the FIPS standard for the protectioseasitive data mandatory. This
standard is applicable to all federal agencies tisat cryptographic based security system
to protect sensitive information in computer anédemmunication systems including the

voice systems [14][15].

Here are the approved pseudo and true random nugeherators for the FIPS 140-2 [16].
Approved Pseudo Random Number Generators

1. Digital Signature Standard (DSS), Federal InforomatiProcessing Standards
Publication 186-2, January 27, 2000 with ChangeddcetAppendix 3.1.

2. Digital Signature Standard (DSS), Federal InfororatiProcessing Standards
Publication 186-2, January 27, 2000 with ChangeddcetAppendix 3.2.

3. American Bankers Association, Digital SignaturesngsReversible Public Key
Cryptography for the Financial Services Industrip§A), ANSI X9.31-1998 -
Appendix A.2.4.

4. American Bankers Association, Public Key Cryptod¢mafor the Financial Services
Industry: The Elliptic Curve Digital Signature Algthm (ECDSA), ANSI X9.62-

1998 — Annex A.4
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5. Recommended Random Number Generator Based on ABISILXAppendix A.2.4
Using the 3-Key Triple DES and AES Algorithms, Janu31, 2005.
6. Recommendation for Random Number Generation Usiateininistic Random

Bit Generators (Revised), Special Publication 800March 2007.

Approved True Random Number Generators

There are no FIPS Approved true random numbegrgéors
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CHAPTER 5 TEST RESULTS

Long streams of the output numbers of the RNG wgatbered and uploaded to a PC for
testing the randomness of the random numbers. @emeaired random numbers were
stored statistical tests were performed to detezrathether they were random enough to

pass the FIPS 140-1, FIPS 140-2 and NIST 800-2&a@gyaphy standard test.

5.1 FIPS 140-1 and FIPS 140-2 Test Results for tRNG ASIC
As the RNG ASIC was verified for its correct furctality, generated random numbers
were stored in a binary file and the statistical suites FIPS 140-1 and FIPS 140-2 were
run on the data. C code for FIPS 140-1 and FIPt&Pwas written by Samuel T. Mitchum
was used to run binary files.

A total of 625 words of 32-bit (20,000 bits) ramd numbers were required to run the
FIPS 140-1 and FIPS 140-2 test suites. One hurinedly files of 20,000 bits were run for
these tests and 80% of them passed the tests sfudlyesThe test results are shown in

Figure 25 and Figure 26.

FIPZ 140-1 total errors found: O

Funs:
out of main loop
rootl gumstix-custom—wverdex: ~!

Figure 25: FIPS-140-1 on RNG Data
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Tut of main loop

rootfgumstix-custom—verdex: ~!

Figure 26: FIPS-140-2 on RNG Data
5.2 NIST 800-22 Test Results on Random Numbers
The NIST 800-22 statistical test suites were rurttendata of 100 sets of 2,000,000 bits
(total of 200,000,000 bits). Once a total of 200,000 (two billion) bits were stored in a
binary file, it was given as an input file to théSY 800-22 test suite software. After the
statistical tests code ran successfully, it geedrathe ‘final result analysis’ report
computing the resulting value for each test. Somehe tests generate multiple values so
the average of the total values was computed afrnihleresult for the test. The NIST 800-
22 test results of the RNG data are tabulated bi€l@. The test that did not pass the NIST

800-22 is marked with an asterisk.

58



Test TRN

Frequency 0.6800 *
Block Frequency 0.6700 *
Runs 0.6700 *

Longest Run of Ones 0.9700

Binary Matrix Rank 0.9400 *

Discrete Fourier Transform0.9800

Non-overlapping Template|0.9262 *

Overlapping Template 0.9000 *

Maurer’s Universal 0.9400 *
Linear Complexity 0.9700
Serial 0.9150 *

Approximate Entropy 0.6800 *

Cumulative Sums 0.6800 *

Random Excursions 0.9872

Random Excursions Varian®.9954

Table 6: NIST 800-22 Test Results for RNG
The NIST 800-22 statistical tests are useful fadging and evaluating the randomness of
the binary sequence produced by the generator.180rsets of data, each set having
2,000,000 bits, a passing score suggested by tG& RB00-22 is 96%; that is, the test fails
if it scores 95.9% or below whereas it is considdgpepass if it scores 96.0% or above.
This RNG passed 5 tests out of the total 15s$izai tests. Failing the above test indicates

that the bit patterns found in the sequence areasotonsistent as expected for truly
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random sequence, meaning that the occurrence of bdrpatterns was either more or less

frequent than the average.

This chip failed the frequency test and block fremmgy test, meaning that the binary
numbers generated from the chip did not have eguabers of 1s and Os in a stream or in
the M-bit size block. As described earlier in sectéd.2, the RNG outputs should have
roughly equal numbers of 1s and Os in a sequenpadse the frequency test and the block
frequency test

Also, this RNG did not generate equal numbers bithength runs (continuous streams of
all zeros or ones) as expected as to be randonfaded the ‘Runs test'.

The chip failed ‘Binary Matrix Rank test’, asdiétects a deviation of the rank distribution
from that corresponding to a random sequence.

The chip did not pass ‘Non-overlapping Templaad ‘Overlapping Template’ tests,
meaning that it generated either too many or vewy pre-specified non-periodic patterns
in the binary sequence.

It failed the ‘Maurer’s Universal Test,” which ares that there were sequences that could
be squeezed without losing information.

Failure of the ‘Serial Test’ indicated that oaeurces of all possible overlappipgtterns
of particular bits in a long binary sequence westaonsistent.

It did not pass the ‘Approximate Entropy Test’anang that there were several m-bit and
(m+1) bit overlapping patterns present in the ertinary sequence.

Finally, it failed the ‘Cumulative Sums Test,” améng that random walk (partial sums

with in binary stream after transforming origindl, [1] pattern into [-1, +1] pattern)
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expedition was not as relative as expected for rir@lom sequence. These tests are

described in detail in chapter 4.

5.3 Whitening Random Numbers

The process of combining (XOR/XNOR) the outputshd TRNG with the outputs of a
LFSR is termed as ‘whitening’. This procedure im@® the randomness of the final
outputted numbers and is widely used in cryptogyapigure 27 shows the block diagram

of the whitening process.

True random

bits _
Whiten date
XOR/XNOR
—
Pseudo
random bits

Figure 27: Whitening

‘Whitening'’ is described in [17, section 2.4.2], ialn states “The linear combination can be
realized by adding and subtracting or XORing the tvets. Equation 2 illustrates this

principle.

Equation 2 Variance of TRNG XOR PRNG
Vix*y)=Vx)+V(y)
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Since a TRNG is independent of any LFSR based PRMGirtue of its definition,
Equation 2 shows how the output of a TRNG can bgssically improved by XORing it

with the output of an LFSR....... ”

In this research, this approach was used to enatethe RNG data passed all the
statistical tests on the RNG data. The random awipta were whitened and the whitened
data were applied to the NIST 800-22 statisticdtiesu A 32- bit whitening PRNG has a
32-bit LFSR that clocks the LFSR exactly 32 timetween samples. A design of such
PRNG is described in [17, section 5.3.1]. Here, r6gpam of whitenPRNG that was

originally written by Samuel T. Mitchum was usedwibiten the RNG datalhe software

generates pseudo-random numbers and takes bimargffrandom bits as input. It then
combine (XOR/XNOR) the pseudo random numbers withrandom numbers generated

from the RNG chip to output final whiten data.

5.4 NIST 800-22 Test Results on Whitened Random Nurars

Whitening was done in two different ways. In thestfimethod, half of the bits of the RNG
(the odd bits 1, 3, 5...) were XORed and half ofltite (even bits 0, 2, 4...) were XNORed
with the 32-bit maximal length LFSR, which is defth by ‘Xilinx Application’. This
whitened RNG data were used to run the NIST 80@22 suites and the results of the
XOR/XNOR whitening data are tabulated in Table e Wvhitened data passed all the tests

of NIST 800-22.
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Test Whitened TRN

Frequency 0.9900
Block Frequency 1.0000
Runs 1.0000
Longest Run of Ones 0.9800
Binary Matrix Rank 0.9900

Discrete Fourier Transform 1.0000

Non-overlapping Template 0.9895

Overlapping Template 0.9900
Maurer’s Universal 0.9900
Linear Complexity 0.9900
Serial 0.9900
Approximate Entropy 1.0000
Cumulative Sums 0.9950
Random Excursions 0.9952

Random Excursions Variant [0.9929

Table 7: NIST 800-22 Test Results on Whitened RNG
Other deviation from this approach is that the R#i®a were whitened by only XNORing
the 32-bit random numbers of the RNG with the 32sbiputs of the LFSR. Whitened data
were given to the NIST 800-22 tests and the resmédabulated in Table 8. Whitened data

XNORed with the RNG data passed all the tests 8&TNB00-22 statistical suites.
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Test Whitened TRN

Frequency 0.9900
Block Frequency 0.9800
Runs 1.0000
Longest Run of Ones 0.9900
Binary Matrix Rank 1.0000

Discrete Fourier Transform 1.0000

Non-overlapping Template 0.9903

Overlapping Template 0.9900
Maurer’s Universal 0.9900
Linear Complexity 0.9700
Serial 0.9950
Approximate Entropy 0.9900
Cumulative Sums 0.9900
Random Excursions 0.9848

Random Excursions Variant [0.9890

Table 8: NIST 800-22 Test Results on Whitened RNG
Looking over the test results of whitened datagah be noted that there is not any
significant difference with whitening using eithenly XNOR or both XOR/XNOR. In
both approaches whitening data eliminates the sistency of the patterns present in the
sequence, and improves the randomness in datagbrarglom standards sets by the NIST

800-22.
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CHAPTER 6 CONCLUSION

6.1 Summary of Work

This thesis focuses on designing a digital trueloam number generator. The methodology
used is based on standard digital blocks that cansynthesized from the VHDL
description. The Mentor Graphics tools were usedesign schematics and layouts of the
custom IC. The MachTA simulation tool was usedgost-layout simulation of full chip
design. Once chip design was simulated successfitllwas sent to MOSIS for the

fabrication.

The test board was designed to collect random ntsrfbem the fabricated RNG IC. This
board can be attached to any microprocessor. ktengs attached to the gumstix, which
had a pre-installed Linux operating system. Soféwvaras developed in C language to
operate the fabricated RNG chip, perform functideating, generate random numbers and

upload generated random numbers to a PC.

Once the RNG IC was verified as functionally cotrécwas run to generate random bits.
The data set of 100 files, each having 2,000,0@Q(itotal of 200 million bit), were
collected and uploaded to a PC. The statisticalseites were run on the data to test the
quality of randomness. Initially, the chip pasSewsts of the NIST 800-22, to resolve this,
whitening was performed on the RNG data to clearthg inconsistency in the output
binary pattern. The whitened data did pass allebfstof NIST 800-22.Designing a VLSI
chip from high-level VHDL code and using standaellscto implement the design was a
good learning experience for real-world applicasicas full-custom chip design is rare.
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6.2 Future Work

This RNG design utilized the 19-bit and the 13-bRSR to generate 32-bit random
numbers; the combination was chosen arbitrarily] arore interesting research can be
done in the area of generating the 32-bit randombass by using different combination of
LFSRs. Another possibility for future work would bedesign a unique ring oscillator for
each LFSR to provide clocks such that ring oscilabperates at a different speed
(fast/slow) or different in design (big/small). this design similar ring oscillators were

used to clock the LFSRs.

In this thesis, the test board in conjunction wiitle gumstix was used to generate and
collect random numbers for testing the RNG IC. €hare several other possibilities for
interfacing the RNG chip with any other microcotigoor FPGA platform to generate and

test random numbers.
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